1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return sqlite3LogEstToInt(pWInfo->nRowOut); 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return the VDBE address or label to jump to in order to continue 56 ** immediately with the next row of a WHERE clause. 57 */ 58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 59 assert( pWInfo->iContinue!=0 ); 60 return pWInfo->iContinue; 61 } 62 63 /* 64 ** Return the VDBE address or label to jump to in order to break 65 ** out of a WHERE loop. 66 */ 67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 68 return pWInfo->iBreak; 69 } 70 71 /* 72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 73 ** operate directly on the rowis returned by a WHERE clause. Return 74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 75 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 76 ** optimization can be used on multiple 77 ** 78 ** If the ONEPASS optimization is used (if this routine returns true) 79 ** then also write the indices of open cursors used by ONEPASS 80 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 81 ** table and iaCur[1] gets the cursor used by an auxiliary index. 82 ** Either value may be -1, indicating that cursor is not used. 83 ** Any cursors returned will have been opened for writing. 84 ** 85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 86 ** unable to use the ONEPASS optimization. 87 */ 88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 89 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 90 #ifdef WHERETRACE_ENABLED 91 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 92 sqlite3DebugPrintf("%s cursors: %d %d\n", 93 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 94 aiCur[0], aiCur[1]); 95 } 96 #endif 97 return pWInfo->eOnePass; 98 } 99 100 /* 101 ** Move the content of pSrc into pDest 102 */ 103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 104 pDest->n = pSrc->n; 105 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 106 } 107 108 /* 109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 110 ** 111 ** The new entry might overwrite an existing entry, or it might be 112 ** appended, or it might be discarded. Do whatever is the right thing 113 ** so that pSet keeps the N_OR_COST best entries seen so far. 114 */ 115 static int whereOrInsert( 116 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 117 Bitmask prereq, /* Prerequisites of the new entry */ 118 LogEst rRun, /* Run-cost of the new entry */ 119 LogEst nOut /* Number of outputs for the new entry */ 120 ){ 121 u16 i; 122 WhereOrCost *p; 123 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 124 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 125 goto whereOrInsert_done; 126 } 127 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 128 return 0; 129 } 130 } 131 if( pSet->n<N_OR_COST ){ 132 p = &pSet->a[pSet->n++]; 133 p->nOut = nOut; 134 }else{ 135 p = pSet->a; 136 for(i=1; i<pSet->n; i++){ 137 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 138 } 139 if( p->rRun<=rRun ) return 0; 140 } 141 whereOrInsert_done: 142 p->prereq = prereq; 143 p->rRun = rRun; 144 if( p->nOut>nOut ) p->nOut = nOut; 145 return 1; 146 } 147 148 /* 149 ** Return the bitmask for the given cursor number. Return 0 if 150 ** iCursor is not in the set. 151 */ 152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 153 int i; 154 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 155 for(i=0; i<pMaskSet->n; i++){ 156 if( pMaskSet->ix[i]==iCursor ){ 157 return MASKBIT(i); 158 } 159 } 160 return 0; 161 } 162 163 /* 164 ** Create a new mask for cursor iCursor. 165 ** 166 ** There is one cursor per table in the FROM clause. The number of 167 ** tables in the FROM clause is limited by a test early in the 168 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 169 ** array will never overflow. 170 */ 171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 172 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 173 pMaskSet->ix[pMaskSet->n++] = iCursor; 174 } 175 176 /* 177 ** Advance to the next WhereTerm that matches according to the criteria 178 ** established when the pScan object was initialized by whereScanInit(). 179 ** Return NULL if there are no more matching WhereTerms. 180 */ 181 static WhereTerm *whereScanNext(WhereScan *pScan){ 182 int iCur; /* The cursor on the LHS of the term */ 183 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 184 Expr *pX; /* An expression being tested */ 185 WhereClause *pWC; /* Shorthand for pScan->pWC */ 186 WhereTerm *pTerm; /* The term being tested */ 187 int k = pScan->k; /* Where to start scanning */ 188 189 while( pScan->iEquiv<=pScan->nEquiv ){ 190 iCur = pScan->aiCur[pScan->iEquiv-1]; 191 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 192 if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; 193 while( (pWC = pScan->pWC)!=0 ){ 194 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 195 if( pTerm->leftCursor==iCur 196 && pTerm->u.leftColumn==iColumn 197 && (iColumn!=XN_EXPR 198 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) 199 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 200 ){ 201 if( (pTerm->eOperator & WO_EQUIV)!=0 202 && pScan->nEquiv<ArraySize(pScan->aiCur) 203 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 204 ){ 205 int j; 206 for(j=0; j<pScan->nEquiv; j++){ 207 if( pScan->aiCur[j]==pX->iTable 208 && pScan->aiColumn[j]==pX->iColumn ){ 209 break; 210 } 211 } 212 if( j==pScan->nEquiv ){ 213 pScan->aiCur[j] = pX->iTable; 214 pScan->aiColumn[j] = pX->iColumn; 215 pScan->nEquiv++; 216 } 217 } 218 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 219 /* Verify the affinity and collating sequence match */ 220 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 221 CollSeq *pColl; 222 Parse *pParse = pWC->pWInfo->pParse; 223 pX = pTerm->pExpr; 224 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 225 continue; 226 } 227 assert(pX->pLeft); 228 pColl = sqlite3BinaryCompareCollSeq(pParse, 229 pX->pLeft, pX->pRight); 230 if( pColl==0 ) pColl = pParse->db->pDfltColl; 231 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 232 continue; 233 } 234 } 235 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 236 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 237 && pX->iTable==pScan->aiCur[0] 238 && pX->iColumn==pScan->aiColumn[0] 239 ){ 240 testcase( pTerm->eOperator & WO_IS ); 241 continue; 242 } 243 pScan->k = k+1; 244 return pTerm; 245 } 246 } 247 } 248 pScan->pWC = pScan->pWC->pOuter; 249 k = 0; 250 } 251 pScan->pWC = pScan->pOrigWC; 252 k = 0; 253 pScan->iEquiv++; 254 } 255 return 0; 256 } 257 258 /* 259 ** Initialize a WHERE clause scanner object. Return a pointer to the 260 ** first match. Return NULL if there are no matches. 261 ** 262 ** The scanner will be searching the WHERE clause pWC. It will look 263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 264 ** iCur. The <op> must be one of the operators described by opMask. 265 ** 266 ** If the search is for X and the WHERE clause contains terms of the 267 ** form X=Y then this routine might also return terms of the form 268 ** "Y <op> <expr>". The number of levels of transitivity is limited, 269 ** but is enough to handle most commonly occurring SQL statements. 270 ** 271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 272 ** index pIdx. 273 */ 274 static WhereTerm *whereScanInit( 275 WhereScan *pScan, /* The WhereScan object being initialized */ 276 WhereClause *pWC, /* The WHERE clause to be scanned */ 277 int iCur, /* Cursor to scan for */ 278 int iColumn, /* Column to scan for */ 279 u32 opMask, /* Operator(s) to scan for */ 280 Index *pIdx /* Must be compatible with this index */ 281 ){ 282 int j = 0; 283 284 /* memset(pScan, 0, sizeof(*pScan)); */ 285 pScan->pOrigWC = pWC; 286 pScan->pWC = pWC; 287 pScan->pIdxExpr = 0; 288 if( pIdx ){ 289 j = iColumn; 290 iColumn = pIdx->aiColumn[j]; 291 if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 292 } 293 if( pIdx && iColumn>=0 ){ 294 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 295 pScan->zCollName = pIdx->azColl[j]; 296 }else{ 297 pScan->idxaff = 0; 298 pScan->zCollName = 0; 299 } 300 pScan->opMask = opMask; 301 pScan->k = 0; 302 pScan->aiCur[0] = iCur; 303 pScan->aiColumn[0] = iColumn; 304 pScan->nEquiv = 1; 305 pScan->iEquiv = 1; 306 return whereScanNext(pScan); 307 } 308 309 /* 310 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 311 ** where X is a reference to the iColumn of table iCur and <op> is one of 312 ** the WO_xx operator codes specified by the op parameter. 313 ** Return a pointer to the term. Return 0 if not found. 314 ** 315 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx 316 ** rather than the iColumn-th column of table iCur. 317 ** 318 ** The term returned might by Y=<expr> if there is another constraint in 319 ** the WHERE clause that specifies that X=Y. Any such constraints will be 320 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 321 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 322 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 323 ** other equivalent values. Hence a search for X will return <expr> if X=A1 324 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 325 ** 326 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 327 ** then try for the one with no dependencies on <expr> - in other words where 328 ** <expr> is a constant expression of some kind. Only return entries of 329 ** the form "X <op> Y" where Y is a column in another table if no terms of 330 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 331 ** exist, try to return a term that does not use WO_EQUIV. 332 */ 333 WhereTerm *sqlite3WhereFindTerm( 334 WhereClause *pWC, /* The WHERE clause to be searched */ 335 int iCur, /* Cursor number of LHS */ 336 int iColumn, /* Column number of LHS */ 337 Bitmask notReady, /* RHS must not overlap with this mask */ 338 u32 op, /* Mask of WO_xx values describing operator */ 339 Index *pIdx /* Must be compatible with this index, if not NULL */ 340 ){ 341 WhereTerm *pResult = 0; 342 WhereTerm *p; 343 WhereScan scan; 344 345 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 346 op &= WO_EQ|WO_IS; 347 while( p ){ 348 if( (p->prereqRight & notReady)==0 ){ 349 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 350 testcase( p->eOperator & WO_IS ); 351 return p; 352 } 353 if( pResult==0 ) pResult = p; 354 } 355 p = whereScanNext(&scan); 356 } 357 return pResult; 358 } 359 360 /* 361 ** This function searches pList for an entry that matches the iCol-th column 362 ** of index pIdx. 363 ** 364 ** If such an expression is found, its index in pList->a[] is returned. If 365 ** no expression is found, -1 is returned. 366 */ 367 static int findIndexCol( 368 Parse *pParse, /* Parse context */ 369 ExprList *pList, /* Expression list to search */ 370 int iBase, /* Cursor for table associated with pIdx */ 371 Index *pIdx, /* Index to match column of */ 372 int iCol /* Column of index to match */ 373 ){ 374 int i; 375 const char *zColl = pIdx->azColl[iCol]; 376 377 for(i=0; i<pList->nExpr; i++){ 378 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 379 if( p->op==TK_COLUMN 380 && p->iColumn==pIdx->aiColumn[iCol] 381 && p->iTable==iBase 382 ){ 383 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 384 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 385 return i; 386 } 387 } 388 } 389 390 return -1; 391 } 392 393 /* 394 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 395 */ 396 static int indexColumnNotNull(Index *pIdx, int iCol){ 397 int j; 398 assert( pIdx!=0 ); 399 assert( iCol>=0 && iCol<pIdx->nColumn ); 400 j = pIdx->aiColumn[iCol]; 401 if( j>=0 ){ 402 return pIdx->pTable->aCol[j].notNull; 403 }else if( j==(-1) ){ 404 return 1; 405 }else{ 406 assert( j==(-2) ); 407 return 0; /* Assume an indexed expression can always yield a NULL */ 408 409 } 410 } 411 412 /* 413 ** Return true if the DISTINCT expression-list passed as the third argument 414 ** is redundant. 415 ** 416 ** A DISTINCT list is redundant if any subset of the columns in the 417 ** DISTINCT list are collectively unique and individually non-null. 418 */ 419 static int isDistinctRedundant( 420 Parse *pParse, /* Parsing context */ 421 SrcList *pTabList, /* The FROM clause */ 422 WhereClause *pWC, /* The WHERE clause */ 423 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 424 ){ 425 Table *pTab; 426 Index *pIdx; 427 int i; 428 int iBase; 429 430 /* If there is more than one table or sub-select in the FROM clause of 431 ** this query, then it will not be possible to show that the DISTINCT 432 ** clause is redundant. */ 433 if( pTabList->nSrc!=1 ) return 0; 434 iBase = pTabList->a[0].iCursor; 435 pTab = pTabList->a[0].pTab; 436 437 /* If any of the expressions is an IPK column on table iBase, then return 438 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 439 ** current SELECT is a correlated sub-query. 440 */ 441 for(i=0; i<pDistinct->nExpr; i++){ 442 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 443 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 444 } 445 446 /* Loop through all indices on the table, checking each to see if it makes 447 ** the DISTINCT qualifier redundant. It does so if: 448 ** 449 ** 1. The index is itself UNIQUE, and 450 ** 451 ** 2. All of the columns in the index are either part of the pDistinct 452 ** list, or else the WHERE clause contains a term of the form "col=X", 453 ** where X is a constant value. The collation sequences of the 454 ** comparison and select-list expressions must match those of the index. 455 ** 456 ** 3. All of those index columns for which the WHERE clause does not 457 ** contain a "col=X" term are subject to a NOT NULL constraint. 458 */ 459 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 460 if( !IsUniqueIndex(pIdx) ) continue; 461 for(i=0; i<pIdx->nKeyCol; i++){ 462 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 463 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 464 if( indexColumnNotNull(pIdx, i)==0 ) break; 465 } 466 } 467 if( i==pIdx->nKeyCol ){ 468 /* This index implies that the DISTINCT qualifier is redundant. */ 469 return 1; 470 } 471 } 472 473 return 0; 474 } 475 476 477 /* 478 ** Estimate the logarithm of the input value to base 2. 479 */ 480 static LogEst estLog(LogEst N){ 481 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 482 } 483 484 /* 485 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 486 ** 487 ** This routine runs over generated VDBE code and translates OP_Column 488 ** opcodes into OP_Copy, and OP_Rowid into OP_Null, when the table is being 489 ** accessed via co-routine instead of via table lookup. 490 */ 491 static void translateColumnToCopy( 492 Vdbe *v, /* The VDBE containing code to translate */ 493 int iStart, /* Translate from this opcode to the end */ 494 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 495 int iRegister /* The first column is in this register */ 496 ){ 497 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 498 int iEnd = sqlite3VdbeCurrentAddr(v); 499 for(; iStart<iEnd; iStart++, pOp++){ 500 if( pOp->p1!=iTabCur ) continue; 501 if( pOp->opcode==OP_Column ){ 502 pOp->opcode = OP_Copy; 503 pOp->p1 = pOp->p2 + iRegister; 504 pOp->p2 = pOp->p3; 505 pOp->p3 = 0; 506 }else if( pOp->opcode==OP_Rowid ){ 507 pOp->opcode = OP_Null; 508 pOp->p1 = 0; 509 pOp->p3 = 0; 510 } 511 } 512 } 513 514 /* 515 ** Two routines for printing the content of an sqlite3_index_info 516 ** structure. Used for testing and debugging only. If neither 517 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 518 ** are no-ops. 519 */ 520 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 521 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 522 int i; 523 if( !sqlite3WhereTrace ) return; 524 for(i=0; i<p->nConstraint; i++){ 525 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 526 i, 527 p->aConstraint[i].iColumn, 528 p->aConstraint[i].iTermOffset, 529 p->aConstraint[i].op, 530 p->aConstraint[i].usable); 531 } 532 for(i=0; i<p->nOrderBy; i++){ 533 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 534 i, 535 p->aOrderBy[i].iColumn, 536 p->aOrderBy[i].desc); 537 } 538 } 539 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 540 int i; 541 if( !sqlite3WhereTrace ) return; 542 for(i=0; i<p->nConstraint; i++){ 543 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 544 i, 545 p->aConstraintUsage[i].argvIndex, 546 p->aConstraintUsage[i].omit); 547 } 548 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 549 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 550 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 551 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 552 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 553 } 554 #else 555 #define TRACE_IDX_INPUTS(A) 556 #define TRACE_IDX_OUTPUTS(A) 557 #endif 558 559 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 560 /* 561 ** Return TRUE if the WHERE clause term pTerm is of a form where it 562 ** could be used with an index to access pSrc, assuming an appropriate 563 ** index existed. 564 */ 565 static int termCanDriveIndex( 566 WhereTerm *pTerm, /* WHERE clause term to check */ 567 struct SrcList_item *pSrc, /* Table we are trying to access */ 568 Bitmask notReady /* Tables in outer loops of the join */ 569 ){ 570 char aff; 571 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 572 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 573 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 574 if( pTerm->u.leftColumn<0 ) return 0; 575 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 576 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 577 testcase( pTerm->pExpr->op==TK_IS ); 578 return 1; 579 } 580 #endif 581 582 583 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 584 /* 585 ** Generate code to construct the Index object for an automatic index 586 ** and to set up the WhereLevel object pLevel so that the code generator 587 ** makes use of the automatic index. 588 */ 589 static void constructAutomaticIndex( 590 Parse *pParse, /* The parsing context */ 591 WhereClause *pWC, /* The WHERE clause */ 592 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 593 Bitmask notReady, /* Mask of cursors that are not available */ 594 WhereLevel *pLevel /* Write new index here */ 595 ){ 596 int nKeyCol; /* Number of columns in the constructed index */ 597 WhereTerm *pTerm; /* A single term of the WHERE clause */ 598 WhereTerm *pWCEnd; /* End of pWC->a[] */ 599 Index *pIdx; /* Object describing the transient index */ 600 Vdbe *v; /* Prepared statement under construction */ 601 int addrInit; /* Address of the initialization bypass jump */ 602 Table *pTable; /* The table being indexed */ 603 int addrTop; /* Top of the index fill loop */ 604 int regRecord; /* Register holding an index record */ 605 int n; /* Column counter */ 606 int i; /* Loop counter */ 607 int mxBitCol; /* Maximum column in pSrc->colUsed */ 608 CollSeq *pColl; /* Collating sequence to on a column */ 609 WhereLoop *pLoop; /* The Loop object */ 610 char *zNotUsed; /* Extra space on the end of pIdx */ 611 Bitmask idxCols; /* Bitmap of columns used for indexing */ 612 Bitmask extraCols; /* Bitmap of additional columns */ 613 u8 sentWarning = 0; /* True if a warnning has been issued */ 614 Expr *pPartial = 0; /* Partial Index Expression */ 615 int iContinue = 0; /* Jump here to skip excluded rows */ 616 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 617 618 /* Generate code to skip over the creation and initialization of the 619 ** transient index on 2nd and subsequent iterations of the loop. */ 620 v = pParse->pVdbe; 621 assert( v!=0 ); 622 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); 623 624 /* Count the number of columns that will be added to the index 625 ** and used to match WHERE clause constraints */ 626 nKeyCol = 0; 627 pTable = pSrc->pTab; 628 pWCEnd = &pWC->a[pWC->nTerm]; 629 pLoop = pLevel->pWLoop; 630 idxCols = 0; 631 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 632 Expr *pExpr = pTerm->pExpr; 633 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 634 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 635 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 636 if( pLoop->prereq==0 637 && (pTerm->wtFlags & TERM_VIRTUAL)==0 638 && !ExprHasProperty(pExpr, EP_FromJoin) 639 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 640 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 641 sqlite3ExprDup(pParse->db, pExpr, 0)); 642 } 643 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 644 int iCol = pTerm->u.leftColumn; 645 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 646 testcase( iCol==BMS ); 647 testcase( iCol==BMS-1 ); 648 if( !sentWarning ){ 649 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 650 "automatic index on %s(%s)", pTable->zName, 651 pTable->aCol[iCol].zName); 652 sentWarning = 1; 653 } 654 if( (idxCols & cMask)==0 ){ 655 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 656 goto end_auto_index_create; 657 } 658 pLoop->aLTerm[nKeyCol++] = pTerm; 659 idxCols |= cMask; 660 } 661 } 662 } 663 assert( nKeyCol>0 ); 664 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 665 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 666 | WHERE_AUTO_INDEX; 667 668 /* Count the number of additional columns needed to create a 669 ** covering index. A "covering index" is an index that contains all 670 ** columns that are needed by the query. With a covering index, the 671 ** original table never needs to be accessed. Automatic indices must 672 ** be a covering index because the index will not be updated if the 673 ** original table changes and the index and table cannot both be used 674 ** if they go out of sync. 675 */ 676 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 677 mxBitCol = MIN(BMS-1,pTable->nCol); 678 testcase( pTable->nCol==BMS-1 ); 679 testcase( pTable->nCol==BMS-2 ); 680 for(i=0; i<mxBitCol; i++){ 681 if( extraCols & MASKBIT(i) ) nKeyCol++; 682 } 683 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 684 nKeyCol += pTable->nCol - BMS + 1; 685 } 686 687 /* Construct the Index object to describe this index */ 688 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 689 if( pIdx==0 ) goto end_auto_index_create; 690 pLoop->u.btree.pIndex = pIdx; 691 pIdx->zName = "auto-index"; 692 pIdx->pTable = pTable; 693 n = 0; 694 idxCols = 0; 695 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 696 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 697 int iCol = pTerm->u.leftColumn; 698 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 699 testcase( iCol==BMS-1 ); 700 testcase( iCol==BMS ); 701 if( (idxCols & cMask)==0 ){ 702 Expr *pX = pTerm->pExpr; 703 idxCols |= cMask; 704 pIdx->aiColumn[n] = pTerm->u.leftColumn; 705 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 706 pIdx->azColl[n] = pColl ? pColl->zName : "BINARY"; 707 n++; 708 } 709 } 710 } 711 assert( (u32)n==pLoop->u.btree.nEq ); 712 713 /* Add additional columns needed to make the automatic index into 714 ** a covering index */ 715 for(i=0; i<mxBitCol; i++){ 716 if( extraCols & MASKBIT(i) ){ 717 pIdx->aiColumn[n] = i; 718 pIdx->azColl[n] = "BINARY"; 719 n++; 720 } 721 } 722 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 723 for(i=BMS-1; i<pTable->nCol; i++){ 724 pIdx->aiColumn[n] = i; 725 pIdx->azColl[n] = "BINARY"; 726 n++; 727 } 728 } 729 assert( n==nKeyCol ); 730 pIdx->aiColumn[n] = XN_ROWID; 731 pIdx->azColl[n] = "BINARY"; 732 733 /* Create the automatic index */ 734 assert( pLevel->iIdxCur>=0 ); 735 pLevel->iIdxCur = pParse->nTab++; 736 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 737 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 738 VdbeComment((v, "for %s", pTable->zName)); 739 740 /* Fill the automatic index with content */ 741 sqlite3ExprCachePush(pParse); 742 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 743 if( pTabItem->fg.viaCoroutine ){ 744 int regYield = pTabItem->regReturn; 745 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 746 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 747 VdbeCoverage(v); 748 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 749 }else{ 750 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 751 } 752 if( pPartial ){ 753 iContinue = sqlite3VdbeMakeLabel(v); 754 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 755 pLoop->wsFlags |= WHERE_PARTIALIDX; 756 } 757 regRecord = sqlite3GetTempReg(pParse); 758 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); 759 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 760 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 761 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 762 if( pTabItem->fg.viaCoroutine ){ 763 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult); 764 sqlite3VdbeGoto(v, addrTop); 765 pTabItem->fg.viaCoroutine = 0; 766 }else{ 767 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 768 } 769 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 770 sqlite3VdbeJumpHere(v, addrTop); 771 sqlite3ReleaseTempReg(pParse, regRecord); 772 sqlite3ExprCachePop(pParse); 773 774 /* Jump here when skipping the initialization */ 775 sqlite3VdbeJumpHere(v, addrInit); 776 777 end_auto_index_create: 778 sqlite3ExprDelete(pParse->db, pPartial); 779 } 780 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 781 782 #ifndef SQLITE_OMIT_VIRTUALTABLE 783 /* 784 ** Allocate and populate an sqlite3_index_info structure. It is the 785 ** responsibility of the caller to eventually release the structure 786 ** by passing the pointer returned by this function to sqlite3_free(). 787 */ 788 static sqlite3_index_info *allocateIndexInfo( 789 Parse *pParse, 790 WhereClause *pWC, 791 Bitmask mUnusable, /* Ignore terms with these prereqs */ 792 struct SrcList_item *pSrc, 793 ExprList *pOrderBy 794 ){ 795 int i, j; 796 int nTerm; 797 struct sqlite3_index_constraint *pIdxCons; 798 struct sqlite3_index_orderby *pIdxOrderBy; 799 struct sqlite3_index_constraint_usage *pUsage; 800 WhereTerm *pTerm; 801 int nOrderBy; 802 sqlite3_index_info *pIdxInfo; 803 804 /* Count the number of possible WHERE clause constraints referring 805 ** to this virtual table */ 806 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 807 if( pTerm->leftCursor != pSrc->iCursor ) continue; 808 if( pTerm->prereqRight & mUnusable ) continue; 809 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 810 testcase( pTerm->eOperator & WO_IN ); 811 testcase( pTerm->eOperator & WO_ISNULL ); 812 testcase( pTerm->eOperator & WO_IS ); 813 testcase( pTerm->eOperator & WO_ALL ); 814 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 815 if( pTerm->wtFlags & TERM_VNULL ) continue; 816 assert( pTerm->u.leftColumn>=(-1) ); 817 nTerm++; 818 } 819 820 /* If the ORDER BY clause contains only columns in the current 821 ** virtual table then allocate space for the aOrderBy part of 822 ** the sqlite3_index_info structure. 823 */ 824 nOrderBy = 0; 825 if( pOrderBy ){ 826 int n = pOrderBy->nExpr; 827 for(i=0; i<n; i++){ 828 Expr *pExpr = pOrderBy->a[i].pExpr; 829 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 830 } 831 if( i==n){ 832 nOrderBy = n; 833 } 834 } 835 836 /* Allocate the sqlite3_index_info structure 837 */ 838 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 839 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 840 + sizeof(*pIdxOrderBy)*nOrderBy ); 841 if( pIdxInfo==0 ){ 842 sqlite3ErrorMsg(pParse, "out of memory"); 843 return 0; 844 } 845 846 /* Initialize the structure. The sqlite3_index_info structure contains 847 ** many fields that are declared "const" to prevent xBestIndex from 848 ** changing them. We have to do some funky casting in order to 849 ** initialize those fields. 850 */ 851 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 852 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 853 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 854 *(int*)&pIdxInfo->nConstraint = nTerm; 855 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 856 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 857 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 858 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 859 pUsage; 860 861 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 862 u8 op; 863 if( pTerm->leftCursor != pSrc->iCursor ) continue; 864 if( pTerm->prereqRight & mUnusable ) continue; 865 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 866 testcase( pTerm->eOperator & WO_IN ); 867 testcase( pTerm->eOperator & WO_IS ); 868 testcase( pTerm->eOperator & WO_ISNULL ); 869 testcase( pTerm->eOperator & WO_ALL ); 870 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 871 if( pTerm->wtFlags & TERM_VNULL ) continue; 872 assert( pTerm->u.leftColumn>=(-1) ); 873 pIdxCons[j].iColumn = pTerm->u.leftColumn; 874 pIdxCons[j].iTermOffset = i; 875 op = (u8)pTerm->eOperator & WO_ALL; 876 if( op==WO_IN ) op = WO_EQ; 877 pIdxCons[j].op = op; 878 /* The direct assignment in the previous line is possible only because 879 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 880 ** following asserts verify this fact. */ 881 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 882 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 883 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 884 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 885 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 886 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 887 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 888 j++; 889 } 890 for(i=0; i<nOrderBy; i++){ 891 Expr *pExpr = pOrderBy->a[i].pExpr; 892 pIdxOrderBy[i].iColumn = pExpr->iColumn; 893 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 894 } 895 896 return pIdxInfo; 897 } 898 899 /* 900 ** The table object reference passed as the second argument to this function 901 ** must represent a virtual table. This function invokes the xBestIndex() 902 ** method of the virtual table with the sqlite3_index_info object that 903 ** comes in as the 3rd argument to this function. 904 ** 905 ** If an error occurs, pParse is populated with an error message and a 906 ** non-zero value is returned. Otherwise, 0 is returned and the output 907 ** part of the sqlite3_index_info structure is left populated. 908 ** 909 ** Whether or not an error is returned, it is the responsibility of the 910 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 911 ** that this is required. 912 */ 913 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 914 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 915 int i; 916 int rc; 917 918 TRACE_IDX_INPUTS(p); 919 rc = pVtab->pModule->xBestIndex(pVtab, p); 920 TRACE_IDX_OUTPUTS(p); 921 922 if( rc!=SQLITE_OK ){ 923 if( rc==SQLITE_NOMEM ){ 924 pParse->db->mallocFailed = 1; 925 }else if( !pVtab->zErrMsg ){ 926 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 927 }else{ 928 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 929 } 930 } 931 sqlite3_free(pVtab->zErrMsg); 932 pVtab->zErrMsg = 0; 933 934 for(i=0; i<p->nConstraint; i++){ 935 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 936 sqlite3ErrorMsg(pParse, 937 "table %s: xBestIndex returned an invalid plan", pTab->zName); 938 } 939 } 940 941 return pParse->nErr; 942 } 943 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 944 945 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 946 /* 947 ** Estimate the location of a particular key among all keys in an 948 ** index. Store the results in aStat as follows: 949 ** 950 ** aStat[0] Est. number of rows less than pRec 951 ** aStat[1] Est. number of rows equal to pRec 952 ** 953 ** Return the index of the sample that is the smallest sample that 954 ** is greater than or equal to pRec. Note that this index is not an index 955 ** into the aSample[] array - it is an index into a virtual set of samples 956 ** based on the contents of aSample[] and the number of fields in record 957 ** pRec. 958 */ 959 static int whereKeyStats( 960 Parse *pParse, /* Database connection */ 961 Index *pIdx, /* Index to consider domain of */ 962 UnpackedRecord *pRec, /* Vector of values to consider */ 963 int roundUp, /* Round up if true. Round down if false */ 964 tRowcnt *aStat /* OUT: stats written here */ 965 ){ 966 IndexSample *aSample = pIdx->aSample; 967 int iCol; /* Index of required stats in anEq[] etc. */ 968 int i; /* Index of first sample >= pRec */ 969 int iSample; /* Smallest sample larger than or equal to pRec */ 970 int iMin = 0; /* Smallest sample not yet tested */ 971 int iTest; /* Next sample to test */ 972 int res; /* Result of comparison operation */ 973 int nField; /* Number of fields in pRec */ 974 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 975 976 #ifndef SQLITE_DEBUG 977 UNUSED_PARAMETER( pParse ); 978 #endif 979 assert( pRec!=0 ); 980 assert( pIdx->nSample>0 ); 981 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 982 983 /* Do a binary search to find the first sample greater than or equal 984 ** to pRec. If pRec contains a single field, the set of samples to search 985 ** is simply the aSample[] array. If the samples in aSample[] contain more 986 ** than one fields, all fields following the first are ignored. 987 ** 988 ** If pRec contains N fields, where N is more than one, then as well as the 989 ** samples in aSample[] (truncated to N fields), the search also has to 990 ** consider prefixes of those samples. For example, if the set of samples 991 ** in aSample is: 992 ** 993 ** aSample[0] = (a, 5) 994 ** aSample[1] = (a, 10) 995 ** aSample[2] = (b, 5) 996 ** aSample[3] = (c, 100) 997 ** aSample[4] = (c, 105) 998 ** 999 ** Then the search space should ideally be the samples above and the 1000 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1001 ** the code actually searches this set: 1002 ** 1003 ** 0: (a) 1004 ** 1: (a, 5) 1005 ** 2: (a, 10) 1006 ** 3: (a, 10) 1007 ** 4: (b) 1008 ** 5: (b, 5) 1009 ** 6: (c) 1010 ** 7: (c, 100) 1011 ** 8: (c, 105) 1012 ** 9: (c, 105) 1013 ** 1014 ** For each sample in the aSample[] array, N samples are present in the 1015 ** effective sample array. In the above, samples 0 and 1 are based on 1016 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1017 ** 1018 ** Often, sample i of each block of N effective samples has (i+1) fields. 1019 ** Except, each sample may be extended to ensure that it is greater than or 1020 ** equal to the previous sample in the array. For example, in the above, 1021 ** sample 2 is the first sample of a block of N samples, so at first it 1022 ** appears that it should be 1 field in size. However, that would make it 1023 ** smaller than sample 1, so the binary search would not work. As a result, 1024 ** it is extended to two fields. The duplicates that this creates do not 1025 ** cause any problems. 1026 */ 1027 nField = pRec->nField; 1028 iCol = 0; 1029 iSample = pIdx->nSample * nField; 1030 do{ 1031 int iSamp; /* Index in aSample[] of test sample */ 1032 int n; /* Number of fields in test sample */ 1033 1034 iTest = (iMin+iSample)/2; 1035 iSamp = iTest / nField; 1036 if( iSamp>0 ){ 1037 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1038 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1039 ** fields that is greater than the previous effective sample. */ 1040 for(n=(iTest % nField) + 1; n<nField; n++){ 1041 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1042 } 1043 }else{ 1044 n = iTest + 1; 1045 } 1046 1047 pRec->nField = n; 1048 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1049 if( res<0 ){ 1050 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1051 iMin = iTest+1; 1052 }else if( res==0 && n<nField ){ 1053 iLower = aSample[iSamp].anLt[n-1]; 1054 iMin = iTest+1; 1055 res = -1; 1056 }else{ 1057 iSample = iTest; 1058 iCol = n-1; 1059 } 1060 }while( res && iMin<iSample ); 1061 i = iSample / nField; 1062 1063 #ifdef SQLITE_DEBUG 1064 /* The following assert statements check that the binary search code 1065 ** above found the right answer. This block serves no purpose other 1066 ** than to invoke the asserts. */ 1067 if( pParse->db->mallocFailed==0 ){ 1068 if( res==0 ){ 1069 /* If (res==0) is true, then pRec must be equal to sample i. */ 1070 assert( i<pIdx->nSample ); 1071 assert( iCol==nField-1 ); 1072 pRec->nField = nField; 1073 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1074 || pParse->db->mallocFailed 1075 ); 1076 }else{ 1077 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1078 ** all samples in the aSample[] array, pRec must be smaller than the 1079 ** (iCol+1) field prefix of sample i. */ 1080 assert( i<=pIdx->nSample && i>=0 ); 1081 pRec->nField = iCol+1; 1082 assert( i==pIdx->nSample 1083 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1084 || pParse->db->mallocFailed ); 1085 1086 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1087 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1088 ** be greater than or equal to the (iCol) field prefix of sample i. 1089 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1090 if( iCol>0 ){ 1091 pRec->nField = iCol; 1092 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1093 || pParse->db->mallocFailed ); 1094 } 1095 if( i>0 ){ 1096 pRec->nField = nField; 1097 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1098 || pParse->db->mallocFailed ); 1099 } 1100 } 1101 } 1102 #endif /* ifdef SQLITE_DEBUG */ 1103 1104 if( res==0 ){ 1105 /* Record pRec is equal to sample i */ 1106 assert( iCol==nField-1 ); 1107 aStat[0] = aSample[i].anLt[iCol]; 1108 aStat[1] = aSample[i].anEq[iCol]; 1109 }else{ 1110 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1111 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1112 ** is larger than all samples in the array. */ 1113 tRowcnt iUpper, iGap; 1114 if( i>=pIdx->nSample ){ 1115 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1116 }else{ 1117 iUpper = aSample[i].anLt[iCol]; 1118 } 1119 1120 if( iLower>=iUpper ){ 1121 iGap = 0; 1122 }else{ 1123 iGap = iUpper - iLower; 1124 } 1125 if( roundUp ){ 1126 iGap = (iGap*2)/3; 1127 }else{ 1128 iGap = iGap/3; 1129 } 1130 aStat[0] = iLower + iGap; 1131 aStat[1] = pIdx->aAvgEq[iCol]; 1132 } 1133 1134 /* Restore the pRec->nField value before returning. */ 1135 pRec->nField = nField; 1136 return i; 1137 } 1138 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1139 1140 /* 1141 ** If it is not NULL, pTerm is a term that provides an upper or lower 1142 ** bound on a range scan. Without considering pTerm, it is estimated 1143 ** that the scan will visit nNew rows. This function returns the number 1144 ** estimated to be visited after taking pTerm into account. 1145 ** 1146 ** If the user explicitly specified a likelihood() value for this term, 1147 ** then the return value is the likelihood multiplied by the number of 1148 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1149 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1150 */ 1151 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1152 LogEst nRet = nNew; 1153 if( pTerm ){ 1154 if( pTerm->truthProb<=0 ){ 1155 nRet += pTerm->truthProb; 1156 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1157 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1158 } 1159 } 1160 return nRet; 1161 } 1162 1163 1164 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1165 /* 1166 ** Return the affinity for a single column of an index. 1167 */ 1168 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1169 assert( iCol>=0 && iCol<pIdx->nColumn ); 1170 if( !pIdx->zColAff ){ 1171 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1172 } 1173 return pIdx->zColAff[iCol]; 1174 } 1175 #endif 1176 1177 1178 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1179 /* 1180 ** This function is called to estimate the number of rows visited by a 1181 ** range-scan on a skip-scan index. For example: 1182 ** 1183 ** CREATE INDEX i1 ON t1(a, b, c); 1184 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1185 ** 1186 ** Value pLoop->nOut is currently set to the estimated number of rows 1187 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1188 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1189 ** on the stat4 data for the index. this scan will be peformed multiple 1190 ** times (once for each (a,b) combination that matches a=?) is dealt with 1191 ** by the caller. 1192 ** 1193 ** It does this by scanning through all stat4 samples, comparing values 1194 ** extracted from pLower and pUpper with the corresponding column in each 1195 ** sample. If L and U are the number of samples found to be less than or 1196 ** equal to the values extracted from pLower and pUpper respectively, and 1197 ** N is the total number of samples, the pLoop->nOut value is adjusted 1198 ** as follows: 1199 ** 1200 ** nOut = nOut * ( min(U - L, 1) / N ) 1201 ** 1202 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1203 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1204 ** U is set to N. 1205 ** 1206 ** Normally, this function sets *pbDone to 1 before returning. However, 1207 ** if no value can be extracted from either pLower or pUpper (and so the 1208 ** estimate of the number of rows delivered remains unchanged), *pbDone 1209 ** is left as is. 1210 ** 1211 ** If an error occurs, an SQLite error code is returned. Otherwise, 1212 ** SQLITE_OK. 1213 */ 1214 static int whereRangeSkipScanEst( 1215 Parse *pParse, /* Parsing & code generating context */ 1216 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1217 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1218 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1219 int *pbDone /* Set to true if at least one expr. value extracted */ 1220 ){ 1221 Index *p = pLoop->u.btree.pIndex; 1222 int nEq = pLoop->u.btree.nEq; 1223 sqlite3 *db = pParse->db; 1224 int nLower = -1; 1225 int nUpper = p->nSample+1; 1226 int rc = SQLITE_OK; 1227 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1228 CollSeq *pColl; 1229 1230 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1231 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1232 sqlite3_value *pVal = 0; /* Value extracted from record */ 1233 1234 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1235 if( pLower ){ 1236 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1237 nLower = 0; 1238 } 1239 if( pUpper && rc==SQLITE_OK ){ 1240 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1241 nUpper = p2 ? 0 : p->nSample; 1242 } 1243 1244 if( p1 || p2 ){ 1245 int i; 1246 int nDiff; 1247 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1248 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1249 if( rc==SQLITE_OK && p1 ){ 1250 int res = sqlite3MemCompare(p1, pVal, pColl); 1251 if( res>=0 ) nLower++; 1252 } 1253 if( rc==SQLITE_OK && p2 ){ 1254 int res = sqlite3MemCompare(p2, pVal, pColl); 1255 if( res>=0 ) nUpper++; 1256 } 1257 } 1258 nDiff = (nUpper - nLower); 1259 if( nDiff<=0 ) nDiff = 1; 1260 1261 /* If there is both an upper and lower bound specified, and the 1262 ** comparisons indicate that they are close together, use the fallback 1263 ** method (assume that the scan visits 1/64 of the rows) for estimating 1264 ** the number of rows visited. Otherwise, estimate the number of rows 1265 ** using the method described in the header comment for this function. */ 1266 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1267 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1268 pLoop->nOut -= nAdjust; 1269 *pbDone = 1; 1270 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1271 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1272 } 1273 1274 }else{ 1275 assert( *pbDone==0 ); 1276 } 1277 1278 sqlite3ValueFree(p1); 1279 sqlite3ValueFree(p2); 1280 sqlite3ValueFree(pVal); 1281 1282 return rc; 1283 } 1284 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1285 1286 /* 1287 ** This function is used to estimate the number of rows that will be visited 1288 ** by scanning an index for a range of values. The range may have an upper 1289 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1290 ** and lower bounds are represented by pLower and pUpper respectively. For 1291 ** example, assuming that index p is on t1(a): 1292 ** 1293 ** ... FROM t1 WHERE a > ? AND a < ? ... 1294 ** |_____| |_____| 1295 ** | | 1296 ** pLower pUpper 1297 ** 1298 ** If either of the upper or lower bound is not present, then NULL is passed in 1299 ** place of the corresponding WhereTerm. 1300 ** 1301 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1302 ** column subject to the range constraint. Or, equivalently, the number of 1303 ** equality constraints optimized by the proposed index scan. For example, 1304 ** assuming index p is on t1(a, b), and the SQL query is: 1305 ** 1306 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1307 ** 1308 ** then nEq is set to 1 (as the range restricted column, b, is the second 1309 ** left-most column of the index). Or, if the query is: 1310 ** 1311 ** ... FROM t1 WHERE a > ? AND a < ? ... 1312 ** 1313 ** then nEq is set to 0. 1314 ** 1315 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1316 ** number of rows that the index scan is expected to visit without 1317 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1318 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1319 ** to account for the range constraints pLower and pUpper. 1320 ** 1321 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1322 ** used, a single range inequality reduces the search space by a factor of 4. 1323 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1324 ** rows visited by a factor of 64. 1325 */ 1326 static int whereRangeScanEst( 1327 Parse *pParse, /* Parsing & code generating context */ 1328 WhereLoopBuilder *pBuilder, 1329 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1330 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1331 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1332 ){ 1333 int rc = SQLITE_OK; 1334 int nOut = pLoop->nOut; 1335 LogEst nNew; 1336 1337 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1338 Index *p = pLoop->u.btree.pIndex; 1339 int nEq = pLoop->u.btree.nEq; 1340 1341 if( p->nSample>0 && nEq<p->nSampleCol ){ 1342 if( nEq==pBuilder->nRecValid ){ 1343 UnpackedRecord *pRec = pBuilder->pRec; 1344 tRowcnt a[2]; 1345 u8 aff; 1346 1347 /* Variable iLower will be set to the estimate of the number of rows in 1348 ** the index that are less than the lower bound of the range query. The 1349 ** lower bound being the concatenation of $P and $L, where $P is the 1350 ** key-prefix formed by the nEq values matched against the nEq left-most 1351 ** columns of the index, and $L is the value in pLower. 1352 ** 1353 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1354 ** is not a simple variable or literal value), the lower bound of the 1355 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1356 ** if $L is available, whereKeyStats() is called for both ($P) and 1357 ** ($P:$L) and the larger of the two returned values is used. 1358 ** 1359 ** Similarly, iUpper is to be set to the estimate of the number of rows 1360 ** less than the upper bound of the range query. Where the upper bound 1361 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1362 ** of iUpper are requested of whereKeyStats() and the smaller used. 1363 ** 1364 ** The number of rows between the two bounds is then just iUpper-iLower. 1365 */ 1366 tRowcnt iLower; /* Rows less than the lower bound */ 1367 tRowcnt iUpper; /* Rows less than the upper bound */ 1368 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1369 int iUprIdx = -1; /* aSample[] for the upper bound */ 1370 1371 if( pRec ){ 1372 testcase( pRec->nField!=pBuilder->nRecValid ); 1373 pRec->nField = pBuilder->nRecValid; 1374 } 1375 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); 1376 assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); 1377 /* Determine iLower and iUpper using ($P) only. */ 1378 if( nEq==0 ){ 1379 iLower = 0; 1380 iUpper = p->nRowEst0; 1381 }else{ 1382 /* Note: this call could be optimized away - since the same values must 1383 ** have been requested when testing key $P in whereEqualScanEst(). */ 1384 whereKeyStats(pParse, p, pRec, 0, a); 1385 iLower = a[0]; 1386 iUpper = a[0] + a[1]; 1387 } 1388 1389 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1390 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1391 assert( p->aSortOrder!=0 ); 1392 if( p->aSortOrder[nEq] ){ 1393 /* The roles of pLower and pUpper are swapped for a DESC index */ 1394 SWAP(WhereTerm*, pLower, pUpper); 1395 } 1396 1397 /* If possible, improve on the iLower estimate using ($P:$L). */ 1398 if( pLower ){ 1399 int bOk; /* True if value is extracted from pExpr */ 1400 Expr *pExpr = pLower->pExpr->pRight; 1401 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1402 if( rc==SQLITE_OK && bOk ){ 1403 tRowcnt iNew; 1404 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1405 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1406 if( iNew>iLower ) iLower = iNew; 1407 nOut--; 1408 pLower = 0; 1409 } 1410 } 1411 1412 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1413 if( pUpper ){ 1414 int bOk; /* True if value is extracted from pExpr */ 1415 Expr *pExpr = pUpper->pExpr->pRight; 1416 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1417 if( rc==SQLITE_OK && bOk ){ 1418 tRowcnt iNew; 1419 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1420 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1421 if( iNew<iUpper ) iUpper = iNew; 1422 nOut--; 1423 pUpper = 0; 1424 } 1425 } 1426 1427 pBuilder->pRec = pRec; 1428 if( rc==SQLITE_OK ){ 1429 if( iUpper>iLower ){ 1430 nNew = sqlite3LogEst(iUpper - iLower); 1431 /* TUNING: If both iUpper and iLower are derived from the same 1432 ** sample, then assume they are 4x more selective. This brings 1433 ** the estimated selectivity more in line with what it would be 1434 ** if estimated without the use of STAT3/4 tables. */ 1435 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1436 }else{ 1437 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1438 } 1439 if( nNew<nOut ){ 1440 nOut = nNew; 1441 } 1442 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1443 (u32)iLower, (u32)iUpper, nOut)); 1444 } 1445 }else{ 1446 int bDone = 0; 1447 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1448 if( bDone ) return rc; 1449 } 1450 } 1451 #else 1452 UNUSED_PARAMETER(pParse); 1453 UNUSED_PARAMETER(pBuilder); 1454 assert( pLower || pUpper ); 1455 #endif 1456 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1457 nNew = whereRangeAdjust(pLower, nOut); 1458 nNew = whereRangeAdjust(pUpper, nNew); 1459 1460 /* TUNING: If there is both an upper and lower limit and neither limit 1461 ** has an application-defined likelihood(), assume the range is 1462 ** reduced by an additional 75%. This means that, by default, an open-ended 1463 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1464 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1465 ** match 1/64 of the index. */ 1466 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1467 nNew -= 20; 1468 } 1469 1470 nOut -= (pLower!=0) + (pUpper!=0); 1471 if( nNew<10 ) nNew = 10; 1472 if( nNew<nOut ) nOut = nNew; 1473 #if defined(WHERETRACE_ENABLED) 1474 if( pLoop->nOut>nOut ){ 1475 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1476 pLoop->nOut, nOut)); 1477 } 1478 #endif 1479 pLoop->nOut = (LogEst)nOut; 1480 return rc; 1481 } 1482 1483 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1484 /* 1485 ** Estimate the number of rows that will be returned based on 1486 ** an equality constraint x=VALUE and where that VALUE occurs in 1487 ** the histogram data. This only works when x is the left-most 1488 ** column of an index and sqlite_stat3 histogram data is available 1489 ** for that index. When pExpr==NULL that means the constraint is 1490 ** "x IS NULL" instead of "x=VALUE". 1491 ** 1492 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1493 ** If unable to make an estimate, leave *pnRow unchanged and return 1494 ** non-zero. 1495 ** 1496 ** This routine can fail if it is unable to load a collating sequence 1497 ** required for string comparison, or if unable to allocate memory 1498 ** for a UTF conversion required for comparison. The error is stored 1499 ** in the pParse structure. 1500 */ 1501 static int whereEqualScanEst( 1502 Parse *pParse, /* Parsing & code generating context */ 1503 WhereLoopBuilder *pBuilder, 1504 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1505 tRowcnt *pnRow /* Write the revised row estimate here */ 1506 ){ 1507 Index *p = pBuilder->pNew->u.btree.pIndex; 1508 int nEq = pBuilder->pNew->u.btree.nEq; 1509 UnpackedRecord *pRec = pBuilder->pRec; 1510 u8 aff; /* Column affinity */ 1511 int rc; /* Subfunction return code */ 1512 tRowcnt a[2]; /* Statistics */ 1513 int bOk; 1514 1515 assert( nEq>=1 ); 1516 assert( nEq<=p->nColumn ); 1517 assert( p->aSample!=0 ); 1518 assert( p->nSample>0 ); 1519 assert( pBuilder->nRecValid<nEq ); 1520 1521 /* If values are not available for all fields of the index to the left 1522 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1523 if( pBuilder->nRecValid<(nEq-1) ){ 1524 return SQLITE_NOTFOUND; 1525 } 1526 1527 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1528 ** below would return the same value. */ 1529 if( nEq>=p->nColumn ){ 1530 *pnRow = 1; 1531 return SQLITE_OK; 1532 } 1533 1534 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); 1535 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); 1536 pBuilder->pRec = pRec; 1537 if( rc!=SQLITE_OK ) return rc; 1538 if( bOk==0 ) return SQLITE_NOTFOUND; 1539 pBuilder->nRecValid = nEq; 1540 1541 whereKeyStats(pParse, p, pRec, 0, a); 1542 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); 1543 *pnRow = a[1]; 1544 1545 return rc; 1546 } 1547 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1548 1549 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1550 /* 1551 ** Estimate the number of rows that will be returned based on 1552 ** an IN constraint where the right-hand side of the IN operator 1553 ** is a list of values. Example: 1554 ** 1555 ** WHERE x IN (1,2,3,4) 1556 ** 1557 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1558 ** If unable to make an estimate, leave *pnRow unchanged and return 1559 ** non-zero. 1560 ** 1561 ** This routine can fail if it is unable to load a collating sequence 1562 ** required for string comparison, or if unable to allocate memory 1563 ** for a UTF conversion required for comparison. The error is stored 1564 ** in the pParse structure. 1565 */ 1566 static int whereInScanEst( 1567 Parse *pParse, /* Parsing & code generating context */ 1568 WhereLoopBuilder *pBuilder, 1569 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1570 tRowcnt *pnRow /* Write the revised row estimate here */ 1571 ){ 1572 Index *p = pBuilder->pNew->u.btree.pIndex; 1573 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1574 int nRecValid = pBuilder->nRecValid; 1575 int rc = SQLITE_OK; /* Subfunction return code */ 1576 tRowcnt nEst; /* Number of rows for a single term */ 1577 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1578 int i; /* Loop counter */ 1579 1580 assert( p->aSample!=0 ); 1581 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1582 nEst = nRow0; 1583 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1584 nRowEst += nEst; 1585 pBuilder->nRecValid = nRecValid; 1586 } 1587 1588 if( rc==SQLITE_OK ){ 1589 if( nRowEst > nRow0 ) nRowEst = nRow0; 1590 *pnRow = nRowEst; 1591 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1592 } 1593 assert( pBuilder->nRecValid==nRecValid ); 1594 return rc; 1595 } 1596 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1597 1598 1599 #ifdef WHERETRACE_ENABLED 1600 /* 1601 ** Print the content of a WhereTerm object 1602 */ 1603 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1604 if( pTerm==0 ){ 1605 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1606 }else{ 1607 char zType[4]; 1608 memcpy(zType, "...", 4); 1609 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1610 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1611 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1612 sqlite3DebugPrintf( 1613 "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", 1614 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, 1615 pTerm->eOperator, pTerm->wtFlags); 1616 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1617 } 1618 } 1619 #endif 1620 1621 #ifdef WHERETRACE_ENABLED 1622 /* 1623 ** Print a WhereLoop object for debugging purposes 1624 */ 1625 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1626 WhereInfo *pWInfo = pWC->pWInfo; 1627 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; 1628 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1629 Table *pTab = pItem->pTab; 1630 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1631 p->iTab, nb, p->maskSelf, nb, p->prereq); 1632 sqlite3DebugPrintf(" %12s", 1633 pItem->zAlias ? pItem->zAlias : pTab->zName); 1634 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1635 const char *zName; 1636 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1637 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1638 int i = sqlite3Strlen30(zName) - 1; 1639 while( zName[i]!='_' ) i--; 1640 zName += i; 1641 } 1642 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1643 }else{ 1644 sqlite3DebugPrintf("%20s",""); 1645 } 1646 }else{ 1647 char *z; 1648 if( p->u.vtab.idxStr ){ 1649 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1650 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1651 }else{ 1652 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1653 } 1654 sqlite3DebugPrintf(" %-19s", z); 1655 sqlite3_free(z); 1656 } 1657 if( p->wsFlags & WHERE_SKIPSCAN ){ 1658 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1659 }else{ 1660 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1661 } 1662 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1663 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1664 int i; 1665 for(i=0; i<p->nLTerm; i++){ 1666 whereTermPrint(p->aLTerm[i], i); 1667 } 1668 } 1669 } 1670 #endif 1671 1672 /* 1673 ** Convert bulk memory into a valid WhereLoop that can be passed 1674 ** to whereLoopClear harmlessly. 1675 */ 1676 static void whereLoopInit(WhereLoop *p){ 1677 p->aLTerm = p->aLTermSpace; 1678 p->nLTerm = 0; 1679 p->nLSlot = ArraySize(p->aLTermSpace); 1680 p->wsFlags = 0; 1681 } 1682 1683 /* 1684 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1685 */ 1686 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1687 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1688 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1689 sqlite3_free(p->u.vtab.idxStr); 1690 p->u.vtab.needFree = 0; 1691 p->u.vtab.idxStr = 0; 1692 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1693 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1694 sqlite3DbFree(db, p->u.btree.pIndex); 1695 p->u.btree.pIndex = 0; 1696 } 1697 } 1698 } 1699 1700 /* 1701 ** Deallocate internal memory used by a WhereLoop object 1702 */ 1703 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1704 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1705 whereLoopClearUnion(db, p); 1706 whereLoopInit(p); 1707 } 1708 1709 /* 1710 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1711 */ 1712 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1713 WhereTerm **paNew; 1714 if( p->nLSlot>=n ) return SQLITE_OK; 1715 n = (n+7)&~7; 1716 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); 1717 if( paNew==0 ) return SQLITE_NOMEM; 1718 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1719 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1720 p->aLTerm = paNew; 1721 p->nLSlot = n; 1722 return SQLITE_OK; 1723 } 1724 1725 /* 1726 ** Transfer content from the second pLoop into the first. 1727 */ 1728 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1729 whereLoopClearUnion(db, pTo); 1730 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1731 memset(&pTo->u, 0, sizeof(pTo->u)); 1732 return SQLITE_NOMEM; 1733 } 1734 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1735 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1736 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1737 pFrom->u.vtab.needFree = 0; 1738 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1739 pFrom->u.btree.pIndex = 0; 1740 } 1741 return SQLITE_OK; 1742 } 1743 1744 /* 1745 ** Delete a WhereLoop object 1746 */ 1747 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1748 whereLoopClear(db, p); 1749 sqlite3DbFree(db, p); 1750 } 1751 1752 /* 1753 ** Free a WhereInfo structure 1754 */ 1755 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1756 if( ALWAYS(pWInfo) ){ 1757 int i; 1758 for(i=0; i<pWInfo->nLevel; i++){ 1759 WhereLevel *pLevel = &pWInfo->a[i]; 1760 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1761 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1762 } 1763 } 1764 sqlite3WhereClauseClear(&pWInfo->sWC); 1765 while( pWInfo->pLoops ){ 1766 WhereLoop *p = pWInfo->pLoops; 1767 pWInfo->pLoops = p->pNextLoop; 1768 whereLoopDelete(db, p); 1769 } 1770 sqlite3DbFree(db, pWInfo); 1771 } 1772 } 1773 1774 /* 1775 ** Return TRUE if all of the following are true: 1776 ** 1777 ** (1) X has the same or lower cost that Y 1778 ** (2) X is a proper subset of Y 1779 ** (3) X skips at least as many columns as Y 1780 ** 1781 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1782 ** than Y and that every WHERE clause term used by X is also used 1783 ** by Y. 1784 ** 1785 ** If X is a proper subset of Y then Y is a better choice and ought 1786 ** to have a lower cost. This routine returns TRUE when that cost 1787 ** relationship is inverted and needs to be adjusted. The third rule 1788 ** was added because if X uses skip-scan less than Y it still might 1789 ** deserve a lower cost even if it is a proper subset of Y. 1790 */ 1791 static int whereLoopCheaperProperSubset( 1792 const WhereLoop *pX, /* First WhereLoop to compare */ 1793 const WhereLoop *pY /* Compare against this WhereLoop */ 1794 ){ 1795 int i, j; 1796 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1797 return 0; /* X is not a subset of Y */ 1798 } 1799 if( pY->nSkip > pX->nSkip ) return 0; 1800 if( pX->rRun >= pY->rRun ){ 1801 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1802 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1803 } 1804 for(i=pX->nLTerm-1; i>=0; i--){ 1805 if( pX->aLTerm[i]==0 ) continue; 1806 for(j=pY->nLTerm-1; j>=0; j--){ 1807 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1808 } 1809 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1810 } 1811 return 1; /* All conditions meet */ 1812 } 1813 1814 /* 1815 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1816 ** that: 1817 ** 1818 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1819 ** subset of pTemplate 1820 ** 1821 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1822 ** is a proper subset. 1823 ** 1824 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1825 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1826 ** also used by Y. 1827 */ 1828 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1829 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1830 for(; p; p=p->pNextLoop){ 1831 if( p->iTab!=pTemplate->iTab ) continue; 1832 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1833 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1834 /* Adjust pTemplate cost downward so that it is cheaper than its 1835 ** subset p. */ 1836 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1837 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1838 pTemplate->rRun = p->rRun; 1839 pTemplate->nOut = p->nOut - 1; 1840 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1841 /* Adjust pTemplate cost upward so that it is costlier than p since 1842 ** pTemplate is a proper subset of p */ 1843 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1844 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1845 pTemplate->rRun = p->rRun; 1846 pTemplate->nOut = p->nOut + 1; 1847 } 1848 } 1849 } 1850 1851 /* 1852 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1853 ** supplanted by pTemplate. 1854 ** 1855 ** Return NULL if the WhereLoop list contains an entry that can supplant 1856 ** pTemplate, in other words if pTemplate does not belong on the list. 1857 ** 1858 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1859 ** link that points to pX. 1860 ** 1861 ** If pTemplate cannot supplant any existing element of the list but needs 1862 ** to be added to the list, then return a pointer to the tail of the list. 1863 */ 1864 static WhereLoop **whereLoopFindLesser( 1865 WhereLoop **ppPrev, 1866 const WhereLoop *pTemplate 1867 ){ 1868 WhereLoop *p; 1869 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1870 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1871 /* If either the iTab or iSortIdx values for two WhereLoop are different 1872 ** then those WhereLoops need to be considered separately. Neither is 1873 ** a candidate to replace the other. */ 1874 continue; 1875 } 1876 /* In the current implementation, the rSetup value is either zero 1877 ** or the cost of building an automatic index (NlogN) and the NlogN 1878 ** is the same for compatible WhereLoops. */ 1879 assert( p->rSetup==0 || pTemplate->rSetup==0 1880 || p->rSetup==pTemplate->rSetup ); 1881 1882 /* whereLoopAddBtree() always generates and inserts the automatic index 1883 ** case first. Hence compatible candidate WhereLoops never have a larger 1884 ** rSetup. Call this SETUP-INVARIANT */ 1885 assert( p->rSetup>=pTemplate->rSetup ); 1886 1887 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1888 ** UNIQUE constraint) with one or more == constraints is better 1889 ** than an automatic index. Unless it is a skip-scan. */ 1890 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1891 && (pTemplate->nSkip)==0 1892 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1893 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1894 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1895 ){ 1896 break; 1897 } 1898 1899 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1900 ** discarded. WhereLoop p is better if: 1901 ** (1) p has no more dependencies than pTemplate, and 1902 ** (2) p has an equal or lower cost than pTemplate 1903 */ 1904 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1905 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1906 && p->rRun<=pTemplate->rRun /* (2b) */ 1907 && p->nOut<=pTemplate->nOut /* (2c) */ 1908 ){ 1909 return 0; /* Discard pTemplate */ 1910 } 1911 1912 /* If pTemplate is always better than p, then cause p to be overwritten 1913 ** with pTemplate. pTemplate is better than p if: 1914 ** (1) pTemplate has no more dependences than p, and 1915 ** (2) pTemplate has an equal or lower cost than p. 1916 */ 1917 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 1918 && p->rRun>=pTemplate->rRun /* (2a) */ 1919 && p->nOut>=pTemplate->nOut /* (2b) */ 1920 ){ 1921 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 1922 break; /* Cause p to be overwritten by pTemplate */ 1923 } 1924 } 1925 return ppPrev; 1926 } 1927 1928 /* 1929 ** Insert or replace a WhereLoop entry using the template supplied. 1930 ** 1931 ** An existing WhereLoop entry might be overwritten if the new template 1932 ** is better and has fewer dependencies. Or the template will be ignored 1933 ** and no insert will occur if an existing WhereLoop is faster and has 1934 ** fewer dependencies than the template. Otherwise a new WhereLoop is 1935 ** added based on the template. 1936 ** 1937 ** If pBuilder->pOrSet is not NULL then we care about only the 1938 ** prerequisites and rRun and nOut costs of the N best loops. That 1939 ** information is gathered in the pBuilder->pOrSet object. This special 1940 ** processing mode is used only for OR clause processing. 1941 ** 1942 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 1943 ** still might overwrite similar loops with the new template if the 1944 ** new template is better. Loops may be overwritten if the following 1945 ** conditions are met: 1946 ** 1947 ** (1) They have the same iTab. 1948 ** (2) They have the same iSortIdx. 1949 ** (3) The template has same or fewer dependencies than the current loop 1950 ** (4) The template has the same or lower cost than the current loop 1951 */ 1952 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 1953 WhereLoop **ppPrev, *p; 1954 WhereInfo *pWInfo = pBuilder->pWInfo; 1955 sqlite3 *db = pWInfo->pParse->db; 1956 1957 /* If pBuilder->pOrSet is defined, then only keep track of the costs 1958 ** and prereqs. 1959 */ 1960 if( pBuilder->pOrSet!=0 ){ 1961 if( pTemplate->nLTerm ){ 1962 #if WHERETRACE_ENABLED 1963 u16 n = pBuilder->pOrSet->n; 1964 int x = 1965 #endif 1966 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 1967 pTemplate->nOut); 1968 #if WHERETRACE_ENABLED /* 0x8 */ 1969 if( sqlite3WhereTrace & 0x8 ){ 1970 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 1971 whereLoopPrint(pTemplate, pBuilder->pWC); 1972 } 1973 #endif 1974 } 1975 return SQLITE_OK; 1976 } 1977 1978 /* Look for an existing WhereLoop to replace with pTemplate 1979 */ 1980 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 1981 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 1982 1983 if( ppPrev==0 ){ 1984 /* There already exists a WhereLoop on the list that is better 1985 ** than pTemplate, so just ignore pTemplate */ 1986 #if WHERETRACE_ENABLED /* 0x8 */ 1987 if( sqlite3WhereTrace & 0x8 ){ 1988 sqlite3DebugPrintf(" skip: "); 1989 whereLoopPrint(pTemplate, pBuilder->pWC); 1990 } 1991 #endif 1992 return SQLITE_OK; 1993 }else{ 1994 p = *ppPrev; 1995 } 1996 1997 /* If we reach this point it means that either p[] should be overwritten 1998 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 1999 ** WhereLoop and insert it. 2000 */ 2001 #if WHERETRACE_ENABLED /* 0x8 */ 2002 if( sqlite3WhereTrace & 0x8 ){ 2003 if( p!=0 ){ 2004 sqlite3DebugPrintf("replace: "); 2005 whereLoopPrint(p, pBuilder->pWC); 2006 } 2007 sqlite3DebugPrintf(" add: "); 2008 whereLoopPrint(pTemplate, pBuilder->pWC); 2009 } 2010 #endif 2011 if( p==0 ){ 2012 /* Allocate a new WhereLoop to add to the end of the list */ 2013 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); 2014 if( p==0 ) return SQLITE_NOMEM; 2015 whereLoopInit(p); 2016 p->pNextLoop = 0; 2017 }else{ 2018 /* We will be overwriting WhereLoop p[]. But before we do, first 2019 ** go through the rest of the list and delete any other entries besides 2020 ** p[] that are also supplated by pTemplate */ 2021 WhereLoop **ppTail = &p->pNextLoop; 2022 WhereLoop *pToDel; 2023 while( *ppTail ){ 2024 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2025 if( ppTail==0 ) break; 2026 pToDel = *ppTail; 2027 if( pToDel==0 ) break; 2028 *ppTail = pToDel->pNextLoop; 2029 #if WHERETRACE_ENABLED /* 0x8 */ 2030 if( sqlite3WhereTrace & 0x8 ){ 2031 sqlite3DebugPrintf(" delete: "); 2032 whereLoopPrint(pToDel, pBuilder->pWC); 2033 } 2034 #endif 2035 whereLoopDelete(db, pToDel); 2036 } 2037 } 2038 whereLoopXfer(db, p, pTemplate); 2039 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2040 Index *pIndex = p->u.btree.pIndex; 2041 if( pIndex && pIndex->tnum==0 ){ 2042 p->u.btree.pIndex = 0; 2043 } 2044 } 2045 return SQLITE_OK; 2046 } 2047 2048 /* 2049 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2050 ** WHERE clause that reference the loop but which are not used by an 2051 ** index. 2052 * 2053 ** For every WHERE clause term that is not used by the index 2054 ** and which has a truth probability assigned by one of the likelihood(), 2055 ** likely(), or unlikely() SQL functions, reduce the estimated number 2056 ** of output rows by the probability specified. 2057 ** 2058 ** TUNING: For every WHERE clause term that is not used by the index 2059 ** and which does not have an assigned truth probability, heuristics 2060 ** described below are used to try to estimate the truth probability. 2061 ** TODO --> Perhaps this is something that could be improved by better 2062 ** table statistics. 2063 ** 2064 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2065 ** value corresponds to -1 in LogEst notation, so this means decrement 2066 ** the WhereLoop.nOut field for every such WHERE clause term. 2067 ** 2068 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2069 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2070 ** final output row estimate is no greater than 1/4 of the total number 2071 ** of rows in the table. In other words, assume that x==EXPR will filter 2072 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2073 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2074 ** on the "x" column and so in that case only cap the output row estimate 2075 ** at 1/2 instead of 1/4. 2076 */ 2077 static void whereLoopOutputAdjust( 2078 WhereClause *pWC, /* The WHERE clause */ 2079 WhereLoop *pLoop, /* The loop to adjust downward */ 2080 LogEst nRow /* Number of rows in the entire table */ 2081 ){ 2082 WhereTerm *pTerm, *pX; 2083 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2084 int i, j, k; 2085 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2086 2087 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2088 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2089 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2090 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2091 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2092 for(j=pLoop->nLTerm-1; j>=0; j--){ 2093 pX = pLoop->aLTerm[j]; 2094 if( pX==0 ) continue; 2095 if( pX==pTerm ) break; 2096 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2097 } 2098 if( j<0 ){ 2099 if( pTerm->truthProb<=0 ){ 2100 /* If a truth probability is specified using the likelihood() hints, 2101 ** then use the probability provided by the application. */ 2102 pLoop->nOut += pTerm->truthProb; 2103 }else{ 2104 /* In the absence of explicit truth probabilities, use heuristics to 2105 ** guess a reasonable truth probability. */ 2106 pLoop->nOut--; 2107 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2108 Expr *pRight = pTerm->pExpr->pRight; 2109 testcase( pTerm->pExpr->op==TK_IS ); 2110 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2111 k = 10; 2112 }else{ 2113 k = 20; 2114 } 2115 if( iReduce<k ) iReduce = k; 2116 } 2117 } 2118 } 2119 } 2120 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2121 } 2122 2123 /* 2124 ** Adjust the cost C by the costMult facter T. This only occurs if 2125 ** compiled with -DSQLITE_ENABLE_COSTMULT 2126 */ 2127 #ifdef SQLITE_ENABLE_COSTMULT 2128 # define ApplyCostMultiplier(C,T) C += T 2129 #else 2130 # define ApplyCostMultiplier(C,T) 2131 #endif 2132 2133 /* 2134 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2135 ** index pIndex. Try to match one more. 2136 ** 2137 ** When this function is called, pBuilder->pNew->nOut contains the 2138 ** number of rows expected to be visited by filtering using the nEq 2139 ** terms only. If it is modified, this value is restored before this 2140 ** function returns. 2141 ** 2142 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2143 ** INTEGER PRIMARY KEY. 2144 */ 2145 static int whereLoopAddBtreeIndex( 2146 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2147 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2148 Index *pProbe, /* An index on pSrc */ 2149 LogEst nInMul /* log(Number of iterations due to IN) */ 2150 ){ 2151 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2152 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2153 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2154 WhereLoop *pNew; /* Template WhereLoop under construction */ 2155 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2156 int opMask; /* Valid operators for constraints */ 2157 WhereScan scan; /* Iterator for WHERE terms */ 2158 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2159 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2160 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2161 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2162 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2163 LogEst saved_nOut; /* Original value of pNew->nOut */ 2164 int rc = SQLITE_OK; /* Return code */ 2165 LogEst rSize; /* Number of rows in the table */ 2166 LogEst rLogSize; /* Logarithm of table size */ 2167 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2168 2169 pNew = pBuilder->pNew; 2170 if( db->mallocFailed ) return SQLITE_NOMEM; 2171 2172 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2173 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2174 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2175 opMask = WO_LT|WO_LE; 2176 }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ 2177 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; 2178 }else{ 2179 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2180 } 2181 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2182 2183 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2184 2185 saved_nEq = pNew->u.btree.nEq; 2186 saved_nSkip = pNew->nSkip; 2187 saved_nLTerm = pNew->nLTerm; 2188 saved_wsFlags = pNew->wsFlags; 2189 saved_prereq = pNew->prereq; 2190 saved_nOut = pNew->nOut; 2191 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2192 opMask, pProbe); 2193 pNew->rSetup = 0; 2194 rSize = pProbe->aiRowLogEst[0]; 2195 rLogSize = estLog(rSize); 2196 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2197 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2198 LogEst rCostIdx; 2199 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2200 int nIn = 0; 2201 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2202 int nRecValid = pBuilder->nRecValid; 2203 #endif 2204 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2205 && indexColumnNotNull(pProbe, saved_nEq) 2206 ){ 2207 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2208 } 2209 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2210 2211 /* Do not allow the upper bound of a LIKE optimization range constraint 2212 ** to mix with a lower range bound from some other source */ 2213 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2214 2215 pNew->wsFlags = saved_wsFlags; 2216 pNew->u.btree.nEq = saved_nEq; 2217 pNew->nLTerm = saved_nLTerm; 2218 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2219 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2220 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2221 2222 assert( nInMul==0 2223 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2224 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2225 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2226 ); 2227 2228 if( eOp & WO_IN ){ 2229 Expr *pExpr = pTerm->pExpr; 2230 pNew->wsFlags |= WHERE_COLUMN_IN; 2231 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2232 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2233 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2234 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2235 /* "x IN (value, value, ...)" */ 2236 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2237 } 2238 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2239 ** changes "x IN (?)" into "x=?". */ 2240 2241 }else if( eOp & (WO_EQ|WO_IS) ){ 2242 int iCol = pProbe->aiColumn[saved_nEq]; 2243 pNew->wsFlags |= WHERE_COLUMN_EQ; 2244 assert( saved_nEq==pNew->u.btree.nEq ); 2245 if( iCol==XN_ROWID 2246 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2247 ){ 2248 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2249 pNew->wsFlags |= WHERE_UNQ_WANTED; 2250 }else{ 2251 pNew->wsFlags |= WHERE_ONEROW; 2252 } 2253 } 2254 }else if( eOp & WO_ISNULL ){ 2255 pNew->wsFlags |= WHERE_COLUMN_NULL; 2256 }else if( eOp & (WO_GT|WO_GE) ){ 2257 testcase( eOp & WO_GT ); 2258 testcase( eOp & WO_GE ); 2259 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2260 pBtm = pTerm; 2261 pTop = 0; 2262 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2263 /* Range contraints that come from the LIKE optimization are 2264 ** always used in pairs. */ 2265 pTop = &pTerm[1]; 2266 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2267 assert( pTop->wtFlags & TERM_LIKEOPT ); 2268 assert( pTop->eOperator==WO_LT ); 2269 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2270 pNew->aLTerm[pNew->nLTerm++] = pTop; 2271 pNew->wsFlags |= WHERE_TOP_LIMIT; 2272 } 2273 }else{ 2274 assert( eOp & (WO_LT|WO_LE) ); 2275 testcase( eOp & WO_LT ); 2276 testcase( eOp & WO_LE ); 2277 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2278 pTop = pTerm; 2279 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2280 pNew->aLTerm[pNew->nLTerm-2] : 0; 2281 } 2282 2283 /* At this point pNew->nOut is set to the number of rows expected to 2284 ** be visited by the index scan before considering term pTerm, or the 2285 ** values of nIn and nInMul. In other words, assuming that all 2286 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2287 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2288 assert( pNew->nOut==saved_nOut ); 2289 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2290 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2291 ** data, using some other estimate. */ 2292 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2293 }else{ 2294 int nEq = ++pNew->u.btree.nEq; 2295 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2296 2297 assert( pNew->nOut==saved_nOut ); 2298 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2299 assert( (eOp & WO_IN) || nIn==0 ); 2300 testcase( eOp & WO_IN ); 2301 pNew->nOut += pTerm->truthProb; 2302 pNew->nOut -= nIn; 2303 }else{ 2304 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2305 tRowcnt nOut = 0; 2306 if( nInMul==0 2307 && pProbe->nSample 2308 && pNew->u.btree.nEq<=pProbe->nSampleCol 2309 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2310 ){ 2311 Expr *pExpr = pTerm->pExpr; 2312 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2313 testcase( eOp & WO_EQ ); 2314 testcase( eOp & WO_IS ); 2315 testcase( eOp & WO_ISNULL ); 2316 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2317 }else{ 2318 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2319 } 2320 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2321 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2322 if( nOut ){ 2323 pNew->nOut = sqlite3LogEst(nOut); 2324 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2325 pNew->nOut -= nIn; 2326 } 2327 } 2328 if( nOut==0 ) 2329 #endif 2330 { 2331 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2332 if( eOp & WO_ISNULL ){ 2333 /* TUNING: If there is no likelihood() value, assume that a 2334 ** "col IS NULL" expression matches twice as many rows 2335 ** as (col=?). */ 2336 pNew->nOut += 10; 2337 } 2338 } 2339 } 2340 } 2341 2342 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2343 ** it to pNew->rRun, which is currently set to the cost of the index 2344 ** seek only. Then, if this is a non-covering index, add the cost of 2345 ** visiting the rows in the main table. */ 2346 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2347 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2348 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2349 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2350 } 2351 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2352 2353 nOutUnadjusted = pNew->nOut; 2354 pNew->rRun += nInMul + nIn; 2355 pNew->nOut += nInMul + nIn; 2356 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2357 rc = whereLoopInsert(pBuilder, pNew); 2358 2359 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2360 pNew->nOut = saved_nOut; 2361 }else{ 2362 pNew->nOut = nOutUnadjusted; 2363 } 2364 2365 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2366 && pNew->u.btree.nEq<pProbe->nColumn 2367 ){ 2368 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2369 } 2370 pNew->nOut = saved_nOut; 2371 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2372 pBuilder->nRecValid = nRecValid; 2373 #endif 2374 } 2375 pNew->prereq = saved_prereq; 2376 pNew->u.btree.nEq = saved_nEq; 2377 pNew->nSkip = saved_nSkip; 2378 pNew->wsFlags = saved_wsFlags; 2379 pNew->nOut = saved_nOut; 2380 pNew->nLTerm = saved_nLTerm; 2381 2382 /* Consider using a skip-scan if there are no WHERE clause constraints 2383 ** available for the left-most terms of the index, and if the average 2384 ** number of repeats in the left-most terms is at least 18. 2385 ** 2386 ** The magic number 18 is selected on the basis that scanning 17 rows 2387 ** is almost always quicker than an index seek (even though if the index 2388 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2389 ** the code). And, even if it is not, it should not be too much slower. 2390 ** On the other hand, the extra seeks could end up being significantly 2391 ** more expensive. */ 2392 assert( 42==sqlite3LogEst(18) ); 2393 if( saved_nEq==saved_nSkip 2394 && saved_nEq+1<pProbe->nKeyCol 2395 && pProbe->noSkipScan==0 2396 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2397 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2398 ){ 2399 LogEst nIter; 2400 pNew->u.btree.nEq++; 2401 pNew->nSkip++; 2402 pNew->aLTerm[pNew->nLTerm++] = 0; 2403 pNew->wsFlags |= WHERE_SKIPSCAN; 2404 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2405 pNew->nOut -= nIter; 2406 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2407 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2408 nIter += 5; 2409 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2410 pNew->nOut = saved_nOut; 2411 pNew->u.btree.nEq = saved_nEq; 2412 pNew->nSkip = saved_nSkip; 2413 pNew->wsFlags = saved_wsFlags; 2414 } 2415 2416 return rc; 2417 } 2418 2419 /* 2420 ** Return True if it is possible that pIndex might be useful in 2421 ** implementing the ORDER BY clause in pBuilder. 2422 ** 2423 ** Return False if pBuilder does not contain an ORDER BY clause or 2424 ** if there is no way for pIndex to be useful in implementing that 2425 ** ORDER BY clause. 2426 */ 2427 static int indexMightHelpWithOrderBy( 2428 WhereLoopBuilder *pBuilder, 2429 Index *pIndex, 2430 int iCursor 2431 ){ 2432 ExprList *pOB; 2433 ExprList *aColExpr; 2434 int ii, jj; 2435 2436 if( pIndex->bUnordered ) return 0; 2437 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2438 for(ii=0; ii<pOB->nExpr; ii++){ 2439 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2440 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2441 if( pExpr->iColumn<0 ) return 1; 2442 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2443 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2444 } 2445 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2446 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2447 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2448 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2449 return 1; 2450 } 2451 } 2452 } 2453 } 2454 return 0; 2455 } 2456 2457 /* 2458 ** Return a bitmask where 1s indicate that the corresponding column of 2459 ** the table is used by an index. Only the first 63 columns are considered. 2460 */ 2461 static Bitmask columnsInIndex(Index *pIdx){ 2462 Bitmask m = 0; 2463 int j; 2464 for(j=pIdx->nColumn-1; j>=0; j--){ 2465 int x = pIdx->aiColumn[j]; 2466 if( x>=0 ){ 2467 testcase( x==BMS-1 ); 2468 testcase( x==BMS-2 ); 2469 if( x<BMS-1 ) m |= MASKBIT(x); 2470 } 2471 } 2472 return m; 2473 } 2474 2475 /* Check to see if a partial index with pPartIndexWhere can be used 2476 ** in the current query. Return true if it can be and false if not. 2477 */ 2478 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2479 int i; 2480 WhereTerm *pTerm; 2481 while( pWhere->op==TK_AND ){ 2482 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2483 pWhere = pWhere->pRight; 2484 } 2485 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2486 Expr *pExpr = pTerm->pExpr; 2487 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2488 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2489 ){ 2490 return 1; 2491 } 2492 } 2493 return 0; 2494 } 2495 2496 /* 2497 ** Add all WhereLoop objects for a single table of the join where the table 2498 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be 2499 ** a b-tree table, not a virtual table. 2500 ** 2501 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2502 ** are calculated as follows: 2503 ** 2504 ** For a full scan, assuming the table (or index) contains nRow rows: 2505 ** 2506 ** cost = nRow * 3.0 // full-table scan 2507 ** cost = nRow * K // scan of covering index 2508 ** cost = nRow * (K+3.0) // scan of non-covering index 2509 ** 2510 ** where K is a value between 1.1 and 3.0 set based on the relative 2511 ** estimated average size of the index and table records. 2512 ** 2513 ** For an index scan, where nVisit is the number of index rows visited 2514 ** by the scan, and nSeek is the number of seek operations required on 2515 ** the index b-tree: 2516 ** 2517 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2518 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2519 ** 2520 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2521 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2522 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2523 ** 2524 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2525 ** of uncertainty. For this reason, scoring is designed to pick plans that 2526 ** "do the least harm" if the estimates are inaccurate. For example, a 2527 ** log(nRow) factor is omitted from a non-covering index scan in order to 2528 ** bias the scoring in favor of using an index, since the worst-case 2529 ** performance of using an index is far better than the worst-case performance 2530 ** of a full table scan. 2531 */ 2532 static int whereLoopAddBtree( 2533 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2534 Bitmask mExtra /* Extra prerequesites for using this table */ 2535 ){ 2536 WhereInfo *pWInfo; /* WHERE analysis context */ 2537 Index *pProbe; /* An index we are evaluating */ 2538 Index sPk; /* A fake index object for the primary key */ 2539 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2540 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2541 SrcList *pTabList; /* The FROM clause */ 2542 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2543 WhereLoop *pNew; /* Template WhereLoop object */ 2544 int rc = SQLITE_OK; /* Return code */ 2545 int iSortIdx = 1; /* Index number */ 2546 int b; /* A boolean value */ 2547 LogEst rSize; /* number of rows in the table */ 2548 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2549 WhereClause *pWC; /* The parsed WHERE clause */ 2550 Table *pTab; /* Table being queried */ 2551 2552 pNew = pBuilder->pNew; 2553 pWInfo = pBuilder->pWInfo; 2554 pTabList = pWInfo->pTabList; 2555 pSrc = pTabList->a + pNew->iTab; 2556 pTab = pSrc->pTab; 2557 pWC = pBuilder->pWC; 2558 assert( !IsVirtual(pSrc->pTab) ); 2559 2560 if( pSrc->pIBIndex ){ 2561 /* An INDEXED BY clause specifies a particular index to use */ 2562 pProbe = pSrc->pIBIndex; 2563 }else if( !HasRowid(pTab) ){ 2564 pProbe = pTab->pIndex; 2565 }else{ 2566 /* There is no INDEXED BY clause. Create a fake Index object in local 2567 ** variable sPk to represent the rowid primary key index. Make this 2568 ** fake index the first in a chain of Index objects with all of the real 2569 ** indices to follow */ 2570 Index *pFirst; /* First of real indices on the table */ 2571 memset(&sPk, 0, sizeof(Index)); 2572 sPk.nKeyCol = 1; 2573 sPk.nColumn = 1; 2574 sPk.aiColumn = &aiColumnPk; 2575 sPk.aiRowLogEst = aiRowEstPk; 2576 sPk.onError = OE_Replace; 2577 sPk.pTable = pTab; 2578 sPk.szIdxRow = pTab->szTabRow; 2579 aiRowEstPk[0] = pTab->nRowLogEst; 2580 aiRowEstPk[1] = 0; 2581 pFirst = pSrc->pTab->pIndex; 2582 if( pSrc->fg.notIndexed==0 ){ 2583 /* The real indices of the table are only considered if the 2584 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2585 sPk.pNext = pFirst; 2586 } 2587 pProbe = &sPk; 2588 } 2589 rSize = pTab->nRowLogEst; 2590 rLogSize = estLog(rSize); 2591 2592 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2593 /* Automatic indexes */ 2594 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2595 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 2596 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2597 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2598 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2599 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2600 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2601 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2602 ){ 2603 /* Generate auto-index WhereLoops */ 2604 WhereTerm *pTerm; 2605 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2606 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2607 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2608 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2609 pNew->u.btree.nEq = 1; 2610 pNew->nSkip = 0; 2611 pNew->u.btree.pIndex = 0; 2612 pNew->nLTerm = 1; 2613 pNew->aLTerm[0] = pTerm; 2614 /* TUNING: One-time cost for computing the automatic index is 2615 ** estimated to be X*N*log2(N) where N is the number of rows in 2616 ** the table being indexed and where X is 7 (LogEst=28) for normal 2617 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2618 ** of X is smaller for views and subqueries so that the query planner 2619 ** will be more aggressive about generating automatic indexes for 2620 ** those objects, since there is no opportunity to add schema 2621 ** indexes on subqueries and views. */ 2622 pNew->rSetup = rLogSize + rSize + 4; 2623 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2624 pNew->rSetup += 24; 2625 } 2626 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2627 /* TUNING: Each index lookup yields 20 rows in the table. This 2628 ** is more than the usual guess of 10 rows, since we have no way 2629 ** of knowing how selective the index will ultimately be. It would 2630 ** not be unreasonable to make this value much larger. */ 2631 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2632 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2633 pNew->wsFlags = WHERE_AUTO_INDEX; 2634 pNew->prereq = mExtra | pTerm->prereqRight; 2635 rc = whereLoopInsert(pBuilder, pNew); 2636 } 2637 } 2638 } 2639 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2640 2641 /* Loop over all indices 2642 */ 2643 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2644 if( pProbe->pPartIdxWhere!=0 2645 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2646 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2647 continue; /* Partial index inappropriate for this query */ 2648 } 2649 rSize = pProbe->aiRowLogEst[0]; 2650 pNew->u.btree.nEq = 0; 2651 pNew->nSkip = 0; 2652 pNew->nLTerm = 0; 2653 pNew->iSortIdx = 0; 2654 pNew->rSetup = 0; 2655 pNew->prereq = mExtra; 2656 pNew->nOut = rSize; 2657 pNew->u.btree.pIndex = pProbe; 2658 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2659 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2660 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2661 if( pProbe->tnum<=0 ){ 2662 /* Integer primary key index */ 2663 pNew->wsFlags = WHERE_IPK; 2664 2665 /* Full table scan */ 2666 pNew->iSortIdx = b ? iSortIdx : 0; 2667 /* TUNING: Cost of full table scan is (N*3.0). */ 2668 pNew->rRun = rSize + 16; 2669 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2670 whereLoopOutputAdjust(pWC, pNew, rSize); 2671 rc = whereLoopInsert(pBuilder, pNew); 2672 pNew->nOut = rSize; 2673 if( rc ) break; 2674 }else{ 2675 Bitmask m; 2676 if( pProbe->isCovering ){ 2677 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2678 m = 0; 2679 }else{ 2680 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2681 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2682 } 2683 2684 /* Full scan via index */ 2685 if( b 2686 || !HasRowid(pTab) 2687 || ( m==0 2688 && pProbe->bUnordered==0 2689 && (pProbe->szIdxRow<pTab->szTabRow) 2690 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2691 && sqlite3GlobalConfig.bUseCis 2692 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2693 ) 2694 ){ 2695 pNew->iSortIdx = b ? iSortIdx : 0; 2696 2697 /* The cost of visiting the index rows is N*K, where K is 2698 ** between 1.1 and 3.0, depending on the relative sizes of the 2699 ** index and table rows. If this is a non-covering index scan, 2700 ** also add the cost of visiting table rows (N*3.0). */ 2701 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2702 if( m!=0 ){ 2703 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); 2704 } 2705 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2706 whereLoopOutputAdjust(pWC, pNew, rSize); 2707 rc = whereLoopInsert(pBuilder, pNew); 2708 pNew->nOut = rSize; 2709 if( rc ) break; 2710 } 2711 } 2712 2713 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2714 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2715 sqlite3Stat4ProbeFree(pBuilder->pRec); 2716 pBuilder->nRecValid = 0; 2717 pBuilder->pRec = 0; 2718 #endif 2719 2720 /* If there was an INDEXED BY clause, then only that one index is 2721 ** considered. */ 2722 if( pSrc->pIBIndex ) break; 2723 } 2724 return rc; 2725 } 2726 2727 #ifndef SQLITE_OMIT_VIRTUALTABLE 2728 /* 2729 ** Add all WhereLoop objects for a table of the join identified by 2730 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 2731 ** 2732 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and 2733 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause 2734 ** entries that occur before the virtual table in the FROM clause and are 2735 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 2736 ** mUnusable mask contains all FROM clause entries that occur after the 2737 ** virtual table and are separated from it by at least one LEFT or 2738 ** CROSS JOIN. 2739 ** 2740 ** For example, if the query were: 2741 ** 2742 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 2743 ** 2744 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). 2745 ** 2746 ** All the tables in mExtra must be scanned before the current virtual 2747 ** table. So any terms for which all prerequisites are satisfied by 2748 ** mExtra may be specified as "usable" in all calls to xBestIndex. 2749 ** Conversely, all tables in mUnusable must be scanned after the current 2750 ** virtual table, so any terms for which the prerequisites overlap with 2751 ** mUnusable should always be configured as "not-usable" for xBestIndex. 2752 */ 2753 static int whereLoopAddVirtual( 2754 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2755 Bitmask mExtra, /* Tables that must be scanned before this one */ 2756 Bitmask mUnusable /* Tables that must be scanned after this one */ 2757 ){ 2758 WhereInfo *pWInfo; /* WHERE analysis context */ 2759 Parse *pParse; /* The parsing context */ 2760 WhereClause *pWC; /* The WHERE clause */ 2761 struct SrcList_item *pSrc; /* The FROM clause term to search */ 2762 Table *pTab; 2763 sqlite3 *db; 2764 sqlite3_index_info *pIdxInfo; 2765 struct sqlite3_index_constraint *pIdxCons; 2766 struct sqlite3_index_constraint_usage *pUsage; 2767 WhereTerm *pTerm; 2768 int i, j; 2769 int iTerm, mxTerm; 2770 int nConstraint; 2771 int seenIn = 0; /* True if an IN operator is seen */ 2772 int seenVar = 0; /* True if a non-constant constraint is seen */ 2773 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ 2774 WhereLoop *pNew; 2775 int rc = SQLITE_OK; 2776 2777 assert( (mExtra & mUnusable)==0 ); 2778 pWInfo = pBuilder->pWInfo; 2779 pParse = pWInfo->pParse; 2780 db = pParse->db; 2781 pWC = pBuilder->pWC; 2782 pNew = pBuilder->pNew; 2783 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 2784 pTab = pSrc->pTab; 2785 assert( IsVirtual(pTab) ); 2786 pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); 2787 if( pIdxInfo==0 ) return SQLITE_NOMEM; 2788 pNew->prereq = 0; 2789 pNew->rSetup = 0; 2790 pNew->wsFlags = WHERE_VIRTUALTABLE; 2791 pNew->nLTerm = 0; 2792 pNew->u.vtab.needFree = 0; 2793 pUsage = pIdxInfo->aConstraintUsage; 2794 nConstraint = pIdxInfo->nConstraint; 2795 if( whereLoopResize(db, pNew, nConstraint) ){ 2796 sqlite3DbFree(db, pIdxInfo); 2797 return SQLITE_NOMEM; 2798 } 2799 2800 for(iPhase=0; iPhase<=3; iPhase++){ 2801 if( !seenIn && (iPhase&1)!=0 ){ 2802 iPhase++; 2803 if( iPhase>3 ) break; 2804 } 2805 if( !seenVar && iPhase>1 ) break; 2806 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2807 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2808 j = pIdxCons->iTermOffset; 2809 pTerm = &pWC->a[j]; 2810 switch( iPhase ){ 2811 case 0: /* Constants without IN operator */ 2812 pIdxCons->usable = 0; 2813 if( (pTerm->eOperator & WO_IN)!=0 ){ 2814 seenIn = 1; 2815 } 2816 if( (pTerm->prereqRight & ~mExtra)!=0 ){ 2817 seenVar = 1; 2818 }else if( (pTerm->eOperator & WO_IN)==0 ){ 2819 pIdxCons->usable = 1; 2820 } 2821 break; 2822 case 1: /* Constants with IN operators */ 2823 assert( seenIn ); 2824 pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; 2825 break; 2826 case 2: /* Variables without IN */ 2827 assert( seenVar ); 2828 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; 2829 break; 2830 default: /* Variables with IN */ 2831 assert( seenVar && seenIn ); 2832 pIdxCons->usable = 1; 2833 break; 2834 } 2835 } 2836 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2837 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2838 pIdxInfo->idxStr = 0; 2839 pIdxInfo->idxNum = 0; 2840 pIdxInfo->needToFreeIdxStr = 0; 2841 pIdxInfo->orderByConsumed = 0; 2842 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 2843 pIdxInfo->estimatedRows = 25; 2844 pIdxInfo->idxFlags = 0; 2845 rc = vtabBestIndex(pParse, pTab, pIdxInfo); 2846 if( rc ) goto whereLoopAddVtab_exit; 2847 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2848 pNew->prereq = mExtra; 2849 mxTerm = -1; 2850 assert( pNew->nLSlot>=nConstraint ); 2851 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 2852 pNew->u.vtab.omitMask = 0; 2853 for(i=0; i<nConstraint; i++, pIdxCons++){ 2854 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 2855 j = pIdxCons->iTermOffset; 2856 if( iTerm>=nConstraint 2857 || j<0 2858 || j>=pWC->nTerm 2859 || pNew->aLTerm[iTerm]!=0 2860 ){ 2861 rc = SQLITE_ERROR; 2862 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); 2863 goto whereLoopAddVtab_exit; 2864 } 2865 testcase( iTerm==nConstraint-1 ); 2866 testcase( j==0 ); 2867 testcase( j==pWC->nTerm-1 ); 2868 pTerm = &pWC->a[j]; 2869 pNew->prereq |= pTerm->prereqRight; 2870 assert( iTerm<pNew->nLSlot ); 2871 pNew->aLTerm[iTerm] = pTerm; 2872 if( iTerm>mxTerm ) mxTerm = iTerm; 2873 testcase( iTerm==15 ); 2874 testcase( iTerm==16 ); 2875 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 2876 if( (pTerm->eOperator & WO_IN)!=0 ){ 2877 if( pUsage[i].omit==0 ){ 2878 /* Do not attempt to use an IN constraint if the virtual table 2879 ** says that the equivalent EQ constraint cannot be safely omitted. 2880 ** If we do attempt to use such a constraint, some rows might be 2881 ** repeated in the output. */ 2882 break; 2883 } 2884 /* A virtual table that is constrained by an IN clause may not 2885 ** consume the ORDER BY clause because (1) the order of IN terms 2886 ** is not necessarily related to the order of output terms and 2887 ** (2) Multiple outputs from a single IN value will not merge 2888 ** together. */ 2889 pIdxInfo->orderByConsumed = 0; 2890 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 2891 } 2892 } 2893 } 2894 if( i>=nConstraint ){ 2895 pNew->nLTerm = mxTerm+1; 2896 assert( pNew->nLTerm<=pNew->nLSlot ); 2897 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 2898 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 2899 pIdxInfo->needToFreeIdxStr = 0; 2900 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 2901 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 2902 pIdxInfo->nOrderBy : 0); 2903 pNew->rSetup = 0; 2904 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 2905 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 2906 2907 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 2908 ** that the scan will visit at most one row. Clear it otherwise. */ 2909 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 2910 pNew->wsFlags |= WHERE_ONEROW; 2911 }else{ 2912 pNew->wsFlags &= ~WHERE_ONEROW; 2913 } 2914 whereLoopInsert(pBuilder, pNew); 2915 if( pNew->u.vtab.needFree ){ 2916 sqlite3_free(pNew->u.vtab.idxStr); 2917 pNew->u.vtab.needFree = 0; 2918 } 2919 } 2920 } 2921 2922 whereLoopAddVtab_exit: 2923 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2924 sqlite3DbFree(db, pIdxInfo); 2925 return rc; 2926 } 2927 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2928 2929 /* 2930 ** Add WhereLoop entries to handle OR terms. This works for either 2931 ** btrees or virtual tables. 2932 */ 2933 static int whereLoopAddOr( 2934 WhereLoopBuilder *pBuilder, 2935 Bitmask mExtra, 2936 Bitmask mUnusable 2937 ){ 2938 WhereInfo *pWInfo = pBuilder->pWInfo; 2939 WhereClause *pWC; 2940 WhereLoop *pNew; 2941 WhereTerm *pTerm, *pWCEnd; 2942 int rc = SQLITE_OK; 2943 int iCur; 2944 WhereClause tempWC; 2945 WhereLoopBuilder sSubBuild; 2946 WhereOrSet sSum, sCur; 2947 struct SrcList_item *pItem; 2948 2949 pWC = pBuilder->pWC; 2950 pWCEnd = pWC->a + pWC->nTerm; 2951 pNew = pBuilder->pNew; 2952 memset(&sSum, 0, sizeof(sSum)); 2953 pItem = pWInfo->pTabList->a + pNew->iTab; 2954 iCur = pItem->iCursor; 2955 2956 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 2957 if( (pTerm->eOperator & WO_OR)!=0 2958 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 2959 ){ 2960 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 2961 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 2962 WhereTerm *pOrTerm; 2963 int once = 1; 2964 int i, j; 2965 2966 sSubBuild = *pBuilder; 2967 sSubBuild.pOrderBy = 0; 2968 sSubBuild.pOrSet = &sCur; 2969 2970 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 2971 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 2972 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 2973 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 2974 }else if( pOrTerm->leftCursor==iCur ){ 2975 tempWC.pWInfo = pWC->pWInfo; 2976 tempWC.pOuter = pWC; 2977 tempWC.op = TK_AND; 2978 tempWC.nTerm = 1; 2979 tempWC.a = pOrTerm; 2980 sSubBuild.pWC = &tempWC; 2981 }else{ 2982 continue; 2983 } 2984 sCur.n = 0; 2985 #ifdef WHERETRACE_ENABLED 2986 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 2987 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 2988 if( sqlite3WhereTrace & 0x400 ){ 2989 for(i=0; i<sSubBuild.pWC->nTerm; i++){ 2990 whereTermPrint(&sSubBuild.pWC->a[i], i); 2991 } 2992 } 2993 #endif 2994 #ifndef SQLITE_OMIT_VIRTUALTABLE 2995 if( IsVirtual(pItem->pTab) ){ 2996 rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); 2997 }else 2998 #endif 2999 { 3000 rc = whereLoopAddBtree(&sSubBuild, mExtra); 3001 } 3002 if( rc==SQLITE_OK ){ 3003 rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); 3004 } 3005 assert( rc==SQLITE_OK || sCur.n==0 ); 3006 if( sCur.n==0 ){ 3007 sSum.n = 0; 3008 break; 3009 }else if( once ){ 3010 whereOrMove(&sSum, &sCur); 3011 once = 0; 3012 }else{ 3013 WhereOrSet sPrev; 3014 whereOrMove(&sPrev, &sSum); 3015 sSum.n = 0; 3016 for(i=0; i<sPrev.n; i++){ 3017 for(j=0; j<sCur.n; j++){ 3018 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3019 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3020 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3021 } 3022 } 3023 } 3024 } 3025 pNew->nLTerm = 1; 3026 pNew->aLTerm[0] = pTerm; 3027 pNew->wsFlags = WHERE_MULTI_OR; 3028 pNew->rSetup = 0; 3029 pNew->iSortIdx = 0; 3030 memset(&pNew->u, 0, sizeof(pNew->u)); 3031 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3032 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3033 ** of all sub-scans required by the OR-scan. However, due to rounding 3034 ** errors, it may be that the cost of the OR-scan is equal to its 3035 ** most expensive sub-scan. Add the smallest possible penalty 3036 ** (equivalent to multiplying the cost by 1.07) to ensure that 3037 ** this does not happen. Otherwise, for WHERE clauses such as the 3038 ** following where there is an index on "y": 3039 ** 3040 ** WHERE likelihood(x=?, 0.99) OR y=? 3041 ** 3042 ** the planner may elect to "OR" together a full-table scan and an 3043 ** index lookup. And other similarly odd results. */ 3044 pNew->rRun = sSum.a[i].rRun + 1; 3045 pNew->nOut = sSum.a[i].nOut; 3046 pNew->prereq = sSum.a[i].prereq; 3047 rc = whereLoopInsert(pBuilder, pNew); 3048 } 3049 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3050 } 3051 } 3052 return rc; 3053 } 3054 3055 /* 3056 ** Add all WhereLoop objects for all tables 3057 */ 3058 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3059 WhereInfo *pWInfo = pBuilder->pWInfo; 3060 Bitmask mExtra = 0; 3061 Bitmask mPrior = 0; 3062 int iTab; 3063 SrcList *pTabList = pWInfo->pTabList; 3064 struct SrcList_item *pItem; 3065 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3066 sqlite3 *db = pWInfo->pParse->db; 3067 int rc = SQLITE_OK; 3068 WhereLoop *pNew; 3069 u8 priorJointype = 0; 3070 3071 /* Loop over the tables in the join, from left to right */ 3072 pNew = pBuilder->pNew; 3073 whereLoopInit(pNew); 3074 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3075 Bitmask mUnusable = 0; 3076 pNew->iTab = iTab; 3077 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3078 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3079 /* This condition is true when pItem is the FROM clause term on the 3080 ** right-hand-side of a LEFT or CROSS JOIN. */ 3081 mExtra = mPrior; 3082 } 3083 priorJointype = pItem->fg.jointype; 3084 if( IsVirtual(pItem->pTab) ){ 3085 struct SrcList_item *p; 3086 for(p=&pItem[1]; p<pEnd; p++){ 3087 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3088 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3089 } 3090 } 3091 rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); 3092 }else{ 3093 rc = whereLoopAddBtree(pBuilder, mExtra); 3094 } 3095 if( rc==SQLITE_OK ){ 3096 rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); 3097 } 3098 mPrior |= pNew->maskSelf; 3099 if( rc || db->mallocFailed ) break; 3100 } 3101 3102 whereLoopClear(db, pNew); 3103 return rc; 3104 } 3105 3106 /* 3107 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3108 ** parameters) to see if it outputs rows in the requested ORDER BY 3109 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3110 ** 3111 ** N>0: N terms of the ORDER BY clause are satisfied 3112 ** N==0: No terms of the ORDER BY clause are satisfied 3113 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3114 ** 3115 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3116 ** strict. With GROUP BY and DISTINCT the only requirement is that 3117 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3118 ** and DISTINCT do not require rows to appear in any particular order as long 3119 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3120 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3121 ** pOrderBy terms must be matched in strict left-to-right order. 3122 */ 3123 static i8 wherePathSatisfiesOrderBy( 3124 WhereInfo *pWInfo, /* The WHERE clause */ 3125 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3126 WherePath *pPath, /* The WherePath to check */ 3127 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ 3128 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3129 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3130 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3131 ){ 3132 u8 revSet; /* True if rev is known */ 3133 u8 rev; /* Composite sort order */ 3134 u8 revIdx; /* Index sort order */ 3135 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3136 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3137 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3138 u16 nKeyCol; /* Number of key columns in pIndex */ 3139 u16 nColumn; /* Total number of ordered columns in the index */ 3140 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3141 int iLoop; /* Index of WhereLoop in pPath being processed */ 3142 int i, j; /* Loop counters */ 3143 int iCur; /* Cursor number for current WhereLoop */ 3144 int iColumn; /* A column number within table iCur */ 3145 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3146 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3147 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3148 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3149 Index *pIndex; /* The index associated with pLoop */ 3150 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3151 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3152 Bitmask obDone; /* Mask of all ORDER BY terms */ 3153 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3154 Bitmask ready; /* Mask of inner loops */ 3155 3156 /* 3157 ** We say the WhereLoop is "one-row" if it generates no more than one 3158 ** row of output. A WhereLoop is one-row if all of the following are true: 3159 ** (a) All index columns match with WHERE_COLUMN_EQ. 3160 ** (b) The index is unique 3161 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3162 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3163 ** 3164 ** We say the WhereLoop is "order-distinct" if the set of columns from 3165 ** that WhereLoop that are in the ORDER BY clause are different for every 3166 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3167 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3168 ** is not order-distinct. To be order-distinct is not quite the same as being 3169 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3170 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3171 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3172 ** 3173 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3174 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3175 ** automatically order-distinct. 3176 */ 3177 3178 assert( pOrderBy!=0 ); 3179 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3180 3181 nOrderBy = pOrderBy->nExpr; 3182 testcase( nOrderBy==BMS-1 ); 3183 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3184 isOrderDistinct = 1; 3185 obDone = MASKBIT(nOrderBy)-1; 3186 orderDistinctMask = 0; 3187 ready = 0; 3188 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3189 if( iLoop>0 ) ready |= pLoop->maskSelf; 3190 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; 3191 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3192 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3193 break; 3194 } 3195 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3196 3197 /* Mark off any ORDER BY term X that is a column in the table of 3198 ** the current loop for which there is term in the WHERE 3199 ** clause of the form X IS NULL or X=? that reference only outer 3200 ** loops. 3201 */ 3202 for(i=0; i<nOrderBy; i++){ 3203 if( MASKBIT(i) & obSat ) continue; 3204 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3205 if( pOBExpr->op!=TK_COLUMN ) continue; 3206 if( pOBExpr->iTable!=iCur ) continue; 3207 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3208 ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); 3209 if( pTerm==0 ) continue; 3210 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3211 const char *z1, *z2; 3212 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3213 if( !pColl ) pColl = db->pDfltColl; 3214 z1 = pColl->zName; 3215 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3216 if( !pColl ) pColl = db->pDfltColl; 3217 z2 = pColl->zName; 3218 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3219 testcase( pTerm->pExpr->op==TK_IS ); 3220 } 3221 obSat |= MASKBIT(i); 3222 } 3223 3224 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3225 if( pLoop->wsFlags & WHERE_IPK ){ 3226 pIndex = 0; 3227 nKeyCol = 0; 3228 nColumn = 1; 3229 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3230 return 0; 3231 }else{ 3232 nKeyCol = pIndex->nKeyCol; 3233 nColumn = pIndex->nColumn; 3234 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3235 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3236 || !HasRowid(pIndex->pTable)); 3237 isOrderDistinct = IsUniqueIndex(pIndex); 3238 } 3239 3240 /* Loop through all columns of the index and deal with the ones 3241 ** that are not constrained by == or IN. 3242 */ 3243 rev = revSet = 0; 3244 distinctColumns = 0; 3245 for(j=0; j<nColumn; j++){ 3246 u8 bOnce; /* True to run the ORDER BY search loop */ 3247 3248 /* Skip over == and IS NULL terms */ 3249 if( j<pLoop->u.btree.nEq 3250 && pLoop->nSkip==0 3251 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 3252 ){ 3253 if( i & WO_ISNULL ){ 3254 testcase( isOrderDistinct ); 3255 isOrderDistinct = 0; 3256 } 3257 continue; 3258 } 3259 3260 /* Get the column number in the table (iColumn) and sort order 3261 ** (revIdx) for the j-th column of the index. 3262 */ 3263 if( pIndex ){ 3264 iColumn = pIndex->aiColumn[j]; 3265 revIdx = pIndex->aSortOrder[j]; 3266 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3267 }else{ 3268 iColumn = XN_ROWID; 3269 revIdx = 0; 3270 } 3271 3272 /* An unconstrained column that might be NULL means that this 3273 ** WhereLoop is not well-ordered 3274 */ 3275 if( isOrderDistinct 3276 && iColumn>=0 3277 && j>=pLoop->u.btree.nEq 3278 && pIndex->pTable->aCol[iColumn].notNull==0 3279 ){ 3280 isOrderDistinct = 0; 3281 } 3282 3283 /* Find the ORDER BY term that corresponds to the j-th column 3284 ** of the index and mark that ORDER BY term off 3285 */ 3286 bOnce = 1; 3287 isMatch = 0; 3288 for(i=0; bOnce && i<nOrderBy; i++){ 3289 if( MASKBIT(i) & obSat ) continue; 3290 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3291 testcase( wctrlFlags & WHERE_GROUPBY ); 3292 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3293 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3294 if( iColumn>=(-1) ){ 3295 if( pOBExpr->op!=TK_COLUMN ) continue; 3296 if( pOBExpr->iTable!=iCur ) continue; 3297 if( pOBExpr->iColumn!=iColumn ) continue; 3298 }else{ 3299 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3300 continue; 3301 } 3302 } 3303 if( iColumn>=0 ){ 3304 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3305 if( !pColl ) pColl = db->pDfltColl; 3306 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3307 } 3308 isMatch = 1; 3309 break; 3310 } 3311 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3312 /* Make sure the sort order is compatible in an ORDER BY clause. 3313 ** Sort order is irrelevant for a GROUP BY clause. */ 3314 if( revSet ){ 3315 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3316 }else{ 3317 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3318 if( rev ) *pRevMask |= MASKBIT(iLoop); 3319 revSet = 1; 3320 } 3321 } 3322 if( isMatch ){ 3323 if( iColumn<0 ){ 3324 testcase( distinctColumns==0 ); 3325 distinctColumns = 1; 3326 } 3327 obSat |= MASKBIT(i); 3328 }else{ 3329 /* No match found */ 3330 if( j==0 || j<nKeyCol ){ 3331 testcase( isOrderDistinct!=0 ); 3332 isOrderDistinct = 0; 3333 } 3334 break; 3335 } 3336 } /* end Loop over all index columns */ 3337 if( distinctColumns ){ 3338 testcase( isOrderDistinct==0 ); 3339 isOrderDistinct = 1; 3340 } 3341 } /* end-if not one-row */ 3342 3343 /* Mark off any other ORDER BY terms that reference pLoop */ 3344 if( isOrderDistinct ){ 3345 orderDistinctMask |= pLoop->maskSelf; 3346 for(i=0; i<nOrderBy; i++){ 3347 Expr *p; 3348 Bitmask mTerm; 3349 if( MASKBIT(i) & obSat ) continue; 3350 p = pOrderBy->a[i].pExpr; 3351 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3352 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3353 if( (mTerm&~orderDistinctMask)==0 ){ 3354 obSat |= MASKBIT(i); 3355 } 3356 } 3357 } 3358 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3359 if( obSat==obDone ) return (i8)nOrderBy; 3360 if( !isOrderDistinct ){ 3361 for(i=nOrderBy-1; i>0; i--){ 3362 Bitmask m = MASKBIT(i) - 1; 3363 if( (obSat&m)==m ) return i; 3364 } 3365 return 0; 3366 } 3367 return -1; 3368 } 3369 3370 3371 /* 3372 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3373 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3374 ** BY clause - and so any order that groups rows as required satisfies the 3375 ** request. 3376 ** 3377 ** Normally, in this case it is not possible for the caller to determine 3378 ** whether or not the rows are really being delivered in sorted order, or 3379 ** just in some other order that provides the required grouping. However, 3380 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3381 ** this function may be called on the returned WhereInfo object. It returns 3382 ** true if the rows really will be sorted in the specified order, or false 3383 ** otherwise. 3384 ** 3385 ** For example, assuming: 3386 ** 3387 ** CREATE INDEX i1 ON t1(x, Y); 3388 ** 3389 ** then 3390 ** 3391 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3392 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3393 */ 3394 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3395 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3396 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3397 return pWInfo->sorted; 3398 } 3399 3400 #ifdef WHERETRACE_ENABLED 3401 /* For debugging use only: */ 3402 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3403 static char zName[65]; 3404 int i; 3405 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3406 if( pLast ) zName[i++] = pLast->cId; 3407 zName[i] = 0; 3408 return zName; 3409 } 3410 #endif 3411 3412 /* 3413 ** Return the cost of sorting nRow rows, assuming that the keys have 3414 ** nOrderby columns and that the first nSorted columns are already in 3415 ** order. 3416 */ 3417 static LogEst whereSortingCost( 3418 WhereInfo *pWInfo, 3419 LogEst nRow, 3420 int nOrderBy, 3421 int nSorted 3422 ){ 3423 /* TUNING: Estimated cost of a full external sort, where N is 3424 ** the number of rows to sort is: 3425 ** 3426 ** cost = (3.0 * N * log(N)). 3427 ** 3428 ** Or, if the order-by clause has X terms but only the last Y 3429 ** terms are out of order, then block-sorting will reduce the 3430 ** sorting cost to: 3431 ** 3432 ** cost = (3.0 * N * log(N)) * (Y/X) 3433 ** 3434 ** The (Y/X) term is implemented using stack variable rScale 3435 ** below. */ 3436 LogEst rScale, rSortCost; 3437 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3438 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3439 rSortCost = nRow + estLog(nRow) + rScale + 16; 3440 3441 /* TUNING: The cost of implementing DISTINCT using a B-TREE is 3442 ** similar but with a larger constant of proportionality. 3443 ** Multiply by an additional factor of 3.0. */ 3444 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3445 rSortCost += 16; 3446 } 3447 3448 return rSortCost; 3449 } 3450 3451 /* 3452 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3453 ** attempts to find the lowest cost path that visits each WhereLoop 3454 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3455 ** 3456 ** Assume that the total number of output rows that will need to be sorted 3457 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3458 ** costs if nRowEst==0. 3459 ** 3460 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3461 ** error occurs. 3462 */ 3463 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3464 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3465 int nLoop; /* Number of terms in the join */ 3466 Parse *pParse; /* Parsing context */ 3467 sqlite3 *db; /* The database connection */ 3468 int iLoop; /* Loop counter over the terms of the join */ 3469 int ii, jj; /* Loop counters */ 3470 int mxI = 0; /* Index of next entry to replace */ 3471 int nOrderBy; /* Number of ORDER BY clause terms */ 3472 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3473 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3474 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3475 WherePath *aFrom; /* All nFrom paths at the previous level */ 3476 WherePath *aTo; /* The nTo best paths at the current level */ 3477 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3478 WherePath *pTo; /* An element of aTo[] that we are working on */ 3479 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3480 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3481 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3482 char *pSpace; /* Temporary memory used by this routine */ 3483 int nSpace; /* Bytes of space allocated at pSpace */ 3484 3485 pParse = pWInfo->pParse; 3486 db = pParse->db; 3487 nLoop = pWInfo->nLevel; 3488 /* TUNING: For simple queries, only the best path is tracked. 3489 ** For 2-way joins, the 5 best paths are followed. 3490 ** For joins of 3 or more tables, track the 10 best paths */ 3491 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3492 assert( nLoop<=pWInfo->pTabList->nSrc ); 3493 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3494 3495 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3496 ** case the purpose of this call is to estimate the number of rows returned 3497 ** by the overall query. Once this estimate has been obtained, the caller 3498 ** will invoke this function a second time, passing the estimate as the 3499 ** nRowEst parameter. */ 3500 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3501 nOrderBy = 0; 3502 }else{ 3503 nOrderBy = pWInfo->pOrderBy->nExpr; 3504 } 3505 3506 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3507 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3508 nSpace += sizeof(LogEst) * nOrderBy; 3509 pSpace = sqlite3DbMallocRaw(db, nSpace); 3510 if( pSpace==0 ) return SQLITE_NOMEM; 3511 aTo = (WherePath*)pSpace; 3512 aFrom = aTo+mxChoice; 3513 memset(aFrom, 0, sizeof(aFrom[0])); 3514 pX = (WhereLoop**)(aFrom+mxChoice); 3515 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3516 pFrom->aLoop = pX; 3517 } 3518 if( nOrderBy ){ 3519 /* If there is an ORDER BY clause and it is not being ignored, set up 3520 ** space for the aSortCost[] array. Each element of the aSortCost array 3521 ** is either zero - meaning it has not yet been initialized - or the 3522 ** cost of sorting nRowEst rows of data where the first X terms of 3523 ** the ORDER BY clause are already in order, where X is the array 3524 ** index. */ 3525 aSortCost = (LogEst*)pX; 3526 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3527 } 3528 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3529 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3530 3531 /* Seed the search with a single WherePath containing zero WhereLoops. 3532 ** 3533 ** TUNING: Do not let the number of iterations go above 28. If the cost 3534 ** of computing an automatic index is not paid back within the first 28 3535 ** rows, then do not use the automatic index. */ 3536 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3537 nFrom = 1; 3538 assert( aFrom[0].isOrdered==0 ); 3539 if( nOrderBy ){ 3540 /* If nLoop is zero, then there are no FROM terms in the query. Since 3541 ** in this case the query may return a maximum of one row, the results 3542 ** are already in the requested order. Set isOrdered to nOrderBy to 3543 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3544 ** -1, indicating that the result set may or may not be ordered, 3545 ** depending on the loops added to the current plan. */ 3546 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3547 } 3548 3549 /* Compute successively longer WherePaths using the previous generation 3550 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3551 ** best paths at each generation */ 3552 for(iLoop=0; iLoop<nLoop; iLoop++){ 3553 nTo = 0; 3554 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3555 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3556 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3557 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3558 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3559 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3560 Bitmask maskNew; /* Mask of src visited by (..) */ 3561 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3562 3563 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3564 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3565 /* At this point, pWLoop is a candidate to be the next loop. 3566 ** Compute its cost */ 3567 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3568 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3569 nOut = pFrom->nRow + pWLoop->nOut; 3570 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3571 if( isOrdered<0 ){ 3572 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3573 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3574 iLoop, pWLoop, &revMask); 3575 }else{ 3576 revMask = pFrom->revLoop; 3577 } 3578 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3579 if( aSortCost[isOrdered]==0 ){ 3580 aSortCost[isOrdered] = whereSortingCost( 3581 pWInfo, nRowEst, nOrderBy, isOrdered 3582 ); 3583 } 3584 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3585 3586 WHERETRACE(0x002, 3587 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3588 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3589 rUnsorted, rCost)); 3590 }else{ 3591 rCost = rUnsorted; 3592 } 3593 3594 /* Check to see if pWLoop should be added to the set of 3595 ** mxChoice best-so-far paths. 3596 ** 3597 ** First look for an existing path among best-so-far paths 3598 ** that covers the same set of loops and has the same isOrdered 3599 ** setting as the current path candidate. 3600 ** 3601 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3602 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3603 ** of legal values for isOrdered, -1..64. 3604 */ 3605 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3606 if( pTo->maskLoop==maskNew 3607 && ((pTo->isOrdered^isOrdered)&0x80)==0 3608 ){ 3609 testcase( jj==nTo-1 ); 3610 break; 3611 } 3612 } 3613 if( jj>=nTo ){ 3614 /* None of the existing best-so-far paths match the candidate. */ 3615 if( nTo>=mxChoice 3616 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3617 ){ 3618 /* The current candidate is no better than any of the mxChoice 3619 ** paths currently in the best-so-far buffer. So discard 3620 ** this candidate as not viable. */ 3621 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3622 if( sqlite3WhereTrace&0x4 ){ 3623 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3624 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3625 isOrdered>=0 ? isOrdered+'0' : '?'); 3626 } 3627 #endif 3628 continue; 3629 } 3630 /* If we reach this points it means that the new candidate path 3631 ** needs to be added to the set of best-so-far paths. */ 3632 if( nTo<mxChoice ){ 3633 /* Increase the size of the aTo set by one */ 3634 jj = nTo++; 3635 }else{ 3636 /* New path replaces the prior worst to keep count below mxChoice */ 3637 jj = mxI; 3638 } 3639 pTo = &aTo[jj]; 3640 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3641 if( sqlite3WhereTrace&0x4 ){ 3642 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 3643 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3644 isOrdered>=0 ? isOrdered+'0' : '?'); 3645 } 3646 #endif 3647 }else{ 3648 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 3649 ** same set of loops and has the sam isOrdered setting as the 3650 ** candidate path. Check to see if the candidate should replace 3651 ** pTo or if the candidate should be skipped */ 3652 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 3653 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3654 if( sqlite3WhereTrace&0x4 ){ 3655 sqlite3DebugPrintf( 3656 "Skip %s cost=%-3d,%3d order=%c", 3657 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3658 isOrdered>=0 ? isOrdered+'0' : '?'); 3659 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 3660 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3661 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3662 } 3663 #endif 3664 /* Discard the candidate path from further consideration */ 3665 testcase( pTo->rCost==rCost ); 3666 continue; 3667 } 3668 testcase( pTo->rCost==rCost+1 ); 3669 /* Control reaches here if the candidate path is better than the 3670 ** pTo path. Replace pTo with the candidate. */ 3671 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3672 if( sqlite3WhereTrace&0x4 ){ 3673 sqlite3DebugPrintf( 3674 "Update %s cost=%-3d,%3d order=%c", 3675 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3676 isOrdered>=0 ? isOrdered+'0' : '?'); 3677 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 3678 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3679 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3680 } 3681 #endif 3682 } 3683 /* pWLoop is a winner. Add it to the set of best so far */ 3684 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 3685 pTo->revLoop = revMask; 3686 pTo->nRow = nOut; 3687 pTo->rCost = rCost; 3688 pTo->rUnsorted = rUnsorted; 3689 pTo->isOrdered = isOrdered; 3690 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 3691 pTo->aLoop[iLoop] = pWLoop; 3692 if( nTo>=mxChoice ){ 3693 mxI = 0; 3694 mxCost = aTo[0].rCost; 3695 mxUnsorted = aTo[0].nRow; 3696 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 3697 if( pTo->rCost>mxCost 3698 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 3699 ){ 3700 mxCost = pTo->rCost; 3701 mxUnsorted = pTo->rUnsorted; 3702 mxI = jj; 3703 } 3704 } 3705 } 3706 } 3707 } 3708 3709 #ifdef WHERETRACE_ENABLED /* >=2 */ 3710 if( sqlite3WhereTrace & 0x02 ){ 3711 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 3712 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 3713 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 3714 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3715 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 3716 if( pTo->isOrdered>0 ){ 3717 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 3718 }else{ 3719 sqlite3DebugPrintf("\n"); 3720 } 3721 } 3722 } 3723 #endif 3724 3725 /* Swap the roles of aFrom and aTo for the next generation */ 3726 pFrom = aTo; 3727 aTo = aFrom; 3728 aFrom = pFrom; 3729 nFrom = nTo; 3730 } 3731 3732 if( nFrom==0 ){ 3733 sqlite3ErrorMsg(pParse, "no query solution"); 3734 sqlite3DbFree(db, pSpace); 3735 return SQLITE_ERROR; 3736 } 3737 3738 /* Find the lowest cost path. pFrom will be left pointing to that path */ 3739 pFrom = aFrom; 3740 for(ii=1; ii<nFrom; ii++){ 3741 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 3742 } 3743 assert( pWInfo->nLevel==nLoop ); 3744 /* Load the lowest cost path into pWInfo */ 3745 for(iLoop=0; iLoop<nLoop; iLoop++){ 3746 WhereLevel *pLevel = pWInfo->a + iLoop; 3747 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 3748 pLevel->iFrom = pWLoop->iTab; 3749 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 3750 } 3751 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 3752 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 3753 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 3754 && nRowEst 3755 ){ 3756 Bitmask notUsed; 3757 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 3758 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 3759 if( rc==pWInfo->pResultSet->nExpr ){ 3760 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3761 } 3762 } 3763 if( pWInfo->pOrderBy ){ 3764 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 3765 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 3766 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3767 } 3768 }else{ 3769 pWInfo->nOBSat = pFrom->isOrdered; 3770 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; 3771 pWInfo->revMask = pFrom->revLoop; 3772 } 3773 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 3774 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 3775 ){ 3776 Bitmask revMask = 0; 3777 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 3778 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 3779 ); 3780 assert( pWInfo->sorted==0 ); 3781 if( nOrder==pWInfo->pOrderBy->nExpr ){ 3782 pWInfo->sorted = 1; 3783 pWInfo->revMask = revMask; 3784 } 3785 } 3786 } 3787 3788 3789 pWInfo->nRowOut = pFrom->nRow; 3790 3791 /* Free temporary memory and return success */ 3792 sqlite3DbFree(db, pSpace); 3793 return SQLITE_OK; 3794 } 3795 3796 /* 3797 ** Most queries use only a single table (they are not joins) and have 3798 ** simple == constraints against indexed fields. This routine attempts 3799 ** to plan those simple cases using much less ceremony than the 3800 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 3801 ** times for the common case. 3802 ** 3803 ** Return non-zero on success, if this query can be handled by this 3804 ** no-frills query planner. Return zero if this query needs the 3805 ** general-purpose query planner. 3806 */ 3807 static int whereShortCut(WhereLoopBuilder *pBuilder){ 3808 WhereInfo *pWInfo; 3809 struct SrcList_item *pItem; 3810 WhereClause *pWC; 3811 WhereTerm *pTerm; 3812 WhereLoop *pLoop; 3813 int iCur; 3814 int j; 3815 Table *pTab; 3816 Index *pIdx; 3817 3818 pWInfo = pBuilder->pWInfo; 3819 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; 3820 assert( pWInfo->pTabList->nSrc>=1 ); 3821 pItem = pWInfo->pTabList->a; 3822 pTab = pItem->pTab; 3823 if( IsVirtual(pTab) ) return 0; 3824 if( pItem->fg.isIndexedBy ) return 0; 3825 iCur = pItem->iCursor; 3826 pWC = &pWInfo->sWC; 3827 pLoop = pBuilder->pNew; 3828 pLoop->wsFlags = 0; 3829 pLoop->nSkip = 0; 3830 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 3831 if( pTerm ){ 3832 testcase( pTerm->eOperator & WO_IS ); 3833 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 3834 pLoop->aLTerm[0] = pTerm; 3835 pLoop->nLTerm = 1; 3836 pLoop->u.btree.nEq = 1; 3837 /* TUNING: Cost of a rowid lookup is 10 */ 3838 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 3839 }else{ 3840 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3841 int opMask; 3842 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 3843 if( !IsUniqueIndex(pIdx) 3844 || pIdx->pPartIdxWhere!=0 3845 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 3846 ) continue; 3847 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 3848 for(j=0; j<pIdx->nKeyCol; j++){ 3849 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 3850 if( pTerm==0 ) break; 3851 testcase( pTerm->eOperator & WO_IS ); 3852 pLoop->aLTerm[j] = pTerm; 3853 } 3854 if( j!=pIdx->nKeyCol ) continue; 3855 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 3856 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 3857 pLoop->wsFlags |= WHERE_IDX_ONLY; 3858 } 3859 pLoop->nLTerm = j; 3860 pLoop->u.btree.nEq = j; 3861 pLoop->u.btree.pIndex = pIdx; 3862 /* TUNING: Cost of a unique index lookup is 15 */ 3863 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 3864 break; 3865 } 3866 } 3867 if( pLoop->wsFlags ){ 3868 pLoop->nOut = (LogEst)1; 3869 pWInfo->a[0].pWLoop = pLoop; 3870 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 3871 pWInfo->a[0].iTabCur = iCur; 3872 pWInfo->nRowOut = 1; 3873 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 3874 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3875 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 3876 } 3877 #ifdef SQLITE_DEBUG 3878 pLoop->cId = '0'; 3879 #endif 3880 return 1; 3881 } 3882 return 0; 3883 } 3884 3885 /* 3886 ** Generate the beginning of the loop used for WHERE clause processing. 3887 ** The return value is a pointer to an opaque structure that contains 3888 ** information needed to terminate the loop. Later, the calling routine 3889 ** should invoke sqlite3WhereEnd() with the return value of this function 3890 ** in order to complete the WHERE clause processing. 3891 ** 3892 ** If an error occurs, this routine returns NULL. 3893 ** 3894 ** The basic idea is to do a nested loop, one loop for each table in 3895 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3896 ** same as a SELECT with only a single table in the FROM clause.) For 3897 ** example, if the SQL is this: 3898 ** 3899 ** SELECT * FROM t1, t2, t3 WHERE ...; 3900 ** 3901 ** Then the code generated is conceptually like the following: 3902 ** 3903 ** foreach row1 in t1 do \ Code generated 3904 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3905 ** foreach row3 in t3 do / 3906 ** ... 3907 ** end \ Code generated 3908 ** end |-- by sqlite3WhereEnd() 3909 ** end / 3910 ** 3911 ** Note that the loops might not be nested in the order in which they 3912 ** appear in the FROM clause if a different order is better able to make 3913 ** use of indices. Note also that when the IN operator appears in 3914 ** the WHERE clause, it might result in additional nested loops for 3915 ** scanning through all values on the right-hand side of the IN. 3916 ** 3917 ** There are Btree cursors associated with each table. t1 uses cursor 3918 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3919 ** And so forth. This routine generates code to open those VDBE cursors 3920 ** and sqlite3WhereEnd() generates the code to close them. 3921 ** 3922 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3923 ** in pTabList pointing at their appropriate entries. The [...] code 3924 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3925 ** data from the various tables of the loop. 3926 ** 3927 ** If the WHERE clause is empty, the foreach loops must each scan their 3928 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3929 ** the tables have indices and there are terms in the WHERE clause that 3930 ** refer to those indices, a complete table scan can be avoided and the 3931 ** code will run much faster. Most of the work of this routine is checking 3932 ** to see if there are indices that can be used to speed up the loop. 3933 ** 3934 ** Terms of the WHERE clause are also used to limit which rows actually 3935 ** make it to the "..." in the middle of the loop. After each "foreach", 3936 ** terms of the WHERE clause that use only terms in that loop and outer 3937 ** loops are evaluated and if false a jump is made around all subsequent 3938 ** inner loops (or around the "..." if the test occurs within the inner- 3939 ** most loop) 3940 ** 3941 ** OUTER JOINS 3942 ** 3943 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3944 ** 3945 ** foreach row1 in t1 do 3946 ** flag = 0 3947 ** foreach row2 in t2 do 3948 ** start: 3949 ** ... 3950 ** flag = 1 3951 ** end 3952 ** if flag==0 then 3953 ** move the row2 cursor to a null row 3954 ** goto start 3955 ** fi 3956 ** end 3957 ** 3958 ** ORDER BY CLAUSE PROCESSING 3959 ** 3960 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 3961 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 3962 ** if there is one. If there is no ORDER BY clause or if this routine 3963 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 3964 ** 3965 ** The iIdxCur parameter is the cursor number of an index. If 3966 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index 3967 ** to use for OR clause processing. The WHERE clause should use this 3968 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 3969 ** the first cursor in an array of cursors for all indices. iIdxCur should 3970 ** be used to compute the appropriate cursor depending on which index is 3971 ** used. 3972 */ 3973 WhereInfo *sqlite3WhereBegin( 3974 Parse *pParse, /* The parser context */ 3975 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 3976 Expr *pWhere, /* The WHERE clause */ 3977 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 3978 ExprList *pResultSet, /* Result set of the query */ 3979 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3980 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ 3981 ){ 3982 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3983 int nTabList; /* Number of elements in pTabList */ 3984 WhereInfo *pWInfo; /* Will become the return value of this function */ 3985 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 3986 Bitmask notReady; /* Cursors that are not yet positioned */ 3987 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 3988 WhereMaskSet *pMaskSet; /* The expression mask set */ 3989 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 3990 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 3991 int ii; /* Loop counter */ 3992 sqlite3 *db; /* Database connection */ 3993 int rc; /* Return code */ 3994 3995 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 3996 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 3997 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 3998 )); 3999 4000 /* Variable initialization */ 4001 db = pParse->db; 4002 memset(&sWLB, 0, sizeof(sWLB)); 4003 4004 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4005 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4006 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4007 sWLB.pOrderBy = pOrderBy; 4008 4009 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4010 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4011 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4012 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4013 } 4014 4015 /* The number of tables in the FROM clause is limited by the number of 4016 ** bits in a Bitmask 4017 */ 4018 testcase( pTabList->nSrc==BMS ); 4019 if( pTabList->nSrc>BMS ){ 4020 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4021 return 0; 4022 } 4023 4024 /* This function normally generates a nested loop for all tables in 4025 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 4026 ** only generate code for the first table in pTabList and assume that 4027 ** any cursors associated with subsequent tables are uninitialized. 4028 */ 4029 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 4030 4031 /* Allocate and initialize the WhereInfo structure that will become the 4032 ** return value. A single allocation is used to store the WhereInfo 4033 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4034 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4035 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4036 ** some architectures. Hence the ROUND8() below. 4037 */ 4038 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4039 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); 4040 if( db->mallocFailed ){ 4041 sqlite3DbFree(db, pWInfo); 4042 pWInfo = 0; 4043 goto whereBeginError; 4044 } 4045 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4046 pWInfo->nLevel = nTabList; 4047 pWInfo->pParse = pParse; 4048 pWInfo->pTabList = pTabList; 4049 pWInfo->pOrderBy = pOrderBy; 4050 pWInfo->pResultSet = pResultSet; 4051 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4052 pWInfo->wctrlFlags = wctrlFlags; 4053 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4054 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4055 pMaskSet = &pWInfo->sMaskSet; 4056 sWLB.pWInfo = pWInfo; 4057 sWLB.pWC = &pWInfo->sWC; 4058 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4059 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4060 whereLoopInit(sWLB.pNew); 4061 #ifdef SQLITE_DEBUG 4062 sWLB.pNew->cId = '*'; 4063 #endif 4064 4065 /* Split the WHERE clause into separate subexpressions where each 4066 ** subexpression is separated by an AND operator. 4067 */ 4068 initMaskSet(pMaskSet); 4069 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4070 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4071 4072 /* Special case: a WHERE clause that is constant. Evaluate the 4073 ** expression and either jump over all of the code or fall thru. 4074 */ 4075 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4076 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4077 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4078 SQLITE_JUMPIFNULL); 4079 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4080 } 4081 } 4082 4083 /* Special case: No FROM clause 4084 */ 4085 if( nTabList==0 ){ 4086 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4087 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4088 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4089 } 4090 } 4091 4092 /* Assign a bit from the bitmask to every term in the FROM clause. 4093 ** 4094 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4095 ** 4096 ** The rule of the previous sentence ensures thta if X is the bitmask for 4097 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4098 ** Knowing the bitmask for all tables to the left of a left join is 4099 ** important. Ticket #3015. 4100 ** 4101 ** Note that bitmasks are created for all pTabList->nSrc tables in 4102 ** pTabList, not just the first nTabList tables. nTabList is normally 4103 ** equal to pTabList->nSrc but might be shortened to 1 if the 4104 ** WHERE_ONETABLE_ONLY flag is set. 4105 */ 4106 for(ii=0; ii<pTabList->nSrc; ii++){ 4107 createMask(pMaskSet, pTabList->a[ii].iCursor); 4108 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4109 } 4110 #ifdef SQLITE_DEBUG 4111 for(ii=0; ii<pTabList->nSrc; ii++){ 4112 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4113 assert( m==MASKBIT(ii) ); 4114 } 4115 #endif 4116 4117 /* Analyze all of the subexpressions. */ 4118 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4119 if( db->mallocFailed ) goto whereBeginError; 4120 4121 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4122 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4123 /* The DISTINCT marking is pointless. Ignore it. */ 4124 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4125 }else if( pOrderBy==0 ){ 4126 /* Try to ORDER BY the result set to make distinct processing easier */ 4127 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4128 pWInfo->pOrderBy = pResultSet; 4129 } 4130 } 4131 4132 /* Construct the WhereLoop objects */ 4133 WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n", 4134 wctrlFlags)); 4135 #if defined(WHERETRACE_ENABLED) 4136 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4137 int i; 4138 for(i=0; i<sWLB.pWC->nTerm; i++){ 4139 whereTermPrint(&sWLB.pWC->a[i], i); 4140 } 4141 } 4142 #endif 4143 4144 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4145 rc = whereLoopAddAll(&sWLB); 4146 if( rc ) goto whereBeginError; 4147 4148 #ifdef WHERETRACE_ENABLED 4149 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4150 WhereLoop *p; 4151 int i; 4152 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4153 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4154 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4155 p->cId = zLabel[i%sizeof(zLabel)]; 4156 whereLoopPrint(p, sWLB.pWC); 4157 } 4158 } 4159 #endif 4160 4161 wherePathSolver(pWInfo, 0); 4162 if( db->mallocFailed ) goto whereBeginError; 4163 if( pWInfo->pOrderBy ){ 4164 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4165 if( db->mallocFailed ) goto whereBeginError; 4166 } 4167 } 4168 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4169 pWInfo->revMask = (Bitmask)(-1); 4170 } 4171 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4172 goto whereBeginError; 4173 } 4174 #ifdef WHERETRACE_ENABLED 4175 if( sqlite3WhereTrace ){ 4176 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4177 if( pWInfo->nOBSat>0 ){ 4178 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4179 } 4180 switch( pWInfo->eDistinct ){ 4181 case WHERE_DISTINCT_UNIQUE: { 4182 sqlite3DebugPrintf(" DISTINCT=unique"); 4183 break; 4184 } 4185 case WHERE_DISTINCT_ORDERED: { 4186 sqlite3DebugPrintf(" DISTINCT=ordered"); 4187 break; 4188 } 4189 case WHERE_DISTINCT_UNORDERED: { 4190 sqlite3DebugPrintf(" DISTINCT=unordered"); 4191 break; 4192 } 4193 } 4194 sqlite3DebugPrintf("\n"); 4195 for(ii=0; ii<pWInfo->nLevel; ii++){ 4196 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4197 } 4198 } 4199 #endif 4200 /* Attempt to omit tables from the join that do not effect the result */ 4201 if( pWInfo->nLevel>=2 4202 && pResultSet!=0 4203 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4204 ){ 4205 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4206 if( sWLB.pOrderBy ){ 4207 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4208 } 4209 while( pWInfo->nLevel>=2 ){ 4210 WhereTerm *pTerm, *pEnd; 4211 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4212 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4213 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4214 && (pLoop->wsFlags & WHERE_ONEROW)==0 4215 ){ 4216 break; 4217 } 4218 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4219 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4220 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4221 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4222 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4223 ){ 4224 break; 4225 } 4226 } 4227 if( pTerm<pEnd ) break; 4228 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4229 pWInfo->nLevel--; 4230 nTabList--; 4231 } 4232 } 4233 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4234 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4235 4236 /* If the caller is an UPDATE or DELETE statement that is requesting 4237 ** to use a one-pass algorithm, determine if this is appropriate. 4238 ** The one-pass algorithm only works if the WHERE clause constrains 4239 ** the statement to update or delete a single row. 4240 */ 4241 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4242 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4243 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4244 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4245 if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW) 4246 && 0==(wsFlags & WHERE_VIRTUALTABLE) 4247 )){ 4248 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4249 if( HasRowid(pTabList->a[0].pTab) ){ 4250 pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; 4251 } 4252 } 4253 } 4254 4255 /* Open all tables in the pTabList and any indices selected for 4256 ** searching those tables. 4257 */ 4258 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4259 Table *pTab; /* Table to open */ 4260 int iDb; /* Index of database containing table/index */ 4261 struct SrcList_item *pTabItem; 4262 4263 pTabItem = &pTabList->a[pLevel->iFrom]; 4264 pTab = pTabItem->pTab; 4265 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4266 pLoop = pLevel->pWLoop; 4267 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4268 /* Do nothing */ 4269 }else 4270 #ifndef SQLITE_OMIT_VIRTUALTABLE 4271 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4272 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4273 int iCur = pTabItem->iCursor; 4274 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4275 }else if( IsVirtual(pTab) ){ 4276 /* noop */ 4277 }else 4278 #endif 4279 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4280 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ 4281 int op = OP_OpenRead; 4282 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4283 op = OP_OpenWrite; 4284 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4285 }; 4286 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4287 assert( pTabItem->iCursor==pLevel->iTabCur ); 4288 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4289 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4290 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4291 Bitmask b = pTabItem->colUsed; 4292 int n = 0; 4293 for(; b; b=b>>1, n++){} 4294 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 4295 SQLITE_INT_TO_PTR(n), P4_INT32); 4296 assert( n<=pTab->nCol ); 4297 } 4298 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4299 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4300 (const u8*)&pTabItem->colUsed, P4_INT64); 4301 #endif 4302 }else{ 4303 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4304 } 4305 if( pLoop->wsFlags & WHERE_INDEXED ){ 4306 Index *pIx = pLoop->u.btree.pIndex; 4307 int iIndexCur; 4308 int op = OP_OpenRead; 4309 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ 4310 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4311 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4312 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 4313 ){ 4314 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4315 ** WITHOUT ROWID table. No need for a separate index */ 4316 iIndexCur = pLevel->iTabCur; 4317 op = 0; 4318 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4319 Index *pJ = pTabItem->pTab->pIndex; 4320 iIndexCur = iIdxCur; 4321 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4322 while( ALWAYS(pJ) && pJ!=pIx ){ 4323 iIndexCur++; 4324 pJ = pJ->pNext; 4325 } 4326 op = OP_OpenWrite; 4327 pWInfo->aiCurOnePass[1] = iIndexCur; 4328 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ 4329 iIndexCur = iIdxCur; 4330 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; 4331 }else{ 4332 iIndexCur = pParse->nTab++; 4333 } 4334 pLevel->iIdxCur = iIndexCur; 4335 assert( pIx->pSchema==pTab->pSchema ); 4336 assert( iIndexCur>=0 ); 4337 if( op ){ 4338 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4339 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4340 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4341 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4342 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4343 ){ 4344 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4345 } 4346 VdbeComment((v, "%s", pIx->zName)); 4347 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4348 { 4349 u64 colUsed = 0; 4350 int ii, jj; 4351 for(ii=0; ii<pIx->nColumn; ii++){ 4352 jj = pIx->aiColumn[ii]; 4353 if( jj<0 ) continue; 4354 if( jj>63 ) jj = 63; 4355 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4356 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4357 } 4358 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4359 (u8*)&colUsed, P4_INT64); 4360 } 4361 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4362 } 4363 } 4364 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4365 } 4366 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4367 if( db->mallocFailed ) goto whereBeginError; 4368 4369 /* Generate the code to do the search. Each iteration of the for 4370 ** loop below generates code for a single nested loop of the VM 4371 ** program. 4372 */ 4373 notReady = ~(Bitmask)0; 4374 for(ii=0; ii<nTabList; ii++){ 4375 int addrExplain; 4376 int wsFlags; 4377 pLevel = &pWInfo->a[ii]; 4378 wsFlags = pLevel->pWLoop->wsFlags; 4379 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4380 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4381 constructAutomaticIndex(pParse, &pWInfo->sWC, 4382 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4383 if( db->mallocFailed ) goto whereBeginError; 4384 } 4385 #endif 4386 addrExplain = sqlite3WhereExplainOneScan( 4387 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4388 ); 4389 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4390 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4391 pWInfo->iContinue = pLevel->addrCont; 4392 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ 4393 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4394 } 4395 } 4396 4397 /* Done. */ 4398 VdbeModuleComment((v, "Begin WHERE-core")); 4399 return pWInfo; 4400 4401 /* Jump here if malloc fails */ 4402 whereBeginError: 4403 if( pWInfo ){ 4404 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4405 whereInfoFree(db, pWInfo); 4406 } 4407 return 0; 4408 } 4409 4410 /* 4411 ** Generate the end of the WHERE loop. See comments on 4412 ** sqlite3WhereBegin() for additional information. 4413 */ 4414 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4415 Parse *pParse = pWInfo->pParse; 4416 Vdbe *v = pParse->pVdbe; 4417 int i; 4418 WhereLevel *pLevel; 4419 WhereLoop *pLoop; 4420 SrcList *pTabList = pWInfo->pTabList; 4421 sqlite3 *db = pParse->db; 4422 4423 /* Generate loop termination code. 4424 */ 4425 VdbeModuleComment((v, "End WHERE-core")); 4426 sqlite3ExprCacheClear(pParse); 4427 for(i=pWInfo->nLevel-1; i>=0; i--){ 4428 int addr; 4429 pLevel = &pWInfo->a[i]; 4430 pLoop = pLevel->pWLoop; 4431 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4432 if( pLevel->op!=OP_Noop ){ 4433 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4434 sqlite3VdbeChangeP5(v, pLevel->p5); 4435 VdbeCoverage(v); 4436 VdbeCoverageIf(v, pLevel->op==OP_Next); 4437 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4438 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4439 } 4440 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4441 struct InLoop *pIn; 4442 int j; 4443 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4444 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4445 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4446 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4447 VdbeCoverage(v); 4448 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4449 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4450 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4451 } 4452 } 4453 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4454 if( pLevel->addrSkip ){ 4455 sqlite3VdbeGoto(v, pLevel->addrSkip); 4456 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4457 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4458 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4459 } 4460 if( pLevel->addrLikeRep ){ 4461 int op; 4462 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ 4463 op = OP_DecrJumpZero; 4464 }else{ 4465 op = OP_JumpZeroIncr; 4466 } 4467 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); 4468 VdbeCoverage(v); 4469 } 4470 if( pLevel->iLeftJoin ){ 4471 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4472 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4473 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 4474 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 4475 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4476 } 4477 if( pLoop->wsFlags & WHERE_INDEXED ){ 4478 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4479 } 4480 if( pLevel->op==OP_Return ){ 4481 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4482 }else{ 4483 sqlite3VdbeGoto(v, pLevel->addrFirst); 4484 } 4485 sqlite3VdbeJumpHere(v, addr); 4486 } 4487 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4488 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4489 } 4490 4491 /* The "break" point is here, just past the end of the outer loop. 4492 ** Set it. 4493 */ 4494 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4495 4496 assert( pWInfo->nLevel<=pTabList->nSrc ); 4497 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4498 int k, last; 4499 VdbeOp *pOp; 4500 Index *pIdx = 0; 4501 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4502 Table *pTab = pTabItem->pTab; 4503 assert( pTab!=0 ); 4504 pLoop = pLevel->pWLoop; 4505 4506 /* For a co-routine, change all OP_Column references to the table of 4507 ** the co-routine into OP_Copy of result contained in a register. 4508 ** OP_Rowid becomes OP_Null. 4509 */ 4510 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4511 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4512 pTabItem->regResult); 4513 continue; 4514 } 4515 4516 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4517 ** Except, do not close cursors that will be reused by the OR optimization 4518 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors 4519 ** created for the ONEPASS optimization. 4520 */ 4521 if( (pTab->tabFlags & TF_Ephemeral)==0 4522 && pTab->pSelect==0 4523 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4524 ){ 4525 int ws = pLoop->wsFlags; 4526 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 4527 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4528 } 4529 if( (ws & WHERE_INDEXED)!=0 4530 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 4531 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 4532 ){ 4533 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4534 } 4535 } 4536 4537 /* If this scan uses an index, make VDBE code substitutions to read data 4538 ** from the index instead of from the table where possible. In some cases 4539 ** this optimization prevents the table from ever being read, which can 4540 ** yield a significant performance boost. 4541 ** 4542 ** Calls to the code generator in between sqlite3WhereBegin and 4543 ** sqlite3WhereEnd will have created code that references the table 4544 ** directly. This loop scans all that code looking for opcodes 4545 ** that reference the table and converts them into opcodes that 4546 ** reference the index. 4547 */ 4548 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4549 pIdx = pLoop->u.btree.pIndex; 4550 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4551 pIdx = pLevel->u.pCovidx; 4552 } 4553 if( pIdx 4554 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4555 && !db->mallocFailed 4556 ){ 4557 last = sqlite3VdbeCurrentAddr(v); 4558 k = pLevel->addrBody; 4559 pOp = sqlite3VdbeGetOp(v, k); 4560 for(; k<last; k++, pOp++){ 4561 if( pOp->p1!=pLevel->iTabCur ) continue; 4562 if( pOp->opcode==OP_Column ){ 4563 int x = pOp->p2; 4564 assert( pIdx->pTable==pTab ); 4565 if( !HasRowid(pTab) ){ 4566 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4567 x = pPk->aiColumn[x]; 4568 assert( x>=0 ); 4569 } 4570 x = sqlite3ColumnOfIndex(pIdx, x); 4571 if( x>=0 ){ 4572 pOp->p2 = x; 4573 pOp->p1 = pLevel->iIdxCur; 4574 } 4575 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 4576 }else if( pOp->opcode==OP_Rowid ){ 4577 pOp->p1 = pLevel->iIdxCur; 4578 pOp->opcode = OP_IdxRowid; 4579 } 4580 } 4581 } 4582 } 4583 4584 /* Final cleanup 4585 */ 4586 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4587 whereInfoFree(db, pWInfo); 4588 return; 4589 } 4590