xref: /sqlite-3.40.0/src/where.c (revision 304cbc17)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required.  If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
108 **
109 ** Any extra OP_Goto that is coded here is an optimization.  The
110 ** correct answer should be obtained regardless.  This OP_Goto just
111 ** makes the answer appear faster.
112 */
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114   WhereLevel *pInner;
115   int i;
116   if( !pWInfo->bOrderedInnerLoop ) return;
117   if( pWInfo->nOBSat==0 ) return;
118   for(i=pWInfo->nLevel-1; i>=0; i--){
119     pInner = &pWInfo->a[i];
120     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121       sqlite3VdbeGoto(v, pInner->addrNxt);
122       return;
123     }
124   }
125   sqlite3VdbeGoto(v, pWInfo->iBreak);
126 }
127 
128 /*
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
131 */
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133   assert( pWInfo->iContinue!=0 );
134   return pWInfo->iContinue;
135 }
136 
137 /*
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
140 */
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142   return pWInfo->iBreak;
143 }
144 
145 /*
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause.  Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
151 **
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
158 **
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
161 */
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166     sqlite3DebugPrintf("%s cursors: %d %d\n",
167          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168          aiCur[0], aiCur[1]);
169   }
170 #endif
171   return pWInfo->eOnePass;
172 }
173 
174 /*
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
177 */
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179   return pWInfo->bDeferredSeek;
180 }
181 
182 /*
183 ** Move the content of pSrc into pDest
184 */
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186   pDest->n = pSrc->n;
187   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
188 }
189 
190 /*
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
192 **
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded.  Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
196 */
197 static int whereOrInsert(
198   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
199   Bitmask prereq,        /* Prerequisites of the new entry */
200   LogEst rRun,           /* Run-cost of the new entry */
201   LogEst nOut            /* Number of outputs for the new entry */
202 ){
203   u16 i;
204   WhereOrCost *p;
205   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207       goto whereOrInsert_done;
208     }
209     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210       return 0;
211     }
212   }
213   if( pSet->n<N_OR_COST ){
214     p = &pSet->a[pSet->n++];
215     p->nOut = nOut;
216   }else{
217     p = pSet->a;
218     for(i=1; i<pSet->n; i++){
219       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
220     }
221     if( p->rRun<=rRun ) return 0;
222   }
223 whereOrInsert_done:
224   p->prereq = prereq;
225   p->rRun = rRun;
226   if( p->nOut>nOut ) p->nOut = nOut;
227   return 1;
228 }
229 
230 /*
231 ** Return the bitmask for the given cursor number.  Return 0 if
232 ** iCursor is not in the set.
233 */
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235   int i;
236   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237   for(i=0; i<pMaskSet->n; i++){
238     if( pMaskSet->ix[i]==iCursor ){
239       return MASKBIT(i);
240     }
241   }
242   return 0;
243 }
244 
245 /*
246 ** Create a new mask for cursor iCursor.
247 **
248 ** There is one cursor per table in the FROM clause.  The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
251 ** array will never overflow.
252 */
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255   pMaskSet->ix[pMaskSet->n++] = iCursor;
256 }
257 
258 /*
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch.  Otherwise, return NULL.
261 */
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264   if( ALWAYS(p!=0) && p->op==TK_COLUMN ) return p;
265   return 0;
266 }
267 
268 /*
269 ** Advance to the next WhereTerm that matches according to the criteria
270 ** established when the pScan object was initialized by whereScanInit().
271 ** Return NULL if there are no more matching WhereTerms.
272 */
273 static WhereTerm *whereScanNext(WhereScan *pScan){
274   int iCur;            /* The cursor on the LHS of the term */
275   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
276   Expr *pX;            /* An expression being tested */
277   WhereClause *pWC;    /* Shorthand for pScan->pWC */
278   WhereTerm *pTerm;    /* The term being tested */
279   int k = pScan->k;    /* Where to start scanning */
280 
281   assert( pScan->iEquiv<=pScan->nEquiv );
282   pWC = pScan->pWC;
283   while(1){
284     iColumn = pScan->aiColumn[pScan->iEquiv-1];
285     iCur = pScan->aiCur[pScan->iEquiv-1];
286     assert( pWC!=0 );
287     do{
288       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
289         if( pTerm->leftCursor==iCur
290          && pTerm->u.x.leftColumn==iColumn
291          && (iColumn!=XN_EXPR
292              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
293                                        pScan->pIdxExpr,iCur)==0)
294          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
295         ){
296           if( (pTerm->eOperator & WO_EQUIV)!=0
297            && pScan->nEquiv<ArraySize(pScan->aiCur)
298            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
299           ){
300             int j;
301             for(j=0; j<pScan->nEquiv; j++){
302               if( pScan->aiCur[j]==pX->iTable
303                && pScan->aiColumn[j]==pX->iColumn ){
304                   break;
305               }
306             }
307             if( j==pScan->nEquiv ){
308               pScan->aiCur[j] = pX->iTable;
309               pScan->aiColumn[j] = pX->iColumn;
310               pScan->nEquiv++;
311             }
312           }
313           if( (pTerm->eOperator & pScan->opMask)!=0 ){
314             /* Verify the affinity and collating sequence match */
315             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
316               CollSeq *pColl;
317               Parse *pParse = pWC->pWInfo->pParse;
318               pX = pTerm->pExpr;
319               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
320                 continue;
321               }
322               assert(pX->pLeft);
323               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
324               if( pColl==0 ) pColl = pParse->db->pDfltColl;
325               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
326                 continue;
327               }
328             }
329             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
330              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
331              && pX->iTable==pScan->aiCur[0]
332              && pX->iColumn==pScan->aiColumn[0]
333             ){
334               testcase( pTerm->eOperator & WO_IS );
335               continue;
336             }
337             pScan->pWC = pWC;
338             pScan->k = k+1;
339             return pTerm;
340           }
341         }
342       }
343       pWC = pWC->pOuter;
344       k = 0;
345     }while( pWC!=0 );
346     if( pScan->iEquiv>=pScan->nEquiv ) break;
347     pWC = pScan->pOrigWC;
348     k = 0;
349     pScan->iEquiv++;
350   }
351   return 0;
352 }
353 
354 /*
355 ** This is whereScanInit() for the case of an index on an expression.
356 ** It is factored out into a separate tail-recursion subroutine so that
357 ** the normal whereScanInit() routine, which is a high-runner, does not
358 ** need to push registers onto the stack as part of its prologue.
359 */
360 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
361   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
362   return whereScanNext(pScan);
363 }
364 
365 /*
366 ** Initialize a WHERE clause scanner object.  Return a pointer to the
367 ** first match.  Return NULL if there are no matches.
368 **
369 ** The scanner will be searching the WHERE clause pWC.  It will look
370 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
371 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
372 ** must be one of the indexes of table iCur.
373 **
374 ** The <op> must be one of the operators described by opMask.
375 **
376 ** If the search is for X and the WHERE clause contains terms of the
377 ** form X=Y then this routine might also return terms of the form
378 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
379 ** but is enough to handle most commonly occurring SQL statements.
380 **
381 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
382 ** index pIdx.
383 */
384 static WhereTerm *whereScanInit(
385   WhereScan *pScan,       /* The WhereScan object being initialized */
386   WhereClause *pWC,       /* The WHERE clause to be scanned */
387   int iCur,               /* Cursor to scan for */
388   int iColumn,            /* Column to scan for */
389   u32 opMask,             /* Operator(s) to scan for */
390   Index *pIdx             /* Must be compatible with this index */
391 ){
392   pScan->pOrigWC = pWC;
393   pScan->pWC = pWC;
394   pScan->pIdxExpr = 0;
395   pScan->idxaff = 0;
396   pScan->zCollName = 0;
397   pScan->opMask = opMask;
398   pScan->k = 0;
399   pScan->aiCur[0] = iCur;
400   pScan->nEquiv = 1;
401   pScan->iEquiv = 1;
402   if( pIdx ){
403     int j = iColumn;
404     iColumn = pIdx->aiColumn[j];
405     if( iColumn==XN_EXPR ){
406       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
407       pScan->zCollName = pIdx->azColl[j];
408       pScan->aiColumn[0] = XN_EXPR;
409       return whereScanInitIndexExpr(pScan);
410     }else if( iColumn==pIdx->pTable->iPKey ){
411       iColumn = XN_ROWID;
412     }else if( iColumn>=0 ){
413       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
414       pScan->zCollName = pIdx->azColl[j];
415     }
416   }else if( iColumn==XN_EXPR ){
417     return 0;
418   }
419   pScan->aiColumn[0] = iColumn;
420   return whereScanNext(pScan);
421 }
422 
423 /*
424 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
425 ** where X is a reference to the iColumn of table iCur or of index pIdx
426 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
427 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
428 **
429 ** If pIdx!=0 then it must be one of the indexes of table iCur.
430 ** Search for terms matching the iColumn-th column of pIdx
431 ** rather than the iColumn-th column of table iCur.
432 **
433 ** The term returned might by Y=<expr> if there is another constraint in
434 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
435 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
436 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
437 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
438 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
439 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
440 **
441 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
442 ** then try for the one with no dependencies on <expr> - in other words where
443 ** <expr> is a constant expression of some kind.  Only return entries of
444 ** the form "X <op> Y" where Y is a column in another table if no terms of
445 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
446 ** exist, try to return a term that does not use WO_EQUIV.
447 */
448 WhereTerm *sqlite3WhereFindTerm(
449   WhereClause *pWC,     /* The WHERE clause to be searched */
450   int iCur,             /* Cursor number of LHS */
451   int iColumn,          /* Column number of LHS */
452   Bitmask notReady,     /* RHS must not overlap with this mask */
453   u32 op,               /* Mask of WO_xx values describing operator */
454   Index *pIdx           /* Must be compatible with this index, if not NULL */
455 ){
456   WhereTerm *pResult = 0;
457   WhereTerm *p;
458   WhereScan scan;
459 
460   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
461   op &= WO_EQ|WO_IS;
462   while( p ){
463     if( (p->prereqRight & notReady)==0 ){
464       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
465         testcase( p->eOperator & WO_IS );
466         return p;
467       }
468       if( pResult==0 ) pResult = p;
469     }
470     p = whereScanNext(&scan);
471   }
472   return pResult;
473 }
474 
475 /*
476 ** This function searches pList for an entry that matches the iCol-th column
477 ** of index pIdx.
478 **
479 ** If such an expression is found, its index in pList->a[] is returned. If
480 ** no expression is found, -1 is returned.
481 */
482 static int findIndexCol(
483   Parse *pParse,                  /* Parse context */
484   ExprList *pList,                /* Expression list to search */
485   int iBase,                      /* Cursor for table associated with pIdx */
486   Index *pIdx,                    /* Index to match column of */
487   int iCol                        /* Column of index to match */
488 ){
489   int i;
490   const char *zColl = pIdx->azColl[iCol];
491 
492   for(i=0; i<pList->nExpr; i++){
493     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
494     if( ALWAYS(p!=0)
495      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
496      && p->iColumn==pIdx->aiColumn[iCol]
497      && p->iTable==iBase
498     ){
499       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
500       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
501         return i;
502       }
503     }
504   }
505 
506   return -1;
507 }
508 
509 /*
510 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
511 */
512 static int indexColumnNotNull(Index *pIdx, int iCol){
513   int j;
514   assert( pIdx!=0 );
515   assert( iCol>=0 && iCol<pIdx->nColumn );
516   j = pIdx->aiColumn[iCol];
517   if( j>=0 ){
518     return pIdx->pTable->aCol[j].notNull;
519   }else if( j==(-1) ){
520     return 1;
521   }else{
522     assert( j==(-2) );
523     return 0;  /* Assume an indexed expression can always yield a NULL */
524 
525   }
526 }
527 
528 /*
529 ** Return true if the DISTINCT expression-list passed as the third argument
530 ** is redundant.
531 **
532 ** A DISTINCT list is redundant if any subset of the columns in the
533 ** DISTINCT list are collectively unique and individually non-null.
534 */
535 static int isDistinctRedundant(
536   Parse *pParse,            /* Parsing context */
537   SrcList *pTabList,        /* The FROM clause */
538   WhereClause *pWC,         /* The WHERE clause */
539   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
540 ){
541   Table *pTab;
542   Index *pIdx;
543   int i;
544   int iBase;
545 
546   /* If there is more than one table or sub-select in the FROM clause of
547   ** this query, then it will not be possible to show that the DISTINCT
548   ** clause is redundant. */
549   if( pTabList->nSrc!=1 ) return 0;
550   iBase = pTabList->a[0].iCursor;
551   pTab = pTabList->a[0].pTab;
552 
553   /* If any of the expressions is an IPK column on table iBase, then return
554   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
555   ** current SELECT is a correlated sub-query.
556   */
557   for(i=0; i<pDistinct->nExpr; i++){
558     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
559     if( NEVER(p==0) ) continue;
560     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
561     if( p->iTable==iBase && p->iColumn<0 ) return 1;
562   }
563 
564   /* Loop through all indices on the table, checking each to see if it makes
565   ** the DISTINCT qualifier redundant. It does so if:
566   **
567   **   1. The index is itself UNIQUE, and
568   **
569   **   2. All of the columns in the index are either part of the pDistinct
570   **      list, or else the WHERE clause contains a term of the form "col=X",
571   **      where X is a constant value. The collation sequences of the
572   **      comparison and select-list expressions must match those of the index.
573   **
574   **   3. All of those index columns for which the WHERE clause does not
575   **      contain a "col=X" term are subject to a NOT NULL constraint.
576   */
577   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
578     if( !IsUniqueIndex(pIdx) ) continue;
579     if( pIdx->pPartIdxWhere ) continue;
580     for(i=0; i<pIdx->nKeyCol; i++){
581       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
582         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
583         if( indexColumnNotNull(pIdx, i)==0 ) break;
584       }
585     }
586     if( i==pIdx->nKeyCol ){
587       /* This index implies that the DISTINCT qualifier is redundant. */
588       return 1;
589     }
590   }
591 
592   return 0;
593 }
594 
595 
596 /*
597 ** Estimate the logarithm of the input value to base 2.
598 */
599 static LogEst estLog(LogEst N){
600   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
601 }
602 
603 /*
604 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
605 **
606 ** This routine runs over generated VDBE code and translates OP_Column
607 ** opcodes into OP_Copy when the table is being accessed via co-routine
608 ** instead of via table lookup.
609 **
610 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
611 ** cursor iTabCur are transformed into OP_Sequence opcode for the
612 ** iAutoidxCur cursor, in order to generate unique rowids for the
613 ** automatic index being generated.
614 */
615 static void translateColumnToCopy(
616   Parse *pParse,      /* Parsing context */
617   int iStart,         /* Translate from this opcode to the end */
618   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
619   int iRegister,      /* The first column is in this register */
620   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
621 ){
622   Vdbe *v = pParse->pVdbe;
623   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
624   int iEnd = sqlite3VdbeCurrentAddr(v);
625   if( pParse->db->mallocFailed ) return;
626   for(; iStart<iEnd; iStart++, pOp++){
627     if( pOp->p1!=iTabCur ) continue;
628     if( pOp->opcode==OP_Column ){
629       pOp->opcode = OP_Copy;
630       pOp->p1 = pOp->p2 + iRegister;
631       pOp->p2 = pOp->p3;
632       pOp->p3 = 0;
633     }else if( pOp->opcode==OP_Rowid ){
634       pOp->opcode = OP_Sequence;
635       pOp->p1 = iAutoidxCur;
636 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
637       if( iAutoidxCur==0 ){
638         pOp->opcode = OP_Null;
639         pOp->p3 = 0;
640       }
641 #endif
642     }
643   }
644 }
645 
646 /*
647 ** Two routines for printing the content of an sqlite3_index_info
648 ** structure.  Used for testing and debugging only.  If neither
649 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
650 ** are no-ops.
651 */
652 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
653 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
654   int i;
655   if( !sqlite3WhereTrace ) return;
656   for(i=0; i<p->nConstraint; i++){
657     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
658        i,
659        p->aConstraint[i].iColumn,
660        p->aConstraint[i].iTermOffset,
661        p->aConstraint[i].op,
662        p->aConstraint[i].usable);
663   }
664   for(i=0; i<p->nOrderBy; i++){
665     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
666        i,
667        p->aOrderBy[i].iColumn,
668        p->aOrderBy[i].desc);
669   }
670 }
671 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
672   int i;
673   if( !sqlite3WhereTrace ) return;
674   for(i=0; i<p->nConstraint; i++){
675     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
676        i,
677        p->aConstraintUsage[i].argvIndex,
678        p->aConstraintUsage[i].omit);
679   }
680   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
681   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
682   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
683   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
684   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
685 }
686 #else
687 #define whereTraceIndexInfoInputs(A)
688 #define whereTraceIndexInfoOutputs(A)
689 #endif
690 
691 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
692 /*
693 ** Return TRUE if the WHERE clause term pTerm is of a form where it
694 ** could be used with an index to access pSrc, assuming an appropriate
695 ** index existed.
696 */
697 static int termCanDriveIndex(
698   WhereTerm *pTerm,              /* WHERE clause term to check */
699   SrcItem *pSrc,                 /* Table we are trying to access */
700   Bitmask notReady               /* Tables in outer loops of the join */
701 ){
702   char aff;
703   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
704   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
705   if( (pSrc->fg.jointype & JT_LEFT)
706    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
707    && (pTerm->eOperator & WO_IS)
708   ){
709     /* Cannot use an IS term from the WHERE clause as an index driver for
710     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
711     ** the ON clause.  */
712     return 0;
713   }
714   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
715   if( pTerm->u.x.leftColumn<0 ) return 0;
716   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
717   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
718   testcase( pTerm->pExpr->op==TK_IS );
719   return 1;
720 }
721 #endif
722 
723 
724 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
725 /*
726 ** Generate code to construct the Index object for an automatic index
727 ** and to set up the WhereLevel object pLevel so that the code generator
728 ** makes use of the automatic index.
729 */
730 static void constructAutomaticIndex(
731   Parse *pParse,              /* The parsing context */
732   WhereClause *pWC,           /* The WHERE clause */
733   SrcItem *pSrc,              /* The FROM clause term to get the next index */
734   Bitmask notReady,           /* Mask of cursors that are not available */
735   WhereLevel *pLevel          /* Write new index here */
736 ){
737   int nKeyCol;                /* Number of columns in the constructed index */
738   WhereTerm *pTerm;           /* A single term of the WHERE clause */
739   WhereTerm *pWCEnd;          /* End of pWC->a[] */
740   Index *pIdx;                /* Object describing the transient index */
741   Vdbe *v;                    /* Prepared statement under construction */
742   int addrInit;               /* Address of the initialization bypass jump */
743   Table *pTable;              /* The table being indexed */
744   int addrTop;                /* Top of the index fill loop */
745   int regRecord;              /* Register holding an index record */
746   int n;                      /* Column counter */
747   int i;                      /* Loop counter */
748   int mxBitCol;               /* Maximum column in pSrc->colUsed */
749   CollSeq *pColl;             /* Collating sequence to on a column */
750   WhereLoop *pLoop;           /* The Loop object */
751   char *zNotUsed;             /* Extra space on the end of pIdx */
752   Bitmask idxCols;            /* Bitmap of columns used for indexing */
753   Bitmask extraCols;          /* Bitmap of additional columns */
754   u8 sentWarning = 0;         /* True if a warnning has been issued */
755   Expr *pPartial = 0;         /* Partial Index Expression */
756   int iContinue = 0;          /* Jump here to skip excluded rows */
757   SrcItem *pTabItem;          /* FROM clause term being indexed */
758   int addrCounter = 0;        /* Address where integer counter is initialized */
759   int regBase;                /* Array of registers where record is assembled */
760 
761   /* Generate code to skip over the creation and initialization of the
762   ** transient index on 2nd and subsequent iterations of the loop. */
763   v = pParse->pVdbe;
764   assert( v!=0 );
765   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
766 
767   /* Count the number of columns that will be added to the index
768   ** and used to match WHERE clause constraints */
769   nKeyCol = 0;
770   pTable = pSrc->pTab;
771   pWCEnd = &pWC->a[pWC->nTerm];
772   pLoop = pLevel->pWLoop;
773   idxCols = 0;
774   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
775     Expr *pExpr = pTerm->pExpr;
776     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
777          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
778          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
779     if( pLoop->prereq==0
780      && (pTerm->wtFlags & TERM_VIRTUAL)==0
781      && !ExprHasProperty(pExpr, EP_FromJoin)
782      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
783       pPartial = sqlite3ExprAnd(pParse, pPartial,
784                                 sqlite3ExprDup(pParse->db, pExpr, 0));
785     }
786     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
787       int iCol = pTerm->u.x.leftColumn;
788       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
789       testcase( iCol==BMS );
790       testcase( iCol==BMS-1 );
791       if( !sentWarning ){
792         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
793             "automatic index on %s(%s)", pTable->zName,
794             pTable->aCol[iCol].zName);
795         sentWarning = 1;
796       }
797       if( (idxCols & cMask)==0 ){
798         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
799           goto end_auto_index_create;
800         }
801         pLoop->aLTerm[nKeyCol++] = pTerm;
802         idxCols |= cMask;
803       }
804     }
805   }
806   assert( nKeyCol>0 || pParse->db->mallocFailed );
807   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
808   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
809                      | WHERE_AUTO_INDEX;
810 
811   /* Count the number of additional columns needed to create a
812   ** covering index.  A "covering index" is an index that contains all
813   ** columns that are needed by the query.  With a covering index, the
814   ** original table never needs to be accessed.  Automatic indices must
815   ** be a covering index because the index will not be updated if the
816   ** original table changes and the index and table cannot both be used
817   ** if they go out of sync.
818   */
819   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
820   mxBitCol = MIN(BMS-1,pTable->nCol);
821   testcase( pTable->nCol==BMS-1 );
822   testcase( pTable->nCol==BMS-2 );
823   for(i=0; i<mxBitCol; i++){
824     if( extraCols & MASKBIT(i) ) nKeyCol++;
825   }
826   if( pSrc->colUsed & MASKBIT(BMS-1) ){
827     nKeyCol += pTable->nCol - BMS + 1;
828   }
829 
830   /* Construct the Index object to describe this index */
831   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
832   if( pIdx==0 ) goto end_auto_index_create;
833   pLoop->u.btree.pIndex = pIdx;
834   pIdx->zName = "auto-index";
835   pIdx->pTable = pTable;
836   n = 0;
837   idxCols = 0;
838   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
839     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
840       int iCol = pTerm->u.x.leftColumn;
841       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
842       testcase( iCol==BMS-1 );
843       testcase( iCol==BMS );
844       if( (idxCols & cMask)==0 ){
845         Expr *pX = pTerm->pExpr;
846         idxCols |= cMask;
847         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
848         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
849         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
850         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
851         n++;
852       }
853     }
854   }
855   assert( (u32)n==pLoop->u.btree.nEq );
856 
857   /* Add additional columns needed to make the automatic index into
858   ** a covering index */
859   for(i=0; i<mxBitCol; i++){
860     if( extraCols & MASKBIT(i) ){
861       pIdx->aiColumn[n] = i;
862       pIdx->azColl[n] = sqlite3StrBINARY;
863       n++;
864     }
865   }
866   if( pSrc->colUsed & MASKBIT(BMS-1) ){
867     for(i=BMS-1; i<pTable->nCol; i++){
868       pIdx->aiColumn[n] = i;
869       pIdx->azColl[n] = sqlite3StrBINARY;
870       n++;
871     }
872   }
873   assert( n==nKeyCol );
874   pIdx->aiColumn[n] = XN_ROWID;
875   pIdx->azColl[n] = sqlite3StrBINARY;
876 
877   /* Create the automatic index */
878   assert( pLevel->iIdxCur>=0 );
879   pLevel->iIdxCur = pParse->nTab++;
880   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
881   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
882   VdbeComment((v, "for %s", pTable->zName));
883 
884   /* Fill the automatic index with content */
885   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
886   if( pTabItem->fg.viaCoroutine ){
887     int regYield = pTabItem->regReturn;
888     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
889     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
890     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
891     VdbeCoverage(v);
892     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
893   }else{
894     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
895   }
896   if( pPartial ){
897     iContinue = sqlite3VdbeMakeLabel(pParse);
898     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
899     pLoop->wsFlags |= WHERE_PARTIALIDX;
900   }
901   regRecord = sqlite3GetTempReg(pParse);
902   regBase = sqlite3GenerateIndexKey(
903       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
904   );
905   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
906   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
907   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
908   if( pTabItem->fg.viaCoroutine ){
909     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
910     testcase( pParse->db->mallocFailed );
911     assert( pLevel->iIdxCur>0 );
912     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
913                           pTabItem->regResult, pLevel->iIdxCur);
914     sqlite3VdbeGoto(v, addrTop);
915     pTabItem->fg.viaCoroutine = 0;
916   }else{
917     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
918     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
919   }
920   sqlite3VdbeJumpHere(v, addrTop);
921   sqlite3ReleaseTempReg(pParse, regRecord);
922 
923   /* Jump here when skipping the initialization */
924   sqlite3VdbeJumpHere(v, addrInit);
925 
926 end_auto_index_create:
927   sqlite3ExprDelete(pParse->db, pPartial);
928 }
929 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
930 
931 #ifndef SQLITE_OMIT_VIRTUALTABLE
932 /*
933 ** Allocate and populate an sqlite3_index_info structure. It is the
934 ** responsibility of the caller to eventually release the structure
935 ** by passing the pointer returned by this function to sqlite3_free().
936 */
937 static sqlite3_index_info *allocateIndexInfo(
938   Parse *pParse,                  /* The parsing context */
939   WhereClause *pWC,               /* The WHERE clause being analyzed */
940   Bitmask mUnusable,              /* Ignore terms with these prereqs */
941   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
942   ExprList *pOrderBy,             /* The ORDER BY clause */
943   u16 *pmNoOmit                   /* Mask of terms not to omit */
944 ){
945   int i, j;
946   int nTerm;
947   struct sqlite3_index_constraint *pIdxCons;
948   struct sqlite3_index_orderby *pIdxOrderBy;
949   struct sqlite3_index_constraint_usage *pUsage;
950   struct HiddenIndexInfo *pHidden;
951   WhereTerm *pTerm;
952   int nOrderBy;
953   sqlite3_index_info *pIdxInfo;
954   u16 mNoOmit = 0;
955 
956   /* Count the number of possible WHERE clause constraints referring
957   ** to this virtual table */
958   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
959     if( pTerm->leftCursor != pSrc->iCursor ) continue;
960     if( pTerm->prereqRight & mUnusable ) continue;
961     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
962     testcase( pTerm->eOperator & WO_IN );
963     testcase( pTerm->eOperator & WO_ISNULL );
964     testcase( pTerm->eOperator & WO_IS );
965     testcase( pTerm->eOperator & WO_ALL );
966     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
967     if( pTerm->wtFlags & TERM_VNULL ) continue;
968     assert( pTerm->u.x.leftColumn>=(-1) );
969     nTerm++;
970   }
971 
972   /* If the ORDER BY clause contains only columns in the current
973   ** virtual table then allocate space for the aOrderBy part of
974   ** the sqlite3_index_info structure.
975   */
976   nOrderBy = 0;
977   if( pOrderBy ){
978     int n = pOrderBy->nExpr;
979     for(i=0; i<n; i++){
980       Expr *pExpr = pOrderBy->a[i].pExpr;
981       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
982       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
983     }
984     if( i==n){
985       nOrderBy = n;
986     }
987   }
988 
989   /* Allocate the sqlite3_index_info structure
990   */
991   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
992                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
993                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
994   if( pIdxInfo==0 ){
995     sqlite3ErrorMsg(pParse, "out of memory");
996     return 0;
997   }
998   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
999   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1000   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1001   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1002   pIdxInfo->nOrderBy = nOrderBy;
1003   pIdxInfo->aConstraint = pIdxCons;
1004   pIdxInfo->aOrderBy = pIdxOrderBy;
1005   pIdxInfo->aConstraintUsage = pUsage;
1006   pHidden->pWC = pWC;
1007   pHidden->pParse = pParse;
1008   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1009     u16 op;
1010     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1011     if( pTerm->prereqRight & mUnusable ) continue;
1012     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1013     testcase( pTerm->eOperator & WO_IN );
1014     testcase( pTerm->eOperator & WO_IS );
1015     testcase( pTerm->eOperator & WO_ISNULL );
1016     testcase( pTerm->eOperator & WO_ALL );
1017     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1018     if( pTerm->wtFlags & TERM_VNULL ) continue;
1019 
1020     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1021     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1022     ** equivalent restriction for ordinary tables. */
1023     if( (pSrc->fg.jointype & JT_LEFT)!=0
1024      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1025     ){
1026       continue;
1027     }
1028     assert( pTerm->u.x.leftColumn>=(-1) );
1029     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1030     pIdxCons[j].iTermOffset = i;
1031     op = pTerm->eOperator & WO_ALL;
1032     if( op==WO_IN ) op = WO_EQ;
1033     if( op==WO_AUX ){
1034       pIdxCons[j].op = pTerm->eMatchOp;
1035     }else if( op & (WO_ISNULL|WO_IS) ){
1036       if( op==WO_ISNULL ){
1037         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1038       }else{
1039         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1040       }
1041     }else{
1042       pIdxCons[j].op = (u8)op;
1043       /* The direct assignment in the previous line is possible only because
1044       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1045       ** following asserts verify this fact. */
1046       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1047       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1048       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1049       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1050       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1051       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1052 
1053       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1054        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1055       ){
1056         testcase( j!=i );
1057         if( j<16 ) mNoOmit |= (1 << j);
1058         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1059         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1060       }
1061     }
1062 
1063     j++;
1064   }
1065   pIdxInfo->nConstraint = j;
1066   for(i=0; i<nOrderBy; i++){
1067     Expr *pExpr = pOrderBy->a[i].pExpr;
1068     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1069     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1070   }
1071 
1072   *pmNoOmit = mNoOmit;
1073   return pIdxInfo;
1074 }
1075 
1076 /*
1077 ** The table object reference passed as the second argument to this function
1078 ** must represent a virtual table. This function invokes the xBestIndex()
1079 ** method of the virtual table with the sqlite3_index_info object that
1080 ** comes in as the 3rd argument to this function.
1081 **
1082 ** If an error occurs, pParse is populated with an error message and an
1083 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1084 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1085 ** the current configuration of "unusable" flags in sqlite3_index_info can
1086 ** not result in a valid plan.
1087 **
1088 ** Whether or not an error is returned, it is the responsibility of the
1089 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1090 ** that this is required.
1091 */
1092 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1093   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1094   int rc;
1095 
1096   whereTraceIndexInfoInputs(p);
1097   rc = pVtab->pModule->xBestIndex(pVtab, p);
1098   whereTraceIndexInfoOutputs(p);
1099 
1100   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1101     if( rc==SQLITE_NOMEM ){
1102       sqlite3OomFault(pParse->db);
1103     }else if( !pVtab->zErrMsg ){
1104       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1105     }else{
1106       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1107     }
1108   }
1109   sqlite3_free(pVtab->zErrMsg);
1110   pVtab->zErrMsg = 0;
1111   return rc;
1112 }
1113 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1114 
1115 #ifdef SQLITE_ENABLE_STAT4
1116 /*
1117 ** Estimate the location of a particular key among all keys in an
1118 ** index.  Store the results in aStat as follows:
1119 **
1120 **    aStat[0]      Est. number of rows less than pRec
1121 **    aStat[1]      Est. number of rows equal to pRec
1122 **
1123 ** Return the index of the sample that is the smallest sample that
1124 ** is greater than or equal to pRec. Note that this index is not an index
1125 ** into the aSample[] array - it is an index into a virtual set of samples
1126 ** based on the contents of aSample[] and the number of fields in record
1127 ** pRec.
1128 */
1129 static int whereKeyStats(
1130   Parse *pParse,              /* Database connection */
1131   Index *pIdx,                /* Index to consider domain of */
1132   UnpackedRecord *pRec,       /* Vector of values to consider */
1133   int roundUp,                /* Round up if true.  Round down if false */
1134   tRowcnt *aStat              /* OUT: stats written here */
1135 ){
1136   IndexSample *aSample = pIdx->aSample;
1137   int iCol;                   /* Index of required stats in anEq[] etc. */
1138   int i;                      /* Index of first sample >= pRec */
1139   int iSample;                /* Smallest sample larger than or equal to pRec */
1140   int iMin = 0;               /* Smallest sample not yet tested */
1141   int iTest;                  /* Next sample to test */
1142   int res;                    /* Result of comparison operation */
1143   int nField;                 /* Number of fields in pRec */
1144   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1145 
1146 #ifndef SQLITE_DEBUG
1147   UNUSED_PARAMETER( pParse );
1148 #endif
1149   assert( pRec!=0 );
1150   assert( pIdx->nSample>0 );
1151   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1152 
1153   /* Do a binary search to find the first sample greater than or equal
1154   ** to pRec. If pRec contains a single field, the set of samples to search
1155   ** is simply the aSample[] array. If the samples in aSample[] contain more
1156   ** than one fields, all fields following the first are ignored.
1157   **
1158   ** If pRec contains N fields, where N is more than one, then as well as the
1159   ** samples in aSample[] (truncated to N fields), the search also has to
1160   ** consider prefixes of those samples. For example, if the set of samples
1161   ** in aSample is:
1162   **
1163   **     aSample[0] = (a, 5)
1164   **     aSample[1] = (a, 10)
1165   **     aSample[2] = (b, 5)
1166   **     aSample[3] = (c, 100)
1167   **     aSample[4] = (c, 105)
1168   **
1169   ** Then the search space should ideally be the samples above and the
1170   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1171   ** the code actually searches this set:
1172   **
1173   **     0: (a)
1174   **     1: (a, 5)
1175   **     2: (a, 10)
1176   **     3: (a, 10)
1177   **     4: (b)
1178   **     5: (b, 5)
1179   **     6: (c)
1180   **     7: (c, 100)
1181   **     8: (c, 105)
1182   **     9: (c, 105)
1183   **
1184   ** For each sample in the aSample[] array, N samples are present in the
1185   ** effective sample array. In the above, samples 0 and 1 are based on
1186   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1187   **
1188   ** Often, sample i of each block of N effective samples has (i+1) fields.
1189   ** Except, each sample may be extended to ensure that it is greater than or
1190   ** equal to the previous sample in the array. For example, in the above,
1191   ** sample 2 is the first sample of a block of N samples, so at first it
1192   ** appears that it should be 1 field in size. However, that would make it
1193   ** smaller than sample 1, so the binary search would not work. As a result,
1194   ** it is extended to two fields. The duplicates that this creates do not
1195   ** cause any problems.
1196   */
1197   nField = pRec->nField;
1198   iCol = 0;
1199   iSample = pIdx->nSample * nField;
1200   do{
1201     int iSamp;                    /* Index in aSample[] of test sample */
1202     int n;                        /* Number of fields in test sample */
1203 
1204     iTest = (iMin+iSample)/2;
1205     iSamp = iTest / nField;
1206     if( iSamp>0 ){
1207       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1208       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1209       ** fields that is greater than the previous effective sample.  */
1210       for(n=(iTest % nField) + 1; n<nField; n++){
1211         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1212       }
1213     }else{
1214       n = iTest + 1;
1215     }
1216 
1217     pRec->nField = n;
1218     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1219     if( res<0 ){
1220       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1221       iMin = iTest+1;
1222     }else if( res==0 && n<nField ){
1223       iLower = aSample[iSamp].anLt[n-1];
1224       iMin = iTest+1;
1225       res = -1;
1226     }else{
1227       iSample = iTest;
1228       iCol = n-1;
1229     }
1230   }while( res && iMin<iSample );
1231   i = iSample / nField;
1232 
1233 #ifdef SQLITE_DEBUG
1234   /* The following assert statements check that the binary search code
1235   ** above found the right answer. This block serves no purpose other
1236   ** than to invoke the asserts.  */
1237   if( pParse->db->mallocFailed==0 ){
1238     if( res==0 ){
1239       /* If (res==0) is true, then pRec must be equal to sample i. */
1240       assert( i<pIdx->nSample );
1241       assert( iCol==nField-1 );
1242       pRec->nField = nField;
1243       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1244            || pParse->db->mallocFailed
1245       );
1246     }else{
1247       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1248       ** all samples in the aSample[] array, pRec must be smaller than the
1249       ** (iCol+1) field prefix of sample i.  */
1250       assert( i<=pIdx->nSample && i>=0 );
1251       pRec->nField = iCol+1;
1252       assert( i==pIdx->nSample
1253            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1254            || pParse->db->mallocFailed );
1255 
1256       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1257       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1258       ** be greater than or equal to the (iCol) field prefix of sample i.
1259       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1260       if( iCol>0 ){
1261         pRec->nField = iCol;
1262         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1263              || pParse->db->mallocFailed );
1264       }
1265       if( i>0 ){
1266         pRec->nField = nField;
1267         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1268              || pParse->db->mallocFailed );
1269       }
1270     }
1271   }
1272 #endif /* ifdef SQLITE_DEBUG */
1273 
1274   if( res==0 ){
1275     /* Record pRec is equal to sample i */
1276     assert( iCol==nField-1 );
1277     aStat[0] = aSample[i].anLt[iCol];
1278     aStat[1] = aSample[i].anEq[iCol];
1279   }else{
1280     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1281     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1282     ** is larger than all samples in the array. */
1283     tRowcnt iUpper, iGap;
1284     if( i>=pIdx->nSample ){
1285       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1286     }else{
1287       iUpper = aSample[i].anLt[iCol];
1288     }
1289 
1290     if( iLower>=iUpper ){
1291       iGap = 0;
1292     }else{
1293       iGap = iUpper - iLower;
1294     }
1295     if( roundUp ){
1296       iGap = (iGap*2)/3;
1297     }else{
1298       iGap = iGap/3;
1299     }
1300     aStat[0] = iLower + iGap;
1301     aStat[1] = pIdx->aAvgEq[nField-1];
1302   }
1303 
1304   /* Restore the pRec->nField value before returning.  */
1305   pRec->nField = nField;
1306   return i;
1307 }
1308 #endif /* SQLITE_ENABLE_STAT4 */
1309 
1310 /*
1311 ** If it is not NULL, pTerm is a term that provides an upper or lower
1312 ** bound on a range scan. Without considering pTerm, it is estimated
1313 ** that the scan will visit nNew rows. This function returns the number
1314 ** estimated to be visited after taking pTerm into account.
1315 **
1316 ** If the user explicitly specified a likelihood() value for this term,
1317 ** then the return value is the likelihood multiplied by the number of
1318 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1319 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1320 */
1321 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1322   LogEst nRet = nNew;
1323   if( pTerm ){
1324     if( pTerm->truthProb<=0 ){
1325       nRet += pTerm->truthProb;
1326     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1327       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1328     }
1329   }
1330   return nRet;
1331 }
1332 
1333 
1334 #ifdef SQLITE_ENABLE_STAT4
1335 /*
1336 ** Return the affinity for a single column of an index.
1337 */
1338 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1339   assert( iCol>=0 && iCol<pIdx->nColumn );
1340   if( !pIdx->zColAff ){
1341     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1342   }
1343   assert( pIdx->zColAff[iCol]!=0 );
1344   return pIdx->zColAff[iCol];
1345 }
1346 #endif
1347 
1348 
1349 #ifdef SQLITE_ENABLE_STAT4
1350 /*
1351 ** This function is called to estimate the number of rows visited by a
1352 ** range-scan on a skip-scan index. For example:
1353 **
1354 **   CREATE INDEX i1 ON t1(a, b, c);
1355 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1356 **
1357 ** Value pLoop->nOut is currently set to the estimated number of rows
1358 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1359 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1360 ** on the stat4 data for the index. this scan will be peformed multiple
1361 ** times (once for each (a,b) combination that matches a=?) is dealt with
1362 ** by the caller.
1363 **
1364 ** It does this by scanning through all stat4 samples, comparing values
1365 ** extracted from pLower and pUpper with the corresponding column in each
1366 ** sample. If L and U are the number of samples found to be less than or
1367 ** equal to the values extracted from pLower and pUpper respectively, and
1368 ** N is the total number of samples, the pLoop->nOut value is adjusted
1369 ** as follows:
1370 **
1371 **   nOut = nOut * ( min(U - L, 1) / N )
1372 **
1373 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1374 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1375 ** U is set to N.
1376 **
1377 ** Normally, this function sets *pbDone to 1 before returning. However,
1378 ** if no value can be extracted from either pLower or pUpper (and so the
1379 ** estimate of the number of rows delivered remains unchanged), *pbDone
1380 ** is left as is.
1381 **
1382 ** If an error occurs, an SQLite error code is returned. Otherwise,
1383 ** SQLITE_OK.
1384 */
1385 static int whereRangeSkipScanEst(
1386   Parse *pParse,       /* Parsing & code generating context */
1387   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1388   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1389   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1390   int *pbDone          /* Set to true if at least one expr. value extracted */
1391 ){
1392   Index *p = pLoop->u.btree.pIndex;
1393   int nEq = pLoop->u.btree.nEq;
1394   sqlite3 *db = pParse->db;
1395   int nLower = -1;
1396   int nUpper = p->nSample+1;
1397   int rc = SQLITE_OK;
1398   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1399   CollSeq *pColl;
1400 
1401   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1402   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1403   sqlite3_value *pVal = 0;        /* Value extracted from record */
1404 
1405   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1406   if( pLower ){
1407     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1408     nLower = 0;
1409   }
1410   if( pUpper && rc==SQLITE_OK ){
1411     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1412     nUpper = p2 ? 0 : p->nSample;
1413   }
1414 
1415   if( p1 || p2 ){
1416     int i;
1417     int nDiff;
1418     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1419       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1420       if( rc==SQLITE_OK && p1 ){
1421         int res = sqlite3MemCompare(p1, pVal, pColl);
1422         if( res>=0 ) nLower++;
1423       }
1424       if( rc==SQLITE_OK && p2 ){
1425         int res = sqlite3MemCompare(p2, pVal, pColl);
1426         if( res>=0 ) nUpper++;
1427       }
1428     }
1429     nDiff = (nUpper - nLower);
1430     if( nDiff<=0 ) nDiff = 1;
1431 
1432     /* If there is both an upper and lower bound specified, and the
1433     ** comparisons indicate that they are close together, use the fallback
1434     ** method (assume that the scan visits 1/64 of the rows) for estimating
1435     ** the number of rows visited. Otherwise, estimate the number of rows
1436     ** using the method described in the header comment for this function. */
1437     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1438       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1439       pLoop->nOut -= nAdjust;
1440       *pbDone = 1;
1441       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1442                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1443     }
1444 
1445   }else{
1446     assert( *pbDone==0 );
1447   }
1448 
1449   sqlite3ValueFree(p1);
1450   sqlite3ValueFree(p2);
1451   sqlite3ValueFree(pVal);
1452 
1453   return rc;
1454 }
1455 #endif /* SQLITE_ENABLE_STAT4 */
1456 
1457 /*
1458 ** This function is used to estimate the number of rows that will be visited
1459 ** by scanning an index for a range of values. The range may have an upper
1460 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1461 ** and lower bounds are represented by pLower and pUpper respectively. For
1462 ** example, assuming that index p is on t1(a):
1463 **
1464 **   ... FROM t1 WHERE a > ? AND a < ? ...
1465 **                    |_____|   |_____|
1466 **                       |         |
1467 **                     pLower    pUpper
1468 **
1469 ** If either of the upper or lower bound is not present, then NULL is passed in
1470 ** place of the corresponding WhereTerm.
1471 **
1472 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1473 ** column subject to the range constraint. Or, equivalently, the number of
1474 ** equality constraints optimized by the proposed index scan. For example,
1475 ** assuming index p is on t1(a, b), and the SQL query is:
1476 **
1477 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1478 **
1479 ** then nEq is set to 1 (as the range restricted column, b, is the second
1480 ** left-most column of the index). Or, if the query is:
1481 **
1482 **   ... FROM t1 WHERE a > ? AND a < ? ...
1483 **
1484 ** then nEq is set to 0.
1485 **
1486 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1487 ** number of rows that the index scan is expected to visit without
1488 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1489 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1490 ** to account for the range constraints pLower and pUpper.
1491 **
1492 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1493 ** used, a single range inequality reduces the search space by a factor of 4.
1494 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1495 ** rows visited by a factor of 64.
1496 */
1497 static int whereRangeScanEst(
1498   Parse *pParse,       /* Parsing & code generating context */
1499   WhereLoopBuilder *pBuilder,
1500   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1501   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1502   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1503 ){
1504   int rc = SQLITE_OK;
1505   int nOut = pLoop->nOut;
1506   LogEst nNew;
1507 
1508 #ifdef SQLITE_ENABLE_STAT4
1509   Index *p = pLoop->u.btree.pIndex;
1510   int nEq = pLoop->u.btree.nEq;
1511 
1512   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1513    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1514   ){
1515     if( nEq==pBuilder->nRecValid ){
1516       UnpackedRecord *pRec = pBuilder->pRec;
1517       tRowcnt a[2];
1518       int nBtm = pLoop->u.btree.nBtm;
1519       int nTop = pLoop->u.btree.nTop;
1520 
1521       /* Variable iLower will be set to the estimate of the number of rows in
1522       ** the index that are less than the lower bound of the range query. The
1523       ** lower bound being the concatenation of $P and $L, where $P is the
1524       ** key-prefix formed by the nEq values matched against the nEq left-most
1525       ** columns of the index, and $L is the value in pLower.
1526       **
1527       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1528       ** is not a simple variable or literal value), the lower bound of the
1529       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1530       ** if $L is available, whereKeyStats() is called for both ($P) and
1531       ** ($P:$L) and the larger of the two returned values is used.
1532       **
1533       ** Similarly, iUpper is to be set to the estimate of the number of rows
1534       ** less than the upper bound of the range query. Where the upper bound
1535       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1536       ** of iUpper are requested of whereKeyStats() and the smaller used.
1537       **
1538       ** The number of rows between the two bounds is then just iUpper-iLower.
1539       */
1540       tRowcnt iLower;     /* Rows less than the lower bound */
1541       tRowcnt iUpper;     /* Rows less than the upper bound */
1542       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1543       int iUprIdx = -1;   /* aSample[] for the upper bound */
1544 
1545       if( pRec ){
1546         testcase( pRec->nField!=pBuilder->nRecValid );
1547         pRec->nField = pBuilder->nRecValid;
1548       }
1549       /* Determine iLower and iUpper using ($P) only. */
1550       if( nEq==0 ){
1551         iLower = 0;
1552         iUpper = p->nRowEst0;
1553       }else{
1554         /* Note: this call could be optimized away - since the same values must
1555         ** have been requested when testing key $P in whereEqualScanEst().  */
1556         whereKeyStats(pParse, p, pRec, 0, a);
1557         iLower = a[0];
1558         iUpper = a[0] + a[1];
1559       }
1560 
1561       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1562       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1563       assert( p->aSortOrder!=0 );
1564       if( p->aSortOrder[nEq] ){
1565         /* The roles of pLower and pUpper are swapped for a DESC index */
1566         SWAP(WhereTerm*, pLower, pUpper);
1567         SWAP(int, nBtm, nTop);
1568       }
1569 
1570       /* If possible, improve on the iLower estimate using ($P:$L). */
1571       if( pLower ){
1572         int n;                    /* Values extracted from pExpr */
1573         Expr *pExpr = pLower->pExpr->pRight;
1574         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1575         if( rc==SQLITE_OK && n ){
1576           tRowcnt iNew;
1577           u16 mask = WO_GT|WO_LE;
1578           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1579           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1580           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1581           if( iNew>iLower ) iLower = iNew;
1582           nOut--;
1583           pLower = 0;
1584         }
1585       }
1586 
1587       /* If possible, improve on the iUpper estimate using ($P:$U). */
1588       if( pUpper ){
1589         int n;                    /* Values extracted from pExpr */
1590         Expr *pExpr = pUpper->pExpr->pRight;
1591         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1592         if( rc==SQLITE_OK && n ){
1593           tRowcnt iNew;
1594           u16 mask = WO_GT|WO_LE;
1595           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1596           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1597           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1598           if( iNew<iUpper ) iUpper = iNew;
1599           nOut--;
1600           pUpper = 0;
1601         }
1602       }
1603 
1604       pBuilder->pRec = pRec;
1605       if( rc==SQLITE_OK ){
1606         if( iUpper>iLower ){
1607           nNew = sqlite3LogEst(iUpper - iLower);
1608           /* TUNING:  If both iUpper and iLower are derived from the same
1609           ** sample, then assume they are 4x more selective.  This brings
1610           ** the estimated selectivity more in line with what it would be
1611           ** if estimated without the use of STAT4 tables. */
1612           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1613         }else{
1614           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1615         }
1616         if( nNew<nOut ){
1617           nOut = nNew;
1618         }
1619         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1620                            (u32)iLower, (u32)iUpper, nOut));
1621       }
1622     }else{
1623       int bDone = 0;
1624       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1625       if( bDone ) return rc;
1626     }
1627   }
1628 #else
1629   UNUSED_PARAMETER(pParse);
1630   UNUSED_PARAMETER(pBuilder);
1631   assert( pLower || pUpper );
1632 #endif
1633   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1634   nNew = whereRangeAdjust(pLower, nOut);
1635   nNew = whereRangeAdjust(pUpper, nNew);
1636 
1637   /* TUNING: If there is both an upper and lower limit and neither limit
1638   ** has an application-defined likelihood(), assume the range is
1639   ** reduced by an additional 75%. This means that, by default, an open-ended
1640   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1641   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1642   ** match 1/64 of the index. */
1643   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1644     nNew -= 20;
1645   }
1646 
1647   nOut -= (pLower!=0) + (pUpper!=0);
1648   if( nNew<10 ) nNew = 10;
1649   if( nNew<nOut ) nOut = nNew;
1650 #if defined(WHERETRACE_ENABLED)
1651   if( pLoop->nOut>nOut ){
1652     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1653                     pLoop->nOut, nOut));
1654   }
1655 #endif
1656   pLoop->nOut = (LogEst)nOut;
1657   return rc;
1658 }
1659 
1660 #ifdef SQLITE_ENABLE_STAT4
1661 /*
1662 ** Estimate the number of rows that will be returned based on
1663 ** an equality constraint x=VALUE and where that VALUE occurs in
1664 ** the histogram data.  This only works when x is the left-most
1665 ** column of an index and sqlite_stat4 histogram data is available
1666 ** for that index.  When pExpr==NULL that means the constraint is
1667 ** "x IS NULL" instead of "x=VALUE".
1668 **
1669 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1670 ** If unable to make an estimate, leave *pnRow unchanged and return
1671 ** non-zero.
1672 **
1673 ** This routine can fail if it is unable to load a collating sequence
1674 ** required for string comparison, or if unable to allocate memory
1675 ** for a UTF conversion required for comparison.  The error is stored
1676 ** in the pParse structure.
1677 */
1678 static int whereEqualScanEst(
1679   Parse *pParse,       /* Parsing & code generating context */
1680   WhereLoopBuilder *pBuilder,
1681   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1682   tRowcnt *pnRow       /* Write the revised row estimate here */
1683 ){
1684   Index *p = pBuilder->pNew->u.btree.pIndex;
1685   int nEq = pBuilder->pNew->u.btree.nEq;
1686   UnpackedRecord *pRec = pBuilder->pRec;
1687   int rc;                   /* Subfunction return code */
1688   tRowcnt a[2];             /* Statistics */
1689   int bOk;
1690 
1691   assert( nEq>=1 );
1692   assert( nEq<=p->nColumn );
1693   assert( p->aSample!=0 );
1694   assert( p->nSample>0 );
1695   assert( pBuilder->nRecValid<nEq );
1696 
1697   /* If values are not available for all fields of the index to the left
1698   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1699   if( pBuilder->nRecValid<(nEq-1) ){
1700     return SQLITE_NOTFOUND;
1701   }
1702 
1703   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1704   ** below would return the same value.  */
1705   if( nEq>=p->nColumn ){
1706     *pnRow = 1;
1707     return SQLITE_OK;
1708   }
1709 
1710   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1711   pBuilder->pRec = pRec;
1712   if( rc!=SQLITE_OK ) return rc;
1713   if( bOk==0 ) return SQLITE_NOTFOUND;
1714   pBuilder->nRecValid = nEq;
1715 
1716   whereKeyStats(pParse, p, pRec, 0, a);
1717   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1718                    p->zName, nEq-1, (int)a[1]));
1719   *pnRow = a[1];
1720 
1721   return rc;
1722 }
1723 #endif /* SQLITE_ENABLE_STAT4 */
1724 
1725 #ifdef SQLITE_ENABLE_STAT4
1726 /*
1727 ** Estimate the number of rows that will be returned based on
1728 ** an IN constraint where the right-hand side of the IN operator
1729 ** is a list of values.  Example:
1730 **
1731 **        WHERE x IN (1,2,3,4)
1732 **
1733 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1734 ** If unable to make an estimate, leave *pnRow unchanged and return
1735 ** non-zero.
1736 **
1737 ** This routine can fail if it is unable to load a collating sequence
1738 ** required for string comparison, or if unable to allocate memory
1739 ** for a UTF conversion required for comparison.  The error is stored
1740 ** in the pParse structure.
1741 */
1742 static int whereInScanEst(
1743   Parse *pParse,       /* Parsing & code generating context */
1744   WhereLoopBuilder *pBuilder,
1745   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1746   tRowcnt *pnRow       /* Write the revised row estimate here */
1747 ){
1748   Index *p = pBuilder->pNew->u.btree.pIndex;
1749   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1750   int nRecValid = pBuilder->nRecValid;
1751   int rc = SQLITE_OK;     /* Subfunction return code */
1752   tRowcnt nEst;           /* Number of rows for a single term */
1753   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1754   int i;                  /* Loop counter */
1755 
1756   assert( p->aSample!=0 );
1757   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1758     nEst = nRow0;
1759     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1760     nRowEst += nEst;
1761     pBuilder->nRecValid = nRecValid;
1762   }
1763 
1764   if( rc==SQLITE_OK ){
1765     if( nRowEst > nRow0 ) nRowEst = nRow0;
1766     *pnRow = nRowEst;
1767     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1768   }
1769   assert( pBuilder->nRecValid==nRecValid );
1770   return rc;
1771 }
1772 #endif /* SQLITE_ENABLE_STAT4 */
1773 
1774 
1775 #ifdef WHERETRACE_ENABLED
1776 /*
1777 ** Print the content of a WhereTerm object
1778 */
1779 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1780   if( pTerm==0 ){
1781     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1782   }else{
1783     char zType[8];
1784     char zLeft[50];
1785     memcpy(zType, "....", 5);
1786     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1787     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1788     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1789     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1790     if( pTerm->eOperator & WO_SINGLE ){
1791       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1792                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1793     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1794       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1795                        pTerm->u.pOrInfo->indexable);
1796     }else{
1797       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1798     }
1799     sqlite3DebugPrintf(
1800        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1801        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1802     /* The 0x10000 .wheretrace flag causes extra information to be
1803     ** shown about each Term */
1804     if( sqlite3WhereTrace & 0x10000 ){
1805       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1806         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1807     }
1808     if( pTerm->u.x.iField ){
1809       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1810     }
1811     if( pTerm->iParent>=0 ){
1812       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1813     }
1814     sqlite3DebugPrintf("\n");
1815     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1816   }
1817 }
1818 #endif
1819 
1820 #ifdef WHERETRACE_ENABLED
1821 /*
1822 ** Show the complete content of a WhereClause
1823 */
1824 void sqlite3WhereClausePrint(WhereClause *pWC){
1825   int i;
1826   for(i=0; i<pWC->nTerm; i++){
1827     sqlite3WhereTermPrint(&pWC->a[i], i);
1828   }
1829 }
1830 #endif
1831 
1832 #ifdef WHERETRACE_ENABLED
1833 /*
1834 ** Print a WhereLoop object for debugging purposes
1835 */
1836 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1837   WhereInfo *pWInfo = pWC->pWInfo;
1838   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1839   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1840   Table *pTab = pItem->pTab;
1841   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1842   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1843                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1844   sqlite3DebugPrintf(" %12s",
1845                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1846   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1847     const char *zName;
1848     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1849       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1850         int i = sqlite3Strlen30(zName) - 1;
1851         while( zName[i]!='_' ) i--;
1852         zName += i;
1853       }
1854       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1855     }else{
1856       sqlite3DebugPrintf("%20s","");
1857     }
1858   }else{
1859     char *z;
1860     if( p->u.vtab.idxStr ){
1861       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1862                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1863     }else{
1864       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1865     }
1866     sqlite3DebugPrintf(" %-19s", z);
1867     sqlite3_free(z);
1868   }
1869   if( p->wsFlags & WHERE_SKIPSCAN ){
1870     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1871   }else{
1872     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1873   }
1874   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1875   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1876     int i;
1877     for(i=0; i<p->nLTerm; i++){
1878       sqlite3WhereTermPrint(p->aLTerm[i], i);
1879     }
1880   }
1881 }
1882 #endif
1883 
1884 /*
1885 ** Convert bulk memory into a valid WhereLoop that can be passed
1886 ** to whereLoopClear harmlessly.
1887 */
1888 static void whereLoopInit(WhereLoop *p){
1889   p->aLTerm = p->aLTermSpace;
1890   p->nLTerm = 0;
1891   p->nLSlot = ArraySize(p->aLTermSpace);
1892   p->wsFlags = 0;
1893 }
1894 
1895 /*
1896 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1897 */
1898 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1899   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1900     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1901       sqlite3_free(p->u.vtab.idxStr);
1902       p->u.vtab.needFree = 0;
1903       p->u.vtab.idxStr = 0;
1904     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1905       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1906       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1907       p->u.btree.pIndex = 0;
1908     }
1909   }
1910 }
1911 
1912 /*
1913 ** Deallocate internal memory used by a WhereLoop object
1914 */
1915 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1916   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1917   whereLoopClearUnion(db, p);
1918   whereLoopInit(p);
1919 }
1920 
1921 /*
1922 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1923 */
1924 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1925   WhereTerm **paNew;
1926   if( p->nLSlot>=n ) return SQLITE_OK;
1927   n = (n+7)&~7;
1928   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1929   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1930   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1931   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1932   p->aLTerm = paNew;
1933   p->nLSlot = n;
1934   return SQLITE_OK;
1935 }
1936 
1937 /*
1938 ** Transfer content from the second pLoop into the first.
1939 */
1940 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1941   whereLoopClearUnion(db, pTo);
1942   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1943     memset(&pTo->u, 0, sizeof(pTo->u));
1944     return SQLITE_NOMEM_BKPT;
1945   }
1946   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1947   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1948   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1949     pFrom->u.vtab.needFree = 0;
1950   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1951     pFrom->u.btree.pIndex = 0;
1952   }
1953   return SQLITE_OK;
1954 }
1955 
1956 /*
1957 ** Delete a WhereLoop object
1958 */
1959 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1960   whereLoopClear(db, p);
1961   sqlite3DbFreeNN(db, p);
1962 }
1963 
1964 /*
1965 ** Free a WhereInfo structure
1966 */
1967 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1968   int i;
1969   assert( pWInfo!=0 );
1970   for(i=0; i<pWInfo->nLevel; i++){
1971     WhereLevel *pLevel = &pWInfo->a[i];
1972     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1973       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1974     }
1975   }
1976   sqlite3WhereClauseClear(&pWInfo->sWC);
1977   while( pWInfo->pLoops ){
1978     WhereLoop *p = pWInfo->pLoops;
1979     pWInfo->pLoops = p->pNextLoop;
1980     whereLoopDelete(db, p);
1981   }
1982   assert( pWInfo->pExprMods==0 );
1983   sqlite3DbFreeNN(db, pWInfo);
1984 }
1985 
1986 /*
1987 ** Return TRUE if all of the following are true:
1988 **
1989 **   (1)  X has the same or lower cost that Y
1990 **   (2)  X uses fewer WHERE clause terms than Y
1991 **   (3)  Every WHERE clause term used by X is also used by Y
1992 **   (4)  X skips at least as many columns as Y
1993 **   (5)  If X is a covering index, than Y is too
1994 **
1995 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1996 ** If X is a proper subset of Y then Y is a better choice and ought
1997 ** to have a lower cost.  This routine returns TRUE when that cost
1998 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1999 ** was added because if X uses skip-scan less than Y it still might
2000 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2001 ** was added because a covering index probably deserves to have a lower cost
2002 ** than a non-covering index even if it is a proper subset.
2003 */
2004 static int whereLoopCheaperProperSubset(
2005   const WhereLoop *pX,       /* First WhereLoop to compare */
2006   const WhereLoop *pY        /* Compare against this WhereLoop */
2007 ){
2008   int i, j;
2009   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2010     return 0; /* X is not a subset of Y */
2011   }
2012   if( pY->nSkip > pX->nSkip ) return 0;
2013   if( pX->rRun >= pY->rRun ){
2014     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
2015     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
2016   }
2017   for(i=pX->nLTerm-1; i>=0; i--){
2018     if( pX->aLTerm[i]==0 ) continue;
2019     for(j=pY->nLTerm-1; j>=0; j--){
2020       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2021     }
2022     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2023   }
2024   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2025    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2026     return 0;  /* Constraint (5) */
2027   }
2028   return 1;  /* All conditions meet */
2029 }
2030 
2031 /*
2032 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2033 ** that:
2034 **
2035 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2036 **       subset of pTemplate
2037 **
2038 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2039 **       is a proper subset.
2040 **
2041 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2042 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2043 ** also used by Y.
2044 */
2045 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2046   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2047   for(; p; p=p->pNextLoop){
2048     if( p->iTab!=pTemplate->iTab ) continue;
2049     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2050     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2051       /* Adjust pTemplate cost downward so that it is cheaper than its
2052       ** subset p. */
2053       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2054                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2055       pTemplate->rRun = p->rRun;
2056       pTemplate->nOut = p->nOut - 1;
2057     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2058       /* Adjust pTemplate cost upward so that it is costlier than p since
2059       ** pTemplate is a proper subset of p */
2060       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2061                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2062       pTemplate->rRun = p->rRun;
2063       pTemplate->nOut = p->nOut + 1;
2064     }
2065   }
2066 }
2067 
2068 /*
2069 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2070 ** replaced by pTemplate.
2071 **
2072 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2073 ** In other words if pTemplate ought to be dropped from further consideration.
2074 **
2075 ** If pX is a WhereLoop that pTemplate can replace, then return the
2076 ** link that points to pX.
2077 **
2078 ** If pTemplate cannot replace any existing element of the list but needs
2079 ** to be added to the list as a new entry, then return a pointer to the
2080 ** tail of the list.
2081 */
2082 static WhereLoop **whereLoopFindLesser(
2083   WhereLoop **ppPrev,
2084   const WhereLoop *pTemplate
2085 ){
2086   WhereLoop *p;
2087   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2088     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2089       /* If either the iTab or iSortIdx values for two WhereLoop are different
2090       ** then those WhereLoops need to be considered separately.  Neither is
2091       ** a candidate to replace the other. */
2092       continue;
2093     }
2094     /* In the current implementation, the rSetup value is either zero
2095     ** or the cost of building an automatic index (NlogN) and the NlogN
2096     ** is the same for compatible WhereLoops. */
2097     assert( p->rSetup==0 || pTemplate->rSetup==0
2098                  || p->rSetup==pTemplate->rSetup );
2099 
2100     /* whereLoopAddBtree() always generates and inserts the automatic index
2101     ** case first.  Hence compatible candidate WhereLoops never have a larger
2102     ** rSetup. Call this SETUP-INVARIANT */
2103     assert( p->rSetup>=pTemplate->rSetup );
2104 
2105     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2106     ** UNIQUE constraint) with one or more == constraints is better
2107     ** than an automatic index. Unless it is a skip-scan. */
2108     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2109      && (pTemplate->nSkip)==0
2110      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2111      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2112      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2113     ){
2114       break;
2115     }
2116 
2117     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2118     ** discarded.  WhereLoop p is better if:
2119     **   (1)  p has no more dependencies than pTemplate, and
2120     **   (2)  p has an equal or lower cost than pTemplate
2121     */
2122     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2123      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2124      && p->rRun<=pTemplate->rRun                      /* (2b) */
2125      && p->nOut<=pTemplate->nOut                      /* (2c) */
2126     ){
2127       return 0;  /* Discard pTemplate */
2128     }
2129 
2130     /* If pTemplate is always better than p, then cause p to be overwritten
2131     ** with pTemplate.  pTemplate is better than p if:
2132     **   (1)  pTemplate has no more dependences than p, and
2133     **   (2)  pTemplate has an equal or lower cost than p.
2134     */
2135     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2136      && p->rRun>=pTemplate->rRun                             /* (2a) */
2137      && p->nOut>=pTemplate->nOut                             /* (2b) */
2138     ){
2139       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2140       break;   /* Cause p to be overwritten by pTemplate */
2141     }
2142   }
2143   return ppPrev;
2144 }
2145 
2146 /*
2147 ** Insert or replace a WhereLoop entry using the template supplied.
2148 **
2149 ** An existing WhereLoop entry might be overwritten if the new template
2150 ** is better and has fewer dependencies.  Or the template will be ignored
2151 ** and no insert will occur if an existing WhereLoop is faster and has
2152 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2153 ** added based on the template.
2154 **
2155 ** If pBuilder->pOrSet is not NULL then we care about only the
2156 ** prerequisites and rRun and nOut costs of the N best loops.  That
2157 ** information is gathered in the pBuilder->pOrSet object.  This special
2158 ** processing mode is used only for OR clause processing.
2159 **
2160 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2161 ** still might overwrite similar loops with the new template if the
2162 ** new template is better.  Loops may be overwritten if the following
2163 ** conditions are met:
2164 **
2165 **    (1)  They have the same iTab.
2166 **    (2)  They have the same iSortIdx.
2167 **    (3)  The template has same or fewer dependencies than the current loop
2168 **    (4)  The template has the same or lower cost than the current loop
2169 */
2170 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2171   WhereLoop **ppPrev, *p;
2172   WhereInfo *pWInfo = pBuilder->pWInfo;
2173   sqlite3 *db = pWInfo->pParse->db;
2174   int rc;
2175 
2176   /* Stop the search once we hit the query planner search limit */
2177   if( pBuilder->iPlanLimit==0 ){
2178     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2179     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2180     return SQLITE_DONE;
2181   }
2182   pBuilder->iPlanLimit--;
2183 
2184   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2185 
2186   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2187   ** and prereqs.
2188   */
2189   if( pBuilder->pOrSet!=0 ){
2190     if( pTemplate->nLTerm ){
2191 #if WHERETRACE_ENABLED
2192       u16 n = pBuilder->pOrSet->n;
2193       int x =
2194 #endif
2195       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2196                                     pTemplate->nOut);
2197 #if WHERETRACE_ENABLED /* 0x8 */
2198       if( sqlite3WhereTrace & 0x8 ){
2199         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2200         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2201       }
2202 #endif
2203     }
2204     return SQLITE_OK;
2205   }
2206 
2207   /* Look for an existing WhereLoop to replace with pTemplate
2208   */
2209   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2210 
2211   if( ppPrev==0 ){
2212     /* There already exists a WhereLoop on the list that is better
2213     ** than pTemplate, so just ignore pTemplate */
2214 #if WHERETRACE_ENABLED /* 0x8 */
2215     if( sqlite3WhereTrace & 0x8 ){
2216       sqlite3DebugPrintf("   skip: ");
2217       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2218     }
2219 #endif
2220     return SQLITE_OK;
2221   }else{
2222     p = *ppPrev;
2223   }
2224 
2225   /* If we reach this point it means that either p[] should be overwritten
2226   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2227   ** WhereLoop and insert it.
2228   */
2229 #if WHERETRACE_ENABLED /* 0x8 */
2230   if( sqlite3WhereTrace & 0x8 ){
2231     if( p!=0 ){
2232       sqlite3DebugPrintf("replace: ");
2233       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2234       sqlite3DebugPrintf("   with: ");
2235     }else{
2236       sqlite3DebugPrintf("    add: ");
2237     }
2238     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2239   }
2240 #endif
2241   if( p==0 ){
2242     /* Allocate a new WhereLoop to add to the end of the list */
2243     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2244     if( p==0 ) return SQLITE_NOMEM_BKPT;
2245     whereLoopInit(p);
2246     p->pNextLoop = 0;
2247   }else{
2248     /* We will be overwriting WhereLoop p[].  But before we do, first
2249     ** go through the rest of the list and delete any other entries besides
2250     ** p[] that are also supplated by pTemplate */
2251     WhereLoop **ppTail = &p->pNextLoop;
2252     WhereLoop *pToDel;
2253     while( *ppTail ){
2254       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2255       if( ppTail==0 ) break;
2256       pToDel = *ppTail;
2257       if( pToDel==0 ) break;
2258       *ppTail = pToDel->pNextLoop;
2259 #if WHERETRACE_ENABLED /* 0x8 */
2260       if( sqlite3WhereTrace & 0x8 ){
2261         sqlite3DebugPrintf(" delete: ");
2262         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2263       }
2264 #endif
2265       whereLoopDelete(db, pToDel);
2266     }
2267   }
2268   rc = whereLoopXfer(db, p, pTemplate);
2269   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2270     Index *pIndex = p->u.btree.pIndex;
2271     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2272       p->u.btree.pIndex = 0;
2273     }
2274   }
2275   return rc;
2276 }
2277 
2278 /*
2279 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2280 ** WHERE clause that reference the loop but which are not used by an
2281 ** index.
2282 *
2283 ** For every WHERE clause term that is not used by the index
2284 ** and which has a truth probability assigned by one of the likelihood(),
2285 ** likely(), or unlikely() SQL functions, reduce the estimated number
2286 ** of output rows by the probability specified.
2287 **
2288 ** TUNING:  For every WHERE clause term that is not used by the index
2289 ** and which does not have an assigned truth probability, heuristics
2290 ** described below are used to try to estimate the truth probability.
2291 ** TODO --> Perhaps this is something that could be improved by better
2292 ** table statistics.
2293 **
2294 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2295 ** value corresponds to -1 in LogEst notation, so this means decrement
2296 ** the WhereLoop.nOut field for every such WHERE clause term.
2297 **
2298 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2299 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2300 ** final output row estimate is no greater than 1/4 of the total number
2301 ** of rows in the table.  In other words, assume that x==EXPR will filter
2302 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2303 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2304 ** on the "x" column and so in that case only cap the output row estimate
2305 ** at 1/2 instead of 1/4.
2306 */
2307 static void whereLoopOutputAdjust(
2308   WhereClause *pWC,      /* The WHERE clause */
2309   WhereLoop *pLoop,      /* The loop to adjust downward */
2310   LogEst nRow            /* Number of rows in the entire table */
2311 ){
2312   WhereTerm *pTerm, *pX;
2313   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2314   int i, j;
2315   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2316 
2317   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2318   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2319     assert( pTerm!=0 );
2320     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2321     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2322     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2323     for(j=pLoop->nLTerm-1; j>=0; j--){
2324       pX = pLoop->aLTerm[j];
2325       if( pX==0 ) continue;
2326       if( pX==pTerm ) break;
2327       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2328     }
2329     if( j<0 ){
2330       if( pTerm->truthProb<=0 ){
2331         /* If a truth probability is specified using the likelihood() hints,
2332         ** then use the probability provided by the application. */
2333         pLoop->nOut += pTerm->truthProb;
2334       }else{
2335         /* In the absence of explicit truth probabilities, use heuristics to
2336         ** guess a reasonable truth probability. */
2337         pLoop->nOut--;
2338         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2339          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2340         ){
2341           Expr *pRight = pTerm->pExpr->pRight;
2342           int k = 0;
2343           testcase( pTerm->pExpr->op==TK_IS );
2344           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2345             k = 10;
2346           }else{
2347             k = 20;
2348           }
2349           if( iReduce<k ){
2350             pTerm->wtFlags |= TERM_HEURTRUTH;
2351             iReduce = k;
2352           }
2353         }
2354       }
2355     }
2356   }
2357   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2358 }
2359 
2360 /*
2361 ** Term pTerm is a vector range comparison operation. The first comparison
2362 ** in the vector can be optimized using column nEq of the index. This
2363 ** function returns the total number of vector elements that can be used
2364 ** as part of the range comparison.
2365 **
2366 ** For example, if the query is:
2367 **
2368 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2369 **
2370 ** and the index:
2371 **
2372 **   CREATE INDEX ... ON (a, b, c, d, e)
2373 **
2374 ** then this function would be invoked with nEq=1. The value returned in
2375 ** this case is 3.
2376 */
2377 static int whereRangeVectorLen(
2378   Parse *pParse,       /* Parsing context */
2379   int iCur,            /* Cursor open on pIdx */
2380   Index *pIdx,         /* The index to be used for a inequality constraint */
2381   int nEq,             /* Number of prior equality constraints on same index */
2382   WhereTerm *pTerm     /* The vector inequality constraint */
2383 ){
2384   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2385   int i;
2386 
2387   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2388   for(i=1; i<nCmp; i++){
2389     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2390     ** of the index. If not, exit the loop.  */
2391     char aff;                     /* Comparison affinity */
2392     char idxaff = 0;              /* Indexed columns affinity */
2393     CollSeq *pColl;               /* Comparison collation sequence */
2394     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2395     Expr *pRhs = pTerm->pExpr->pRight;
2396     if( pRhs->flags & EP_xIsSelect ){
2397       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2398     }else{
2399       pRhs = pRhs->x.pList->a[i].pExpr;
2400     }
2401 
2402     /* Check that the LHS of the comparison is a column reference to
2403     ** the right column of the right source table. And that the sort
2404     ** order of the index column is the same as the sort order of the
2405     ** leftmost index column.  */
2406     if( pLhs->op!=TK_COLUMN
2407      || pLhs->iTable!=iCur
2408      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2409      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2410     ){
2411       break;
2412     }
2413 
2414     testcase( pLhs->iColumn==XN_ROWID );
2415     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2416     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2417     if( aff!=idxaff ) break;
2418 
2419     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2420     if( pColl==0 ) break;
2421     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2422   }
2423   return i;
2424 }
2425 
2426 /*
2427 ** Adjust the cost C by the costMult facter T.  This only occurs if
2428 ** compiled with -DSQLITE_ENABLE_COSTMULT
2429 */
2430 #ifdef SQLITE_ENABLE_COSTMULT
2431 # define ApplyCostMultiplier(C,T)  C += T
2432 #else
2433 # define ApplyCostMultiplier(C,T)
2434 #endif
2435 
2436 /*
2437 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2438 ** index pIndex. Try to match one more.
2439 **
2440 ** When this function is called, pBuilder->pNew->nOut contains the
2441 ** number of rows expected to be visited by filtering using the nEq
2442 ** terms only. If it is modified, this value is restored before this
2443 ** function returns.
2444 **
2445 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2446 ** a fake index used for the INTEGER PRIMARY KEY.
2447 */
2448 static int whereLoopAddBtreeIndex(
2449   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2450   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2451   Index *pProbe,                  /* An index on pSrc */
2452   LogEst nInMul                   /* log(Number of iterations due to IN) */
2453 ){
2454   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2455   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2456   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2457   WhereLoop *pNew;                /* Template WhereLoop under construction */
2458   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2459   int opMask;                     /* Valid operators for constraints */
2460   WhereScan scan;                 /* Iterator for WHERE terms */
2461   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2462   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2463   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2464   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2465   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2466   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2467   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2468   LogEst saved_nOut;              /* Original value of pNew->nOut */
2469   int rc = SQLITE_OK;             /* Return code */
2470   LogEst rSize;                   /* Number of rows in the table */
2471   LogEst rLogSize;                /* Logarithm of table size */
2472   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2473 
2474   pNew = pBuilder->pNew;
2475   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2476   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2477                      pProbe->pTable->zName,pProbe->zName,
2478                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2479 
2480   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2481   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2482   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2483     opMask = WO_LT|WO_LE;
2484   }else{
2485     assert( pNew->u.btree.nBtm==0 );
2486     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2487   }
2488   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2489 
2490   assert( pNew->u.btree.nEq<pProbe->nColumn );
2491 
2492   saved_nEq = pNew->u.btree.nEq;
2493   saved_nBtm = pNew->u.btree.nBtm;
2494   saved_nTop = pNew->u.btree.nTop;
2495   saved_nSkip = pNew->nSkip;
2496   saved_nLTerm = pNew->nLTerm;
2497   saved_wsFlags = pNew->wsFlags;
2498   saved_prereq = pNew->prereq;
2499   saved_nOut = pNew->nOut;
2500   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2501                         opMask, pProbe);
2502   pNew->rSetup = 0;
2503   rSize = pProbe->aiRowLogEst[0];
2504   rLogSize = estLog(rSize);
2505   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2506     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2507     LogEst rCostIdx;
2508     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2509     int nIn = 0;
2510 #ifdef SQLITE_ENABLE_STAT4
2511     int nRecValid = pBuilder->nRecValid;
2512 #endif
2513     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2514      && indexColumnNotNull(pProbe, saved_nEq)
2515     ){
2516       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2517     }
2518     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2519 
2520     /* Do not allow the upper bound of a LIKE optimization range constraint
2521     ** to mix with a lower range bound from some other source */
2522     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2523 
2524     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2525     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2526     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2527     if( (pSrc->fg.jointype & JT_LEFT)!=0
2528      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2529     ){
2530       continue;
2531     }
2532 
2533     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2534       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2535     }else{
2536       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2537     }
2538     pNew->wsFlags = saved_wsFlags;
2539     pNew->u.btree.nEq = saved_nEq;
2540     pNew->u.btree.nBtm = saved_nBtm;
2541     pNew->u.btree.nTop = saved_nTop;
2542     pNew->nLTerm = saved_nLTerm;
2543     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2544     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2545     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2546 
2547     assert( nInMul==0
2548         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2549         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2550         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2551     );
2552 
2553     if( eOp & WO_IN ){
2554       Expr *pExpr = pTerm->pExpr;
2555       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2556         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2557         int i;
2558         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2559 
2560         /* The expression may actually be of the form (x, y) IN (SELECT...).
2561         ** In this case there is a separate term for each of (x) and (y).
2562         ** However, the nIn multiplier should only be applied once, not once
2563         ** for each such term. The following loop checks that pTerm is the
2564         ** first such term in use, and sets nIn back to 0 if it is not. */
2565         for(i=0; i<pNew->nLTerm-1; i++){
2566           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2567         }
2568       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2569         /* "x IN (value, value, ...)" */
2570         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2571       }
2572       if( pProbe->hasStat1 && rLogSize>=10 ){
2573         LogEst M, logK, safetyMargin;
2574         /* Let:
2575         **   N = the total number of rows in the table
2576         **   K = the number of entries on the RHS of the IN operator
2577         **   M = the number of rows in the table that match terms to the
2578         **       to the left in the same index.  If the IN operator is on
2579         **       the left-most index column, M==N.
2580         **
2581         ** Given the definitions above, it is better to omit the IN operator
2582         ** from the index lookup and instead do a scan of the M elements,
2583         ** testing each scanned row against the IN operator separately, if:
2584         **
2585         **        M*log(K) < K*log(N)
2586         **
2587         ** Our estimates for M, K, and N might be inaccurate, so we build in
2588         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2589         ** with the index, as using an index has better worst-case behavior.
2590         ** If we do not have real sqlite_stat1 data, always prefer to use
2591         ** the index.  Do not bother with this optimization on very small
2592         ** tables (less than 2 rows) as it is pointless in that case.
2593         */
2594         M = pProbe->aiRowLogEst[saved_nEq];
2595         logK = estLog(nIn);
2596         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2597         if( M + logK + safetyMargin < nIn + rLogSize ){
2598           WHERETRACE(0x40,
2599             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2600              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2601           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2602         }else{
2603           WHERETRACE(0x40,
2604             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2605              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2606         }
2607       }
2608       pNew->wsFlags |= WHERE_COLUMN_IN;
2609     }else if( eOp & (WO_EQ|WO_IS) ){
2610       int iCol = pProbe->aiColumn[saved_nEq];
2611       pNew->wsFlags |= WHERE_COLUMN_EQ;
2612       assert( saved_nEq==pNew->u.btree.nEq );
2613       if( iCol==XN_ROWID
2614        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2615       ){
2616         if( iCol==XN_ROWID || pProbe->uniqNotNull
2617          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2618         ){
2619           pNew->wsFlags |= WHERE_ONEROW;
2620         }else{
2621           pNew->wsFlags |= WHERE_UNQ_WANTED;
2622         }
2623       }
2624     }else if( eOp & WO_ISNULL ){
2625       pNew->wsFlags |= WHERE_COLUMN_NULL;
2626     }else if( eOp & (WO_GT|WO_GE) ){
2627       testcase( eOp & WO_GT );
2628       testcase( eOp & WO_GE );
2629       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2630       pNew->u.btree.nBtm = whereRangeVectorLen(
2631           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2632       );
2633       pBtm = pTerm;
2634       pTop = 0;
2635       if( pTerm->wtFlags & TERM_LIKEOPT ){
2636         /* Range constraints that come from the LIKE optimization are
2637         ** always used in pairs. */
2638         pTop = &pTerm[1];
2639         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2640         assert( pTop->wtFlags & TERM_LIKEOPT );
2641         assert( pTop->eOperator==WO_LT );
2642         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2643         pNew->aLTerm[pNew->nLTerm++] = pTop;
2644         pNew->wsFlags |= WHERE_TOP_LIMIT;
2645         pNew->u.btree.nTop = 1;
2646       }
2647     }else{
2648       assert( eOp & (WO_LT|WO_LE) );
2649       testcase( eOp & WO_LT );
2650       testcase( eOp & WO_LE );
2651       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2652       pNew->u.btree.nTop = whereRangeVectorLen(
2653           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2654       );
2655       pTop = pTerm;
2656       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2657                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2658     }
2659 
2660     /* At this point pNew->nOut is set to the number of rows expected to
2661     ** be visited by the index scan before considering term pTerm, or the
2662     ** values of nIn and nInMul. In other words, assuming that all
2663     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2664     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2665     assert( pNew->nOut==saved_nOut );
2666     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2667       /* Adjust nOut using stat4 data. Or, if there is no stat4
2668       ** data, using some other estimate.  */
2669       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2670     }else{
2671       int nEq = ++pNew->u.btree.nEq;
2672       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2673 
2674       assert( pNew->nOut==saved_nOut );
2675       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2676         assert( (eOp & WO_IN) || nIn==0 );
2677         testcase( eOp & WO_IN );
2678         pNew->nOut += pTerm->truthProb;
2679         pNew->nOut -= nIn;
2680       }else{
2681 #ifdef SQLITE_ENABLE_STAT4
2682         tRowcnt nOut = 0;
2683         if( nInMul==0
2684          && pProbe->nSample
2685          && pNew->u.btree.nEq<=pProbe->nSampleCol
2686          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2687          && OptimizationEnabled(db, SQLITE_Stat4)
2688         ){
2689           Expr *pExpr = pTerm->pExpr;
2690           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2691             testcase( eOp & WO_EQ );
2692             testcase( eOp & WO_IS );
2693             testcase( eOp & WO_ISNULL );
2694             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2695           }else{
2696             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2697           }
2698           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2699           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2700           if( nOut ){
2701             pNew->nOut = sqlite3LogEst(nOut);
2702             if( nEq==1
2703              /* TUNING: Mark terms as "low selectivity" if they seem likely
2704              ** to be true for half or more of the rows in the table.
2705              ** See tag-202002240-1 */
2706              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2707             ){
2708 #if WHERETRACE_ENABLED /* 0x01 */
2709               if( sqlite3WhereTrace & 0x01 ){
2710                 sqlite3DebugPrintf(
2711                    "STAT4 determines term has low selectivity:\n");
2712                 sqlite3WhereTermPrint(pTerm, 999);
2713               }
2714 #endif
2715               pTerm->wtFlags |= TERM_HIGHTRUTH;
2716               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2717                 /* If the term has previously been used with an assumption of
2718                 ** higher selectivity, then set the flag to rerun the
2719                 ** loop computations. */
2720                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2721               }
2722             }
2723             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2724             pNew->nOut -= nIn;
2725           }
2726         }
2727         if( nOut==0 )
2728 #endif
2729         {
2730           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2731           if( eOp & WO_ISNULL ){
2732             /* TUNING: If there is no likelihood() value, assume that a
2733             ** "col IS NULL" expression matches twice as many rows
2734             ** as (col=?). */
2735             pNew->nOut += 10;
2736           }
2737         }
2738       }
2739     }
2740 
2741     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2742     ** it to pNew->rRun, which is currently set to the cost of the index
2743     ** seek only. Then, if this is a non-covering index, add the cost of
2744     ** visiting the rows in the main table.  */
2745     assert( pSrc->pTab->szTabRow>0 );
2746     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2747     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2748     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2749       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2750     }
2751     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2752 
2753     nOutUnadjusted = pNew->nOut;
2754     pNew->rRun += nInMul + nIn;
2755     pNew->nOut += nInMul + nIn;
2756     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2757     rc = whereLoopInsert(pBuilder, pNew);
2758 
2759     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2760       pNew->nOut = saved_nOut;
2761     }else{
2762       pNew->nOut = nOutUnadjusted;
2763     }
2764 
2765     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2766      && pNew->u.btree.nEq<pProbe->nColumn
2767     ){
2768       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2769     }
2770     pNew->nOut = saved_nOut;
2771 #ifdef SQLITE_ENABLE_STAT4
2772     pBuilder->nRecValid = nRecValid;
2773 #endif
2774   }
2775   pNew->prereq = saved_prereq;
2776   pNew->u.btree.nEq = saved_nEq;
2777   pNew->u.btree.nBtm = saved_nBtm;
2778   pNew->u.btree.nTop = saved_nTop;
2779   pNew->nSkip = saved_nSkip;
2780   pNew->wsFlags = saved_wsFlags;
2781   pNew->nOut = saved_nOut;
2782   pNew->nLTerm = saved_nLTerm;
2783 
2784   /* Consider using a skip-scan if there are no WHERE clause constraints
2785   ** available for the left-most terms of the index, and if the average
2786   ** number of repeats in the left-most terms is at least 18.
2787   **
2788   ** The magic number 18 is selected on the basis that scanning 17 rows
2789   ** is almost always quicker than an index seek (even though if the index
2790   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2791   ** the code). And, even if it is not, it should not be too much slower.
2792   ** On the other hand, the extra seeks could end up being significantly
2793   ** more expensive.  */
2794   assert( 42==sqlite3LogEst(18) );
2795   if( saved_nEq==saved_nSkip
2796    && saved_nEq+1<pProbe->nKeyCol
2797    && saved_nEq==pNew->nLTerm
2798    && pProbe->noSkipScan==0
2799    && pProbe->hasStat1!=0
2800    && OptimizationEnabled(db, SQLITE_SkipScan)
2801    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2802    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2803   ){
2804     LogEst nIter;
2805     pNew->u.btree.nEq++;
2806     pNew->nSkip++;
2807     pNew->aLTerm[pNew->nLTerm++] = 0;
2808     pNew->wsFlags |= WHERE_SKIPSCAN;
2809     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2810     pNew->nOut -= nIter;
2811     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2812     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2813     nIter += 5;
2814     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2815     pNew->nOut = saved_nOut;
2816     pNew->u.btree.nEq = saved_nEq;
2817     pNew->nSkip = saved_nSkip;
2818     pNew->wsFlags = saved_wsFlags;
2819   }
2820 
2821   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2822                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2823   return rc;
2824 }
2825 
2826 /*
2827 ** Return True if it is possible that pIndex might be useful in
2828 ** implementing the ORDER BY clause in pBuilder.
2829 **
2830 ** Return False if pBuilder does not contain an ORDER BY clause or
2831 ** if there is no way for pIndex to be useful in implementing that
2832 ** ORDER BY clause.
2833 */
2834 static int indexMightHelpWithOrderBy(
2835   WhereLoopBuilder *pBuilder,
2836   Index *pIndex,
2837   int iCursor
2838 ){
2839   ExprList *pOB;
2840   ExprList *aColExpr;
2841   int ii, jj;
2842 
2843   if( pIndex->bUnordered ) return 0;
2844   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2845   for(ii=0; ii<pOB->nExpr; ii++){
2846     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2847     if( NEVER(pExpr==0) ) continue;
2848     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2849       if( pExpr->iColumn<0 ) return 1;
2850       for(jj=0; jj<pIndex->nKeyCol; jj++){
2851         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2852       }
2853     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2854       for(jj=0; jj<pIndex->nKeyCol; jj++){
2855         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2856         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2857           return 1;
2858         }
2859       }
2860     }
2861   }
2862   return 0;
2863 }
2864 
2865 /* Check to see if a partial index with pPartIndexWhere can be used
2866 ** in the current query.  Return true if it can be and false if not.
2867 */
2868 static int whereUsablePartialIndex(
2869   int iTab,             /* The table for which we want an index */
2870   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2871   WhereClause *pWC,     /* The WHERE clause of the query */
2872   Expr *pWhere          /* The WHERE clause from the partial index */
2873 ){
2874   int i;
2875   WhereTerm *pTerm;
2876   Parse *pParse = pWC->pWInfo->pParse;
2877   while( pWhere->op==TK_AND ){
2878     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2879     pWhere = pWhere->pRight;
2880   }
2881   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2882   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2883     Expr *pExpr;
2884     pExpr = pTerm->pExpr;
2885     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2886      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2887      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2888     ){
2889       return 1;
2890     }
2891   }
2892   return 0;
2893 }
2894 
2895 /*
2896 ** Add all WhereLoop objects for a single table of the join where the table
2897 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2898 ** a b-tree table, not a virtual table.
2899 **
2900 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2901 ** are calculated as follows:
2902 **
2903 ** For a full scan, assuming the table (or index) contains nRow rows:
2904 **
2905 **     cost = nRow * 3.0                    // full-table scan
2906 **     cost = nRow * K                      // scan of covering index
2907 **     cost = nRow * (K+3.0)                // scan of non-covering index
2908 **
2909 ** where K is a value between 1.1 and 3.0 set based on the relative
2910 ** estimated average size of the index and table records.
2911 **
2912 ** For an index scan, where nVisit is the number of index rows visited
2913 ** by the scan, and nSeek is the number of seek operations required on
2914 ** the index b-tree:
2915 **
2916 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2917 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2918 **
2919 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2920 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2921 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2922 **
2923 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2924 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2925 ** "do the least harm" if the estimates are inaccurate.  For example, a
2926 ** log(nRow) factor is omitted from a non-covering index scan in order to
2927 ** bias the scoring in favor of using an index, since the worst-case
2928 ** performance of using an index is far better than the worst-case performance
2929 ** of a full table scan.
2930 */
2931 static int whereLoopAddBtree(
2932   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2933   Bitmask mPrereq             /* Extra prerequesites for using this table */
2934 ){
2935   WhereInfo *pWInfo;          /* WHERE analysis context */
2936   Index *pProbe;              /* An index we are evaluating */
2937   Index sPk;                  /* A fake index object for the primary key */
2938   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2939   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2940   SrcList *pTabList;          /* The FROM clause */
2941   SrcItem *pSrc;              /* The FROM clause btree term to add */
2942   WhereLoop *pNew;            /* Template WhereLoop object */
2943   int rc = SQLITE_OK;         /* Return code */
2944   int iSortIdx = 1;           /* Index number */
2945   int b;                      /* A boolean value */
2946   LogEst rSize;               /* number of rows in the table */
2947   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2948   WhereClause *pWC;           /* The parsed WHERE clause */
2949   Table *pTab;                /* Table being queried */
2950 
2951   pNew = pBuilder->pNew;
2952   pWInfo = pBuilder->pWInfo;
2953   pTabList = pWInfo->pTabList;
2954   pSrc = pTabList->a + pNew->iTab;
2955   pTab = pSrc->pTab;
2956   pWC = pBuilder->pWC;
2957   assert( !IsVirtual(pSrc->pTab) );
2958 
2959   if( pSrc->fg.isIndexedBy ){
2960     /* An INDEXED BY clause specifies a particular index to use */
2961     pProbe = pSrc->u2.pIBIndex;
2962   }else if( !HasRowid(pTab) ){
2963     pProbe = pTab->pIndex;
2964   }else{
2965     /* There is no INDEXED BY clause.  Create a fake Index object in local
2966     ** variable sPk to represent the rowid primary key index.  Make this
2967     ** fake index the first in a chain of Index objects with all of the real
2968     ** indices to follow */
2969     Index *pFirst;                  /* First of real indices on the table */
2970     memset(&sPk, 0, sizeof(Index));
2971     sPk.nKeyCol = 1;
2972     sPk.nColumn = 1;
2973     sPk.aiColumn = &aiColumnPk;
2974     sPk.aiRowLogEst = aiRowEstPk;
2975     sPk.onError = OE_Replace;
2976     sPk.pTable = pTab;
2977     sPk.szIdxRow = pTab->szTabRow;
2978     sPk.idxType = SQLITE_IDXTYPE_IPK;
2979     aiRowEstPk[0] = pTab->nRowLogEst;
2980     aiRowEstPk[1] = 0;
2981     pFirst = pSrc->pTab->pIndex;
2982     if( pSrc->fg.notIndexed==0 ){
2983       /* The real indices of the table are only considered if the
2984       ** NOT INDEXED qualifier is omitted from the FROM clause */
2985       sPk.pNext = pFirst;
2986     }
2987     pProbe = &sPk;
2988   }
2989   rSize = pTab->nRowLogEst;
2990   rLogSize = estLog(rSize);
2991 
2992 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2993   /* Automatic indexes */
2994   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2995    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2996    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2997    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
2998    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2999    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3000    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3001    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3002   ){
3003     /* Generate auto-index WhereLoops */
3004     WhereTerm *pTerm;
3005     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3006     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3007       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3008       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3009         pNew->u.btree.nEq = 1;
3010         pNew->nSkip = 0;
3011         pNew->u.btree.pIndex = 0;
3012         pNew->nLTerm = 1;
3013         pNew->aLTerm[0] = pTerm;
3014         /* TUNING: One-time cost for computing the automatic index is
3015         ** estimated to be X*N*log2(N) where N is the number of rows in
3016         ** the table being indexed and where X is 7 (LogEst=28) for normal
3017         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3018         ** of X is smaller for views and subqueries so that the query planner
3019         ** will be more aggressive about generating automatic indexes for
3020         ** those objects, since there is no opportunity to add schema
3021         ** indexes on subqueries and views. */
3022         pNew->rSetup = rLogSize + rSize;
3023         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3024           pNew->rSetup += 28;
3025         }else{
3026           pNew->rSetup -= 10;
3027         }
3028         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3029         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3030         /* TUNING: Each index lookup yields 20 rows in the table.  This
3031         ** is more than the usual guess of 10 rows, since we have no way
3032         ** of knowing how selective the index will ultimately be.  It would
3033         ** not be unreasonable to make this value much larger. */
3034         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3035         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3036         pNew->wsFlags = WHERE_AUTO_INDEX;
3037         pNew->prereq = mPrereq | pTerm->prereqRight;
3038         rc = whereLoopInsert(pBuilder, pNew);
3039       }
3040     }
3041   }
3042 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3043 
3044   /* Loop over all indices. If there was an INDEXED BY clause, then only
3045   ** consider index pProbe.  */
3046   for(; rc==SQLITE_OK && pProbe;
3047       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3048   ){
3049     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3050     if( pProbe->pPartIdxWhere!=0
3051      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3052                                  pProbe->pPartIdxWhere)
3053     ){
3054       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3055       continue;  /* Partial index inappropriate for this query */
3056     }
3057     if( pProbe->bNoQuery ) continue;
3058     rSize = pProbe->aiRowLogEst[0];
3059     pNew->u.btree.nEq = 0;
3060     pNew->u.btree.nBtm = 0;
3061     pNew->u.btree.nTop = 0;
3062     pNew->nSkip = 0;
3063     pNew->nLTerm = 0;
3064     pNew->iSortIdx = 0;
3065     pNew->rSetup = 0;
3066     pNew->prereq = mPrereq;
3067     pNew->nOut = rSize;
3068     pNew->u.btree.pIndex = pProbe;
3069     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3070 
3071     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3072     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3073     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3074       /* Integer primary key index */
3075       pNew->wsFlags = WHERE_IPK;
3076 
3077       /* Full table scan */
3078       pNew->iSortIdx = b ? iSortIdx : 0;
3079       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3080       ** extra cost designed to discourage the use of full table scans,
3081       ** since index lookups have better worst-case performance if our
3082       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3083       ** (to 2.75) if we have valid STAT4 information for the table.
3084       ** At 2.75, a full table scan is preferred over using an index on
3085       ** a column with just two distinct values where each value has about
3086       ** an equal number of appearances.  Without STAT4 data, we still want
3087       ** to use an index in that case, since the constraint might be for
3088       ** the scarcer of the two values, and in that case an index lookup is
3089       ** better.
3090       */
3091 #ifdef SQLITE_ENABLE_STAT4
3092       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3093 #else
3094       pNew->rRun = rSize + 16;
3095 #endif
3096       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3097       whereLoopOutputAdjust(pWC, pNew, rSize);
3098       rc = whereLoopInsert(pBuilder, pNew);
3099       pNew->nOut = rSize;
3100       if( rc ) break;
3101     }else{
3102       Bitmask m;
3103       if( pProbe->isCovering ){
3104         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3105         m = 0;
3106       }else{
3107         m = pSrc->colUsed & pProbe->colNotIdxed;
3108         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3109       }
3110 
3111       /* Full scan via index */
3112       if( b
3113        || !HasRowid(pTab)
3114        || pProbe->pPartIdxWhere!=0
3115        || pSrc->fg.isIndexedBy
3116        || ( m==0
3117          && pProbe->bUnordered==0
3118          && (pProbe->szIdxRow<pTab->szTabRow)
3119          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3120          && sqlite3GlobalConfig.bUseCis
3121          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3122           )
3123       ){
3124         pNew->iSortIdx = b ? iSortIdx : 0;
3125 
3126         /* The cost of visiting the index rows is N*K, where K is
3127         ** between 1.1 and 3.0, depending on the relative sizes of the
3128         ** index and table rows. */
3129         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3130         if( m!=0 ){
3131           /* If this is a non-covering index scan, add in the cost of
3132           ** doing table lookups.  The cost will be 3x the number of
3133           ** lookups.  Take into account WHERE clause terms that can be
3134           ** satisfied using just the index, and that do not require a
3135           ** table lookup. */
3136           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3137           int ii;
3138           int iCur = pSrc->iCursor;
3139           WhereClause *pWC2 = &pWInfo->sWC;
3140           for(ii=0; ii<pWC2->nTerm; ii++){
3141             WhereTerm *pTerm = &pWC2->a[ii];
3142             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3143               break;
3144             }
3145             /* pTerm can be evaluated using just the index.  So reduce
3146             ** the expected number of table lookups accordingly */
3147             if( pTerm->truthProb<=0 ){
3148               nLookup += pTerm->truthProb;
3149             }else{
3150               nLookup--;
3151               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3152             }
3153           }
3154 
3155           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3156         }
3157         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3158         whereLoopOutputAdjust(pWC, pNew, rSize);
3159         rc = whereLoopInsert(pBuilder, pNew);
3160         pNew->nOut = rSize;
3161         if( rc ) break;
3162       }
3163     }
3164 
3165     pBuilder->bldFlags1 = 0;
3166     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3167     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3168       /* If a non-unique index is used, or if a prefix of the key for
3169       ** unique index is used (making the index functionally non-unique)
3170       ** then the sqlite_stat1 data becomes important for scoring the
3171       ** plan */
3172       pTab->tabFlags |= TF_StatsUsed;
3173     }
3174 #ifdef SQLITE_ENABLE_STAT4
3175     sqlite3Stat4ProbeFree(pBuilder->pRec);
3176     pBuilder->nRecValid = 0;
3177     pBuilder->pRec = 0;
3178 #endif
3179   }
3180   return rc;
3181 }
3182 
3183 #ifndef SQLITE_OMIT_VIRTUALTABLE
3184 
3185 /*
3186 ** Argument pIdxInfo is already populated with all constraints that may
3187 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3188 ** function marks a subset of those constraints usable, invokes the
3189 ** xBestIndex method and adds the returned plan to pBuilder.
3190 **
3191 ** A constraint is marked usable if:
3192 **
3193 **   * Argument mUsable indicates that its prerequisites are available, and
3194 **
3195 **   * It is not one of the operators specified in the mExclude mask passed
3196 **     as the fourth argument (which in practice is either WO_IN or 0).
3197 **
3198 ** Argument mPrereq is a mask of tables that must be scanned before the
3199 ** virtual table in question. These are added to the plans prerequisites
3200 ** before it is added to pBuilder.
3201 **
3202 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3203 ** uses one or more WO_IN terms, or false otherwise.
3204 */
3205 static int whereLoopAddVirtualOne(
3206   WhereLoopBuilder *pBuilder,
3207   Bitmask mPrereq,                /* Mask of tables that must be used. */
3208   Bitmask mUsable,                /* Mask of usable tables */
3209   u16 mExclude,                   /* Exclude terms using these operators */
3210   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3211   u16 mNoOmit,                    /* Do not omit these constraints */
3212   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3213 ){
3214   WhereClause *pWC = pBuilder->pWC;
3215   struct sqlite3_index_constraint *pIdxCons;
3216   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3217   int i;
3218   int mxTerm;
3219   int rc = SQLITE_OK;
3220   WhereLoop *pNew = pBuilder->pNew;
3221   Parse *pParse = pBuilder->pWInfo->pParse;
3222   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3223   int nConstraint = pIdxInfo->nConstraint;
3224 
3225   assert( (mUsable & mPrereq)==mPrereq );
3226   *pbIn = 0;
3227   pNew->prereq = mPrereq;
3228 
3229   /* Set the usable flag on the subset of constraints identified by
3230   ** arguments mUsable and mExclude. */
3231   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3232   for(i=0; i<nConstraint; i++, pIdxCons++){
3233     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3234     pIdxCons->usable = 0;
3235     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3236      && (pTerm->eOperator & mExclude)==0
3237     ){
3238       pIdxCons->usable = 1;
3239     }
3240   }
3241 
3242   /* Initialize the output fields of the sqlite3_index_info structure */
3243   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3244   assert( pIdxInfo->needToFreeIdxStr==0 );
3245   pIdxInfo->idxStr = 0;
3246   pIdxInfo->idxNum = 0;
3247   pIdxInfo->orderByConsumed = 0;
3248   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3249   pIdxInfo->estimatedRows = 25;
3250   pIdxInfo->idxFlags = 0;
3251   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3252 
3253   /* Invoke the virtual table xBestIndex() method */
3254   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3255   if( rc ){
3256     if( rc==SQLITE_CONSTRAINT ){
3257       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3258       ** that the particular combination of parameters provided is unusable.
3259       ** Make no entries in the loop table.
3260       */
3261       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3262       return SQLITE_OK;
3263     }
3264     return rc;
3265   }
3266 
3267   mxTerm = -1;
3268   assert( pNew->nLSlot>=nConstraint );
3269   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3270   pNew->u.vtab.omitMask = 0;
3271   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3272   for(i=0; i<nConstraint; i++, pIdxCons++){
3273     int iTerm;
3274     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3275       WhereTerm *pTerm;
3276       int j = pIdxCons->iTermOffset;
3277       if( iTerm>=nConstraint
3278        || j<0
3279        || j>=pWC->nTerm
3280        || pNew->aLTerm[iTerm]!=0
3281        || pIdxCons->usable==0
3282       ){
3283         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3284         testcase( pIdxInfo->needToFreeIdxStr );
3285         return SQLITE_ERROR;
3286       }
3287       testcase( iTerm==nConstraint-1 );
3288       testcase( j==0 );
3289       testcase( j==pWC->nTerm-1 );
3290       pTerm = &pWC->a[j];
3291       pNew->prereq |= pTerm->prereqRight;
3292       assert( iTerm<pNew->nLSlot );
3293       pNew->aLTerm[iTerm] = pTerm;
3294       if( iTerm>mxTerm ) mxTerm = iTerm;
3295       testcase( iTerm==15 );
3296       testcase( iTerm==16 );
3297       if( pUsage[i].omit ){
3298         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3299           testcase( i!=iTerm );
3300           pNew->u.vtab.omitMask |= 1<<iTerm;
3301         }else{
3302           testcase( i!=iTerm );
3303         }
3304       }
3305       if( (pTerm->eOperator & WO_IN)!=0 ){
3306         /* A virtual table that is constrained by an IN clause may not
3307         ** consume the ORDER BY clause because (1) the order of IN terms
3308         ** is not necessarily related to the order of output terms and
3309         ** (2) Multiple outputs from a single IN value will not merge
3310         ** together.  */
3311         pIdxInfo->orderByConsumed = 0;
3312         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3313         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3314       }
3315     }
3316   }
3317 
3318   pNew->nLTerm = mxTerm+1;
3319   for(i=0; i<=mxTerm; i++){
3320     if( pNew->aLTerm[i]==0 ){
3321       /* The non-zero argvIdx values must be contiguous.  Raise an
3322       ** error if they are not */
3323       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3324       testcase( pIdxInfo->needToFreeIdxStr );
3325       return SQLITE_ERROR;
3326     }
3327   }
3328   assert( pNew->nLTerm<=pNew->nLSlot );
3329   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3330   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3331   pIdxInfo->needToFreeIdxStr = 0;
3332   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3333   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3334       pIdxInfo->nOrderBy : 0);
3335   pNew->rSetup = 0;
3336   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3337   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3338 
3339   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3340   ** that the scan will visit at most one row. Clear it otherwise. */
3341   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3342     pNew->wsFlags |= WHERE_ONEROW;
3343   }else{
3344     pNew->wsFlags &= ~WHERE_ONEROW;
3345   }
3346   rc = whereLoopInsert(pBuilder, pNew);
3347   if( pNew->u.vtab.needFree ){
3348     sqlite3_free(pNew->u.vtab.idxStr);
3349     pNew->u.vtab.needFree = 0;
3350   }
3351   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3352                       *pbIn, (sqlite3_uint64)mPrereq,
3353                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3354 
3355   return rc;
3356 }
3357 
3358 /*
3359 ** If this function is invoked from within an xBestIndex() callback, it
3360 ** returns a pointer to a buffer containing the name of the collation
3361 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3362 ** array. Or, if iCons is out of range or there is no active xBestIndex
3363 ** call, return NULL.
3364 */
3365 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3366   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3367   const char *zRet = 0;
3368   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3369     CollSeq *pC = 0;
3370     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3371     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3372     if( pX->pLeft ){
3373       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3374     }
3375     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3376   }
3377   return zRet;
3378 }
3379 
3380 /*
3381 ** Add all WhereLoop objects for a table of the join identified by
3382 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3383 **
3384 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3385 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3386 ** entries that occur before the virtual table in the FROM clause and are
3387 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3388 ** mUnusable mask contains all FROM clause entries that occur after the
3389 ** virtual table and are separated from it by at least one LEFT or
3390 ** CROSS JOIN.
3391 **
3392 ** For example, if the query were:
3393 **
3394 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3395 **
3396 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3397 **
3398 ** All the tables in mPrereq must be scanned before the current virtual
3399 ** table. So any terms for which all prerequisites are satisfied by
3400 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3401 ** Conversely, all tables in mUnusable must be scanned after the current
3402 ** virtual table, so any terms for which the prerequisites overlap with
3403 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3404 */
3405 static int whereLoopAddVirtual(
3406   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3407   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3408   Bitmask mUnusable            /* Tables that must be scanned after this one */
3409 ){
3410   int rc = SQLITE_OK;          /* Return code */
3411   WhereInfo *pWInfo;           /* WHERE analysis context */
3412   Parse *pParse;               /* The parsing context */
3413   WhereClause *pWC;            /* The WHERE clause */
3414   SrcItem *pSrc;               /* The FROM clause term to search */
3415   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3416   int nConstraint;             /* Number of constraints in p */
3417   int bIn;                     /* True if plan uses IN(...) operator */
3418   WhereLoop *pNew;
3419   Bitmask mBest;               /* Tables used by best possible plan */
3420   u16 mNoOmit;
3421 
3422   assert( (mPrereq & mUnusable)==0 );
3423   pWInfo = pBuilder->pWInfo;
3424   pParse = pWInfo->pParse;
3425   pWC = pBuilder->pWC;
3426   pNew = pBuilder->pNew;
3427   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3428   assert( IsVirtual(pSrc->pTab) );
3429   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3430       &mNoOmit);
3431   if( p==0 ) return SQLITE_NOMEM_BKPT;
3432   pNew->rSetup = 0;
3433   pNew->wsFlags = WHERE_VIRTUALTABLE;
3434   pNew->nLTerm = 0;
3435   pNew->u.vtab.needFree = 0;
3436   nConstraint = p->nConstraint;
3437   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3438     sqlite3DbFree(pParse->db, p);
3439     return SQLITE_NOMEM_BKPT;
3440   }
3441 
3442   /* First call xBestIndex() with all constraints usable. */
3443   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3444   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3445   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3446 
3447   /* If the call to xBestIndex() with all terms enabled produced a plan
3448   ** that does not require any source tables (IOW: a plan with mBest==0)
3449   ** and does not use an IN(...) operator, then there is no point in making
3450   ** any further calls to xBestIndex() since they will all return the same
3451   ** result (if the xBestIndex() implementation is sane). */
3452   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3453     int seenZero = 0;             /* True if a plan with no prereqs seen */
3454     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3455     Bitmask mPrev = 0;
3456     Bitmask mBestNoIn = 0;
3457 
3458     /* If the plan produced by the earlier call uses an IN(...) term, call
3459     ** xBestIndex again, this time with IN(...) terms disabled. */
3460     if( bIn ){
3461       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3462       rc = whereLoopAddVirtualOne(
3463           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3464       assert( bIn==0 );
3465       mBestNoIn = pNew->prereq & ~mPrereq;
3466       if( mBestNoIn==0 ){
3467         seenZero = 1;
3468         seenZeroNoIN = 1;
3469       }
3470     }
3471 
3472     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3473     ** in the set of terms that apply to the current virtual table.  */
3474     while( rc==SQLITE_OK ){
3475       int i;
3476       Bitmask mNext = ALLBITS;
3477       assert( mNext>0 );
3478       for(i=0; i<nConstraint; i++){
3479         Bitmask mThis = (
3480             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3481         );
3482         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3483       }
3484       mPrev = mNext;
3485       if( mNext==ALLBITS ) break;
3486       if( mNext==mBest || mNext==mBestNoIn ) continue;
3487       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3488                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3489       rc = whereLoopAddVirtualOne(
3490           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3491       if( pNew->prereq==mPrereq ){
3492         seenZero = 1;
3493         if( bIn==0 ) seenZeroNoIN = 1;
3494       }
3495     }
3496 
3497     /* If the calls to xBestIndex() in the above loop did not find a plan
3498     ** that requires no source tables at all (i.e. one guaranteed to be
3499     ** usable), make a call here with all source tables disabled */
3500     if( rc==SQLITE_OK && seenZero==0 ){
3501       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3502       rc = whereLoopAddVirtualOne(
3503           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3504       if( bIn==0 ) seenZeroNoIN = 1;
3505     }
3506 
3507     /* If the calls to xBestIndex() have so far failed to find a plan
3508     ** that requires no source tables at all and does not use an IN(...)
3509     ** operator, make a final call to obtain one here.  */
3510     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3511       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3512       rc = whereLoopAddVirtualOne(
3513           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3514     }
3515   }
3516 
3517   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3518   sqlite3DbFreeNN(pParse->db, p);
3519   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3520   return rc;
3521 }
3522 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3523 
3524 /*
3525 ** Add WhereLoop entries to handle OR terms.  This works for either
3526 ** btrees or virtual tables.
3527 */
3528 static int whereLoopAddOr(
3529   WhereLoopBuilder *pBuilder,
3530   Bitmask mPrereq,
3531   Bitmask mUnusable
3532 ){
3533   WhereInfo *pWInfo = pBuilder->pWInfo;
3534   WhereClause *pWC;
3535   WhereLoop *pNew;
3536   WhereTerm *pTerm, *pWCEnd;
3537   int rc = SQLITE_OK;
3538   int iCur;
3539   WhereClause tempWC;
3540   WhereLoopBuilder sSubBuild;
3541   WhereOrSet sSum, sCur;
3542   SrcItem *pItem;
3543 
3544   pWC = pBuilder->pWC;
3545   pWCEnd = pWC->a + pWC->nTerm;
3546   pNew = pBuilder->pNew;
3547   memset(&sSum, 0, sizeof(sSum));
3548   pItem = pWInfo->pTabList->a + pNew->iTab;
3549   iCur = pItem->iCursor;
3550 
3551   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3552     if( (pTerm->eOperator & WO_OR)!=0
3553      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3554     ){
3555       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3556       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3557       WhereTerm *pOrTerm;
3558       int once = 1;
3559       int i, j;
3560 
3561       sSubBuild = *pBuilder;
3562       sSubBuild.pOrderBy = 0;
3563       sSubBuild.pOrSet = &sCur;
3564 
3565       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3566       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3567         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3568           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3569         }else if( pOrTerm->leftCursor==iCur ){
3570           tempWC.pWInfo = pWC->pWInfo;
3571           tempWC.pOuter = pWC;
3572           tempWC.op = TK_AND;
3573           tempWC.nTerm = 1;
3574           tempWC.a = pOrTerm;
3575           sSubBuild.pWC = &tempWC;
3576         }else{
3577           continue;
3578         }
3579         sCur.n = 0;
3580 #ifdef WHERETRACE_ENABLED
3581         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3582                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3583         if( sqlite3WhereTrace & 0x400 ){
3584           sqlite3WhereClausePrint(sSubBuild.pWC);
3585         }
3586 #endif
3587 #ifndef SQLITE_OMIT_VIRTUALTABLE
3588         if( IsVirtual(pItem->pTab) ){
3589           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3590         }else
3591 #endif
3592         {
3593           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3594         }
3595         if( rc==SQLITE_OK ){
3596           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3597         }
3598         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3599         testcase( rc==SQLITE_DONE );
3600         if( sCur.n==0 ){
3601           sSum.n = 0;
3602           break;
3603         }else if( once ){
3604           whereOrMove(&sSum, &sCur);
3605           once = 0;
3606         }else{
3607           WhereOrSet sPrev;
3608           whereOrMove(&sPrev, &sSum);
3609           sSum.n = 0;
3610           for(i=0; i<sPrev.n; i++){
3611             for(j=0; j<sCur.n; j++){
3612               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3613                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3614                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3615             }
3616           }
3617         }
3618       }
3619       pNew->nLTerm = 1;
3620       pNew->aLTerm[0] = pTerm;
3621       pNew->wsFlags = WHERE_MULTI_OR;
3622       pNew->rSetup = 0;
3623       pNew->iSortIdx = 0;
3624       memset(&pNew->u, 0, sizeof(pNew->u));
3625       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3626         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3627         ** of all sub-scans required by the OR-scan. However, due to rounding
3628         ** errors, it may be that the cost of the OR-scan is equal to its
3629         ** most expensive sub-scan. Add the smallest possible penalty
3630         ** (equivalent to multiplying the cost by 1.07) to ensure that
3631         ** this does not happen. Otherwise, for WHERE clauses such as the
3632         ** following where there is an index on "y":
3633         **
3634         **     WHERE likelihood(x=?, 0.99) OR y=?
3635         **
3636         ** the planner may elect to "OR" together a full-table scan and an
3637         ** index lookup. And other similarly odd results.  */
3638         pNew->rRun = sSum.a[i].rRun + 1;
3639         pNew->nOut = sSum.a[i].nOut;
3640         pNew->prereq = sSum.a[i].prereq;
3641         rc = whereLoopInsert(pBuilder, pNew);
3642       }
3643       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3644     }
3645   }
3646   return rc;
3647 }
3648 
3649 /*
3650 ** Add all WhereLoop objects for all tables
3651 */
3652 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3653   WhereInfo *pWInfo = pBuilder->pWInfo;
3654   Bitmask mPrereq = 0;
3655   Bitmask mPrior = 0;
3656   int iTab;
3657   SrcList *pTabList = pWInfo->pTabList;
3658   SrcItem *pItem;
3659   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3660   sqlite3 *db = pWInfo->pParse->db;
3661   int rc = SQLITE_OK;
3662   WhereLoop *pNew;
3663 
3664   /* Loop over the tables in the join, from left to right */
3665   pNew = pBuilder->pNew;
3666   whereLoopInit(pNew);
3667   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3668   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3669     Bitmask mUnusable = 0;
3670     pNew->iTab = iTab;
3671     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3672     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3673     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3674       /* This condition is true when pItem is the FROM clause term on the
3675       ** right-hand-side of a LEFT or CROSS JOIN.  */
3676       mPrereq = mPrior;
3677     }else{
3678       mPrereq = 0;
3679     }
3680 #ifndef SQLITE_OMIT_VIRTUALTABLE
3681     if( IsVirtual(pItem->pTab) ){
3682       SrcItem *p;
3683       for(p=&pItem[1]; p<pEnd; p++){
3684         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3685           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3686         }
3687       }
3688       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3689     }else
3690 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3691     {
3692       rc = whereLoopAddBtree(pBuilder, mPrereq);
3693     }
3694     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3695       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3696     }
3697     mPrior |= pNew->maskSelf;
3698     if( rc || db->mallocFailed ){
3699       if( rc==SQLITE_DONE ){
3700         /* We hit the query planner search limit set by iPlanLimit */
3701         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3702         rc = SQLITE_OK;
3703       }else{
3704         break;
3705       }
3706     }
3707   }
3708 
3709   whereLoopClear(db, pNew);
3710   return rc;
3711 }
3712 
3713 /*
3714 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3715 ** parameters) to see if it outputs rows in the requested ORDER BY
3716 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3717 **
3718 **   N>0:   N terms of the ORDER BY clause are satisfied
3719 **   N==0:  No terms of the ORDER BY clause are satisfied
3720 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3721 **
3722 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3723 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3724 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3725 ** and DISTINCT do not require rows to appear in any particular order as long
3726 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3727 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3728 ** pOrderBy terms must be matched in strict left-to-right order.
3729 */
3730 static i8 wherePathSatisfiesOrderBy(
3731   WhereInfo *pWInfo,    /* The WHERE clause */
3732   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3733   WherePath *pPath,     /* The WherePath to check */
3734   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3735   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3736   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3737   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3738 ){
3739   u8 revSet;            /* True if rev is known */
3740   u8 rev;               /* Composite sort order */
3741   u8 revIdx;            /* Index sort order */
3742   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3743   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3744   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3745   u16 eqOpMask;         /* Allowed equality operators */
3746   u16 nKeyCol;          /* Number of key columns in pIndex */
3747   u16 nColumn;          /* Total number of ordered columns in the index */
3748   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3749   int iLoop;            /* Index of WhereLoop in pPath being processed */
3750   int i, j;             /* Loop counters */
3751   int iCur;             /* Cursor number for current WhereLoop */
3752   int iColumn;          /* A column number within table iCur */
3753   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3754   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3755   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3756   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3757   Index *pIndex;        /* The index associated with pLoop */
3758   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3759   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3760   Bitmask obDone;       /* Mask of all ORDER BY terms */
3761   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3762   Bitmask ready;              /* Mask of inner loops */
3763 
3764   /*
3765   ** We say the WhereLoop is "one-row" if it generates no more than one
3766   ** row of output.  A WhereLoop is one-row if all of the following are true:
3767   **  (a) All index columns match with WHERE_COLUMN_EQ.
3768   **  (b) The index is unique
3769   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3770   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3771   **
3772   ** We say the WhereLoop is "order-distinct" if the set of columns from
3773   ** that WhereLoop that are in the ORDER BY clause are different for every
3774   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3775   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3776   ** is not order-distinct. To be order-distinct is not quite the same as being
3777   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3778   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3779   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3780   **
3781   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3782   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3783   ** automatically order-distinct.
3784   */
3785 
3786   assert( pOrderBy!=0 );
3787   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3788 
3789   nOrderBy = pOrderBy->nExpr;
3790   testcase( nOrderBy==BMS-1 );
3791   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3792   isOrderDistinct = 1;
3793   obDone = MASKBIT(nOrderBy)-1;
3794   orderDistinctMask = 0;
3795   ready = 0;
3796   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3797   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3798     eqOpMask |= WO_IN;
3799   }
3800   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3801     if( iLoop>0 ) ready |= pLoop->maskSelf;
3802     if( iLoop<nLoop ){
3803       pLoop = pPath->aLoop[iLoop];
3804       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3805     }else{
3806       pLoop = pLast;
3807     }
3808     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3809       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3810         obSat = obDone;
3811       }
3812       break;
3813     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3814       pLoop->u.btree.nDistinctCol = 0;
3815     }
3816     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3817 
3818     /* Mark off any ORDER BY term X that is a column in the table of
3819     ** the current loop for which there is term in the WHERE
3820     ** clause of the form X IS NULL or X=? that reference only outer
3821     ** loops.
3822     */
3823     for(i=0; i<nOrderBy; i++){
3824       if( MASKBIT(i) & obSat ) continue;
3825       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3826       if( NEVER(pOBExpr==0) ) continue;
3827       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3828       if( pOBExpr->iTable!=iCur ) continue;
3829       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3830                        ~ready, eqOpMask, 0);
3831       if( pTerm==0 ) continue;
3832       if( pTerm->eOperator==WO_IN ){
3833         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3834         ** optimization, and then only if they are actually used
3835         ** by the query plan */
3836         assert( wctrlFlags &
3837                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3838         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3839         if( j>=pLoop->nLTerm ) continue;
3840       }
3841       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3842         Parse *pParse = pWInfo->pParse;
3843         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3844         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3845         assert( pColl1 );
3846         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3847           continue;
3848         }
3849         testcase( pTerm->pExpr->op==TK_IS );
3850       }
3851       obSat |= MASKBIT(i);
3852     }
3853 
3854     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3855       if( pLoop->wsFlags & WHERE_IPK ){
3856         pIndex = 0;
3857         nKeyCol = 0;
3858         nColumn = 1;
3859       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3860         return 0;
3861       }else{
3862         nKeyCol = pIndex->nKeyCol;
3863         nColumn = pIndex->nColumn;
3864         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3865         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3866                           || !HasRowid(pIndex->pTable));
3867         isOrderDistinct = IsUniqueIndex(pIndex)
3868                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3869       }
3870 
3871       /* Loop through all columns of the index and deal with the ones
3872       ** that are not constrained by == or IN.
3873       */
3874       rev = revSet = 0;
3875       distinctColumns = 0;
3876       for(j=0; j<nColumn; j++){
3877         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3878 
3879         assert( j>=pLoop->u.btree.nEq
3880             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3881         );
3882         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3883           u16 eOp = pLoop->aLTerm[j]->eOperator;
3884 
3885           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3886           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3887           ** terms imply that the index is not UNIQUE NOT NULL in which case
3888           ** the loop need to be marked as not order-distinct because it can
3889           ** have repeated NULL rows.
3890           **
3891           ** If the current term is a column of an ((?,?) IN (SELECT...))
3892           ** expression for which the SELECT returns more than one column,
3893           ** check that it is the only column used by this loop. Otherwise,
3894           ** if it is one of two or more, none of the columns can be
3895           ** considered to match an ORDER BY term.
3896           */
3897           if( (eOp & eqOpMask)!=0 ){
3898             if( eOp & (WO_ISNULL|WO_IS) ){
3899               testcase( eOp & WO_ISNULL );
3900               testcase( eOp & WO_IS );
3901               testcase( isOrderDistinct );
3902               isOrderDistinct = 0;
3903             }
3904             continue;
3905           }else if( ALWAYS(eOp & WO_IN) ){
3906             /* ALWAYS() justification: eOp is an equality operator due to the
3907             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3908             ** than WO_IN is captured by the previous "if".  So this one
3909             ** always has to be WO_IN. */
3910             Expr *pX = pLoop->aLTerm[j]->pExpr;
3911             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3912               if( pLoop->aLTerm[i]->pExpr==pX ){
3913                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3914                 bOnce = 0;
3915                 break;
3916               }
3917             }
3918           }
3919         }
3920 
3921         /* Get the column number in the table (iColumn) and sort order
3922         ** (revIdx) for the j-th column of the index.
3923         */
3924         if( pIndex ){
3925           iColumn = pIndex->aiColumn[j];
3926           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3927           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3928         }else{
3929           iColumn = XN_ROWID;
3930           revIdx = 0;
3931         }
3932 
3933         /* An unconstrained column that might be NULL means that this
3934         ** WhereLoop is not well-ordered
3935         */
3936         if( isOrderDistinct
3937          && iColumn>=0
3938          && j>=pLoop->u.btree.nEq
3939          && pIndex->pTable->aCol[iColumn].notNull==0
3940         ){
3941           isOrderDistinct = 0;
3942         }
3943 
3944         /* Find the ORDER BY term that corresponds to the j-th column
3945         ** of the index and mark that ORDER BY term off
3946         */
3947         isMatch = 0;
3948         for(i=0; bOnce && i<nOrderBy; i++){
3949           if( MASKBIT(i) & obSat ) continue;
3950           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3951           testcase( wctrlFlags & WHERE_GROUPBY );
3952           testcase( wctrlFlags & WHERE_DISTINCTBY );
3953           if( NEVER(pOBExpr==0) ) continue;
3954           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3955           if( iColumn>=XN_ROWID ){
3956             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3957             if( pOBExpr->iTable!=iCur ) continue;
3958             if( pOBExpr->iColumn!=iColumn ) continue;
3959           }else{
3960             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3961             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3962               continue;
3963             }
3964           }
3965           if( iColumn!=XN_ROWID ){
3966             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3967             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3968           }
3969           if( wctrlFlags & WHERE_DISTINCTBY ){
3970             pLoop->u.btree.nDistinctCol = j+1;
3971           }
3972           isMatch = 1;
3973           break;
3974         }
3975         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3976           /* Make sure the sort order is compatible in an ORDER BY clause.
3977           ** Sort order is irrelevant for a GROUP BY clause. */
3978           if( revSet ){
3979             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3980               isMatch = 0;
3981             }
3982           }else{
3983             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3984             if( rev ) *pRevMask |= MASKBIT(iLoop);
3985             revSet = 1;
3986           }
3987         }
3988         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3989           if( j==pLoop->u.btree.nEq ){
3990             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3991           }else{
3992             isMatch = 0;
3993           }
3994         }
3995         if( isMatch ){
3996           if( iColumn==XN_ROWID ){
3997             testcase( distinctColumns==0 );
3998             distinctColumns = 1;
3999           }
4000           obSat |= MASKBIT(i);
4001         }else{
4002           /* No match found */
4003           if( j==0 || j<nKeyCol ){
4004             testcase( isOrderDistinct!=0 );
4005             isOrderDistinct = 0;
4006           }
4007           break;
4008         }
4009       } /* end Loop over all index columns */
4010       if( distinctColumns ){
4011         testcase( isOrderDistinct==0 );
4012         isOrderDistinct = 1;
4013       }
4014     } /* end-if not one-row */
4015 
4016     /* Mark off any other ORDER BY terms that reference pLoop */
4017     if( isOrderDistinct ){
4018       orderDistinctMask |= pLoop->maskSelf;
4019       for(i=0; i<nOrderBy; i++){
4020         Expr *p;
4021         Bitmask mTerm;
4022         if( MASKBIT(i) & obSat ) continue;
4023         p = pOrderBy->a[i].pExpr;
4024         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4025         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4026         if( (mTerm&~orderDistinctMask)==0 ){
4027           obSat |= MASKBIT(i);
4028         }
4029       }
4030     }
4031   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4032   if( obSat==obDone ) return (i8)nOrderBy;
4033   if( !isOrderDistinct ){
4034     for(i=nOrderBy-1; i>0; i--){
4035       Bitmask m = MASKBIT(i) - 1;
4036       if( (obSat&m)==m ) return i;
4037     }
4038     return 0;
4039   }
4040   return -1;
4041 }
4042 
4043 
4044 /*
4045 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4046 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4047 ** BY clause - and so any order that groups rows as required satisfies the
4048 ** request.
4049 **
4050 ** Normally, in this case it is not possible for the caller to determine
4051 ** whether or not the rows are really being delivered in sorted order, or
4052 ** just in some other order that provides the required grouping. However,
4053 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4054 ** this function may be called on the returned WhereInfo object. It returns
4055 ** true if the rows really will be sorted in the specified order, or false
4056 ** otherwise.
4057 **
4058 ** For example, assuming:
4059 **
4060 **   CREATE INDEX i1 ON t1(x, Y);
4061 **
4062 ** then
4063 **
4064 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4065 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4066 */
4067 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4068   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4069   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4070   return pWInfo->sorted;
4071 }
4072 
4073 #ifdef WHERETRACE_ENABLED
4074 /* For debugging use only: */
4075 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4076   static char zName[65];
4077   int i;
4078   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4079   if( pLast ) zName[i++] = pLast->cId;
4080   zName[i] = 0;
4081   return zName;
4082 }
4083 #endif
4084 
4085 /*
4086 ** Return the cost of sorting nRow rows, assuming that the keys have
4087 ** nOrderby columns and that the first nSorted columns are already in
4088 ** order.
4089 */
4090 static LogEst whereSortingCost(
4091   WhereInfo *pWInfo,
4092   LogEst nRow,
4093   int nOrderBy,
4094   int nSorted
4095 ){
4096   /* TUNING: Estimated cost of a full external sort, where N is
4097   ** the number of rows to sort is:
4098   **
4099   **   cost = (3.0 * N * log(N)).
4100   **
4101   ** Or, if the order-by clause has X terms but only the last Y
4102   ** terms are out of order, then block-sorting will reduce the
4103   ** sorting cost to:
4104   **
4105   **   cost = (3.0 * N * log(N)) * (Y/X)
4106   **
4107   ** The (Y/X) term is implemented using stack variable rScale
4108   ** below.
4109   */
4110   LogEst rScale, rSortCost;
4111   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4112   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4113   rSortCost = nRow + rScale + 16;
4114 
4115   /* Multiple by log(M) where M is the number of output rows.
4116   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4117   ** a DISTINCT operator, M will be the number of distinct output
4118   ** rows, so fudge it downwards a bit.
4119   */
4120   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4121     nRow = pWInfo->iLimit;
4122   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4123     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4124     ** reduces the number of output rows by a factor of 2 */
4125     if( nRow>10 ) nRow -= 10;  assert( 10==sqlite3LogEst(2) );
4126   }
4127   rSortCost += estLog(nRow);
4128   return rSortCost;
4129 }
4130 
4131 /*
4132 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4133 ** attempts to find the lowest cost path that visits each WhereLoop
4134 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4135 **
4136 ** Assume that the total number of output rows that will need to be sorted
4137 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4138 ** costs if nRowEst==0.
4139 **
4140 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4141 ** error occurs.
4142 */
4143 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4144   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4145   int nLoop;                /* Number of terms in the join */
4146   Parse *pParse;            /* Parsing context */
4147   sqlite3 *db;              /* The database connection */
4148   int iLoop;                /* Loop counter over the terms of the join */
4149   int ii, jj;               /* Loop counters */
4150   int mxI = 0;              /* Index of next entry to replace */
4151   int nOrderBy;             /* Number of ORDER BY clause terms */
4152   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4153   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4154   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4155   WherePath *aFrom;         /* All nFrom paths at the previous level */
4156   WherePath *aTo;           /* The nTo best paths at the current level */
4157   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4158   WherePath *pTo;           /* An element of aTo[] that we are working on */
4159   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4160   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4161   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4162   char *pSpace;             /* Temporary memory used by this routine */
4163   int nSpace;               /* Bytes of space allocated at pSpace */
4164 
4165   pParse = pWInfo->pParse;
4166   db = pParse->db;
4167   nLoop = pWInfo->nLevel;
4168   /* TUNING: For simple queries, only the best path is tracked.
4169   ** For 2-way joins, the 5 best paths are followed.
4170   ** For joins of 3 or more tables, track the 10 best paths */
4171   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4172   assert( nLoop<=pWInfo->pTabList->nSrc );
4173   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4174 
4175   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4176   ** case the purpose of this call is to estimate the number of rows returned
4177   ** by the overall query. Once this estimate has been obtained, the caller
4178   ** will invoke this function a second time, passing the estimate as the
4179   ** nRowEst parameter.  */
4180   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4181     nOrderBy = 0;
4182   }else{
4183     nOrderBy = pWInfo->pOrderBy->nExpr;
4184   }
4185 
4186   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4187   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4188   nSpace += sizeof(LogEst) * nOrderBy;
4189   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4190   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4191   aTo = (WherePath*)pSpace;
4192   aFrom = aTo+mxChoice;
4193   memset(aFrom, 0, sizeof(aFrom[0]));
4194   pX = (WhereLoop**)(aFrom+mxChoice);
4195   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4196     pFrom->aLoop = pX;
4197   }
4198   if( nOrderBy ){
4199     /* If there is an ORDER BY clause and it is not being ignored, set up
4200     ** space for the aSortCost[] array. Each element of the aSortCost array
4201     ** is either zero - meaning it has not yet been initialized - or the
4202     ** cost of sorting nRowEst rows of data where the first X terms of
4203     ** the ORDER BY clause are already in order, where X is the array
4204     ** index.  */
4205     aSortCost = (LogEst*)pX;
4206     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4207   }
4208   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4209   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4210 
4211   /* Seed the search with a single WherePath containing zero WhereLoops.
4212   **
4213   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4214   ** of computing an automatic index is not paid back within the first 28
4215   ** rows, then do not use the automatic index. */
4216   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4217   nFrom = 1;
4218   assert( aFrom[0].isOrdered==0 );
4219   if( nOrderBy ){
4220     /* If nLoop is zero, then there are no FROM terms in the query. Since
4221     ** in this case the query may return a maximum of one row, the results
4222     ** are already in the requested order. Set isOrdered to nOrderBy to
4223     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4224     ** -1, indicating that the result set may or may not be ordered,
4225     ** depending on the loops added to the current plan.  */
4226     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4227   }
4228 
4229   /* Compute successively longer WherePaths using the previous generation
4230   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4231   ** best paths at each generation */
4232   for(iLoop=0; iLoop<nLoop; iLoop++){
4233     nTo = 0;
4234     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4235       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4236         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4237         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4238         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4239         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4240         Bitmask maskNew;                  /* Mask of src visited by (..) */
4241         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4242 
4243         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4244         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4245         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4246           /* Do not use an automatic index if the this loop is expected
4247           ** to run less than 1.25 times.  It is tempting to also exclude
4248           ** automatic index usage on an outer loop, but sometimes an automatic
4249           ** index is useful in the outer loop of a correlated subquery. */
4250           assert( 10==sqlite3LogEst(2) );
4251           continue;
4252         }
4253 
4254         /* At this point, pWLoop is a candidate to be the next loop.
4255         ** Compute its cost */
4256         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4257         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4258         nOut = pFrom->nRow + pWLoop->nOut;
4259         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4260         if( isOrdered<0 ){
4261           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4262                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4263                        iLoop, pWLoop, &revMask);
4264         }else{
4265           revMask = pFrom->revLoop;
4266         }
4267         if( isOrdered>=0 && isOrdered<nOrderBy ){
4268           if( aSortCost[isOrdered]==0 ){
4269             aSortCost[isOrdered] = whereSortingCost(
4270                 pWInfo, nRowEst, nOrderBy, isOrdered
4271             );
4272           }
4273           /* TUNING:  Add a small extra penalty (5) to sorting as an
4274           ** extra encouragment to the query planner to select a plan
4275           ** where the rows emerge in the correct order without any sorting
4276           ** required. */
4277           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4278 
4279           WHERETRACE(0x002,
4280               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4281                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4282                rUnsorted, rCost));
4283         }else{
4284           rCost = rUnsorted;
4285           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4286         }
4287 
4288         /* Check to see if pWLoop should be added to the set of
4289         ** mxChoice best-so-far paths.
4290         **
4291         ** First look for an existing path among best-so-far paths
4292         ** that covers the same set of loops and has the same isOrdered
4293         ** setting as the current path candidate.
4294         **
4295         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4296         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4297         ** of legal values for isOrdered, -1..64.
4298         */
4299         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4300           if( pTo->maskLoop==maskNew
4301            && ((pTo->isOrdered^isOrdered)&0x80)==0
4302           ){
4303             testcase( jj==nTo-1 );
4304             break;
4305           }
4306         }
4307         if( jj>=nTo ){
4308           /* None of the existing best-so-far paths match the candidate. */
4309           if( nTo>=mxChoice
4310            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4311           ){
4312             /* The current candidate is no better than any of the mxChoice
4313             ** paths currently in the best-so-far buffer.  So discard
4314             ** this candidate as not viable. */
4315 #ifdef WHERETRACE_ENABLED /* 0x4 */
4316             if( sqlite3WhereTrace&0x4 ){
4317               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4318                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4319                   isOrdered>=0 ? isOrdered+'0' : '?');
4320             }
4321 #endif
4322             continue;
4323           }
4324           /* If we reach this points it means that the new candidate path
4325           ** needs to be added to the set of best-so-far paths. */
4326           if( nTo<mxChoice ){
4327             /* Increase the size of the aTo set by one */
4328             jj = nTo++;
4329           }else{
4330             /* New path replaces the prior worst to keep count below mxChoice */
4331             jj = mxI;
4332           }
4333           pTo = &aTo[jj];
4334 #ifdef WHERETRACE_ENABLED /* 0x4 */
4335           if( sqlite3WhereTrace&0x4 ){
4336             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4337                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4338                 isOrdered>=0 ? isOrdered+'0' : '?');
4339           }
4340 #endif
4341         }else{
4342           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4343           ** same set of loops and has the same isOrdered setting as the
4344           ** candidate path.  Check to see if the candidate should replace
4345           ** pTo or if the candidate should be skipped.
4346           **
4347           ** The conditional is an expanded vector comparison equivalent to:
4348           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4349           */
4350           if( pTo->rCost<rCost
4351            || (pTo->rCost==rCost
4352                && (pTo->nRow<nOut
4353                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4354                   )
4355               )
4356           ){
4357 #ifdef WHERETRACE_ENABLED /* 0x4 */
4358             if( sqlite3WhereTrace&0x4 ){
4359               sqlite3DebugPrintf(
4360                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4361                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4362                   isOrdered>=0 ? isOrdered+'0' : '?');
4363               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4364                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4365                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4366             }
4367 #endif
4368             /* Discard the candidate path from further consideration */
4369             testcase( pTo->rCost==rCost );
4370             continue;
4371           }
4372           testcase( pTo->rCost==rCost+1 );
4373           /* Control reaches here if the candidate path is better than the
4374           ** pTo path.  Replace pTo with the candidate. */
4375 #ifdef WHERETRACE_ENABLED /* 0x4 */
4376           if( sqlite3WhereTrace&0x4 ){
4377             sqlite3DebugPrintf(
4378                 "Update %s cost=%-3d,%3d,%3d order=%c",
4379                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4380                 isOrdered>=0 ? isOrdered+'0' : '?');
4381             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4382                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4383                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4384           }
4385 #endif
4386         }
4387         /* pWLoop is a winner.  Add it to the set of best so far */
4388         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4389         pTo->revLoop = revMask;
4390         pTo->nRow = nOut;
4391         pTo->rCost = rCost;
4392         pTo->rUnsorted = rUnsorted;
4393         pTo->isOrdered = isOrdered;
4394         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4395         pTo->aLoop[iLoop] = pWLoop;
4396         if( nTo>=mxChoice ){
4397           mxI = 0;
4398           mxCost = aTo[0].rCost;
4399           mxUnsorted = aTo[0].nRow;
4400           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4401             if( pTo->rCost>mxCost
4402              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4403             ){
4404               mxCost = pTo->rCost;
4405               mxUnsorted = pTo->rUnsorted;
4406               mxI = jj;
4407             }
4408           }
4409         }
4410       }
4411     }
4412 
4413 #ifdef WHERETRACE_ENABLED  /* >=2 */
4414     if( sqlite3WhereTrace & 0x02 ){
4415       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4416       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4417         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4418            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4419            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4420         if( pTo->isOrdered>0 ){
4421           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4422         }else{
4423           sqlite3DebugPrintf("\n");
4424         }
4425       }
4426     }
4427 #endif
4428 
4429     /* Swap the roles of aFrom and aTo for the next generation */
4430     pFrom = aTo;
4431     aTo = aFrom;
4432     aFrom = pFrom;
4433     nFrom = nTo;
4434   }
4435 
4436   if( nFrom==0 ){
4437     sqlite3ErrorMsg(pParse, "no query solution");
4438     sqlite3DbFreeNN(db, pSpace);
4439     return SQLITE_ERROR;
4440   }
4441 
4442   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4443   pFrom = aFrom;
4444   for(ii=1; ii<nFrom; ii++){
4445     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4446   }
4447   assert( pWInfo->nLevel==nLoop );
4448   /* Load the lowest cost path into pWInfo */
4449   for(iLoop=0; iLoop<nLoop; iLoop++){
4450     WhereLevel *pLevel = pWInfo->a + iLoop;
4451     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4452     pLevel->iFrom = pWLoop->iTab;
4453     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4454   }
4455   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4456    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4457    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4458    && nRowEst
4459   ){
4460     Bitmask notUsed;
4461     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4462                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4463     if( rc==pWInfo->pResultSet->nExpr ){
4464       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4465     }
4466   }
4467   pWInfo->bOrderedInnerLoop = 0;
4468   if( pWInfo->pOrderBy ){
4469     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4470       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4471         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4472       }
4473     }else{
4474       pWInfo->nOBSat = pFrom->isOrdered;
4475       pWInfo->revMask = pFrom->revLoop;
4476       if( pWInfo->nOBSat<=0 ){
4477         pWInfo->nOBSat = 0;
4478         if( nLoop>0 ){
4479           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4480           if( (wsFlags & WHERE_ONEROW)==0
4481            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4482           ){
4483             Bitmask m = 0;
4484             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4485                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4486             testcase( wsFlags & WHERE_IPK );
4487             testcase( wsFlags & WHERE_COLUMN_IN );
4488             if( rc==pWInfo->pOrderBy->nExpr ){
4489               pWInfo->bOrderedInnerLoop = 1;
4490               pWInfo->revMask = m;
4491             }
4492           }
4493         }
4494       }else if( nLoop
4495             && pWInfo->nOBSat==1
4496             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4497             ){
4498         pWInfo->bOrderedInnerLoop = 1;
4499       }
4500     }
4501     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4502         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4503     ){
4504       Bitmask revMask = 0;
4505       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4506           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4507       );
4508       assert( pWInfo->sorted==0 );
4509       if( nOrder==pWInfo->pOrderBy->nExpr ){
4510         pWInfo->sorted = 1;
4511         pWInfo->revMask = revMask;
4512       }
4513     }
4514   }
4515 
4516 
4517   pWInfo->nRowOut = pFrom->nRow;
4518 
4519   /* Free temporary memory and return success */
4520   sqlite3DbFreeNN(db, pSpace);
4521   return SQLITE_OK;
4522 }
4523 
4524 /*
4525 ** Most queries use only a single table (they are not joins) and have
4526 ** simple == constraints against indexed fields.  This routine attempts
4527 ** to plan those simple cases using much less ceremony than the
4528 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4529 ** times for the common case.
4530 **
4531 ** Return non-zero on success, if this query can be handled by this
4532 ** no-frills query planner.  Return zero if this query needs the
4533 ** general-purpose query planner.
4534 */
4535 static int whereShortCut(WhereLoopBuilder *pBuilder){
4536   WhereInfo *pWInfo;
4537   SrcItem *pItem;
4538   WhereClause *pWC;
4539   WhereTerm *pTerm;
4540   WhereLoop *pLoop;
4541   int iCur;
4542   int j;
4543   Table *pTab;
4544   Index *pIdx;
4545 
4546   pWInfo = pBuilder->pWInfo;
4547   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4548   assert( pWInfo->pTabList->nSrc>=1 );
4549   pItem = pWInfo->pTabList->a;
4550   pTab = pItem->pTab;
4551   if( IsVirtual(pTab) ) return 0;
4552   if( pItem->fg.isIndexedBy ) return 0;
4553   iCur = pItem->iCursor;
4554   pWC = &pWInfo->sWC;
4555   pLoop = pBuilder->pNew;
4556   pLoop->wsFlags = 0;
4557   pLoop->nSkip = 0;
4558   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4559   if( pTerm ){
4560     testcase( pTerm->eOperator & WO_IS );
4561     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4562     pLoop->aLTerm[0] = pTerm;
4563     pLoop->nLTerm = 1;
4564     pLoop->u.btree.nEq = 1;
4565     /* TUNING: Cost of a rowid lookup is 10 */
4566     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4567   }else{
4568     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4569       int opMask;
4570       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4571       if( !IsUniqueIndex(pIdx)
4572        || pIdx->pPartIdxWhere!=0
4573        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4574       ) continue;
4575       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4576       for(j=0; j<pIdx->nKeyCol; j++){
4577         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4578         if( pTerm==0 ) break;
4579         testcase( pTerm->eOperator & WO_IS );
4580         pLoop->aLTerm[j] = pTerm;
4581       }
4582       if( j!=pIdx->nKeyCol ) continue;
4583       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4584       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4585         pLoop->wsFlags |= WHERE_IDX_ONLY;
4586       }
4587       pLoop->nLTerm = j;
4588       pLoop->u.btree.nEq = j;
4589       pLoop->u.btree.pIndex = pIdx;
4590       /* TUNING: Cost of a unique index lookup is 15 */
4591       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4592       break;
4593     }
4594   }
4595   if( pLoop->wsFlags ){
4596     pLoop->nOut = (LogEst)1;
4597     pWInfo->a[0].pWLoop = pLoop;
4598     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4599     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4600     pWInfo->a[0].iTabCur = iCur;
4601     pWInfo->nRowOut = 1;
4602     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4603     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4604       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4605     }
4606 #ifdef SQLITE_DEBUG
4607     pLoop->cId = '0';
4608 #endif
4609     return 1;
4610   }
4611   return 0;
4612 }
4613 
4614 /*
4615 ** Helper function for exprIsDeterministic().
4616 */
4617 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4618   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4619     pWalker->eCode = 0;
4620     return WRC_Abort;
4621   }
4622   return WRC_Continue;
4623 }
4624 
4625 /*
4626 ** Return true if the expression contains no non-deterministic SQL
4627 ** functions. Do not consider non-deterministic SQL functions that are
4628 ** part of sub-select statements.
4629 */
4630 static int exprIsDeterministic(Expr *p){
4631   Walker w;
4632   memset(&w, 0, sizeof(w));
4633   w.eCode = 1;
4634   w.xExprCallback = exprNodeIsDeterministic;
4635   w.xSelectCallback = sqlite3SelectWalkFail;
4636   sqlite3WalkExpr(&w, p);
4637   return w.eCode;
4638 }
4639 
4640 
4641 #ifdef WHERETRACE_ENABLED
4642 /*
4643 ** Display all WhereLoops in pWInfo
4644 */
4645 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4646   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4647     WhereLoop *p;
4648     int i;
4649     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4650                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4651     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4652       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4653       sqlite3WhereLoopPrint(p, pWC);
4654     }
4655   }
4656 }
4657 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4658 #else
4659 # define WHERETRACE_ALL_LOOPS(W,C)
4660 #endif
4661 
4662 /*
4663 ** Generate the beginning of the loop used for WHERE clause processing.
4664 ** The return value is a pointer to an opaque structure that contains
4665 ** information needed to terminate the loop.  Later, the calling routine
4666 ** should invoke sqlite3WhereEnd() with the return value of this function
4667 ** in order to complete the WHERE clause processing.
4668 **
4669 ** If an error occurs, this routine returns NULL.
4670 **
4671 ** The basic idea is to do a nested loop, one loop for each table in
4672 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4673 ** same as a SELECT with only a single table in the FROM clause.)  For
4674 ** example, if the SQL is this:
4675 **
4676 **       SELECT * FROM t1, t2, t3 WHERE ...;
4677 **
4678 ** Then the code generated is conceptually like the following:
4679 **
4680 **      foreach row1 in t1 do       \    Code generated
4681 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4682 **          foreach row3 in t3 do   /
4683 **            ...
4684 **          end                     \    Code generated
4685 **        end                        |-- by sqlite3WhereEnd()
4686 **      end                         /
4687 **
4688 ** Note that the loops might not be nested in the order in which they
4689 ** appear in the FROM clause if a different order is better able to make
4690 ** use of indices.  Note also that when the IN operator appears in
4691 ** the WHERE clause, it might result in additional nested loops for
4692 ** scanning through all values on the right-hand side of the IN.
4693 **
4694 ** There are Btree cursors associated with each table.  t1 uses cursor
4695 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4696 ** And so forth.  This routine generates code to open those VDBE cursors
4697 ** and sqlite3WhereEnd() generates the code to close them.
4698 **
4699 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4700 ** in pTabList pointing at their appropriate entries.  The [...] code
4701 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4702 ** data from the various tables of the loop.
4703 **
4704 ** If the WHERE clause is empty, the foreach loops must each scan their
4705 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4706 ** the tables have indices and there are terms in the WHERE clause that
4707 ** refer to those indices, a complete table scan can be avoided and the
4708 ** code will run much faster.  Most of the work of this routine is checking
4709 ** to see if there are indices that can be used to speed up the loop.
4710 **
4711 ** Terms of the WHERE clause are also used to limit which rows actually
4712 ** make it to the "..." in the middle of the loop.  After each "foreach",
4713 ** terms of the WHERE clause that use only terms in that loop and outer
4714 ** loops are evaluated and if false a jump is made around all subsequent
4715 ** inner loops (or around the "..." if the test occurs within the inner-
4716 ** most loop)
4717 **
4718 ** OUTER JOINS
4719 **
4720 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4721 **
4722 **    foreach row1 in t1 do
4723 **      flag = 0
4724 **      foreach row2 in t2 do
4725 **        start:
4726 **          ...
4727 **          flag = 1
4728 **      end
4729 **      if flag==0 then
4730 **        move the row2 cursor to a null row
4731 **        goto start
4732 **      fi
4733 **    end
4734 **
4735 ** ORDER BY CLAUSE PROCESSING
4736 **
4737 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4738 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4739 ** if there is one.  If there is no ORDER BY clause or if this routine
4740 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4741 **
4742 ** The iIdxCur parameter is the cursor number of an index.  If
4743 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4744 ** to use for OR clause processing.  The WHERE clause should use this
4745 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4746 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4747 ** be used to compute the appropriate cursor depending on which index is
4748 ** used.
4749 */
4750 WhereInfo *sqlite3WhereBegin(
4751   Parse *pParse,          /* The parser context */
4752   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4753   Expr *pWhere,           /* The WHERE clause */
4754   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4755   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4756   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4757   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4758                           ** If WHERE_USE_LIMIT, then the limit amount */
4759 ){
4760   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4761   int nTabList;              /* Number of elements in pTabList */
4762   WhereInfo *pWInfo;         /* Will become the return value of this function */
4763   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4764   Bitmask notReady;          /* Cursors that are not yet positioned */
4765   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4766   WhereMaskSet *pMaskSet;    /* The expression mask set */
4767   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4768   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4769   int ii;                    /* Loop counter */
4770   sqlite3 *db;               /* Database connection */
4771   int rc;                    /* Return code */
4772   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4773 
4774   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4775         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4776      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4777   ));
4778 
4779   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4780   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4781             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4782 
4783   /* Variable initialization */
4784   db = pParse->db;
4785   memset(&sWLB, 0, sizeof(sWLB));
4786 
4787   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4788   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4789   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4790   sWLB.pOrderBy = pOrderBy;
4791 
4792   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4793   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4794   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4795     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4796   }
4797 
4798   /* The number of tables in the FROM clause is limited by the number of
4799   ** bits in a Bitmask
4800   */
4801   testcase( pTabList->nSrc==BMS );
4802   if( pTabList->nSrc>BMS ){
4803     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4804     return 0;
4805   }
4806 
4807   /* This function normally generates a nested loop for all tables in
4808   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4809   ** only generate code for the first table in pTabList and assume that
4810   ** any cursors associated with subsequent tables are uninitialized.
4811   */
4812   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4813 
4814   /* Allocate and initialize the WhereInfo structure that will become the
4815   ** return value. A single allocation is used to store the WhereInfo
4816   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4817   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4818   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4819   ** some architectures. Hence the ROUND8() below.
4820   */
4821   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4822   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4823   if( db->mallocFailed ){
4824     sqlite3DbFree(db, pWInfo);
4825     pWInfo = 0;
4826     goto whereBeginError;
4827   }
4828   pWInfo->pParse = pParse;
4829   pWInfo->pTabList = pTabList;
4830   pWInfo->pOrderBy = pOrderBy;
4831   pWInfo->pWhere = pWhere;
4832   pWInfo->pResultSet = pResultSet;
4833   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4834   pWInfo->nLevel = nTabList;
4835   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4836   pWInfo->wctrlFlags = wctrlFlags;
4837   pWInfo->iLimit = iAuxArg;
4838   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4839   memset(&pWInfo->nOBSat, 0,
4840          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4841   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4842   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4843   pMaskSet = &pWInfo->sMaskSet;
4844   sWLB.pWInfo = pWInfo;
4845   sWLB.pWC = &pWInfo->sWC;
4846   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4847   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4848   whereLoopInit(sWLB.pNew);
4849 #ifdef SQLITE_DEBUG
4850   sWLB.pNew->cId = '*';
4851 #endif
4852 
4853   /* Split the WHERE clause into separate subexpressions where each
4854   ** subexpression is separated by an AND operator.
4855   */
4856   initMaskSet(pMaskSet);
4857   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4858   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4859 
4860   /* Special case: No FROM clause
4861   */
4862   if( nTabList==0 ){
4863     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4864     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4865       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4866     }
4867     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4868   }else{
4869     /* Assign a bit from the bitmask to every term in the FROM clause.
4870     **
4871     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4872     **
4873     ** The rule of the previous sentence ensures thta if X is the bitmask for
4874     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4875     ** Knowing the bitmask for all tables to the left of a left join is
4876     ** important.  Ticket #3015.
4877     **
4878     ** Note that bitmasks are created for all pTabList->nSrc tables in
4879     ** pTabList, not just the first nTabList tables.  nTabList is normally
4880     ** equal to pTabList->nSrc but might be shortened to 1 if the
4881     ** WHERE_OR_SUBCLAUSE flag is set.
4882     */
4883     ii = 0;
4884     do{
4885       createMask(pMaskSet, pTabList->a[ii].iCursor);
4886       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4887     }while( (++ii)<pTabList->nSrc );
4888   #ifdef SQLITE_DEBUG
4889     {
4890       Bitmask mx = 0;
4891       for(ii=0; ii<pTabList->nSrc; ii++){
4892         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4893         assert( m>=mx );
4894         mx = m;
4895       }
4896     }
4897   #endif
4898   }
4899 
4900   /* Analyze all of the subexpressions. */
4901   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4902   if( db->mallocFailed ) goto whereBeginError;
4903 
4904   /* Special case: WHERE terms that do not refer to any tables in the join
4905   ** (constant expressions). Evaluate each such term, and jump over all the
4906   ** generated code if the result is not true.
4907   **
4908   ** Do not do this if the expression contains non-deterministic functions
4909   ** that are not within a sub-select. This is not strictly required, but
4910   ** preserves SQLite's legacy behaviour in the following two cases:
4911   **
4912   **   FROM ... WHERE random()>0;           -- eval random() once per row
4913   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4914   */
4915   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4916     WhereTerm *pT = &sWLB.pWC->a[ii];
4917     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4918     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4919       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4920       pT->wtFlags |= TERM_CODED;
4921     }
4922   }
4923 
4924   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4925     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4926       /* The DISTINCT marking is pointless.  Ignore it. */
4927       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4928     }else if( pOrderBy==0 ){
4929       /* Try to ORDER BY the result set to make distinct processing easier */
4930       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4931       pWInfo->pOrderBy = pResultSet;
4932     }
4933   }
4934 
4935   /* Construct the WhereLoop objects */
4936 #if defined(WHERETRACE_ENABLED)
4937   if( sqlite3WhereTrace & 0xffff ){
4938     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4939     if( wctrlFlags & WHERE_USE_LIMIT ){
4940       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4941     }
4942     sqlite3DebugPrintf(")\n");
4943     if( sqlite3WhereTrace & 0x100 ){
4944       Select sSelect;
4945       memset(&sSelect, 0, sizeof(sSelect));
4946       sSelect.selFlags = SF_WhereBegin;
4947       sSelect.pSrc = pTabList;
4948       sSelect.pWhere = pWhere;
4949       sSelect.pOrderBy = pOrderBy;
4950       sSelect.pEList = pResultSet;
4951       sqlite3TreeViewSelect(0, &sSelect, 0);
4952     }
4953   }
4954   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4955     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4956     sqlite3WhereClausePrint(sWLB.pWC);
4957   }
4958 #endif
4959 
4960   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4961     rc = whereLoopAddAll(&sWLB);
4962     if( rc ) goto whereBeginError;
4963 
4964 #ifdef SQLITE_ENABLE_STAT4
4965     /* If one or more WhereTerm.truthProb values were used in estimating
4966     ** loop parameters, but then those truthProb values were subsequently
4967     ** changed based on STAT4 information while computing subsequent loops,
4968     ** then we need to rerun the whole loop building process so that all
4969     ** loops will be built using the revised truthProb values. */
4970     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4971       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4972       WHERETRACE(0xffff,
4973            ("**** Redo all loop computations due to"
4974             " TERM_HIGHTRUTH changes ****\n"));
4975       while( pWInfo->pLoops ){
4976         WhereLoop *p = pWInfo->pLoops;
4977         pWInfo->pLoops = p->pNextLoop;
4978         whereLoopDelete(db, p);
4979       }
4980       rc = whereLoopAddAll(&sWLB);
4981       if( rc ) goto whereBeginError;
4982     }
4983 #endif
4984     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4985 
4986     wherePathSolver(pWInfo, 0);
4987     if( db->mallocFailed ) goto whereBeginError;
4988     if( pWInfo->pOrderBy ){
4989        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4990        if( db->mallocFailed ) goto whereBeginError;
4991     }
4992   }
4993   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4994      pWInfo->revMask = ALLBITS;
4995   }
4996   if( pParse->nErr || db->mallocFailed ){
4997     goto whereBeginError;
4998   }
4999 #ifdef WHERETRACE_ENABLED
5000   if( sqlite3WhereTrace ){
5001     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5002     if( pWInfo->nOBSat>0 ){
5003       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5004     }
5005     switch( pWInfo->eDistinct ){
5006       case WHERE_DISTINCT_UNIQUE: {
5007         sqlite3DebugPrintf("  DISTINCT=unique");
5008         break;
5009       }
5010       case WHERE_DISTINCT_ORDERED: {
5011         sqlite3DebugPrintf("  DISTINCT=ordered");
5012         break;
5013       }
5014       case WHERE_DISTINCT_UNORDERED: {
5015         sqlite3DebugPrintf("  DISTINCT=unordered");
5016         break;
5017       }
5018     }
5019     sqlite3DebugPrintf("\n");
5020     for(ii=0; ii<pWInfo->nLevel; ii++){
5021       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5022     }
5023   }
5024 #endif
5025 
5026   /* Attempt to omit tables from the join that do not affect the result.
5027   ** For a table to not affect the result, the following must be true:
5028   **
5029   **   1) The query must not be an aggregate.
5030   **   2) The table must be the RHS of a LEFT JOIN.
5031   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5032   **      must contain a constraint that limits the scan of the table to
5033   **      at most a single row.
5034   **   4) The table must not be referenced by any part of the query apart
5035   **      from its own USING or ON clause.
5036   **
5037   ** For example, given:
5038   **
5039   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5040   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5041   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5042   **
5043   ** then table t2 can be omitted from the following:
5044   **
5045   **     SELECT v1, v3 FROM t1
5046   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5047   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5048   **
5049   ** or from:
5050   **
5051   **     SELECT DISTINCT v1, v3 FROM t1
5052   **       LEFT JOIN t2
5053   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5054   */
5055   notReady = ~(Bitmask)0;
5056   if( pWInfo->nLevel>=2
5057    && pResultSet!=0                         /* these two combine to guarantee */
5058    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5059    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5060   ){
5061     int i;
5062     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5063     if( sWLB.pOrderBy ){
5064       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5065     }
5066     for(i=pWInfo->nLevel-1; i>=1; i--){
5067       WhereTerm *pTerm, *pEnd;
5068       SrcItem *pItem;
5069       pLoop = pWInfo->a[i].pWLoop;
5070       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5071       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5072       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5073        && (pLoop->wsFlags & WHERE_ONEROW)==0
5074       ){
5075         continue;
5076       }
5077       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5078       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5079       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5080         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5081           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5082            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5083           ){
5084             break;
5085           }
5086         }
5087       }
5088       if( pTerm<pEnd ) continue;
5089       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5090       notReady &= ~pLoop->maskSelf;
5091       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5092         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5093           pTerm->wtFlags |= TERM_CODED;
5094         }
5095       }
5096       if( i!=pWInfo->nLevel-1 ){
5097         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5098         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5099       }
5100       pWInfo->nLevel--;
5101       nTabList--;
5102     }
5103   }
5104 #if defined(WHERETRACE_ENABLED)
5105   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5106     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5107     sqlite3WhereClausePrint(sWLB.pWC);
5108   }
5109   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5110 #endif
5111   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5112 
5113   /* If the caller is an UPDATE or DELETE statement that is requesting
5114   ** to use a one-pass algorithm, determine if this is appropriate.
5115   **
5116   ** A one-pass approach can be used if the caller has requested one
5117   ** and either (a) the scan visits at most one row or (b) each
5118   ** of the following are true:
5119   **
5120   **   * the caller has indicated that a one-pass approach can be used
5121   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5122   **   * the table is not a virtual table, and
5123   **   * either the scan does not use the OR optimization or the caller
5124   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5125   **     for DELETE).
5126   **
5127   ** The last qualification is because an UPDATE statement uses
5128   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5129   ** use a one-pass approach, and this is not set accurately for scans
5130   ** that use the OR optimization.
5131   */
5132   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5133   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5134     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5135     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5136     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5137     if( bOnerow || (
5138         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5139      && !IsVirtual(pTabList->a[0].pTab)
5140      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5141     )){
5142       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5143       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5144         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5145           bFordelete = OPFLAG_FORDELETE;
5146         }
5147         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5148       }
5149     }
5150   }
5151 
5152   /* Open all tables in the pTabList and any indices selected for
5153   ** searching those tables.
5154   */
5155   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5156     Table *pTab;     /* Table to open */
5157     int iDb;         /* Index of database containing table/index */
5158     SrcItem *pTabItem;
5159 
5160     pTabItem = &pTabList->a[pLevel->iFrom];
5161     pTab = pTabItem->pTab;
5162     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5163     pLoop = pLevel->pWLoop;
5164     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5165       /* Do nothing */
5166     }else
5167 #ifndef SQLITE_OMIT_VIRTUALTABLE
5168     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5169       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5170       int iCur = pTabItem->iCursor;
5171       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5172     }else if( IsVirtual(pTab) ){
5173       /* noop */
5174     }else
5175 #endif
5176     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5177          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5178       int op = OP_OpenRead;
5179       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5180         op = OP_OpenWrite;
5181         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5182       };
5183       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5184       assert( pTabItem->iCursor==pLevel->iTabCur );
5185       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5186       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5187       if( pWInfo->eOnePass==ONEPASS_OFF
5188        && pTab->nCol<BMS
5189        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5190       ){
5191         /* If we know that only a prefix of the record will be used,
5192         ** it is advantageous to reduce the "column count" field in
5193         ** the P4 operand of the OP_OpenRead/Write opcode. */
5194         Bitmask b = pTabItem->colUsed;
5195         int n = 0;
5196         for(; b; b=b>>1, n++){}
5197         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5198         assert( n<=pTab->nCol );
5199       }
5200 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5201       if( pLoop->u.btree.pIndex!=0 ){
5202         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5203       }else
5204 #endif
5205       {
5206         sqlite3VdbeChangeP5(v, bFordelete);
5207       }
5208 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5209       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5210                             (const u8*)&pTabItem->colUsed, P4_INT64);
5211 #endif
5212     }else{
5213       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5214     }
5215     if( pLoop->wsFlags & WHERE_INDEXED ){
5216       Index *pIx = pLoop->u.btree.pIndex;
5217       int iIndexCur;
5218       int op = OP_OpenRead;
5219       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5220       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5221       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5222        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5223       ){
5224         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5225         ** WITHOUT ROWID table.  No need for a separate index */
5226         iIndexCur = pLevel->iTabCur;
5227         op = 0;
5228       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5229         Index *pJ = pTabItem->pTab->pIndex;
5230         iIndexCur = iAuxArg;
5231         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5232         while( ALWAYS(pJ) && pJ!=pIx ){
5233           iIndexCur++;
5234           pJ = pJ->pNext;
5235         }
5236         op = OP_OpenWrite;
5237         pWInfo->aiCurOnePass[1] = iIndexCur;
5238       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5239         iIndexCur = iAuxArg;
5240         op = OP_ReopenIdx;
5241       }else{
5242         iIndexCur = pParse->nTab++;
5243       }
5244       pLevel->iIdxCur = iIndexCur;
5245       assert( pIx->pSchema==pTab->pSchema );
5246       assert( iIndexCur>=0 );
5247       if( op ){
5248         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5249         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5250         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5251          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5252          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5253          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5254          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5255          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5256         ){
5257           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5258         }
5259         VdbeComment((v, "%s", pIx->zName));
5260 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5261         {
5262           u64 colUsed = 0;
5263           int ii, jj;
5264           for(ii=0; ii<pIx->nColumn; ii++){
5265             jj = pIx->aiColumn[ii];
5266             if( jj<0 ) continue;
5267             if( jj>63 ) jj = 63;
5268             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5269             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5270           }
5271           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5272                                 (u8*)&colUsed, P4_INT64);
5273         }
5274 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5275       }
5276     }
5277     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5278   }
5279   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5280   if( db->mallocFailed ) goto whereBeginError;
5281 
5282   /* Generate the code to do the search.  Each iteration of the for
5283   ** loop below generates code for a single nested loop of the VM
5284   ** program.
5285   */
5286   for(ii=0; ii<nTabList; ii++){
5287     int addrExplain;
5288     int wsFlags;
5289     pLevel = &pWInfo->a[ii];
5290     wsFlags = pLevel->pWLoop->wsFlags;
5291 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5292     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5293       constructAutomaticIndex(pParse, &pWInfo->sWC,
5294                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5295       if( db->mallocFailed ) goto whereBeginError;
5296     }
5297 #endif
5298     addrExplain = sqlite3WhereExplainOneScan(
5299         pParse, pTabList, pLevel, wctrlFlags
5300     );
5301     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5302     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5303     pWInfo->iContinue = pLevel->addrCont;
5304     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5305       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5306     }
5307   }
5308 
5309   /* Done. */
5310   VdbeModuleComment((v, "Begin WHERE-core"));
5311   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5312   return pWInfo;
5313 
5314   /* Jump here if malloc fails */
5315 whereBeginError:
5316   if( pWInfo ){
5317     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5318     whereInfoFree(db, pWInfo);
5319   }
5320   return 0;
5321 }
5322 
5323 /*
5324 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5325 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5326 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5327 ** does that.
5328 */
5329 #ifndef SQLITE_DEBUG
5330 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5331 #else
5332 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5333   static void sqlite3WhereOpcodeRewriteTrace(
5334     sqlite3 *db,
5335     int pc,
5336     VdbeOp *pOp
5337   ){
5338     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5339     sqlite3VdbePrintOp(0, pc, pOp);
5340   }
5341 #endif
5342 
5343 /*
5344 ** Generate the end of the WHERE loop.  See comments on
5345 ** sqlite3WhereBegin() for additional information.
5346 */
5347 void sqlite3WhereEnd(WhereInfo *pWInfo){
5348   Parse *pParse = pWInfo->pParse;
5349   Vdbe *v = pParse->pVdbe;
5350   int i;
5351   WhereLevel *pLevel;
5352   WhereLoop *pLoop;
5353   SrcList *pTabList = pWInfo->pTabList;
5354   sqlite3 *db = pParse->db;
5355   int iEnd = sqlite3VdbeCurrentAddr(v);
5356 
5357   /* Generate loop termination code.
5358   */
5359   VdbeModuleComment((v, "End WHERE-core"));
5360   for(i=pWInfo->nLevel-1; i>=0; i--){
5361     int addr;
5362     pLevel = &pWInfo->a[i];
5363     pLoop = pLevel->pWLoop;
5364     if( pLevel->op!=OP_Noop ){
5365 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5366       int addrSeek = 0;
5367       Index *pIdx;
5368       int n;
5369       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5370        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5371        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5372        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5373        && (n = pLoop->u.btree.nDistinctCol)>0
5374        && pIdx->aiRowLogEst[n]>=36
5375       ){
5376         int r1 = pParse->nMem+1;
5377         int j, op;
5378         for(j=0; j<n; j++){
5379           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5380         }
5381         pParse->nMem += n+1;
5382         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5383         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5384         VdbeCoverageIf(v, op==OP_SeekLT);
5385         VdbeCoverageIf(v, op==OP_SeekGT);
5386         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5387       }
5388 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5389       /* The common case: Advance to the next row */
5390       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5391       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5392       sqlite3VdbeChangeP5(v, pLevel->p5);
5393       VdbeCoverage(v);
5394       VdbeCoverageIf(v, pLevel->op==OP_Next);
5395       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5396       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5397       if( pLevel->regBignull ){
5398         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5399         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5400         VdbeCoverage(v);
5401       }
5402 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5403       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5404 #endif
5405     }else{
5406       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5407     }
5408     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5409       struct InLoop *pIn;
5410       int j;
5411       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5412       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5413         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5414         if( pIn->eEndLoopOp!=OP_Noop ){
5415           if( pIn->nPrefix ){
5416             int bEarlyOut =
5417                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5418                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5419             if( pLevel->iLeftJoin ){
5420               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5421               ** opened yet. This occurs for WHERE clauses such as
5422               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5423               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5424               ** never have been coded, but the body of the loop run to
5425               ** return the null-row. So, if the cursor is not open yet,
5426               ** jump over the OP_Next or OP_Prev instruction about to
5427               ** be coded.  */
5428               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5429                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5430               VdbeCoverage(v);
5431             }
5432             if( bEarlyOut ){
5433               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5434                   sqlite3VdbeCurrentAddr(v)+2,
5435                   pIn->iBase, pIn->nPrefix);
5436               VdbeCoverage(v);
5437             }
5438           }
5439           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5440           VdbeCoverage(v);
5441           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5442           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5443         }
5444         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5445       }
5446     }
5447     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5448     if( pLevel->addrSkip ){
5449       sqlite3VdbeGoto(v, pLevel->addrSkip);
5450       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5451       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5452       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5453     }
5454 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5455     if( pLevel->addrLikeRep ){
5456       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5457                         pLevel->addrLikeRep);
5458       VdbeCoverage(v);
5459     }
5460 #endif
5461     if( pLevel->iLeftJoin ){
5462       int ws = pLoop->wsFlags;
5463       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5464       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5465       if( (ws & WHERE_IDX_ONLY)==0 ){
5466         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5467         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5468       }
5469       if( (ws & WHERE_INDEXED)
5470        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5471       ){
5472         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5473       }
5474       if( pLevel->op==OP_Return ){
5475         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5476       }else{
5477         sqlite3VdbeGoto(v, pLevel->addrFirst);
5478       }
5479       sqlite3VdbeJumpHere(v, addr);
5480     }
5481     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5482                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5483   }
5484 
5485   /* The "break" point is here, just past the end of the outer loop.
5486   ** Set it.
5487   */
5488   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5489 
5490   assert( pWInfo->nLevel<=pTabList->nSrc );
5491   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5492     int k, last;
5493     VdbeOp *pOp, *pLastOp;
5494     Index *pIdx = 0;
5495     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5496     Table *pTab = pTabItem->pTab;
5497     assert( pTab!=0 );
5498     pLoop = pLevel->pWLoop;
5499 
5500     /* For a co-routine, change all OP_Column references to the table of
5501     ** the co-routine into OP_Copy of result contained in a register.
5502     ** OP_Rowid becomes OP_Null.
5503     */
5504     if( pTabItem->fg.viaCoroutine ){
5505       testcase( pParse->db->mallocFailed );
5506       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5507                             pTabItem->regResult, 0);
5508       continue;
5509     }
5510 
5511 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5512     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5513     ** Except, do not close cursors that will be reused by the OR optimization
5514     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5515     ** created for the ONEPASS optimization.
5516     */
5517     if( (pTab->tabFlags & TF_Ephemeral)==0
5518      && pTab->pSelect==0
5519      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5520     ){
5521       int ws = pLoop->wsFlags;
5522       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5523         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5524       }
5525       if( (ws & WHERE_INDEXED)!=0
5526        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5527        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5528       ){
5529         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5530       }
5531     }
5532 #endif
5533 
5534     /* If this scan uses an index, make VDBE code substitutions to read data
5535     ** from the index instead of from the table where possible.  In some cases
5536     ** this optimization prevents the table from ever being read, which can
5537     ** yield a significant performance boost.
5538     **
5539     ** Calls to the code generator in between sqlite3WhereBegin and
5540     ** sqlite3WhereEnd will have created code that references the table
5541     ** directly.  This loop scans all that code looking for opcodes
5542     ** that reference the table and converts them into opcodes that
5543     ** reference the index.
5544     */
5545     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5546       pIdx = pLoop->u.btree.pIndex;
5547     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5548       pIdx = pLevel->u.pCovidx;
5549     }
5550     if( pIdx
5551      && !db->mallocFailed
5552     ){
5553       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5554         last = iEnd;
5555       }else{
5556         last = pWInfo->iEndWhere;
5557       }
5558       k = pLevel->addrBody + 1;
5559 #ifdef SQLITE_DEBUG
5560       if( db->flags & SQLITE_VdbeAddopTrace ){
5561         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5562       }
5563       /* Proof that the "+1" on the k value above is safe */
5564       pOp = sqlite3VdbeGetOp(v, k - 1);
5565       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5566       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5567       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5568 #endif
5569       pOp = sqlite3VdbeGetOp(v, k);
5570       pLastOp = pOp + (last - k);
5571       assert( pOp<=pLastOp );
5572       do{
5573         if( pOp->p1!=pLevel->iTabCur ){
5574           /* no-op */
5575         }else if( pOp->opcode==OP_Column
5576 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5577          || pOp->opcode==OP_Offset
5578 #endif
5579         ){
5580           int x = pOp->p2;
5581           assert( pIdx->pTable==pTab );
5582           if( !HasRowid(pTab) ){
5583             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5584             x = pPk->aiColumn[x];
5585             assert( x>=0 );
5586           }else{
5587             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5588             x = sqlite3StorageColumnToTable(pTab,x);
5589           }
5590           x = sqlite3TableColumnToIndex(pIdx, x);
5591           if( x>=0 ){
5592             pOp->p2 = x;
5593             pOp->p1 = pLevel->iIdxCur;
5594             OpcodeRewriteTrace(db, k, pOp);
5595           }
5596           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5597               || pWInfo->eOnePass );
5598         }else if( pOp->opcode==OP_Rowid ){
5599           pOp->p1 = pLevel->iIdxCur;
5600           pOp->opcode = OP_IdxRowid;
5601           OpcodeRewriteTrace(db, k, pOp);
5602         }else if( pOp->opcode==OP_IfNullRow ){
5603           pOp->p1 = pLevel->iIdxCur;
5604           OpcodeRewriteTrace(db, k, pOp);
5605         }
5606 #ifdef SQLITE_DEBUG
5607         k++;
5608 #endif
5609       }while( (++pOp)<pLastOp );
5610 #ifdef SQLITE_DEBUG
5611       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5612 #endif
5613     }
5614   }
5615 
5616   /* Undo all Expr node modifications */
5617   while( pWInfo->pExprMods ){
5618     WhereExprMod *p = pWInfo->pExprMods;
5619     pWInfo->pExprMods = p->pNext;
5620     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5621     sqlite3DbFree(db, p);
5622   }
5623 
5624   /* Final cleanup
5625   */
5626   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5627   whereInfoFree(db, pWInfo);
5628   return;
5629 }
5630