1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* Allocate memory that is automatically freed when pWInfo is freed. 257 */ 258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 259 WhereMemBlock *pBlock; 260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 261 if( pBlock ){ 262 pBlock->pNext = pWInfo->pMemToFree; 263 pBlock->sz = nByte; 264 pWInfo->pMemToFree = pBlock; 265 pBlock++; 266 } 267 return (void*)pBlock; 268 } 269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 271 if( pNew && pOld ){ 272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 273 pOldBlk--; 274 assert( pOldBlk->sz<nByte ); 275 memcpy(pNew, pOld, pOldBlk->sz); 276 } 277 return pNew; 278 } 279 280 /* 281 ** Create a new mask for cursor iCursor. 282 ** 283 ** There is one cursor per table in the FROM clause. The number of 284 ** tables in the FROM clause is limited by a test early in the 285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 286 ** array will never overflow. 287 */ 288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 290 pMaskSet->ix[pMaskSet->n++] = iCursor; 291 } 292 293 /* 294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 295 ** a pointer to the right-hand branch. Otherwise, return NULL. 296 */ 297 static Expr *whereRightSubexprIsColumn(Expr *p){ 298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 300 return p; 301 } 302 return 0; 303 } 304 305 /* 306 ** Advance to the next WhereTerm that matches according to the criteria 307 ** established when the pScan object was initialized by whereScanInit(). 308 ** Return NULL if there are no more matching WhereTerms. 309 */ 310 static WhereTerm *whereScanNext(WhereScan *pScan){ 311 int iCur; /* The cursor on the LHS of the term */ 312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 313 Expr *pX; /* An expression being tested */ 314 WhereClause *pWC; /* Shorthand for pScan->pWC */ 315 WhereTerm *pTerm; /* The term being tested */ 316 int k = pScan->k; /* Where to start scanning */ 317 318 assert( pScan->iEquiv<=pScan->nEquiv ); 319 pWC = pScan->pWC; 320 while(1){ 321 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 322 iCur = pScan->aiCur[pScan->iEquiv-1]; 323 assert( pWC!=0 ); 324 assert( iCur>=0 ); 325 do{ 326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 328 if( pTerm->leftCursor==iCur 329 && pTerm->u.x.leftColumn==iColumn 330 && (iColumn!=XN_EXPR 331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 332 pScan->pIdxExpr,iCur)==0) 333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 334 ){ 335 if( (pTerm->eOperator & WO_EQUIV)!=0 336 && pScan->nEquiv<ArraySize(pScan->aiCur) 337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 338 ){ 339 int j; 340 for(j=0; j<pScan->nEquiv; j++){ 341 if( pScan->aiCur[j]==pX->iTable 342 && pScan->aiColumn[j]==pX->iColumn ){ 343 break; 344 } 345 } 346 if( j==pScan->nEquiv ){ 347 pScan->aiCur[j] = pX->iTable; 348 pScan->aiColumn[j] = pX->iColumn; 349 pScan->nEquiv++; 350 } 351 } 352 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 353 /* Verify the affinity and collating sequence match */ 354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 355 CollSeq *pColl; 356 Parse *pParse = pWC->pWInfo->pParse; 357 pX = pTerm->pExpr; 358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 359 continue; 360 } 361 assert(pX->pLeft); 362 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 363 if( pColl==0 ) pColl = pParse->db->pDfltColl; 364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 365 continue; 366 } 367 } 368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 370 && pX->op==TK_COLUMN 371 && pX->iTable==pScan->aiCur[0] 372 && pX->iColumn==pScan->aiColumn[0] 373 ){ 374 testcase( pTerm->eOperator & WO_IS ); 375 continue; 376 } 377 pScan->pWC = pWC; 378 pScan->k = k+1; 379 #ifdef WHERETRACE_ENABLED 380 if( sqlite3WhereTrace & 0x20000 ){ 381 int ii; 382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 383 pTerm, pScan->nEquiv); 384 for(ii=0; ii<pScan->nEquiv; ii++){ 385 sqlite3DebugPrintf(" {%d:%d}", 386 pScan->aiCur[ii], pScan->aiColumn[ii]); 387 } 388 sqlite3DebugPrintf("\n"); 389 } 390 #endif 391 return pTerm; 392 } 393 } 394 } 395 pWC = pWC->pOuter; 396 k = 0; 397 }while( pWC!=0 ); 398 if( pScan->iEquiv>=pScan->nEquiv ) break; 399 pWC = pScan->pOrigWC; 400 k = 0; 401 pScan->iEquiv++; 402 } 403 return 0; 404 } 405 406 /* 407 ** This is whereScanInit() for the case of an index on an expression. 408 ** It is factored out into a separate tail-recursion subroutine so that 409 ** the normal whereScanInit() routine, which is a high-runner, does not 410 ** need to push registers onto the stack as part of its prologue. 411 */ 412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 414 return whereScanNext(pScan); 415 } 416 417 /* 418 ** Initialize a WHERE clause scanner object. Return a pointer to the 419 ** first match. Return NULL if there are no matches. 420 ** 421 ** The scanner will be searching the WHERE clause pWC. It will look 422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 424 ** must be one of the indexes of table iCur. 425 ** 426 ** The <op> must be one of the operators described by opMask. 427 ** 428 ** If the search is for X and the WHERE clause contains terms of the 429 ** form X=Y then this routine might also return terms of the form 430 ** "Y <op> <expr>". The number of levels of transitivity is limited, 431 ** but is enough to handle most commonly occurring SQL statements. 432 ** 433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 434 ** index pIdx. 435 */ 436 static WhereTerm *whereScanInit( 437 WhereScan *pScan, /* The WhereScan object being initialized */ 438 WhereClause *pWC, /* The WHERE clause to be scanned */ 439 int iCur, /* Cursor to scan for */ 440 int iColumn, /* Column to scan for */ 441 u32 opMask, /* Operator(s) to scan for */ 442 Index *pIdx /* Must be compatible with this index */ 443 ){ 444 pScan->pOrigWC = pWC; 445 pScan->pWC = pWC; 446 pScan->pIdxExpr = 0; 447 pScan->idxaff = 0; 448 pScan->zCollName = 0; 449 pScan->opMask = opMask; 450 pScan->k = 0; 451 pScan->aiCur[0] = iCur; 452 pScan->nEquiv = 1; 453 pScan->iEquiv = 1; 454 if( pIdx ){ 455 int j = iColumn; 456 iColumn = pIdx->aiColumn[j]; 457 if( iColumn==pIdx->pTable->iPKey ){ 458 iColumn = XN_ROWID; 459 }else if( iColumn>=0 ){ 460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 461 pScan->zCollName = pIdx->azColl[j]; 462 }else if( iColumn==XN_EXPR ){ 463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 464 pScan->zCollName = pIdx->azColl[j]; 465 pScan->aiColumn[0] = XN_EXPR; 466 return whereScanInitIndexExpr(pScan); 467 } 468 }else if( iColumn==XN_EXPR ){ 469 return 0; 470 } 471 pScan->aiColumn[0] = iColumn; 472 return whereScanNext(pScan); 473 } 474 475 /* 476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 477 ** where X is a reference to the iColumn of table iCur or of index pIdx 478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 479 ** the op parameter. Return a pointer to the term. Return 0 if not found. 480 ** 481 ** If pIdx!=0 then it must be one of the indexes of table iCur. 482 ** Search for terms matching the iColumn-th column of pIdx 483 ** rather than the iColumn-th column of table iCur. 484 ** 485 ** The term returned might by Y=<expr> if there is another constraint in 486 ** the WHERE clause that specifies that X=Y. Any such constraints will be 487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 490 ** other equivalent values. Hence a search for X will return <expr> if X=A1 491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 492 ** 493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 494 ** then try for the one with no dependencies on <expr> - in other words where 495 ** <expr> is a constant expression of some kind. Only return entries of 496 ** the form "X <op> Y" where Y is a column in another table if no terms of 497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 498 ** exist, try to return a term that does not use WO_EQUIV. 499 */ 500 WhereTerm *sqlite3WhereFindTerm( 501 WhereClause *pWC, /* The WHERE clause to be searched */ 502 int iCur, /* Cursor number of LHS */ 503 int iColumn, /* Column number of LHS */ 504 Bitmask notReady, /* RHS must not overlap with this mask */ 505 u32 op, /* Mask of WO_xx values describing operator */ 506 Index *pIdx /* Must be compatible with this index, if not NULL */ 507 ){ 508 WhereTerm *pResult = 0; 509 WhereTerm *p; 510 WhereScan scan; 511 512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 513 op &= WO_EQ|WO_IS; 514 while( p ){ 515 if( (p->prereqRight & notReady)==0 ){ 516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 517 testcase( p->eOperator & WO_IS ); 518 return p; 519 } 520 if( pResult==0 ) pResult = p; 521 } 522 p = whereScanNext(&scan); 523 } 524 return pResult; 525 } 526 527 /* 528 ** This function searches pList for an entry that matches the iCol-th column 529 ** of index pIdx. 530 ** 531 ** If such an expression is found, its index in pList->a[] is returned. If 532 ** no expression is found, -1 is returned. 533 */ 534 static int findIndexCol( 535 Parse *pParse, /* Parse context */ 536 ExprList *pList, /* Expression list to search */ 537 int iBase, /* Cursor for table associated with pIdx */ 538 Index *pIdx, /* Index to match column of */ 539 int iCol /* Column of index to match */ 540 ){ 541 int i; 542 const char *zColl = pIdx->azColl[iCol]; 543 544 for(i=0; i<pList->nExpr; i++){ 545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 546 if( ALWAYS(p!=0) 547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 548 && p->iColumn==pIdx->aiColumn[iCol] 549 && p->iTable==iBase 550 ){ 551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 553 return i; 554 } 555 } 556 } 557 558 return -1; 559 } 560 561 /* 562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 563 */ 564 static int indexColumnNotNull(Index *pIdx, int iCol){ 565 int j; 566 assert( pIdx!=0 ); 567 assert( iCol>=0 && iCol<pIdx->nColumn ); 568 j = pIdx->aiColumn[iCol]; 569 if( j>=0 ){ 570 return pIdx->pTable->aCol[j].notNull; 571 }else if( j==(-1) ){ 572 return 1; 573 }else{ 574 assert( j==(-2) ); 575 return 0; /* Assume an indexed expression can always yield a NULL */ 576 577 } 578 } 579 580 /* 581 ** Return true if the DISTINCT expression-list passed as the third argument 582 ** is redundant. 583 ** 584 ** A DISTINCT list is redundant if any subset of the columns in the 585 ** DISTINCT list are collectively unique and individually non-null. 586 */ 587 static int isDistinctRedundant( 588 Parse *pParse, /* Parsing context */ 589 SrcList *pTabList, /* The FROM clause */ 590 WhereClause *pWC, /* The WHERE clause */ 591 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 592 ){ 593 Table *pTab; 594 Index *pIdx; 595 int i; 596 int iBase; 597 598 /* If there is more than one table or sub-select in the FROM clause of 599 ** this query, then it will not be possible to show that the DISTINCT 600 ** clause is redundant. */ 601 if( pTabList->nSrc!=1 ) return 0; 602 iBase = pTabList->a[0].iCursor; 603 pTab = pTabList->a[0].pTab; 604 605 /* If any of the expressions is an IPK column on table iBase, then return 606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 607 ** current SELECT is a correlated sub-query. 608 */ 609 for(i=0; i<pDistinct->nExpr; i++){ 610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 611 if( NEVER(p==0) ) continue; 612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 613 if( p->iTable==iBase && p->iColumn<0 ) return 1; 614 } 615 616 /* Loop through all indices on the table, checking each to see if it makes 617 ** the DISTINCT qualifier redundant. It does so if: 618 ** 619 ** 1. The index is itself UNIQUE, and 620 ** 621 ** 2. All of the columns in the index are either part of the pDistinct 622 ** list, or else the WHERE clause contains a term of the form "col=X", 623 ** where X is a constant value. The collation sequences of the 624 ** comparison and select-list expressions must match those of the index. 625 ** 626 ** 3. All of those index columns for which the WHERE clause does not 627 ** contain a "col=X" term are subject to a NOT NULL constraint. 628 */ 629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 630 if( !IsUniqueIndex(pIdx) ) continue; 631 if( pIdx->pPartIdxWhere ) continue; 632 for(i=0; i<pIdx->nKeyCol; i++){ 633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 635 if( indexColumnNotNull(pIdx, i)==0 ) break; 636 } 637 } 638 if( i==pIdx->nKeyCol ){ 639 /* This index implies that the DISTINCT qualifier is redundant. */ 640 return 1; 641 } 642 } 643 644 return 0; 645 } 646 647 648 /* 649 ** Estimate the logarithm of the input value to base 2. 650 */ 651 static LogEst estLog(LogEst N){ 652 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 653 } 654 655 /* 656 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 657 ** 658 ** This routine runs over generated VDBE code and translates OP_Column 659 ** opcodes into OP_Copy when the table is being accessed via co-routine 660 ** instead of via table lookup. 661 ** 662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 663 ** cursor iTabCur are transformed into OP_Sequence opcode for the 664 ** iAutoidxCur cursor, in order to generate unique rowids for the 665 ** automatic index being generated. 666 */ 667 static void translateColumnToCopy( 668 Parse *pParse, /* Parsing context */ 669 int iStart, /* Translate from this opcode to the end */ 670 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 671 int iRegister, /* The first column is in this register */ 672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 676 int iEnd = sqlite3VdbeCurrentAddr(v); 677 if( pParse->db->mallocFailed ) return; 678 for(; iStart<iEnd; iStart++, pOp++){ 679 if( pOp->p1!=iTabCur ) continue; 680 if( pOp->opcode==OP_Column ){ 681 pOp->opcode = OP_Copy; 682 pOp->p1 = pOp->p2 + iRegister; 683 pOp->p2 = pOp->p3; 684 pOp->p3 = 0; 685 }else if( pOp->opcode==OP_Rowid ){ 686 pOp->opcode = OP_Sequence; 687 pOp->p1 = iAutoidxCur; 688 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 689 if( iAutoidxCur==0 ){ 690 pOp->opcode = OP_Null; 691 pOp->p3 = 0; 692 } 693 #endif 694 } 695 } 696 } 697 698 /* 699 ** Two routines for printing the content of an sqlite3_index_info 700 ** structure. Used for testing and debugging only. If neither 701 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 702 ** are no-ops. 703 */ 704 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 705 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 706 int i; 707 if( !sqlite3WhereTrace ) return; 708 for(i=0; i<p->nConstraint; i++){ 709 sqlite3DebugPrintf( 710 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 711 i, 712 p->aConstraint[i].iColumn, 713 p->aConstraint[i].iTermOffset, 714 p->aConstraint[i].op, 715 p->aConstraint[i].usable, 716 sqlite3_vtab_collation(p,i)); 717 } 718 for(i=0; i<p->nOrderBy; i++){ 719 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 720 i, 721 p->aOrderBy[i].iColumn, 722 p->aOrderBy[i].desc); 723 } 724 } 725 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 726 int i; 727 if( !sqlite3WhereTrace ) return; 728 for(i=0; i<p->nConstraint; i++){ 729 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 730 i, 731 p->aConstraintUsage[i].argvIndex, 732 p->aConstraintUsage[i].omit); 733 } 734 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 735 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 736 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 737 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 738 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 739 } 740 #else 741 #define whereTraceIndexInfoInputs(A) 742 #define whereTraceIndexInfoOutputs(A) 743 #endif 744 745 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 746 /* 747 ** Return TRUE if the WHERE clause term pTerm is of a form where it 748 ** could be used with an index to access pSrc, assuming an appropriate 749 ** index existed. 750 */ 751 static int termCanDriveIndex( 752 const WhereTerm *pTerm, /* WHERE clause term to check */ 753 const SrcItem *pSrc, /* Table we are trying to access */ 754 const Bitmask notReady /* Tables in outer loops of the join */ 755 ){ 756 char aff; 757 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 758 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 759 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 760 && !ExprHasProperty(pTerm->pExpr, EP_OuterON) 761 && (pTerm->eOperator & WO_IS) 762 ){ 763 /* Cannot use an IS term from the WHERE clause as an index driver for 764 ** the RHS of a LEFT JOIN or for the LHS of a RIGHT JOIN. Such a term 765 ** can only be used if it is from the ON clause. */ 766 return 0; 767 } 768 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 769 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 770 if( pTerm->u.x.leftColumn<0 ) return 0; 771 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 772 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 773 testcase( pTerm->pExpr->op==TK_IS ); 774 return 1; 775 } 776 #endif 777 778 779 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 780 /* 781 ** Generate code to construct the Index object for an automatic index 782 ** and to set up the WhereLevel object pLevel so that the code generator 783 ** makes use of the automatic index. 784 */ 785 static SQLITE_NOINLINE void constructAutomaticIndex( 786 Parse *pParse, /* The parsing context */ 787 const WhereClause *pWC, /* The WHERE clause */ 788 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 789 const Bitmask notReady, /* Mask of cursors that are not available */ 790 WhereLevel *pLevel /* Write new index here */ 791 ){ 792 int nKeyCol; /* Number of columns in the constructed index */ 793 WhereTerm *pTerm; /* A single term of the WHERE clause */ 794 WhereTerm *pWCEnd; /* End of pWC->a[] */ 795 Index *pIdx; /* Object describing the transient index */ 796 Vdbe *v; /* Prepared statement under construction */ 797 int addrInit; /* Address of the initialization bypass jump */ 798 Table *pTable; /* The table being indexed */ 799 int addrTop; /* Top of the index fill loop */ 800 int regRecord; /* Register holding an index record */ 801 int n; /* Column counter */ 802 int i; /* Loop counter */ 803 int mxBitCol; /* Maximum column in pSrc->colUsed */ 804 CollSeq *pColl; /* Collating sequence to on a column */ 805 WhereLoop *pLoop; /* The Loop object */ 806 char *zNotUsed; /* Extra space on the end of pIdx */ 807 Bitmask idxCols; /* Bitmap of columns used for indexing */ 808 Bitmask extraCols; /* Bitmap of additional columns */ 809 u8 sentWarning = 0; /* True if a warnning has been issued */ 810 Expr *pPartial = 0; /* Partial Index Expression */ 811 int iContinue = 0; /* Jump here to skip excluded rows */ 812 SrcItem *pTabItem; /* FROM clause term being indexed */ 813 int addrCounter = 0; /* Address where integer counter is initialized */ 814 int regBase; /* Array of registers where record is assembled */ 815 816 /* Generate code to skip over the creation and initialization of the 817 ** transient index on 2nd and subsequent iterations of the loop. */ 818 v = pParse->pVdbe; 819 assert( v!=0 ); 820 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 821 822 /* Count the number of columns that will be added to the index 823 ** and used to match WHERE clause constraints */ 824 nKeyCol = 0; 825 pTable = pSrc->pTab; 826 pWCEnd = &pWC->a[pWC->nTerm]; 827 pLoop = pLevel->pWLoop; 828 idxCols = 0; 829 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 830 Expr *pExpr = pTerm->pExpr; 831 /* Make the automatic index a partial index if there are terms in the 832 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 833 ** rows of the target table (pSrc) that can be used. */ 834 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 835 && sqlite3ExprIsTableConstraint(pExpr, pSrc) 836 ){ 837 pPartial = sqlite3ExprAnd(pParse, pPartial, 838 sqlite3ExprDup(pParse->db, pExpr, 0)); 839 } 840 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 841 int iCol; 842 Bitmask cMask; 843 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 844 iCol = pTerm->u.x.leftColumn; 845 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 846 testcase( iCol==BMS ); 847 testcase( iCol==BMS-1 ); 848 if( !sentWarning ){ 849 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 850 "automatic index on %s(%s)", pTable->zName, 851 pTable->aCol[iCol].zCnName); 852 sentWarning = 1; 853 } 854 if( (idxCols & cMask)==0 ){ 855 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 856 goto end_auto_index_create; 857 } 858 pLoop->aLTerm[nKeyCol++] = pTerm; 859 idxCols |= cMask; 860 } 861 } 862 } 863 assert( nKeyCol>0 || pParse->db->mallocFailed ); 864 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 865 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 866 | WHERE_AUTO_INDEX; 867 868 /* Count the number of additional columns needed to create a 869 ** covering index. A "covering index" is an index that contains all 870 ** columns that are needed by the query. With a covering index, the 871 ** original table never needs to be accessed. Automatic indices must 872 ** be a covering index because the index will not be updated if the 873 ** original table changes and the index and table cannot both be used 874 ** if they go out of sync. 875 */ 876 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 877 mxBitCol = MIN(BMS-1,pTable->nCol); 878 testcase( pTable->nCol==BMS-1 ); 879 testcase( pTable->nCol==BMS-2 ); 880 for(i=0; i<mxBitCol; i++){ 881 if( extraCols & MASKBIT(i) ) nKeyCol++; 882 } 883 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 884 nKeyCol += pTable->nCol - BMS + 1; 885 } 886 887 /* Construct the Index object to describe this index */ 888 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 889 if( pIdx==0 ) goto end_auto_index_create; 890 pLoop->u.btree.pIndex = pIdx; 891 pIdx->zName = "auto-index"; 892 pIdx->pTable = pTable; 893 n = 0; 894 idxCols = 0; 895 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 896 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 897 int iCol; 898 Bitmask cMask; 899 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 900 iCol = pTerm->u.x.leftColumn; 901 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 902 testcase( iCol==BMS-1 ); 903 testcase( iCol==BMS ); 904 if( (idxCols & cMask)==0 ){ 905 Expr *pX = pTerm->pExpr; 906 idxCols |= cMask; 907 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 908 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 909 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 910 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 911 n++; 912 } 913 } 914 } 915 assert( (u32)n==pLoop->u.btree.nEq ); 916 917 /* Add additional columns needed to make the automatic index into 918 ** a covering index */ 919 for(i=0; i<mxBitCol; i++){ 920 if( extraCols & MASKBIT(i) ){ 921 pIdx->aiColumn[n] = i; 922 pIdx->azColl[n] = sqlite3StrBINARY; 923 n++; 924 } 925 } 926 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 927 for(i=BMS-1; i<pTable->nCol; i++){ 928 pIdx->aiColumn[n] = i; 929 pIdx->azColl[n] = sqlite3StrBINARY; 930 n++; 931 } 932 } 933 assert( n==nKeyCol ); 934 pIdx->aiColumn[n] = XN_ROWID; 935 pIdx->azColl[n] = sqlite3StrBINARY; 936 937 /* Create the automatic index */ 938 assert( pLevel->iIdxCur>=0 ); 939 pLevel->iIdxCur = pParse->nTab++; 940 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 941 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 942 VdbeComment((v, "for %s", pTable->zName)); 943 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 944 pLevel->regFilter = ++pParse->nMem; 945 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 946 } 947 948 /* Fill the automatic index with content */ 949 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 950 if( pTabItem->fg.viaCoroutine ){ 951 int regYield = pTabItem->regReturn; 952 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 953 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 954 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 955 VdbeCoverage(v); 956 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 957 }else{ 958 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 959 } 960 if( pPartial ){ 961 iContinue = sqlite3VdbeMakeLabel(pParse); 962 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 963 pLoop->wsFlags |= WHERE_PARTIALIDX; 964 } 965 regRecord = sqlite3GetTempReg(pParse); 966 regBase = sqlite3GenerateIndexKey( 967 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 968 ); 969 if( pLevel->regFilter ){ 970 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 971 regBase, pLoop->u.btree.nEq); 972 } 973 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 974 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 975 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 976 if( pTabItem->fg.viaCoroutine ){ 977 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 978 testcase( pParse->db->mallocFailed ); 979 assert( pLevel->iIdxCur>0 ); 980 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 981 pTabItem->regResult, pLevel->iIdxCur); 982 sqlite3VdbeGoto(v, addrTop); 983 pTabItem->fg.viaCoroutine = 0; 984 }else{ 985 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 986 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 987 } 988 sqlite3VdbeJumpHere(v, addrTop); 989 sqlite3ReleaseTempReg(pParse, regRecord); 990 991 /* Jump here when skipping the initialization */ 992 sqlite3VdbeJumpHere(v, addrInit); 993 994 end_auto_index_create: 995 sqlite3ExprDelete(pParse->db, pPartial); 996 } 997 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 998 999 /* 1000 ** Generate bytecode that will initialize a Bloom filter that is appropriate 1001 ** for pLevel. 1002 ** 1003 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 1004 ** flag set, initialize a Bloomfilter for them as well. Except don't do 1005 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 1006 ** been turned off. 1007 ** 1008 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 1009 ** from the loop, but the regFilter value is set to a register that implements 1010 ** the Bloom filter. When regFilter is positive, the 1011 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 1012 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 1013 ** no matching rows exist. 1014 ** 1015 ** This routine may only be called if it has previously been determined that 1016 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 1017 ** is set. 1018 */ 1019 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 1020 WhereInfo *pWInfo, /* The WHERE clause */ 1021 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 1022 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1023 Bitmask notReady /* Loops that are not ready */ 1024 ){ 1025 int addrOnce; /* Address of opening OP_Once */ 1026 int addrTop; /* Address of OP_Rewind */ 1027 int addrCont; /* Jump here to skip a row */ 1028 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1029 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1030 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1031 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1032 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1033 int iCur; /* Cursor for table getting the filter */ 1034 1035 assert( pLoop!=0 ); 1036 assert( v!=0 ); 1037 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1038 1039 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1040 do{ 1041 const SrcItem *pItem; 1042 const Table *pTab; 1043 u64 sz; 1044 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1045 addrCont = sqlite3VdbeMakeLabel(pParse); 1046 iCur = pLevel->iTabCur; 1047 pLevel->regFilter = ++pParse->nMem; 1048 1049 /* The Bloom filter is a Blob held in a register. Initialize it 1050 ** to zero-filled blob of at least 80K bits, but maybe more if the 1051 ** estimated size of the table is larger. We could actually 1052 ** measure the size of the table at run-time using OP_Count with 1053 ** P3==1 and use that value to initialize the blob. But that makes 1054 ** testing complicated. By basing the blob size on the value in the 1055 ** sqlite_stat1 table, testing is much easier. 1056 */ 1057 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1058 assert( pItem!=0 ); 1059 pTab = pItem->pTab; 1060 assert( pTab!=0 ); 1061 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1062 if( sz<10000 ){ 1063 sz = 10000; 1064 }else if( sz>10000000 ){ 1065 sz = 10000000; 1066 } 1067 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1068 1069 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1070 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1071 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1072 Expr *pExpr = pTerm->pExpr; 1073 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1074 && sqlite3ExprIsTableConstraint(pExpr, pItem) 1075 ){ 1076 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1077 } 1078 } 1079 if( pLoop->wsFlags & WHERE_IPK ){ 1080 int r1 = sqlite3GetTempReg(pParse); 1081 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1082 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1083 sqlite3ReleaseTempReg(pParse, r1); 1084 }else{ 1085 Index *pIdx = pLoop->u.btree.pIndex; 1086 int n = pLoop->u.btree.nEq; 1087 int r1 = sqlite3GetTempRange(pParse, n); 1088 int jj; 1089 for(jj=0; jj<n; jj++){ 1090 int iCol = pIdx->aiColumn[jj]; 1091 assert( pIdx->pTable==pItem->pTab ); 1092 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1093 } 1094 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1095 sqlite3ReleaseTempRange(pParse, r1, n); 1096 } 1097 sqlite3VdbeResolveLabel(v, addrCont); 1098 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1099 VdbeCoverage(v); 1100 sqlite3VdbeJumpHere(v, addrTop); 1101 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1102 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1103 while( ++iLevel < pWInfo->nLevel ){ 1104 const SrcItem *pTabItem; 1105 pLevel = &pWInfo->a[iLevel]; 1106 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1107 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 1108 pLoop = pLevel->pWLoop; 1109 if( NEVER(pLoop==0) ) continue; 1110 if( pLoop->prereq & notReady ) continue; 1111 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1112 ==WHERE_BLOOMFILTER 1113 ){ 1114 /* This is a candidate for bloom-filter pull-down (early evaluation). 1115 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1116 ** not able to do early evaluation of bloom filters that make use of 1117 ** the IN operator */ 1118 break; 1119 } 1120 } 1121 }while( iLevel < pWInfo->nLevel ); 1122 sqlite3VdbeJumpHere(v, addrOnce); 1123 } 1124 1125 1126 #ifndef SQLITE_OMIT_VIRTUALTABLE 1127 /* 1128 ** Allocate and populate an sqlite3_index_info structure. It is the 1129 ** responsibility of the caller to eventually release the structure 1130 ** by passing the pointer returned by this function to freeIndexInfo(). 1131 */ 1132 static sqlite3_index_info *allocateIndexInfo( 1133 WhereInfo *pWInfo, /* The WHERE clause */ 1134 WhereClause *pWC, /* The WHERE clause being analyzed */ 1135 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1136 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1137 u16 *pmNoOmit /* Mask of terms not to omit */ 1138 ){ 1139 int i, j; 1140 int nTerm; 1141 Parse *pParse = pWInfo->pParse; 1142 struct sqlite3_index_constraint *pIdxCons; 1143 struct sqlite3_index_orderby *pIdxOrderBy; 1144 struct sqlite3_index_constraint_usage *pUsage; 1145 struct HiddenIndexInfo *pHidden; 1146 WhereTerm *pTerm; 1147 int nOrderBy; 1148 sqlite3_index_info *pIdxInfo; 1149 u16 mNoOmit = 0; 1150 const Table *pTab; 1151 int eDistinct = 0; 1152 ExprList *pOrderBy = pWInfo->pOrderBy; 1153 1154 assert( pSrc!=0 ); 1155 pTab = pSrc->pTab; 1156 assert( pTab!=0 ); 1157 assert( IsVirtual(pTab) ); 1158 1159 /* Find all WHERE clause constraints referring to this virtual table. 1160 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1161 ** terms found. 1162 */ 1163 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1164 pTerm->wtFlags &= ~TERM_OK; 1165 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1166 if( pTerm->prereqRight & mUnusable ) continue; 1167 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1168 testcase( pTerm->eOperator & WO_IN ); 1169 testcase( pTerm->eOperator & WO_ISNULL ); 1170 testcase( pTerm->eOperator & WO_IS ); 1171 testcase( pTerm->eOperator & WO_ALL ); 1172 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1173 if( pTerm->wtFlags & TERM_VNULL ) continue; 1174 1175 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1176 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1177 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1178 1179 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1180 ** right-hand table of a LEFT JOIN nor to the left-hand table of a 1181 ** RIGHT JOIN. See tag-20191211-001 for the 1182 ** equivalent restriction for ordinary tables. */ 1183 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 1184 && !ExprHasProperty(pTerm->pExpr, EP_OuterON) 1185 ){ 1186 continue; 1187 } 1188 nTerm++; 1189 pTerm->wtFlags |= TERM_OK; 1190 } 1191 1192 /* If the ORDER BY clause contains only columns in the current 1193 ** virtual table then allocate space for the aOrderBy part of 1194 ** the sqlite3_index_info structure. 1195 */ 1196 nOrderBy = 0; 1197 if( pOrderBy ){ 1198 int n = pOrderBy->nExpr; 1199 for(i=0; i<n; i++){ 1200 Expr *pExpr = pOrderBy->a[i].pExpr; 1201 Expr *pE2; 1202 1203 /* Skip over constant terms in the ORDER BY clause */ 1204 if( sqlite3ExprIsConstant(pExpr) ){ 1205 continue; 1206 } 1207 1208 /* Virtual tables are unable to deal with NULLS FIRST */ 1209 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1210 1211 /* First case - a direct column references without a COLLATE operator */ 1212 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1213 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1214 continue; 1215 } 1216 1217 /* 2nd case - a column reference with a COLLATE operator. Only match 1218 ** of the COLLATE operator matches the collation of the column. */ 1219 if( pExpr->op==TK_COLLATE 1220 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1221 && pE2->iTable==pSrc->iCursor 1222 ){ 1223 const char *zColl; /* The collating sequence name */ 1224 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1225 assert( pExpr->u.zToken!=0 ); 1226 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1227 pExpr->iColumn = pE2->iColumn; 1228 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1229 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1230 if( zColl==0 ) zColl = sqlite3StrBINARY; 1231 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1232 } 1233 1234 /* No matches cause a break out of the loop */ 1235 break; 1236 } 1237 if( i==n ){ 1238 nOrderBy = n; 1239 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ 1240 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 1241 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 1242 eDistinct = 1; 1243 } 1244 } 1245 } 1246 1247 /* Allocate the sqlite3_index_info structure 1248 */ 1249 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1250 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1251 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1252 + sizeof(sqlite3_value*)*nTerm ); 1253 if( pIdxInfo==0 ){ 1254 sqlite3ErrorMsg(pParse, "out of memory"); 1255 return 0; 1256 } 1257 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1258 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1259 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1260 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1261 pIdxInfo->aConstraint = pIdxCons; 1262 pIdxInfo->aOrderBy = pIdxOrderBy; 1263 pIdxInfo->aConstraintUsage = pUsage; 1264 pHidden->pWC = pWC; 1265 pHidden->pParse = pParse; 1266 pHidden->eDistinct = eDistinct; 1267 pHidden->mIn = 0; 1268 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1269 u16 op; 1270 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1271 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1272 pIdxCons[j].iTermOffset = i; 1273 op = pTerm->eOperator & WO_ALL; 1274 if( op==WO_IN ){ 1275 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1276 pHidden->mIn |= SMASKBIT32(j); 1277 } 1278 op = WO_EQ; 1279 } 1280 if( op==WO_AUX ){ 1281 pIdxCons[j].op = pTerm->eMatchOp; 1282 }else if( op & (WO_ISNULL|WO_IS) ){ 1283 if( op==WO_ISNULL ){ 1284 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1285 }else{ 1286 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1287 } 1288 }else{ 1289 pIdxCons[j].op = (u8)op; 1290 /* The direct assignment in the previous line is possible only because 1291 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1292 ** following asserts verify this fact. */ 1293 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1294 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1295 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1296 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1297 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1298 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1299 1300 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1301 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1302 ){ 1303 testcase( j!=i ); 1304 if( j<16 ) mNoOmit |= (1 << j); 1305 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1306 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1307 } 1308 } 1309 1310 j++; 1311 } 1312 assert( j==nTerm ); 1313 pIdxInfo->nConstraint = j; 1314 for(i=j=0; i<nOrderBy; i++){ 1315 Expr *pExpr = pOrderBy->a[i].pExpr; 1316 if( sqlite3ExprIsConstant(pExpr) ) continue; 1317 assert( pExpr->op==TK_COLUMN 1318 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1319 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1320 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1321 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 1322 j++; 1323 } 1324 pIdxInfo->nOrderBy = j; 1325 1326 *pmNoOmit = mNoOmit; 1327 return pIdxInfo; 1328 } 1329 1330 /* 1331 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1332 ** and possibly modified by xBestIndex methods. 1333 */ 1334 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1335 HiddenIndexInfo *pHidden; 1336 int i; 1337 assert( pIdxInfo!=0 ); 1338 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1339 assert( pHidden->pParse!=0 ); 1340 assert( pHidden->pParse->db==db ); 1341 for(i=0; i<pIdxInfo->nConstraint; i++){ 1342 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1343 pHidden->aRhs[i] = 0; 1344 } 1345 sqlite3DbFree(db, pIdxInfo); 1346 } 1347 1348 /* 1349 ** The table object reference passed as the second argument to this function 1350 ** must represent a virtual table. This function invokes the xBestIndex() 1351 ** method of the virtual table with the sqlite3_index_info object that 1352 ** comes in as the 3rd argument to this function. 1353 ** 1354 ** If an error occurs, pParse is populated with an error message and an 1355 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1356 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1357 ** the current configuration of "unusable" flags in sqlite3_index_info can 1358 ** not result in a valid plan. 1359 ** 1360 ** Whether or not an error is returned, it is the responsibility of the 1361 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1362 ** that this is required. 1363 */ 1364 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1365 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1366 int rc; 1367 1368 whereTraceIndexInfoInputs(p); 1369 pParse->db->nSchemaLock++; 1370 rc = pVtab->pModule->xBestIndex(pVtab, p); 1371 pParse->db->nSchemaLock--; 1372 whereTraceIndexInfoOutputs(p); 1373 1374 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1375 if( rc==SQLITE_NOMEM ){ 1376 sqlite3OomFault(pParse->db); 1377 }else if( !pVtab->zErrMsg ){ 1378 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1379 }else{ 1380 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1381 } 1382 } 1383 sqlite3_free(pVtab->zErrMsg); 1384 pVtab->zErrMsg = 0; 1385 return rc; 1386 } 1387 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1388 1389 #ifdef SQLITE_ENABLE_STAT4 1390 /* 1391 ** Estimate the location of a particular key among all keys in an 1392 ** index. Store the results in aStat as follows: 1393 ** 1394 ** aStat[0] Est. number of rows less than pRec 1395 ** aStat[1] Est. number of rows equal to pRec 1396 ** 1397 ** Return the index of the sample that is the smallest sample that 1398 ** is greater than or equal to pRec. Note that this index is not an index 1399 ** into the aSample[] array - it is an index into a virtual set of samples 1400 ** based on the contents of aSample[] and the number of fields in record 1401 ** pRec. 1402 */ 1403 static int whereKeyStats( 1404 Parse *pParse, /* Database connection */ 1405 Index *pIdx, /* Index to consider domain of */ 1406 UnpackedRecord *pRec, /* Vector of values to consider */ 1407 int roundUp, /* Round up if true. Round down if false */ 1408 tRowcnt *aStat /* OUT: stats written here */ 1409 ){ 1410 IndexSample *aSample = pIdx->aSample; 1411 int iCol; /* Index of required stats in anEq[] etc. */ 1412 int i; /* Index of first sample >= pRec */ 1413 int iSample; /* Smallest sample larger than or equal to pRec */ 1414 int iMin = 0; /* Smallest sample not yet tested */ 1415 int iTest; /* Next sample to test */ 1416 int res; /* Result of comparison operation */ 1417 int nField; /* Number of fields in pRec */ 1418 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1419 1420 #ifndef SQLITE_DEBUG 1421 UNUSED_PARAMETER( pParse ); 1422 #endif 1423 assert( pRec!=0 ); 1424 assert( pIdx->nSample>0 ); 1425 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1426 1427 /* Do a binary search to find the first sample greater than or equal 1428 ** to pRec. If pRec contains a single field, the set of samples to search 1429 ** is simply the aSample[] array. If the samples in aSample[] contain more 1430 ** than one fields, all fields following the first are ignored. 1431 ** 1432 ** If pRec contains N fields, where N is more than one, then as well as the 1433 ** samples in aSample[] (truncated to N fields), the search also has to 1434 ** consider prefixes of those samples. For example, if the set of samples 1435 ** in aSample is: 1436 ** 1437 ** aSample[0] = (a, 5) 1438 ** aSample[1] = (a, 10) 1439 ** aSample[2] = (b, 5) 1440 ** aSample[3] = (c, 100) 1441 ** aSample[4] = (c, 105) 1442 ** 1443 ** Then the search space should ideally be the samples above and the 1444 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1445 ** the code actually searches this set: 1446 ** 1447 ** 0: (a) 1448 ** 1: (a, 5) 1449 ** 2: (a, 10) 1450 ** 3: (a, 10) 1451 ** 4: (b) 1452 ** 5: (b, 5) 1453 ** 6: (c) 1454 ** 7: (c, 100) 1455 ** 8: (c, 105) 1456 ** 9: (c, 105) 1457 ** 1458 ** For each sample in the aSample[] array, N samples are present in the 1459 ** effective sample array. In the above, samples 0 and 1 are based on 1460 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1461 ** 1462 ** Often, sample i of each block of N effective samples has (i+1) fields. 1463 ** Except, each sample may be extended to ensure that it is greater than or 1464 ** equal to the previous sample in the array. For example, in the above, 1465 ** sample 2 is the first sample of a block of N samples, so at first it 1466 ** appears that it should be 1 field in size. However, that would make it 1467 ** smaller than sample 1, so the binary search would not work. As a result, 1468 ** it is extended to two fields. The duplicates that this creates do not 1469 ** cause any problems. 1470 */ 1471 nField = pRec->nField; 1472 iCol = 0; 1473 iSample = pIdx->nSample * nField; 1474 do{ 1475 int iSamp; /* Index in aSample[] of test sample */ 1476 int n; /* Number of fields in test sample */ 1477 1478 iTest = (iMin+iSample)/2; 1479 iSamp = iTest / nField; 1480 if( iSamp>0 ){ 1481 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1482 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1483 ** fields that is greater than the previous effective sample. */ 1484 for(n=(iTest % nField) + 1; n<nField; n++){ 1485 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1486 } 1487 }else{ 1488 n = iTest + 1; 1489 } 1490 1491 pRec->nField = n; 1492 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1493 if( res<0 ){ 1494 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1495 iMin = iTest+1; 1496 }else if( res==0 && n<nField ){ 1497 iLower = aSample[iSamp].anLt[n-1]; 1498 iMin = iTest+1; 1499 res = -1; 1500 }else{ 1501 iSample = iTest; 1502 iCol = n-1; 1503 } 1504 }while( res && iMin<iSample ); 1505 i = iSample / nField; 1506 1507 #ifdef SQLITE_DEBUG 1508 /* The following assert statements check that the binary search code 1509 ** above found the right answer. This block serves no purpose other 1510 ** than to invoke the asserts. */ 1511 if( pParse->db->mallocFailed==0 ){ 1512 if( res==0 ){ 1513 /* If (res==0) is true, then pRec must be equal to sample i. */ 1514 assert( i<pIdx->nSample ); 1515 assert( iCol==nField-1 ); 1516 pRec->nField = nField; 1517 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1518 || pParse->db->mallocFailed 1519 ); 1520 }else{ 1521 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1522 ** all samples in the aSample[] array, pRec must be smaller than the 1523 ** (iCol+1) field prefix of sample i. */ 1524 assert( i<=pIdx->nSample && i>=0 ); 1525 pRec->nField = iCol+1; 1526 assert( i==pIdx->nSample 1527 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1528 || pParse->db->mallocFailed ); 1529 1530 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1531 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1532 ** be greater than or equal to the (iCol) field prefix of sample i. 1533 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1534 if( iCol>0 ){ 1535 pRec->nField = iCol; 1536 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1537 || pParse->db->mallocFailed ); 1538 } 1539 if( i>0 ){ 1540 pRec->nField = nField; 1541 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1542 || pParse->db->mallocFailed ); 1543 } 1544 } 1545 } 1546 #endif /* ifdef SQLITE_DEBUG */ 1547 1548 if( res==0 ){ 1549 /* Record pRec is equal to sample i */ 1550 assert( iCol==nField-1 ); 1551 aStat[0] = aSample[i].anLt[iCol]; 1552 aStat[1] = aSample[i].anEq[iCol]; 1553 }else{ 1554 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1555 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1556 ** is larger than all samples in the array. */ 1557 tRowcnt iUpper, iGap; 1558 if( i>=pIdx->nSample ){ 1559 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1560 }else{ 1561 iUpper = aSample[i].anLt[iCol]; 1562 } 1563 1564 if( iLower>=iUpper ){ 1565 iGap = 0; 1566 }else{ 1567 iGap = iUpper - iLower; 1568 } 1569 if( roundUp ){ 1570 iGap = (iGap*2)/3; 1571 }else{ 1572 iGap = iGap/3; 1573 } 1574 aStat[0] = iLower + iGap; 1575 aStat[1] = pIdx->aAvgEq[nField-1]; 1576 } 1577 1578 /* Restore the pRec->nField value before returning. */ 1579 pRec->nField = nField; 1580 return i; 1581 } 1582 #endif /* SQLITE_ENABLE_STAT4 */ 1583 1584 /* 1585 ** If it is not NULL, pTerm is a term that provides an upper or lower 1586 ** bound on a range scan. Without considering pTerm, it is estimated 1587 ** that the scan will visit nNew rows. This function returns the number 1588 ** estimated to be visited after taking pTerm into account. 1589 ** 1590 ** If the user explicitly specified a likelihood() value for this term, 1591 ** then the return value is the likelihood multiplied by the number of 1592 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1593 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1594 */ 1595 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1596 LogEst nRet = nNew; 1597 if( pTerm ){ 1598 if( pTerm->truthProb<=0 ){ 1599 nRet += pTerm->truthProb; 1600 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1601 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1602 } 1603 } 1604 return nRet; 1605 } 1606 1607 1608 #ifdef SQLITE_ENABLE_STAT4 1609 /* 1610 ** Return the affinity for a single column of an index. 1611 */ 1612 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1613 assert( iCol>=0 && iCol<pIdx->nColumn ); 1614 if( !pIdx->zColAff ){ 1615 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1616 } 1617 assert( pIdx->zColAff[iCol]!=0 ); 1618 return pIdx->zColAff[iCol]; 1619 } 1620 #endif 1621 1622 1623 #ifdef SQLITE_ENABLE_STAT4 1624 /* 1625 ** This function is called to estimate the number of rows visited by a 1626 ** range-scan on a skip-scan index. For example: 1627 ** 1628 ** CREATE INDEX i1 ON t1(a, b, c); 1629 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1630 ** 1631 ** Value pLoop->nOut is currently set to the estimated number of rows 1632 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1633 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1634 ** on the stat4 data for the index. this scan will be peformed multiple 1635 ** times (once for each (a,b) combination that matches a=?) is dealt with 1636 ** by the caller. 1637 ** 1638 ** It does this by scanning through all stat4 samples, comparing values 1639 ** extracted from pLower and pUpper with the corresponding column in each 1640 ** sample. If L and U are the number of samples found to be less than or 1641 ** equal to the values extracted from pLower and pUpper respectively, and 1642 ** N is the total number of samples, the pLoop->nOut value is adjusted 1643 ** as follows: 1644 ** 1645 ** nOut = nOut * ( min(U - L, 1) / N ) 1646 ** 1647 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1648 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1649 ** U is set to N. 1650 ** 1651 ** Normally, this function sets *pbDone to 1 before returning. However, 1652 ** if no value can be extracted from either pLower or pUpper (and so the 1653 ** estimate of the number of rows delivered remains unchanged), *pbDone 1654 ** is left as is. 1655 ** 1656 ** If an error occurs, an SQLite error code is returned. Otherwise, 1657 ** SQLITE_OK. 1658 */ 1659 static int whereRangeSkipScanEst( 1660 Parse *pParse, /* Parsing & code generating context */ 1661 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1662 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1663 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1664 int *pbDone /* Set to true if at least one expr. value extracted */ 1665 ){ 1666 Index *p = pLoop->u.btree.pIndex; 1667 int nEq = pLoop->u.btree.nEq; 1668 sqlite3 *db = pParse->db; 1669 int nLower = -1; 1670 int nUpper = p->nSample+1; 1671 int rc = SQLITE_OK; 1672 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1673 CollSeq *pColl; 1674 1675 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1676 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1677 sqlite3_value *pVal = 0; /* Value extracted from record */ 1678 1679 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1680 if( pLower ){ 1681 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1682 nLower = 0; 1683 } 1684 if( pUpper && rc==SQLITE_OK ){ 1685 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1686 nUpper = p2 ? 0 : p->nSample; 1687 } 1688 1689 if( p1 || p2 ){ 1690 int i; 1691 int nDiff; 1692 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1693 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1694 if( rc==SQLITE_OK && p1 ){ 1695 int res = sqlite3MemCompare(p1, pVal, pColl); 1696 if( res>=0 ) nLower++; 1697 } 1698 if( rc==SQLITE_OK && p2 ){ 1699 int res = sqlite3MemCompare(p2, pVal, pColl); 1700 if( res>=0 ) nUpper++; 1701 } 1702 } 1703 nDiff = (nUpper - nLower); 1704 if( nDiff<=0 ) nDiff = 1; 1705 1706 /* If there is both an upper and lower bound specified, and the 1707 ** comparisons indicate that they are close together, use the fallback 1708 ** method (assume that the scan visits 1/64 of the rows) for estimating 1709 ** the number of rows visited. Otherwise, estimate the number of rows 1710 ** using the method described in the header comment for this function. */ 1711 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1712 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1713 pLoop->nOut -= nAdjust; 1714 *pbDone = 1; 1715 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1716 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1717 } 1718 1719 }else{ 1720 assert( *pbDone==0 ); 1721 } 1722 1723 sqlite3ValueFree(p1); 1724 sqlite3ValueFree(p2); 1725 sqlite3ValueFree(pVal); 1726 1727 return rc; 1728 } 1729 #endif /* SQLITE_ENABLE_STAT4 */ 1730 1731 /* 1732 ** This function is used to estimate the number of rows that will be visited 1733 ** by scanning an index for a range of values. The range may have an upper 1734 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1735 ** and lower bounds are represented by pLower and pUpper respectively. For 1736 ** example, assuming that index p is on t1(a): 1737 ** 1738 ** ... FROM t1 WHERE a > ? AND a < ? ... 1739 ** |_____| |_____| 1740 ** | | 1741 ** pLower pUpper 1742 ** 1743 ** If either of the upper or lower bound is not present, then NULL is passed in 1744 ** place of the corresponding WhereTerm. 1745 ** 1746 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1747 ** column subject to the range constraint. Or, equivalently, the number of 1748 ** equality constraints optimized by the proposed index scan. For example, 1749 ** assuming index p is on t1(a, b), and the SQL query is: 1750 ** 1751 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1752 ** 1753 ** then nEq is set to 1 (as the range restricted column, b, is the second 1754 ** left-most column of the index). Or, if the query is: 1755 ** 1756 ** ... FROM t1 WHERE a > ? AND a < ? ... 1757 ** 1758 ** then nEq is set to 0. 1759 ** 1760 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1761 ** number of rows that the index scan is expected to visit without 1762 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1763 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1764 ** to account for the range constraints pLower and pUpper. 1765 ** 1766 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1767 ** used, a single range inequality reduces the search space by a factor of 4. 1768 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1769 ** rows visited by a factor of 64. 1770 */ 1771 static int whereRangeScanEst( 1772 Parse *pParse, /* Parsing & code generating context */ 1773 WhereLoopBuilder *pBuilder, 1774 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1775 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1776 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1777 ){ 1778 int rc = SQLITE_OK; 1779 int nOut = pLoop->nOut; 1780 LogEst nNew; 1781 1782 #ifdef SQLITE_ENABLE_STAT4 1783 Index *p = pLoop->u.btree.pIndex; 1784 int nEq = pLoop->u.btree.nEq; 1785 1786 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1787 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1788 ){ 1789 if( nEq==pBuilder->nRecValid ){ 1790 UnpackedRecord *pRec = pBuilder->pRec; 1791 tRowcnt a[2]; 1792 int nBtm = pLoop->u.btree.nBtm; 1793 int nTop = pLoop->u.btree.nTop; 1794 1795 /* Variable iLower will be set to the estimate of the number of rows in 1796 ** the index that are less than the lower bound of the range query. The 1797 ** lower bound being the concatenation of $P and $L, where $P is the 1798 ** key-prefix formed by the nEq values matched against the nEq left-most 1799 ** columns of the index, and $L is the value in pLower. 1800 ** 1801 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1802 ** is not a simple variable or literal value), the lower bound of the 1803 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1804 ** if $L is available, whereKeyStats() is called for both ($P) and 1805 ** ($P:$L) and the larger of the two returned values is used. 1806 ** 1807 ** Similarly, iUpper is to be set to the estimate of the number of rows 1808 ** less than the upper bound of the range query. Where the upper bound 1809 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1810 ** of iUpper are requested of whereKeyStats() and the smaller used. 1811 ** 1812 ** The number of rows between the two bounds is then just iUpper-iLower. 1813 */ 1814 tRowcnt iLower; /* Rows less than the lower bound */ 1815 tRowcnt iUpper; /* Rows less than the upper bound */ 1816 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1817 int iUprIdx = -1; /* aSample[] for the upper bound */ 1818 1819 if( pRec ){ 1820 testcase( pRec->nField!=pBuilder->nRecValid ); 1821 pRec->nField = pBuilder->nRecValid; 1822 } 1823 /* Determine iLower and iUpper using ($P) only. */ 1824 if( nEq==0 ){ 1825 iLower = 0; 1826 iUpper = p->nRowEst0; 1827 }else{ 1828 /* Note: this call could be optimized away - since the same values must 1829 ** have been requested when testing key $P in whereEqualScanEst(). */ 1830 whereKeyStats(pParse, p, pRec, 0, a); 1831 iLower = a[0]; 1832 iUpper = a[0] + a[1]; 1833 } 1834 1835 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1836 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1837 assert( p->aSortOrder!=0 ); 1838 if( p->aSortOrder[nEq] ){ 1839 /* The roles of pLower and pUpper are swapped for a DESC index */ 1840 SWAP(WhereTerm*, pLower, pUpper); 1841 SWAP(int, nBtm, nTop); 1842 } 1843 1844 /* If possible, improve on the iLower estimate using ($P:$L). */ 1845 if( pLower ){ 1846 int n; /* Values extracted from pExpr */ 1847 Expr *pExpr = pLower->pExpr->pRight; 1848 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1849 if( rc==SQLITE_OK && n ){ 1850 tRowcnt iNew; 1851 u16 mask = WO_GT|WO_LE; 1852 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1853 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1854 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1855 if( iNew>iLower ) iLower = iNew; 1856 nOut--; 1857 pLower = 0; 1858 } 1859 } 1860 1861 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1862 if( pUpper ){ 1863 int n; /* Values extracted from pExpr */ 1864 Expr *pExpr = pUpper->pExpr->pRight; 1865 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1866 if( rc==SQLITE_OK && n ){ 1867 tRowcnt iNew; 1868 u16 mask = WO_GT|WO_LE; 1869 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1870 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1871 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1872 if( iNew<iUpper ) iUpper = iNew; 1873 nOut--; 1874 pUpper = 0; 1875 } 1876 } 1877 1878 pBuilder->pRec = pRec; 1879 if( rc==SQLITE_OK ){ 1880 if( iUpper>iLower ){ 1881 nNew = sqlite3LogEst(iUpper - iLower); 1882 /* TUNING: If both iUpper and iLower are derived from the same 1883 ** sample, then assume they are 4x more selective. This brings 1884 ** the estimated selectivity more in line with what it would be 1885 ** if estimated without the use of STAT4 tables. */ 1886 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1887 }else{ 1888 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1889 } 1890 if( nNew<nOut ){ 1891 nOut = nNew; 1892 } 1893 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1894 (u32)iLower, (u32)iUpper, nOut)); 1895 } 1896 }else{ 1897 int bDone = 0; 1898 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1899 if( bDone ) return rc; 1900 } 1901 } 1902 #else 1903 UNUSED_PARAMETER(pParse); 1904 UNUSED_PARAMETER(pBuilder); 1905 assert( pLower || pUpper ); 1906 #endif 1907 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1908 nNew = whereRangeAdjust(pLower, nOut); 1909 nNew = whereRangeAdjust(pUpper, nNew); 1910 1911 /* TUNING: If there is both an upper and lower limit and neither limit 1912 ** has an application-defined likelihood(), assume the range is 1913 ** reduced by an additional 75%. This means that, by default, an open-ended 1914 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1915 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1916 ** match 1/64 of the index. */ 1917 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1918 nNew -= 20; 1919 } 1920 1921 nOut -= (pLower!=0) + (pUpper!=0); 1922 if( nNew<10 ) nNew = 10; 1923 if( nNew<nOut ) nOut = nNew; 1924 #if defined(WHERETRACE_ENABLED) 1925 if( pLoop->nOut>nOut ){ 1926 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1927 pLoop->nOut, nOut)); 1928 } 1929 #endif 1930 pLoop->nOut = (LogEst)nOut; 1931 return rc; 1932 } 1933 1934 #ifdef SQLITE_ENABLE_STAT4 1935 /* 1936 ** Estimate the number of rows that will be returned based on 1937 ** an equality constraint x=VALUE and where that VALUE occurs in 1938 ** the histogram data. This only works when x is the left-most 1939 ** column of an index and sqlite_stat4 histogram data is available 1940 ** for that index. When pExpr==NULL that means the constraint is 1941 ** "x IS NULL" instead of "x=VALUE". 1942 ** 1943 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1944 ** If unable to make an estimate, leave *pnRow unchanged and return 1945 ** non-zero. 1946 ** 1947 ** This routine can fail if it is unable to load a collating sequence 1948 ** required for string comparison, or if unable to allocate memory 1949 ** for a UTF conversion required for comparison. The error is stored 1950 ** in the pParse structure. 1951 */ 1952 static int whereEqualScanEst( 1953 Parse *pParse, /* Parsing & code generating context */ 1954 WhereLoopBuilder *pBuilder, 1955 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1956 tRowcnt *pnRow /* Write the revised row estimate here */ 1957 ){ 1958 Index *p = pBuilder->pNew->u.btree.pIndex; 1959 int nEq = pBuilder->pNew->u.btree.nEq; 1960 UnpackedRecord *pRec = pBuilder->pRec; 1961 int rc; /* Subfunction return code */ 1962 tRowcnt a[2]; /* Statistics */ 1963 int bOk; 1964 1965 assert( nEq>=1 ); 1966 assert( nEq<=p->nColumn ); 1967 assert( p->aSample!=0 ); 1968 assert( p->nSample>0 ); 1969 assert( pBuilder->nRecValid<nEq ); 1970 1971 /* If values are not available for all fields of the index to the left 1972 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1973 if( pBuilder->nRecValid<(nEq-1) ){ 1974 return SQLITE_NOTFOUND; 1975 } 1976 1977 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1978 ** below would return the same value. */ 1979 if( nEq>=p->nColumn ){ 1980 *pnRow = 1; 1981 return SQLITE_OK; 1982 } 1983 1984 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1985 pBuilder->pRec = pRec; 1986 if( rc!=SQLITE_OK ) return rc; 1987 if( bOk==0 ) return SQLITE_NOTFOUND; 1988 pBuilder->nRecValid = nEq; 1989 1990 whereKeyStats(pParse, p, pRec, 0, a); 1991 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1992 p->zName, nEq-1, (int)a[1])); 1993 *pnRow = a[1]; 1994 1995 return rc; 1996 } 1997 #endif /* SQLITE_ENABLE_STAT4 */ 1998 1999 #ifdef SQLITE_ENABLE_STAT4 2000 /* 2001 ** Estimate the number of rows that will be returned based on 2002 ** an IN constraint where the right-hand side of the IN operator 2003 ** is a list of values. Example: 2004 ** 2005 ** WHERE x IN (1,2,3,4) 2006 ** 2007 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2008 ** If unable to make an estimate, leave *pnRow unchanged and return 2009 ** non-zero. 2010 ** 2011 ** This routine can fail if it is unable to load a collating sequence 2012 ** required for string comparison, or if unable to allocate memory 2013 ** for a UTF conversion required for comparison. The error is stored 2014 ** in the pParse structure. 2015 */ 2016 static int whereInScanEst( 2017 Parse *pParse, /* Parsing & code generating context */ 2018 WhereLoopBuilder *pBuilder, 2019 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2020 tRowcnt *pnRow /* Write the revised row estimate here */ 2021 ){ 2022 Index *p = pBuilder->pNew->u.btree.pIndex; 2023 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2024 int nRecValid = pBuilder->nRecValid; 2025 int rc = SQLITE_OK; /* Subfunction return code */ 2026 tRowcnt nEst; /* Number of rows for a single term */ 2027 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2028 int i; /* Loop counter */ 2029 2030 assert( p->aSample!=0 ); 2031 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2032 nEst = nRow0; 2033 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2034 nRowEst += nEst; 2035 pBuilder->nRecValid = nRecValid; 2036 } 2037 2038 if( rc==SQLITE_OK ){ 2039 if( nRowEst > nRow0 ) nRowEst = nRow0; 2040 *pnRow = nRowEst; 2041 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2042 } 2043 assert( pBuilder->nRecValid==nRecValid ); 2044 return rc; 2045 } 2046 #endif /* SQLITE_ENABLE_STAT4 */ 2047 2048 2049 #ifdef WHERETRACE_ENABLED 2050 /* 2051 ** Print the content of a WhereTerm object 2052 */ 2053 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2054 if( pTerm==0 ){ 2055 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2056 }else{ 2057 char zType[8]; 2058 char zLeft[50]; 2059 memcpy(zType, "....", 5); 2060 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2061 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2062 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 2063 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2064 if( pTerm->eOperator & WO_SINGLE ){ 2065 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2066 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2067 pTerm->leftCursor, pTerm->u.x.leftColumn); 2068 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2069 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2070 pTerm->u.pOrInfo->indexable); 2071 }else{ 2072 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2073 } 2074 sqlite3DebugPrintf( 2075 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2076 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2077 /* The 0x10000 .wheretrace flag causes extra information to be 2078 ** shown about each Term */ 2079 if( sqlite3WhereTrace & 0x10000 ){ 2080 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2081 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2082 } 2083 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2084 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2085 } 2086 if( pTerm->iParent>=0 ){ 2087 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2088 } 2089 sqlite3DebugPrintf("\n"); 2090 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2091 } 2092 } 2093 #endif 2094 2095 #ifdef WHERETRACE_ENABLED 2096 /* 2097 ** Show the complete content of a WhereClause 2098 */ 2099 void sqlite3WhereClausePrint(WhereClause *pWC){ 2100 int i; 2101 for(i=0; i<pWC->nTerm; i++){ 2102 sqlite3WhereTermPrint(&pWC->a[i], i); 2103 } 2104 } 2105 #endif 2106 2107 #ifdef WHERETRACE_ENABLED 2108 /* 2109 ** Print a WhereLoop object for debugging purposes 2110 */ 2111 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2112 WhereInfo *pWInfo = pWC->pWInfo; 2113 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2114 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2115 Table *pTab = pItem->pTab; 2116 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2117 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2118 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2119 sqlite3DebugPrintf(" %12s", 2120 pItem->zAlias ? pItem->zAlias : pTab->zName); 2121 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2122 const char *zName; 2123 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2124 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2125 int i = sqlite3Strlen30(zName) - 1; 2126 while( zName[i]!='_' ) i--; 2127 zName += i; 2128 } 2129 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2130 }else{ 2131 sqlite3DebugPrintf("%20s",""); 2132 } 2133 }else{ 2134 char *z; 2135 if( p->u.vtab.idxStr ){ 2136 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2137 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2138 }else{ 2139 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2140 } 2141 sqlite3DebugPrintf(" %-19s", z); 2142 sqlite3_free(z); 2143 } 2144 if( p->wsFlags & WHERE_SKIPSCAN ){ 2145 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2146 }else{ 2147 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2148 } 2149 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2150 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2151 int i; 2152 for(i=0; i<p->nLTerm; i++){ 2153 sqlite3WhereTermPrint(p->aLTerm[i], i); 2154 } 2155 } 2156 } 2157 #endif 2158 2159 /* 2160 ** Convert bulk memory into a valid WhereLoop that can be passed 2161 ** to whereLoopClear harmlessly. 2162 */ 2163 static void whereLoopInit(WhereLoop *p){ 2164 p->aLTerm = p->aLTermSpace; 2165 p->nLTerm = 0; 2166 p->nLSlot = ArraySize(p->aLTermSpace); 2167 p->wsFlags = 0; 2168 } 2169 2170 /* 2171 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2172 */ 2173 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2174 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2175 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2176 sqlite3_free(p->u.vtab.idxStr); 2177 p->u.vtab.needFree = 0; 2178 p->u.vtab.idxStr = 0; 2179 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2180 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2181 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2182 p->u.btree.pIndex = 0; 2183 } 2184 } 2185 } 2186 2187 /* 2188 ** Deallocate internal memory used by a WhereLoop object 2189 */ 2190 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2191 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2192 whereLoopClearUnion(db, p); 2193 whereLoopInit(p); 2194 } 2195 2196 /* 2197 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2198 */ 2199 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2200 WhereTerm **paNew; 2201 if( p->nLSlot>=n ) return SQLITE_OK; 2202 n = (n+7)&~7; 2203 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2204 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2205 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2206 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2207 p->aLTerm = paNew; 2208 p->nLSlot = n; 2209 return SQLITE_OK; 2210 } 2211 2212 /* 2213 ** Transfer content from the second pLoop into the first. 2214 */ 2215 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2216 whereLoopClearUnion(db, pTo); 2217 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 2218 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2219 return SQLITE_NOMEM_BKPT; 2220 } 2221 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2222 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2223 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2224 pFrom->u.vtab.needFree = 0; 2225 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2226 pFrom->u.btree.pIndex = 0; 2227 } 2228 return SQLITE_OK; 2229 } 2230 2231 /* 2232 ** Delete a WhereLoop object 2233 */ 2234 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2235 whereLoopClear(db, p); 2236 sqlite3DbFreeNN(db, p); 2237 } 2238 2239 /* 2240 ** Free a WhereInfo structure 2241 */ 2242 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2243 assert( pWInfo!=0 ); 2244 sqlite3WhereClauseClear(&pWInfo->sWC); 2245 while( pWInfo->pLoops ){ 2246 WhereLoop *p = pWInfo->pLoops; 2247 pWInfo->pLoops = p->pNextLoop; 2248 whereLoopDelete(db, p); 2249 } 2250 assert( pWInfo->pExprMods==0 ); 2251 while( pWInfo->pMemToFree ){ 2252 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 2253 sqlite3DbFreeNN(db, pWInfo->pMemToFree); 2254 pWInfo->pMemToFree = pNext; 2255 } 2256 sqlite3DbFreeNN(db, pWInfo); 2257 } 2258 2259 /* Undo all Expr node modifications 2260 */ 2261 static void whereUndoExprMods(WhereInfo *pWInfo){ 2262 while( pWInfo->pExprMods ){ 2263 WhereExprMod *p = pWInfo->pExprMods; 2264 pWInfo->pExprMods = p->pNext; 2265 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2266 sqlite3DbFree(pWInfo->pParse->db, p); 2267 } 2268 } 2269 2270 /* 2271 ** Return TRUE if all of the following are true: 2272 ** 2273 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2274 ** than Y. 2275 ** (2) X uses fewer WHERE clause terms than Y 2276 ** (3) Every WHERE clause term used by X is also used by Y 2277 ** (4) X skips at least as many columns as Y 2278 ** (5) If X is a covering index, than Y is too 2279 ** 2280 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2281 ** If X is a proper subset of Y then Y is a better choice and ought 2282 ** to have a lower cost. This routine returns TRUE when that cost 2283 ** relationship is inverted and needs to be adjusted. Constraint (4) 2284 ** was added because if X uses skip-scan less than Y it still might 2285 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2286 ** was added because a covering index probably deserves to have a lower cost 2287 ** than a non-covering index even if it is a proper subset. 2288 */ 2289 static int whereLoopCheaperProperSubset( 2290 const WhereLoop *pX, /* First WhereLoop to compare */ 2291 const WhereLoop *pY /* Compare against this WhereLoop */ 2292 ){ 2293 int i, j; 2294 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2295 return 0; /* X is not a subset of Y */ 2296 } 2297 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2298 if( pY->nSkip > pX->nSkip ) return 0; 2299 for(i=pX->nLTerm-1; i>=0; i--){ 2300 if( pX->aLTerm[i]==0 ) continue; 2301 for(j=pY->nLTerm-1; j>=0; j--){ 2302 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2303 } 2304 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2305 } 2306 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2307 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2308 return 0; /* Constraint (5) */ 2309 } 2310 return 1; /* All conditions meet */ 2311 } 2312 2313 /* 2314 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2315 ** upwards or downwards so that: 2316 ** 2317 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2318 ** subset of pTemplate 2319 ** 2320 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2321 ** is a proper subset. 2322 ** 2323 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2324 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2325 ** also used by Y. 2326 */ 2327 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2328 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2329 for(; p; p=p->pNextLoop){ 2330 if( p->iTab!=pTemplate->iTab ) continue; 2331 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2332 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2333 /* Adjust pTemplate cost downward so that it is cheaper than its 2334 ** subset p. */ 2335 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2336 pTemplate->rRun, pTemplate->nOut, 2337 MIN(p->rRun, pTemplate->rRun), 2338 MIN(p->nOut - 1, pTemplate->nOut))); 2339 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2340 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2341 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2342 /* Adjust pTemplate cost upward so that it is costlier than p since 2343 ** pTemplate is a proper subset of p */ 2344 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2345 pTemplate->rRun, pTemplate->nOut, 2346 MAX(p->rRun, pTemplate->rRun), 2347 MAX(p->nOut + 1, pTemplate->nOut))); 2348 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2349 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2350 } 2351 } 2352 } 2353 2354 /* 2355 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2356 ** replaced by pTemplate. 2357 ** 2358 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2359 ** In other words if pTemplate ought to be dropped from further consideration. 2360 ** 2361 ** If pX is a WhereLoop that pTemplate can replace, then return the 2362 ** link that points to pX. 2363 ** 2364 ** If pTemplate cannot replace any existing element of the list but needs 2365 ** to be added to the list as a new entry, then return a pointer to the 2366 ** tail of the list. 2367 */ 2368 static WhereLoop **whereLoopFindLesser( 2369 WhereLoop **ppPrev, 2370 const WhereLoop *pTemplate 2371 ){ 2372 WhereLoop *p; 2373 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2374 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2375 /* If either the iTab or iSortIdx values for two WhereLoop are different 2376 ** then those WhereLoops need to be considered separately. Neither is 2377 ** a candidate to replace the other. */ 2378 continue; 2379 } 2380 /* In the current implementation, the rSetup value is either zero 2381 ** or the cost of building an automatic index (NlogN) and the NlogN 2382 ** is the same for compatible WhereLoops. */ 2383 assert( p->rSetup==0 || pTemplate->rSetup==0 2384 || p->rSetup==pTemplate->rSetup ); 2385 2386 /* whereLoopAddBtree() always generates and inserts the automatic index 2387 ** case first. Hence compatible candidate WhereLoops never have a larger 2388 ** rSetup. Call this SETUP-INVARIANT */ 2389 assert( p->rSetup>=pTemplate->rSetup ); 2390 2391 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2392 ** UNIQUE constraint) with one or more == constraints is better 2393 ** than an automatic index. Unless it is a skip-scan. */ 2394 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2395 && (pTemplate->nSkip)==0 2396 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2397 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2398 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2399 ){ 2400 break; 2401 } 2402 2403 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2404 ** discarded. WhereLoop p is better if: 2405 ** (1) p has no more dependencies than pTemplate, and 2406 ** (2) p has an equal or lower cost than pTemplate 2407 */ 2408 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2409 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2410 && p->rRun<=pTemplate->rRun /* (2b) */ 2411 && p->nOut<=pTemplate->nOut /* (2c) */ 2412 ){ 2413 return 0; /* Discard pTemplate */ 2414 } 2415 2416 /* If pTemplate is always better than p, then cause p to be overwritten 2417 ** with pTemplate. pTemplate is better than p if: 2418 ** (1) pTemplate has no more dependences than p, and 2419 ** (2) pTemplate has an equal or lower cost than p. 2420 */ 2421 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2422 && p->rRun>=pTemplate->rRun /* (2a) */ 2423 && p->nOut>=pTemplate->nOut /* (2b) */ 2424 ){ 2425 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2426 break; /* Cause p to be overwritten by pTemplate */ 2427 } 2428 } 2429 return ppPrev; 2430 } 2431 2432 /* 2433 ** Insert or replace a WhereLoop entry using the template supplied. 2434 ** 2435 ** An existing WhereLoop entry might be overwritten if the new template 2436 ** is better and has fewer dependencies. Or the template will be ignored 2437 ** and no insert will occur if an existing WhereLoop is faster and has 2438 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2439 ** added based on the template. 2440 ** 2441 ** If pBuilder->pOrSet is not NULL then we care about only the 2442 ** prerequisites and rRun and nOut costs of the N best loops. That 2443 ** information is gathered in the pBuilder->pOrSet object. This special 2444 ** processing mode is used only for OR clause processing. 2445 ** 2446 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2447 ** still might overwrite similar loops with the new template if the 2448 ** new template is better. Loops may be overwritten if the following 2449 ** conditions are met: 2450 ** 2451 ** (1) They have the same iTab. 2452 ** (2) They have the same iSortIdx. 2453 ** (3) The template has same or fewer dependencies than the current loop 2454 ** (4) The template has the same or lower cost than the current loop 2455 */ 2456 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2457 WhereLoop **ppPrev, *p; 2458 WhereInfo *pWInfo = pBuilder->pWInfo; 2459 sqlite3 *db = pWInfo->pParse->db; 2460 int rc; 2461 2462 /* Stop the search once we hit the query planner search limit */ 2463 if( pBuilder->iPlanLimit==0 ){ 2464 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2465 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2466 return SQLITE_DONE; 2467 } 2468 pBuilder->iPlanLimit--; 2469 2470 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2471 2472 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2473 ** and prereqs. 2474 */ 2475 if( pBuilder->pOrSet!=0 ){ 2476 if( pTemplate->nLTerm ){ 2477 #if WHERETRACE_ENABLED 2478 u16 n = pBuilder->pOrSet->n; 2479 int x = 2480 #endif 2481 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2482 pTemplate->nOut); 2483 #if WHERETRACE_ENABLED /* 0x8 */ 2484 if( sqlite3WhereTrace & 0x8 ){ 2485 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2486 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2487 } 2488 #endif 2489 } 2490 return SQLITE_OK; 2491 } 2492 2493 /* Look for an existing WhereLoop to replace with pTemplate 2494 */ 2495 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2496 2497 if( ppPrev==0 ){ 2498 /* There already exists a WhereLoop on the list that is better 2499 ** than pTemplate, so just ignore pTemplate */ 2500 #if WHERETRACE_ENABLED /* 0x8 */ 2501 if( sqlite3WhereTrace & 0x8 ){ 2502 sqlite3DebugPrintf(" skip: "); 2503 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2504 } 2505 #endif 2506 return SQLITE_OK; 2507 }else{ 2508 p = *ppPrev; 2509 } 2510 2511 /* If we reach this point it means that either p[] should be overwritten 2512 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2513 ** WhereLoop and insert it. 2514 */ 2515 #if WHERETRACE_ENABLED /* 0x8 */ 2516 if( sqlite3WhereTrace & 0x8 ){ 2517 if( p!=0 ){ 2518 sqlite3DebugPrintf("replace: "); 2519 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2520 sqlite3DebugPrintf(" with: "); 2521 }else{ 2522 sqlite3DebugPrintf(" add: "); 2523 } 2524 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2525 } 2526 #endif 2527 if( p==0 ){ 2528 /* Allocate a new WhereLoop to add to the end of the list */ 2529 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2530 if( p==0 ) return SQLITE_NOMEM_BKPT; 2531 whereLoopInit(p); 2532 p->pNextLoop = 0; 2533 }else{ 2534 /* We will be overwriting WhereLoop p[]. But before we do, first 2535 ** go through the rest of the list and delete any other entries besides 2536 ** p[] that are also supplated by pTemplate */ 2537 WhereLoop **ppTail = &p->pNextLoop; 2538 WhereLoop *pToDel; 2539 while( *ppTail ){ 2540 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2541 if( ppTail==0 ) break; 2542 pToDel = *ppTail; 2543 if( pToDel==0 ) break; 2544 *ppTail = pToDel->pNextLoop; 2545 #if WHERETRACE_ENABLED /* 0x8 */ 2546 if( sqlite3WhereTrace & 0x8 ){ 2547 sqlite3DebugPrintf(" delete: "); 2548 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2549 } 2550 #endif 2551 whereLoopDelete(db, pToDel); 2552 } 2553 } 2554 rc = whereLoopXfer(db, p, pTemplate); 2555 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2556 Index *pIndex = p->u.btree.pIndex; 2557 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2558 p->u.btree.pIndex = 0; 2559 } 2560 } 2561 return rc; 2562 } 2563 2564 /* 2565 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2566 ** WHERE clause that reference the loop but which are not used by an 2567 ** index. 2568 * 2569 ** For every WHERE clause term that is not used by the index 2570 ** and which has a truth probability assigned by one of the likelihood(), 2571 ** likely(), or unlikely() SQL functions, reduce the estimated number 2572 ** of output rows by the probability specified. 2573 ** 2574 ** TUNING: For every WHERE clause term that is not used by the index 2575 ** and which does not have an assigned truth probability, heuristics 2576 ** described below are used to try to estimate the truth probability. 2577 ** TODO --> Perhaps this is something that could be improved by better 2578 ** table statistics. 2579 ** 2580 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2581 ** value corresponds to -1 in LogEst notation, so this means decrement 2582 ** the WhereLoop.nOut field for every such WHERE clause term. 2583 ** 2584 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2585 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2586 ** final output row estimate is no greater than 1/4 of the total number 2587 ** of rows in the table. In other words, assume that x==EXPR will filter 2588 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2589 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2590 ** on the "x" column and so in that case only cap the output row estimate 2591 ** at 1/2 instead of 1/4. 2592 */ 2593 static void whereLoopOutputAdjust( 2594 WhereClause *pWC, /* The WHERE clause */ 2595 WhereLoop *pLoop, /* The loop to adjust downward */ 2596 LogEst nRow /* Number of rows in the entire table */ 2597 ){ 2598 WhereTerm *pTerm, *pX; 2599 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2600 int i, j; 2601 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2602 2603 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2604 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2605 assert( pTerm!=0 ); 2606 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2607 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2608 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2609 for(j=pLoop->nLTerm-1; j>=0; j--){ 2610 pX = pLoop->aLTerm[j]; 2611 if( pX==0 ) continue; 2612 if( pX==pTerm ) break; 2613 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2614 } 2615 if( j<0 ){ 2616 if( pLoop->maskSelf==pTerm->prereqAll ){ 2617 /* If there are extra terms in the WHERE clause not used by an index 2618 ** that depend only on the table being scanned, and that will tend to 2619 ** cause many rows to be omitted, then mark that table as 2620 ** "self-culling". 2621 ** 2622 ** 2022-03-24: Self-culling only applies if either the extra terms 2623 ** are straight comparison operators that are non-true with NULL 2624 ** operand, or if the loop is not an OUTER JOIN. 2625 */ 2626 if( (pTerm->eOperator & 0x3f)!=0 2627 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 2628 & (JT_LEFT|JT_LTORJ))==0 2629 ){ 2630 pLoop->wsFlags |= WHERE_SELFCULL; 2631 } 2632 } 2633 if( pTerm->truthProb<=0 ){ 2634 /* If a truth probability is specified using the likelihood() hints, 2635 ** then use the probability provided by the application. */ 2636 pLoop->nOut += pTerm->truthProb; 2637 }else{ 2638 /* In the absence of explicit truth probabilities, use heuristics to 2639 ** guess a reasonable truth probability. */ 2640 pLoop->nOut--; 2641 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2642 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2643 ){ 2644 Expr *pRight = pTerm->pExpr->pRight; 2645 int k = 0; 2646 testcase( pTerm->pExpr->op==TK_IS ); 2647 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2648 k = 10; 2649 }else{ 2650 k = 20; 2651 } 2652 if( iReduce<k ){ 2653 pTerm->wtFlags |= TERM_HEURTRUTH; 2654 iReduce = k; 2655 } 2656 } 2657 } 2658 } 2659 } 2660 if( pLoop->nOut > nRow-iReduce ){ 2661 pLoop->nOut = nRow - iReduce; 2662 } 2663 } 2664 2665 /* 2666 ** Term pTerm is a vector range comparison operation. The first comparison 2667 ** in the vector can be optimized using column nEq of the index. This 2668 ** function returns the total number of vector elements that can be used 2669 ** as part of the range comparison. 2670 ** 2671 ** For example, if the query is: 2672 ** 2673 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2674 ** 2675 ** and the index: 2676 ** 2677 ** CREATE INDEX ... ON (a, b, c, d, e) 2678 ** 2679 ** then this function would be invoked with nEq=1. The value returned in 2680 ** this case is 3. 2681 */ 2682 static int whereRangeVectorLen( 2683 Parse *pParse, /* Parsing context */ 2684 int iCur, /* Cursor open on pIdx */ 2685 Index *pIdx, /* The index to be used for a inequality constraint */ 2686 int nEq, /* Number of prior equality constraints on same index */ 2687 WhereTerm *pTerm /* The vector inequality constraint */ 2688 ){ 2689 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2690 int i; 2691 2692 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2693 for(i=1; i<nCmp; i++){ 2694 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2695 ** of the index. If not, exit the loop. */ 2696 char aff; /* Comparison affinity */ 2697 char idxaff = 0; /* Indexed columns affinity */ 2698 CollSeq *pColl; /* Comparison collation sequence */ 2699 Expr *pLhs, *pRhs; 2700 2701 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2702 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2703 pRhs = pTerm->pExpr->pRight; 2704 if( ExprUseXSelect(pRhs) ){ 2705 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2706 }else{ 2707 pRhs = pRhs->x.pList->a[i].pExpr; 2708 } 2709 2710 /* Check that the LHS of the comparison is a column reference to 2711 ** the right column of the right source table. And that the sort 2712 ** order of the index column is the same as the sort order of the 2713 ** leftmost index column. */ 2714 if( pLhs->op!=TK_COLUMN 2715 || pLhs->iTable!=iCur 2716 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2717 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2718 ){ 2719 break; 2720 } 2721 2722 testcase( pLhs->iColumn==XN_ROWID ); 2723 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2724 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2725 if( aff!=idxaff ) break; 2726 2727 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2728 if( pColl==0 ) break; 2729 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2730 } 2731 return i; 2732 } 2733 2734 /* 2735 ** Adjust the cost C by the costMult facter T. This only occurs if 2736 ** compiled with -DSQLITE_ENABLE_COSTMULT 2737 */ 2738 #ifdef SQLITE_ENABLE_COSTMULT 2739 # define ApplyCostMultiplier(C,T) C += T 2740 #else 2741 # define ApplyCostMultiplier(C,T) 2742 #endif 2743 2744 /* 2745 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2746 ** index pIndex. Try to match one more. 2747 ** 2748 ** When this function is called, pBuilder->pNew->nOut contains the 2749 ** number of rows expected to be visited by filtering using the nEq 2750 ** terms only. If it is modified, this value is restored before this 2751 ** function returns. 2752 ** 2753 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2754 ** a fake index used for the INTEGER PRIMARY KEY. 2755 */ 2756 static int whereLoopAddBtreeIndex( 2757 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2758 SrcItem *pSrc, /* FROM clause term being analyzed */ 2759 Index *pProbe, /* An index on pSrc */ 2760 LogEst nInMul /* log(Number of iterations due to IN) */ 2761 ){ 2762 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2763 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2764 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2765 WhereLoop *pNew; /* Template WhereLoop under construction */ 2766 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2767 int opMask; /* Valid operators for constraints */ 2768 WhereScan scan; /* Iterator for WHERE terms */ 2769 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2770 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2771 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2772 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2773 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2774 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2775 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2776 LogEst saved_nOut; /* Original value of pNew->nOut */ 2777 int rc = SQLITE_OK; /* Return code */ 2778 LogEst rSize; /* Number of rows in the table */ 2779 LogEst rLogSize; /* Logarithm of table size */ 2780 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2781 2782 pNew = pBuilder->pNew; 2783 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2784 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2785 pProbe->pTable->zName,pProbe->zName, 2786 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2787 2788 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2789 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2790 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2791 opMask = WO_LT|WO_LE; 2792 }else{ 2793 assert( pNew->u.btree.nBtm==0 ); 2794 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2795 } 2796 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2797 2798 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2799 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2800 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2801 2802 saved_nEq = pNew->u.btree.nEq; 2803 saved_nBtm = pNew->u.btree.nBtm; 2804 saved_nTop = pNew->u.btree.nTop; 2805 saved_nSkip = pNew->nSkip; 2806 saved_nLTerm = pNew->nLTerm; 2807 saved_wsFlags = pNew->wsFlags; 2808 saved_prereq = pNew->prereq; 2809 saved_nOut = pNew->nOut; 2810 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2811 opMask, pProbe); 2812 pNew->rSetup = 0; 2813 rSize = pProbe->aiRowLogEst[0]; 2814 rLogSize = estLog(rSize); 2815 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2816 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2817 LogEst rCostIdx; 2818 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2819 int nIn = 0; 2820 #ifdef SQLITE_ENABLE_STAT4 2821 int nRecValid = pBuilder->nRecValid; 2822 #endif 2823 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2824 && indexColumnNotNull(pProbe, saved_nEq) 2825 ){ 2826 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2827 } 2828 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2829 2830 /* Do not allow the upper bound of a LIKE optimization range constraint 2831 ** to mix with a lower range bound from some other source */ 2832 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2833 2834 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2835 ** be used by the right table of a LEFT JOIN nor by the left table of a 2836 ** RIGHT JOIN. Only constraints in the 2837 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2838 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 2839 && !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 2840 ){ 2841 continue; 2842 } 2843 2844 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2845 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2846 }else{ 2847 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2848 } 2849 pNew->wsFlags = saved_wsFlags; 2850 pNew->u.btree.nEq = saved_nEq; 2851 pNew->u.btree.nBtm = saved_nBtm; 2852 pNew->u.btree.nTop = saved_nTop; 2853 pNew->nLTerm = saved_nLTerm; 2854 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2855 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2856 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2857 2858 assert( nInMul==0 2859 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2860 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2861 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2862 ); 2863 2864 if( eOp & WO_IN ){ 2865 Expr *pExpr = pTerm->pExpr; 2866 if( ExprUseXSelect(pExpr) ){ 2867 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2868 int i; 2869 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2870 2871 /* The expression may actually be of the form (x, y) IN (SELECT...). 2872 ** In this case there is a separate term for each of (x) and (y). 2873 ** However, the nIn multiplier should only be applied once, not once 2874 ** for each such term. The following loop checks that pTerm is the 2875 ** first such term in use, and sets nIn back to 0 if it is not. */ 2876 for(i=0; i<pNew->nLTerm-1; i++){ 2877 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2878 } 2879 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2880 /* "x IN (value, value, ...)" */ 2881 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2882 } 2883 if( pProbe->hasStat1 && rLogSize>=10 ){ 2884 LogEst M, logK, x; 2885 /* Let: 2886 ** N = the total number of rows in the table 2887 ** K = the number of entries on the RHS of the IN operator 2888 ** M = the number of rows in the table that match terms to the 2889 ** to the left in the same index. If the IN operator is on 2890 ** the left-most index column, M==N. 2891 ** 2892 ** Given the definitions above, it is better to omit the IN operator 2893 ** from the index lookup and instead do a scan of the M elements, 2894 ** testing each scanned row against the IN operator separately, if: 2895 ** 2896 ** M*log(K) < K*log(N) 2897 ** 2898 ** Our estimates for M, K, and N might be inaccurate, so we build in 2899 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2900 ** with the index, as using an index has better worst-case behavior. 2901 ** If we do not have real sqlite_stat1 data, always prefer to use 2902 ** the index. Do not bother with this optimization on very small 2903 ** tables (less than 2 rows) as it is pointless in that case. 2904 */ 2905 M = pProbe->aiRowLogEst[saved_nEq]; 2906 logK = estLog(nIn); 2907 /* TUNING v----- 10 to bias toward indexed IN */ 2908 x = M + logK + 10 - (nIn + rLogSize); 2909 if( x>=0 ){ 2910 WHERETRACE(0x40, 2911 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2912 "prefers indexed lookup\n", 2913 saved_nEq, M, logK, nIn, rLogSize, x)); 2914 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2915 WHERETRACE(0x40, 2916 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2917 " nInMul=%d) prefers skip-scan\n", 2918 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2919 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2920 }else{ 2921 WHERETRACE(0x40, 2922 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2923 " nInMul=%d) prefers normal scan\n", 2924 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2925 continue; 2926 } 2927 } 2928 pNew->wsFlags |= WHERE_COLUMN_IN; 2929 }else if( eOp & (WO_EQ|WO_IS) ){ 2930 int iCol = pProbe->aiColumn[saved_nEq]; 2931 pNew->wsFlags |= WHERE_COLUMN_EQ; 2932 assert( saved_nEq==pNew->u.btree.nEq ); 2933 if( iCol==XN_ROWID 2934 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2935 ){ 2936 if( iCol==XN_ROWID || pProbe->uniqNotNull 2937 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2938 ){ 2939 pNew->wsFlags |= WHERE_ONEROW; 2940 }else{ 2941 pNew->wsFlags |= WHERE_UNQ_WANTED; 2942 } 2943 } 2944 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2945 }else if( eOp & WO_ISNULL ){ 2946 pNew->wsFlags |= WHERE_COLUMN_NULL; 2947 }else if( eOp & (WO_GT|WO_GE) ){ 2948 testcase( eOp & WO_GT ); 2949 testcase( eOp & WO_GE ); 2950 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2951 pNew->u.btree.nBtm = whereRangeVectorLen( 2952 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2953 ); 2954 pBtm = pTerm; 2955 pTop = 0; 2956 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2957 /* Range constraints that come from the LIKE optimization are 2958 ** always used in pairs. */ 2959 pTop = &pTerm[1]; 2960 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2961 assert( pTop->wtFlags & TERM_LIKEOPT ); 2962 assert( pTop->eOperator==WO_LT ); 2963 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2964 pNew->aLTerm[pNew->nLTerm++] = pTop; 2965 pNew->wsFlags |= WHERE_TOP_LIMIT; 2966 pNew->u.btree.nTop = 1; 2967 } 2968 }else{ 2969 assert( eOp & (WO_LT|WO_LE) ); 2970 testcase( eOp & WO_LT ); 2971 testcase( eOp & WO_LE ); 2972 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2973 pNew->u.btree.nTop = whereRangeVectorLen( 2974 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2975 ); 2976 pTop = pTerm; 2977 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2978 pNew->aLTerm[pNew->nLTerm-2] : 0; 2979 } 2980 2981 /* At this point pNew->nOut is set to the number of rows expected to 2982 ** be visited by the index scan before considering term pTerm, or the 2983 ** values of nIn and nInMul. In other words, assuming that all 2984 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2985 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2986 assert( pNew->nOut==saved_nOut ); 2987 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2988 /* Adjust nOut using stat4 data. Or, if there is no stat4 2989 ** data, using some other estimate. */ 2990 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2991 }else{ 2992 int nEq = ++pNew->u.btree.nEq; 2993 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2994 2995 assert( pNew->nOut==saved_nOut ); 2996 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2997 assert( (eOp & WO_IN) || nIn==0 ); 2998 testcase( eOp & WO_IN ); 2999 pNew->nOut += pTerm->truthProb; 3000 pNew->nOut -= nIn; 3001 }else{ 3002 #ifdef SQLITE_ENABLE_STAT4 3003 tRowcnt nOut = 0; 3004 if( nInMul==0 3005 && pProbe->nSample 3006 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 3007 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 3008 && OptimizationEnabled(db, SQLITE_Stat4) 3009 ){ 3010 Expr *pExpr = pTerm->pExpr; 3011 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 3012 testcase( eOp & WO_EQ ); 3013 testcase( eOp & WO_IS ); 3014 testcase( eOp & WO_ISNULL ); 3015 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 3016 }else{ 3017 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 3018 } 3019 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 3020 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 3021 if( nOut ){ 3022 pNew->nOut = sqlite3LogEst(nOut); 3023 if( nEq==1 3024 /* TUNING: Mark terms as "low selectivity" if they seem likely 3025 ** to be true for half or more of the rows in the table. 3026 ** See tag-202002240-1 */ 3027 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 3028 ){ 3029 #if WHERETRACE_ENABLED /* 0x01 */ 3030 if( sqlite3WhereTrace & 0x01 ){ 3031 sqlite3DebugPrintf( 3032 "STAT4 determines term has low selectivity:\n"); 3033 sqlite3WhereTermPrint(pTerm, 999); 3034 } 3035 #endif 3036 pTerm->wtFlags |= TERM_HIGHTRUTH; 3037 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3038 /* If the term has previously been used with an assumption of 3039 ** higher selectivity, then set the flag to rerun the 3040 ** loop computations. */ 3041 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3042 } 3043 } 3044 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3045 pNew->nOut -= nIn; 3046 } 3047 } 3048 if( nOut==0 ) 3049 #endif 3050 { 3051 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3052 if( eOp & WO_ISNULL ){ 3053 /* TUNING: If there is no likelihood() value, assume that a 3054 ** "col IS NULL" expression matches twice as many rows 3055 ** as (col=?). */ 3056 pNew->nOut += 10; 3057 } 3058 } 3059 } 3060 } 3061 3062 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3063 ** it to pNew->rRun, which is currently set to the cost of the index 3064 ** seek only. Then, if this is a non-covering index, add the cost of 3065 ** visiting the rows in the main table. */ 3066 assert( pSrc->pTab->szTabRow>0 ); 3067 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3068 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3069 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3070 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3071 } 3072 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3073 3074 nOutUnadjusted = pNew->nOut; 3075 pNew->rRun += nInMul + nIn; 3076 pNew->nOut += nInMul + nIn; 3077 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3078 rc = whereLoopInsert(pBuilder, pNew); 3079 3080 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3081 pNew->nOut = saved_nOut; 3082 }else{ 3083 pNew->nOut = nOutUnadjusted; 3084 } 3085 3086 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3087 && pNew->u.btree.nEq<pProbe->nColumn 3088 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3089 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3090 ){ 3091 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3092 } 3093 pNew->nOut = saved_nOut; 3094 #ifdef SQLITE_ENABLE_STAT4 3095 pBuilder->nRecValid = nRecValid; 3096 #endif 3097 } 3098 pNew->prereq = saved_prereq; 3099 pNew->u.btree.nEq = saved_nEq; 3100 pNew->u.btree.nBtm = saved_nBtm; 3101 pNew->u.btree.nTop = saved_nTop; 3102 pNew->nSkip = saved_nSkip; 3103 pNew->wsFlags = saved_wsFlags; 3104 pNew->nOut = saved_nOut; 3105 pNew->nLTerm = saved_nLTerm; 3106 3107 /* Consider using a skip-scan if there are no WHERE clause constraints 3108 ** available for the left-most terms of the index, and if the average 3109 ** number of repeats in the left-most terms is at least 18. 3110 ** 3111 ** The magic number 18 is selected on the basis that scanning 17 rows 3112 ** is almost always quicker than an index seek (even though if the index 3113 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3114 ** the code). And, even if it is not, it should not be too much slower. 3115 ** On the other hand, the extra seeks could end up being significantly 3116 ** more expensive. */ 3117 assert( 42==sqlite3LogEst(18) ); 3118 if( saved_nEq==saved_nSkip 3119 && saved_nEq+1<pProbe->nKeyCol 3120 && saved_nEq==pNew->nLTerm 3121 && pProbe->noSkipScan==0 3122 && pProbe->hasStat1!=0 3123 && OptimizationEnabled(db, SQLITE_SkipScan) 3124 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3125 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3126 ){ 3127 LogEst nIter; 3128 pNew->u.btree.nEq++; 3129 pNew->nSkip++; 3130 pNew->aLTerm[pNew->nLTerm++] = 0; 3131 pNew->wsFlags |= WHERE_SKIPSCAN; 3132 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3133 pNew->nOut -= nIter; 3134 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3135 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3136 nIter += 5; 3137 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3138 pNew->nOut = saved_nOut; 3139 pNew->u.btree.nEq = saved_nEq; 3140 pNew->nSkip = saved_nSkip; 3141 pNew->wsFlags = saved_wsFlags; 3142 } 3143 3144 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3145 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3146 return rc; 3147 } 3148 3149 /* 3150 ** Return True if it is possible that pIndex might be useful in 3151 ** implementing the ORDER BY clause in pBuilder. 3152 ** 3153 ** Return False if pBuilder does not contain an ORDER BY clause or 3154 ** if there is no way for pIndex to be useful in implementing that 3155 ** ORDER BY clause. 3156 */ 3157 static int indexMightHelpWithOrderBy( 3158 WhereLoopBuilder *pBuilder, 3159 Index *pIndex, 3160 int iCursor 3161 ){ 3162 ExprList *pOB; 3163 ExprList *aColExpr; 3164 int ii, jj; 3165 3166 if( pIndex->bUnordered ) return 0; 3167 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3168 for(ii=0; ii<pOB->nExpr; ii++){ 3169 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3170 if( NEVER(pExpr==0) ) continue; 3171 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3172 if( pExpr->iColumn<0 ) return 1; 3173 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3174 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3175 } 3176 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3177 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3178 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3179 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3180 return 1; 3181 } 3182 } 3183 } 3184 } 3185 return 0; 3186 } 3187 3188 /* Check to see if a partial index with pPartIndexWhere can be used 3189 ** in the current query. Return true if it can be and false if not. 3190 */ 3191 static int whereUsablePartialIndex( 3192 int iTab, /* The table for which we want an index */ 3193 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 3194 WhereClause *pWC, /* The WHERE clause of the query */ 3195 Expr *pWhere /* The WHERE clause from the partial index */ 3196 ){ 3197 int i; 3198 WhereTerm *pTerm; 3199 Parse *pParse = pWC->pWInfo->pParse; 3200 while( pWhere->op==TK_AND ){ 3201 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 3202 pWhere = pWhere->pRight; 3203 } 3204 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3205 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3206 Expr *pExpr; 3207 pExpr = pTerm->pExpr; 3208 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 3209 && (isLeft==0 || ExprHasProperty(pExpr, EP_OuterON)) 3210 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3211 && (pTerm->wtFlags & TERM_VNULL)==0 3212 ){ 3213 return 1; 3214 } 3215 } 3216 return 0; 3217 } 3218 3219 /* 3220 ** Add all WhereLoop objects for a single table of the join where the table 3221 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3222 ** a b-tree table, not a virtual table. 3223 ** 3224 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3225 ** are calculated as follows: 3226 ** 3227 ** For a full scan, assuming the table (or index) contains nRow rows: 3228 ** 3229 ** cost = nRow * 3.0 // full-table scan 3230 ** cost = nRow * K // scan of covering index 3231 ** cost = nRow * (K+3.0) // scan of non-covering index 3232 ** 3233 ** where K is a value between 1.1 and 3.0 set based on the relative 3234 ** estimated average size of the index and table records. 3235 ** 3236 ** For an index scan, where nVisit is the number of index rows visited 3237 ** by the scan, and nSeek is the number of seek operations required on 3238 ** the index b-tree: 3239 ** 3240 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3241 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3242 ** 3243 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3244 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3245 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3246 ** 3247 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3248 ** of uncertainty. For this reason, scoring is designed to pick plans that 3249 ** "do the least harm" if the estimates are inaccurate. For example, a 3250 ** log(nRow) factor is omitted from a non-covering index scan in order to 3251 ** bias the scoring in favor of using an index, since the worst-case 3252 ** performance of using an index is far better than the worst-case performance 3253 ** of a full table scan. 3254 */ 3255 static int whereLoopAddBtree( 3256 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3257 Bitmask mPrereq /* Extra prerequesites for using this table */ 3258 ){ 3259 WhereInfo *pWInfo; /* WHERE analysis context */ 3260 Index *pProbe; /* An index we are evaluating */ 3261 Index sPk; /* A fake index object for the primary key */ 3262 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3263 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3264 SrcList *pTabList; /* The FROM clause */ 3265 SrcItem *pSrc; /* The FROM clause btree term to add */ 3266 WhereLoop *pNew; /* Template WhereLoop object */ 3267 int rc = SQLITE_OK; /* Return code */ 3268 int iSortIdx = 1; /* Index number */ 3269 int b; /* A boolean value */ 3270 LogEst rSize; /* number of rows in the table */ 3271 WhereClause *pWC; /* The parsed WHERE clause */ 3272 Table *pTab; /* Table being queried */ 3273 3274 pNew = pBuilder->pNew; 3275 pWInfo = pBuilder->pWInfo; 3276 pTabList = pWInfo->pTabList; 3277 pSrc = pTabList->a + pNew->iTab; 3278 pTab = pSrc->pTab; 3279 pWC = pBuilder->pWC; 3280 assert( !IsVirtual(pSrc->pTab) ); 3281 3282 if( pSrc->fg.isIndexedBy ){ 3283 assert( pSrc->fg.isCte==0 ); 3284 /* An INDEXED BY clause specifies a particular index to use */ 3285 pProbe = pSrc->u2.pIBIndex; 3286 }else if( !HasRowid(pTab) ){ 3287 pProbe = pTab->pIndex; 3288 }else{ 3289 /* There is no INDEXED BY clause. Create a fake Index object in local 3290 ** variable sPk to represent the rowid primary key index. Make this 3291 ** fake index the first in a chain of Index objects with all of the real 3292 ** indices to follow */ 3293 Index *pFirst; /* First of real indices on the table */ 3294 memset(&sPk, 0, sizeof(Index)); 3295 sPk.nKeyCol = 1; 3296 sPk.nColumn = 1; 3297 sPk.aiColumn = &aiColumnPk; 3298 sPk.aiRowLogEst = aiRowEstPk; 3299 sPk.onError = OE_Replace; 3300 sPk.pTable = pTab; 3301 sPk.szIdxRow = pTab->szTabRow; 3302 sPk.idxType = SQLITE_IDXTYPE_IPK; 3303 aiRowEstPk[0] = pTab->nRowLogEst; 3304 aiRowEstPk[1] = 0; 3305 pFirst = pSrc->pTab->pIndex; 3306 if( pSrc->fg.notIndexed==0 ){ 3307 /* The real indices of the table are only considered if the 3308 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3309 sPk.pNext = pFirst; 3310 } 3311 pProbe = &sPk; 3312 } 3313 rSize = pTab->nRowLogEst; 3314 3315 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3316 /* Automatic indexes */ 3317 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3318 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 3319 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3320 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3321 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3322 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3323 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3324 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3325 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 3326 ){ 3327 /* Generate auto-index WhereLoops */ 3328 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3329 WhereTerm *pTerm; 3330 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3331 rLogSize = estLog(rSize); 3332 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3333 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3334 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3335 pNew->u.btree.nEq = 1; 3336 pNew->nSkip = 0; 3337 pNew->u.btree.pIndex = 0; 3338 pNew->nLTerm = 1; 3339 pNew->aLTerm[0] = pTerm; 3340 /* TUNING: One-time cost for computing the automatic index is 3341 ** estimated to be X*N*log2(N) where N is the number of rows in 3342 ** the table being indexed and where X is 7 (LogEst=28) for normal 3343 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3344 ** of X is smaller for views and subqueries so that the query planner 3345 ** will be more aggressive about generating automatic indexes for 3346 ** those objects, since there is no opportunity to add schema 3347 ** indexes on subqueries and views. */ 3348 pNew->rSetup = rLogSize + rSize; 3349 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3350 pNew->rSetup += 28; 3351 }else{ 3352 pNew->rSetup -= 10; 3353 } 3354 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3355 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3356 /* TUNING: Each index lookup yields 20 rows in the table. This 3357 ** is more than the usual guess of 10 rows, since we have no way 3358 ** of knowing how selective the index will ultimately be. It would 3359 ** not be unreasonable to make this value much larger. */ 3360 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3361 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3362 pNew->wsFlags = WHERE_AUTO_INDEX; 3363 pNew->prereq = mPrereq | pTerm->prereqRight; 3364 rc = whereLoopInsert(pBuilder, pNew); 3365 } 3366 } 3367 } 3368 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3369 3370 /* Loop over all indices. If there was an INDEXED BY clause, then only 3371 ** consider index pProbe. */ 3372 for(; rc==SQLITE_OK && pProbe; 3373 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3374 ){ 3375 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3376 if( pProbe->pPartIdxWhere!=0 3377 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3378 pProbe->pPartIdxWhere) 3379 ){ 3380 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3381 continue; /* Partial index inappropriate for this query */ 3382 } 3383 if( pProbe->bNoQuery ) continue; 3384 rSize = pProbe->aiRowLogEst[0]; 3385 pNew->u.btree.nEq = 0; 3386 pNew->u.btree.nBtm = 0; 3387 pNew->u.btree.nTop = 0; 3388 pNew->nSkip = 0; 3389 pNew->nLTerm = 0; 3390 pNew->iSortIdx = 0; 3391 pNew->rSetup = 0; 3392 pNew->prereq = mPrereq; 3393 pNew->nOut = rSize; 3394 pNew->u.btree.pIndex = pProbe; 3395 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3396 3397 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3398 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3399 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3400 /* Integer primary key index */ 3401 pNew->wsFlags = WHERE_IPK; 3402 3403 /* Full table scan */ 3404 pNew->iSortIdx = b ? iSortIdx : 0; 3405 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3406 ** extra cost designed to discourage the use of full table scans, 3407 ** since index lookups have better worst-case performance if our 3408 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3409 ** (to 2.75) if we have valid STAT4 information for the table. 3410 ** At 2.75, a full table scan is preferred over using an index on 3411 ** a column with just two distinct values where each value has about 3412 ** an equal number of appearances. Without STAT4 data, we still want 3413 ** to use an index in that case, since the constraint might be for 3414 ** the scarcer of the two values, and in that case an index lookup is 3415 ** better. 3416 */ 3417 #ifdef SQLITE_ENABLE_STAT4 3418 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3419 #else 3420 pNew->rRun = rSize + 16; 3421 #endif 3422 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3423 whereLoopOutputAdjust(pWC, pNew, rSize); 3424 rc = whereLoopInsert(pBuilder, pNew); 3425 pNew->nOut = rSize; 3426 if( rc ) break; 3427 }else{ 3428 Bitmask m; 3429 if( pProbe->isCovering ){ 3430 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3431 m = 0; 3432 }else{ 3433 m = pSrc->colUsed & pProbe->colNotIdxed; 3434 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3435 } 3436 3437 /* Full scan via index */ 3438 if( b 3439 || !HasRowid(pTab) 3440 || pProbe->pPartIdxWhere!=0 3441 || pSrc->fg.isIndexedBy 3442 || ( m==0 3443 && pProbe->bUnordered==0 3444 && (pProbe->szIdxRow<pTab->szTabRow) 3445 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3446 && sqlite3GlobalConfig.bUseCis 3447 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3448 ) 3449 ){ 3450 pNew->iSortIdx = b ? iSortIdx : 0; 3451 3452 /* The cost of visiting the index rows is N*K, where K is 3453 ** between 1.1 and 3.0, depending on the relative sizes of the 3454 ** index and table rows. */ 3455 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3456 if( m!=0 ){ 3457 /* If this is a non-covering index scan, add in the cost of 3458 ** doing table lookups. The cost will be 3x the number of 3459 ** lookups. Take into account WHERE clause terms that can be 3460 ** satisfied using just the index, and that do not require a 3461 ** table lookup. */ 3462 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3463 int ii; 3464 int iCur = pSrc->iCursor; 3465 WhereClause *pWC2 = &pWInfo->sWC; 3466 for(ii=0; ii<pWC2->nTerm; ii++){ 3467 WhereTerm *pTerm = &pWC2->a[ii]; 3468 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3469 break; 3470 } 3471 /* pTerm can be evaluated using just the index. So reduce 3472 ** the expected number of table lookups accordingly */ 3473 if( pTerm->truthProb<=0 ){ 3474 nLookup += pTerm->truthProb; 3475 }else{ 3476 nLookup--; 3477 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3478 } 3479 } 3480 3481 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3482 } 3483 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3484 whereLoopOutputAdjust(pWC, pNew, rSize); 3485 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 3486 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 3487 ** because the cursor used to access the index might not be 3488 ** positioned to the correct row during the right-join no-match 3489 ** loop. */ 3490 }else{ 3491 rc = whereLoopInsert(pBuilder, pNew); 3492 } 3493 pNew->nOut = rSize; 3494 if( rc ) break; 3495 } 3496 } 3497 3498 pBuilder->bldFlags1 = 0; 3499 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3500 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3501 /* If a non-unique index is used, or if a prefix of the key for 3502 ** unique index is used (making the index functionally non-unique) 3503 ** then the sqlite_stat1 data becomes important for scoring the 3504 ** plan */ 3505 pTab->tabFlags |= TF_StatsUsed; 3506 } 3507 #ifdef SQLITE_ENABLE_STAT4 3508 sqlite3Stat4ProbeFree(pBuilder->pRec); 3509 pBuilder->nRecValid = 0; 3510 pBuilder->pRec = 0; 3511 #endif 3512 } 3513 return rc; 3514 } 3515 3516 #ifndef SQLITE_OMIT_VIRTUALTABLE 3517 3518 /* 3519 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3520 */ 3521 static int isLimitTerm(WhereTerm *pTerm){ 3522 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3523 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3524 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3525 } 3526 3527 /* 3528 ** Argument pIdxInfo is already populated with all constraints that may 3529 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3530 ** function marks a subset of those constraints usable, invokes the 3531 ** xBestIndex method and adds the returned plan to pBuilder. 3532 ** 3533 ** A constraint is marked usable if: 3534 ** 3535 ** * Argument mUsable indicates that its prerequisites are available, and 3536 ** 3537 ** * It is not one of the operators specified in the mExclude mask passed 3538 ** as the fourth argument (which in practice is either WO_IN or 0). 3539 ** 3540 ** Argument mPrereq is a mask of tables that must be scanned before the 3541 ** virtual table in question. These are added to the plans prerequisites 3542 ** before it is added to pBuilder. 3543 ** 3544 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3545 ** uses one or more WO_IN terms, or false otherwise. 3546 */ 3547 static int whereLoopAddVirtualOne( 3548 WhereLoopBuilder *pBuilder, 3549 Bitmask mPrereq, /* Mask of tables that must be used. */ 3550 Bitmask mUsable, /* Mask of usable tables */ 3551 u16 mExclude, /* Exclude terms using these operators */ 3552 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3553 u16 mNoOmit, /* Do not omit these constraints */ 3554 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3555 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3556 ){ 3557 WhereClause *pWC = pBuilder->pWC; 3558 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3559 struct sqlite3_index_constraint *pIdxCons; 3560 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3561 int i; 3562 int mxTerm; 3563 int rc = SQLITE_OK; 3564 WhereLoop *pNew = pBuilder->pNew; 3565 Parse *pParse = pBuilder->pWInfo->pParse; 3566 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3567 int nConstraint = pIdxInfo->nConstraint; 3568 3569 assert( (mUsable & mPrereq)==mPrereq ); 3570 *pbIn = 0; 3571 pNew->prereq = mPrereq; 3572 3573 /* Set the usable flag on the subset of constraints identified by 3574 ** arguments mUsable and mExclude. */ 3575 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3576 for(i=0; i<nConstraint; i++, pIdxCons++){ 3577 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3578 pIdxCons->usable = 0; 3579 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3580 && (pTerm->eOperator & mExclude)==0 3581 && (pbRetryLimit || !isLimitTerm(pTerm)) 3582 ){ 3583 pIdxCons->usable = 1; 3584 } 3585 } 3586 3587 /* Initialize the output fields of the sqlite3_index_info structure */ 3588 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3589 assert( pIdxInfo->needToFreeIdxStr==0 ); 3590 pIdxInfo->idxStr = 0; 3591 pIdxInfo->idxNum = 0; 3592 pIdxInfo->orderByConsumed = 0; 3593 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3594 pIdxInfo->estimatedRows = 25; 3595 pIdxInfo->idxFlags = 0; 3596 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3597 pHidden->mHandleIn = 0; 3598 3599 /* Invoke the virtual table xBestIndex() method */ 3600 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3601 if( rc ){ 3602 if( rc==SQLITE_CONSTRAINT ){ 3603 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3604 ** that the particular combination of parameters provided is unusable. 3605 ** Make no entries in the loop table. 3606 */ 3607 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3608 return SQLITE_OK; 3609 } 3610 return rc; 3611 } 3612 3613 mxTerm = -1; 3614 assert( pNew->nLSlot>=nConstraint ); 3615 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3616 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3617 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3618 for(i=0; i<nConstraint; i++, pIdxCons++){ 3619 int iTerm; 3620 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3621 WhereTerm *pTerm; 3622 int j = pIdxCons->iTermOffset; 3623 if( iTerm>=nConstraint 3624 || j<0 3625 || j>=pWC->nTerm 3626 || pNew->aLTerm[iTerm]!=0 3627 || pIdxCons->usable==0 3628 ){ 3629 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3630 testcase( pIdxInfo->needToFreeIdxStr ); 3631 return SQLITE_ERROR; 3632 } 3633 testcase( iTerm==nConstraint-1 ); 3634 testcase( j==0 ); 3635 testcase( j==pWC->nTerm-1 ); 3636 pTerm = &pWC->a[j]; 3637 pNew->prereq |= pTerm->prereqRight; 3638 assert( iTerm<pNew->nLSlot ); 3639 pNew->aLTerm[iTerm] = pTerm; 3640 if( iTerm>mxTerm ) mxTerm = iTerm; 3641 testcase( iTerm==15 ); 3642 testcase( iTerm==16 ); 3643 if( pUsage[i].omit ){ 3644 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3645 testcase( i!=iTerm ); 3646 pNew->u.vtab.omitMask |= 1<<iTerm; 3647 }else{ 3648 testcase( i!=iTerm ); 3649 } 3650 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3651 pNew->u.vtab.bOmitOffset = 1; 3652 } 3653 } 3654 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3655 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3656 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3657 /* A virtual table that is constrained by an IN clause may not 3658 ** consume the ORDER BY clause because (1) the order of IN terms 3659 ** is not necessarily related to the order of output terms and 3660 ** (2) Multiple outputs from a single IN value will not merge 3661 ** together. */ 3662 pIdxInfo->orderByConsumed = 0; 3663 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3664 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3665 } 3666 3667 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 3668 if( isLimitTerm(pTerm) && *pbIn ){ 3669 /* If there is an IN(...) term handled as an == (separate call to 3670 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3671 ** OFFSET term handled as well, the plan is unusable. Set output 3672 ** variable *pbRetryLimit to true to tell the caller to retry with 3673 ** LIMIT and OFFSET disabled. */ 3674 if( pIdxInfo->needToFreeIdxStr ){ 3675 sqlite3_free(pIdxInfo->idxStr); 3676 pIdxInfo->idxStr = 0; 3677 pIdxInfo->needToFreeIdxStr = 0; 3678 } 3679 *pbRetryLimit = 1; 3680 return SQLITE_OK; 3681 } 3682 } 3683 } 3684 3685 pNew->nLTerm = mxTerm+1; 3686 for(i=0; i<=mxTerm; i++){ 3687 if( pNew->aLTerm[i]==0 ){ 3688 /* The non-zero argvIdx values must be contiguous. Raise an 3689 ** error if they are not */ 3690 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3691 testcase( pIdxInfo->needToFreeIdxStr ); 3692 return SQLITE_ERROR; 3693 } 3694 } 3695 assert( pNew->nLTerm<=pNew->nLSlot ); 3696 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3697 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3698 pIdxInfo->needToFreeIdxStr = 0; 3699 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3700 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3701 pIdxInfo->nOrderBy : 0); 3702 pNew->rSetup = 0; 3703 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3704 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3705 3706 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3707 ** that the scan will visit at most one row. Clear it otherwise. */ 3708 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3709 pNew->wsFlags |= WHERE_ONEROW; 3710 }else{ 3711 pNew->wsFlags &= ~WHERE_ONEROW; 3712 } 3713 rc = whereLoopInsert(pBuilder, pNew); 3714 if( pNew->u.vtab.needFree ){ 3715 sqlite3_free(pNew->u.vtab.idxStr); 3716 pNew->u.vtab.needFree = 0; 3717 } 3718 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3719 *pbIn, (sqlite3_uint64)mPrereq, 3720 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3721 3722 return rc; 3723 } 3724 3725 /* 3726 ** Return the collating sequence for a constraint passed into xBestIndex. 3727 ** 3728 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3729 ** This routine depends on there being a HiddenIndexInfo structure immediately 3730 ** following the sqlite3_index_info structure. 3731 ** 3732 ** Return a pointer to the collation name: 3733 ** 3734 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3735 ** 3736 ** 2. Else, if the column has an alternative collation, return that. 3737 ** 3738 ** 3. Otherwise, return "BINARY". 3739 */ 3740 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3741 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3742 const char *zRet = 0; 3743 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3744 CollSeq *pC = 0; 3745 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3746 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3747 if( pX->pLeft ){ 3748 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3749 } 3750 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3751 } 3752 return zRet; 3753 } 3754 3755 /* 3756 ** Return true if constraint iCons is really an IN(...) constraint, or 3757 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3758 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3759 */ 3760 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3761 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3762 u32 m = SMASKBIT32(iCons); 3763 if( m & pHidden->mIn ){ 3764 if( bHandle==0 ){ 3765 pHidden->mHandleIn &= ~m; 3766 }else if( bHandle>0 ){ 3767 pHidden->mHandleIn |= m; 3768 } 3769 return 1; 3770 } 3771 return 0; 3772 } 3773 3774 /* 3775 ** This interface is callable from within the xBestIndex callback only. 3776 ** 3777 ** If possible, set (*ppVal) to point to an object containing the value 3778 ** on the right-hand-side of constraint iCons. 3779 */ 3780 int sqlite3_vtab_rhs_value( 3781 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3782 int iCons, /* Constraint for which RHS is wanted */ 3783 sqlite3_value **ppVal /* Write value extracted here */ 3784 ){ 3785 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3786 sqlite3_value *pVal = 0; 3787 int rc = SQLITE_OK; 3788 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3789 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3790 }else{ 3791 if( pH->aRhs[iCons]==0 ){ 3792 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3793 rc = sqlite3ValueFromExpr( 3794 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3795 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3796 ); 3797 testcase( rc!=SQLITE_OK ); 3798 } 3799 pVal = pH->aRhs[iCons]; 3800 } 3801 *ppVal = pVal; 3802 3803 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3804 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3805 } 3806 3807 return rc; 3808 } 3809 3810 /* 3811 ** Return true if ORDER BY clause may be handled as DISTINCT. 3812 */ 3813 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3814 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3815 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 3816 return pHidden->eDistinct; 3817 } 3818 3819 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \ 3820 && !defined(SQLITE_OMIT_VIRTUALTABLE) 3821 /* 3822 ** Cause the prepared statement that is associated with a call to 3823 ** xBestIndex to potentiall use all schemas. If the statement being 3824 ** prepared is read-only, then just start read transactions on all 3825 ** schemas. But if this is a write operation, start writes on all 3826 ** schemas. 3827 ** 3828 ** This is used by the (built-in) sqlite_dbpage virtual table. 3829 */ 3830 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){ 3831 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3832 Parse *pParse = pHidden->pParse; 3833 int nDb = pParse->db->nDb; 3834 int i; 3835 for(i=0; i<nDb; i++){ 3836 sqlite3CodeVerifySchema(pParse, i); 3837 } 3838 if( pParse->writeMask ){ 3839 for(i=0; i<nDb; i++){ 3840 sqlite3BeginWriteOperation(pParse, 0, i); 3841 } 3842 } 3843 } 3844 #endif 3845 3846 /* 3847 ** Add all WhereLoop objects for a table of the join identified by 3848 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3849 ** 3850 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3851 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3852 ** entries that occur before the virtual table in the FROM clause and are 3853 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3854 ** mUnusable mask contains all FROM clause entries that occur after the 3855 ** virtual table and are separated from it by at least one LEFT or 3856 ** CROSS JOIN. 3857 ** 3858 ** For example, if the query were: 3859 ** 3860 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3861 ** 3862 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3863 ** 3864 ** All the tables in mPrereq must be scanned before the current virtual 3865 ** table. So any terms for which all prerequisites are satisfied by 3866 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3867 ** Conversely, all tables in mUnusable must be scanned after the current 3868 ** virtual table, so any terms for which the prerequisites overlap with 3869 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3870 */ 3871 static int whereLoopAddVirtual( 3872 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3873 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3874 Bitmask mUnusable /* Tables that must be scanned after this one */ 3875 ){ 3876 int rc = SQLITE_OK; /* Return code */ 3877 WhereInfo *pWInfo; /* WHERE analysis context */ 3878 Parse *pParse; /* The parsing context */ 3879 WhereClause *pWC; /* The WHERE clause */ 3880 SrcItem *pSrc; /* The FROM clause term to search */ 3881 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3882 int nConstraint; /* Number of constraints in p */ 3883 int bIn; /* True if plan uses IN(...) operator */ 3884 WhereLoop *pNew; 3885 Bitmask mBest; /* Tables used by best possible plan */ 3886 u16 mNoOmit; 3887 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3888 3889 assert( (mPrereq & mUnusable)==0 ); 3890 pWInfo = pBuilder->pWInfo; 3891 pParse = pWInfo->pParse; 3892 pWC = pBuilder->pWC; 3893 pNew = pBuilder->pNew; 3894 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3895 assert( IsVirtual(pSrc->pTab) ); 3896 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3897 if( p==0 ) return SQLITE_NOMEM_BKPT; 3898 pNew->rSetup = 0; 3899 pNew->wsFlags = WHERE_VIRTUALTABLE; 3900 pNew->nLTerm = 0; 3901 pNew->u.vtab.needFree = 0; 3902 nConstraint = p->nConstraint; 3903 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3904 freeIndexInfo(pParse->db, p); 3905 return SQLITE_NOMEM_BKPT; 3906 } 3907 3908 /* First call xBestIndex() with all constraints usable. */ 3909 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3910 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3911 rc = whereLoopAddVirtualOne( 3912 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3913 ); 3914 if( bRetry ){ 3915 assert( rc==SQLITE_OK ); 3916 rc = whereLoopAddVirtualOne( 3917 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3918 ); 3919 } 3920 3921 /* If the call to xBestIndex() with all terms enabled produced a plan 3922 ** that does not require any source tables (IOW: a plan with mBest==0) 3923 ** and does not use an IN(...) operator, then there is no point in making 3924 ** any further calls to xBestIndex() since they will all return the same 3925 ** result (if the xBestIndex() implementation is sane). */ 3926 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3927 int seenZero = 0; /* True if a plan with no prereqs seen */ 3928 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3929 Bitmask mPrev = 0; 3930 Bitmask mBestNoIn = 0; 3931 3932 /* If the plan produced by the earlier call uses an IN(...) term, call 3933 ** xBestIndex again, this time with IN(...) terms disabled. */ 3934 if( bIn ){ 3935 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3936 rc = whereLoopAddVirtualOne( 3937 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3938 assert( bIn==0 ); 3939 mBestNoIn = pNew->prereq & ~mPrereq; 3940 if( mBestNoIn==0 ){ 3941 seenZero = 1; 3942 seenZeroNoIN = 1; 3943 } 3944 } 3945 3946 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3947 ** in the set of terms that apply to the current virtual table. */ 3948 while( rc==SQLITE_OK ){ 3949 int i; 3950 Bitmask mNext = ALLBITS; 3951 assert( mNext>0 ); 3952 for(i=0; i<nConstraint; i++){ 3953 Bitmask mThis = ( 3954 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3955 ); 3956 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3957 } 3958 mPrev = mNext; 3959 if( mNext==ALLBITS ) break; 3960 if( mNext==mBest || mNext==mBestNoIn ) continue; 3961 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3962 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3963 rc = whereLoopAddVirtualOne( 3964 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 3965 if( pNew->prereq==mPrereq ){ 3966 seenZero = 1; 3967 if( bIn==0 ) seenZeroNoIN = 1; 3968 } 3969 } 3970 3971 /* If the calls to xBestIndex() in the above loop did not find a plan 3972 ** that requires no source tables at all (i.e. one guaranteed to be 3973 ** usable), make a call here with all source tables disabled */ 3974 if( rc==SQLITE_OK && seenZero==0 ){ 3975 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3976 rc = whereLoopAddVirtualOne( 3977 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 3978 if( bIn==0 ) seenZeroNoIN = 1; 3979 } 3980 3981 /* If the calls to xBestIndex() have so far failed to find a plan 3982 ** that requires no source tables at all and does not use an IN(...) 3983 ** operator, make a final call to obtain one here. */ 3984 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3985 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3986 rc = whereLoopAddVirtualOne( 3987 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 3988 } 3989 } 3990 3991 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3992 freeIndexInfo(pParse->db, p); 3993 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3994 return rc; 3995 } 3996 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3997 3998 /* 3999 ** Add WhereLoop entries to handle OR terms. This works for either 4000 ** btrees or virtual tables. 4001 */ 4002 static int whereLoopAddOr( 4003 WhereLoopBuilder *pBuilder, 4004 Bitmask mPrereq, 4005 Bitmask mUnusable 4006 ){ 4007 WhereInfo *pWInfo = pBuilder->pWInfo; 4008 WhereClause *pWC; 4009 WhereLoop *pNew; 4010 WhereTerm *pTerm, *pWCEnd; 4011 int rc = SQLITE_OK; 4012 int iCur; 4013 WhereClause tempWC; 4014 WhereLoopBuilder sSubBuild; 4015 WhereOrSet sSum, sCur; 4016 SrcItem *pItem; 4017 4018 pWC = pBuilder->pWC; 4019 pWCEnd = pWC->a + pWC->nTerm; 4020 pNew = pBuilder->pNew; 4021 memset(&sSum, 0, sizeof(sSum)); 4022 pItem = pWInfo->pTabList->a + pNew->iTab; 4023 iCur = pItem->iCursor; 4024 4025 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 4026 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 4027 4028 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 4029 if( (pTerm->eOperator & WO_OR)!=0 4030 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 4031 ){ 4032 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 4033 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 4034 WhereTerm *pOrTerm; 4035 int once = 1; 4036 int i, j; 4037 4038 sSubBuild = *pBuilder; 4039 sSubBuild.pOrSet = &sCur; 4040 4041 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 4042 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 4043 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 4044 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 4045 }else if( pOrTerm->leftCursor==iCur ){ 4046 tempWC.pWInfo = pWC->pWInfo; 4047 tempWC.pOuter = pWC; 4048 tempWC.op = TK_AND; 4049 tempWC.nTerm = 1; 4050 tempWC.nBase = 1; 4051 tempWC.a = pOrTerm; 4052 sSubBuild.pWC = &tempWC; 4053 }else{ 4054 continue; 4055 } 4056 sCur.n = 0; 4057 #ifdef WHERETRACE_ENABLED 4058 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 4059 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 4060 if( sqlite3WhereTrace & 0x400 ){ 4061 sqlite3WhereClausePrint(sSubBuild.pWC); 4062 } 4063 #endif 4064 #ifndef SQLITE_OMIT_VIRTUALTABLE 4065 if( IsVirtual(pItem->pTab) ){ 4066 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 4067 }else 4068 #endif 4069 { 4070 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 4071 } 4072 if( rc==SQLITE_OK ){ 4073 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4074 } 4075 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4076 || rc==SQLITE_NOMEM ); 4077 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4078 testcase( rc==SQLITE_DONE ); 4079 if( sCur.n==0 ){ 4080 sSum.n = 0; 4081 break; 4082 }else if( once ){ 4083 whereOrMove(&sSum, &sCur); 4084 once = 0; 4085 }else{ 4086 WhereOrSet sPrev; 4087 whereOrMove(&sPrev, &sSum); 4088 sSum.n = 0; 4089 for(i=0; i<sPrev.n; i++){ 4090 for(j=0; j<sCur.n; j++){ 4091 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4092 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4093 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4094 } 4095 } 4096 } 4097 } 4098 pNew->nLTerm = 1; 4099 pNew->aLTerm[0] = pTerm; 4100 pNew->wsFlags = WHERE_MULTI_OR; 4101 pNew->rSetup = 0; 4102 pNew->iSortIdx = 0; 4103 memset(&pNew->u, 0, sizeof(pNew->u)); 4104 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4105 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4106 ** of all sub-scans required by the OR-scan. However, due to rounding 4107 ** errors, it may be that the cost of the OR-scan is equal to its 4108 ** most expensive sub-scan. Add the smallest possible penalty 4109 ** (equivalent to multiplying the cost by 1.07) to ensure that 4110 ** this does not happen. Otherwise, for WHERE clauses such as the 4111 ** following where there is an index on "y": 4112 ** 4113 ** WHERE likelihood(x=?, 0.99) OR y=? 4114 ** 4115 ** the planner may elect to "OR" together a full-table scan and an 4116 ** index lookup. And other similarly odd results. */ 4117 pNew->rRun = sSum.a[i].rRun + 1; 4118 pNew->nOut = sSum.a[i].nOut; 4119 pNew->prereq = sSum.a[i].prereq; 4120 rc = whereLoopInsert(pBuilder, pNew); 4121 } 4122 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4123 } 4124 } 4125 return rc; 4126 } 4127 4128 /* 4129 ** Add all WhereLoop objects for all tables 4130 */ 4131 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4132 WhereInfo *pWInfo = pBuilder->pWInfo; 4133 Bitmask mPrereq = 0; 4134 Bitmask mPrior = 0; 4135 int iTab; 4136 SrcList *pTabList = pWInfo->pTabList; 4137 SrcItem *pItem; 4138 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4139 sqlite3 *db = pWInfo->pParse->db; 4140 int rc = SQLITE_OK; 4141 int bFirstPastRJ = 0; 4142 WhereLoop *pNew; 4143 4144 4145 /* Loop over the tables in the join, from left to right */ 4146 pNew = pBuilder->pNew; 4147 whereLoopInit(pNew); 4148 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4149 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4150 Bitmask mUnusable = 0; 4151 pNew->iTab = iTab; 4152 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4153 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4154 if( bFirstPastRJ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS))!=0 ){ 4155 /* Add prerequisites to prevent reordering of FROM clause terms 4156 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 4157 ** prevents the right operand of a RIGHT JOIN from being swapped with 4158 ** other elements even further to the right. */ 4159 mPrereq |= mPrior; 4160 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 4161 } 4162 #ifndef SQLITE_OMIT_VIRTUALTABLE 4163 if( IsVirtual(pItem->pTab) ){ 4164 SrcItem *p; 4165 for(p=&pItem[1]; p<pEnd; p++){ 4166 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 4167 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4168 } 4169 } 4170 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4171 }else 4172 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4173 { 4174 rc = whereLoopAddBtree(pBuilder, mPrereq); 4175 } 4176 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4177 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4178 } 4179 mPrior |= pNew->maskSelf; 4180 if( rc || db->mallocFailed ){ 4181 if( rc==SQLITE_DONE ){ 4182 /* We hit the query planner search limit set by iPlanLimit */ 4183 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4184 rc = SQLITE_OK; 4185 }else{ 4186 break; 4187 } 4188 } 4189 } 4190 4191 whereLoopClear(db, pNew); 4192 return rc; 4193 } 4194 4195 /* 4196 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4197 ** parameters) to see if it outputs rows in the requested ORDER BY 4198 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4199 ** 4200 ** N>0: N terms of the ORDER BY clause are satisfied 4201 ** N==0: No terms of the ORDER BY clause are satisfied 4202 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4203 ** 4204 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4205 ** strict. With GROUP BY and DISTINCT the only requirement is that 4206 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4207 ** and DISTINCT do not require rows to appear in any particular order as long 4208 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4209 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4210 ** pOrderBy terms must be matched in strict left-to-right order. 4211 */ 4212 static i8 wherePathSatisfiesOrderBy( 4213 WhereInfo *pWInfo, /* The WHERE clause */ 4214 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4215 WherePath *pPath, /* The WherePath to check */ 4216 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4217 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4218 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4219 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4220 ){ 4221 u8 revSet; /* True if rev is known */ 4222 u8 rev; /* Composite sort order */ 4223 u8 revIdx; /* Index sort order */ 4224 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4225 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4226 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4227 u16 eqOpMask; /* Allowed equality operators */ 4228 u16 nKeyCol; /* Number of key columns in pIndex */ 4229 u16 nColumn; /* Total number of ordered columns in the index */ 4230 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4231 int iLoop; /* Index of WhereLoop in pPath being processed */ 4232 int i, j; /* Loop counters */ 4233 int iCur; /* Cursor number for current WhereLoop */ 4234 int iColumn; /* A column number within table iCur */ 4235 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4236 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4237 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4238 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4239 Index *pIndex; /* The index associated with pLoop */ 4240 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4241 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4242 Bitmask obDone; /* Mask of all ORDER BY terms */ 4243 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4244 Bitmask ready; /* Mask of inner loops */ 4245 4246 /* 4247 ** We say the WhereLoop is "one-row" if it generates no more than one 4248 ** row of output. A WhereLoop is one-row if all of the following are true: 4249 ** (a) All index columns match with WHERE_COLUMN_EQ. 4250 ** (b) The index is unique 4251 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4252 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4253 ** 4254 ** We say the WhereLoop is "order-distinct" if the set of columns from 4255 ** that WhereLoop that are in the ORDER BY clause are different for every 4256 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4257 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4258 ** is not order-distinct. To be order-distinct is not quite the same as being 4259 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4260 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4261 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4262 ** 4263 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4264 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4265 ** automatically order-distinct. 4266 */ 4267 4268 assert( pOrderBy!=0 ); 4269 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4270 4271 nOrderBy = pOrderBy->nExpr; 4272 testcase( nOrderBy==BMS-1 ); 4273 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4274 isOrderDistinct = 1; 4275 obDone = MASKBIT(nOrderBy)-1; 4276 orderDistinctMask = 0; 4277 ready = 0; 4278 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4279 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4280 eqOpMask |= WO_IN; 4281 } 4282 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4283 if( iLoop>0 ) ready |= pLoop->maskSelf; 4284 if( iLoop<nLoop ){ 4285 pLoop = pPath->aLoop[iLoop]; 4286 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4287 }else{ 4288 pLoop = pLast; 4289 } 4290 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4291 if( pLoop->u.vtab.isOrdered 4292 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 4293 ){ 4294 obSat = obDone; 4295 } 4296 break; 4297 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4298 pLoop->u.btree.nDistinctCol = 0; 4299 } 4300 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4301 4302 /* Mark off any ORDER BY term X that is a column in the table of 4303 ** the current loop for which there is term in the WHERE 4304 ** clause of the form X IS NULL or X=? that reference only outer 4305 ** loops. 4306 */ 4307 for(i=0; i<nOrderBy; i++){ 4308 if( MASKBIT(i) & obSat ) continue; 4309 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4310 if( NEVER(pOBExpr==0) ) continue; 4311 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4312 if( pOBExpr->iTable!=iCur ) continue; 4313 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4314 ~ready, eqOpMask, 0); 4315 if( pTerm==0 ) continue; 4316 if( pTerm->eOperator==WO_IN ){ 4317 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4318 ** optimization, and then only if they are actually used 4319 ** by the query plan */ 4320 assert( wctrlFlags & 4321 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4322 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4323 if( j>=pLoop->nLTerm ) continue; 4324 } 4325 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4326 Parse *pParse = pWInfo->pParse; 4327 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4328 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4329 assert( pColl1 ); 4330 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4331 continue; 4332 } 4333 testcase( pTerm->pExpr->op==TK_IS ); 4334 } 4335 obSat |= MASKBIT(i); 4336 } 4337 4338 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4339 if( pLoop->wsFlags & WHERE_IPK ){ 4340 pIndex = 0; 4341 nKeyCol = 0; 4342 nColumn = 1; 4343 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4344 return 0; 4345 }else{ 4346 nKeyCol = pIndex->nKeyCol; 4347 nColumn = pIndex->nColumn; 4348 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4349 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4350 || !HasRowid(pIndex->pTable)); 4351 /* All relevant terms of the index must also be non-NULL in order 4352 ** for isOrderDistinct to be true. So the isOrderDistint value 4353 ** computed here might be a false positive. Corrections will be 4354 ** made at tag-20210426-1 below */ 4355 isOrderDistinct = IsUniqueIndex(pIndex) 4356 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4357 } 4358 4359 /* Loop through all columns of the index and deal with the ones 4360 ** that are not constrained by == or IN. 4361 */ 4362 rev = revSet = 0; 4363 distinctColumns = 0; 4364 for(j=0; j<nColumn; j++){ 4365 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4366 4367 assert( j>=pLoop->u.btree.nEq 4368 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4369 ); 4370 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4371 u16 eOp = pLoop->aLTerm[j]->eOperator; 4372 4373 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4374 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4375 ** terms imply that the index is not UNIQUE NOT NULL in which case 4376 ** the loop need to be marked as not order-distinct because it can 4377 ** have repeated NULL rows. 4378 ** 4379 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4380 ** expression for which the SELECT returns more than one column, 4381 ** check that it is the only column used by this loop. Otherwise, 4382 ** if it is one of two or more, none of the columns can be 4383 ** considered to match an ORDER BY term. 4384 */ 4385 if( (eOp & eqOpMask)!=0 ){ 4386 if( eOp & (WO_ISNULL|WO_IS) ){ 4387 testcase( eOp & WO_ISNULL ); 4388 testcase( eOp & WO_IS ); 4389 testcase( isOrderDistinct ); 4390 isOrderDistinct = 0; 4391 } 4392 continue; 4393 }else if( ALWAYS(eOp & WO_IN) ){ 4394 /* ALWAYS() justification: eOp is an equality operator due to the 4395 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4396 ** than WO_IN is captured by the previous "if". So this one 4397 ** always has to be WO_IN. */ 4398 Expr *pX = pLoop->aLTerm[j]->pExpr; 4399 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4400 if( pLoop->aLTerm[i]->pExpr==pX ){ 4401 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4402 bOnce = 0; 4403 break; 4404 } 4405 } 4406 } 4407 } 4408 4409 /* Get the column number in the table (iColumn) and sort order 4410 ** (revIdx) for the j-th column of the index. 4411 */ 4412 if( pIndex ){ 4413 iColumn = pIndex->aiColumn[j]; 4414 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4415 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4416 }else{ 4417 iColumn = XN_ROWID; 4418 revIdx = 0; 4419 } 4420 4421 /* An unconstrained column that might be NULL means that this 4422 ** WhereLoop is not well-ordered. tag-20210426-1 4423 */ 4424 if( isOrderDistinct ){ 4425 if( iColumn>=0 4426 && j>=pLoop->u.btree.nEq 4427 && pIndex->pTable->aCol[iColumn].notNull==0 4428 ){ 4429 isOrderDistinct = 0; 4430 } 4431 if( iColumn==XN_EXPR ){ 4432 isOrderDistinct = 0; 4433 } 4434 } 4435 4436 /* Find the ORDER BY term that corresponds to the j-th column 4437 ** of the index and mark that ORDER BY term off 4438 */ 4439 isMatch = 0; 4440 for(i=0; bOnce && i<nOrderBy; i++){ 4441 if( MASKBIT(i) & obSat ) continue; 4442 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4443 testcase( wctrlFlags & WHERE_GROUPBY ); 4444 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4445 if( NEVER(pOBExpr==0) ) continue; 4446 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4447 if( iColumn>=XN_ROWID ){ 4448 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4449 if( pOBExpr->iTable!=iCur ) continue; 4450 if( pOBExpr->iColumn!=iColumn ) continue; 4451 }else{ 4452 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4453 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4454 continue; 4455 } 4456 } 4457 if( iColumn!=XN_ROWID ){ 4458 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4459 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4460 } 4461 if( wctrlFlags & WHERE_DISTINCTBY ){ 4462 pLoop->u.btree.nDistinctCol = j+1; 4463 } 4464 isMatch = 1; 4465 break; 4466 } 4467 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4468 /* Make sure the sort order is compatible in an ORDER BY clause. 4469 ** Sort order is irrelevant for a GROUP BY clause. */ 4470 if( revSet ){ 4471 if( (rev ^ revIdx) 4472 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 4473 ){ 4474 isMatch = 0; 4475 } 4476 }else{ 4477 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 4478 if( rev ) *pRevMask |= MASKBIT(iLoop); 4479 revSet = 1; 4480 } 4481 } 4482 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4483 if( j==pLoop->u.btree.nEq ){ 4484 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4485 }else{ 4486 isMatch = 0; 4487 } 4488 } 4489 if( isMatch ){ 4490 if( iColumn==XN_ROWID ){ 4491 testcase( distinctColumns==0 ); 4492 distinctColumns = 1; 4493 } 4494 obSat |= MASKBIT(i); 4495 }else{ 4496 /* No match found */ 4497 if( j==0 || j<nKeyCol ){ 4498 testcase( isOrderDistinct!=0 ); 4499 isOrderDistinct = 0; 4500 } 4501 break; 4502 } 4503 } /* end Loop over all index columns */ 4504 if( distinctColumns ){ 4505 testcase( isOrderDistinct==0 ); 4506 isOrderDistinct = 1; 4507 } 4508 } /* end-if not one-row */ 4509 4510 /* Mark off any other ORDER BY terms that reference pLoop */ 4511 if( isOrderDistinct ){ 4512 orderDistinctMask |= pLoop->maskSelf; 4513 for(i=0; i<nOrderBy; i++){ 4514 Expr *p; 4515 Bitmask mTerm; 4516 if( MASKBIT(i) & obSat ) continue; 4517 p = pOrderBy->a[i].pExpr; 4518 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4519 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4520 if( (mTerm&~orderDistinctMask)==0 ){ 4521 obSat |= MASKBIT(i); 4522 } 4523 } 4524 } 4525 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4526 if( obSat==obDone ) return (i8)nOrderBy; 4527 if( !isOrderDistinct ){ 4528 for(i=nOrderBy-1; i>0; i--){ 4529 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4530 if( (obSat&m)==m ) return i; 4531 } 4532 return 0; 4533 } 4534 return -1; 4535 } 4536 4537 4538 /* 4539 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4540 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4541 ** BY clause - and so any order that groups rows as required satisfies the 4542 ** request. 4543 ** 4544 ** Normally, in this case it is not possible for the caller to determine 4545 ** whether or not the rows are really being delivered in sorted order, or 4546 ** just in some other order that provides the required grouping. However, 4547 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4548 ** this function may be called on the returned WhereInfo object. It returns 4549 ** true if the rows really will be sorted in the specified order, or false 4550 ** otherwise. 4551 ** 4552 ** For example, assuming: 4553 ** 4554 ** CREATE INDEX i1 ON t1(x, Y); 4555 ** 4556 ** then 4557 ** 4558 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4559 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4560 */ 4561 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4562 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 4563 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4564 return pWInfo->sorted; 4565 } 4566 4567 #ifdef WHERETRACE_ENABLED 4568 /* For debugging use only: */ 4569 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4570 static char zName[65]; 4571 int i; 4572 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4573 if( pLast ) zName[i++] = pLast->cId; 4574 zName[i] = 0; 4575 return zName; 4576 } 4577 #endif 4578 4579 /* 4580 ** Return the cost of sorting nRow rows, assuming that the keys have 4581 ** nOrderby columns and that the first nSorted columns are already in 4582 ** order. 4583 */ 4584 static LogEst whereSortingCost( 4585 WhereInfo *pWInfo, 4586 LogEst nRow, 4587 int nOrderBy, 4588 int nSorted 4589 ){ 4590 /* TUNING: Estimated cost of a full external sort, where N is 4591 ** the number of rows to sort is: 4592 ** 4593 ** cost = (3.0 * N * log(N)). 4594 ** 4595 ** Or, if the order-by clause has X terms but only the last Y 4596 ** terms are out of order, then block-sorting will reduce the 4597 ** sorting cost to: 4598 ** 4599 ** cost = (3.0 * N * log(N)) * (Y/X) 4600 ** 4601 ** The (Y/X) term is implemented using stack variable rScale 4602 ** below. 4603 */ 4604 LogEst rScale, rSortCost; 4605 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4606 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4607 rSortCost = nRow + rScale + 16; 4608 4609 /* Multiple by log(M) where M is the number of output rows. 4610 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4611 ** a DISTINCT operator, M will be the number of distinct output 4612 ** rows, so fudge it downwards a bit. 4613 */ 4614 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4615 nRow = pWInfo->iLimit; 4616 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4617 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4618 ** reduces the number of output rows by a factor of 2 */ 4619 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4620 } 4621 rSortCost += estLog(nRow); 4622 return rSortCost; 4623 } 4624 4625 /* 4626 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4627 ** attempts to find the lowest cost path that visits each WhereLoop 4628 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4629 ** 4630 ** Assume that the total number of output rows that will need to be sorted 4631 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4632 ** costs if nRowEst==0. 4633 ** 4634 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4635 ** error occurs. 4636 */ 4637 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4638 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4639 int nLoop; /* Number of terms in the join */ 4640 Parse *pParse; /* Parsing context */ 4641 sqlite3 *db; /* The database connection */ 4642 int iLoop; /* Loop counter over the terms of the join */ 4643 int ii, jj; /* Loop counters */ 4644 int mxI = 0; /* Index of next entry to replace */ 4645 int nOrderBy; /* Number of ORDER BY clause terms */ 4646 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4647 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4648 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4649 WherePath *aFrom; /* All nFrom paths at the previous level */ 4650 WherePath *aTo; /* The nTo best paths at the current level */ 4651 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4652 WherePath *pTo; /* An element of aTo[] that we are working on */ 4653 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4654 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4655 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4656 char *pSpace; /* Temporary memory used by this routine */ 4657 int nSpace; /* Bytes of space allocated at pSpace */ 4658 4659 pParse = pWInfo->pParse; 4660 db = pParse->db; 4661 nLoop = pWInfo->nLevel; 4662 /* TUNING: For simple queries, only the best path is tracked. 4663 ** For 2-way joins, the 5 best paths are followed. 4664 ** For joins of 3 or more tables, track the 10 best paths */ 4665 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4666 assert( nLoop<=pWInfo->pTabList->nSrc ); 4667 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4668 4669 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4670 ** case the purpose of this call is to estimate the number of rows returned 4671 ** by the overall query. Once this estimate has been obtained, the caller 4672 ** will invoke this function a second time, passing the estimate as the 4673 ** nRowEst parameter. */ 4674 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4675 nOrderBy = 0; 4676 }else{ 4677 nOrderBy = pWInfo->pOrderBy->nExpr; 4678 } 4679 4680 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4681 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4682 nSpace += sizeof(LogEst) * nOrderBy; 4683 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4684 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4685 aTo = (WherePath*)pSpace; 4686 aFrom = aTo+mxChoice; 4687 memset(aFrom, 0, sizeof(aFrom[0])); 4688 pX = (WhereLoop**)(aFrom+mxChoice); 4689 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4690 pFrom->aLoop = pX; 4691 } 4692 if( nOrderBy ){ 4693 /* If there is an ORDER BY clause and it is not being ignored, set up 4694 ** space for the aSortCost[] array. Each element of the aSortCost array 4695 ** is either zero - meaning it has not yet been initialized - or the 4696 ** cost of sorting nRowEst rows of data where the first X terms of 4697 ** the ORDER BY clause are already in order, where X is the array 4698 ** index. */ 4699 aSortCost = (LogEst*)pX; 4700 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4701 } 4702 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4703 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4704 4705 /* Seed the search with a single WherePath containing zero WhereLoops. 4706 ** 4707 ** TUNING: Do not let the number of iterations go above 28. If the cost 4708 ** of computing an automatic index is not paid back within the first 28 4709 ** rows, then do not use the automatic index. */ 4710 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4711 nFrom = 1; 4712 assert( aFrom[0].isOrdered==0 ); 4713 if( nOrderBy ){ 4714 /* If nLoop is zero, then there are no FROM terms in the query. Since 4715 ** in this case the query may return a maximum of one row, the results 4716 ** are already in the requested order. Set isOrdered to nOrderBy to 4717 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4718 ** -1, indicating that the result set may or may not be ordered, 4719 ** depending on the loops added to the current plan. */ 4720 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4721 } 4722 4723 /* Compute successively longer WherePaths using the previous generation 4724 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4725 ** best paths at each generation */ 4726 for(iLoop=0; iLoop<nLoop; iLoop++){ 4727 nTo = 0; 4728 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4729 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4730 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4731 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4732 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4733 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4734 Bitmask maskNew; /* Mask of src visited by (..) */ 4735 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4736 4737 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4738 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4739 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4740 /* Do not use an automatic index if the this loop is expected 4741 ** to run less than 1.25 times. It is tempting to also exclude 4742 ** automatic index usage on an outer loop, but sometimes an automatic 4743 ** index is useful in the outer loop of a correlated subquery. */ 4744 assert( 10==sqlite3LogEst(2) ); 4745 continue; 4746 } 4747 4748 /* At this point, pWLoop is a candidate to be the next loop. 4749 ** Compute its cost */ 4750 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4751 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4752 nOut = pFrom->nRow + pWLoop->nOut; 4753 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4754 if( isOrdered<0 ){ 4755 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4756 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4757 iLoop, pWLoop, &revMask); 4758 }else{ 4759 revMask = pFrom->revLoop; 4760 } 4761 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4762 if( aSortCost[isOrdered]==0 ){ 4763 aSortCost[isOrdered] = whereSortingCost( 4764 pWInfo, nRowEst, nOrderBy, isOrdered 4765 ); 4766 } 4767 /* TUNING: Add a small extra penalty (5) to sorting as an 4768 ** extra encouragment to the query planner to select a plan 4769 ** where the rows emerge in the correct order without any sorting 4770 ** required. */ 4771 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4772 4773 WHERETRACE(0x002, 4774 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4775 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4776 rUnsorted, rCost)); 4777 }else{ 4778 rCost = rUnsorted; 4779 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4780 } 4781 4782 /* Check to see if pWLoop should be added to the set of 4783 ** mxChoice best-so-far paths. 4784 ** 4785 ** First look for an existing path among best-so-far paths 4786 ** that covers the same set of loops and has the same isOrdered 4787 ** setting as the current path candidate. 4788 ** 4789 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4790 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4791 ** of legal values for isOrdered, -1..64. 4792 */ 4793 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4794 if( pTo->maskLoop==maskNew 4795 && ((pTo->isOrdered^isOrdered)&0x80)==0 4796 ){ 4797 testcase( jj==nTo-1 ); 4798 break; 4799 } 4800 } 4801 if( jj>=nTo ){ 4802 /* None of the existing best-so-far paths match the candidate. */ 4803 if( nTo>=mxChoice 4804 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4805 ){ 4806 /* The current candidate is no better than any of the mxChoice 4807 ** paths currently in the best-so-far buffer. So discard 4808 ** this candidate as not viable. */ 4809 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4810 if( sqlite3WhereTrace&0x4 ){ 4811 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4812 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4813 isOrdered>=0 ? isOrdered+'0' : '?'); 4814 } 4815 #endif 4816 continue; 4817 } 4818 /* If we reach this points it means that the new candidate path 4819 ** needs to be added to the set of best-so-far paths. */ 4820 if( nTo<mxChoice ){ 4821 /* Increase the size of the aTo set by one */ 4822 jj = nTo++; 4823 }else{ 4824 /* New path replaces the prior worst to keep count below mxChoice */ 4825 jj = mxI; 4826 } 4827 pTo = &aTo[jj]; 4828 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4829 if( sqlite3WhereTrace&0x4 ){ 4830 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4831 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4832 isOrdered>=0 ? isOrdered+'0' : '?'); 4833 } 4834 #endif 4835 }else{ 4836 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4837 ** same set of loops and has the same isOrdered setting as the 4838 ** candidate path. Check to see if the candidate should replace 4839 ** pTo or if the candidate should be skipped. 4840 ** 4841 ** The conditional is an expanded vector comparison equivalent to: 4842 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4843 */ 4844 if( pTo->rCost<rCost 4845 || (pTo->rCost==rCost 4846 && (pTo->nRow<nOut 4847 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4848 ) 4849 ) 4850 ){ 4851 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4852 if( sqlite3WhereTrace&0x4 ){ 4853 sqlite3DebugPrintf( 4854 "Skip %s cost=%-3d,%3d,%3d order=%c", 4855 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4856 isOrdered>=0 ? isOrdered+'0' : '?'); 4857 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4858 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4859 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4860 } 4861 #endif 4862 /* Discard the candidate path from further consideration */ 4863 testcase( pTo->rCost==rCost ); 4864 continue; 4865 } 4866 testcase( pTo->rCost==rCost+1 ); 4867 /* Control reaches here if the candidate path is better than the 4868 ** pTo path. Replace pTo with the candidate. */ 4869 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4870 if( sqlite3WhereTrace&0x4 ){ 4871 sqlite3DebugPrintf( 4872 "Update %s cost=%-3d,%3d,%3d order=%c", 4873 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4874 isOrdered>=0 ? isOrdered+'0' : '?'); 4875 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4876 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4877 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4878 } 4879 #endif 4880 } 4881 /* pWLoop is a winner. Add it to the set of best so far */ 4882 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4883 pTo->revLoop = revMask; 4884 pTo->nRow = nOut; 4885 pTo->rCost = rCost; 4886 pTo->rUnsorted = rUnsorted; 4887 pTo->isOrdered = isOrdered; 4888 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4889 pTo->aLoop[iLoop] = pWLoop; 4890 if( nTo>=mxChoice ){ 4891 mxI = 0; 4892 mxCost = aTo[0].rCost; 4893 mxUnsorted = aTo[0].nRow; 4894 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4895 if( pTo->rCost>mxCost 4896 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4897 ){ 4898 mxCost = pTo->rCost; 4899 mxUnsorted = pTo->rUnsorted; 4900 mxI = jj; 4901 } 4902 } 4903 } 4904 } 4905 } 4906 4907 #ifdef WHERETRACE_ENABLED /* >=2 */ 4908 if( sqlite3WhereTrace & 0x02 ){ 4909 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4910 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4911 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4912 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4913 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4914 if( pTo->isOrdered>0 ){ 4915 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4916 }else{ 4917 sqlite3DebugPrintf("\n"); 4918 } 4919 } 4920 } 4921 #endif 4922 4923 /* Swap the roles of aFrom and aTo for the next generation */ 4924 pFrom = aTo; 4925 aTo = aFrom; 4926 aFrom = pFrom; 4927 nFrom = nTo; 4928 } 4929 4930 if( nFrom==0 ){ 4931 sqlite3ErrorMsg(pParse, "no query solution"); 4932 sqlite3DbFreeNN(db, pSpace); 4933 return SQLITE_ERROR; 4934 } 4935 4936 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4937 pFrom = aFrom; 4938 for(ii=1; ii<nFrom; ii++){ 4939 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4940 } 4941 assert( pWInfo->nLevel==nLoop ); 4942 /* Load the lowest cost path into pWInfo */ 4943 for(iLoop=0; iLoop<nLoop; iLoop++){ 4944 WhereLevel *pLevel = pWInfo->a + iLoop; 4945 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4946 pLevel->iFrom = pWLoop->iTab; 4947 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4948 } 4949 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4950 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4951 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4952 && nRowEst 4953 ){ 4954 Bitmask notUsed; 4955 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4956 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4957 if( rc==pWInfo->pResultSet->nExpr ){ 4958 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4959 } 4960 } 4961 pWInfo->bOrderedInnerLoop = 0; 4962 if( pWInfo->pOrderBy ){ 4963 pWInfo->nOBSat = pFrom->isOrdered; 4964 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4965 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4966 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4967 } 4968 }else{ 4969 pWInfo->revMask = pFrom->revLoop; 4970 if( pWInfo->nOBSat<=0 ){ 4971 pWInfo->nOBSat = 0; 4972 if( nLoop>0 ){ 4973 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4974 if( (wsFlags & WHERE_ONEROW)==0 4975 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4976 ){ 4977 Bitmask m = 0; 4978 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4979 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4980 testcase( wsFlags & WHERE_IPK ); 4981 testcase( wsFlags & WHERE_COLUMN_IN ); 4982 if( rc==pWInfo->pOrderBy->nExpr ){ 4983 pWInfo->bOrderedInnerLoop = 1; 4984 pWInfo->revMask = m; 4985 } 4986 } 4987 } 4988 }else if( nLoop 4989 && pWInfo->nOBSat==1 4990 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 4991 ){ 4992 pWInfo->bOrderedInnerLoop = 1; 4993 } 4994 } 4995 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4996 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4997 ){ 4998 Bitmask revMask = 0; 4999 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 5000 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 5001 ); 5002 assert( pWInfo->sorted==0 ); 5003 if( nOrder==pWInfo->pOrderBy->nExpr ){ 5004 pWInfo->sorted = 1; 5005 pWInfo->revMask = revMask; 5006 } 5007 } 5008 } 5009 5010 5011 pWInfo->nRowOut = pFrom->nRow; 5012 5013 /* Free temporary memory and return success */ 5014 sqlite3DbFreeNN(db, pSpace); 5015 return SQLITE_OK; 5016 } 5017 5018 /* 5019 ** Most queries use only a single table (they are not joins) and have 5020 ** simple == constraints against indexed fields. This routine attempts 5021 ** to plan those simple cases using much less ceremony than the 5022 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 5023 ** times for the common case. 5024 ** 5025 ** Return non-zero on success, if this query can be handled by this 5026 ** no-frills query planner. Return zero if this query needs the 5027 ** general-purpose query planner. 5028 */ 5029 static int whereShortCut(WhereLoopBuilder *pBuilder){ 5030 WhereInfo *pWInfo; 5031 SrcItem *pItem; 5032 WhereClause *pWC; 5033 WhereTerm *pTerm; 5034 WhereLoop *pLoop; 5035 int iCur; 5036 int j; 5037 Table *pTab; 5038 Index *pIdx; 5039 WhereScan scan; 5040 5041 pWInfo = pBuilder->pWInfo; 5042 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 5043 assert( pWInfo->pTabList->nSrc>=1 ); 5044 pItem = pWInfo->pTabList->a; 5045 pTab = pItem->pTab; 5046 if( IsVirtual(pTab) ) return 0; 5047 if( pItem->fg.isIndexedBy ) return 0; 5048 iCur = pItem->iCursor; 5049 pWC = &pWInfo->sWC; 5050 pLoop = pBuilder->pNew; 5051 pLoop->wsFlags = 0; 5052 pLoop->nSkip = 0; 5053 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 5054 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5055 if( pTerm ){ 5056 testcase( pTerm->eOperator & WO_IS ); 5057 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 5058 pLoop->aLTerm[0] = pTerm; 5059 pLoop->nLTerm = 1; 5060 pLoop->u.btree.nEq = 1; 5061 /* TUNING: Cost of a rowid lookup is 10 */ 5062 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 5063 }else{ 5064 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5065 int opMask; 5066 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 5067 if( !IsUniqueIndex(pIdx) 5068 || pIdx->pPartIdxWhere!=0 5069 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 5070 ) continue; 5071 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 5072 for(j=0; j<pIdx->nKeyCol; j++){ 5073 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 5074 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5075 if( pTerm==0 ) break; 5076 testcase( pTerm->eOperator & WO_IS ); 5077 pLoop->aLTerm[j] = pTerm; 5078 } 5079 if( j!=pIdx->nKeyCol ) continue; 5080 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5081 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5082 pLoop->wsFlags |= WHERE_IDX_ONLY; 5083 } 5084 pLoop->nLTerm = j; 5085 pLoop->u.btree.nEq = j; 5086 pLoop->u.btree.pIndex = pIdx; 5087 /* TUNING: Cost of a unique index lookup is 15 */ 5088 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5089 break; 5090 } 5091 } 5092 if( pLoop->wsFlags ){ 5093 pLoop->nOut = (LogEst)1; 5094 pWInfo->a[0].pWLoop = pLoop; 5095 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5096 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5097 pWInfo->a[0].iTabCur = iCur; 5098 pWInfo->nRowOut = 1; 5099 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5100 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5101 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5102 } 5103 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5104 #ifdef SQLITE_DEBUG 5105 pLoop->cId = '0'; 5106 #endif 5107 #ifdef WHERETRACE_ENABLED 5108 if( sqlite3WhereTrace ){ 5109 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5110 } 5111 #endif 5112 return 1; 5113 } 5114 return 0; 5115 } 5116 5117 /* 5118 ** Helper function for exprIsDeterministic(). 5119 */ 5120 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5121 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5122 pWalker->eCode = 0; 5123 return WRC_Abort; 5124 } 5125 return WRC_Continue; 5126 } 5127 5128 /* 5129 ** Return true if the expression contains no non-deterministic SQL 5130 ** functions. Do not consider non-deterministic SQL functions that are 5131 ** part of sub-select statements. 5132 */ 5133 static int exprIsDeterministic(Expr *p){ 5134 Walker w; 5135 memset(&w, 0, sizeof(w)); 5136 w.eCode = 1; 5137 w.xExprCallback = exprNodeIsDeterministic; 5138 w.xSelectCallback = sqlite3SelectWalkFail; 5139 sqlite3WalkExpr(&w, p); 5140 return w.eCode; 5141 } 5142 5143 5144 #ifdef WHERETRACE_ENABLED 5145 /* 5146 ** Display all WhereLoops in pWInfo 5147 */ 5148 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5149 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5150 WhereLoop *p; 5151 int i; 5152 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5153 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5154 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5155 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5156 sqlite3WhereLoopPrint(p, pWC); 5157 } 5158 } 5159 } 5160 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5161 #else 5162 # define WHERETRACE_ALL_LOOPS(W,C) 5163 #endif 5164 5165 /* Attempt to omit tables from a join that do not affect the result. 5166 ** For a table to not affect the result, the following must be true: 5167 ** 5168 ** 1) The query must not be an aggregate. 5169 ** 2) The table must be the RHS of a LEFT JOIN. 5170 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5171 ** must contain a constraint that limits the scan of the table to 5172 ** at most a single row. 5173 ** 4) The table must not be referenced by any part of the query apart 5174 ** from its own USING or ON clause. 5175 ** 5176 ** For example, given: 5177 ** 5178 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5179 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5180 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5181 ** 5182 ** then table t2 can be omitted from the following: 5183 ** 5184 ** SELECT v1, v3 FROM t1 5185 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5186 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5187 ** 5188 ** or from: 5189 ** 5190 ** SELECT DISTINCT v1, v3 FROM t1 5191 ** LEFT JOIN t2 5192 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5193 */ 5194 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5195 WhereInfo *pWInfo, 5196 Bitmask notReady 5197 ){ 5198 int i; 5199 Bitmask tabUsed; 5200 5201 /* Preconditions checked by the caller */ 5202 assert( pWInfo->nLevel>=2 ); 5203 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5204 5205 /* These two preconditions checked by the caller combine to guarantee 5206 ** condition (1) of the header comment */ 5207 assert( pWInfo->pResultSet!=0 ); 5208 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5209 5210 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5211 if( pWInfo->pOrderBy ){ 5212 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5213 } 5214 for(i=pWInfo->nLevel-1; i>=1; i--){ 5215 WhereTerm *pTerm, *pEnd; 5216 SrcItem *pItem; 5217 WhereLoop *pLoop; 5218 pLoop = pWInfo->a[i].pWLoop; 5219 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5220 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 5221 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5222 && (pLoop->wsFlags & WHERE_ONEROW)==0 5223 ){ 5224 continue; 5225 } 5226 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5227 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5228 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5229 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5230 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 5231 || pTerm->pExpr->w.iJoin!=pItem->iCursor 5232 ){ 5233 break; 5234 } 5235 } 5236 } 5237 if( pTerm<pEnd ) continue; 5238 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5239 notReady &= ~pLoop->maskSelf; 5240 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5241 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5242 pTerm->wtFlags |= TERM_CODED; 5243 } 5244 } 5245 if( i!=pWInfo->nLevel-1 ){ 5246 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5247 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5248 } 5249 pWInfo->nLevel--; 5250 assert( pWInfo->nLevel>0 ); 5251 } 5252 return notReady; 5253 } 5254 5255 /* 5256 ** Check to see if there are any SEARCH loops that might benefit from 5257 ** using a Bloom filter. Consider a Bloom filter if: 5258 ** 5259 ** (1) The SEARCH happens more than N times where N is the number 5260 ** of rows in the table that is being considered for the Bloom 5261 ** filter. 5262 ** (2) Some searches are expected to find zero rows. (This is determined 5263 ** by the WHERE_SELFCULL flag on the term.) 5264 ** (3) Bloom-filter processing is not disabled. (Checked by the 5265 ** caller.) 5266 ** (4) The size of the table being searched is known by ANALYZE. 5267 ** 5268 ** This block of code merely checks to see if a Bloom filter would be 5269 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5270 ** WhereLoop. The implementation of the Bloom filter comes further 5271 ** down where the code for each WhereLoop is generated. 5272 */ 5273 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5274 const WhereInfo *pWInfo 5275 ){ 5276 int i; 5277 LogEst nSearch; 5278 5279 assert( pWInfo->nLevel>=2 ); 5280 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5281 nSearch = pWInfo->a[0].pWLoop->nOut; 5282 for(i=1; i<pWInfo->nLevel; i++){ 5283 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5284 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5285 if( (pLoop->wsFlags & reqFlags)==reqFlags 5286 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5287 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5288 ){ 5289 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5290 Table *pTab = pItem->pTab; 5291 pTab->tabFlags |= TF_StatsUsed; 5292 if( nSearch > pTab->nRowLogEst 5293 && (pTab->tabFlags & TF_HasStat1)!=0 5294 ){ 5295 testcase( pItem->fg.jointype & JT_LEFT ); 5296 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5297 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5298 WHERETRACE(0xffff, ( 5299 "-> use Bloom-filter on loop %c because there are ~%.1e " 5300 "lookups into %s which has only ~%.1e rows\n", 5301 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5302 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5303 } 5304 } 5305 nSearch += pLoop->nOut; 5306 } 5307 } 5308 5309 /* 5310 ** Generate the beginning of the loop used for WHERE clause processing. 5311 ** The return value is a pointer to an opaque structure that contains 5312 ** information needed to terminate the loop. Later, the calling routine 5313 ** should invoke sqlite3WhereEnd() with the return value of this function 5314 ** in order to complete the WHERE clause processing. 5315 ** 5316 ** If an error occurs, this routine returns NULL. 5317 ** 5318 ** The basic idea is to do a nested loop, one loop for each table in 5319 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5320 ** same as a SELECT with only a single table in the FROM clause.) For 5321 ** example, if the SQL is this: 5322 ** 5323 ** SELECT * FROM t1, t2, t3 WHERE ...; 5324 ** 5325 ** Then the code generated is conceptually like the following: 5326 ** 5327 ** foreach row1 in t1 do \ Code generated 5328 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5329 ** foreach row3 in t3 do / 5330 ** ... 5331 ** end \ Code generated 5332 ** end |-- by sqlite3WhereEnd() 5333 ** end / 5334 ** 5335 ** Note that the loops might not be nested in the order in which they 5336 ** appear in the FROM clause if a different order is better able to make 5337 ** use of indices. Note also that when the IN operator appears in 5338 ** the WHERE clause, it might result in additional nested loops for 5339 ** scanning through all values on the right-hand side of the IN. 5340 ** 5341 ** There are Btree cursors associated with each table. t1 uses cursor 5342 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5343 ** And so forth. This routine generates code to open those VDBE cursors 5344 ** and sqlite3WhereEnd() generates the code to close them. 5345 ** 5346 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5347 ** in pTabList pointing at their appropriate entries. The [...] code 5348 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5349 ** data from the various tables of the loop. 5350 ** 5351 ** If the WHERE clause is empty, the foreach loops must each scan their 5352 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5353 ** the tables have indices and there are terms in the WHERE clause that 5354 ** refer to those indices, a complete table scan can be avoided and the 5355 ** code will run much faster. Most of the work of this routine is checking 5356 ** to see if there are indices that can be used to speed up the loop. 5357 ** 5358 ** Terms of the WHERE clause are also used to limit which rows actually 5359 ** make it to the "..." in the middle of the loop. After each "foreach", 5360 ** terms of the WHERE clause that use only terms in that loop and outer 5361 ** loops are evaluated and if false a jump is made around all subsequent 5362 ** inner loops (or around the "..." if the test occurs within the inner- 5363 ** most loop) 5364 ** 5365 ** OUTER JOINS 5366 ** 5367 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5368 ** 5369 ** foreach row1 in t1 do 5370 ** flag = 0 5371 ** foreach row2 in t2 do 5372 ** start: 5373 ** ... 5374 ** flag = 1 5375 ** end 5376 ** if flag==0 then 5377 ** move the row2 cursor to a null row 5378 ** goto start 5379 ** fi 5380 ** end 5381 ** 5382 ** ORDER BY CLAUSE PROCESSING 5383 ** 5384 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5385 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5386 ** if there is one. If there is no ORDER BY clause or if this routine 5387 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5388 ** 5389 ** The iIdxCur parameter is the cursor number of an index. If 5390 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5391 ** to use for OR clause processing. The WHERE clause should use this 5392 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5393 ** the first cursor in an array of cursors for all indices. iIdxCur should 5394 ** be used to compute the appropriate cursor depending on which index is 5395 ** used. 5396 */ 5397 WhereInfo *sqlite3WhereBegin( 5398 Parse *pParse, /* The parser context */ 5399 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5400 Expr *pWhere, /* The WHERE clause */ 5401 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5402 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5403 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5404 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5405 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5406 ** If WHERE_USE_LIMIT, then the limit amount */ 5407 ){ 5408 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5409 int nTabList; /* Number of elements in pTabList */ 5410 WhereInfo *pWInfo; /* Will become the return value of this function */ 5411 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5412 Bitmask notReady; /* Cursors that are not yet positioned */ 5413 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5414 WhereMaskSet *pMaskSet; /* The expression mask set */ 5415 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5416 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5417 int ii; /* Loop counter */ 5418 sqlite3 *db; /* Database connection */ 5419 int rc; /* Return code */ 5420 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5421 5422 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5423 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5424 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5425 )); 5426 5427 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5428 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5429 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5430 5431 /* Variable initialization */ 5432 db = pParse->db; 5433 memset(&sWLB, 0, sizeof(sWLB)); 5434 5435 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5436 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5437 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5438 5439 /* The number of tables in the FROM clause is limited by the number of 5440 ** bits in a Bitmask 5441 */ 5442 testcase( pTabList->nSrc==BMS ); 5443 if( pTabList->nSrc>BMS ){ 5444 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5445 return 0; 5446 } 5447 5448 /* This function normally generates a nested loop for all tables in 5449 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5450 ** only generate code for the first table in pTabList and assume that 5451 ** any cursors associated with subsequent tables are uninitialized. 5452 */ 5453 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5454 5455 /* Allocate and initialize the WhereInfo structure that will become the 5456 ** return value. A single allocation is used to store the WhereInfo 5457 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5458 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5459 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5460 ** some architectures. Hence the ROUND8() below. 5461 */ 5462 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5463 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5464 if( db->mallocFailed ){ 5465 sqlite3DbFree(db, pWInfo); 5466 pWInfo = 0; 5467 goto whereBeginError; 5468 } 5469 pWInfo->pParse = pParse; 5470 pWInfo->pTabList = pTabList; 5471 pWInfo->pOrderBy = pOrderBy; 5472 pWInfo->pWhere = pWhere; 5473 pWInfo->pResultSet = pResultSet; 5474 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5475 pWInfo->nLevel = nTabList; 5476 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5477 pWInfo->wctrlFlags = wctrlFlags; 5478 pWInfo->iLimit = iAuxArg; 5479 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5480 #ifndef SQLITE_OMIT_VIRTUALTABLE 5481 pWInfo->pLimit = pLimit; 5482 #endif 5483 memset(&pWInfo->nOBSat, 0, 5484 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5485 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5486 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5487 pMaskSet = &pWInfo->sMaskSet; 5488 pMaskSet->n = 0; 5489 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5490 ** a valid cursor number, to avoid an initial 5491 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5492 sWLB.pWInfo = pWInfo; 5493 sWLB.pWC = &pWInfo->sWC; 5494 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5495 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5496 whereLoopInit(sWLB.pNew); 5497 #ifdef SQLITE_DEBUG 5498 sWLB.pNew->cId = '*'; 5499 #endif 5500 5501 /* Split the WHERE clause into separate subexpressions where each 5502 ** subexpression is separated by an AND operator. 5503 */ 5504 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5505 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5506 5507 /* Special case: No FROM clause 5508 */ 5509 if( nTabList==0 ){ 5510 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5511 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5512 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5513 ){ 5514 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5515 } 5516 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5517 }else{ 5518 /* Assign a bit from the bitmask to every term in the FROM clause. 5519 ** 5520 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5521 ** 5522 ** The rule of the previous sentence ensures thta if X is the bitmask for 5523 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5524 ** Knowing the bitmask for all tables to the left of a left join is 5525 ** important. Ticket #3015. 5526 ** 5527 ** Note that bitmasks are created for all pTabList->nSrc tables in 5528 ** pTabList, not just the first nTabList tables. nTabList is normally 5529 ** equal to pTabList->nSrc but might be shortened to 1 if the 5530 ** WHERE_OR_SUBCLAUSE flag is set. 5531 */ 5532 ii = 0; 5533 do{ 5534 createMask(pMaskSet, pTabList->a[ii].iCursor); 5535 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5536 }while( (++ii)<pTabList->nSrc ); 5537 #ifdef SQLITE_DEBUG 5538 { 5539 Bitmask mx = 0; 5540 for(ii=0; ii<pTabList->nSrc; ii++){ 5541 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5542 assert( m>=mx ); 5543 mx = m; 5544 } 5545 } 5546 #endif 5547 } 5548 5549 /* Analyze all of the subexpressions. */ 5550 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5551 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5552 if( db->mallocFailed ) goto whereBeginError; 5553 5554 /* Special case: WHERE terms that do not refer to any tables in the join 5555 ** (constant expressions). Evaluate each such term, and jump over all the 5556 ** generated code if the result is not true. 5557 ** 5558 ** Do not do this if the expression contains non-deterministic functions 5559 ** that are not within a sub-select. This is not strictly required, but 5560 ** preserves SQLite's legacy behaviour in the following two cases: 5561 ** 5562 ** FROM ... WHERE random()>0; -- eval random() once per row 5563 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5564 */ 5565 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5566 WhereTerm *pT = &sWLB.pWC->a[ii]; 5567 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5568 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5569 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5570 pT->wtFlags |= TERM_CODED; 5571 } 5572 } 5573 5574 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5575 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5576 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5577 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5578 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5579 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5580 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5581 /* The DISTINCT marking is pointless. Ignore it. */ 5582 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5583 }else if( pOrderBy==0 ){ 5584 /* Try to ORDER BY the result set to make distinct processing easier */ 5585 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5586 pWInfo->pOrderBy = pResultSet; 5587 } 5588 } 5589 5590 /* Construct the WhereLoop objects */ 5591 #if defined(WHERETRACE_ENABLED) 5592 if( sqlite3WhereTrace & 0xffff ){ 5593 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5594 if( wctrlFlags & WHERE_USE_LIMIT ){ 5595 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5596 } 5597 sqlite3DebugPrintf(")\n"); 5598 if( sqlite3WhereTrace & 0x100 ){ 5599 Select sSelect; 5600 memset(&sSelect, 0, sizeof(sSelect)); 5601 sSelect.selFlags = SF_WhereBegin; 5602 sSelect.pSrc = pTabList; 5603 sSelect.pWhere = pWhere; 5604 sSelect.pOrderBy = pOrderBy; 5605 sSelect.pEList = pResultSet; 5606 sqlite3TreeViewSelect(0, &sSelect, 0); 5607 } 5608 } 5609 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5610 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5611 sqlite3WhereClausePrint(sWLB.pWC); 5612 } 5613 #endif 5614 5615 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5616 rc = whereLoopAddAll(&sWLB); 5617 if( rc ) goto whereBeginError; 5618 5619 #ifdef SQLITE_ENABLE_STAT4 5620 /* If one or more WhereTerm.truthProb values were used in estimating 5621 ** loop parameters, but then those truthProb values were subsequently 5622 ** changed based on STAT4 information while computing subsequent loops, 5623 ** then we need to rerun the whole loop building process so that all 5624 ** loops will be built using the revised truthProb values. */ 5625 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5626 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5627 WHERETRACE(0xffff, 5628 ("**** Redo all loop computations due to" 5629 " TERM_HIGHTRUTH changes ****\n")); 5630 while( pWInfo->pLoops ){ 5631 WhereLoop *p = pWInfo->pLoops; 5632 pWInfo->pLoops = p->pNextLoop; 5633 whereLoopDelete(db, p); 5634 } 5635 rc = whereLoopAddAll(&sWLB); 5636 if( rc ) goto whereBeginError; 5637 } 5638 #endif 5639 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5640 5641 wherePathSolver(pWInfo, 0); 5642 if( db->mallocFailed ) goto whereBeginError; 5643 if( pWInfo->pOrderBy ){ 5644 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5645 if( db->mallocFailed ) goto whereBeginError; 5646 } 5647 } 5648 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5649 pWInfo->revMask = ALLBITS; 5650 } 5651 if( pParse->nErr ){ 5652 goto whereBeginError; 5653 } 5654 assert( db->mallocFailed==0 ); 5655 #ifdef WHERETRACE_ENABLED 5656 if( sqlite3WhereTrace ){ 5657 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5658 if( pWInfo->nOBSat>0 ){ 5659 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5660 } 5661 switch( pWInfo->eDistinct ){ 5662 case WHERE_DISTINCT_UNIQUE: { 5663 sqlite3DebugPrintf(" DISTINCT=unique"); 5664 break; 5665 } 5666 case WHERE_DISTINCT_ORDERED: { 5667 sqlite3DebugPrintf(" DISTINCT=ordered"); 5668 break; 5669 } 5670 case WHERE_DISTINCT_UNORDERED: { 5671 sqlite3DebugPrintf(" DISTINCT=unordered"); 5672 break; 5673 } 5674 } 5675 sqlite3DebugPrintf("\n"); 5676 for(ii=0; ii<pWInfo->nLevel; ii++){ 5677 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5678 } 5679 } 5680 #endif 5681 5682 /* Attempt to omit tables from a join that do not affect the result. 5683 ** See the comment on whereOmitNoopJoin() for further information. 5684 ** 5685 ** This query optimization is factored out into a separate "no-inline" 5686 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5687 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5688 ** some C-compiler optimizers from in-lining the 5689 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5690 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5691 */ 5692 notReady = ~(Bitmask)0; 5693 if( pWInfo->nLevel>=2 5694 && pResultSet!=0 /* these two combine to guarantee */ 5695 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5696 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5697 ){ 5698 notReady = whereOmitNoopJoin(pWInfo, notReady); 5699 nTabList = pWInfo->nLevel; 5700 assert( nTabList>0 ); 5701 } 5702 5703 /* Check to see if there are any SEARCH loops that might benefit from 5704 ** using a Bloom filter. 5705 */ 5706 if( pWInfo->nLevel>=2 5707 && OptimizationEnabled(db, SQLITE_BloomFilter) 5708 ){ 5709 whereCheckIfBloomFilterIsUseful(pWInfo); 5710 } 5711 5712 #if defined(WHERETRACE_ENABLED) 5713 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5714 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5715 sqlite3WhereClausePrint(sWLB.pWC); 5716 } 5717 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5718 #endif 5719 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5720 5721 /* If the caller is an UPDATE or DELETE statement that is requesting 5722 ** to use a one-pass algorithm, determine if this is appropriate. 5723 ** 5724 ** A one-pass approach can be used if the caller has requested one 5725 ** and either (a) the scan visits at most one row or (b) each 5726 ** of the following are true: 5727 ** 5728 ** * the caller has indicated that a one-pass approach can be used 5729 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5730 ** * the table is not a virtual table, and 5731 ** * either the scan does not use the OR optimization or the caller 5732 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5733 ** for DELETE). 5734 ** 5735 ** The last qualification is because an UPDATE statement uses 5736 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5737 ** use a one-pass approach, and this is not set accurately for scans 5738 ** that use the OR optimization. 5739 */ 5740 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5741 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5742 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5743 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5744 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5745 if( bOnerow || ( 5746 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5747 && !IsVirtual(pTabList->a[0].pTab) 5748 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5749 )){ 5750 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5751 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5752 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5753 bFordelete = OPFLAG_FORDELETE; 5754 } 5755 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5756 } 5757 } 5758 } 5759 5760 /* Open all tables in the pTabList and any indices selected for 5761 ** searching those tables. 5762 */ 5763 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5764 Table *pTab; /* Table to open */ 5765 int iDb; /* Index of database containing table/index */ 5766 SrcItem *pTabItem; 5767 5768 pTabItem = &pTabList->a[pLevel->iFrom]; 5769 pTab = pTabItem->pTab; 5770 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5771 pLoop = pLevel->pWLoop; 5772 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5773 /* Do nothing */ 5774 }else 5775 #ifndef SQLITE_OMIT_VIRTUALTABLE 5776 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5777 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5778 int iCur = pTabItem->iCursor; 5779 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5780 }else if( IsVirtual(pTab) ){ 5781 /* noop */ 5782 }else 5783 #endif 5784 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 5785 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 5786 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 5787 ){ 5788 int op = OP_OpenRead; 5789 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5790 op = OP_OpenWrite; 5791 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5792 }; 5793 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5794 assert( pTabItem->iCursor==pLevel->iTabCur ); 5795 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5796 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5797 if( pWInfo->eOnePass==ONEPASS_OFF 5798 && pTab->nCol<BMS 5799 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5800 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5801 ){ 5802 /* If we know that only a prefix of the record will be used, 5803 ** it is advantageous to reduce the "column count" field in 5804 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5805 Bitmask b = pTabItem->colUsed; 5806 int n = 0; 5807 for(; b; b=b>>1, n++){} 5808 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5809 assert( n<=pTab->nCol ); 5810 } 5811 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5812 if( pLoop->u.btree.pIndex!=0 ){ 5813 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5814 }else 5815 #endif 5816 { 5817 sqlite3VdbeChangeP5(v, bFordelete); 5818 } 5819 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5820 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5821 (const u8*)&pTabItem->colUsed, P4_INT64); 5822 #endif 5823 }else{ 5824 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5825 } 5826 if( pLoop->wsFlags & WHERE_INDEXED ){ 5827 Index *pIx = pLoop->u.btree.pIndex; 5828 int iIndexCur; 5829 int op = OP_OpenRead; 5830 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5831 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5832 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5833 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5834 ){ 5835 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5836 ** WITHOUT ROWID table. No need for a separate index */ 5837 iIndexCur = pLevel->iTabCur; 5838 op = 0; 5839 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5840 Index *pJ = pTabItem->pTab->pIndex; 5841 iIndexCur = iAuxArg; 5842 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5843 while( ALWAYS(pJ) && pJ!=pIx ){ 5844 iIndexCur++; 5845 pJ = pJ->pNext; 5846 } 5847 op = OP_OpenWrite; 5848 pWInfo->aiCurOnePass[1] = iIndexCur; 5849 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5850 iIndexCur = iAuxArg; 5851 op = OP_ReopenIdx; 5852 }else{ 5853 iIndexCur = pParse->nTab++; 5854 } 5855 pLevel->iIdxCur = iIndexCur; 5856 assert( pIx!=0 ); 5857 assert( pIx->pSchema==pTab->pSchema ); 5858 assert( iIndexCur>=0 ); 5859 if( op ){ 5860 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5861 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5862 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5863 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5864 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5865 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5866 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5867 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5868 ){ 5869 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5870 } 5871 VdbeComment((v, "%s", pIx->zName)); 5872 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5873 { 5874 u64 colUsed = 0; 5875 int ii, jj; 5876 for(ii=0; ii<pIx->nColumn; ii++){ 5877 jj = pIx->aiColumn[ii]; 5878 if( jj<0 ) continue; 5879 if( jj>63 ) jj = 63; 5880 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5881 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5882 } 5883 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5884 (u8*)&colUsed, P4_INT64); 5885 } 5886 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5887 } 5888 } 5889 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5890 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 5891 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 5892 ){ 5893 WhereRightJoin *pRJ = pLevel->pRJ; 5894 pRJ->iMatch = pParse->nTab++; 5895 pRJ->regBloom = ++pParse->nMem; 5896 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 5897 pRJ->regReturn = ++pParse->nMem; 5898 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 5899 assert( pTab==pTabItem->pTab ); 5900 if( HasRowid(pTab) ){ 5901 KeyInfo *pInfo; 5902 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 5903 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 5904 if( pInfo ){ 5905 pInfo->aColl[0] = 0; 5906 pInfo->aSortFlags[0] = 0; 5907 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 5908 } 5909 }else{ 5910 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5911 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 5912 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 5913 } 5914 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5915 /* The nature of RIGHT JOIN processing is such that it messes up 5916 ** the output order. So omit any ORDER BY/GROUP BY elimination 5917 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 5918 pWInfo->nOBSat = 0; 5919 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 5920 } 5921 } 5922 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5923 if( db->mallocFailed ) goto whereBeginError; 5924 5925 /* Generate the code to do the search. Each iteration of the for 5926 ** loop below generates code for a single nested loop of the VM 5927 ** program. 5928 */ 5929 for(ii=0; ii<nTabList; ii++){ 5930 int addrExplain; 5931 int wsFlags; 5932 SrcItem *pSrc; 5933 if( pParse->nErr ) goto whereBeginError; 5934 pLevel = &pWInfo->a[ii]; 5935 wsFlags = pLevel->pWLoop->wsFlags; 5936 pSrc = &pTabList->a[pLevel->iFrom]; 5937 if( pSrc->fg.isMaterialized ){ 5938 if( pSrc->fg.isCorrelated ){ 5939 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 5940 }else{ 5941 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5942 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 5943 sqlite3VdbeJumpHere(v, iOnce); 5944 } 5945 } 5946 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 5947 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5948 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5949 constructAutomaticIndex(pParse, &pWInfo->sWC, 5950 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5951 #endif 5952 }else{ 5953 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 5954 } 5955 if( db->mallocFailed ) goto whereBeginError; 5956 } 5957 addrExplain = sqlite3WhereExplainOneScan( 5958 pParse, pTabList, pLevel, wctrlFlags 5959 ); 5960 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5961 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5962 pWInfo->iContinue = pLevel->addrCont; 5963 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5964 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5965 } 5966 } 5967 5968 /* Done. */ 5969 VdbeModuleComment((v, "Begin WHERE-core")); 5970 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 5971 return pWInfo; 5972 5973 /* Jump here if malloc fails */ 5974 whereBeginError: 5975 if( pWInfo ){ 5976 testcase( pWInfo->pExprMods!=0 ); 5977 whereUndoExprMods(pWInfo); 5978 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5979 whereInfoFree(db, pWInfo); 5980 } 5981 return 0; 5982 } 5983 5984 /* 5985 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5986 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5987 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5988 ** does that. 5989 */ 5990 #ifndef SQLITE_DEBUG 5991 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5992 #else 5993 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5994 static void sqlite3WhereOpcodeRewriteTrace( 5995 sqlite3 *db, 5996 int pc, 5997 VdbeOp *pOp 5998 ){ 5999 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 6000 sqlite3VdbePrintOp(0, pc, pOp); 6001 } 6002 #endif 6003 6004 #ifdef SQLITE_DEBUG 6005 /* 6006 ** Return true if cursor iCur is opened by instruction k of the 6007 ** bytecode. Used inside of assert() only. 6008 */ 6009 static int cursorIsOpen(Vdbe *v, int iCur, int k){ 6010 while( k>=0 ){ 6011 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); 6012 if( pOp->p1!=iCur ) continue; 6013 if( pOp->opcode==OP_Close ) return 0; 6014 if( pOp->opcode==OP_OpenRead ) return 1; 6015 if( pOp->opcode==OP_OpenWrite ) return 1; 6016 if( pOp->opcode==OP_OpenDup ) return 1; 6017 if( pOp->opcode==OP_OpenAutoindex ) return 1; 6018 if( pOp->opcode==OP_OpenEphemeral ) return 1; 6019 } 6020 return 0; 6021 } 6022 #endif /* SQLITE_DEBUG */ 6023 6024 /* 6025 ** Generate the end of the WHERE loop. See comments on 6026 ** sqlite3WhereBegin() for additional information. 6027 */ 6028 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6029 Parse *pParse = pWInfo->pParse; 6030 Vdbe *v = pParse->pVdbe; 6031 int i; 6032 WhereLevel *pLevel; 6033 WhereLoop *pLoop; 6034 SrcList *pTabList = pWInfo->pTabList; 6035 sqlite3 *db = pParse->db; 6036 int iEnd = sqlite3VdbeCurrentAddr(v); 6037 int nRJ = 0; 6038 6039 /* Generate loop termination code. 6040 */ 6041 VdbeModuleComment((v, "End WHERE-core")); 6042 for(i=pWInfo->nLevel-1; i>=0; i--){ 6043 int addr; 6044 pLevel = &pWInfo->a[i]; 6045 if( pLevel->pRJ ){ 6046 /* Terminate the subroutine that forms the interior of the loop of 6047 ** the RIGHT JOIN table */ 6048 WhereRightJoin *pRJ = pLevel->pRJ; 6049 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6050 pLevel->addrCont = 0; 6051 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 6052 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 6053 VdbeCoverage(v); 6054 nRJ++; 6055 } 6056 pLoop = pLevel->pWLoop; 6057 if( pLevel->op!=OP_Noop ){ 6058 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6059 int addrSeek = 0; 6060 Index *pIdx; 6061 int n; 6062 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 6063 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 6064 && (pLoop->wsFlags & WHERE_INDEXED)!=0 6065 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 6066 && (n = pLoop->u.btree.nDistinctCol)>0 6067 && pIdx->aiRowLogEst[n]>=36 6068 ){ 6069 int r1 = pParse->nMem+1; 6070 int j, op; 6071 for(j=0; j<n; j++){ 6072 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 6073 } 6074 pParse->nMem += n+1; 6075 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 6076 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 6077 VdbeCoverageIf(v, op==OP_SeekLT); 6078 VdbeCoverageIf(v, op==OP_SeekGT); 6079 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 6080 } 6081 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 6082 /* The common case: Advance to the next row */ 6083 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6084 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6085 sqlite3VdbeChangeP5(v, pLevel->p5); 6086 VdbeCoverage(v); 6087 VdbeCoverageIf(v, pLevel->op==OP_Next); 6088 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6089 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6090 if( pLevel->regBignull ){ 6091 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 6092 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 6093 VdbeCoverage(v); 6094 } 6095 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6096 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 6097 #endif 6098 }else if( pLevel->addrCont ){ 6099 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6100 } 6101 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 6102 struct InLoop *pIn; 6103 int j; 6104 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6105 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6106 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 6107 || pParse->db->mallocFailed ); 6108 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6109 if( pIn->eEndLoopOp!=OP_Noop ){ 6110 if( pIn->nPrefix ){ 6111 int bEarlyOut = 6112 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 6113 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 6114 if( pLevel->iLeftJoin ){ 6115 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 6116 ** opened yet. This occurs for WHERE clauses such as 6117 ** "a = ? AND b IN (...)", where the index is on (a, b). If 6118 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 6119 ** never have been coded, but the body of the loop run to 6120 ** return the null-row. So, if the cursor is not open yet, 6121 ** jump over the OP_Next or OP_Prev instruction about to 6122 ** be coded. */ 6123 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 6124 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 6125 VdbeCoverage(v); 6126 } 6127 if( bEarlyOut ){ 6128 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 6129 sqlite3VdbeCurrentAddr(v)+2, 6130 pIn->iBase, pIn->nPrefix); 6131 VdbeCoverage(v); 6132 /* Retarget the OP_IsNull against the left operand of IN so 6133 ** it jumps past the OP_IfNoHope. This is because the 6134 ** OP_IsNull also bypasses the OP_Affinity opcode that is 6135 ** required by OP_IfNoHope. */ 6136 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6137 } 6138 } 6139 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6140 VdbeCoverage(v); 6141 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 6142 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 6143 } 6144 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6145 } 6146 } 6147 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6148 if( pLevel->pRJ ){ 6149 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 6150 VdbeCoverage(v); 6151 } 6152 if( pLevel->addrSkip ){ 6153 sqlite3VdbeGoto(v, pLevel->addrSkip); 6154 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6155 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6156 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6157 } 6158 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 6159 if( pLevel->addrLikeRep ){ 6160 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6161 pLevel->addrLikeRep); 6162 VdbeCoverage(v); 6163 } 6164 #endif 6165 if( pLevel->iLeftJoin ){ 6166 int ws = pLoop->wsFlags; 6167 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6168 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6169 if( (ws & WHERE_IDX_ONLY)==0 ){ 6170 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6171 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6172 } 6173 if( (ws & WHERE_INDEXED) 6174 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6175 ){ 6176 if( ws & WHERE_MULTI_OR ){ 6177 Index *pIx = pLevel->u.pCoveringIdx; 6178 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6179 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6180 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6181 } 6182 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6183 } 6184 if( pLevel->op==OP_Return ){ 6185 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6186 }else{ 6187 sqlite3VdbeGoto(v, pLevel->addrFirst); 6188 } 6189 sqlite3VdbeJumpHere(v, addr); 6190 } 6191 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6192 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6193 } 6194 6195 assert( pWInfo->nLevel<=pTabList->nSrc ); 6196 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6197 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6198 int k, last; 6199 VdbeOp *pOp, *pLastOp; 6200 Index *pIdx = 0; 6201 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6202 Table *pTab = pTabItem->pTab; 6203 assert( pTab!=0 ); 6204 pLoop = pLevel->pWLoop; 6205 6206 /* Do RIGHT JOIN processing. Generate code that will output the 6207 ** unmatched rows of the right operand of the RIGHT JOIN with 6208 ** all of the columns of the left operand set to NULL. 6209 */ 6210 if( pLevel->pRJ ){ 6211 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 6212 continue; 6213 } 6214 6215 /* For a co-routine, change all OP_Column references to the table of 6216 ** the co-routine into OP_Copy of result contained in a register. 6217 ** OP_Rowid becomes OP_Null. 6218 */ 6219 if( pTabItem->fg.viaCoroutine ){ 6220 testcase( pParse->db->mallocFailed ); 6221 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6222 pTabItem->regResult, 0); 6223 continue; 6224 } 6225 6226 /* If this scan uses an index, make VDBE code substitutions to read data 6227 ** from the index instead of from the table where possible. In some cases 6228 ** this optimization prevents the table from ever being read, which can 6229 ** yield a significant performance boost. 6230 ** 6231 ** Calls to the code generator in between sqlite3WhereBegin and 6232 ** sqlite3WhereEnd will have created code that references the table 6233 ** directly. This loop scans all that code looking for opcodes 6234 ** that reference the table and converts them into opcodes that 6235 ** reference the index. 6236 */ 6237 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6238 pIdx = pLoop->u.btree.pIndex; 6239 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6240 pIdx = pLevel->u.pCoveringIdx; 6241 } 6242 if( pIdx 6243 && !db->mallocFailed 6244 ){ 6245 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6246 last = iEnd; 6247 }else{ 6248 last = pWInfo->iEndWhere; 6249 } 6250 k = pLevel->addrBody + 1; 6251 #ifdef SQLITE_DEBUG 6252 if( db->flags & SQLITE_VdbeAddopTrace ){ 6253 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6254 } 6255 /* Proof that the "+1" on the k value above is safe */ 6256 pOp = sqlite3VdbeGetOp(v, k - 1); 6257 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6258 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6259 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6260 #endif 6261 pOp = sqlite3VdbeGetOp(v, k); 6262 pLastOp = pOp + (last - k); 6263 assert( pOp<=pLastOp ); 6264 do{ 6265 if( pOp->p1!=pLevel->iTabCur ){ 6266 /* no-op */ 6267 }else if( pOp->opcode==OP_Column 6268 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6269 || pOp->opcode==OP_Offset 6270 #endif 6271 ){ 6272 int x = pOp->p2; 6273 assert( pIdx->pTable==pTab ); 6274 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6275 if( pOp->opcode==OP_Offset ){ 6276 /* Do not need to translate the column number */ 6277 }else 6278 #endif 6279 if( !HasRowid(pTab) ){ 6280 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6281 x = pPk->aiColumn[x]; 6282 assert( x>=0 ); 6283 }else{ 6284 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6285 x = sqlite3StorageColumnToTable(pTab,x); 6286 } 6287 x = sqlite3TableColumnToIndex(pIdx, x); 6288 if( x>=0 ){ 6289 pOp->p2 = x; 6290 pOp->p1 = pLevel->iIdxCur; 6291 OpcodeRewriteTrace(db, k, pOp); 6292 }else{ 6293 /* Unable to translate the table reference into an index 6294 ** reference. Verify that this is harmless - that the 6295 ** table being referenced really is open. 6296 */ 6297 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6298 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6299 || cursorIsOpen(v,pOp->p1,k) 6300 || pOp->opcode==OP_Offset 6301 ); 6302 #else 6303 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6304 || cursorIsOpen(v,pOp->p1,k) 6305 ); 6306 #endif 6307 } 6308 }else if( pOp->opcode==OP_Rowid ){ 6309 pOp->p1 = pLevel->iIdxCur; 6310 pOp->opcode = OP_IdxRowid; 6311 OpcodeRewriteTrace(db, k, pOp); 6312 }else if( pOp->opcode==OP_IfNullRow ){ 6313 pOp->p1 = pLevel->iIdxCur; 6314 OpcodeRewriteTrace(db, k, pOp); 6315 } 6316 #ifdef SQLITE_DEBUG 6317 k++; 6318 #endif 6319 }while( (++pOp)<pLastOp ); 6320 #ifdef SQLITE_DEBUG 6321 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6322 #endif 6323 } 6324 } 6325 6326 /* The "break" point is here, just past the end of the outer loop. 6327 ** Set it. 6328 */ 6329 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6330 6331 /* Final cleanup 6332 */ 6333 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6334 whereInfoFree(db, pWInfo); 6335 pParse->withinRJSubrtn -= nRJ; 6336 return; 6337 } 6338