xref: /sqlite-3.40.0/src/where.c (revision 2c1023df)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return sqlite3LogEstToInt(pWInfo->nRowOut);
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return the VDBE address or label to jump to in order to continue
56 ** immediately with the next row of a WHERE clause.
57 */
58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
59   assert( pWInfo->iContinue!=0 );
60   return pWInfo->iContinue;
61 }
62 
63 /*
64 ** Return the VDBE address or label to jump to in order to break
65 ** out of a WHERE loop.
66 */
67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
68   return pWInfo->iBreak;
69 }
70 
71 /*
72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
73 ** operate directly on the rowis returned by a WHERE clause.  Return
74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
75 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
76 ** optimization can be used on multiple
77 **
78 ** If the ONEPASS optimization is used (if this routine returns true)
79 ** then also write the indices of open cursors used by ONEPASS
80 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
81 ** table and iaCur[1] gets the cursor used by an auxiliary index.
82 ** Either value may be -1, indicating that cursor is not used.
83 ** Any cursors returned will have been opened for writing.
84 **
85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
86 ** unable to use the ONEPASS optimization.
87 */
88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
89   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
90 #ifdef WHERETRACE_ENABLED
91   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
92     sqlite3DebugPrintf("%s cursors: %d %d\n",
93          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
94          aiCur[0], aiCur[1]);
95   }
96 #endif
97   return pWInfo->eOnePass;
98 }
99 
100 /*
101 ** Move the content of pSrc into pDest
102 */
103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
104   pDest->n = pSrc->n;
105   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
106 }
107 
108 /*
109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
110 **
111 ** The new entry might overwrite an existing entry, or it might be
112 ** appended, or it might be discarded.  Do whatever is the right thing
113 ** so that pSet keeps the N_OR_COST best entries seen so far.
114 */
115 static int whereOrInsert(
116   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
117   Bitmask prereq,        /* Prerequisites of the new entry */
118   LogEst rRun,           /* Run-cost of the new entry */
119   LogEst nOut            /* Number of outputs for the new entry */
120 ){
121   u16 i;
122   WhereOrCost *p;
123   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
124     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
125       goto whereOrInsert_done;
126     }
127     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
128       return 0;
129     }
130   }
131   if( pSet->n<N_OR_COST ){
132     p = &pSet->a[pSet->n++];
133     p->nOut = nOut;
134   }else{
135     p = pSet->a;
136     for(i=1; i<pSet->n; i++){
137       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
138     }
139     if( p->rRun<=rRun ) return 0;
140   }
141 whereOrInsert_done:
142   p->prereq = prereq;
143   p->rRun = rRun;
144   if( p->nOut>nOut ) p->nOut = nOut;
145   return 1;
146 }
147 
148 /*
149 ** Return the bitmask for the given cursor number.  Return 0 if
150 ** iCursor is not in the set.
151 */
152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
153   int i;
154   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
155   for(i=0; i<pMaskSet->n; i++){
156     if( pMaskSet->ix[i]==iCursor ){
157       return MASKBIT(i);
158     }
159   }
160   return 0;
161 }
162 
163 /*
164 ** Create a new mask for cursor iCursor.
165 **
166 ** There is one cursor per table in the FROM clause.  The number of
167 ** tables in the FROM clause is limited by a test early in the
168 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
169 ** array will never overflow.
170 */
171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
172   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
173   pMaskSet->ix[pMaskSet->n++] = iCursor;
174 }
175 
176 /*
177 ** Advance to the next WhereTerm that matches according to the criteria
178 ** established when the pScan object was initialized by whereScanInit().
179 ** Return NULL if there are no more matching WhereTerms.
180 */
181 static WhereTerm *whereScanNext(WhereScan *pScan){
182   int iCur;            /* The cursor on the LHS of the term */
183   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
184   Expr *pX;            /* An expression being tested */
185   WhereClause *pWC;    /* Shorthand for pScan->pWC */
186   WhereTerm *pTerm;    /* The term being tested */
187   int k = pScan->k;    /* Where to start scanning */
188 
189   while( pScan->iEquiv<=pScan->nEquiv ){
190     iCur = pScan->aiCur[pScan->iEquiv-1];
191     iColumn = pScan->aiColumn[pScan->iEquiv-1];
192     if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0;
193     while( (pWC = pScan->pWC)!=0 ){
194       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
195         if( pTerm->leftCursor==iCur
196          && pTerm->u.leftColumn==iColumn
197          && (iColumn!=XN_EXPR
198              || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0)
199          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
200         ){
201           if( (pTerm->eOperator & WO_EQUIV)!=0
202            && pScan->nEquiv<ArraySize(pScan->aiCur)
203            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
204           ){
205             int j;
206             for(j=0; j<pScan->nEquiv; j++){
207               if( pScan->aiCur[j]==pX->iTable
208                && pScan->aiColumn[j]==pX->iColumn ){
209                   break;
210               }
211             }
212             if( j==pScan->nEquiv ){
213               pScan->aiCur[j] = pX->iTable;
214               pScan->aiColumn[j] = pX->iColumn;
215               pScan->nEquiv++;
216             }
217           }
218           if( (pTerm->eOperator & pScan->opMask)!=0 ){
219             /* Verify the affinity and collating sequence match */
220             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
221               CollSeq *pColl;
222               Parse *pParse = pWC->pWInfo->pParse;
223               pX = pTerm->pExpr;
224               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
225                 continue;
226               }
227               assert(pX->pLeft);
228               pColl = sqlite3BinaryCompareCollSeq(pParse,
229                                                   pX->pLeft, pX->pRight);
230               if( pColl==0 ) pColl = pParse->db->pDfltColl;
231               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
232                 continue;
233               }
234             }
235             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
236              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
237              && pX->iTable==pScan->aiCur[0]
238              && pX->iColumn==pScan->aiColumn[0]
239             ){
240               testcase( pTerm->eOperator & WO_IS );
241               continue;
242             }
243             pScan->k = k+1;
244             return pTerm;
245           }
246         }
247       }
248       pScan->pWC = pScan->pWC->pOuter;
249       k = 0;
250     }
251     pScan->pWC = pScan->pOrigWC;
252     k = 0;
253     pScan->iEquiv++;
254   }
255   return 0;
256 }
257 
258 /*
259 ** Initialize a WHERE clause scanner object.  Return a pointer to the
260 ** first match.  Return NULL if there are no matches.
261 **
262 ** The scanner will be searching the WHERE clause pWC.  It will look
263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
264 ** iCur.  The <op> must be one of the operators described by opMask.
265 **
266 ** If the search is for X and the WHERE clause contains terms of the
267 ** form X=Y then this routine might also return terms of the form
268 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
269 ** but is enough to handle most commonly occurring SQL statements.
270 **
271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
272 ** index pIdx.
273 */
274 static WhereTerm *whereScanInit(
275   WhereScan *pScan,       /* The WhereScan object being initialized */
276   WhereClause *pWC,       /* The WHERE clause to be scanned */
277   int iCur,               /* Cursor to scan for */
278   int iColumn,            /* Column to scan for */
279   u32 opMask,             /* Operator(s) to scan for */
280   Index *pIdx             /* Must be compatible with this index */
281 ){
282   int j = 0;
283 
284   /* memset(pScan, 0, sizeof(*pScan)); */
285   pScan->pOrigWC = pWC;
286   pScan->pWC = pWC;
287   pScan->pIdxExpr = 0;
288   if( pIdx ){
289     j = iColumn;
290     iColumn = pIdx->aiColumn[j];
291     if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
292   }
293   if( pIdx && iColumn>=0 ){
294     pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
295     pScan->zCollName = pIdx->azColl[j];
296   }else{
297     pScan->idxaff = 0;
298     pScan->zCollName = 0;
299   }
300   pScan->opMask = opMask;
301   pScan->k = 0;
302   pScan->aiCur[0] = iCur;
303   pScan->aiColumn[0] = iColumn;
304   pScan->nEquiv = 1;
305   pScan->iEquiv = 1;
306   return whereScanNext(pScan);
307 }
308 
309 /*
310 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
311 ** where X is a reference to the iColumn of table iCur and <op> is one of
312 ** the WO_xx operator codes specified by the op parameter.
313 ** Return a pointer to the term.  Return 0 if not found.
314 **
315 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx
316 ** rather than the iColumn-th column of table iCur.
317 **
318 ** The term returned might by Y=<expr> if there is another constraint in
319 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
320 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
321 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
322 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
323 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
324 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
325 **
326 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
327 ** then try for the one with no dependencies on <expr> - in other words where
328 ** <expr> is a constant expression of some kind.  Only return entries of
329 ** the form "X <op> Y" where Y is a column in another table if no terms of
330 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
331 ** exist, try to return a term that does not use WO_EQUIV.
332 */
333 WhereTerm *sqlite3WhereFindTerm(
334   WhereClause *pWC,     /* The WHERE clause to be searched */
335   int iCur,             /* Cursor number of LHS */
336   int iColumn,          /* Column number of LHS */
337   Bitmask notReady,     /* RHS must not overlap with this mask */
338   u32 op,               /* Mask of WO_xx values describing operator */
339   Index *pIdx           /* Must be compatible with this index, if not NULL */
340 ){
341   WhereTerm *pResult = 0;
342   WhereTerm *p;
343   WhereScan scan;
344 
345   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
346   op &= WO_EQ|WO_IS;
347   while( p ){
348     if( (p->prereqRight & notReady)==0 ){
349       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
350         testcase( p->eOperator & WO_IS );
351         return p;
352       }
353       if( pResult==0 ) pResult = p;
354     }
355     p = whereScanNext(&scan);
356   }
357   return pResult;
358 }
359 
360 /*
361 ** This function searches pList for an entry that matches the iCol-th column
362 ** of index pIdx.
363 **
364 ** If such an expression is found, its index in pList->a[] is returned. If
365 ** no expression is found, -1 is returned.
366 */
367 static int findIndexCol(
368   Parse *pParse,                  /* Parse context */
369   ExprList *pList,                /* Expression list to search */
370   int iBase,                      /* Cursor for table associated with pIdx */
371   Index *pIdx,                    /* Index to match column of */
372   int iCol                        /* Column of index to match */
373 ){
374   int i;
375   const char *zColl = pIdx->azColl[iCol];
376 
377   for(i=0; i<pList->nExpr; i++){
378     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
379     if( p->op==TK_COLUMN
380      && p->iColumn==pIdx->aiColumn[iCol]
381      && p->iTable==iBase
382     ){
383       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
384       if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
385         return i;
386       }
387     }
388   }
389 
390   return -1;
391 }
392 
393 /*
394 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
395 */
396 static int indexColumnNotNull(Index *pIdx, int iCol){
397   int j;
398   assert( pIdx!=0 );
399   assert( iCol>=0 && iCol<pIdx->nColumn );
400   j = pIdx->aiColumn[iCol];
401   if( j>=0 ){
402     return pIdx->pTable->aCol[j].notNull;
403   }else if( j==(-1) ){
404     return 1;
405   }else{
406     assert( j==(-2) );
407     return 0;  /* Assume an indexed expression can always yield a NULL */
408 
409   }
410 }
411 
412 /*
413 ** Return true if the DISTINCT expression-list passed as the third argument
414 ** is redundant.
415 **
416 ** A DISTINCT list is redundant if any subset of the columns in the
417 ** DISTINCT list are collectively unique and individually non-null.
418 */
419 static int isDistinctRedundant(
420   Parse *pParse,            /* Parsing context */
421   SrcList *pTabList,        /* The FROM clause */
422   WhereClause *pWC,         /* The WHERE clause */
423   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
424 ){
425   Table *pTab;
426   Index *pIdx;
427   int i;
428   int iBase;
429 
430   /* If there is more than one table or sub-select in the FROM clause of
431   ** this query, then it will not be possible to show that the DISTINCT
432   ** clause is redundant. */
433   if( pTabList->nSrc!=1 ) return 0;
434   iBase = pTabList->a[0].iCursor;
435   pTab = pTabList->a[0].pTab;
436 
437   /* If any of the expressions is an IPK column on table iBase, then return
438   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
439   ** current SELECT is a correlated sub-query.
440   */
441   for(i=0; i<pDistinct->nExpr; i++){
442     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
443     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
444   }
445 
446   /* Loop through all indices on the table, checking each to see if it makes
447   ** the DISTINCT qualifier redundant. It does so if:
448   **
449   **   1. The index is itself UNIQUE, and
450   **
451   **   2. All of the columns in the index are either part of the pDistinct
452   **      list, or else the WHERE clause contains a term of the form "col=X",
453   **      where X is a constant value. The collation sequences of the
454   **      comparison and select-list expressions must match those of the index.
455   **
456   **   3. All of those index columns for which the WHERE clause does not
457   **      contain a "col=X" term are subject to a NOT NULL constraint.
458   */
459   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
460     if( !IsUniqueIndex(pIdx) ) continue;
461     for(i=0; i<pIdx->nKeyCol; i++){
462       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
463         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
464         if( indexColumnNotNull(pIdx, i)==0 ) break;
465       }
466     }
467     if( i==pIdx->nKeyCol ){
468       /* This index implies that the DISTINCT qualifier is redundant. */
469       return 1;
470     }
471   }
472 
473   return 0;
474 }
475 
476 
477 /*
478 ** Estimate the logarithm of the input value to base 2.
479 */
480 static LogEst estLog(LogEst N){
481   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
482 }
483 
484 /*
485 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
486 **
487 ** This routine runs over generated VDBE code and translates OP_Column
488 ** opcodes into OP_Copy, and OP_Rowid into OP_Null, when the table is being
489 ** accessed via co-routine instead of via table lookup.
490 */
491 static void translateColumnToCopy(
492   Vdbe *v,            /* The VDBE containing code to translate */
493   int iStart,         /* Translate from this opcode to the end */
494   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
495   int iRegister       /* The first column is in this register */
496 ){
497   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
498   int iEnd = sqlite3VdbeCurrentAddr(v);
499   for(; iStart<iEnd; iStart++, pOp++){
500     if( pOp->p1!=iTabCur ) continue;
501     if( pOp->opcode==OP_Column ){
502       pOp->opcode = OP_Copy;
503       pOp->p1 = pOp->p2 + iRegister;
504       pOp->p2 = pOp->p3;
505       pOp->p3 = 0;
506     }else if( pOp->opcode==OP_Rowid ){
507       pOp->opcode = OP_Null;
508       pOp->p1 = 0;
509       pOp->p3 = 0;
510     }
511   }
512 }
513 
514 /*
515 ** Two routines for printing the content of an sqlite3_index_info
516 ** structure.  Used for testing and debugging only.  If neither
517 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
518 ** are no-ops.
519 */
520 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
521 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
522   int i;
523   if( !sqlite3WhereTrace ) return;
524   for(i=0; i<p->nConstraint; i++){
525     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
526        i,
527        p->aConstraint[i].iColumn,
528        p->aConstraint[i].iTermOffset,
529        p->aConstraint[i].op,
530        p->aConstraint[i].usable);
531   }
532   for(i=0; i<p->nOrderBy; i++){
533     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
534        i,
535        p->aOrderBy[i].iColumn,
536        p->aOrderBy[i].desc);
537   }
538 }
539 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
540   int i;
541   if( !sqlite3WhereTrace ) return;
542   for(i=0; i<p->nConstraint; i++){
543     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
544        i,
545        p->aConstraintUsage[i].argvIndex,
546        p->aConstraintUsage[i].omit);
547   }
548   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
549   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
550   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
551   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
552   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
553 }
554 #else
555 #define TRACE_IDX_INPUTS(A)
556 #define TRACE_IDX_OUTPUTS(A)
557 #endif
558 
559 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
560 /*
561 ** Return TRUE if the WHERE clause term pTerm is of a form where it
562 ** could be used with an index to access pSrc, assuming an appropriate
563 ** index existed.
564 */
565 static int termCanDriveIndex(
566   WhereTerm *pTerm,              /* WHERE clause term to check */
567   struct SrcList_item *pSrc,     /* Table we are trying to access */
568   Bitmask notReady               /* Tables in outer loops of the join */
569 ){
570   char aff;
571   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
572   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
573   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
574   if( pTerm->u.leftColumn<0 ) return 0;
575   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
576   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
577   testcase( pTerm->pExpr->op==TK_IS );
578   return 1;
579 }
580 #endif
581 
582 
583 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
584 /*
585 ** Generate code to construct the Index object for an automatic index
586 ** and to set up the WhereLevel object pLevel so that the code generator
587 ** makes use of the automatic index.
588 */
589 static void constructAutomaticIndex(
590   Parse *pParse,              /* The parsing context */
591   WhereClause *pWC,           /* The WHERE clause */
592   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
593   Bitmask notReady,           /* Mask of cursors that are not available */
594   WhereLevel *pLevel          /* Write new index here */
595 ){
596   int nKeyCol;                /* Number of columns in the constructed index */
597   WhereTerm *pTerm;           /* A single term of the WHERE clause */
598   WhereTerm *pWCEnd;          /* End of pWC->a[] */
599   Index *pIdx;                /* Object describing the transient index */
600   Vdbe *v;                    /* Prepared statement under construction */
601   int addrInit;               /* Address of the initialization bypass jump */
602   Table *pTable;              /* The table being indexed */
603   int addrTop;                /* Top of the index fill loop */
604   int regRecord;              /* Register holding an index record */
605   int n;                      /* Column counter */
606   int i;                      /* Loop counter */
607   int mxBitCol;               /* Maximum column in pSrc->colUsed */
608   CollSeq *pColl;             /* Collating sequence to on a column */
609   WhereLoop *pLoop;           /* The Loop object */
610   char *zNotUsed;             /* Extra space on the end of pIdx */
611   Bitmask idxCols;            /* Bitmap of columns used for indexing */
612   Bitmask extraCols;          /* Bitmap of additional columns */
613   u8 sentWarning = 0;         /* True if a warnning has been issued */
614   Expr *pPartial = 0;         /* Partial Index Expression */
615   int iContinue = 0;          /* Jump here to skip excluded rows */
616   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
617 
618   /* Generate code to skip over the creation and initialization of the
619   ** transient index on 2nd and subsequent iterations of the loop. */
620   v = pParse->pVdbe;
621   assert( v!=0 );
622   addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
623 
624   /* Count the number of columns that will be added to the index
625   ** and used to match WHERE clause constraints */
626   nKeyCol = 0;
627   pTable = pSrc->pTab;
628   pWCEnd = &pWC->a[pWC->nTerm];
629   pLoop = pLevel->pWLoop;
630   idxCols = 0;
631   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
632     Expr *pExpr = pTerm->pExpr;
633     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
634          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
635          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
636     if( pLoop->prereq==0
637      && (pTerm->wtFlags & TERM_VIRTUAL)==0
638      && !ExprHasProperty(pExpr, EP_FromJoin)
639      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
640       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
641                                 sqlite3ExprDup(pParse->db, pExpr, 0));
642     }
643     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
644       int iCol = pTerm->u.leftColumn;
645       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
646       testcase( iCol==BMS );
647       testcase( iCol==BMS-1 );
648       if( !sentWarning ){
649         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
650             "automatic index on %s(%s)", pTable->zName,
651             pTable->aCol[iCol].zName);
652         sentWarning = 1;
653       }
654       if( (idxCols & cMask)==0 ){
655         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
656           goto end_auto_index_create;
657         }
658         pLoop->aLTerm[nKeyCol++] = pTerm;
659         idxCols |= cMask;
660       }
661     }
662   }
663   assert( nKeyCol>0 );
664   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
665   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
666                      | WHERE_AUTO_INDEX;
667 
668   /* Count the number of additional columns needed to create a
669   ** covering index.  A "covering index" is an index that contains all
670   ** columns that are needed by the query.  With a covering index, the
671   ** original table never needs to be accessed.  Automatic indices must
672   ** be a covering index because the index will not be updated if the
673   ** original table changes and the index and table cannot both be used
674   ** if they go out of sync.
675   */
676   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
677   mxBitCol = MIN(BMS-1,pTable->nCol);
678   testcase( pTable->nCol==BMS-1 );
679   testcase( pTable->nCol==BMS-2 );
680   for(i=0; i<mxBitCol; i++){
681     if( extraCols & MASKBIT(i) ) nKeyCol++;
682   }
683   if( pSrc->colUsed & MASKBIT(BMS-1) ){
684     nKeyCol += pTable->nCol - BMS + 1;
685   }
686 
687   /* Construct the Index object to describe this index */
688   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
689   if( pIdx==0 ) goto end_auto_index_create;
690   pLoop->u.btree.pIndex = pIdx;
691   pIdx->zName = "auto-index";
692   pIdx->pTable = pTable;
693   n = 0;
694   idxCols = 0;
695   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
696     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
697       int iCol = pTerm->u.leftColumn;
698       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
699       testcase( iCol==BMS-1 );
700       testcase( iCol==BMS );
701       if( (idxCols & cMask)==0 ){
702         Expr *pX = pTerm->pExpr;
703         idxCols |= cMask;
704         pIdx->aiColumn[n] = pTerm->u.leftColumn;
705         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
706         pIdx->azColl[n] = pColl ? pColl->zName : "BINARY";
707         n++;
708       }
709     }
710   }
711   assert( (u32)n==pLoop->u.btree.nEq );
712 
713   /* Add additional columns needed to make the automatic index into
714   ** a covering index */
715   for(i=0; i<mxBitCol; i++){
716     if( extraCols & MASKBIT(i) ){
717       pIdx->aiColumn[n] = i;
718       pIdx->azColl[n] = "BINARY";
719       n++;
720     }
721   }
722   if( pSrc->colUsed & MASKBIT(BMS-1) ){
723     for(i=BMS-1; i<pTable->nCol; i++){
724       pIdx->aiColumn[n] = i;
725       pIdx->azColl[n] = "BINARY";
726       n++;
727     }
728   }
729   assert( n==nKeyCol );
730   pIdx->aiColumn[n] = XN_ROWID;
731   pIdx->azColl[n] = "BINARY";
732 
733   /* Create the automatic index */
734   assert( pLevel->iIdxCur>=0 );
735   pLevel->iIdxCur = pParse->nTab++;
736   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
737   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
738   VdbeComment((v, "for %s", pTable->zName));
739 
740   /* Fill the automatic index with content */
741   sqlite3ExprCachePush(pParse);
742   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
743   if( pTabItem->fg.viaCoroutine ){
744     int regYield = pTabItem->regReturn;
745     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
746     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
747     VdbeCoverage(v);
748     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
749   }else{
750     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
751   }
752   if( pPartial ){
753     iContinue = sqlite3VdbeMakeLabel(v);
754     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
755     pLoop->wsFlags |= WHERE_PARTIALIDX;
756   }
757   regRecord = sqlite3GetTempReg(pParse);
758   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
759   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
760   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
762   if( pTabItem->fg.viaCoroutine ){
763     translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult);
764     sqlite3VdbeGoto(v, addrTop);
765     pTabItem->fg.viaCoroutine = 0;
766   }else{
767     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
768   }
769   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
770   sqlite3VdbeJumpHere(v, addrTop);
771   sqlite3ReleaseTempReg(pParse, regRecord);
772   sqlite3ExprCachePop(pParse);
773 
774   /* Jump here when skipping the initialization */
775   sqlite3VdbeJumpHere(v, addrInit);
776 
777 end_auto_index_create:
778   sqlite3ExprDelete(pParse->db, pPartial);
779 }
780 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
781 
782 #ifndef SQLITE_OMIT_VIRTUALTABLE
783 /*
784 ** Allocate and populate an sqlite3_index_info structure. It is the
785 ** responsibility of the caller to eventually release the structure
786 ** by passing the pointer returned by this function to sqlite3_free().
787 */
788 static sqlite3_index_info *allocateIndexInfo(
789   Parse *pParse,
790   WhereClause *pWC,
791   Bitmask mUnusable,              /* Ignore terms with these prereqs */
792   struct SrcList_item *pSrc,
793   ExprList *pOrderBy
794 ){
795   int i, j;
796   int nTerm;
797   struct sqlite3_index_constraint *pIdxCons;
798   struct sqlite3_index_orderby *pIdxOrderBy;
799   struct sqlite3_index_constraint_usage *pUsage;
800   WhereTerm *pTerm;
801   int nOrderBy;
802   sqlite3_index_info *pIdxInfo;
803 
804   /* Count the number of possible WHERE clause constraints referring
805   ** to this virtual table */
806   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
807     if( pTerm->leftCursor != pSrc->iCursor ) continue;
808     if( pTerm->prereqRight & mUnusable ) continue;
809     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
810     testcase( pTerm->eOperator & WO_IN );
811     testcase( pTerm->eOperator & WO_ISNULL );
812     testcase( pTerm->eOperator & WO_IS );
813     testcase( pTerm->eOperator & WO_ALL );
814     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
815     if( pTerm->wtFlags & TERM_VNULL ) continue;
816     assert( pTerm->u.leftColumn>=(-1) );
817     nTerm++;
818   }
819 
820   /* If the ORDER BY clause contains only columns in the current
821   ** virtual table then allocate space for the aOrderBy part of
822   ** the sqlite3_index_info structure.
823   */
824   nOrderBy = 0;
825   if( pOrderBy ){
826     int n = pOrderBy->nExpr;
827     for(i=0; i<n; i++){
828       Expr *pExpr = pOrderBy->a[i].pExpr;
829       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
830     }
831     if( i==n){
832       nOrderBy = n;
833     }
834   }
835 
836   /* Allocate the sqlite3_index_info structure
837   */
838   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
839                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
840                            + sizeof(*pIdxOrderBy)*nOrderBy );
841   if( pIdxInfo==0 ){
842     sqlite3ErrorMsg(pParse, "out of memory");
843     return 0;
844   }
845 
846   /* Initialize the structure.  The sqlite3_index_info structure contains
847   ** many fields that are declared "const" to prevent xBestIndex from
848   ** changing them.  We have to do some funky casting in order to
849   ** initialize those fields.
850   */
851   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
852   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
853   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
854   *(int*)&pIdxInfo->nConstraint = nTerm;
855   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
856   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
857   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
858   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
859                                                                    pUsage;
860 
861   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
862     u8 op;
863     if( pTerm->leftCursor != pSrc->iCursor ) continue;
864     if( pTerm->prereqRight & mUnusable ) continue;
865     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
866     testcase( pTerm->eOperator & WO_IN );
867     testcase( pTerm->eOperator & WO_IS );
868     testcase( pTerm->eOperator & WO_ISNULL );
869     testcase( pTerm->eOperator & WO_ALL );
870     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
871     if( pTerm->wtFlags & TERM_VNULL ) continue;
872     assert( pTerm->u.leftColumn>=(-1) );
873     pIdxCons[j].iColumn = pTerm->u.leftColumn;
874     pIdxCons[j].iTermOffset = i;
875     op = (u8)pTerm->eOperator & WO_ALL;
876     if( op==WO_IN ) op = WO_EQ;
877     pIdxCons[j].op = op;
878     /* The direct assignment in the previous line is possible only because
879     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
880     ** following asserts verify this fact. */
881     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
882     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
883     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
884     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
885     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
886     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
887     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
888     j++;
889   }
890   for(i=0; i<nOrderBy; i++){
891     Expr *pExpr = pOrderBy->a[i].pExpr;
892     pIdxOrderBy[i].iColumn = pExpr->iColumn;
893     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
894   }
895 
896   return pIdxInfo;
897 }
898 
899 /*
900 ** The table object reference passed as the second argument to this function
901 ** must represent a virtual table. This function invokes the xBestIndex()
902 ** method of the virtual table with the sqlite3_index_info object that
903 ** comes in as the 3rd argument to this function.
904 **
905 ** If an error occurs, pParse is populated with an error message and a
906 ** non-zero value is returned. Otherwise, 0 is returned and the output
907 ** part of the sqlite3_index_info structure is left populated.
908 **
909 ** Whether or not an error is returned, it is the responsibility of the
910 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
911 ** that this is required.
912 */
913 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
914   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
915   int i;
916   int rc;
917 
918   TRACE_IDX_INPUTS(p);
919   rc = pVtab->pModule->xBestIndex(pVtab, p);
920   TRACE_IDX_OUTPUTS(p);
921 
922   if( rc!=SQLITE_OK ){
923     if( rc==SQLITE_NOMEM ){
924       pParse->db->mallocFailed = 1;
925     }else if( !pVtab->zErrMsg ){
926       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
927     }else{
928       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
929     }
930   }
931   sqlite3_free(pVtab->zErrMsg);
932   pVtab->zErrMsg = 0;
933 
934   for(i=0; i<p->nConstraint; i++){
935     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
936       sqlite3ErrorMsg(pParse,
937           "table %s: xBestIndex returned an invalid plan", pTab->zName);
938     }
939   }
940 
941   return pParse->nErr;
942 }
943 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
944 
945 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
946 /*
947 ** Estimate the location of a particular key among all keys in an
948 ** index.  Store the results in aStat as follows:
949 **
950 **    aStat[0]      Est. number of rows less than pRec
951 **    aStat[1]      Est. number of rows equal to pRec
952 **
953 ** Return the index of the sample that is the smallest sample that
954 ** is greater than or equal to pRec. Note that this index is not an index
955 ** into the aSample[] array - it is an index into a virtual set of samples
956 ** based on the contents of aSample[] and the number of fields in record
957 ** pRec.
958 */
959 static int whereKeyStats(
960   Parse *pParse,              /* Database connection */
961   Index *pIdx,                /* Index to consider domain of */
962   UnpackedRecord *pRec,       /* Vector of values to consider */
963   int roundUp,                /* Round up if true.  Round down if false */
964   tRowcnt *aStat              /* OUT: stats written here */
965 ){
966   IndexSample *aSample = pIdx->aSample;
967   int iCol;                   /* Index of required stats in anEq[] etc. */
968   int i;                      /* Index of first sample >= pRec */
969   int iSample;                /* Smallest sample larger than or equal to pRec */
970   int iMin = 0;               /* Smallest sample not yet tested */
971   int iTest;                  /* Next sample to test */
972   int res;                    /* Result of comparison operation */
973   int nField;                 /* Number of fields in pRec */
974   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
975 
976 #ifndef SQLITE_DEBUG
977   UNUSED_PARAMETER( pParse );
978 #endif
979   assert( pRec!=0 );
980   assert( pIdx->nSample>0 );
981   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
982 
983   /* Do a binary search to find the first sample greater than or equal
984   ** to pRec. If pRec contains a single field, the set of samples to search
985   ** is simply the aSample[] array. If the samples in aSample[] contain more
986   ** than one fields, all fields following the first are ignored.
987   **
988   ** If pRec contains N fields, where N is more than one, then as well as the
989   ** samples in aSample[] (truncated to N fields), the search also has to
990   ** consider prefixes of those samples. For example, if the set of samples
991   ** in aSample is:
992   **
993   **     aSample[0] = (a, 5)
994   **     aSample[1] = (a, 10)
995   **     aSample[2] = (b, 5)
996   **     aSample[3] = (c, 100)
997   **     aSample[4] = (c, 105)
998   **
999   ** Then the search space should ideally be the samples above and the
1000   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1001   ** the code actually searches this set:
1002   **
1003   **     0: (a)
1004   **     1: (a, 5)
1005   **     2: (a, 10)
1006   **     3: (a, 10)
1007   **     4: (b)
1008   **     5: (b, 5)
1009   **     6: (c)
1010   **     7: (c, 100)
1011   **     8: (c, 105)
1012   **     9: (c, 105)
1013   **
1014   ** For each sample in the aSample[] array, N samples are present in the
1015   ** effective sample array. In the above, samples 0 and 1 are based on
1016   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1017   **
1018   ** Often, sample i of each block of N effective samples has (i+1) fields.
1019   ** Except, each sample may be extended to ensure that it is greater than or
1020   ** equal to the previous sample in the array. For example, in the above,
1021   ** sample 2 is the first sample of a block of N samples, so at first it
1022   ** appears that it should be 1 field in size. However, that would make it
1023   ** smaller than sample 1, so the binary search would not work. As a result,
1024   ** it is extended to two fields. The duplicates that this creates do not
1025   ** cause any problems.
1026   */
1027   nField = pRec->nField;
1028   iCol = 0;
1029   iSample = pIdx->nSample * nField;
1030   do{
1031     int iSamp;                    /* Index in aSample[] of test sample */
1032     int n;                        /* Number of fields in test sample */
1033 
1034     iTest = (iMin+iSample)/2;
1035     iSamp = iTest / nField;
1036     if( iSamp>0 ){
1037       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1038       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1039       ** fields that is greater than the previous effective sample.  */
1040       for(n=(iTest % nField) + 1; n<nField; n++){
1041         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1042       }
1043     }else{
1044       n = iTest + 1;
1045     }
1046 
1047     pRec->nField = n;
1048     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1049     if( res<0 ){
1050       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1051       iMin = iTest+1;
1052     }else if( res==0 && n<nField ){
1053       iLower = aSample[iSamp].anLt[n-1];
1054       iMin = iTest+1;
1055       res = -1;
1056     }else{
1057       iSample = iTest;
1058       iCol = n-1;
1059     }
1060   }while( res && iMin<iSample );
1061   i = iSample / nField;
1062 
1063 #ifdef SQLITE_DEBUG
1064   /* The following assert statements check that the binary search code
1065   ** above found the right answer. This block serves no purpose other
1066   ** than to invoke the asserts.  */
1067   if( pParse->db->mallocFailed==0 ){
1068     if( res==0 ){
1069       /* If (res==0) is true, then pRec must be equal to sample i. */
1070       assert( i<pIdx->nSample );
1071       assert( iCol==nField-1 );
1072       pRec->nField = nField;
1073       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1074            || pParse->db->mallocFailed
1075       );
1076     }else{
1077       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1078       ** all samples in the aSample[] array, pRec must be smaller than the
1079       ** (iCol+1) field prefix of sample i.  */
1080       assert( i<=pIdx->nSample && i>=0 );
1081       pRec->nField = iCol+1;
1082       assert( i==pIdx->nSample
1083            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1084            || pParse->db->mallocFailed );
1085 
1086       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1087       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1088       ** be greater than or equal to the (iCol) field prefix of sample i.
1089       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1090       if( iCol>0 ){
1091         pRec->nField = iCol;
1092         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1093              || pParse->db->mallocFailed );
1094       }
1095       if( i>0 ){
1096         pRec->nField = nField;
1097         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1098              || pParse->db->mallocFailed );
1099       }
1100     }
1101   }
1102 #endif /* ifdef SQLITE_DEBUG */
1103 
1104   if( res==0 ){
1105     /* Record pRec is equal to sample i */
1106     assert( iCol==nField-1 );
1107     aStat[0] = aSample[i].anLt[iCol];
1108     aStat[1] = aSample[i].anEq[iCol];
1109   }else{
1110     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1111     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1112     ** is larger than all samples in the array. */
1113     tRowcnt iUpper, iGap;
1114     if( i>=pIdx->nSample ){
1115       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1116     }else{
1117       iUpper = aSample[i].anLt[iCol];
1118     }
1119 
1120     if( iLower>=iUpper ){
1121       iGap = 0;
1122     }else{
1123       iGap = iUpper - iLower;
1124     }
1125     if( roundUp ){
1126       iGap = (iGap*2)/3;
1127     }else{
1128       iGap = iGap/3;
1129     }
1130     aStat[0] = iLower + iGap;
1131     aStat[1] = pIdx->aAvgEq[iCol];
1132   }
1133 
1134   /* Restore the pRec->nField value before returning.  */
1135   pRec->nField = nField;
1136   return i;
1137 }
1138 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1139 
1140 /*
1141 ** If it is not NULL, pTerm is a term that provides an upper or lower
1142 ** bound on a range scan. Without considering pTerm, it is estimated
1143 ** that the scan will visit nNew rows. This function returns the number
1144 ** estimated to be visited after taking pTerm into account.
1145 **
1146 ** If the user explicitly specified a likelihood() value for this term,
1147 ** then the return value is the likelihood multiplied by the number of
1148 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1149 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1150 */
1151 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1152   LogEst nRet = nNew;
1153   if( pTerm ){
1154     if( pTerm->truthProb<=0 ){
1155       nRet += pTerm->truthProb;
1156     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1157       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1158     }
1159   }
1160   return nRet;
1161 }
1162 
1163 
1164 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1165 /*
1166 ** Return the affinity for a single column of an index.
1167 */
1168 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1169   assert( iCol>=0 && iCol<pIdx->nColumn );
1170   if( !pIdx->zColAff ){
1171     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1172   }
1173   return pIdx->zColAff[iCol];
1174 }
1175 #endif
1176 
1177 
1178 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1179 /*
1180 ** This function is called to estimate the number of rows visited by a
1181 ** range-scan on a skip-scan index. For example:
1182 **
1183 **   CREATE INDEX i1 ON t1(a, b, c);
1184 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1185 **
1186 ** Value pLoop->nOut is currently set to the estimated number of rows
1187 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1188 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1189 ** on the stat4 data for the index. this scan will be peformed multiple
1190 ** times (once for each (a,b) combination that matches a=?) is dealt with
1191 ** by the caller.
1192 **
1193 ** It does this by scanning through all stat4 samples, comparing values
1194 ** extracted from pLower and pUpper with the corresponding column in each
1195 ** sample. If L and U are the number of samples found to be less than or
1196 ** equal to the values extracted from pLower and pUpper respectively, and
1197 ** N is the total number of samples, the pLoop->nOut value is adjusted
1198 ** as follows:
1199 **
1200 **   nOut = nOut * ( min(U - L, 1) / N )
1201 **
1202 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1203 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1204 ** U is set to N.
1205 **
1206 ** Normally, this function sets *pbDone to 1 before returning. However,
1207 ** if no value can be extracted from either pLower or pUpper (and so the
1208 ** estimate of the number of rows delivered remains unchanged), *pbDone
1209 ** is left as is.
1210 **
1211 ** If an error occurs, an SQLite error code is returned. Otherwise,
1212 ** SQLITE_OK.
1213 */
1214 static int whereRangeSkipScanEst(
1215   Parse *pParse,       /* Parsing & code generating context */
1216   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1217   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1218   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1219   int *pbDone          /* Set to true if at least one expr. value extracted */
1220 ){
1221   Index *p = pLoop->u.btree.pIndex;
1222   int nEq = pLoop->u.btree.nEq;
1223   sqlite3 *db = pParse->db;
1224   int nLower = -1;
1225   int nUpper = p->nSample+1;
1226   int rc = SQLITE_OK;
1227   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1228   CollSeq *pColl;
1229 
1230   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1231   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1232   sqlite3_value *pVal = 0;        /* Value extracted from record */
1233 
1234   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1235   if( pLower ){
1236     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1237     nLower = 0;
1238   }
1239   if( pUpper && rc==SQLITE_OK ){
1240     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1241     nUpper = p2 ? 0 : p->nSample;
1242   }
1243 
1244   if( p1 || p2 ){
1245     int i;
1246     int nDiff;
1247     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1248       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1249       if( rc==SQLITE_OK && p1 ){
1250         int res = sqlite3MemCompare(p1, pVal, pColl);
1251         if( res>=0 ) nLower++;
1252       }
1253       if( rc==SQLITE_OK && p2 ){
1254         int res = sqlite3MemCompare(p2, pVal, pColl);
1255         if( res>=0 ) nUpper++;
1256       }
1257     }
1258     nDiff = (nUpper - nLower);
1259     if( nDiff<=0 ) nDiff = 1;
1260 
1261     /* If there is both an upper and lower bound specified, and the
1262     ** comparisons indicate that they are close together, use the fallback
1263     ** method (assume that the scan visits 1/64 of the rows) for estimating
1264     ** the number of rows visited. Otherwise, estimate the number of rows
1265     ** using the method described in the header comment for this function. */
1266     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1267       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1268       pLoop->nOut -= nAdjust;
1269       *pbDone = 1;
1270       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1271                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1272     }
1273 
1274   }else{
1275     assert( *pbDone==0 );
1276   }
1277 
1278   sqlite3ValueFree(p1);
1279   sqlite3ValueFree(p2);
1280   sqlite3ValueFree(pVal);
1281 
1282   return rc;
1283 }
1284 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1285 
1286 /*
1287 ** This function is used to estimate the number of rows that will be visited
1288 ** by scanning an index for a range of values. The range may have an upper
1289 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1290 ** and lower bounds are represented by pLower and pUpper respectively. For
1291 ** example, assuming that index p is on t1(a):
1292 **
1293 **   ... FROM t1 WHERE a > ? AND a < ? ...
1294 **                    |_____|   |_____|
1295 **                       |         |
1296 **                     pLower    pUpper
1297 **
1298 ** If either of the upper or lower bound is not present, then NULL is passed in
1299 ** place of the corresponding WhereTerm.
1300 **
1301 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1302 ** column subject to the range constraint. Or, equivalently, the number of
1303 ** equality constraints optimized by the proposed index scan. For example,
1304 ** assuming index p is on t1(a, b), and the SQL query is:
1305 **
1306 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1307 **
1308 ** then nEq is set to 1 (as the range restricted column, b, is the second
1309 ** left-most column of the index). Or, if the query is:
1310 **
1311 **   ... FROM t1 WHERE a > ? AND a < ? ...
1312 **
1313 ** then nEq is set to 0.
1314 **
1315 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1316 ** number of rows that the index scan is expected to visit without
1317 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1318 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1319 ** to account for the range constraints pLower and pUpper.
1320 **
1321 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1322 ** used, a single range inequality reduces the search space by a factor of 4.
1323 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1324 ** rows visited by a factor of 64.
1325 */
1326 static int whereRangeScanEst(
1327   Parse *pParse,       /* Parsing & code generating context */
1328   WhereLoopBuilder *pBuilder,
1329   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1330   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1331   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1332 ){
1333   int rc = SQLITE_OK;
1334   int nOut = pLoop->nOut;
1335   LogEst nNew;
1336 
1337 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1338   Index *p = pLoop->u.btree.pIndex;
1339   int nEq = pLoop->u.btree.nEq;
1340 
1341   if( p->nSample>0 && nEq<p->nSampleCol ){
1342     if( nEq==pBuilder->nRecValid ){
1343       UnpackedRecord *pRec = pBuilder->pRec;
1344       tRowcnt a[2];
1345       u8 aff;
1346 
1347       /* Variable iLower will be set to the estimate of the number of rows in
1348       ** the index that are less than the lower bound of the range query. The
1349       ** lower bound being the concatenation of $P and $L, where $P is the
1350       ** key-prefix formed by the nEq values matched against the nEq left-most
1351       ** columns of the index, and $L is the value in pLower.
1352       **
1353       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1354       ** is not a simple variable or literal value), the lower bound of the
1355       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1356       ** if $L is available, whereKeyStats() is called for both ($P) and
1357       ** ($P:$L) and the larger of the two returned values is used.
1358       **
1359       ** Similarly, iUpper is to be set to the estimate of the number of rows
1360       ** less than the upper bound of the range query. Where the upper bound
1361       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1362       ** of iUpper are requested of whereKeyStats() and the smaller used.
1363       **
1364       ** The number of rows between the two bounds is then just iUpper-iLower.
1365       */
1366       tRowcnt iLower;     /* Rows less than the lower bound */
1367       tRowcnt iUpper;     /* Rows less than the upper bound */
1368       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1369       int iUprIdx = -1;   /* aSample[] for the upper bound */
1370 
1371       if( pRec ){
1372         testcase( pRec->nField!=pBuilder->nRecValid );
1373         pRec->nField = pBuilder->nRecValid;
1374       }
1375       aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq);
1376       assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER );
1377       /* Determine iLower and iUpper using ($P) only. */
1378       if( nEq==0 ){
1379         iLower = 0;
1380         iUpper = p->nRowEst0;
1381       }else{
1382         /* Note: this call could be optimized away - since the same values must
1383         ** have been requested when testing key $P in whereEqualScanEst().  */
1384         whereKeyStats(pParse, p, pRec, 0, a);
1385         iLower = a[0];
1386         iUpper = a[0] + a[1];
1387       }
1388 
1389       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1390       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1391       assert( p->aSortOrder!=0 );
1392       if( p->aSortOrder[nEq] ){
1393         /* The roles of pLower and pUpper are swapped for a DESC index */
1394         SWAP(WhereTerm*, pLower, pUpper);
1395       }
1396 
1397       /* If possible, improve on the iLower estimate using ($P:$L). */
1398       if( pLower ){
1399         int bOk;                    /* True if value is extracted from pExpr */
1400         Expr *pExpr = pLower->pExpr->pRight;
1401         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
1402         if( rc==SQLITE_OK && bOk ){
1403           tRowcnt iNew;
1404           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1405           iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
1406           if( iNew>iLower ) iLower = iNew;
1407           nOut--;
1408           pLower = 0;
1409         }
1410       }
1411 
1412       /* If possible, improve on the iUpper estimate using ($P:$U). */
1413       if( pUpper ){
1414         int bOk;                    /* True if value is extracted from pExpr */
1415         Expr *pExpr = pUpper->pExpr->pRight;
1416         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
1417         if( rc==SQLITE_OK && bOk ){
1418           tRowcnt iNew;
1419           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1420           iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
1421           if( iNew<iUpper ) iUpper = iNew;
1422           nOut--;
1423           pUpper = 0;
1424         }
1425       }
1426 
1427       pBuilder->pRec = pRec;
1428       if( rc==SQLITE_OK ){
1429         if( iUpper>iLower ){
1430           nNew = sqlite3LogEst(iUpper - iLower);
1431           /* TUNING:  If both iUpper and iLower are derived from the same
1432           ** sample, then assume they are 4x more selective.  This brings
1433           ** the estimated selectivity more in line with what it would be
1434           ** if estimated without the use of STAT3/4 tables. */
1435           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1436         }else{
1437           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1438         }
1439         if( nNew<nOut ){
1440           nOut = nNew;
1441         }
1442         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1443                            (u32)iLower, (u32)iUpper, nOut));
1444       }
1445     }else{
1446       int bDone = 0;
1447       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1448       if( bDone ) return rc;
1449     }
1450   }
1451 #else
1452   UNUSED_PARAMETER(pParse);
1453   UNUSED_PARAMETER(pBuilder);
1454   assert( pLower || pUpper );
1455 #endif
1456   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1457   nNew = whereRangeAdjust(pLower, nOut);
1458   nNew = whereRangeAdjust(pUpper, nNew);
1459 
1460   /* TUNING: If there is both an upper and lower limit and neither limit
1461   ** has an application-defined likelihood(), assume the range is
1462   ** reduced by an additional 75%. This means that, by default, an open-ended
1463   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1464   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1465   ** match 1/64 of the index. */
1466   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1467     nNew -= 20;
1468   }
1469 
1470   nOut -= (pLower!=0) + (pUpper!=0);
1471   if( nNew<10 ) nNew = 10;
1472   if( nNew<nOut ) nOut = nNew;
1473 #if defined(WHERETRACE_ENABLED)
1474   if( pLoop->nOut>nOut ){
1475     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1476                     pLoop->nOut, nOut));
1477   }
1478 #endif
1479   pLoop->nOut = (LogEst)nOut;
1480   return rc;
1481 }
1482 
1483 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1484 /*
1485 ** Estimate the number of rows that will be returned based on
1486 ** an equality constraint x=VALUE and where that VALUE occurs in
1487 ** the histogram data.  This only works when x is the left-most
1488 ** column of an index and sqlite_stat3 histogram data is available
1489 ** for that index.  When pExpr==NULL that means the constraint is
1490 ** "x IS NULL" instead of "x=VALUE".
1491 **
1492 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1493 ** If unable to make an estimate, leave *pnRow unchanged and return
1494 ** non-zero.
1495 **
1496 ** This routine can fail if it is unable to load a collating sequence
1497 ** required for string comparison, or if unable to allocate memory
1498 ** for a UTF conversion required for comparison.  The error is stored
1499 ** in the pParse structure.
1500 */
1501 static int whereEqualScanEst(
1502   Parse *pParse,       /* Parsing & code generating context */
1503   WhereLoopBuilder *pBuilder,
1504   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1505   tRowcnt *pnRow       /* Write the revised row estimate here */
1506 ){
1507   Index *p = pBuilder->pNew->u.btree.pIndex;
1508   int nEq = pBuilder->pNew->u.btree.nEq;
1509   UnpackedRecord *pRec = pBuilder->pRec;
1510   u8 aff;                   /* Column affinity */
1511   int rc;                   /* Subfunction return code */
1512   tRowcnt a[2];             /* Statistics */
1513   int bOk;
1514 
1515   assert( nEq>=1 );
1516   assert( nEq<=p->nColumn );
1517   assert( p->aSample!=0 );
1518   assert( p->nSample>0 );
1519   assert( pBuilder->nRecValid<nEq );
1520 
1521   /* If values are not available for all fields of the index to the left
1522   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1523   if( pBuilder->nRecValid<(nEq-1) ){
1524     return SQLITE_NOTFOUND;
1525   }
1526 
1527   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1528   ** below would return the same value.  */
1529   if( nEq>=p->nColumn ){
1530     *pnRow = 1;
1531     return SQLITE_OK;
1532   }
1533 
1534   aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1);
1535   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
1536   pBuilder->pRec = pRec;
1537   if( rc!=SQLITE_OK ) return rc;
1538   if( bOk==0 ) return SQLITE_NOTFOUND;
1539   pBuilder->nRecValid = nEq;
1540 
1541   whereKeyStats(pParse, p, pRec, 0, a);
1542   WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
1543   *pnRow = a[1];
1544 
1545   return rc;
1546 }
1547 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1548 
1549 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1550 /*
1551 ** Estimate the number of rows that will be returned based on
1552 ** an IN constraint where the right-hand side of the IN operator
1553 ** is a list of values.  Example:
1554 **
1555 **        WHERE x IN (1,2,3,4)
1556 **
1557 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1558 ** If unable to make an estimate, leave *pnRow unchanged and return
1559 ** non-zero.
1560 **
1561 ** This routine can fail if it is unable to load a collating sequence
1562 ** required for string comparison, or if unable to allocate memory
1563 ** for a UTF conversion required for comparison.  The error is stored
1564 ** in the pParse structure.
1565 */
1566 static int whereInScanEst(
1567   Parse *pParse,       /* Parsing & code generating context */
1568   WhereLoopBuilder *pBuilder,
1569   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1570   tRowcnt *pnRow       /* Write the revised row estimate here */
1571 ){
1572   Index *p = pBuilder->pNew->u.btree.pIndex;
1573   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1574   int nRecValid = pBuilder->nRecValid;
1575   int rc = SQLITE_OK;     /* Subfunction return code */
1576   tRowcnt nEst;           /* Number of rows for a single term */
1577   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1578   int i;                  /* Loop counter */
1579 
1580   assert( p->aSample!=0 );
1581   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1582     nEst = nRow0;
1583     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1584     nRowEst += nEst;
1585     pBuilder->nRecValid = nRecValid;
1586   }
1587 
1588   if( rc==SQLITE_OK ){
1589     if( nRowEst > nRow0 ) nRowEst = nRow0;
1590     *pnRow = nRowEst;
1591     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1592   }
1593   assert( pBuilder->nRecValid==nRecValid );
1594   return rc;
1595 }
1596 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1597 
1598 
1599 #ifdef WHERETRACE_ENABLED
1600 /*
1601 ** Print the content of a WhereTerm object
1602 */
1603 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1604   if( pTerm==0 ){
1605     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1606   }else{
1607     char zType[4];
1608     memcpy(zType, "...", 4);
1609     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1610     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1611     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1612     sqlite3DebugPrintf(
1613        "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n",
1614        iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb,
1615        pTerm->eOperator, pTerm->wtFlags);
1616     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1617   }
1618 }
1619 #endif
1620 
1621 #ifdef WHERETRACE_ENABLED
1622 /*
1623 ** Print a WhereLoop object for debugging purposes
1624 */
1625 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1626   WhereInfo *pWInfo = pWC->pWInfo;
1627   int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
1628   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1629   Table *pTab = pItem->pTab;
1630   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1631                      p->iTab, nb, p->maskSelf, nb, p->prereq);
1632   sqlite3DebugPrintf(" %12s",
1633                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1634   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1635     const char *zName;
1636     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1637       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1638         int i = sqlite3Strlen30(zName) - 1;
1639         while( zName[i]!='_' ) i--;
1640         zName += i;
1641       }
1642       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1643     }else{
1644       sqlite3DebugPrintf("%20s","");
1645     }
1646   }else{
1647     char *z;
1648     if( p->u.vtab.idxStr ){
1649       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1650                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1651     }else{
1652       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1653     }
1654     sqlite3DebugPrintf(" %-19s", z);
1655     sqlite3_free(z);
1656   }
1657   if( p->wsFlags & WHERE_SKIPSCAN ){
1658     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1659   }else{
1660     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1661   }
1662   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1663   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1664     int i;
1665     for(i=0; i<p->nLTerm; i++){
1666       whereTermPrint(p->aLTerm[i], i);
1667     }
1668   }
1669 }
1670 #endif
1671 
1672 /*
1673 ** Convert bulk memory into a valid WhereLoop that can be passed
1674 ** to whereLoopClear harmlessly.
1675 */
1676 static void whereLoopInit(WhereLoop *p){
1677   p->aLTerm = p->aLTermSpace;
1678   p->nLTerm = 0;
1679   p->nLSlot = ArraySize(p->aLTermSpace);
1680   p->wsFlags = 0;
1681 }
1682 
1683 /*
1684 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1685 */
1686 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1687   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1688     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1689       sqlite3_free(p->u.vtab.idxStr);
1690       p->u.vtab.needFree = 0;
1691       p->u.vtab.idxStr = 0;
1692     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1693       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1694       sqlite3DbFree(db, p->u.btree.pIndex);
1695       p->u.btree.pIndex = 0;
1696     }
1697   }
1698 }
1699 
1700 /*
1701 ** Deallocate internal memory used by a WhereLoop object
1702 */
1703 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1704   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1705   whereLoopClearUnion(db, p);
1706   whereLoopInit(p);
1707 }
1708 
1709 /*
1710 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1711 */
1712 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1713   WhereTerm **paNew;
1714   if( p->nLSlot>=n ) return SQLITE_OK;
1715   n = (n+7)&~7;
1716   paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
1717   if( paNew==0 ) return SQLITE_NOMEM;
1718   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1719   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1720   p->aLTerm = paNew;
1721   p->nLSlot = n;
1722   return SQLITE_OK;
1723 }
1724 
1725 /*
1726 ** Transfer content from the second pLoop into the first.
1727 */
1728 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1729   whereLoopClearUnion(db, pTo);
1730   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1731     memset(&pTo->u, 0, sizeof(pTo->u));
1732     return SQLITE_NOMEM;
1733   }
1734   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1735   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1736   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1737     pFrom->u.vtab.needFree = 0;
1738   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1739     pFrom->u.btree.pIndex = 0;
1740   }
1741   return SQLITE_OK;
1742 }
1743 
1744 /*
1745 ** Delete a WhereLoop object
1746 */
1747 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1748   whereLoopClear(db, p);
1749   sqlite3DbFree(db, p);
1750 }
1751 
1752 /*
1753 ** Free a WhereInfo structure
1754 */
1755 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1756   if( ALWAYS(pWInfo) ){
1757     int i;
1758     for(i=0; i<pWInfo->nLevel; i++){
1759       WhereLevel *pLevel = &pWInfo->a[i];
1760       if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1761         sqlite3DbFree(db, pLevel->u.in.aInLoop);
1762       }
1763     }
1764     sqlite3WhereClauseClear(&pWInfo->sWC);
1765     while( pWInfo->pLoops ){
1766       WhereLoop *p = pWInfo->pLoops;
1767       pWInfo->pLoops = p->pNextLoop;
1768       whereLoopDelete(db, p);
1769     }
1770     sqlite3DbFree(db, pWInfo);
1771   }
1772 }
1773 
1774 /*
1775 ** Return TRUE if all of the following are true:
1776 **
1777 **   (1)  X has the same or lower cost that Y
1778 **   (2)  X is a proper subset of Y
1779 **   (3)  X skips at least as many columns as Y
1780 **
1781 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1782 ** than Y and that every WHERE clause term used by X is also used
1783 ** by Y.
1784 **
1785 ** If X is a proper subset of Y then Y is a better choice and ought
1786 ** to have a lower cost.  This routine returns TRUE when that cost
1787 ** relationship is inverted and needs to be adjusted.  The third rule
1788 ** was added because if X uses skip-scan less than Y it still might
1789 ** deserve a lower cost even if it is a proper subset of Y.
1790 */
1791 static int whereLoopCheaperProperSubset(
1792   const WhereLoop *pX,       /* First WhereLoop to compare */
1793   const WhereLoop *pY        /* Compare against this WhereLoop */
1794 ){
1795   int i, j;
1796   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1797     return 0; /* X is not a subset of Y */
1798   }
1799   if( pY->nSkip > pX->nSkip ) return 0;
1800   if( pX->rRun >= pY->rRun ){
1801     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1802     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1803   }
1804   for(i=pX->nLTerm-1; i>=0; i--){
1805     if( pX->aLTerm[i]==0 ) continue;
1806     for(j=pY->nLTerm-1; j>=0; j--){
1807       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1808     }
1809     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1810   }
1811   return 1;  /* All conditions meet */
1812 }
1813 
1814 /*
1815 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1816 ** that:
1817 **
1818 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1819 **       subset of pTemplate
1820 **
1821 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1822 **       is a proper subset.
1823 **
1824 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1825 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1826 ** also used by Y.
1827 */
1828 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1829   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1830   for(; p; p=p->pNextLoop){
1831     if( p->iTab!=pTemplate->iTab ) continue;
1832     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1833     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1834       /* Adjust pTemplate cost downward so that it is cheaper than its
1835       ** subset p. */
1836       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1837                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1838       pTemplate->rRun = p->rRun;
1839       pTemplate->nOut = p->nOut - 1;
1840     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1841       /* Adjust pTemplate cost upward so that it is costlier than p since
1842       ** pTemplate is a proper subset of p */
1843       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1844                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1845       pTemplate->rRun = p->rRun;
1846       pTemplate->nOut = p->nOut + 1;
1847     }
1848   }
1849 }
1850 
1851 /*
1852 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1853 ** supplanted by pTemplate.
1854 **
1855 ** Return NULL if the WhereLoop list contains an entry that can supplant
1856 ** pTemplate, in other words if pTemplate does not belong on the list.
1857 **
1858 ** If pX is a WhereLoop that pTemplate can supplant, then return the
1859 ** link that points to pX.
1860 **
1861 ** If pTemplate cannot supplant any existing element of the list but needs
1862 ** to be added to the list, then return a pointer to the tail of the list.
1863 */
1864 static WhereLoop **whereLoopFindLesser(
1865   WhereLoop **ppPrev,
1866   const WhereLoop *pTemplate
1867 ){
1868   WhereLoop *p;
1869   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1870     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1871       /* If either the iTab or iSortIdx values for two WhereLoop are different
1872       ** then those WhereLoops need to be considered separately.  Neither is
1873       ** a candidate to replace the other. */
1874       continue;
1875     }
1876     /* In the current implementation, the rSetup value is either zero
1877     ** or the cost of building an automatic index (NlogN) and the NlogN
1878     ** is the same for compatible WhereLoops. */
1879     assert( p->rSetup==0 || pTemplate->rSetup==0
1880                  || p->rSetup==pTemplate->rSetup );
1881 
1882     /* whereLoopAddBtree() always generates and inserts the automatic index
1883     ** case first.  Hence compatible candidate WhereLoops never have a larger
1884     ** rSetup. Call this SETUP-INVARIANT */
1885     assert( p->rSetup>=pTemplate->rSetup );
1886 
1887     /* Any loop using an appliation-defined index (or PRIMARY KEY or
1888     ** UNIQUE constraint) with one or more == constraints is better
1889     ** than an automatic index. Unless it is a skip-scan. */
1890     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1891      && (pTemplate->nSkip)==0
1892      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1893      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1894      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1895     ){
1896       break;
1897     }
1898 
1899     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1900     ** discarded.  WhereLoop p is better if:
1901     **   (1)  p has no more dependencies than pTemplate, and
1902     **   (2)  p has an equal or lower cost than pTemplate
1903     */
1904     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
1905      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
1906      && p->rRun<=pTemplate->rRun                      /* (2b) */
1907      && p->nOut<=pTemplate->nOut                      /* (2c) */
1908     ){
1909       return 0;  /* Discard pTemplate */
1910     }
1911 
1912     /* If pTemplate is always better than p, then cause p to be overwritten
1913     ** with pTemplate.  pTemplate is better than p if:
1914     **   (1)  pTemplate has no more dependences than p, and
1915     **   (2)  pTemplate has an equal or lower cost than p.
1916     */
1917     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
1918      && p->rRun>=pTemplate->rRun                             /* (2a) */
1919      && p->nOut>=pTemplate->nOut                             /* (2b) */
1920     ){
1921       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
1922       break;   /* Cause p to be overwritten by pTemplate */
1923     }
1924   }
1925   return ppPrev;
1926 }
1927 
1928 /*
1929 ** Insert or replace a WhereLoop entry using the template supplied.
1930 **
1931 ** An existing WhereLoop entry might be overwritten if the new template
1932 ** is better and has fewer dependencies.  Or the template will be ignored
1933 ** and no insert will occur if an existing WhereLoop is faster and has
1934 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
1935 ** added based on the template.
1936 **
1937 ** If pBuilder->pOrSet is not NULL then we care about only the
1938 ** prerequisites and rRun and nOut costs of the N best loops.  That
1939 ** information is gathered in the pBuilder->pOrSet object.  This special
1940 ** processing mode is used only for OR clause processing.
1941 **
1942 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
1943 ** still might overwrite similar loops with the new template if the
1944 ** new template is better.  Loops may be overwritten if the following
1945 ** conditions are met:
1946 **
1947 **    (1)  They have the same iTab.
1948 **    (2)  They have the same iSortIdx.
1949 **    (3)  The template has same or fewer dependencies than the current loop
1950 **    (4)  The template has the same or lower cost than the current loop
1951 */
1952 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
1953   WhereLoop **ppPrev, *p;
1954   WhereInfo *pWInfo = pBuilder->pWInfo;
1955   sqlite3 *db = pWInfo->pParse->db;
1956 
1957   /* If pBuilder->pOrSet is defined, then only keep track of the costs
1958   ** and prereqs.
1959   */
1960   if( pBuilder->pOrSet!=0 ){
1961     if( pTemplate->nLTerm ){
1962 #if WHERETRACE_ENABLED
1963       u16 n = pBuilder->pOrSet->n;
1964       int x =
1965 #endif
1966       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
1967                                     pTemplate->nOut);
1968 #if WHERETRACE_ENABLED /* 0x8 */
1969       if( sqlite3WhereTrace & 0x8 ){
1970         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
1971         whereLoopPrint(pTemplate, pBuilder->pWC);
1972       }
1973 #endif
1974     }
1975     return SQLITE_OK;
1976   }
1977 
1978   /* Look for an existing WhereLoop to replace with pTemplate
1979   */
1980   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
1981   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
1982 
1983   if( ppPrev==0 ){
1984     /* There already exists a WhereLoop on the list that is better
1985     ** than pTemplate, so just ignore pTemplate */
1986 #if WHERETRACE_ENABLED /* 0x8 */
1987     if( sqlite3WhereTrace & 0x8 ){
1988       sqlite3DebugPrintf("   skip: ");
1989       whereLoopPrint(pTemplate, pBuilder->pWC);
1990     }
1991 #endif
1992     return SQLITE_OK;
1993   }else{
1994     p = *ppPrev;
1995   }
1996 
1997   /* If we reach this point it means that either p[] should be overwritten
1998   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
1999   ** WhereLoop and insert it.
2000   */
2001 #if WHERETRACE_ENABLED /* 0x8 */
2002   if( sqlite3WhereTrace & 0x8 ){
2003     if( p!=0 ){
2004       sqlite3DebugPrintf("replace: ");
2005       whereLoopPrint(p, pBuilder->pWC);
2006     }
2007     sqlite3DebugPrintf("    add: ");
2008     whereLoopPrint(pTemplate, pBuilder->pWC);
2009   }
2010 #endif
2011   if( p==0 ){
2012     /* Allocate a new WhereLoop to add to the end of the list */
2013     *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
2014     if( p==0 ) return SQLITE_NOMEM;
2015     whereLoopInit(p);
2016     p->pNextLoop = 0;
2017   }else{
2018     /* We will be overwriting WhereLoop p[].  But before we do, first
2019     ** go through the rest of the list and delete any other entries besides
2020     ** p[] that are also supplated by pTemplate */
2021     WhereLoop **ppTail = &p->pNextLoop;
2022     WhereLoop *pToDel;
2023     while( *ppTail ){
2024       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2025       if( ppTail==0 ) break;
2026       pToDel = *ppTail;
2027       if( pToDel==0 ) break;
2028       *ppTail = pToDel->pNextLoop;
2029 #if WHERETRACE_ENABLED /* 0x8 */
2030       if( sqlite3WhereTrace & 0x8 ){
2031         sqlite3DebugPrintf(" delete: ");
2032         whereLoopPrint(pToDel, pBuilder->pWC);
2033       }
2034 #endif
2035       whereLoopDelete(db, pToDel);
2036     }
2037   }
2038   whereLoopXfer(db, p, pTemplate);
2039   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2040     Index *pIndex = p->u.btree.pIndex;
2041     if( pIndex && pIndex->tnum==0 ){
2042       p->u.btree.pIndex = 0;
2043     }
2044   }
2045   return SQLITE_OK;
2046 }
2047 
2048 /*
2049 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2050 ** WHERE clause that reference the loop but which are not used by an
2051 ** index.
2052 *
2053 ** For every WHERE clause term that is not used by the index
2054 ** and which has a truth probability assigned by one of the likelihood(),
2055 ** likely(), or unlikely() SQL functions, reduce the estimated number
2056 ** of output rows by the probability specified.
2057 **
2058 ** TUNING:  For every WHERE clause term that is not used by the index
2059 ** and which does not have an assigned truth probability, heuristics
2060 ** described below are used to try to estimate the truth probability.
2061 ** TODO --> Perhaps this is something that could be improved by better
2062 ** table statistics.
2063 **
2064 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2065 ** value corresponds to -1 in LogEst notation, so this means decrement
2066 ** the WhereLoop.nOut field for every such WHERE clause term.
2067 **
2068 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2069 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2070 ** final output row estimate is no greater than 1/4 of the total number
2071 ** of rows in the table.  In other words, assume that x==EXPR will filter
2072 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2073 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2074 ** on the "x" column and so in that case only cap the output row estimate
2075 ** at 1/2 instead of 1/4.
2076 */
2077 static void whereLoopOutputAdjust(
2078   WhereClause *pWC,      /* The WHERE clause */
2079   WhereLoop *pLoop,      /* The loop to adjust downward */
2080   LogEst nRow            /* Number of rows in the entire table */
2081 ){
2082   WhereTerm *pTerm, *pX;
2083   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2084   int i, j, k;
2085   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2086 
2087   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2088   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2089     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2090     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2091     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2092     for(j=pLoop->nLTerm-1; j>=0; j--){
2093       pX = pLoop->aLTerm[j];
2094       if( pX==0 ) continue;
2095       if( pX==pTerm ) break;
2096       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2097     }
2098     if( j<0 ){
2099       if( pTerm->truthProb<=0 ){
2100         /* If a truth probability is specified using the likelihood() hints,
2101         ** then use the probability provided by the application. */
2102         pLoop->nOut += pTerm->truthProb;
2103       }else{
2104         /* In the absence of explicit truth probabilities, use heuristics to
2105         ** guess a reasonable truth probability. */
2106         pLoop->nOut--;
2107         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2108           Expr *pRight = pTerm->pExpr->pRight;
2109           testcase( pTerm->pExpr->op==TK_IS );
2110           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2111             k = 10;
2112           }else{
2113             k = 20;
2114           }
2115           if( iReduce<k ) iReduce = k;
2116         }
2117       }
2118     }
2119   }
2120   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2121 }
2122 
2123 /*
2124 ** Adjust the cost C by the costMult facter T.  This only occurs if
2125 ** compiled with -DSQLITE_ENABLE_COSTMULT
2126 */
2127 #ifdef SQLITE_ENABLE_COSTMULT
2128 # define ApplyCostMultiplier(C,T)  C += T
2129 #else
2130 # define ApplyCostMultiplier(C,T)
2131 #endif
2132 
2133 /*
2134 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2135 ** index pIndex. Try to match one more.
2136 **
2137 ** When this function is called, pBuilder->pNew->nOut contains the
2138 ** number of rows expected to be visited by filtering using the nEq
2139 ** terms only. If it is modified, this value is restored before this
2140 ** function returns.
2141 **
2142 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2143 ** INTEGER PRIMARY KEY.
2144 */
2145 static int whereLoopAddBtreeIndex(
2146   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2147   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2148   Index *pProbe,                  /* An index on pSrc */
2149   LogEst nInMul                   /* log(Number of iterations due to IN) */
2150 ){
2151   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2152   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2153   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2154   WhereLoop *pNew;                /* Template WhereLoop under construction */
2155   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2156   int opMask;                     /* Valid operators for constraints */
2157   WhereScan scan;                 /* Iterator for WHERE terms */
2158   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2159   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2160   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2161   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2162   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2163   LogEst saved_nOut;              /* Original value of pNew->nOut */
2164   int rc = SQLITE_OK;             /* Return code */
2165   LogEst rSize;                   /* Number of rows in the table */
2166   LogEst rLogSize;                /* Logarithm of table size */
2167   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2168 
2169   pNew = pBuilder->pNew;
2170   if( db->mallocFailed ) return SQLITE_NOMEM;
2171 
2172   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2173   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2174   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2175     opMask = WO_LT|WO_LE;
2176   }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){
2177     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
2178   }else{
2179     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2180   }
2181   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2182 
2183   assert( pNew->u.btree.nEq<pProbe->nColumn );
2184 
2185   saved_nEq = pNew->u.btree.nEq;
2186   saved_nSkip = pNew->nSkip;
2187   saved_nLTerm = pNew->nLTerm;
2188   saved_wsFlags = pNew->wsFlags;
2189   saved_prereq = pNew->prereq;
2190   saved_nOut = pNew->nOut;
2191   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2192                         opMask, pProbe);
2193   pNew->rSetup = 0;
2194   rSize = pProbe->aiRowLogEst[0];
2195   rLogSize = estLog(rSize);
2196   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2197     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2198     LogEst rCostIdx;
2199     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2200     int nIn = 0;
2201 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2202     int nRecValid = pBuilder->nRecValid;
2203 #endif
2204     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2205      && indexColumnNotNull(pProbe, saved_nEq)
2206     ){
2207       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2208     }
2209     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2210 
2211     /* Do not allow the upper bound of a LIKE optimization range constraint
2212     ** to mix with a lower range bound from some other source */
2213     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2214 
2215     pNew->wsFlags = saved_wsFlags;
2216     pNew->u.btree.nEq = saved_nEq;
2217     pNew->nLTerm = saved_nLTerm;
2218     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2219     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2220     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2221 
2222     assert( nInMul==0
2223         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2224         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2225         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2226     );
2227 
2228     if( eOp & WO_IN ){
2229       Expr *pExpr = pTerm->pExpr;
2230       pNew->wsFlags |= WHERE_COLUMN_IN;
2231       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2232         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2233         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2234       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2235         /* "x IN (value, value, ...)" */
2236         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2237       }
2238       assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2239                         ** changes "x IN (?)" into "x=?". */
2240 
2241     }else if( eOp & (WO_EQ|WO_IS) ){
2242       int iCol = pProbe->aiColumn[saved_nEq];
2243       pNew->wsFlags |= WHERE_COLUMN_EQ;
2244       assert( saved_nEq==pNew->u.btree.nEq );
2245       if( iCol==XN_ROWID
2246        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2247       ){
2248         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2249           pNew->wsFlags |= WHERE_UNQ_WANTED;
2250         }else{
2251           pNew->wsFlags |= WHERE_ONEROW;
2252         }
2253       }
2254     }else if( eOp & WO_ISNULL ){
2255       pNew->wsFlags |= WHERE_COLUMN_NULL;
2256     }else if( eOp & (WO_GT|WO_GE) ){
2257       testcase( eOp & WO_GT );
2258       testcase( eOp & WO_GE );
2259       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2260       pBtm = pTerm;
2261       pTop = 0;
2262       if( pTerm->wtFlags & TERM_LIKEOPT ){
2263         /* Range contraints that come from the LIKE optimization are
2264         ** always used in pairs. */
2265         pTop = &pTerm[1];
2266         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2267         assert( pTop->wtFlags & TERM_LIKEOPT );
2268         assert( pTop->eOperator==WO_LT );
2269         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2270         pNew->aLTerm[pNew->nLTerm++] = pTop;
2271         pNew->wsFlags |= WHERE_TOP_LIMIT;
2272       }
2273     }else{
2274       assert( eOp & (WO_LT|WO_LE) );
2275       testcase( eOp & WO_LT );
2276       testcase( eOp & WO_LE );
2277       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2278       pTop = pTerm;
2279       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2280                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2281     }
2282 
2283     /* At this point pNew->nOut is set to the number of rows expected to
2284     ** be visited by the index scan before considering term pTerm, or the
2285     ** values of nIn and nInMul. In other words, assuming that all
2286     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2287     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2288     assert( pNew->nOut==saved_nOut );
2289     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2290       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2291       ** data, using some other estimate.  */
2292       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2293     }else{
2294       int nEq = ++pNew->u.btree.nEq;
2295       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2296 
2297       assert( pNew->nOut==saved_nOut );
2298       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2299         assert( (eOp & WO_IN) || nIn==0 );
2300         testcase( eOp & WO_IN );
2301         pNew->nOut += pTerm->truthProb;
2302         pNew->nOut -= nIn;
2303       }else{
2304 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2305         tRowcnt nOut = 0;
2306         if( nInMul==0
2307          && pProbe->nSample
2308          && pNew->u.btree.nEq<=pProbe->nSampleCol
2309          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2310         ){
2311           Expr *pExpr = pTerm->pExpr;
2312           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2313             testcase( eOp & WO_EQ );
2314             testcase( eOp & WO_IS );
2315             testcase( eOp & WO_ISNULL );
2316             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2317           }else{
2318             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2319           }
2320           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2321           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2322           if( nOut ){
2323             pNew->nOut = sqlite3LogEst(nOut);
2324             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2325             pNew->nOut -= nIn;
2326           }
2327         }
2328         if( nOut==0 )
2329 #endif
2330         {
2331           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2332           if( eOp & WO_ISNULL ){
2333             /* TUNING: If there is no likelihood() value, assume that a
2334             ** "col IS NULL" expression matches twice as many rows
2335             ** as (col=?). */
2336             pNew->nOut += 10;
2337           }
2338         }
2339       }
2340     }
2341 
2342     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2343     ** it to pNew->rRun, which is currently set to the cost of the index
2344     ** seek only. Then, if this is a non-covering index, add the cost of
2345     ** visiting the rows in the main table.  */
2346     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2347     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2348     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2349       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2350     }
2351     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2352 
2353     nOutUnadjusted = pNew->nOut;
2354     pNew->rRun += nInMul + nIn;
2355     pNew->nOut += nInMul + nIn;
2356     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2357     rc = whereLoopInsert(pBuilder, pNew);
2358 
2359     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2360       pNew->nOut = saved_nOut;
2361     }else{
2362       pNew->nOut = nOutUnadjusted;
2363     }
2364 
2365     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2366      && pNew->u.btree.nEq<pProbe->nColumn
2367     ){
2368       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2369     }
2370     pNew->nOut = saved_nOut;
2371 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2372     pBuilder->nRecValid = nRecValid;
2373 #endif
2374   }
2375   pNew->prereq = saved_prereq;
2376   pNew->u.btree.nEq = saved_nEq;
2377   pNew->nSkip = saved_nSkip;
2378   pNew->wsFlags = saved_wsFlags;
2379   pNew->nOut = saved_nOut;
2380   pNew->nLTerm = saved_nLTerm;
2381 
2382   /* Consider using a skip-scan if there are no WHERE clause constraints
2383   ** available for the left-most terms of the index, and if the average
2384   ** number of repeats in the left-most terms is at least 18.
2385   **
2386   ** The magic number 18 is selected on the basis that scanning 17 rows
2387   ** is almost always quicker than an index seek (even though if the index
2388   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2389   ** the code). And, even if it is not, it should not be too much slower.
2390   ** On the other hand, the extra seeks could end up being significantly
2391   ** more expensive.  */
2392   assert( 42==sqlite3LogEst(18) );
2393   if( saved_nEq==saved_nSkip
2394    && saved_nEq+1<pProbe->nKeyCol
2395    && pProbe->noSkipScan==0
2396    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2397    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2398   ){
2399     LogEst nIter;
2400     pNew->u.btree.nEq++;
2401     pNew->nSkip++;
2402     pNew->aLTerm[pNew->nLTerm++] = 0;
2403     pNew->wsFlags |= WHERE_SKIPSCAN;
2404     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2405     pNew->nOut -= nIter;
2406     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2407     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2408     nIter += 5;
2409     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2410     pNew->nOut = saved_nOut;
2411     pNew->u.btree.nEq = saved_nEq;
2412     pNew->nSkip = saved_nSkip;
2413     pNew->wsFlags = saved_wsFlags;
2414   }
2415 
2416   return rc;
2417 }
2418 
2419 /*
2420 ** Return True if it is possible that pIndex might be useful in
2421 ** implementing the ORDER BY clause in pBuilder.
2422 **
2423 ** Return False if pBuilder does not contain an ORDER BY clause or
2424 ** if there is no way for pIndex to be useful in implementing that
2425 ** ORDER BY clause.
2426 */
2427 static int indexMightHelpWithOrderBy(
2428   WhereLoopBuilder *pBuilder,
2429   Index *pIndex,
2430   int iCursor
2431 ){
2432   ExprList *pOB;
2433   ExprList *aColExpr;
2434   int ii, jj;
2435 
2436   if( pIndex->bUnordered ) return 0;
2437   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2438   for(ii=0; ii<pOB->nExpr; ii++){
2439     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2440     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2441       if( pExpr->iColumn<0 ) return 1;
2442       for(jj=0; jj<pIndex->nKeyCol; jj++){
2443         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2444       }
2445     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2446       for(jj=0; jj<pIndex->nKeyCol; jj++){
2447         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2448         if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2449           return 1;
2450         }
2451       }
2452     }
2453   }
2454   return 0;
2455 }
2456 
2457 /*
2458 ** Return a bitmask where 1s indicate that the corresponding column of
2459 ** the table is used by an index.  Only the first 63 columns are considered.
2460 */
2461 static Bitmask columnsInIndex(Index *pIdx){
2462   Bitmask m = 0;
2463   int j;
2464   for(j=pIdx->nColumn-1; j>=0; j--){
2465     int x = pIdx->aiColumn[j];
2466     if( x>=0 ){
2467       testcase( x==BMS-1 );
2468       testcase( x==BMS-2 );
2469       if( x<BMS-1 ) m |= MASKBIT(x);
2470     }
2471   }
2472   return m;
2473 }
2474 
2475 /* Check to see if a partial index with pPartIndexWhere can be used
2476 ** in the current query.  Return true if it can be and false if not.
2477 */
2478 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2479   int i;
2480   WhereTerm *pTerm;
2481   while( pWhere->op==TK_AND ){
2482     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2483     pWhere = pWhere->pRight;
2484   }
2485   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2486     Expr *pExpr = pTerm->pExpr;
2487     if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
2488      && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2489     ){
2490       return 1;
2491     }
2492   }
2493   return 0;
2494 }
2495 
2496 /*
2497 ** Add all WhereLoop objects for a single table of the join where the table
2498 ** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
2499 ** a b-tree table, not a virtual table.
2500 **
2501 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2502 ** are calculated as follows:
2503 **
2504 ** For a full scan, assuming the table (or index) contains nRow rows:
2505 **
2506 **     cost = nRow * 3.0                    // full-table scan
2507 **     cost = nRow * K                      // scan of covering index
2508 **     cost = nRow * (K+3.0)                // scan of non-covering index
2509 **
2510 ** where K is a value between 1.1 and 3.0 set based on the relative
2511 ** estimated average size of the index and table records.
2512 **
2513 ** For an index scan, where nVisit is the number of index rows visited
2514 ** by the scan, and nSeek is the number of seek operations required on
2515 ** the index b-tree:
2516 **
2517 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2518 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2519 **
2520 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2521 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2522 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2523 **
2524 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2525 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2526 ** "do the least harm" if the estimates are inaccurate.  For example, a
2527 ** log(nRow) factor is omitted from a non-covering index scan in order to
2528 ** bias the scoring in favor of using an index, since the worst-case
2529 ** performance of using an index is far better than the worst-case performance
2530 ** of a full table scan.
2531 */
2532 static int whereLoopAddBtree(
2533   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2534   Bitmask mExtra              /* Extra prerequesites for using this table */
2535 ){
2536   WhereInfo *pWInfo;          /* WHERE analysis context */
2537   Index *pProbe;              /* An index we are evaluating */
2538   Index sPk;                  /* A fake index object for the primary key */
2539   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2540   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2541   SrcList *pTabList;          /* The FROM clause */
2542   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2543   WhereLoop *pNew;            /* Template WhereLoop object */
2544   int rc = SQLITE_OK;         /* Return code */
2545   int iSortIdx = 1;           /* Index number */
2546   int b;                      /* A boolean value */
2547   LogEst rSize;               /* number of rows in the table */
2548   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2549   WhereClause *pWC;           /* The parsed WHERE clause */
2550   Table *pTab;                /* Table being queried */
2551 
2552   pNew = pBuilder->pNew;
2553   pWInfo = pBuilder->pWInfo;
2554   pTabList = pWInfo->pTabList;
2555   pSrc = pTabList->a + pNew->iTab;
2556   pTab = pSrc->pTab;
2557   pWC = pBuilder->pWC;
2558   assert( !IsVirtual(pSrc->pTab) );
2559 
2560   if( pSrc->pIBIndex ){
2561     /* An INDEXED BY clause specifies a particular index to use */
2562     pProbe = pSrc->pIBIndex;
2563   }else if( !HasRowid(pTab) ){
2564     pProbe = pTab->pIndex;
2565   }else{
2566     /* There is no INDEXED BY clause.  Create a fake Index object in local
2567     ** variable sPk to represent the rowid primary key index.  Make this
2568     ** fake index the first in a chain of Index objects with all of the real
2569     ** indices to follow */
2570     Index *pFirst;                  /* First of real indices on the table */
2571     memset(&sPk, 0, sizeof(Index));
2572     sPk.nKeyCol = 1;
2573     sPk.nColumn = 1;
2574     sPk.aiColumn = &aiColumnPk;
2575     sPk.aiRowLogEst = aiRowEstPk;
2576     sPk.onError = OE_Replace;
2577     sPk.pTable = pTab;
2578     sPk.szIdxRow = pTab->szTabRow;
2579     aiRowEstPk[0] = pTab->nRowLogEst;
2580     aiRowEstPk[1] = 0;
2581     pFirst = pSrc->pTab->pIndex;
2582     if( pSrc->fg.notIndexed==0 ){
2583       /* The real indices of the table are only considered if the
2584       ** NOT INDEXED qualifier is omitted from the FROM clause */
2585       sPk.pNext = pFirst;
2586     }
2587     pProbe = &sPk;
2588   }
2589   rSize = pTab->nRowLogEst;
2590   rLogSize = estLog(rSize);
2591 
2592 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2593   /* Automatic indexes */
2594   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2595    && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0
2596    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2597    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2598    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2599    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2600    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2601    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2602   ){
2603     /* Generate auto-index WhereLoops */
2604     WhereTerm *pTerm;
2605     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2606     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2607       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2608       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2609         pNew->u.btree.nEq = 1;
2610         pNew->nSkip = 0;
2611         pNew->u.btree.pIndex = 0;
2612         pNew->nLTerm = 1;
2613         pNew->aLTerm[0] = pTerm;
2614         /* TUNING: One-time cost for computing the automatic index is
2615         ** estimated to be X*N*log2(N) where N is the number of rows in
2616         ** the table being indexed and where X is 7 (LogEst=28) for normal
2617         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2618         ** of X is smaller for views and subqueries so that the query planner
2619         ** will be more aggressive about generating automatic indexes for
2620         ** those objects, since there is no opportunity to add schema
2621         ** indexes on subqueries and views. */
2622         pNew->rSetup = rLogSize + rSize + 4;
2623         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2624           pNew->rSetup += 24;
2625         }
2626         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2627         /* TUNING: Each index lookup yields 20 rows in the table.  This
2628         ** is more than the usual guess of 10 rows, since we have no way
2629         ** of knowing how selective the index will ultimately be.  It would
2630         ** not be unreasonable to make this value much larger. */
2631         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2632         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2633         pNew->wsFlags = WHERE_AUTO_INDEX;
2634         pNew->prereq = mExtra | pTerm->prereqRight;
2635         rc = whereLoopInsert(pBuilder, pNew);
2636       }
2637     }
2638   }
2639 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2640 
2641   /* Loop over all indices
2642   */
2643   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2644     if( pProbe->pPartIdxWhere!=0
2645      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2646       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2647       continue;  /* Partial index inappropriate for this query */
2648     }
2649     rSize = pProbe->aiRowLogEst[0];
2650     pNew->u.btree.nEq = 0;
2651     pNew->nSkip = 0;
2652     pNew->nLTerm = 0;
2653     pNew->iSortIdx = 0;
2654     pNew->rSetup = 0;
2655     pNew->prereq = mExtra;
2656     pNew->nOut = rSize;
2657     pNew->u.btree.pIndex = pProbe;
2658     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2659     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2660     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2661     if( pProbe->tnum<=0 ){
2662       /* Integer primary key index */
2663       pNew->wsFlags = WHERE_IPK;
2664 
2665       /* Full table scan */
2666       pNew->iSortIdx = b ? iSortIdx : 0;
2667       /* TUNING: Cost of full table scan is (N*3.0). */
2668       pNew->rRun = rSize + 16;
2669       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2670       whereLoopOutputAdjust(pWC, pNew, rSize);
2671       rc = whereLoopInsert(pBuilder, pNew);
2672       pNew->nOut = rSize;
2673       if( rc ) break;
2674     }else{
2675       Bitmask m;
2676       if( pProbe->isCovering ){
2677         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2678         m = 0;
2679       }else{
2680         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2681         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2682       }
2683 
2684       /* Full scan via index */
2685       if( b
2686        || !HasRowid(pTab)
2687        || ( m==0
2688          && pProbe->bUnordered==0
2689          && (pProbe->szIdxRow<pTab->szTabRow)
2690          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2691          && sqlite3GlobalConfig.bUseCis
2692          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2693           )
2694       ){
2695         pNew->iSortIdx = b ? iSortIdx : 0;
2696 
2697         /* The cost of visiting the index rows is N*K, where K is
2698         ** between 1.1 and 3.0, depending on the relative sizes of the
2699         ** index and table rows. If this is a non-covering index scan,
2700         ** also add the cost of visiting table rows (N*3.0).  */
2701         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2702         if( m!=0 ){
2703           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
2704         }
2705         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2706         whereLoopOutputAdjust(pWC, pNew, rSize);
2707         rc = whereLoopInsert(pBuilder, pNew);
2708         pNew->nOut = rSize;
2709         if( rc ) break;
2710       }
2711     }
2712 
2713     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2714 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2715     sqlite3Stat4ProbeFree(pBuilder->pRec);
2716     pBuilder->nRecValid = 0;
2717     pBuilder->pRec = 0;
2718 #endif
2719 
2720     /* If there was an INDEXED BY clause, then only that one index is
2721     ** considered. */
2722     if( pSrc->pIBIndex ) break;
2723   }
2724   return rc;
2725 }
2726 
2727 #ifndef SQLITE_OMIT_VIRTUALTABLE
2728 /*
2729 ** Add all WhereLoop objects for a table of the join identified by
2730 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
2731 **
2732 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and
2733 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause
2734 ** entries that occur before the virtual table in the FROM clause and are
2735 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
2736 ** mUnusable mask contains all FROM clause entries that occur after the
2737 ** virtual table and are separated from it by at least one LEFT or
2738 ** CROSS JOIN.
2739 **
2740 ** For example, if the query were:
2741 **
2742 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
2743 **
2744 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6).
2745 **
2746 ** All the tables in mExtra must be scanned before the current virtual
2747 ** table. So any terms for which all prerequisites are satisfied by
2748 ** mExtra may be specified as "usable" in all calls to xBestIndex.
2749 ** Conversely, all tables in mUnusable must be scanned after the current
2750 ** virtual table, so any terms for which the prerequisites overlap with
2751 ** mUnusable should always be configured as "not-usable" for xBestIndex.
2752 */
2753 static int whereLoopAddVirtual(
2754   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
2755   Bitmask mExtra,              /* Tables that must be scanned before this one */
2756   Bitmask mUnusable            /* Tables that must be scanned after this one */
2757 ){
2758   WhereInfo *pWInfo;           /* WHERE analysis context */
2759   Parse *pParse;               /* The parsing context */
2760   WhereClause *pWC;            /* The WHERE clause */
2761   struct SrcList_item *pSrc;   /* The FROM clause term to search */
2762   Table *pTab;
2763   sqlite3 *db;
2764   sqlite3_index_info *pIdxInfo;
2765   struct sqlite3_index_constraint *pIdxCons;
2766   struct sqlite3_index_constraint_usage *pUsage;
2767   WhereTerm *pTerm;
2768   int i, j;
2769   int iTerm, mxTerm;
2770   int nConstraint;
2771   int seenIn = 0;              /* True if an IN operator is seen */
2772   int seenVar = 0;             /* True if a non-constant constraint is seen */
2773   int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
2774   WhereLoop *pNew;
2775   int rc = SQLITE_OK;
2776 
2777   assert( (mExtra & mUnusable)==0 );
2778   pWInfo = pBuilder->pWInfo;
2779   pParse = pWInfo->pParse;
2780   db = pParse->db;
2781   pWC = pBuilder->pWC;
2782   pNew = pBuilder->pNew;
2783   pSrc = &pWInfo->pTabList->a[pNew->iTab];
2784   pTab = pSrc->pTab;
2785   assert( IsVirtual(pTab) );
2786   pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy);
2787   if( pIdxInfo==0 ) return SQLITE_NOMEM;
2788   pNew->prereq = 0;
2789   pNew->rSetup = 0;
2790   pNew->wsFlags = WHERE_VIRTUALTABLE;
2791   pNew->nLTerm = 0;
2792   pNew->u.vtab.needFree = 0;
2793   pUsage = pIdxInfo->aConstraintUsage;
2794   nConstraint = pIdxInfo->nConstraint;
2795   if( whereLoopResize(db, pNew, nConstraint) ){
2796     sqlite3DbFree(db, pIdxInfo);
2797     return SQLITE_NOMEM;
2798   }
2799 
2800   for(iPhase=0; iPhase<=3; iPhase++){
2801     if( !seenIn && (iPhase&1)!=0 ){
2802       iPhase++;
2803       if( iPhase>3 ) break;
2804     }
2805     if( !seenVar && iPhase>1 ) break;
2806     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2807     for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2808       j = pIdxCons->iTermOffset;
2809       pTerm = &pWC->a[j];
2810       switch( iPhase ){
2811         case 0:    /* Constants without IN operator */
2812           pIdxCons->usable = 0;
2813           if( (pTerm->eOperator & WO_IN)!=0 ){
2814             seenIn = 1;
2815           }
2816           if( (pTerm->prereqRight & ~mExtra)!=0 ){
2817             seenVar = 1;
2818           }else if( (pTerm->eOperator & WO_IN)==0 ){
2819             pIdxCons->usable = 1;
2820           }
2821           break;
2822         case 1:    /* Constants with IN operators */
2823           assert( seenIn );
2824           pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0;
2825           break;
2826         case 2:    /* Variables without IN */
2827           assert( seenVar );
2828           pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
2829           break;
2830         default:   /* Variables with IN */
2831           assert( seenVar && seenIn );
2832           pIdxCons->usable = 1;
2833           break;
2834       }
2835     }
2836     memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
2837     if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
2838     pIdxInfo->idxStr = 0;
2839     pIdxInfo->idxNum = 0;
2840     pIdxInfo->needToFreeIdxStr = 0;
2841     pIdxInfo->orderByConsumed = 0;
2842     pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
2843     pIdxInfo->estimatedRows = 25;
2844     pIdxInfo->idxFlags = 0;
2845     rc = vtabBestIndex(pParse, pTab, pIdxInfo);
2846     if( rc ) goto whereLoopAddVtab_exit;
2847     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2848     pNew->prereq = mExtra;
2849     mxTerm = -1;
2850     assert( pNew->nLSlot>=nConstraint );
2851     for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
2852     pNew->u.vtab.omitMask = 0;
2853     for(i=0; i<nConstraint; i++, pIdxCons++){
2854       if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
2855         j = pIdxCons->iTermOffset;
2856         if( iTerm>=nConstraint
2857          || j<0
2858          || j>=pWC->nTerm
2859          || pNew->aLTerm[iTerm]!=0
2860         ){
2861           rc = SQLITE_ERROR;
2862           sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
2863           goto whereLoopAddVtab_exit;
2864         }
2865         testcase( iTerm==nConstraint-1 );
2866         testcase( j==0 );
2867         testcase( j==pWC->nTerm-1 );
2868         pTerm = &pWC->a[j];
2869         pNew->prereq |= pTerm->prereqRight;
2870         assert( iTerm<pNew->nLSlot );
2871         pNew->aLTerm[iTerm] = pTerm;
2872         if( iTerm>mxTerm ) mxTerm = iTerm;
2873         testcase( iTerm==15 );
2874         testcase( iTerm==16 );
2875         if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
2876         if( (pTerm->eOperator & WO_IN)!=0 ){
2877           if( pUsage[i].omit==0 ){
2878             /* Do not attempt to use an IN constraint if the virtual table
2879             ** says that the equivalent EQ constraint cannot be safely omitted.
2880             ** If we do attempt to use such a constraint, some rows might be
2881             ** repeated in the output. */
2882             break;
2883           }
2884           /* A virtual table that is constrained by an IN clause may not
2885           ** consume the ORDER BY clause because (1) the order of IN terms
2886           ** is not necessarily related to the order of output terms and
2887           ** (2) Multiple outputs from a single IN value will not merge
2888           ** together.  */
2889           pIdxInfo->orderByConsumed = 0;
2890           pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
2891         }
2892       }
2893     }
2894     if( i>=nConstraint ){
2895       pNew->nLTerm = mxTerm+1;
2896       assert( pNew->nLTerm<=pNew->nLSlot );
2897       pNew->u.vtab.idxNum = pIdxInfo->idxNum;
2898       pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
2899       pIdxInfo->needToFreeIdxStr = 0;
2900       pNew->u.vtab.idxStr = pIdxInfo->idxStr;
2901       pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
2902                                       pIdxInfo->nOrderBy : 0);
2903       pNew->rSetup = 0;
2904       pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
2905       pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
2906 
2907       /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
2908       ** that the scan will visit at most one row. Clear it otherwise. */
2909       if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
2910         pNew->wsFlags |= WHERE_ONEROW;
2911       }else{
2912         pNew->wsFlags &= ~WHERE_ONEROW;
2913       }
2914       whereLoopInsert(pBuilder, pNew);
2915       if( pNew->u.vtab.needFree ){
2916         sqlite3_free(pNew->u.vtab.idxStr);
2917         pNew->u.vtab.needFree = 0;
2918       }
2919     }
2920   }
2921 
2922 whereLoopAddVtab_exit:
2923   if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
2924   sqlite3DbFree(db, pIdxInfo);
2925   return rc;
2926 }
2927 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2928 
2929 /*
2930 ** Add WhereLoop entries to handle OR terms.  This works for either
2931 ** btrees or virtual tables.
2932 */
2933 static int whereLoopAddOr(
2934   WhereLoopBuilder *pBuilder,
2935   Bitmask mExtra,
2936   Bitmask mUnusable
2937 ){
2938   WhereInfo *pWInfo = pBuilder->pWInfo;
2939   WhereClause *pWC;
2940   WhereLoop *pNew;
2941   WhereTerm *pTerm, *pWCEnd;
2942   int rc = SQLITE_OK;
2943   int iCur;
2944   WhereClause tempWC;
2945   WhereLoopBuilder sSubBuild;
2946   WhereOrSet sSum, sCur;
2947   struct SrcList_item *pItem;
2948 
2949   pWC = pBuilder->pWC;
2950   pWCEnd = pWC->a + pWC->nTerm;
2951   pNew = pBuilder->pNew;
2952   memset(&sSum, 0, sizeof(sSum));
2953   pItem = pWInfo->pTabList->a + pNew->iTab;
2954   iCur = pItem->iCursor;
2955 
2956   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
2957     if( (pTerm->eOperator & WO_OR)!=0
2958      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
2959     ){
2960       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
2961       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
2962       WhereTerm *pOrTerm;
2963       int once = 1;
2964       int i, j;
2965 
2966       sSubBuild = *pBuilder;
2967       sSubBuild.pOrderBy = 0;
2968       sSubBuild.pOrSet = &sCur;
2969 
2970       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
2971       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
2972         if( (pOrTerm->eOperator & WO_AND)!=0 ){
2973           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
2974         }else if( pOrTerm->leftCursor==iCur ){
2975           tempWC.pWInfo = pWC->pWInfo;
2976           tempWC.pOuter = pWC;
2977           tempWC.op = TK_AND;
2978           tempWC.nTerm = 1;
2979           tempWC.a = pOrTerm;
2980           sSubBuild.pWC = &tempWC;
2981         }else{
2982           continue;
2983         }
2984         sCur.n = 0;
2985 #ifdef WHERETRACE_ENABLED
2986         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
2987                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
2988         if( sqlite3WhereTrace & 0x400 ){
2989           for(i=0; i<sSubBuild.pWC->nTerm; i++){
2990             whereTermPrint(&sSubBuild.pWC->a[i], i);
2991           }
2992         }
2993 #endif
2994 #ifndef SQLITE_OMIT_VIRTUALTABLE
2995         if( IsVirtual(pItem->pTab) ){
2996           rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable);
2997         }else
2998 #endif
2999         {
3000           rc = whereLoopAddBtree(&sSubBuild, mExtra);
3001         }
3002         if( rc==SQLITE_OK ){
3003           rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable);
3004         }
3005         assert( rc==SQLITE_OK || sCur.n==0 );
3006         if( sCur.n==0 ){
3007           sSum.n = 0;
3008           break;
3009         }else if( once ){
3010           whereOrMove(&sSum, &sCur);
3011           once = 0;
3012         }else{
3013           WhereOrSet sPrev;
3014           whereOrMove(&sPrev, &sSum);
3015           sSum.n = 0;
3016           for(i=0; i<sPrev.n; i++){
3017             for(j=0; j<sCur.n; j++){
3018               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3019                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3020                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3021             }
3022           }
3023         }
3024       }
3025       pNew->nLTerm = 1;
3026       pNew->aLTerm[0] = pTerm;
3027       pNew->wsFlags = WHERE_MULTI_OR;
3028       pNew->rSetup = 0;
3029       pNew->iSortIdx = 0;
3030       memset(&pNew->u, 0, sizeof(pNew->u));
3031       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3032         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3033         ** of all sub-scans required by the OR-scan. However, due to rounding
3034         ** errors, it may be that the cost of the OR-scan is equal to its
3035         ** most expensive sub-scan. Add the smallest possible penalty
3036         ** (equivalent to multiplying the cost by 1.07) to ensure that
3037         ** this does not happen. Otherwise, for WHERE clauses such as the
3038         ** following where there is an index on "y":
3039         **
3040         **     WHERE likelihood(x=?, 0.99) OR y=?
3041         **
3042         ** the planner may elect to "OR" together a full-table scan and an
3043         ** index lookup. And other similarly odd results.  */
3044         pNew->rRun = sSum.a[i].rRun + 1;
3045         pNew->nOut = sSum.a[i].nOut;
3046         pNew->prereq = sSum.a[i].prereq;
3047         rc = whereLoopInsert(pBuilder, pNew);
3048       }
3049       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3050     }
3051   }
3052   return rc;
3053 }
3054 
3055 /*
3056 ** Add all WhereLoop objects for all tables
3057 */
3058 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3059   WhereInfo *pWInfo = pBuilder->pWInfo;
3060   Bitmask mExtra = 0;
3061   Bitmask mPrior = 0;
3062   int iTab;
3063   SrcList *pTabList = pWInfo->pTabList;
3064   struct SrcList_item *pItem;
3065   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3066   sqlite3 *db = pWInfo->pParse->db;
3067   int rc = SQLITE_OK;
3068   WhereLoop *pNew;
3069   u8 priorJointype = 0;
3070 
3071   /* Loop over the tables in the join, from left to right */
3072   pNew = pBuilder->pNew;
3073   whereLoopInit(pNew);
3074   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3075     Bitmask mUnusable = 0;
3076     pNew->iTab = iTab;
3077     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3078     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3079       /* This condition is true when pItem is the FROM clause term on the
3080       ** right-hand-side of a LEFT or CROSS JOIN.  */
3081       mExtra = mPrior;
3082     }
3083     priorJointype = pItem->fg.jointype;
3084     if( IsVirtual(pItem->pTab) ){
3085       struct SrcList_item *p;
3086       for(p=&pItem[1]; p<pEnd; p++){
3087         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3088           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3089         }
3090       }
3091       rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable);
3092     }else{
3093       rc = whereLoopAddBtree(pBuilder, mExtra);
3094     }
3095     if( rc==SQLITE_OK ){
3096       rc = whereLoopAddOr(pBuilder, mExtra, mUnusable);
3097     }
3098     mPrior |= pNew->maskSelf;
3099     if( rc || db->mallocFailed ) break;
3100   }
3101 
3102   whereLoopClear(db, pNew);
3103   return rc;
3104 }
3105 
3106 /*
3107 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
3108 ** parameters) to see if it outputs rows in the requested ORDER BY
3109 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3110 **
3111 **   N>0:   N terms of the ORDER BY clause are satisfied
3112 **   N==0:  No terms of the ORDER BY clause are satisfied
3113 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3114 **
3115 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3116 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3117 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3118 ** and DISTINCT do not require rows to appear in any particular order as long
3119 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3120 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3121 ** pOrderBy terms must be matched in strict left-to-right order.
3122 */
3123 static i8 wherePathSatisfiesOrderBy(
3124   WhereInfo *pWInfo,    /* The WHERE clause */
3125   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3126   WherePath *pPath,     /* The WherePath to check */
3127   u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
3128   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3129   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3130   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3131 ){
3132   u8 revSet;            /* True if rev is known */
3133   u8 rev;               /* Composite sort order */
3134   u8 revIdx;            /* Index sort order */
3135   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3136   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3137   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3138   u16 nKeyCol;          /* Number of key columns in pIndex */
3139   u16 nColumn;          /* Total number of ordered columns in the index */
3140   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3141   int iLoop;            /* Index of WhereLoop in pPath being processed */
3142   int i, j;             /* Loop counters */
3143   int iCur;             /* Cursor number for current WhereLoop */
3144   int iColumn;          /* A column number within table iCur */
3145   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3146   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3147   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3148   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3149   Index *pIndex;        /* The index associated with pLoop */
3150   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3151   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3152   Bitmask obDone;       /* Mask of all ORDER BY terms */
3153   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3154   Bitmask ready;              /* Mask of inner loops */
3155 
3156   /*
3157   ** We say the WhereLoop is "one-row" if it generates no more than one
3158   ** row of output.  A WhereLoop is one-row if all of the following are true:
3159   **  (a) All index columns match with WHERE_COLUMN_EQ.
3160   **  (b) The index is unique
3161   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3162   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3163   **
3164   ** We say the WhereLoop is "order-distinct" if the set of columns from
3165   ** that WhereLoop that are in the ORDER BY clause are different for every
3166   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3167   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3168   ** is not order-distinct. To be order-distinct is not quite the same as being
3169   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3170   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3171   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3172   **
3173   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3174   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3175   ** automatically order-distinct.
3176   */
3177 
3178   assert( pOrderBy!=0 );
3179   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3180 
3181   nOrderBy = pOrderBy->nExpr;
3182   testcase( nOrderBy==BMS-1 );
3183   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3184   isOrderDistinct = 1;
3185   obDone = MASKBIT(nOrderBy)-1;
3186   orderDistinctMask = 0;
3187   ready = 0;
3188   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3189     if( iLoop>0 ) ready |= pLoop->maskSelf;
3190     pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
3191     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3192       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3193       break;
3194     }
3195     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3196 
3197     /* Mark off any ORDER BY term X that is a column in the table of
3198     ** the current loop for which there is term in the WHERE
3199     ** clause of the form X IS NULL or X=? that reference only outer
3200     ** loops.
3201     */
3202     for(i=0; i<nOrderBy; i++){
3203       if( MASKBIT(i) & obSat ) continue;
3204       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3205       if( pOBExpr->op!=TK_COLUMN ) continue;
3206       if( pOBExpr->iTable!=iCur ) continue;
3207       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3208                        ~ready, WO_EQ|WO_ISNULL|WO_IS, 0);
3209       if( pTerm==0 ) continue;
3210       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3211         const char *z1, *z2;
3212         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3213         if( !pColl ) pColl = db->pDfltColl;
3214         z1 = pColl->zName;
3215         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3216         if( !pColl ) pColl = db->pDfltColl;
3217         z2 = pColl->zName;
3218         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3219         testcase( pTerm->pExpr->op==TK_IS );
3220       }
3221       obSat |= MASKBIT(i);
3222     }
3223 
3224     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3225       if( pLoop->wsFlags & WHERE_IPK ){
3226         pIndex = 0;
3227         nKeyCol = 0;
3228         nColumn = 1;
3229       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3230         return 0;
3231       }else{
3232         nKeyCol = pIndex->nKeyCol;
3233         nColumn = pIndex->nColumn;
3234         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3235         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3236                           || !HasRowid(pIndex->pTable));
3237         isOrderDistinct = IsUniqueIndex(pIndex);
3238       }
3239 
3240       /* Loop through all columns of the index and deal with the ones
3241       ** that are not constrained by == or IN.
3242       */
3243       rev = revSet = 0;
3244       distinctColumns = 0;
3245       for(j=0; j<nColumn; j++){
3246         u8 bOnce;   /* True to run the ORDER BY search loop */
3247 
3248         /* Skip over == and IS NULL terms */
3249         if( j<pLoop->u.btree.nEq
3250          && pLoop->nSkip==0
3251          && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0
3252         ){
3253           if( i & WO_ISNULL ){
3254             testcase( isOrderDistinct );
3255             isOrderDistinct = 0;
3256           }
3257           continue;
3258         }
3259 
3260         /* Get the column number in the table (iColumn) and sort order
3261         ** (revIdx) for the j-th column of the index.
3262         */
3263         if( pIndex ){
3264           iColumn = pIndex->aiColumn[j];
3265           revIdx = pIndex->aSortOrder[j];
3266           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3267         }else{
3268           iColumn = XN_ROWID;
3269           revIdx = 0;
3270         }
3271 
3272         /* An unconstrained column that might be NULL means that this
3273         ** WhereLoop is not well-ordered
3274         */
3275         if( isOrderDistinct
3276          && iColumn>=0
3277          && j>=pLoop->u.btree.nEq
3278          && pIndex->pTable->aCol[iColumn].notNull==0
3279         ){
3280           isOrderDistinct = 0;
3281         }
3282 
3283         /* Find the ORDER BY term that corresponds to the j-th column
3284         ** of the index and mark that ORDER BY term off
3285         */
3286         bOnce = 1;
3287         isMatch = 0;
3288         for(i=0; bOnce && i<nOrderBy; i++){
3289           if( MASKBIT(i) & obSat ) continue;
3290           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3291           testcase( wctrlFlags & WHERE_GROUPBY );
3292           testcase( wctrlFlags & WHERE_DISTINCTBY );
3293           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3294           if( iColumn>=(-1) ){
3295             if( pOBExpr->op!=TK_COLUMN ) continue;
3296             if( pOBExpr->iTable!=iCur ) continue;
3297             if( pOBExpr->iColumn!=iColumn ) continue;
3298           }else{
3299             if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3300               continue;
3301             }
3302           }
3303           if( iColumn>=0 ){
3304             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3305             if( !pColl ) pColl = db->pDfltColl;
3306             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3307           }
3308           isMatch = 1;
3309           break;
3310         }
3311         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3312           /* Make sure the sort order is compatible in an ORDER BY clause.
3313           ** Sort order is irrelevant for a GROUP BY clause. */
3314           if( revSet ){
3315             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3316           }else{
3317             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3318             if( rev ) *pRevMask |= MASKBIT(iLoop);
3319             revSet = 1;
3320           }
3321         }
3322         if( isMatch ){
3323           if( iColumn<0 ){
3324             testcase( distinctColumns==0 );
3325             distinctColumns = 1;
3326           }
3327           obSat |= MASKBIT(i);
3328         }else{
3329           /* No match found */
3330           if( j==0 || j<nKeyCol ){
3331             testcase( isOrderDistinct!=0 );
3332             isOrderDistinct = 0;
3333           }
3334           break;
3335         }
3336       } /* end Loop over all index columns */
3337       if( distinctColumns ){
3338         testcase( isOrderDistinct==0 );
3339         isOrderDistinct = 1;
3340       }
3341     } /* end-if not one-row */
3342 
3343     /* Mark off any other ORDER BY terms that reference pLoop */
3344     if( isOrderDistinct ){
3345       orderDistinctMask |= pLoop->maskSelf;
3346       for(i=0; i<nOrderBy; i++){
3347         Expr *p;
3348         Bitmask mTerm;
3349         if( MASKBIT(i) & obSat ) continue;
3350         p = pOrderBy->a[i].pExpr;
3351         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3352         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3353         if( (mTerm&~orderDistinctMask)==0 ){
3354           obSat |= MASKBIT(i);
3355         }
3356       }
3357     }
3358   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3359   if( obSat==obDone ) return (i8)nOrderBy;
3360   if( !isOrderDistinct ){
3361     for(i=nOrderBy-1; i>0; i--){
3362       Bitmask m = MASKBIT(i) - 1;
3363       if( (obSat&m)==m ) return i;
3364     }
3365     return 0;
3366   }
3367   return -1;
3368 }
3369 
3370 
3371 /*
3372 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3373 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3374 ** BY clause - and so any order that groups rows as required satisfies the
3375 ** request.
3376 **
3377 ** Normally, in this case it is not possible for the caller to determine
3378 ** whether or not the rows are really being delivered in sorted order, or
3379 ** just in some other order that provides the required grouping. However,
3380 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3381 ** this function may be called on the returned WhereInfo object. It returns
3382 ** true if the rows really will be sorted in the specified order, or false
3383 ** otherwise.
3384 **
3385 ** For example, assuming:
3386 **
3387 **   CREATE INDEX i1 ON t1(x, Y);
3388 **
3389 ** then
3390 **
3391 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3392 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3393 */
3394 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3395   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3396   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3397   return pWInfo->sorted;
3398 }
3399 
3400 #ifdef WHERETRACE_ENABLED
3401 /* For debugging use only: */
3402 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3403   static char zName[65];
3404   int i;
3405   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3406   if( pLast ) zName[i++] = pLast->cId;
3407   zName[i] = 0;
3408   return zName;
3409 }
3410 #endif
3411 
3412 /*
3413 ** Return the cost of sorting nRow rows, assuming that the keys have
3414 ** nOrderby columns and that the first nSorted columns are already in
3415 ** order.
3416 */
3417 static LogEst whereSortingCost(
3418   WhereInfo *pWInfo,
3419   LogEst nRow,
3420   int nOrderBy,
3421   int nSorted
3422 ){
3423   /* TUNING: Estimated cost of a full external sort, where N is
3424   ** the number of rows to sort is:
3425   **
3426   **   cost = (3.0 * N * log(N)).
3427   **
3428   ** Or, if the order-by clause has X terms but only the last Y
3429   ** terms are out of order, then block-sorting will reduce the
3430   ** sorting cost to:
3431   **
3432   **   cost = (3.0 * N * log(N)) * (Y/X)
3433   **
3434   ** The (Y/X) term is implemented using stack variable rScale
3435   ** below.  */
3436   LogEst rScale, rSortCost;
3437   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3438   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3439   rSortCost = nRow + estLog(nRow) + rScale + 16;
3440 
3441   /* TUNING: The cost of implementing DISTINCT using a B-TREE is
3442   ** similar but with a larger constant of proportionality.
3443   ** Multiply by an additional factor of 3.0.  */
3444   if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
3445     rSortCost += 16;
3446   }
3447 
3448   return rSortCost;
3449 }
3450 
3451 /*
3452 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3453 ** attempts to find the lowest cost path that visits each WhereLoop
3454 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3455 **
3456 ** Assume that the total number of output rows that will need to be sorted
3457 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3458 ** costs if nRowEst==0.
3459 **
3460 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3461 ** error occurs.
3462 */
3463 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3464   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3465   int nLoop;                /* Number of terms in the join */
3466   Parse *pParse;            /* Parsing context */
3467   sqlite3 *db;              /* The database connection */
3468   int iLoop;                /* Loop counter over the terms of the join */
3469   int ii, jj;               /* Loop counters */
3470   int mxI = 0;              /* Index of next entry to replace */
3471   int nOrderBy;             /* Number of ORDER BY clause terms */
3472   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3473   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3474   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3475   WherePath *aFrom;         /* All nFrom paths at the previous level */
3476   WherePath *aTo;           /* The nTo best paths at the current level */
3477   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3478   WherePath *pTo;           /* An element of aTo[] that we are working on */
3479   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3480   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3481   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3482   char *pSpace;             /* Temporary memory used by this routine */
3483   int nSpace;               /* Bytes of space allocated at pSpace */
3484 
3485   pParse = pWInfo->pParse;
3486   db = pParse->db;
3487   nLoop = pWInfo->nLevel;
3488   /* TUNING: For simple queries, only the best path is tracked.
3489   ** For 2-way joins, the 5 best paths are followed.
3490   ** For joins of 3 or more tables, track the 10 best paths */
3491   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3492   assert( nLoop<=pWInfo->pTabList->nSrc );
3493   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3494 
3495   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3496   ** case the purpose of this call is to estimate the number of rows returned
3497   ** by the overall query. Once this estimate has been obtained, the caller
3498   ** will invoke this function a second time, passing the estimate as the
3499   ** nRowEst parameter.  */
3500   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3501     nOrderBy = 0;
3502   }else{
3503     nOrderBy = pWInfo->pOrderBy->nExpr;
3504   }
3505 
3506   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3507   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3508   nSpace += sizeof(LogEst) * nOrderBy;
3509   pSpace = sqlite3DbMallocRaw(db, nSpace);
3510   if( pSpace==0 ) return SQLITE_NOMEM;
3511   aTo = (WherePath*)pSpace;
3512   aFrom = aTo+mxChoice;
3513   memset(aFrom, 0, sizeof(aFrom[0]));
3514   pX = (WhereLoop**)(aFrom+mxChoice);
3515   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3516     pFrom->aLoop = pX;
3517   }
3518   if( nOrderBy ){
3519     /* If there is an ORDER BY clause and it is not being ignored, set up
3520     ** space for the aSortCost[] array. Each element of the aSortCost array
3521     ** is either zero - meaning it has not yet been initialized - or the
3522     ** cost of sorting nRowEst rows of data where the first X terms of
3523     ** the ORDER BY clause are already in order, where X is the array
3524     ** index.  */
3525     aSortCost = (LogEst*)pX;
3526     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3527   }
3528   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3529   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3530 
3531   /* Seed the search with a single WherePath containing zero WhereLoops.
3532   **
3533   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3534   ** of computing an automatic index is not paid back within the first 28
3535   ** rows, then do not use the automatic index. */
3536   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3537   nFrom = 1;
3538   assert( aFrom[0].isOrdered==0 );
3539   if( nOrderBy ){
3540     /* If nLoop is zero, then there are no FROM terms in the query. Since
3541     ** in this case the query may return a maximum of one row, the results
3542     ** are already in the requested order. Set isOrdered to nOrderBy to
3543     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3544     ** -1, indicating that the result set may or may not be ordered,
3545     ** depending on the loops added to the current plan.  */
3546     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3547   }
3548 
3549   /* Compute successively longer WherePaths using the previous generation
3550   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3551   ** best paths at each generation */
3552   for(iLoop=0; iLoop<nLoop; iLoop++){
3553     nTo = 0;
3554     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3555       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3556         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3557         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3558         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3559         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3560         Bitmask maskNew;                  /* Mask of src visited by (..) */
3561         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3562 
3563         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3564         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3565         /* At this point, pWLoop is a candidate to be the next loop.
3566         ** Compute its cost */
3567         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3568         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3569         nOut = pFrom->nRow + pWLoop->nOut;
3570         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3571         if( isOrdered<0 ){
3572           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3573                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3574                        iLoop, pWLoop, &revMask);
3575         }else{
3576           revMask = pFrom->revLoop;
3577         }
3578         if( isOrdered>=0 && isOrdered<nOrderBy ){
3579           if( aSortCost[isOrdered]==0 ){
3580             aSortCost[isOrdered] = whereSortingCost(
3581                 pWInfo, nRowEst, nOrderBy, isOrdered
3582             );
3583           }
3584           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3585 
3586           WHERETRACE(0x002,
3587               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3588                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3589                rUnsorted, rCost));
3590         }else{
3591           rCost = rUnsorted;
3592         }
3593 
3594         /* Check to see if pWLoop should be added to the set of
3595         ** mxChoice best-so-far paths.
3596         **
3597         ** First look for an existing path among best-so-far paths
3598         ** that covers the same set of loops and has the same isOrdered
3599         ** setting as the current path candidate.
3600         **
3601         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3602         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3603         ** of legal values for isOrdered, -1..64.
3604         */
3605         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3606           if( pTo->maskLoop==maskNew
3607            && ((pTo->isOrdered^isOrdered)&0x80)==0
3608           ){
3609             testcase( jj==nTo-1 );
3610             break;
3611           }
3612         }
3613         if( jj>=nTo ){
3614           /* None of the existing best-so-far paths match the candidate. */
3615           if( nTo>=mxChoice
3616            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
3617           ){
3618             /* The current candidate is no better than any of the mxChoice
3619             ** paths currently in the best-so-far buffer.  So discard
3620             ** this candidate as not viable. */
3621 #ifdef WHERETRACE_ENABLED /* 0x4 */
3622             if( sqlite3WhereTrace&0x4 ){
3623               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
3624                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3625                   isOrdered>=0 ? isOrdered+'0' : '?');
3626             }
3627 #endif
3628             continue;
3629           }
3630           /* If we reach this points it means that the new candidate path
3631           ** needs to be added to the set of best-so-far paths. */
3632           if( nTo<mxChoice ){
3633             /* Increase the size of the aTo set by one */
3634             jj = nTo++;
3635           }else{
3636             /* New path replaces the prior worst to keep count below mxChoice */
3637             jj = mxI;
3638           }
3639           pTo = &aTo[jj];
3640 #ifdef WHERETRACE_ENABLED /* 0x4 */
3641           if( sqlite3WhereTrace&0x4 ){
3642             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
3643                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3644                 isOrdered>=0 ? isOrdered+'0' : '?');
3645           }
3646 #endif
3647         }else{
3648           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
3649           ** same set of loops and has the sam isOrdered setting as the
3650           ** candidate path.  Check to see if the candidate should replace
3651           ** pTo or if the candidate should be skipped */
3652           if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
3653 #ifdef WHERETRACE_ENABLED /* 0x4 */
3654             if( sqlite3WhereTrace&0x4 ){
3655               sqlite3DebugPrintf(
3656                   "Skip   %s cost=%-3d,%3d order=%c",
3657                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3658                   isOrdered>=0 ? isOrdered+'0' : '?');
3659               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
3660                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3661                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
3662             }
3663 #endif
3664             /* Discard the candidate path from further consideration */
3665             testcase( pTo->rCost==rCost );
3666             continue;
3667           }
3668           testcase( pTo->rCost==rCost+1 );
3669           /* Control reaches here if the candidate path is better than the
3670           ** pTo path.  Replace pTo with the candidate. */
3671 #ifdef WHERETRACE_ENABLED /* 0x4 */
3672           if( sqlite3WhereTrace&0x4 ){
3673             sqlite3DebugPrintf(
3674                 "Update %s cost=%-3d,%3d order=%c",
3675                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3676                 isOrdered>=0 ? isOrdered+'0' : '?');
3677             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
3678                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3679                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
3680           }
3681 #endif
3682         }
3683         /* pWLoop is a winner.  Add it to the set of best so far */
3684         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
3685         pTo->revLoop = revMask;
3686         pTo->nRow = nOut;
3687         pTo->rCost = rCost;
3688         pTo->rUnsorted = rUnsorted;
3689         pTo->isOrdered = isOrdered;
3690         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
3691         pTo->aLoop[iLoop] = pWLoop;
3692         if( nTo>=mxChoice ){
3693           mxI = 0;
3694           mxCost = aTo[0].rCost;
3695           mxUnsorted = aTo[0].nRow;
3696           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
3697             if( pTo->rCost>mxCost
3698              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
3699             ){
3700               mxCost = pTo->rCost;
3701               mxUnsorted = pTo->rUnsorted;
3702               mxI = jj;
3703             }
3704           }
3705         }
3706       }
3707     }
3708 
3709 #ifdef WHERETRACE_ENABLED  /* >=2 */
3710     if( sqlite3WhereTrace & 0x02 ){
3711       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
3712       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
3713         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
3714            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3715            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
3716         if( pTo->isOrdered>0 ){
3717           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
3718         }else{
3719           sqlite3DebugPrintf("\n");
3720         }
3721       }
3722     }
3723 #endif
3724 
3725     /* Swap the roles of aFrom and aTo for the next generation */
3726     pFrom = aTo;
3727     aTo = aFrom;
3728     aFrom = pFrom;
3729     nFrom = nTo;
3730   }
3731 
3732   if( nFrom==0 ){
3733     sqlite3ErrorMsg(pParse, "no query solution");
3734     sqlite3DbFree(db, pSpace);
3735     return SQLITE_ERROR;
3736   }
3737 
3738   /* Find the lowest cost path.  pFrom will be left pointing to that path */
3739   pFrom = aFrom;
3740   for(ii=1; ii<nFrom; ii++){
3741     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
3742   }
3743   assert( pWInfo->nLevel==nLoop );
3744   /* Load the lowest cost path into pWInfo */
3745   for(iLoop=0; iLoop<nLoop; iLoop++){
3746     WhereLevel *pLevel = pWInfo->a + iLoop;
3747     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
3748     pLevel->iFrom = pWLoop->iTab;
3749     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
3750   }
3751   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
3752    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
3753    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
3754    && nRowEst
3755   ){
3756     Bitmask notUsed;
3757     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
3758                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
3759     if( rc==pWInfo->pResultSet->nExpr ){
3760       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
3761     }
3762   }
3763   if( pWInfo->pOrderBy ){
3764     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
3765       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
3766         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
3767       }
3768     }else{
3769       pWInfo->nOBSat = pFrom->isOrdered;
3770       if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
3771       pWInfo->revMask = pFrom->revLoop;
3772     }
3773     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
3774         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
3775     ){
3776       Bitmask revMask = 0;
3777       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
3778           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
3779       );
3780       assert( pWInfo->sorted==0 );
3781       if( nOrder==pWInfo->pOrderBy->nExpr ){
3782         pWInfo->sorted = 1;
3783         pWInfo->revMask = revMask;
3784       }
3785     }
3786   }
3787 
3788 
3789   pWInfo->nRowOut = pFrom->nRow;
3790 
3791   /* Free temporary memory and return success */
3792   sqlite3DbFree(db, pSpace);
3793   return SQLITE_OK;
3794 }
3795 
3796 /*
3797 ** Most queries use only a single table (they are not joins) and have
3798 ** simple == constraints against indexed fields.  This routine attempts
3799 ** to plan those simple cases using much less ceremony than the
3800 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
3801 ** times for the common case.
3802 **
3803 ** Return non-zero on success, if this query can be handled by this
3804 ** no-frills query planner.  Return zero if this query needs the
3805 ** general-purpose query planner.
3806 */
3807 static int whereShortCut(WhereLoopBuilder *pBuilder){
3808   WhereInfo *pWInfo;
3809   struct SrcList_item *pItem;
3810   WhereClause *pWC;
3811   WhereTerm *pTerm;
3812   WhereLoop *pLoop;
3813   int iCur;
3814   int j;
3815   Table *pTab;
3816   Index *pIdx;
3817 
3818   pWInfo = pBuilder->pWInfo;
3819   if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
3820   assert( pWInfo->pTabList->nSrc>=1 );
3821   pItem = pWInfo->pTabList->a;
3822   pTab = pItem->pTab;
3823   if( IsVirtual(pTab) ) return 0;
3824   if( pItem->fg.isIndexedBy ) return 0;
3825   iCur = pItem->iCursor;
3826   pWC = &pWInfo->sWC;
3827   pLoop = pBuilder->pNew;
3828   pLoop->wsFlags = 0;
3829   pLoop->nSkip = 0;
3830   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
3831   if( pTerm ){
3832     testcase( pTerm->eOperator & WO_IS );
3833     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
3834     pLoop->aLTerm[0] = pTerm;
3835     pLoop->nLTerm = 1;
3836     pLoop->u.btree.nEq = 1;
3837     /* TUNING: Cost of a rowid lookup is 10 */
3838     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
3839   }else{
3840     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3841       int opMask;
3842       assert( pLoop->aLTermSpace==pLoop->aLTerm );
3843       if( !IsUniqueIndex(pIdx)
3844        || pIdx->pPartIdxWhere!=0
3845        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
3846       ) continue;
3847       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
3848       for(j=0; j<pIdx->nKeyCol; j++){
3849         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
3850         if( pTerm==0 ) break;
3851         testcase( pTerm->eOperator & WO_IS );
3852         pLoop->aLTerm[j] = pTerm;
3853       }
3854       if( j!=pIdx->nKeyCol ) continue;
3855       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
3856       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
3857         pLoop->wsFlags |= WHERE_IDX_ONLY;
3858       }
3859       pLoop->nLTerm = j;
3860       pLoop->u.btree.nEq = j;
3861       pLoop->u.btree.pIndex = pIdx;
3862       /* TUNING: Cost of a unique index lookup is 15 */
3863       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
3864       break;
3865     }
3866   }
3867   if( pLoop->wsFlags ){
3868     pLoop->nOut = (LogEst)1;
3869     pWInfo->a[0].pWLoop = pLoop;
3870     pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
3871     pWInfo->a[0].iTabCur = iCur;
3872     pWInfo->nRowOut = 1;
3873     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
3874     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
3875       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
3876     }
3877 #ifdef SQLITE_DEBUG
3878     pLoop->cId = '0';
3879 #endif
3880     return 1;
3881   }
3882   return 0;
3883 }
3884 
3885 /*
3886 ** Generate the beginning of the loop used for WHERE clause processing.
3887 ** The return value is a pointer to an opaque structure that contains
3888 ** information needed to terminate the loop.  Later, the calling routine
3889 ** should invoke sqlite3WhereEnd() with the return value of this function
3890 ** in order to complete the WHERE clause processing.
3891 **
3892 ** If an error occurs, this routine returns NULL.
3893 **
3894 ** The basic idea is to do a nested loop, one loop for each table in
3895 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
3896 ** same as a SELECT with only a single table in the FROM clause.)  For
3897 ** example, if the SQL is this:
3898 **
3899 **       SELECT * FROM t1, t2, t3 WHERE ...;
3900 **
3901 ** Then the code generated is conceptually like the following:
3902 **
3903 **      foreach row1 in t1 do       \    Code generated
3904 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
3905 **          foreach row3 in t3 do   /
3906 **            ...
3907 **          end                     \    Code generated
3908 **        end                        |-- by sqlite3WhereEnd()
3909 **      end                         /
3910 **
3911 ** Note that the loops might not be nested in the order in which they
3912 ** appear in the FROM clause if a different order is better able to make
3913 ** use of indices.  Note also that when the IN operator appears in
3914 ** the WHERE clause, it might result in additional nested loops for
3915 ** scanning through all values on the right-hand side of the IN.
3916 **
3917 ** There are Btree cursors associated with each table.  t1 uses cursor
3918 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
3919 ** And so forth.  This routine generates code to open those VDBE cursors
3920 ** and sqlite3WhereEnd() generates the code to close them.
3921 **
3922 ** The code that sqlite3WhereBegin() generates leaves the cursors named
3923 ** in pTabList pointing at their appropriate entries.  The [...] code
3924 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
3925 ** data from the various tables of the loop.
3926 **
3927 ** If the WHERE clause is empty, the foreach loops must each scan their
3928 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
3929 ** the tables have indices and there are terms in the WHERE clause that
3930 ** refer to those indices, a complete table scan can be avoided and the
3931 ** code will run much faster.  Most of the work of this routine is checking
3932 ** to see if there are indices that can be used to speed up the loop.
3933 **
3934 ** Terms of the WHERE clause are also used to limit which rows actually
3935 ** make it to the "..." in the middle of the loop.  After each "foreach",
3936 ** terms of the WHERE clause that use only terms in that loop and outer
3937 ** loops are evaluated and if false a jump is made around all subsequent
3938 ** inner loops (or around the "..." if the test occurs within the inner-
3939 ** most loop)
3940 **
3941 ** OUTER JOINS
3942 **
3943 ** An outer join of tables t1 and t2 is conceptally coded as follows:
3944 **
3945 **    foreach row1 in t1 do
3946 **      flag = 0
3947 **      foreach row2 in t2 do
3948 **        start:
3949 **          ...
3950 **          flag = 1
3951 **      end
3952 **      if flag==0 then
3953 **        move the row2 cursor to a null row
3954 **        goto start
3955 **      fi
3956 **    end
3957 **
3958 ** ORDER BY CLAUSE PROCESSING
3959 **
3960 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
3961 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
3962 ** if there is one.  If there is no ORDER BY clause or if this routine
3963 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
3964 **
3965 ** The iIdxCur parameter is the cursor number of an index.  If
3966 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
3967 ** to use for OR clause processing.  The WHERE clause should use this
3968 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
3969 ** the first cursor in an array of cursors for all indices.  iIdxCur should
3970 ** be used to compute the appropriate cursor depending on which index is
3971 ** used.
3972 */
3973 WhereInfo *sqlite3WhereBegin(
3974   Parse *pParse,        /* The parser context */
3975   SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
3976   Expr *pWhere,         /* The WHERE clause */
3977   ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */
3978   ExprList *pResultSet, /* Result set of the query */
3979   u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
3980   int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
3981 ){
3982   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
3983   int nTabList;              /* Number of elements in pTabList */
3984   WhereInfo *pWInfo;         /* Will become the return value of this function */
3985   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
3986   Bitmask notReady;          /* Cursors that are not yet positioned */
3987   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
3988   WhereMaskSet *pMaskSet;    /* The expression mask set */
3989   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
3990   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
3991   int ii;                    /* Loop counter */
3992   sqlite3 *db;               /* Database connection */
3993   int rc;                    /* Return code */
3994 
3995   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
3996         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
3997      && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
3998   ));
3999 
4000   /* Variable initialization */
4001   db = pParse->db;
4002   memset(&sWLB, 0, sizeof(sWLB));
4003 
4004   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4005   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4006   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4007   sWLB.pOrderBy = pOrderBy;
4008 
4009   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4010   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4011   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4012     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4013   }
4014 
4015   /* The number of tables in the FROM clause is limited by the number of
4016   ** bits in a Bitmask
4017   */
4018   testcase( pTabList->nSrc==BMS );
4019   if( pTabList->nSrc>BMS ){
4020     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4021     return 0;
4022   }
4023 
4024   /* This function normally generates a nested loop for all tables in
4025   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
4026   ** only generate code for the first table in pTabList and assume that
4027   ** any cursors associated with subsequent tables are uninitialized.
4028   */
4029   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
4030 
4031   /* Allocate and initialize the WhereInfo structure that will become the
4032   ** return value. A single allocation is used to store the WhereInfo
4033   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4034   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4035   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4036   ** some architectures. Hence the ROUND8() below.
4037   */
4038   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4039   pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
4040   if( db->mallocFailed ){
4041     sqlite3DbFree(db, pWInfo);
4042     pWInfo = 0;
4043     goto whereBeginError;
4044   }
4045   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4046   pWInfo->nLevel = nTabList;
4047   pWInfo->pParse = pParse;
4048   pWInfo->pTabList = pTabList;
4049   pWInfo->pOrderBy = pOrderBy;
4050   pWInfo->pResultSet = pResultSet;
4051   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4052   pWInfo->wctrlFlags = wctrlFlags;
4053   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4054   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4055   pMaskSet = &pWInfo->sMaskSet;
4056   sWLB.pWInfo = pWInfo;
4057   sWLB.pWC = &pWInfo->sWC;
4058   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4059   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4060   whereLoopInit(sWLB.pNew);
4061 #ifdef SQLITE_DEBUG
4062   sWLB.pNew->cId = '*';
4063 #endif
4064 
4065   /* Split the WHERE clause into separate subexpressions where each
4066   ** subexpression is separated by an AND operator.
4067   */
4068   initMaskSet(pMaskSet);
4069   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4070   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4071 
4072   /* Special case: a WHERE clause that is constant.  Evaluate the
4073   ** expression and either jump over all of the code or fall thru.
4074   */
4075   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4076     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
4077       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
4078                          SQLITE_JUMPIFNULL);
4079       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
4080     }
4081   }
4082 
4083   /* Special case: No FROM clause
4084   */
4085   if( nTabList==0 ){
4086     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4087     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4088       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4089     }
4090   }
4091 
4092   /* Assign a bit from the bitmask to every term in the FROM clause.
4093   **
4094   ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4095   **
4096   ** The rule of the previous sentence ensures thta if X is the bitmask for
4097   ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4098   ** Knowing the bitmask for all tables to the left of a left join is
4099   ** important.  Ticket #3015.
4100   **
4101   ** Note that bitmasks are created for all pTabList->nSrc tables in
4102   ** pTabList, not just the first nTabList tables.  nTabList is normally
4103   ** equal to pTabList->nSrc but might be shortened to 1 if the
4104   ** WHERE_ONETABLE_ONLY flag is set.
4105   */
4106   for(ii=0; ii<pTabList->nSrc; ii++){
4107     createMask(pMaskSet, pTabList->a[ii].iCursor);
4108     sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4109   }
4110 #ifdef SQLITE_DEBUG
4111   for(ii=0; ii<pTabList->nSrc; ii++){
4112     Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4113     assert( m==MASKBIT(ii) );
4114   }
4115 #endif
4116 
4117   /* Analyze all of the subexpressions. */
4118   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4119   if( db->mallocFailed ) goto whereBeginError;
4120 
4121   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4122     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4123       /* The DISTINCT marking is pointless.  Ignore it. */
4124       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4125     }else if( pOrderBy==0 ){
4126       /* Try to ORDER BY the result set to make distinct processing easier */
4127       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4128       pWInfo->pOrderBy = pResultSet;
4129     }
4130   }
4131 
4132   /* Construct the WhereLoop objects */
4133   WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n",
4134              wctrlFlags));
4135 #if defined(WHERETRACE_ENABLED)
4136   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4137     int i;
4138     for(i=0; i<sWLB.pWC->nTerm; i++){
4139       whereTermPrint(&sWLB.pWC->a[i], i);
4140     }
4141   }
4142 #endif
4143 
4144   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4145     rc = whereLoopAddAll(&sWLB);
4146     if( rc ) goto whereBeginError;
4147 
4148 #ifdef WHERETRACE_ENABLED
4149     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4150       WhereLoop *p;
4151       int i;
4152       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4153                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4154       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4155         p->cId = zLabel[i%sizeof(zLabel)];
4156         whereLoopPrint(p, sWLB.pWC);
4157       }
4158     }
4159 #endif
4160 
4161     wherePathSolver(pWInfo, 0);
4162     if( db->mallocFailed ) goto whereBeginError;
4163     if( pWInfo->pOrderBy ){
4164        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4165        if( db->mallocFailed ) goto whereBeginError;
4166     }
4167   }
4168   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4169      pWInfo->revMask = (Bitmask)(-1);
4170   }
4171   if( pParse->nErr || NEVER(db->mallocFailed) ){
4172     goto whereBeginError;
4173   }
4174 #ifdef WHERETRACE_ENABLED
4175   if( sqlite3WhereTrace ){
4176     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4177     if( pWInfo->nOBSat>0 ){
4178       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4179     }
4180     switch( pWInfo->eDistinct ){
4181       case WHERE_DISTINCT_UNIQUE: {
4182         sqlite3DebugPrintf("  DISTINCT=unique");
4183         break;
4184       }
4185       case WHERE_DISTINCT_ORDERED: {
4186         sqlite3DebugPrintf("  DISTINCT=ordered");
4187         break;
4188       }
4189       case WHERE_DISTINCT_UNORDERED: {
4190         sqlite3DebugPrintf("  DISTINCT=unordered");
4191         break;
4192       }
4193     }
4194     sqlite3DebugPrintf("\n");
4195     for(ii=0; ii<pWInfo->nLevel; ii++){
4196       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4197     }
4198   }
4199 #endif
4200   /* Attempt to omit tables from the join that do not effect the result */
4201   if( pWInfo->nLevel>=2
4202    && pResultSet!=0
4203    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4204   ){
4205     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4206     if( sWLB.pOrderBy ){
4207       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4208     }
4209     while( pWInfo->nLevel>=2 ){
4210       WhereTerm *pTerm, *pEnd;
4211       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4212       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4213       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4214        && (pLoop->wsFlags & WHERE_ONEROW)==0
4215       ){
4216         break;
4217       }
4218       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4219       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4220       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4221         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4222          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4223         ){
4224           break;
4225         }
4226       }
4227       if( pTerm<pEnd ) break;
4228       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4229       pWInfo->nLevel--;
4230       nTabList--;
4231     }
4232   }
4233   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4234   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4235 
4236   /* If the caller is an UPDATE or DELETE statement that is requesting
4237   ** to use a one-pass algorithm, determine if this is appropriate.
4238   ** The one-pass algorithm only works if the WHERE clause constrains
4239   ** the statement to update or delete a single row.
4240   */
4241   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4242   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4243     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4244     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4245     if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
4246        && 0==(wsFlags & WHERE_VIRTUALTABLE)
4247     )){
4248       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4249       if( HasRowid(pTabList->a[0].pTab) ){
4250         pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
4251       }
4252     }
4253   }
4254 
4255   /* Open all tables in the pTabList and any indices selected for
4256   ** searching those tables.
4257   */
4258   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4259     Table *pTab;     /* Table to open */
4260     int iDb;         /* Index of database containing table/index */
4261     struct SrcList_item *pTabItem;
4262 
4263     pTabItem = &pTabList->a[pLevel->iFrom];
4264     pTab = pTabItem->pTab;
4265     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4266     pLoop = pLevel->pWLoop;
4267     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4268       /* Do nothing */
4269     }else
4270 #ifndef SQLITE_OMIT_VIRTUALTABLE
4271     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4272       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4273       int iCur = pTabItem->iCursor;
4274       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4275     }else if( IsVirtual(pTab) ){
4276       /* noop */
4277     }else
4278 #endif
4279     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4280          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
4281       int op = OP_OpenRead;
4282       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4283         op = OP_OpenWrite;
4284         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4285       };
4286       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4287       assert( pTabItem->iCursor==pLevel->iTabCur );
4288       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4289       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4290       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4291         Bitmask b = pTabItem->colUsed;
4292         int n = 0;
4293         for(; b; b=b>>1, n++){}
4294         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4295                             SQLITE_INT_TO_PTR(n), P4_INT32);
4296         assert( n<=pTab->nCol );
4297       }
4298 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4299       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4300                             (const u8*)&pTabItem->colUsed, P4_INT64);
4301 #endif
4302     }else{
4303       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4304     }
4305     if( pLoop->wsFlags & WHERE_INDEXED ){
4306       Index *pIx = pLoop->u.btree.pIndex;
4307       int iIndexCur;
4308       int op = OP_OpenRead;
4309       /* iIdxCur is always set if to a positive value if ONEPASS is possible */
4310       assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4311       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4312        && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
4313       ){
4314         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4315         ** WITHOUT ROWID table.  No need for a separate index */
4316         iIndexCur = pLevel->iTabCur;
4317         op = 0;
4318       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4319         Index *pJ = pTabItem->pTab->pIndex;
4320         iIndexCur = iIdxCur;
4321         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4322         while( ALWAYS(pJ) && pJ!=pIx ){
4323           iIndexCur++;
4324           pJ = pJ->pNext;
4325         }
4326         op = OP_OpenWrite;
4327         pWInfo->aiCurOnePass[1] = iIndexCur;
4328       }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
4329         iIndexCur = iIdxCur;
4330         if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
4331       }else{
4332         iIndexCur = pParse->nTab++;
4333       }
4334       pLevel->iIdxCur = iIndexCur;
4335       assert( pIx->pSchema==pTab->pSchema );
4336       assert( iIndexCur>=0 );
4337       if( op ){
4338         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4339         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4340         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4341          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4342          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4343         ){
4344           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4345         }
4346         VdbeComment((v, "%s", pIx->zName));
4347 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4348         {
4349           u64 colUsed = 0;
4350           int ii, jj;
4351           for(ii=0; ii<pIx->nColumn; ii++){
4352             jj = pIx->aiColumn[ii];
4353             if( jj<0 ) continue;
4354             if( jj>63 ) jj = 63;
4355             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4356             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4357           }
4358           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4359                                 (u8*)&colUsed, P4_INT64);
4360         }
4361 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4362       }
4363     }
4364     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4365   }
4366   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4367   if( db->mallocFailed ) goto whereBeginError;
4368 
4369   /* Generate the code to do the search.  Each iteration of the for
4370   ** loop below generates code for a single nested loop of the VM
4371   ** program.
4372   */
4373   notReady = ~(Bitmask)0;
4374   for(ii=0; ii<nTabList; ii++){
4375     int addrExplain;
4376     int wsFlags;
4377     pLevel = &pWInfo->a[ii];
4378     wsFlags = pLevel->pWLoop->wsFlags;
4379 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4380     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4381       constructAutomaticIndex(pParse, &pWInfo->sWC,
4382                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4383       if( db->mallocFailed ) goto whereBeginError;
4384     }
4385 #endif
4386     addrExplain = sqlite3WhereExplainOneScan(
4387         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4388     );
4389     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4390     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4391     pWInfo->iContinue = pLevel->addrCont;
4392     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){
4393       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4394     }
4395   }
4396 
4397   /* Done. */
4398   VdbeModuleComment((v, "Begin WHERE-core"));
4399   return pWInfo;
4400 
4401   /* Jump here if malloc fails */
4402 whereBeginError:
4403   if( pWInfo ){
4404     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4405     whereInfoFree(db, pWInfo);
4406   }
4407   return 0;
4408 }
4409 
4410 /*
4411 ** Generate the end of the WHERE loop.  See comments on
4412 ** sqlite3WhereBegin() for additional information.
4413 */
4414 void sqlite3WhereEnd(WhereInfo *pWInfo){
4415   Parse *pParse = pWInfo->pParse;
4416   Vdbe *v = pParse->pVdbe;
4417   int i;
4418   WhereLevel *pLevel;
4419   WhereLoop *pLoop;
4420   SrcList *pTabList = pWInfo->pTabList;
4421   sqlite3 *db = pParse->db;
4422 
4423   /* Generate loop termination code.
4424   */
4425   VdbeModuleComment((v, "End WHERE-core"));
4426   sqlite3ExprCacheClear(pParse);
4427   for(i=pWInfo->nLevel-1; i>=0; i--){
4428     int addr;
4429     pLevel = &pWInfo->a[i];
4430     pLoop = pLevel->pWLoop;
4431     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4432     if( pLevel->op!=OP_Noop ){
4433       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4434       sqlite3VdbeChangeP5(v, pLevel->p5);
4435       VdbeCoverage(v);
4436       VdbeCoverageIf(v, pLevel->op==OP_Next);
4437       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4438       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4439     }
4440     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4441       struct InLoop *pIn;
4442       int j;
4443       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4444       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4445         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4446         sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4447         VdbeCoverage(v);
4448         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4449         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4450         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4451       }
4452     }
4453     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4454     if( pLevel->addrSkip ){
4455       sqlite3VdbeGoto(v, pLevel->addrSkip);
4456       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4457       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4458       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4459     }
4460     if( pLevel->addrLikeRep ){
4461       int op;
4462       if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
4463         op = OP_DecrJumpZero;
4464       }else{
4465         op = OP_JumpZeroIncr;
4466       }
4467       sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
4468       VdbeCoverage(v);
4469     }
4470     if( pLevel->iLeftJoin ){
4471       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4472       assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4473            || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
4474       if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
4475         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4476       }
4477       if( pLoop->wsFlags & WHERE_INDEXED ){
4478         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4479       }
4480       if( pLevel->op==OP_Return ){
4481         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4482       }else{
4483         sqlite3VdbeGoto(v, pLevel->addrFirst);
4484       }
4485       sqlite3VdbeJumpHere(v, addr);
4486     }
4487     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4488                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4489   }
4490 
4491   /* The "break" point is here, just past the end of the outer loop.
4492   ** Set it.
4493   */
4494   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4495 
4496   assert( pWInfo->nLevel<=pTabList->nSrc );
4497   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4498     int k, last;
4499     VdbeOp *pOp;
4500     Index *pIdx = 0;
4501     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4502     Table *pTab = pTabItem->pTab;
4503     assert( pTab!=0 );
4504     pLoop = pLevel->pWLoop;
4505 
4506     /* For a co-routine, change all OP_Column references to the table of
4507     ** the co-routine into OP_Copy of result contained in a register.
4508     ** OP_Rowid becomes OP_Null.
4509     */
4510     if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
4511       translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
4512                             pTabItem->regResult);
4513       continue;
4514     }
4515 
4516     /* Close all of the cursors that were opened by sqlite3WhereBegin.
4517     ** Except, do not close cursors that will be reused by the OR optimization
4518     ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
4519     ** created for the ONEPASS optimization.
4520     */
4521     if( (pTab->tabFlags & TF_Ephemeral)==0
4522      && pTab->pSelect==0
4523      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
4524     ){
4525       int ws = pLoop->wsFlags;
4526       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
4527         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4528       }
4529       if( (ws & WHERE_INDEXED)!=0
4530        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
4531        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
4532       ){
4533         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4534       }
4535     }
4536 
4537     /* If this scan uses an index, make VDBE code substitutions to read data
4538     ** from the index instead of from the table where possible.  In some cases
4539     ** this optimization prevents the table from ever being read, which can
4540     ** yield a significant performance boost.
4541     **
4542     ** Calls to the code generator in between sqlite3WhereBegin and
4543     ** sqlite3WhereEnd will have created code that references the table
4544     ** directly.  This loop scans all that code looking for opcodes
4545     ** that reference the table and converts them into opcodes that
4546     ** reference the index.
4547     */
4548     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
4549       pIdx = pLoop->u.btree.pIndex;
4550     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
4551       pIdx = pLevel->u.pCovidx;
4552     }
4553     if( pIdx
4554      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
4555      && !db->mallocFailed
4556     ){
4557       last = sqlite3VdbeCurrentAddr(v);
4558       k = pLevel->addrBody;
4559       pOp = sqlite3VdbeGetOp(v, k);
4560       for(; k<last; k++, pOp++){
4561         if( pOp->p1!=pLevel->iTabCur ) continue;
4562         if( pOp->opcode==OP_Column ){
4563           int x = pOp->p2;
4564           assert( pIdx->pTable==pTab );
4565           if( !HasRowid(pTab) ){
4566             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
4567             x = pPk->aiColumn[x];
4568             assert( x>=0 );
4569           }
4570           x = sqlite3ColumnOfIndex(pIdx, x);
4571           if( x>=0 ){
4572             pOp->p2 = x;
4573             pOp->p1 = pLevel->iIdxCur;
4574           }
4575           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
4576         }else if( pOp->opcode==OP_Rowid ){
4577           pOp->p1 = pLevel->iIdxCur;
4578           pOp->opcode = OP_IdxRowid;
4579         }
4580       }
4581     }
4582   }
4583 
4584   /* Final cleanup
4585   */
4586   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4587   whereInfoFree(db, pWInfo);
4588   return;
4589 }
4590