xref: /sqlite-3.40.0/src/where.c (revision 17adf4e5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required.  If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
108 **
109 ** Any extra OP_Goto that is coded here is an optimization.  The
110 ** correct answer should be obtained regardless.  This OP_Goto just
111 ** makes the answer appear faster.
112 */
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114   WhereLevel *pInner;
115   int i;
116   if( !pWInfo->bOrderedInnerLoop ) return;
117   if( pWInfo->nOBSat==0 ) return;
118   for(i=pWInfo->nLevel-1; i>=0; i--){
119     pInner = &pWInfo->a[i];
120     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121       sqlite3VdbeGoto(v, pInner->addrNxt);
122       return;
123     }
124   }
125   sqlite3VdbeGoto(v, pWInfo->iBreak);
126 }
127 
128 /*
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
131 */
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133   assert( pWInfo->iContinue!=0 );
134   return pWInfo->iContinue;
135 }
136 
137 /*
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
140 */
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142   return pWInfo->iBreak;
143 }
144 
145 /*
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause.  Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
151 **
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
158 **
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
161 */
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166     sqlite3DebugPrintf("%s cursors: %d %d\n",
167          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168          aiCur[0], aiCur[1]);
169   }
170 #endif
171   return pWInfo->eOnePass;
172 }
173 
174 /*
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
177 */
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179   return pWInfo->bDeferredSeek;
180 }
181 
182 /*
183 ** Move the content of pSrc into pDest
184 */
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186   pDest->n = pSrc->n;
187   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
188 }
189 
190 /*
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
192 **
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded.  Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
196 */
197 static int whereOrInsert(
198   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
199   Bitmask prereq,        /* Prerequisites of the new entry */
200   LogEst rRun,           /* Run-cost of the new entry */
201   LogEst nOut            /* Number of outputs for the new entry */
202 ){
203   u16 i;
204   WhereOrCost *p;
205   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207       goto whereOrInsert_done;
208     }
209     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210       return 0;
211     }
212   }
213   if( pSet->n<N_OR_COST ){
214     p = &pSet->a[pSet->n++];
215     p->nOut = nOut;
216   }else{
217     p = pSet->a;
218     for(i=1; i<pSet->n; i++){
219       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
220     }
221     if( p->rRun<=rRun ) return 0;
222   }
223 whereOrInsert_done:
224   p->prereq = prereq;
225   p->rRun = rRun;
226   if( p->nOut>nOut ) p->nOut = nOut;
227   return 1;
228 }
229 
230 /*
231 ** Return the bitmask for the given cursor number.  Return 0 if
232 ** iCursor is not in the set.
233 */
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235   int i;
236   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237   for(i=0; i<pMaskSet->n; i++){
238     if( pMaskSet->ix[i]==iCursor ){
239       return MASKBIT(i);
240     }
241   }
242   return 0;
243 }
244 
245 /*
246 ** Create a new mask for cursor iCursor.
247 **
248 ** There is one cursor per table in the FROM clause.  The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
251 ** array will never overflow.
252 */
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255   pMaskSet->ix[pMaskSet->n++] = iCursor;
256 }
257 
258 /*
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch.  Otherwise, return NULL.
261 */
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
265     return p;
266   }
267   return 0;
268 }
269 
270 /*
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
274 */
275 static WhereTerm *whereScanNext(WhereScan *pScan){
276   int iCur;            /* The cursor on the LHS of the term */
277   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
278   Expr *pX;            /* An expression being tested */
279   WhereClause *pWC;    /* Shorthand for pScan->pWC */
280   WhereTerm *pTerm;    /* The term being tested */
281   int k = pScan->k;    /* Where to start scanning */
282 
283   assert( pScan->iEquiv<=pScan->nEquiv );
284   pWC = pScan->pWC;
285   while(1){
286     iColumn = pScan->aiColumn[pScan->iEquiv-1];
287     iCur = pScan->aiCur[pScan->iEquiv-1];
288     assert( pWC!=0 );
289     do{
290       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
291         if( pTerm->leftCursor==iCur
292          && pTerm->u.x.leftColumn==iColumn
293          && (iColumn!=XN_EXPR
294              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
295                                        pScan->pIdxExpr,iCur)==0)
296          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
297         ){
298           if( (pTerm->eOperator & WO_EQUIV)!=0
299            && pScan->nEquiv<ArraySize(pScan->aiCur)
300            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
301           ){
302             int j;
303             for(j=0; j<pScan->nEquiv; j++){
304               if( pScan->aiCur[j]==pX->iTable
305                && pScan->aiColumn[j]==pX->iColumn ){
306                   break;
307               }
308             }
309             if( j==pScan->nEquiv ){
310               pScan->aiCur[j] = pX->iTable;
311               pScan->aiColumn[j] = pX->iColumn;
312               pScan->nEquiv++;
313             }
314           }
315           if( (pTerm->eOperator & pScan->opMask)!=0 ){
316             /* Verify the affinity and collating sequence match */
317             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
318               CollSeq *pColl;
319               Parse *pParse = pWC->pWInfo->pParse;
320               pX = pTerm->pExpr;
321               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
322                 continue;
323               }
324               assert(pX->pLeft);
325               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
326               if( pColl==0 ) pColl = pParse->db->pDfltColl;
327               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
328                 continue;
329               }
330             }
331             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
332              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
333              && pX->iTable==pScan->aiCur[0]
334              && pX->iColumn==pScan->aiColumn[0]
335             ){
336               testcase( pTerm->eOperator & WO_IS );
337               continue;
338             }
339             pScan->pWC = pWC;
340             pScan->k = k+1;
341 #ifdef WHERETRACE_ENABLED
342             if( sqlite3WhereTrace & 0x20000 ){
343               int ii;
344               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
345                  pTerm, pScan->nEquiv);
346               for(ii=0; ii<pScan->nEquiv; ii++){
347                 sqlite3DebugPrintf(" {%d:%d}",
348                    pScan->aiCur[ii], pScan->aiColumn[ii]);
349               }
350               sqlite3DebugPrintf("\n");
351             }
352 #endif
353             return pTerm;
354           }
355         }
356       }
357       pWC = pWC->pOuter;
358       k = 0;
359     }while( pWC!=0 );
360     if( pScan->iEquiv>=pScan->nEquiv ) break;
361     pWC = pScan->pOrigWC;
362     k = 0;
363     pScan->iEquiv++;
364   }
365   return 0;
366 }
367 
368 /*
369 ** This is whereScanInit() for the case of an index on an expression.
370 ** It is factored out into a separate tail-recursion subroutine so that
371 ** the normal whereScanInit() routine, which is a high-runner, does not
372 ** need to push registers onto the stack as part of its prologue.
373 */
374 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
375   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
376   return whereScanNext(pScan);
377 }
378 
379 /*
380 ** Initialize a WHERE clause scanner object.  Return a pointer to the
381 ** first match.  Return NULL if there are no matches.
382 **
383 ** The scanner will be searching the WHERE clause pWC.  It will look
384 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
385 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
386 ** must be one of the indexes of table iCur.
387 **
388 ** The <op> must be one of the operators described by opMask.
389 **
390 ** If the search is for X and the WHERE clause contains terms of the
391 ** form X=Y then this routine might also return terms of the form
392 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
393 ** but is enough to handle most commonly occurring SQL statements.
394 **
395 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
396 ** index pIdx.
397 */
398 static WhereTerm *whereScanInit(
399   WhereScan *pScan,       /* The WhereScan object being initialized */
400   WhereClause *pWC,       /* The WHERE clause to be scanned */
401   int iCur,               /* Cursor to scan for */
402   int iColumn,            /* Column to scan for */
403   u32 opMask,             /* Operator(s) to scan for */
404   Index *pIdx             /* Must be compatible with this index */
405 ){
406   pScan->pOrigWC = pWC;
407   pScan->pWC = pWC;
408   pScan->pIdxExpr = 0;
409   pScan->idxaff = 0;
410   pScan->zCollName = 0;
411   pScan->opMask = opMask;
412   pScan->k = 0;
413   pScan->aiCur[0] = iCur;
414   pScan->nEquiv = 1;
415   pScan->iEquiv = 1;
416   if( pIdx ){
417     int j = iColumn;
418     iColumn = pIdx->aiColumn[j];
419     if( iColumn==XN_EXPR ){
420       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
421       pScan->zCollName = pIdx->azColl[j];
422       pScan->aiColumn[0] = XN_EXPR;
423       return whereScanInitIndexExpr(pScan);
424     }else if( iColumn==pIdx->pTable->iPKey ){
425       iColumn = XN_ROWID;
426     }else if( iColumn>=0 ){
427       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
428       pScan->zCollName = pIdx->azColl[j];
429     }
430   }else if( iColumn==XN_EXPR ){
431     return 0;
432   }
433   pScan->aiColumn[0] = iColumn;
434   return whereScanNext(pScan);
435 }
436 
437 /*
438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
439 ** where X is a reference to the iColumn of table iCur or of index pIdx
440 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
441 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
442 **
443 ** If pIdx!=0 then it must be one of the indexes of table iCur.
444 ** Search for terms matching the iColumn-th column of pIdx
445 ** rather than the iColumn-th column of table iCur.
446 **
447 ** The term returned might by Y=<expr> if there is another constraint in
448 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
449 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
450 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
451 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
452 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
453 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
454 **
455 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
456 ** then try for the one with no dependencies on <expr> - in other words where
457 ** <expr> is a constant expression of some kind.  Only return entries of
458 ** the form "X <op> Y" where Y is a column in another table if no terms of
459 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
460 ** exist, try to return a term that does not use WO_EQUIV.
461 */
462 WhereTerm *sqlite3WhereFindTerm(
463   WhereClause *pWC,     /* The WHERE clause to be searched */
464   int iCur,             /* Cursor number of LHS */
465   int iColumn,          /* Column number of LHS */
466   Bitmask notReady,     /* RHS must not overlap with this mask */
467   u32 op,               /* Mask of WO_xx values describing operator */
468   Index *pIdx           /* Must be compatible with this index, if not NULL */
469 ){
470   WhereTerm *pResult = 0;
471   WhereTerm *p;
472   WhereScan scan;
473 
474   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
475   op &= WO_EQ|WO_IS;
476   while( p ){
477     if( (p->prereqRight & notReady)==0 ){
478       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
479         testcase( p->eOperator & WO_IS );
480         return p;
481       }
482       if( pResult==0 ) pResult = p;
483     }
484     p = whereScanNext(&scan);
485   }
486   return pResult;
487 }
488 
489 /*
490 ** This function searches pList for an entry that matches the iCol-th column
491 ** of index pIdx.
492 **
493 ** If such an expression is found, its index in pList->a[] is returned. If
494 ** no expression is found, -1 is returned.
495 */
496 static int findIndexCol(
497   Parse *pParse,                  /* Parse context */
498   ExprList *pList,                /* Expression list to search */
499   int iBase,                      /* Cursor for table associated with pIdx */
500   Index *pIdx,                    /* Index to match column of */
501   int iCol                        /* Column of index to match */
502 ){
503   int i;
504   const char *zColl = pIdx->azColl[iCol];
505 
506   for(i=0; i<pList->nExpr; i++){
507     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
508     if( ALWAYS(p!=0)
509      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
510      && p->iColumn==pIdx->aiColumn[iCol]
511      && p->iTable==iBase
512     ){
513       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
514       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
515         return i;
516       }
517     }
518   }
519 
520   return -1;
521 }
522 
523 /*
524 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
525 */
526 static int indexColumnNotNull(Index *pIdx, int iCol){
527   int j;
528   assert( pIdx!=0 );
529   assert( iCol>=0 && iCol<pIdx->nColumn );
530   j = pIdx->aiColumn[iCol];
531   if( j>=0 ){
532     return pIdx->pTable->aCol[j].notNull;
533   }else if( j==(-1) ){
534     return 1;
535   }else{
536     assert( j==(-2) );
537     return 0;  /* Assume an indexed expression can always yield a NULL */
538 
539   }
540 }
541 
542 /*
543 ** Return true if the DISTINCT expression-list passed as the third argument
544 ** is redundant.
545 **
546 ** A DISTINCT list is redundant if any subset of the columns in the
547 ** DISTINCT list are collectively unique and individually non-null.
548 */
549 static int isDistinctRedundant(
550   Parse *pParse,            /* Parsing context */
551   SrcList *pTabList,        /* The FROM clause */
552   WhereClause *pWC,         /* The WHERE clause */
553   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
554 ){
555   Table *pTab;
556   Index *pIdx;
557   int i;
558   int iBase;
559 
560   /* If there is more than one table or sub-select in the FROM clause of
561   ** this query, then it will not be possible to show that the DISTINCT
562   ** clause is redundant. */
563   if( pTabList->nSrc!=1 ) return 0;
564   iBase = pTabList->a[0].iCursor;
565   pTab = pTabList->a[0].pTab;
566 
567   /* If any of the expressions is an IPK column on table iBase, then return
568   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
569   ** current SELECT is a correlated sub-query.
570   */
571   for(i=0; i<pDistinct->nExpr; i++){
572     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
573     if( NEVER(p==0) ) continue;
574     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
575     if( p->iTable==iBase && p->iColumn<0 ) return 1;
576   }
577 
578   /* Loop through all indices on the table, checking each to see if it makes
579   ** the DISTINCT qualifier redundant. It does so if:
580   **
581   **   1. The index is itself UNIQUE, and
582   **
583   **   2. All of the columns in the index are either part of the pDistinct
584   **      list, or else the WHERE clause contains a term of the form "col=X",
585   **      where X is a constant value. The collation sequences of the
586   **      comparison and select-list expressions must match those of the index.
587   **
588   **   3. All of those index columns for which the WHERE clause does not
589   **      contain a "col=X" term are subject to a NOT NULL constraint.
590   */
591   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
592     if( !IsUniqueIndex(pIdx) ) continue;
593     if( pIdx->pPartIdxWhere ) continue;
594     for(i=0; i<pIdx->nKeyCol; i++){
595       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
596         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
597         if( indexColumnNotNull(pIdx, i)==0 ) break;
598       }
599     }
600     if( i==pIdx->nKeyCol ){
601       /* This index implies that the DISTINCT qualifier is redundant. */
602       return 1;
603     }
604   }
605 
606   return 0;
607 }
608 
609 
610 /*
611 ** Estimate the logarithm of the input value to base 2.
612 */
613 static LogEst estLog(LogEst N){
614   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
615 }
616 
617 /*
618 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
619 **
620 ** This routine runs over generated VDBE code and translates OP_Column
621 ** opcodes into OP_Copy when the table is being accessed via co-routine
622 ** instead of via table lookup.
623 **
624 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
625 ** cursor iTabCur are transformed into OP_Sequence opcode for the
626 ** iAutoidxCur cursor, in order to generate unique rowids for the
627 ** automatic index being generated.
628 */
629 static void translateColumnToCopy(
630   Parse *pParse,      /* Parsing context */
631   int iStart,         /* Translate from this opcode to the end */
632   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
633   int iRegister,      /* The first column is in this register */
634   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
635 ){
636   Vdbe *v = pParse->pVdbe;
637   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
638   int iEnd = sqlite3VdbeCurrentAddr(v);
639   if( pParse->db->mallocFailed ) return;
640   for(; iStart<iEnd; iStart++, pOp++){
641     if( pOp->p1!=iTabCur ) continue;
642     if( pOp->opcode==OP_Column ){
643       pOp->opcode = OP_Copy;
644       pOp->p1 = pOp->p2 + iRegister;
645       pOp->p2 = pOp->p3;
646       pOp->p3 = 0;
647     }else if( pOp->opcode==OP_Rowid ){
648       pOp->opcode = OP_Sequence;
649       pOp->p1 = iAutoidxCur;
650 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
651       if( iAutoidxCur==0 ){
652         pOp->opcode = OP_Null;
653         pOp->p3 = 0;
654       }
655 #endif
656     }
657   }
658 }
659 
660 /*
661 ** Two routines for printing the content of an sqlite3_index_info
662 ** structure.  Used for testing and debugging only.  If neither
663 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
664 ** are no-ops.
665 */
666 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
667 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
668   int i;
669   if( !sqlite3WhereTrace ) return;
670   for(i=0; i<p->nConstraint; i++){
671     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
672        i,
673        p->aConstraint[i].iColumn,
674        p->aConstraint[i].iTermOffset,
675        p->aConstraint[i].op,
676        p->aConstraint[i].usable);
677   }
678   for(i=0; i<p->nOrderBy; i++){
679     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
680        i,
681        p->aOrderBy[i].iColumn,
682        p->aOrderBy[i].desc);
683   }
684 }
685 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
686   int i;
687   if( !sqlite3WhereTrace ) return;
688   for(i=0; i<p->nConstraint; i++){
689     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
690        i,
691        p->aConstraintUsage[i].argvIndex,
692        p->aConstraintUsage[i].omit);
693   }
694   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
695   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
696   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
697   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
698   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
699 }
700 #else
701 #define whereTraceIndexInfoInputs(A)
702 #define whereTraceIndexInfoOutputs(A)
703 #endif
704 
705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
706 /*
707 ** Return TRUE if the WHERE clause term pTerm is of a form where it
708 ** could be used with an index to access pSrc, assuming an appropriate
709 ** index existed.
710 */
711 static int termCanDriveIndex(
712   WhereTerm *pTerm,              /* WHERE clause term to check */
713   SrcItem *pSrc,                 /* Table we are trying to access */
714   Bitmask notReady               /* Tables in outer loops of the join */
715 ){
716   char aff;
717   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
718   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
719   if( (pSrc->fg.jointype & JT_LEFT)
720    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
721    && (pTerm->eOperator & WO_IS)
722   ){
723     /* Cannot use an IS term from the WHERE clause as an index driver for
724     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
725     ** the ON clause.  */
726     return 0;
727   }
728   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
729   if( pTerm->u.x.leftColumn<0 ) return 0;
730   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
731   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
732   testcase( pTerm->pExpr->op==TK_IS );
733   return 1;
734 }
735 #endif
736 
737 
738 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
739 /*
740 ** Generate code to construct the Index object for an automatic index
741 ** and to set up the WhereLevel object pLevel so that the code generator
742 ** makes use of the automatic index.
743 */
744 static void constructAutomaticIndex(
745   Parse *pParse,              /* The parsing context */
746   WhereClause *pWC,           /* The WHERE clause */
747   SrcItem *pSrc,              /* The FROM clause term to get the next index */
748   Bitmask notReady,           /* Mask of cursors that are not available */
749   WhereLevel *pLevel          /* Write new index here */
750 ){
751   int nKeyCol;                /* Number of columns in the constructed index */
752   WhereTerm *pTerm;           /* A single term of the WHERE clause */
753   WhereTerm *pWCEnd;          /* End of pWC->a[] */
754   Index *pIdx;                /* Object describing the transient index */
755   Vdbe *v;                    /* Prepared statement under construction */
756   int addrInit;               /* Address of the initialization bypass jump */
757   Table *pTable;              /* The table being indexed */
758   int addrTop;                /* Top of the index fill loop */
759   int regRecord;              /* Register holding an index record */
760   int n;                      /* Column counter */
761   int i;                      /* Loop counter */
762   int mxBitCol;               /* Maximum column in pSrc->colUsed */
763   CollSeq *pColl;             /* Collating sequence to on a column */
764   WhereLoop *pLoop;           /* The Loop object */
765   char *zNotUsed;             /* Extra space on the end of pIdx */
766   Bitmask idxCols;            /* Bitmap of columns used for indexing */
767   Bitmask extraCols;          /* Bitmap of additional columns */
768   u8 sentWarning = 0;         /* True if a warnning has been issued */
769   Expr *pPartial = 0;         /* Partial Index Expression */
770   int iContinue = 0;          /* Jump here to skip excluded rows */
771   SrcItem *pTabItem;          /* FROM clause term being indexed */
772   int addrCounter = 0;        /* Address where integer counter is initialized */
773   int regBase;                /* Array of registers where record is assembled */
774 
775   /* Generate code to skip over the creation and initialization of the
776   ** transient index on 2nd and subsequent iterations of the loop. */
777   v = pParse->pVdbe;
778   assert( v!=0 );
779   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
780 
781   /* Count the number of columns that will be added to the index
782   ** and used to match WHERE clause constraints */
783   nKeyCol = 0;
784   pTable = pSrc->pTab;
785   pWCEnd = &pWC->a[pWC->nTerm];
786   pLoop = pLevel->pWLoop;
787   idxCols = 0;
788   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
789     Expr *pExpr = pTerm->pExpr;
790     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
791          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
792          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
793     if( pLoop->prereq==0
794      && (pTerm->wtFlags & TERM_VIRTUAL)==0
795      && !ExprHasProperty(pExpr, EP_FromJoin)
796      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
797       pPartial = sqlite3ExprAnd(pParse, pPartial,
798                                 sqlite3ExprDup(pParse->db, pExpr, 0));
799     }
800     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
801       int iCol = pTerm->u.x.leftColumn;
802       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
803       testcase( iCol==BMS );
804       testcase( iCol==BMS-1 );
805       if( !sentWarning ){
806         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
807             "automatic index on %s(%s)", pTable->zName,
808             pTable->aCol[iCol].zName);
809         sentWarning = 1;
810       }
811       if( (idxCols & cMask)==0 ){
812         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
813           goto end_auto_index_create;
814         }
815         pLoop->aLTerm[nKeyCol++] = pTerm;
816         idxCols |= cMask;
817       }
818     }
819   }
820   assert( nKeyCol>0 || pParse->db->mallocFailed );
821   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
822   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
823                      | WHERE_AUTO_INDEX;
824 
825   /* Count the number of additional columns needed to create a
826   ** covering index.  A "covering index" is an index that contains all
827   ** columns that are needed by the query.  With a covering index, the
828   ** original table never needs to be accessed.  Automatic indices must
829   ** be a covering index because the index will not be updated if the
830   ** original table changes and the index and table cannot both be used
831   ** if they go out of sync.
832   */
833   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
834   mxBitCol = MIN(BMS-1,pTable->nCol);
835   testcase( pTable->nCol==BMS-1 );
836   testcase( pTable->nCol==BMS-2 );
837   for(i=0; i<mxBitCol; i++){
838     if( extraCols & MASKBIT(i) ) nKeyCol++;
839   }
840   if( pSrc->colUsed & MASKBIT(BMS-1) ){
841     nKeyCol += pTable->nCol - BMS + 1;
842   }
843 
844   /* Construct the Index object to describe this index */
845   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
846   if( pIdx==0 ) goto end_auto_index_create;
847   pLoop->u.btree.pIndex = pIdx;
848   pIdx->zName = "auto-index";
849   pIdx->pTable = pTable;
850   n = 0;
851   idxCols = 0;
852   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
853     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
854       int iCol = pTerm->u.x.leftColumn;
855       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
856       testcase( iCol==BMS-1 );
857       testcase( iCol==BMS );
858       if( (idxCols & cMask)==0 ){
859         Expr *pX = pTerm->pExpr;
860         idxCols |= cMask;
861         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
862         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
863         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
864         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
865         n++;
866       }
867     }
868   }
869   assert( (u32)n==pLoop->u.btree.nEq );
870 
871   /* Add additional columns needed to make the automatic index into
872   ** a covering index */
873   for(i=0; i<mxBitCol; i++){
874     if( extraCols & MASKBIT(i) ){
875       pIdx->aiColumn[n] = i;
876       pIdx->azColl[n] = sqlite3StrBINARY;
877       n++;
878     }
879   }
880   if( pSrc->colUsed & MASKBIT(BMS-1) ){
881     for(i=BMS-1; i<pTable->nCol; i++){
882       pIdx->aiColumn[n] = i;
883       pIdx->azColl[n] = sqlite3StrBINARY;
884       n++;
885     }
886   }
887   assert( n==nKeyCol );
888   pIdx->aiColumn[n] = XN_ROWID;
889   pIdx->azColl[n] = sqlite3StrBINARY;
890 
891   /* Create the automatic index */
892   assert( pLevel->iIdxCur>=0 );
893   pLevel->iIdxCur = pParse->nTab++;
894   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
895   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
896   VdbeComment((v, "for %s", pTable->zName));
897 
898   /* Fill the automatic index with content */
899   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
900   if( pTabItem->fg.viaCoroutine ){
901     int regYield = pTabItem->regReturn;
902     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
903     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
904     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
905     VdbeCoverage(v);
906     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
907   }else{
908     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
909   }
910   if( pPartial ){
911     iContinue = sqlite3VdbeMakeLabel(pParse);
912     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
913     pLoop->wsFlags |= WHERE_PARTIALIDX;
914   }
915   regRecord = sqlite3GetTempReg(pParse);
916   regBase = sqlite3GenerateIndexKey(
917       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
918   );
919   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
920   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
921   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
922   if( pTabItem->fg.viaCoroutine ){
923     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
924     testcase( pParse->db->mallocFailed );
925     assert( pLevel->iIdxCur>0 );
926     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
927                           pTabItem->regResult, pLevel->iIdxCur);
928     sqlite3VdbeGoto(v, addrTop);
929     pTabItem->fg.viaCoroutine = 0;
930   }else{
931     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
932     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
933   }
934   sqlite3VdbeJumpHere(v, addrTop);
935   sqlite3ReleaseTempReg(pParse, regRecord);
936 
937   /* Jump here when skipping the initialization */
938   sqlite3VdbeJumpHere(v, addrInit);
939 
940 end_auto_index_create:
941   sqlite3ExprDelete(pParse->db, pPartial);
942 }
943 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
944 
945 #ifndef SQLITE_OMIT_VIRTUALTABLE
946 /*
947 ** Allocate and populate an sqlite3_index_info structure. It is the
948 ** responsibility of the caller to eventually release the structure
949 ** by passing the pointer returned by this function to sqlite3_free().
950 */
951 static sqlite3_index_info *allocateIndexInfo(
952   Parse *pParse,                  /* The parsing context */
953   WhereClause *pWC,               /* The WHERE clause being analyzed */
954   Bitmask mUnusable,              /* Ignore terms with these prereqs */
955   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
956   ExprList *pOrderBy,             /* The ORDER BY clause */
957   u16 *pmNoOmit                   /* Mask of terms not to omit */
958 ){
959   int i, j;
960   int nTerm;
961   struct sqlite3_index_constraint *pIdxCons;
962   struct sqlite3_index_orderby *pIdxOrderBy;
963   struct sqlite3_index_constraint_usage *pUsage;
964   struct HiddenIndexInfo *pHidden;
965   WhereTerm *pTerm;
966   int nOrderBy;
967   sqlite3_index_info *pIdxInfo;
968   u16 mNoOmit = 0;
969 
970   /* Count the number of possible WHERE clause constraints referring
971   ** to this virtual table */
972   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
973     if( pTerm->leftCursor != pSrc->iCursor ) continue;
974     if( pTerm->prereqRight & mUnusable ) continue;
975     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
976     testcase( pTerm->eOperator & WO_IN );
977     testcase( pTerm->eOperator & WO_ISNULL );
978     testcase( pTerm->eOperator & WO_IS );
979     testcase( pTerm->eOperator & WO_ALL );
980     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
981     if( pTerm->wtFlags & TERM_VNULL ) continue;
982     assert( pTerm->u.x.leftColumn>=(-1) );
983     nTerm++;
984   }
985 
986   /* If the ORDER BY clause contains only columns in the current
987   ** virtual table then allocate space for the aOrderBy part of
988   ** the sqlite3_index_info structure.
989   */
990   nOrderBy = 0;
991   if( pOrderBy ){
992     int n = pOrderBy->nExpr;
993     for(i=0; i<n; i++){
994       Expr *pExpr = pOrderBy->a[i].pExpr;
995       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
996       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
997     }
998     if( i==n){
999       nOrderBy = n;
1000     }
1001   }
1002 
1003   /* Allocate the sqlite3_index_info structure
1004   */
1005   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1006                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1007                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
1008   if( pIdxInfo==0 ){
1009     sqlite3ErrorMsg(pParse, "out of memory");
1010     return 0;
1011   }
1012   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1013   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1014   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1015   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1016   pIdxInfo->nOrderBy = nOrderBy;
1017   pIdxInfo->aConstraint = pIdxCons;
1018   pIdxInfo->aOrderBy = pIdxOrderBy;
1019   pIdxInfo->aConstraintUsage = pUsage;
1020   pHidden->pWC = pWC;
1021   pHidden->pParse = pParse;
1022   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1023     u16 op;
1024     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1025     if( pTerm->prereqRight & mUnusable ) continue;
1026     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1027     testcase( pTerm->eOperator & WO_IN );
1028     testcase( pTerm->eOperator & WO_IS );
1029     testcase( pTerm->eOperator & WO_ISNULL );
1030     testcase( pTerm->eOperator & WO_ALL );
1031     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1032     if( pTerm->wtFlags & TERM_VNULL ) continue;
1033 
1034     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1035     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1036     ** equivalent restriction for ordinary tables. */
1037     if( (pSrc->fg.jointype & JT_LEFT)!=0
1038      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1039     ){
1040       continue;
1041     }
1042     assert( pTerm->u.x.leftColumn>=(-1) );
1043     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1044     pIdxCons[j].iTermOffset = i;
1045     op = pTerm->eOperator & WO_ALL;
1046     if( op==WO_IN ) op = WO_EQ;
1047     if( op==WO_AUX ){
1048       pIdxCons[j].op = pTerm->eMatchOp;
1049     }else if( op & (WO_ISNULL|WO_IS) ){
1050       if( op==WO_ISNULL ){
1051         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1052       }else{
1053         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1054       }
1055     }else{
1056       pIdxCons[j].op = (u8)op;
1057       /* The direct assignment in the previous line is possible only because
1058       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1059       ** following asserts verify this fact. */
1060       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1061       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1062       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1063       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1064       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1065       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1066 
1067       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1068        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1069       ){
1070         testcase( j!=i );
1071         if( j<16 ) mNoOmit |= (1 << j);
1072         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1073         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1074       }
1075     }
1076 
1077     j++;
1078   }
1079   pIdxInfo->nConstraint = j;
1080   for(i=0; i<nOrderBy; i++){
1081     Expr *pExpr = pOrderBy->a[i].pExpr;
1082     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1083     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1084   }
1085 
1086   *pmNoOmit = mNoOmit;
1087   return pIdxInfo;
1088 }
1089 
1090 /*
1091 ** The table object reference passed as the second argument to this function
1092 ** must represent a virtual table. This function invokes the xBestIndex()
1093 ** method of the virtual table with the sqlite3_index_info object that
1094 ** comes in as the 3rd argument to this function.
1095 **
1096 ** If an error occurs, pParse is populated with an error message and an
1097 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1098 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1099 ** the current configuration of "unusable" flags in sqlite3_index_info can
1100 ** not result in a valid plan.
1101 **
1102 ** Whether or not an error is returned, it is the responsibility of the
1103 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1104 ** that this is required.
1105 */
1106 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1107   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1108   int rc;
1109 
1110   whereTraceIndexInfoInputs(p);
1111   rc = pVtab->pModule->xBestIndex(pVtab, p);
1112   whereTraceIndexInfoOutputs(p);
1113 
1114   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1115     if( rc==SQLITE_NOMEM ){
1116       sqlite3OomFault(pParse->db);
1117     }else if( !pVtab->zErrMsg ){
1118       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1119     }else{
1120       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1121     }
1122   }
1123   sqlite3_free(pVtab->zErrMsg);
1124   pVtab->zErrMsg = 0;
1125   return rc;
1126 }
1127 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1128 
1129 #ifdef SQLITE_ENABLE_STAT4
1130 /*
1131 ** Estimate the location of a particular key among all keys in an
1132 ** index.  Store the results in aStat as follows:
1133 **
1134 **    aStat[0]      Est. number of rows less than pRec
1135 **    aStat[1]      Est. number of rows equal to pRec
1136 **
1137 ** Return the index of the sample that is the smallest sample that
1138 ** is greater than or equal to pRec. Note that this index is not an index
1139 ** into the aSample[] array - it is an index into a virtual set of samples
1140 ** based on the contents of aSample[] and the number of fields in record
1141 ** pRec.
1142 */
1143 static int whereKeyStats(
1144   Parse *pParse,              /* Database connection */
1145   Index *pIdx,                /* Index to consider domain of */
1146   UnpackedRecord *pRec,       /* Vector of values to consider */
1147   int roundUp,                /* Round up if true.  Round down if false */
1148   tRowcnt *aStat              /* OUT: stats written here */
1149 ){
1150   IndexSample *aSample = pIdx->aSample;
1151   int iCol;                   /* Index of required stats in anEq[] etc. */
1152   int i;                      /* Index of first sample >= pRec */
1153   int iSample;                /* Smallest sample larger than or equal to pRec */
1154   int iMin = 0;               /* Smallest sample not yet tested */
1155   int iTest;                  /* Next sample to test */
1156   int res;                    /* Result of comparison operation */
1157   int nField;                 /* Number of fields in pRec */
1158   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1159 
1160 #ifndef SQLITE_DEBUG
1161   UNUSED_PARAMETER( pParse );
1162 #endif
1163   assert( pRec!=0 );
1164   assert( pIdx->nSample>0 );
1165   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1166 
1167   /* Do a binary search to find the first sample greater than or equal
1168   ** to pRec. If pRec contains a single field, the set of samples to search
1169   ** is simply the aSample[] array. If the samples in aSample[] contain more
1170   ** than one fields, all fields following the first are ignored.
1171   **
1172   ** If pRec contains N fields, where N is more than one, then as well as the
1173   ** samples in aSample[] (truncated to N fields), the search also has to
1174   ** consider prefixes of those samples. For example, if the set of samples
1175   ** in aSample is:
1176   **
1177   **     aSample[0] = (a, 5)
1178   **     aSample[1] = (a, 10)
1179   **     aSample[2] = (b, 5)
1180   **     aSample[3] = (c, 100)
1181   **     aSample[4] = (c, 105)
1182   **
1183   ** Then the search space should ideally be the samples above and the
1184   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1185   ** the code actually searches this set:
1186   **
1187   **     0: (a)
1188   **     1: (a, 5)
1189   **     2: (a, 10)
1190   **     3: (a, 10)
1191   **     4: (b)
1192   **     5: (b, 5)
1193   **     6: (c)
1194   **     7: (c, 100)
1195   **     8: (c, 105)
1196   **     9: (c, 105)
1197   **
1198   ** For each sample in the aSample[] array, N samples are present in the
1199   ** effective sample array. In the above, samples 0 and 1 are based on
1200   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1201   **
1202   ** Often, sample i of each block of N effective samples has (i+1) fields.
1203   ** Except, each sample may be extended to ensure that it is greater than or
1204   ** equal to the previous sample in the array. For example, in the above,
1205   ** sample 2 is the first sample of a block of N samples, so at first it
1206   ** appears that it should be 1 field in size. However, that would make it
1207   ** smaller than sample 1, so the binary search would not work. As a result,
1208   ** it is extended to two fields. The duplicates that this creates do not
1209   ** cause any problems.
1210   */
1211   nField = pRec->nField;
1212   iCol = 0;
1213   iSample = pIdx->nSample * nField;
1214   do{
1215     int iSamp;                    /* Index in aSample[] of test sample */
1216     int n;                        /* Number of fields in test sample */
1217 
1218     iTest = (iMin+iSample)/2;
1219     iSamp = iTest / nField;
1220     if( iSamp>0 ){
1221       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1222       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1223       ** fields that is greater than the previous effective sample.  */
1224       for(n=(iTest % nField) + 1; n<nField; n++){
1225         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1226       }
1227     }else{
1228       n = iTest + 1;
1229     }
1230 
1231     pRec->nField = n;
1232     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1233     if( res<0 ){
1234       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1235       iMin = iTest+1;
1236     }else if( res==0 && n<nField ){
1237       iLower = aSample[iSamp].anLt[n-1];
1238       iMin = iTest+1;
1239       res = -1;
1240     }else{
1241       iSample = iTest;
1242       iCol = n-1;
1243     }
1244   }while( res && iMin<iSample );
1245   i = iSample / nField;
1246 
1247 #ifdef SQLITE_DEBUG
1248   /* The following assert statements check that the binary search code
1249   ** above found the right answer. This block serves no purpose other
1250   ** than to invoke the asserts.  */
1251   if( pParse->db->mallocFailed==0 ){
1252     if( res==0 ){
1253       /* If (res==0) is true, then pRec must be equal to sample i. */
1254       assert( i<pIdx->nSample );
1255       assert( iCol==nField-1 );
1256       pRec->nField = nField;
1257       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1258            || pParse->db->mallocFailed
1259       );
1260     }else{
1261       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1262       ** all samples in the aSample[] array, pRec must be smaller than the
1263       ** (iCol+1) field prefix of sample i.  */
1264       assert( i<=pIdx->nSample && i>=0 );
1265       pRec->nField = iCol+1;
1266       assert( i==pIdx->nSample
1267            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1268            || pParse->db->mallocFailed );
1269 
1270       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1271       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1272       ** be greater than or equal to the (iCol) field prefix of sample i.
1273       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1274       if( iCol>0 ){
1275         pRec->nField = iCol;
1276         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1277              || pParse->db->mallocFailed );
1278       }
1279       if( i>0 ){
1280         pRec->nField = nField;
1281         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1282              || pParse->db->mallocFailed );
1283       }
1284     }
1285   }
1286 #endif /* ifdef SQLITE_DEBUG */
1287 
1288   if( res==0 ){
1289     /* Record pRec is equal to sample i */
1290     assert( iCol==nField-1 );
1291     aStat[0] = aSample[i].anLt[iCol];
1292     aStat[1] = aSample[i].anEq[iCol];
1293   }else{
1294     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1295     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1296     ** is larger than all samples in the array. */
1297     tRowcnt iUpper, iGap;
1298     if( i>=pIdx->nSample ){
1299       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1300     }else{
1301       iUpper = aSample[i].anLt[iCol];
1302     }
1303 
1304     if( iLower>=iUpper ){
1305       iGap = 0;
1306     }else{
1307       iGap = iUpper - iLower;
1308     }
1309     if( roundUp ){
1310       iGap = (iGap*2)/3;
1311     }else{
1312       iGap = iGap/3;
1313     }
1314     aStat[0] = iLower + iGap;
1315     aStat[1] = pIdx->aAvgEq[nField-1];
1316   }
1317 
1318   /* Restore the pRec->nField value before returning.  */
1319   pRec->nField = nField;
1320   return i;
1321 }
1322 #endif /* SQLITE_ENABLE_STAT4 */
1323 
1324 /*
1325 ** If it is not NULL, pTerm is a term that provides an upper or lower
1326 ** bound on a range scan. Without considering pTerm, it is estimated
1327 ** that the scan will visit nNew rows. This function returns the number
1328 ** estimated to be visited after taking pTerm into account.
1329 **
1330 ** If the user explicitly specified a likelihood() value for this term,
1331 ** then the return value is the likelihood multiplied by the number of
1332 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1333 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1334 */
1335 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1336   LogEst nRet = nNew;
1337   if( pTerm ){
1338     if( pTerm->truthProb<=0 ){
1339       nRet += pTerm->truthProb;
1340     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1341       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1342     }
1343   }
1344   return nRet;
1345 }
1346 
1347 
1348 #ifdef SQLITE_ENABLE_STAT4
1349 /*
1350 ** Return the affinity for a single column of an index.
1351 */
1352 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1353   assert( iCol>=0 && iCol<pIdx->nColumn );
1354   if( !pIdx->zColAff ){
1355     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1356   }
1357   assert( pIdx->zColAff[iCol]!=0 );
1358   return pIdx->zColAff[iCol];
1359 }
1360 #endif
1361 
1362 
1363 #ifdef SQLITE_ENABLE_STAT4
1364 /*
1365 ** This function is called to estimate the number of rows visited by a
1366 ** range-scan on a skip-scan index. For example:
1367 **
1368 **   CREATE INDEX i1 ON t1(a, b, c);
1369 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1370 **
1371 ** Value pLoop->nOut is currently set to the estimated number of rows
1372 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1373 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1374 ** on the stat4 data for the index. this scan will be peformed multiple
1375 ** times (once for each (a,b) combination that matches a=?) is dealt with
1376 ** by the caller.
1377 **
1378 ** It does this by scanning through all stat4 samples, comparing values
1379 ** extracted from pLower and pUpper with the corresponding column in each
1380 ** sample. If L and U are the number of samples found to be less than or
1381 ** equal to the values extracted from pLower and pUpper respectively, and
1382 ** N is the total number of samples, the pLoop->nOut value is adjusted
1383 ** as follows:
1384 **
1385 **   nOut = nOut * ( min(U - L, 1) / N )
1386 **
1387 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1388 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1389 ** U is set to N.
1390 **
1391 ** Normally, this function sets *pbDone to 1 before returning. However,
1392 ** if no value can be extracted from either pLower or pUpper (and so the
1393 ** estimate of the number of rows delivered remains unchanged), *pbDone
1394 ** is left as is.
1395 **
1396 ** If an error occurs, an SQLite error code is returned. Otherwise,
1397 ** SQLITE_OK.
1398 */
1399 static int whereRangeSkipScanEst(
1400   Parse *pParse,       /* Parsing & code generating context */
1401   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1402   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1403   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1404   int *pbDone          /* Set to true if at least one expr. value extracted */
1405 ){
1406   Index *p = pLoop->u.btree.pIndex;
1407   int nEq = pLoop->u.btree.nEq;
1408   sqlite3 *db = pParse->db;
1409   int nLower = -1;
1410   int nUpper = p->nSample+1;
1411   int rc = SQLITE_OK;
1412   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1413   CollSeq *pColl;
1414 
1415   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1416   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1417   sqlite3_value *pVal = 0;        /* Value extracted from record */
1418 
1419   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1420   if( pLower ){
1421     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1422     nLower = 0;
1423   }
1424   if( pUpper && rc==SQLITE_OK ){
1425     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1426     nUpper = p2 ? 0 : p->nSample;
1427   }
1428 
1429   if( p1 || p2 ){
1430     int i;
1431     int nDiff;
1432     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1433       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1434       if( rc==SQLITE_OK && p1 ){
1435         int res = sqlite3MemCompare(p1, pVal, pColl);
1436         if( res>=0 ) nLower++;
1437       }
1438       if( rc==SQLITE_OK && p2 ){
1439         int res = sqlite3MemCompare(p2, pVal, pColl);
1440         if( res>=0 ) nUpper++;
1441       }
1442     }
1443     nDiff = (nUpper - nLower);
1444     if( nDiff<=0 ) nDiff = 1;
1445 
1446     /* If there is both an upper and lower bound specified, and the
1447     ** comparisons indicate that they are close together, use the fallback
1448     ** method (assume that the scan visits 1/64 of the rows) for estimating
1449     ** the number of rows visited. Otherwise, estimate the number of rows
1450     ** using the method described in the header comment for this function. */
1451     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1452       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1453       pLoop->nOut -= nAdjust;
1454       *pbDone = 1;
1455       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1456                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1457     }
1458 
1459   }else{
1460     assert( *pbDone==0 );
1461   }
1462 
1463   sqlite3ValueFree(p1);
1464   sqlite3ValueFree(p2);
1465   sqlite3ValueFree(pVal);
1466 
1467   return rc;
1468 }
1469 #endif /* SQLITE_ENABLE_STAT4 */
1470 
1471 /*
1472 ** This function is used to estimate the number of rows that will be visited
1473 ** by scanning an index for a range of values. The range may have an upper
1474 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1475 ** and lower bounds are represented by pLower and pUpper respectively. For
1476 ** example, assuming that index p is on t1(a):
1477 **
1478 **   ... FROM t1 WHERE a > ? AND a < ? ...
1479 **                    |_____|   |_____|
1480 **                       |         |
1481 **                     pLower    pUpper
1482 **
1483 ** If either of the upper or lower bound is not present, then NULL is passed in
1484 ** place of the corresponding WhereTerm.
1485 **
1486 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1487 ** column subject to the range constraint. Or, equivalently, the number of
1488 ** equality constraints optimized by the proposed index scan. For example,
1489 ** assuming index p is on t1(a, b), and the SQL query is:
1490 **
1491 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1492 **
1493 ** then nEq is set to 1 (as the range restricted column, b, is the second
1494 ** left-most column of the index). Or, if the query is:
1495 **
1496 **   ... FROM t1 WHERE a > ? AND a < ? ...
1497 **
1498 ** then nEq is set to 0.
1499 **
1500 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1501 ** number of rows that the index scan is expected to visit without
1502 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1503 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1504 ** to account for the range constraints pLower and pUpper.
1505 **
1506 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1507 ** used, a single range inequality reduces the search space by a factor of 4.
1508 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1509 ** rows visited by a factor of 64.
1510 */
1511 static int whereRangeScanEst(
1512   Parse *pParse,       /* Parsing & code generating context */
1513   WhereLoopBuilder *pBuilder,
1514   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1515   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1516   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1517 ){
1518   int rc = SQLITE_OK;
1519   int nOut = pLoop->nOut;
1520   LogEst nNew;
1521 
1522 #ifdef SQLITE_ENABLE_STAT4
1523   Index *p = pLoop->u.btree.pIndex;
1524   int nEq = pLoop->u.btree.nEq;
1525 
1526   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1527    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1528   ){
1529     if( nEq==pBuilder->nRecValid ){
1530       UnpackedRecord *pRec = pBuilder->pRec;
1531       tRowcnt a[2];
1532       int nBtm = pLoop->u.btree.nBtm;
1533       int nTop = pLoop->u.btree.nTop;
1534 
1535       /* Variable iLower will be set to the estimate of the number of rows in
1536       ** the index that are less than the lower bound of the range query. The
1537       ** lower bound being the concatenation of $P and $L, where $P is the
1538       ** key-prefix formed by the nEq values matched against the nEq left-most
1539       ** columns of the index, and $L is the value in pLower.
1540       **
1541       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1542       ** is not a simple variable or literal value), the lower bound of the
1543       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1544       ** if $L is available, whereKeyStats() is called for both ($P) and
1545       ** ($P:$L) and the larger of the two returned values is used.
1546       **
1547       ** Similarly, iUpper is to be set to the estimate of the number of rows
1548       ** less than the upper bound of the range query. Where the upper bound
1549       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1550       ** of iUpper are requested of whereKeyStats() and the smaller used.
1551       **
1552       ** The number of rows between the two bounds is then just iUpper-iLower.
1553       */
1554       tRowcnt iLower;     /* Rows less than the lower bound */
1555       tRowcnt iUpper;     /* Rows less than the upper bound */
1556       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1557       int iUprIdx = -1;   /* aSample[] for the upper bound */
1558 
1559       if( pRec ){
1560         testcase( pRec->nField!=pBuilder->nRecValid );
1561         pRec->nField = pBuilder->nRecValid;
1562       }
1563       /* Determine iLower and iUpper using ($P) only. */
1564       if( nEq==0 ){
1565         iLower = 0;
1566         iUpper = p->nRowEst0;
1567       }else{
1568         /* Note: this call could be optimized away - since the same values must
1569         ** have been requested when testing key $P in whereEqualScanEst().  */
1570         whereKeyStats(pParse, p, pRec, 0, a);
1571         iLower = a[0];
1572         iUpper = a[0] + a[1];
1573       }
1574 
1575       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1576       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1577       assert( p->aSortOrder!=0 );
1578       if( p->aSortOrder[nEq] ){
1579         /* The roles of pLower and pUpper are swapped for a DESC index */
1580         SWAP(WhereTerm*, pLower, pUpper);
1581         SWAP(int, nBtm, nTop);
1582       }
1583 
1584       /* If possible, improve on the iLower estimate using ($P:$L). */
1585       if( pLower ){
1586         int n;                    /* Values extracted from pExpr */
1587         Expr *pExpr = pLower->pExpr->pRight;
1588         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1589         if( rc==SQLITE_OK && n ){
1590           tRowcnt iNew;
1591           u16 mask = WO_GT|WO_LE;
1592           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1593           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1594           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1595           if( iNew>iLower ) iLower = iNew;
1596           nOut--;
1597           pLower = 0;
1598         }
1599       }
1600 
1601       /* If possible, improve on the iUpper estimate using ($P:$U). */
1602       if( pUpper ){
1603         int n;                    /* Values extracted from pExpr */
1604         Expr *pExpr = pUpper->pExpr->pRight;
1605         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1606         if( rc==SQLITE_OK && n ){
1607           tRowcnt iNew;
1608           u16 mask = WO_GT|WO_LE;
1609           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1610           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1611           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1612           if( iNew<iUpper ) iUpper = iNew;
1613           nOut--;
1614           pUpper = 0;
1615         }
1616       }
1617 
1618       pBuilder->pRec = pRec;
1619       if( rc==SQLITE_OK ){
1620         if( iUpper>iLower ){
1621           nNew = sqlite3LogEst(iUpper - iLower);
1622           /* TUNING:  If both iUpper and iLower are derived from the same
1623           ** sample, then assume they are 4x more selective.  This brings
1624           ** the estimated selectivity more in line with what it would be
1625           ** if estimated without the use of STAT4 tables. */
1626           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1627         }else{
1628           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1629         }
1630         if( nNew<nOut ){
1631           nOut = nNew;
1632         }
1633         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1634                            (u32)iLower, (u32)iUpper, nOut));
1635       }
1636     }else{
1637       int bDone = 0;
1638       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1639       if( bDone ) return rc;
1640     }
1641   }
1642 #else
1643   UNUSED_PARAMETER(pParse);
1644   UNUSED_PARAMETER(pBuilder);
1645   assert( pLower || pUpper );
1646 #endif
1647   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1648   nNew = whereRangeAdjust(pLower, nOut);
1649   nNew = whereRangeAdjust(pUpper, nNew);
1650 
1651   /* TUNING: If there is both an upper and lower limit and neither limit
1652   ** has an application-defined likelihood(), assume the range is
1653   ** reduced by an additional 75%. This means that, by default, an open-ended
1654   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1655   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1656   ** match 1/64 of the index. */
1657   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1658     nNew -= 20;
1659   }
1660 
1661   nOut -= (pLower!=0) + (pUpper!=0);
1662   if( nNew<10 ) nNew = 10;
1663   if( nNew<nOut ) nOut = nNew;
1664 #if defined(WHERETRACE_ENABLED)
1665   if( pLoop->nOut>nOut ){
1666     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1667                     pLoop->nOut, nOut));
1668   }
1669 #endif
1670   pLoop->nOut = (LogEst)nOut;
1671   return rc;
1672 }
1673 
1674 #ifdef SQLITE_ENABLE_STAT4
1675 /*
1676 ** Estimate the number of rows that will be returned based on
1677 ** an equality constraint x=VALUE and where that VALUE occurs in
1678 ** the histogram data.  This only works when x is the left-most
1679 ** column of an index and sqlite_stat4 histogram data is available
1680 ** for that index.  When pExpr==NULL that means the constraint is
1681 ** "x IS NULL" instead of "x=VALUE".
1682 **
1683 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1684 ** If unable to make an estimate, leave *pnRow unchanged and return
1685 ** non-zero.
1686 **
1687 ** This routine can fail if it is unable to load a collating sequence
1688 ** required for string comparison, or if unable to allocate memory
1689 ** for a UTF conversion required for comparison.  The error is stored
1690 ** in the pParse structure.
1691 */
1692 static int whereEqualScanEst(
1693   Parse *pParse,       /* Parsing & code generating context */
1694   WhereLoopBuilder *pBuilder,
1695   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1696   tRowcnt *pnRow       /* Write the revised row estimate here */
1697 ){
1698   Index *p = pBuilder->pNew->u.btree.pIndex;
1699   int nEq = pBuilder->pNew->u.btree.nEq;
1700   UnpackedRecord *pRec = pBuilder->pRec;
1701   int rc;                   /* Subfunction return code */
1702   tRowcnt a[2];             /* Statistics */
1703   int bOk;
1704 
1705   assert( nEq>=1 );
1706   assert( nEq<=p->nColumn );
1707   assert( p->aSample!=0 );
1708   assert( p->nSample>0 );
1709   assert( pBuilder->nRecValid<nEq );
1710 
1711   /* If values are not available for all fields of the index to the left
1712   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1713   if( pBuilder->nRecValid<(nEq-1) ){
1714     return SQLITE_NOTFOUND;
1715   }
1716 
1717   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1718   ** below would return the same value.  */
1719   if( nEq>=p->nColumn ){
1720     *pnRow = 1;
1721     return SQLITE_OK;
1722   }
1723 
1724   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1725   pBuilder->pRec = pRec;
1726   if( rc!=SQLITE_OK ) return rc;
1727   if( bOk==0 ) return SQLITE_NOTFOUND;
1728   pBuilder->nRecValid = nEq;
1729 
1730   whereKeyStats(pParse, p, pRec, 0, a);
1731   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1732                    p->zName, nEq-1, (int)a[1]));
1733   *pnRow = a[1];
1734 
1735   return rc;
1736 }
1737 #endif /* SQLITE_ENABLE_STAT4 */
1738 
1739 #ifdef SQLITE_ENABLE_STAT4
1740 /*
1741 ** Estimate the number of rows that will be returned based on
1742 ** an IN constraint where the right-hand side of the IN operator
1743 ** is a list of values.  Example:
1744 **
1745 **        WHERE x IN (1,2,3,4)
1746 **
1747 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1748 ** If unable to make an estimate, leave *pnRow unchanged and return
1749 ** non-zero.
1750 **
1751 ** This routine can fail if it is unable to load a collating sequence
1752 ** required for string comparison, or if unable to allocate memory
1753 ** for a UTF conversion required for comparison.  The error is stored
1754 ** in the pParse structure.
1755 */
1756 static int whereInScanEst(
1757   Parse *pParse,       /* Parsing & code generating context */
1758   WhereLoopBuilder *pBuilder,
1759   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1760   tRowcnt *pnRow       /* Write the revised row estimate here */
1761 ){
1762   Index *p = pBuilder->pNew->u.btree.pIndex;
1763   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1764   int nRecValid = pBuilder->nRecValid;
1765   int rc = SQLITE_OK;     /* Subfunction return code */
1766   tRowcnt nEst;           /* Number of rows for a single term */
1767   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1768   int i;                  /* Loop counter */
1769 
1770   assert( p->aSample!=0 );
1771   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1772     nEst = nRow0;
1773     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1774     nRowEst += nEst;
1775     pBuilder->nRecValid = nRecValid;
1776   }
1777 
1778   if( rc==SQLITE_OK ){
1779     if( nRowEst > nRow0 ) nRowEst = nRow0;
1780     *pnRow = nRowEst;
1781     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1782   }
1783   assert( pBuilder->nRecValid==nRecValid );
1784   return rc;
1785 }
1786 #endif /* SQLITE_ENABLE_STAT4 */
1787 
1788 
1789 #ifdef WHERETRACE_ENABLED
1790 /*
1791 ** Print the content of a WhereTerm object
1792 */
1793 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1794   if( pTerm==0 ){
1795     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1796   }else{
1797     char zType[8];
1798     char zLeft[50];
1799     memcpy(zType, "....", 5);
1800     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1801     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1802     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1803     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1804     if( pTerm->eOperator & WO_SINGLE ){
1805       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1806                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1807     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1808       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1809                        pTerm->u.pOrInfo->indexable);
1810     }else{
1811       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1812     }
1813     sqlite3DebugPrintf(
1814        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1815        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1816     /* The 0x10000 .wheretrace flag causes extra information to be
1817     ** shown about each Term */
1818     if( sqlite3WhereTrace & 0x10000 ){
1819       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1820         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1821     }
1822     if( pTerm->u.x.iField ){
1823       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1824     }
1825     if( pTerm->iParent>=0 ){
1826       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1827     }
1828     sqlite3DebugPrintf("\n");
1829     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1830   }
1831 }
1832 #endif
1833 
1834 #ifdef WHERETRACE_ENABLED
1835 /*
1836 ** Show the complete content of a WhereClause
1837 */
1838 void sqlite3WhereClausePrint(WhereClause *pWC){
1839   int i;
1840   for(i=0; i<pWC->nTerm; i++){
1841     sqlite3WhereTermPrint(&pWC->a[i], i);
1842   }
1843 }
1844 #endif
1845 
1846 #ifdef WHERETRACE_ENABLED
1847 /*
1848 ** Print a WhereLoop object for debugging purposes
1849 */
1850 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1851   WhereInfo *pWInfo = pWC->pWInfo;
1852   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1853   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1854   Table *pTab = pItem->pTab;
1855   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1856   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1857                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1858   sqlite3DebugPrintf(" %12s",
1859                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1860   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1861     const char *zName;
1862     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1863       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1864         int i = sqlite3Strlen30(zName) - 1;
1865         while( zName[i]!='_' ) i--;
1866         zName += i;
1867       }
1868       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1869     }else{
1870       sqlite3DebugPrintf("%20s","");
1871     }
1872   }else{
1873     char *z;
1874     if( p->u.vtab.idxStr ){
1875       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1876                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1877     }else{
1878       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1879     }
1880     sqlite3DebugPrintf(" %-19s", z);
1881     sqlite3_free(z);
1882   }
1883   if( p->wsFlags & WHERE_SKIPSCAN ){
1884     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1885   }else{
1886     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1887   }
1888   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1889   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1890     int i;
1891     for(i=0; i<p->nLTerm; i++){
1892       sqlite3WhereTermPrint(p->aLTerm[i], i);
1893     }
1894   }
1895 }
1896 #endif
1897 
1898 /*
1899 ** Convert bulk memory into a valid WhereLoop that can be passed
1900 ** to whereLoopClear harmlessly.
1901 */
1902 static void whereLoopInit(WhereLoop *p){
1903   p->aLTerm = p->aLTermSpace;
1904   p->nLTerm = 0;
1905   p->nLSlot = ArraySize(p->aLTermSpace);
1906   p->wsFlags = 0;
1907 }
1908 
1909 /*
1910 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1911 */
1912 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1913   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1914     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1915       sqlite3_free(p->u.vtab.idxStr);
1916       p->u.vtab.needFree = 0;
1917       p->u.vtab.idxStr = 0;
1918     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1919       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1920       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1921       p->u.btree.pIndex = 0;
1922     }
1923   }
1924 }
1925 
1926 /*
1927 ** Deallocate internal memory used by a WhereLoop object
1928 */
1929 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1930   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1931   whereLoopClearUnion(db, p);
1932   whereLoopInit(p);
1933 }
1934 
1935 /*
1936 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1937 */
1938 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1939   WhereTerm **paNew;
1940   if( p->nLSlot>=n ) return SQLITE_OK;
1941   n = (n+7)&~7;
1942   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1943   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1944   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1945   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1946   p->aLTerm = paNew;
1947   p->nLSlot = n;
1948   return SQLITE_OK;
1949 }
1950 
1951 /*
1952 ** Transfer content from the second pLoop into the first.
1953 */
1954 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1955   whereLoopClearUnion(db, pTo);
1956   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1957     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
1958     return SQLITE_NOMEM_BKPT;
1959   }
1960   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1961   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1962   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1963     pFrom->u.vtab.needFree = 0;
1964   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1965     pFrom->u.btree.pIndex = 0;
1966   }
1967   return SQLITE_OK;
1968 }
1969 
1970 /*
1971 ** Delete a WhereLoop object
1972 */
1973 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1974   whereLoopClear(db, p);
1975   sqlite3DbFreeNN(db, p);
1976 }
1977 
1978 /*
1979 ** Free a WhereInfo structure
1980 */
1981 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1982   int i;
1983   assert( pWInfo!=0 );
1984   for(i=0; i<pWInfo->nLevel; i++){
1985     WhereLevel *pLevel = &pWInfo->a[i];
1986     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1987       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1988     }
1989   }
1990   sqlite3WhereClauseClear(&pWInfo->sWC);
1991   while( pWInfo->pLoops ){
1992     WhereLoop *p = pWInfo->pLoops;
1993     pWInfo->pLoops = p->pNextLoop;
1994     whereLoopDelete(db, p);
1995   }
1996   assert( pWInfo->pExprMods==0 );
1997   sqlite3DbFreeNN(db, pWInfo);
1998 }
1999 
2000 /* Undo all Expr node modifications
2001 */
2002 static void whereUndoExprMods(WhereInfo *pWInfo){
2003   while( pWInfo->pExprMods ){
2004     WhereExprMod *p = pWInfo->pExprMods;
2005     pWInfo->pExprMods = p->pNext;
2006     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2007     sqlite3DbFree(pWInfo->pParse->db, p);
2008   }
2009 }
2010 
2011 /*
2012 ** Return TRUE if all of the following are true:
2013 **
2014 **   (1)  X has the same or lower cost that Y
2015 **   (2)  X uses fewer WHERE clause terms than Y
2016 **   (3)  Every WHERE clause term used by X is also used by Y
2017 **   (4)  X skips at least as many columns as Y
2018 **   (5)  If X is a covering index, than Y is too
2019 **
2020 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2021 ** If X is a proper subset of Y then Y is a better choice and ought
2022 ** to have a lower cost.  This routine returns TRUE when that cost
2023 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2024 ** was added because if X uses skip-scan less than Y it still might
2025 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2026 ** was added because a covering index probably deserves to have a lower cost
2027 ** than a non-covering index even if it is a proper subset.
2028 */
2029 static int whereLoopCheaperProperSubset(
2030   const WhereLoop *pX,       /* First WhereLoop to compare */
2031   const WhereLoop *pY        /* Compare against this WhereLoop */
2032 ){
2033   int i, j;
2034   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2035     return 0; /* X is not a subset of Y */
2036   }
2037   if( pY->nSkip > pX->nSkip ) return 0;
2038   if( pX->rRun >= pY->rRun ){
2039     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
2040     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
2041   }
2042   for(i=pX->nLTerm-1; i>=0; i--){
2043     if( pX->aLTerm[i]==0 ) continue;
2044     for(j=pY->nLTerm-1; j>=0; j--){
2045       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2046     }
2047     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2048   }
2049   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2050    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2051     return 0;  /* Constraint (5) */
2052   }
2053   return 1;  /* All conditions meet */
2054 }
2055 
2056 /*
2057 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2058 ** that:
2059 **
2060 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2061 **       subset of pTemplate
2062 **
2063 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2064 **       is a proper subset.
2065 **
2066 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2067 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2068 ** also used by Y.
2069 */
2070 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2071   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2072   for(; p; p=p->pNextLoop){
2073     if( p->iTab!=pTemplate->iTab ) continue;
2074     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2075     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2076       /* Adjust pTemplate cost downward so that it is cheaper than its
2077       ** subset p. */
2078       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2079                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2080       pTemplate->rRun = p->rRun;
2081       pTemplate->nOut = p->nOut - 1;
2082     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2083       /* Adjust pTemplate cost upward so that it is costlier than p since
2084       ** pTemplate is a proper subset of p */
2085       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2086                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2087       pTemplate->rRun = p->rRun;
2088       pTemplate->nOut = p->nOut + 1;
2089     }
2090   }
2091 }
2092 
2093 /*
2094 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2095 ** replaced by pTemplate.
2096 **
2097 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2098 ** In other words if pTemplate ought to be dropped from further consideration.
2099 **
2100 ** If pX is a WhereLoop that pTemplate can replace, then return the
2101 ** link that points to pX.
2102 **
2103 ** If pTemplate cannot replace any existing element of the list but needs
2104 ** to be added to the list as a new entry, then return a pointer to the
2105 ** tail of the list.
2106 */
2107 static WhereLoop **whereLoopFindLesser(
2108   WhereLoop **ppPrev,
2109   const WhereLoop *pTemplate
2110 ){
2111   WhereLoop *p;
2112   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2113     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2114       /* If either the iTab or iSortIdx values for two WhereLoop are different
2115       ** then those WhereLoops need to be considered separately.  Neither is
2116       ** a candidate to replace the other. */
2117       continue;
2118     }
2119     /* In the current implementation, the rSetup value is either zero
2120     ** or the cost of building an automatic index (NlogN) and the NlogN
2121     ** is the same for compatible WhereLoops. */
2122     assert( p->rSetup==0 || pTemplate->rSetup==0
2123                  || p->rSetup==pTemplate->rSetup );
2124 
2125     /* whereLoopAddBtree() always generates and inserts the automatic index
2126     ** case first.  Hence compatible candidate WhereLoops never have a larger
2127     ** rSetup. Call this SETUP-INVARIANT */
2128     assert( p->rSetup>=pTemplate->rSetup );
2129 
2130     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2131     ** UNIQUE constraint) with one or more == constraints is better
2132     ** than an automatic index. Unless it is a skip-scan. */
2133     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2134      && (pTemplate->nSkip)==0
2135      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2136      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2137      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2138     ){
2139       break;
2140     }
2141 
2142     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2143     ** discarded.  WhereLoop p is better if:
2144     **   (1)  p has no more dependencies than pTemplate, and
2145     **   (2)  p has an equal or lower cost than pTemplate
2146     */
2147     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2148      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2149      && p->rRun<=pTemplate->rRun                      /* (2b) */
2150      && p->nOut<=pTemplate->nOut                      /* (2c) */
2151     ){
2152       return 0;  /* Discard pTemplate */
2153     }
2154 
2155     /* If pTemplate is always better than p, then cause p to be overwritten
2156     ** with pTemplate.  pTemplate is better than p if:
2157     **   (1)  pTemplate has no more dependences than p, and
2158     **   (2)  pTemplate has an equal or lower cost than p.
2159     */
2160     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2161      && p->rRun>=pTemplate->rRun                             /* (2a) */
2162      && p->nOut>=pTemplate->nOut                             /* (2b) */
2163     ){
2164       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2165       break;   /* Cause p to be overwritten by pTemplate */
2166     }
2167   }
2168   return ppPrev;
2169 }
2170 
2171 /*
2172 ** Insert or replace a WhereLoop entry using the template supplied.
2173 **
2174 ** An existing WhereLoop entry might be overwritten if the new template
2175 ** is better and has fewer dependencies.  Or the template will be ignored
2176 ** and no insert will occur if an existing WhereLoop is faster and has
2177 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2178 ** added based on the template.
2179 **
2180 ** If pBuilder->pOrSet is not NULL then we care about only the
2181 ** prerequisites and rRun and nOut costs of the N best loops.  That
2182 ** information is gathered in the pBuilder->pOrSet object.  This special
2183 ** processing mode is used only for OR clause processing.
2184 **
2185 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2186 ** still might overwrite similar loops with the new template if the
2187 ** new template is better.  Loops may be overwritten if the following
2188 ** conditions are met:
2189 **
2190 **    (1)  They have the same iTab.
2191 **    (2)  They have the same iSortIdx.
2192 **    (3)  The template has same or fewer dependencies than the current loop
2193 **    (4)  The template has the same or lower cost than the current loop
2194 */
2195 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2196   WhereLoop **ppPrev, *p;
2197   WhereInfo *pWInfo = pBuilder->pWInfo;
2198   sqlite3 *db = pWInfo->pParse->db;
2199   int rc;
2200 
2201   /* Stop the search once we hit the query planner search limit */
2202   if( pBuilder->iPlanLimit==0 ){
2203     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2204     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2205     return SQLITE_DONE;
2206   }
2207   pBuilder->iPlanLimit--;
2208 
2209   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2210 
2211   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2212   ** and prereqs.
2213   */
2214   if( pBuilder->pOrSet!=0 ){
2215     if( pTemplate->nLTerm ){
2216 #if WHERETRACE_ENABLED
2217       u16 n = pBuilder->pOrSet->n;
2218       int x =
2219 #endif
2220       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2221                                     pTemplate->nOut);
2222 #if WHERETRACE_ENABLED /* 0x8 */
2223       if( sqlite3WhereTrace & 0x8 ){
2224         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2225         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2226       }
2227 #endif
2228     }
2229     return SQLITE_OK;
2230   }
2231 
2232   /* Look for an existing WhereLoop to replace with pTemplate
2233   */
2234   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2235 
2236   if( ppPrev==0 ){
2237     /* There already exists a WhereLoop on the list that is better
2238     ** than pTemplate, so just ignore pTemplate */
2239 #if WHERETRACE_ENABLED /* 0x8 */
2240     if( sqlite3WhereTrace & 0x8 ){
2241       sqlite3DebugPrintf("   skip: ");
2242       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2243     }
2244 #endif
2245     return SQLITE_OK;
2246   }else{
2247     p = *ppPrev;
2248   }
2249 
2250   /* If we reach this point it means that either p[] should be overwritten
2251   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2252   ** WhereLoop and insert it.
2253   */
2254 #if WHERETRACE_ENABLED /* 0x8 */
2255   if( sqlite3WhereTrace & 0x8 ){
2256     if( p!=0 ){
2257       sqlite3DebugPrintf("replace: ");
2258       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2259       sqlite3DebugPrintf("   with: ");
2260     }else{
2261       sqlite3DebugPrintf("    add: ");
2262     }
2263     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2264   }
2265 #endif
2266   if( p==0 ){
2267     /* Allocate a new WhereLoop to add to the end of the list */
2268     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2269     if( p==0 ) return SQLITE_NOMEM_BKPT;
2270     whereLoopInit(p);
2271     p->pNextLoop = 0;
2272   }else{
2273     /* We will be overwriting WhereLoop p[].  But before we do, first
2274     ** go through the rest of the list and delete any other entries besides
2275     ** p[] that are also supplated by pTemplate */
2276     WhereLoop **ppTail = &p->pNextLoop;
2277     WhereLoop *pToDel;
2278     while( *ppTail ){
2279       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2280       if( ppTail==0 ) break;
2281       pToDel = *ppTail;
2282       if( pToDel==0 ) break;
2283       *ppTail = pToDel->pNextLoop;
2284 #if WHERETRACE_ENABLED /* 0x8 */
2285       if( sqlite3WhereTrace & 0x8 ){
2286         sqlite3DebugPrintf(" delete: ");
2287         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2288       }
2289 #endif
2290       whereLoopDelete(db, pToDel);
2291     }
2292   }
2293   rc = whereLoopXfer(db, p, pTemplate);
2294   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2295     Index *pIndex = p->u.btree.pIndex;
2296     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2297       p->u.btree.pIndex = 0;
2298     }
2299   }
2300   return rc;
2301 }
2302 
2303 /*
2304 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2305 ** WHERE clause that reference the loop but which are not used by an
2306 ** index.
2307 *
2308 ** For every WHERE clause term that is not used by the index
2309 ** and which has a truth probability assigned by one of the likelihood(),
2310 ** likely(), or unlikely() SQL functions, reduce the estimated number
2311 ** of output rows by the probability specified.
2312 **
2313 ** TUNING:  For every WHERE clause term that is not used by the index
2314 ** and which does not have an assigned truth probability, heuristics
2315 ** described below are used to try to estimate the truth probability.
2316 ** TODO --> Perhaps this is something that could be improved by better
2317 ** table statistics.
2318 **
2319 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2320 ** value corresponds to -1 in LogEst notation, so this means decrement
2321 ** the WhereLoop.nOut field for every such WHERE clause term.
2322 **
2323 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2324 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2325 ** final output row estimate is no greater than 1/4 of the total number
2326 ** of rows in the table.  In other words, assume that x==EXPR will filter
2327 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2328 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2329 ** on the "x" column and so in that case only cap the output row estimate
2330 ** at 1/2 instead of 1/4.
2331 */
2332 static void whereLoopOutputAdjust(
2333   WhereClause *pWC,      /* The WHERE clause */
2334   WhereLoop *pLoop,      /* The loop to adjust downward */
2335   LogEst nRow            /* Number of rows in the entire table */
2336 ){
2337   WhereTerm *pTerm, *pX;
2338   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2339   int i, j;
2340   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2341 
2342   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2343   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2344     assert( pTerm!=0 );
2345     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2346     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2347     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2348     for(j=pLoop->nLTerm-1; j>=0; j--){
2349       pX = pLoop->aLTerm[j];
2350       if( pX==0 ) continue;
2351       if( pX==pTerm ) break;
2352       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2353     }
2354     if( j<0 ){
2355       if( pTerm->truthProb<=0 ){
2356         /* If a truth probability is specified using the likelihood() hints,
2357         ** then use the probability provided by the application. */
2358         pLoop->nOut += pTerm->truthProb;
2359       }else{
2360         /* In the absence of explicit truth probabilities, use heuristics to
2361         ** guess a reasonable truth probability. */
2362         pLoop->nOut--;
2363         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2364          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2365         ){
2366           Expr *pRight = pTerm->pExpr->pRight;
2367           int k = 0;
2368           testcase( pTerm->pExpr->op==TK_IS );
2369           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2370             k = 10;
2371           }else{
2372             k = 20;
2373           }
2374           if( iReduce<k ){
2375             pTerm->wtFlags |= TERM_HEURTRUTH;
2376             iReduce = k;
2377           }
2378         }
2379       }
2380     }
2381   }
2382   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2383 }
2384 
2385 /*
2386 ** Term pTerm is a vector range comparison operation. The first comparison
2387 ** in the vector can be optimized using column nEq of the index. This
2388 ** function returns the total number of vector elements that can be used
2389 ** as part of the range comparison.
2390 **
2391 ** For example, if the query is:
2392 **
2393 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2394 **
2395 ** and the index:
2396 **
2397 **   CREATE INDEX ... ON (a, b, c, d, e)
2398 **
2399 ** then this function would be invoked with nEq=1. The value returned in
2400 ** this case is 3.
2401 */
2402 static int whereRangeVectorLen(
2403   Parse *pParse,       /* Parsing context */
2404   int iCur,            /* Cursor open on pIdx */
2405   Index *pIdx,         /* The index to be used for a inequality constraint */
2406   int nEq,             /* Number of prior equality constraints on same index */
2407   WhereTerm *pTerm     /* The vector inequality constraint */
2408 ){
2409   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2410   int i;
2411 
2412   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2413   for(i=1; i<nCmp; i++){
2414     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2415     ** of the index. If not, exit the loop.  */
2416     char aff;                     /* Comparison affinity */
2417     char idxaff = 0;              /* Indexed columns affinity */
2418     CollSeq *pColl;               /* Comparison collation sequence */
2419     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2420     Expr *pRhs = pTerm->pExpr->pRight;
2421     if( pRhs->flags & EP_xIsSelect ){
2422       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2423     }else{
2424       pRhs = pRhs->x.pList->a[i].pExpr;
2425     }
2426 
2427     /* Check that the LHS of the comparison is a column reference to
2428     ** the right column of the right source table. And that the sort
2429     ** order of the index column is the same as the sort order of the
2430     ** leftmost index column.  */
2431     if( pLhs->op!=TK_COLUMN
2432      || pLhs->iTable!=iCur
2433      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2434      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2435     ){
2436       break;
2437     }
2438 
2439     testcase( pLhs->iColumn==XN_ROWID );
2440     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2441     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2442     if( aff!=idxaff ) break;
2443 
2444     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2445     if( pColl==0 ) break;
2446     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2447   }
2448   return i;
2449 }
2450 
2451 /*
2452 ** Adjust the cost C by the costMult facter T.  This only occurs if
2453 ** compiled with -DSQLITE_ENABLE_COSTMULT
2454 */
2455 #ifdef SQLITE_ENABLE_COSTMULT
2456 # define ApplyCostMultiplier(C,T)  C += T
2457 #else
2458 # define ApplyCostMultiplier(C,T)
2459 #endif
2460 
2461 /*
2462 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2463 ** index pIndex. Try to match one more.
2464 **
2465 ** When this function is called, pBuilder->pNew->nOut contains the
2466 ** number of rows expected to be visited by filtering using the nEq
2467 ** terms only. If it is modified, this value is restored before this
2468 ** function returns.
2469 **
2470 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2471 ** a fake index used for the INTEGER PRIMARY KEY.
2472 */
2473 static int whereLoopAddBtreeIndex(
2474   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2475   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2476   Index *pProbe,                  /* An index on pSrc */
2477   LogEst nInMul                   /* log(Number of iterations due to IN) */
2478 ){
2479   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2480   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2481   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2482   WhereLoop *pNew;                /* Template WhereLoop under construction */
2483   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2484   int opMask;                     /* Valid operators for constraints */
2485   WhereScan scan;                 /* Iterator for WHERE terms */
2486   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2487   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2488   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2489   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2490   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2491   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2492   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2493   LogEst saved_nOut;              /* Original value of pNew->nOut */
2494   int rc = SQLITE_OK;             /* Return code */
2495   LogEst rSize;                   /* Number of rows in the table */
2496   LogEst rLogSize;                /* Logarithm of table size */
2497   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2498 
2499   pNew = pBuilder->pNew;
2500   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2501   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2502                      pProbe->pTable->zName,pProbe->zName,
2503                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2504 
2505   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2506   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2507   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2508     opMask = WO_LT|WO_LE;
2509   }else{
2510     assert( pNew->u.btree.nBtm==0 );
2511     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2512   }
2513   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2514 
2515   assert( pNew->u.btree.nEq<pProbe->nColumn );
2516   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2517        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2518 
2519   saved_nEq = pNew->u.btree.nEq;
2520   saved_nBtm = pNew->u.btree.nBtm;
2521   saved_nTop = pNew->u.btree.nTop;
2522   saved_nSkip = pNew->nSkip;
2523   saved_nLTerm = pNew->nLTerm;
2524   saved_wsFlags = pNew->wsFlags;
2525   saved_prereq = pNew->prereq;
2526   saved_nOut = pNew->nOut;
2527   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2528                         opMask, pProbe);
2529   pNew->rSetup = 0;
2530   rSize = pProbe->aiRowLogEst[0];
2531   rLogSize = estLog(rSize);
2532   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2533     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2534     LogEst rCostIdx;
2535     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2536     int nIn = 0;
2537 #ifdef SQLITE_ENABLE_STAT4
2538     int nRecValid = pBuilder->nRecValid;
2539 #endif
2540     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2541      && indexColumnNotNull(pProbe, saved_nEq)
2542     ){
2543       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2544     }
2545     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2546 
2547     /* Do not allow the upper bound of a LIKE optimization range constraint
2548     ** to mix with a lower range bound from some other source */
2549     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2550 
2551     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2552     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2553     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2554     if( (pSrc->fg.jointype & JT_LEFT)!=0
2555      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2556     ){
2557       continue;
2558     }
2559 
2560     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2561       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2562     }else{
2563       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2564     }
2565     pNew->wsFlags = saved_wsFlags;
2566     pNew->u.btree.nEq = saved_nEq;
2567     pNew->u.btree.nBtm = saved_nBtm;
2568     pNew->u.btree.nTop = saved_nTop;
2569     pNew->nLTerm = saved_nLTerm;
2570     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2571     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2572     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2573 
2574     assert( nInMul==0
2575         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2576         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2577         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2578     );
2579 
2580     if( eOp & WO_IN ){
2581       Expr *pExpr = pTerm->pExpr;
2582       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2583         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2584         int i;
2585         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2586 
2587         /* The expression may actually be of the form (x, y) IN (SELECT...).
2588         ** In this case there is a separate term for each of (x) and (y).
2589         ** However, the nIn multiplier should only be applied once, not once
2590         ** for each such term. The following loop checks that pTerm is the
2591         ** first such term in use, and sets nIn back to 0 if it is not. */
2592         for(i=0; i<pNew->nLTerm-1; i++){
2593           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2594         }
2595       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2596         /* "x IN (value, value, ...)" */
2597         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2598       }
2599       if( pProbe->hasStat1 && rLogSize>=10 ){
2600         LogEst M, logK, x;
2601         /* Let:
2602         **   N = the total number of rows in the table
2603         **   K = the number of entries on the RHS of the IN operator
2604         **   M = the number of rows in the table that match terms to the
2605         **       to the left in the same index.  If the IN operator is on
2606         **       the left-most index column, M==N.
2607         **
2608         ** Given the definitions above, it is better to omit the IN operator
2609         ** from the index lookup and instead do a scan of the M elements,
2610         ** testing each scanned row against the IN operator separately, if:
2611         **
2612         **        M*log(K) < K*log(N)
2613         **
2614         ** Our estimates for M, K, and N might be inaccurate, so we build in
2615         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2616         ** with the index, as using an index has better worst-case behavior.
2617         ** If we do not have real sqlite_stat1 data, always prefer to use
2618         ** the index.  Do not bother with this optimization on very small
2619         ** tables (less than 2 rows) as it is pointless in that case.
2620         */
2621         M = pProbe->aiRowLogEst[saved_nEq];
2622         logK = estLog(nIn);
2623         /* TUNING      v-----  10 to bias toward indexed IN */
2624         x = M + logK + 10 - (nIn + rLogSize);
2625         if( x>=0 ){
2626           WHERETRACE(0x40,
2627             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2628              "prefers indexed lookup\n",
2629              saved_nEq, M, logK, nIn, rLogSize, x));
2630         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2631           WHERETRACE(0x40,
2632             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2633              " nInMul=%d) prefers skip-scan\n",
2634              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2635           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2636         }else{
2637           WHERETRACE(0x40,
2638             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2639              " nInMul=%d) prefers normal scan\n",
2640              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2641           continue;
2642         }
2643       }
2644       pNew->wsFlags |= WHERE_COLUMN_IN;
2645     }else if( eOp & (WO_EQ|WO_IS) ){
2646       int iCol = pProbe->aiColumn[saved_nEq];
2647       pNew->wsFlags |= WHERE_COLUMN_EQ;
2648       assert( saved_nEq==pNew->u.btree.nEq );
2649       if( iCol==XN_ROWID
2650        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2651       ){
2652         if( iCol==XN_ROWID || pProbe->uniqNotNull
2653          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2654         ){
2655           pNew->wsFlags |= WHERE_ONEROW;
2656         }else{
2657           pNew->wsFlags |= WHERE_UNQ_WANTED;
2658         }
2659       }
2660       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2661     }else if( eOp & WO_ISNULL ){
2662       pNew->wsFlags |= WHERE_COLUMN_NULL;
2663     }else if( eOp & (WO_GT|WO_GE) ){
2664       testcase( eOp & WO_GT );
2665       testcase( eOp & WO_GE );
2666       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2667       pNew->u.btree.nBtm = whereRangeVectorLen(
2668           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2669       );
2670       pBtm = pTerm;
2671       pTop = 0;
2672       if( pTerm->wtFlags & TERM_LIKEOPT ){
2673         /* Range constraints that come from the LIKE optimization are
2674         ** always used in pairs. */
2675         pTop = &pTerm[1];
2676         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2677         assert( pTop->wtFlags & TERM_LIKEOPT );
2678         assert( pTop->eOperator==WO_LT );
2679         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2680         pNew->aLTerm[pNew->nLTerm++] = pTop;
2681         pNew->wsFlags |= WHERE_TOP_LIMIT;
2682         pNew->u.btree.nTop = 1;
2683       }
2684     }else{
2685       assert( eOp & (WO_LT|WO_LE) );
2686       testcase( eOp & WO_LT );
2687       testcase( eOp & WO_LE );
2688       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2689       pNew->u.btree.nTop = whereRangeVectorLen(
2690           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2691       );
2692       pTop = pTerm;
2693       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2694                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2695     }
2696 
2697     /* At this point pNew->nOut is set to the number of rows expected to
2698     ** be visited by the index scan before considering term pTerm, or the
2699     ** values of nIn and nInMul. In other words, assuming that all
2700     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2701     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2702     assert( pNew->nOut==saved_nOut );
2703     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2704       /* Adjust nOut using stat4 data. Or, if there is no stat4
2705       ** data, using some other estimate.  */
2706       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2707     }else{
2708       int nEq = ++pNew->u.btree.nEq;
2709       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2710 
2711       assert( pNew->nOut==saved_nOut );
2712       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2713         assert( (eOp & WO_IN) || nIn==0 );
2714         testcase( eOp & WO_IN );
2715         pNew->nOut += pTerm->truthProb;
2716         pNew->nOut -= nIn;
2717       }else{
2718 #ifdef SQLITE_ENABLE_STAT4
2719         tRowcnt nOut = 0;
2720         if( nInMul==0
2721          && pProbe->nSample
2722          && pNew->u.btree.nEq<=pProbe->nSampleCol
2723          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2724          && OptimizationEnabled(db, SQLITE_Stat4)
2725         ){
2726           Expr *pExpr = pTerm->pExpr;
2727           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2728             testcase( eOp & WO_EQ );
2729             testcase( eOp & WO_IS );
2730             testcase( eOp & WO_ISNULL );
2731             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2732           }else{
2733             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2734           }
2735           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2736           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2737           if( nOut ){
2738             pNew->nOut = sqlite3LogEst(nOut);
2739             if( nEq==1
2740              /* TUNING: Mark terms as "low selectivity" if they seem likely
2741              ** to be true for half or more of the rows in the table.
2742              ** See tag-202002240-1 */
2743              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2744             ){
2745 #if WHERETRACE_ENABLED /* 0x01 */
2746               if( sqlite3WhereTrace & 0x01 ){
2747                 sqlite3DebugPrintf(
2748                    "STAT4 determines term has low selectivity:\n");
2749                 sqlite3WhereTermPrint(pTerm, 999);
2750               }
2751 #endif
2752               pTerm->wtFlags |= TERM_HIGHTRUTH;
2753               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2754                 /* If the term has previously been used with an assumption of
2755                 ** higher selectivity, then set the flag to rerun the
2756                 ** loop computations. */
2757                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2758               }
2759             }
2760             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2761             pNew->nOut -= nIn;
2762           }
2763         }
2764         if( nOut==0 )
2765 #endif
2766         {
2767           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2768           if( eOp & WO_ISNULL ){
2769             /* TUNING: If there is no likelihood() value, assume that a
2770             ** "col IS NULL" expression matches twice as many rows
2771             ** as (col=?). */
2772             pNew->nOut += 10;
2773           }
2774         }
2775       }
2776     }
2777 
2778     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2779     ** it to pNew->rRun, which is currently set to the cost of the index
2780     ** seek only. Then, if this is a non-covering index, add the cost of
2781     ** visiting the rows in the main table.  */
2782     assert( pSrc->pTab->szTabRow>0 );
2783     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2784     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2785     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2786       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2787     }
2788     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2789 
2790     nOutUnadjusted = pNew->nOut;
2791     pNew->rRun += nInMul + nIn;
2792     pNew->nOut += nInMul + nIn;
2793     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2794     rc = whereLoopInsert(pBuilder, pNew);
2795 
2796     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2797       pNew->nOut = saved_nOut;
2798     }else{
2799       pNew->nOut = nOutUnadjusted;
2800     }
2801 
2802     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2803      && pNew->u.btree.nEq<pProbe->nColumn
2804      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
2805            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
2806     ){
2807       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2808     }
2809     pNew->nOut = saved_nOut;
2810 #ifdef SQLITE_ENABLE_STAT4
2811     pBuilder->nRecValid = nRecValid;
2812 #endif
2813   }
2814   pNew->prereq = saved_prereq;
2815   pNew->u.btree.nEq = saved_nEq;
2816   pNew->u.btree.nBtm = saved_nBtm;
2817   pNew->u.btree.nTop = saved_nTop;
2818   pNew->nSkip = saved_nSkip;
2819   pNew->wsFlags = saved_wsFlags;
2820   pNew->nOut = saved_nOut;
2821   pNew->nLTerm = saved_nLTerm;
2822 
2823   /* Consider using a skip-scan if there are no WHERE clause constraints
2824   ** available for the left-most terms of the index, and if the average
2825   ** number of repeats in the left-most terms is at least 18.
2826   **
2827   ** The magic number 18 is selected on the basis that scanning 17 rows
2828   ** is almost always quicker than an index seek (even though if the index
2829   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2830   ** the code). And, even if it is not, it should not be too much slower.
2831   ** On the other hand, the extra seeks could end up being significantly
2832   ** more expensive.  */
2833   assert( 42==sqlite3LogEst(18) );
2834   if( saved_nEq==saved_nSkip
2835    && saved_nEq+1<pProbe->nKeyCol
2836    && saved_nEq==pNew->nLTerm
2837    && pProbe->noSkipScan==0
2838    && pProbe->hasStat1!=0
2839    && OptimizationEnabled(db, SQLITE_SkipScan)
2840    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2841    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2842   ){
2843     LogEst nIter;
2844     pNew->u.btree.nEq++;
2845     pNew->nSkip++;
2846     pNew->aLTerm[pNew->nLTerm++] = 0;
2847     pNew->wsFlags |= WHERE_SKIPSCAN;
2848     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2849     pNew->nOut -= nIter;
2850     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2851     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2852     nIter += 5;
2853     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2854     pNew->nOut = saved_nOut;
2855     pNew->u.btree.nEq = saved_nEq;
2856     pNew->nSkip = saved_nSkip;
2857     pNew->wsFlags = saved_wsFlags;
2858   }
2859 
2860   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2861                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2862   return rc;
2863 }
2864 
2865 /*
2866 ** Return True if it is possible that pIndex might be useful in
2867 ** implementing the ORDER BY clause in pBuilder.
2868 **
2869 ** Return False if pBuilder does not contain an ORDER BY clause or
2870 ** if there is no way for pIndex to be useful in implementing that
2871 ** ORDER BY clause.
2872 */
2873 static int indexMightHelpWithOrderBy(
2874   WhereLoopBuilder *pBuilder,
2875   Index *pIndex,
2876   int iCursor
2877 ){
2878   ExprList *pOB;
2879   ExprList *aColExpr;
2880   int ii, jj;
2881 
2882   if( pIndex->bUnordered ) return 0;
2883   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2884   for(ii=0; ii<pOB->nExpr; ii++){
2885     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2886     if( NEVER(pExpr==0) ) continue;
2887     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2888       if( pExpr->iColumn<0 ) return 1;
2889       for(jj=0; jj<pIndex->nKeyCol; jj++){
2890         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2891       }
2892     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2893       for(jj=0; jj<pIndex->nKeyCol; jj++){
2894         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2895         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2896           return 1;
2897         }
2898       }
2899     }
2900   }
2901   return 0;
2902 }
2903 
2904 /* Check to see if a partial index with pPartIndexWhere can be used
2905 ** in the current query.  Return true if it can be and false if not.
2906 */
2907 static int whereUsablePartialIndex(
2908   int iTab,             /* The table for which we want an index */
2909   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2910   WhereClause *pWC,     /* The WHERE clause of the query */
2911   Expr *pWhere          /* The WHERE clause from the partial index */
2912 ){
2913   int i;
2914   WhereTerm *pTerm;
2915   Parse *pParse = pWC->pWInfo->pParse;
2916   while( pWhere->op==TK_AND ){
2917     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2918     pWhere = pWhere->pRight;
2919   }
2920   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2921   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2922     Expr *pExpr;
2923     pExpr = pTerm->pExpr;
2924     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2925      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2926      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2927      && (pTerm->wtFlags & TERM_VNULL)==0
2928     ){
2929       return 1;
2930     }
2931   }
2932   return 0;
2933 }
2934 
2935 /*
2936 ** Add all WhereLoop objects for a single table of the join where the table
2937 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2938 ** a b-tree table, not a virtual table.
2939 **
2940 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2941 ** are calculated as follows:
2942 **
2943 ** For a full scan, assuming the table (or index) contains nRow rows:
2944 **
2945 **     cost = nRow * 3.0                    // full-table scan
2946 **     cost = nRow * K                      // scan of covering index
2947 **     cost = nRow * (K+3.0)                // scan of non-covering index
2948 **
2949 ** where K is a value between 1.1 and 3.0 set based on the relative
2950 ** estimated average size of the index and table records.
2951 **
2952 ** For an index scan, where nVisit is the number of index rows visited
2953 ** by the scan, and nSeek is the number of seek operations required on
2954 ** the index b-tree:
2955 **
2956 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2957 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2958 **
2959 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2960 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2961 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2962 **
2963 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2964 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2965 ** "do the least harm" if the estimates are inaccurate.  For example, a
2966 ** log(nRow) factor is omitted from a non-covering index scan in order to
2967 ** bias the scoring in favor of using an index, since the worst-case
2968 ** performance of using an index is far better than the worst-case performance
2969 ** of a full table scan.
2970 */
2971 static int whereLoopAddBtree(
2972   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2973   Bitmask mPrereq             /* Extra prerequesites for using this table */
2974 ){
2975   WhereInfo *pWInfo;          /* WHERE analysis context */
2976   Index *pProbe;              /* An index we are evaluating */
2977   Index sPk;                  /* A fake index object for the primary key */
2978   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2979   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2980   SrcList *pTabList;          /* The FROM clause */
2981   SrcItem *pSrc;              /* The FROM clause btree term to add */
2982   WhereLoop *pNew;            /* Template WhereLoop object */
2983   int rc = SQLITE_OK;         /* Return code */
2984   int iSortIdx = 1;           /* Index number */
2985   int b;                      /* A boolean value */
2986   LogEst rSize;               /* number of rows in the table */
2987   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2988   WhereClause *pWC;           /* The parsed WHERE clause */
2989   Table *pTab;                /* Table being queried */
2990 
2991   pNew = pBuilder->pNew;
2992   pWInfo = pBuilder->pWInfo;
2993   pTabList = pWInfo->pTabList;
2994   pSrc = pTabList->a + pNew->iTab;
2995   pTab = pSrc->pTab;
2996   pWC = pBuilder->pWC;
2997   assert( !IsVirtual(pSrc->pTab) );
2998 
2999   if( pSrc->fg.isIndexedBy ){
3000     /* An INDEXED BY clause specifies a particular index to use */
3001     pProbe = pSrc->u2.pIBIndex;
3002   }else if( !HasRowid(pTab) ){
3003     pProbe = pTab->pIndex;
3004   }else{
3005     /* There is no INDEXED BY clause.  Create a fake Index object in local
3006     ** variable sPk to represent the rowid primary key index.  Make this
3007     ** fake index the first in a chain of Index objects with all of the real
3008     ** indices to follow */
3009     Index *pFirst;                  /* First of real indices on the table */
3010     memset(&sPk, 0, sizeof(Index));
3011     sPk.nKeyCol = 1;
3012     sPk.nColumn = 1;
3013     sPk.aiColumn = &aiColumnPk;
3014     sPk.aiRowLogEst = aiRowEstPk;
3015     sPk.onError = OE_Replace;
3016     sPk.pTable = pTab;
3017     sPk.szIdxRow = pTab->szTabRow;
3018     sPk.idxType = SQLITE_IDXTYPE_IPK;
3019     aiRowEstPk[0] = pTab->nRowLogEst;
3020     aiRowEstPk[1] = 0;
3021     pFirst = pSrc->pTab->pIndex;
3022     if( pSrc->fg.notIndexed==0 ){
3023       /* The real indices of the table are only considered if the
3024       ** NOT INDEXED qualifier is omitted from the FROM clause */
3025       sPk.pNext = pFirst;
3026     }
3027     pProbe = &sPk;
3028   }
3029   rSize = pTab->nRowLogEst;
3030   rLogSize = estLog(rSize);
3031 
3032 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3033   /* Automatic indexes */
3034   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3035    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3036    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3037    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3038    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3039    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3040    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3041    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3042   ){
3043     /* Generate auto-index WhereLoops */
3044     WhereTerm *pTerm;
3045     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3046     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3047       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3048       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3049         pNew->u.btree.nEq = 1;
3050         pNew->nSkip = 0;
3051         pNew->u.btree.pIndex = 0;
3052         pNew->nLTerm = 1;
3053         pNew->aLTerm[0] = pTerm;
3054         /* TUNING: One-time cost for computing the automatic index is
3055         ** estimated to be X*N*log2(N) where N is the number of rows in
3056         ** the table being indexed and where X is 7 (LogEst=28) for normal
3057         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3058         ** of X is smaller for views and subqueries so that the query planner
3059         ** will be more aggressive about generating automatic indexes for
3060         ** those objects, since there is no opportunity to add schema
3061         ** indexes on subqueries and views. */
3062         pNew->rSetup = rLogSize + rSize;
3063         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3064           pNew->rSetup += 28;
3065         }else{
3066           pNew->rSetup -= 10;
3067         }
3068         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3069         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3070         /* TUNING: Each index lookup yields 20 rows in the table.  This
3071         ** is more than the usual guess of 10 rows, since we have no way
3072         ** of knowing how selective the index will ultimately be.  It would
3073         ** not be unreasonable to make this value much larger. */
3074         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3075         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3076         pNew->wsFlags = WHERE_AUTO_INDEX;
3077         pNew->prereq = mPrereq | pTerm->prereqRight;
3078         rc = whereLoopInsert(pBuilder, pNew);
3079       }
3080     }
3081   }
3082 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3083 
3084   /* Loop over all indices. If there was an INDEXED BY clause, then only
3085   ** consider index pProbe.  */
3086   for(; rc==SQLITE_OK && pProbe;
3087       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3088   ){
3089     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3090     if( pProbe->pPartIdxWhere!=0
3091      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3092                                  pProbe->pPartIdxWhere)
3093     ){
3094       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3095       continue;  /* Partial index inappropriate for this query */
3096     }
3097     if( pProbe->bNoQuery ) continue;
3098     rSize = pProbe->aiRowLogEst[0];
3099     pNew->u.btree.nEq = 0;
3100     pNew->u.btree.nBtm = 0;
3101     pNew->u.btree.nTop = 0;
3102     pNew->nSkip = 0;
3103     pNew->nLTerm = 0;
3104     pNew->iSortIdx = 0;
3105     pNew->rSetup = 0;
3106     pNew->prereq = mPrereq;
3107     pNew->nOut = rSize;
3108     pNew->u.btree.pIndex = pProbe;
3109     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3110 
3111     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3112     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3113     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3114       /* Integer primary key index */
3115       pNew->wsFlags = WHERE_IPK;
3116 
3117       /* Full table scan */
3118       pNew->iSortIdx = b ? iSortIdx : 0;
3119       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3120       ** extra cost designed to discourage the use of full table scans,
3121       ** since index lookups have better worst-case performance if our
3122       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3123       ** (to 2.75) if we have valid STAT4 information for the table.
3124       ** At 2.75, a full table scan is preferred over using an index on
3125       ** a column with just two distinct values where each value has about
3126       ** an equal number of appearances.  Without STAT4 data, we still want
3127       ** to use an index in that case, since the constraint might be for
3128       ** the scarcer of the two values, and in that case an index lookup is
3129       ** better.
3130       */
3131 #ifdef SQLITE_ENABLE_STAT4
3132       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3133 #else
3134       pNew->rRun = rSize + 16;
3135 #endif
3136       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3137       whereLoopOutputAdjust(pWC, pNew, rSize);
3138       rc = whereLoopInsert(pBuilder, pNew);
3139       pNew->nOut = rSize;
3140       if( rc ) break;
3141     }else{
3142       Bitmask m;
3143       if( pProbe->isCovering ){
3144         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3145         m = 0;
3146       }else{
3147         m = pSrc->colUsed & pProbe->colNotIdxed;
3148         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3149       }
3150 
3151       /* Full scan via index */
3152       if( b
3153        || !HasRowid(pTab)
3154        || pProbe->pPartIdxWhere!=0
3155        || pSrc->fg.isIndexedBy
3156        || ( m==0
3157          && pProbe->bUnordered==0
3158          && (pProbe->szIdxRow<pTab->szTabRow)
3159          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3160          && sqlite3GlobalConfig.bUseCis
3161          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3162           )
3163       ){
3164         pNew->iSortIdx = b ? iSortIdx : 0;
3165 
3166         /* The cost of visiting the index rows is N*K, where K is
3167         ** between 1.1 and 3.0, depending on the relative sizes of the
3168         ** index and table rows. */
3169         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3170         if( m!=0 ){
3171           /* If this is a non-covering index scan, add in the cost of
3172           ** doing table lookups.  The cost will be 3x the number of
3173           ** lookups.  Take into account WHERE clause terms that can be
3174           ** satisfied using just the index, and that do not require a
3175           ** table lookup. */
3176           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3177           int ii;
3178           int iCur = pSrc->iCursor;
3179           WhereClause *pWC2 = &pWInfo->sWC;
3180           for(ii=0; ii<pWC2->nTerm; ii++){
3181             WhereTerm *pTerm = &pWC2->a[ii];
3182             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3183               break;
3184             }
3185             /* pTerm can be evaluated using just the index.  So reduce
3186             ** the expected number of table lookups accordingly */
3187             if( pTerm->truthProb<=0 ){
3188               nLookup += pTerm->truthProb;
3189             }else{
3190               nLookup--;
3191               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3192             }
3193           }
3194 
3195           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3196         }
3197         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3198         whereLoopOutputAdjust(pWC, pNew, rSize);
3199         rc = whereLoopInsert(pBuilder, pNew);
3200         pNew->nOut = rSize;
3201         if( rc ) break;
3202       }
3203     }
3204 
3205     pBuilder->bldFlags1 = 0;
3206     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3207     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3208       /* If a non-unique index is used, or if a prefix of the key for
3209       ** unique index is used (making the index functionally non-unique)
3210       ** then the sqlite_stat1 data becomes important for scoring the
3211       ** plan */
3212       pTab->tabFlags |= TF_StatsUsed;
3213     }
3214 #ifdef SQLITE_ENABLE_STAT4
3215     sqlite3Stat4ProbeFree(pBuilder->pRec);
3216     pBuilder->nRecValid = 0;
3217     pBuilder->pRec = 0;
3218 #endif
3219   }
3220   return rc;
3221 }
3222 
3223 #ifndef SQLITE_OMIT_VIRTUALTABLE
3224 
3225 /*
3226 ** Argument pIdxInfo is already populated with all constraints that may
3227 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3228 ** function marks a subset of those constraints usable, invokes the
3229 ** xBestIndex method and adds the returned plan to pBuilder.
3230 **
3231 ** A constraint is marked usable if:
3232 **
3233 **   * Argument mUsable indicates that its prerequisites are available, and
3234 **
3235 **   * It is not one of the operators specified in the mExclude mask passed
3236 **     as the fourth argument (which in practice is either WO_IN or 0).
3237 **
3238 ** Argument mPrereq is a mask of tables that must be scanned before the
3239 ** virtual table in question. These are added to the plans prerequisites
3240 ** before it is added to pBuilder.
3241 **
3242 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3243 ** uses one or more WO_IN terms, or false otherwise.
3244 */
3245 static int whereLoopAddVirtualOne(
3246   WhereLoopBuilder *pBuilder,
3247   Bitmask mPrereq,                /* Mask of tables that must be used. */
3248   Bitmask mUsable,                /* Mask of usable tables */
3249   u16 mExclude,                   /* Exclude terms using these operators */
3250   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3251   u16 mNoOmit,                    /* Do not omit these constraints */
3252   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3253 ){
3254   WhereClause *pWC = pBuilder->pWC;
3255   struct sqlite3_index_constraint *pIdxCons;
3256   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3257   int i;
3258   int mxTerm;
3259   int rc = SQLITE_OK;
3260   WhereLoop *pNew = pBuilder->pNew;
3261   Parse *pParse = pBuilder->pWInfo->pParse;
3262   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3263   int nConstraint = pIdxInfo->nConstraint;
3264 
3265   assert( (mUsable & mPrereq)==mPrereq );
3266   *pbIn = 0;
3267   pNew->prereq = mPrereq;
3268 
3269   /* Set the usable flag on the subset of constraints identified by
3270   ** arguments mUsable and mExclude. */
3271   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3272   for(i=0; i<nConstraint; i++, pIdxCons++){
3273     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3274     pIdxCons->usable = 0;
3275     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3276      && (pTerm->eOperator & mExclude)==0
3277     ){
3278       pIdxCons->usable = 1;
3279     }
3280   }
3281 
3282   /* Initialize the output fields of the sqlite3_index_info structure */
3283   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3284   assert( pIdxInfo->needToFreeIdxStr==0 );
3285   pIdxInfo->idxStr = 0;
3286   pIdxInfo->idxNum = 0;
3287   pIdxInfo->orderByConsumed = 0;
3288   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3289   pIdxInfo->estimatedRows = 25;
3290   pIdxInfo->idxFlags = 0;
3291   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3292 
3293   /* Invoke the virtual table xBestIndex() method */
3294   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3295   if( rc ){
3296     if( rc==SQLITE_CONSTRAINT ){
3297       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3298       ** that the particular combination of parameters provided is unusable.
3299       ** Make no entries in the loop table.
3300       */
3301       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3302       return SQLITE_OK;
3303     }
3304     return rc;
3305   }
3306 
3307   mxTerm = -1;
3308   assert( pNew->nLSlot>=nConstraint );
3309   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3310   pNew->u.vtab.omitMask = 0;
3311   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3312   for(i=0; i<nConstraint; i++, pIdxCons++){
3313     int iTerm;
3314     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3315       WhereTerm *pTerm;
3316       int j = pIdxCons->iTermOffset;
3317       if( iTerm>=nConstraint
3318        || j<0
3319        || j>=pWC->nTerm
3320        || pNew->aLTerm[iTerm]!=0
3321        || pIdxCons->usable==0
3322       ){
3323         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3324         testcase( pIdxInfo->needToFreeIdxStr );
3325         return SQLITE_ERROR;
3326       }
3327       testcase( iTerm==nConstraint-1 );
3328       testcase( j==0 );
3329       testcase( j==pWC->nTerm-1 );
3330       pTerm = &pWC->a[j];
3331       pNew->prereq |= pTerm->prereqRight;
3332       assert( iTerm<pNew->nLSlot );
3333       pNew->aLTerm[iTerm] = pTerm;
3334       if( iTerm>mxTerm ) mxTerm = iTerm;
3335       testcase( iTerm==15 );
3336       testcase( iTerm==16 );
3337       if( pUsage[i].omit ){
3338         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3339           testcase( i!=iTerm );
3340           pNew->u.vtab.omitMask |= 1<<iTerm;
3341         }else{
3342           testcase( i!=iTerm );
3343         }
3344       }
3345       if( (pTerm->eOperator & WO_IN)!=0 ){
3346         /* A virtual table that is constrained by an IN clause may not
3347         ** consume the ORDER BY clause because (1) the order of IN terms
3348         ** is not necessarily related to the order of output terms and
3349         ** (2) Multiple outputs from a single IN value will not merge
3350         ** together.  */
3351         pIdxInfo->orderByConsumed = 0;
3352         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3353         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3354       }
3355     }
3356   }
3357 
3358   pNew->nLTerm = mxTerm+1;
3359   for(i=0; i<=mxTerm; i++){
3360     if( pNew->aLTerm[i]==0 ){
3361       /* The non-zero argvIdx values must be contiguous.  Raise an
3362       ** error if they are not */
3363       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3364       testcase( pIdxInfo->needToFreeIdxStr );
3365       return SQLITE_ERROR;
3366     }
3367   }
3368   assert( pNew->nLTerm<=pNew->nLSlot );
3369   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3370   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3371   pIdxInfo->needToFreeIdxStr = 0;
3372   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3373   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3374       pIdxInfo->nOrderBy : 0);
3375   pNew->rSetup = 0;
3376   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3377   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3378 
3379   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3380   ** that the scan will visit at most one row. Clear it otherwise. */
3381   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3382     pNew->wsFlags |= WHERE_ONEROW;
3383   }else{
3384     pNew->wsFlags &= ~WHERE_ONEROW;
3385   }
3386   rc = whereLoopInsert(pBuilder, pNew);
3387   if( pNew->u.vtab.needFree ){
3388     sqlite3_free(pNew->u.vtab.idxStr);
3389     pNew->u.vtab.needFree = 0;
3390   }
3391   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3392                       *pbIn, (sqlite3_uint64)mPrereq,
3393                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3394 
3395   return rc;
3396 }
3397 
3398 /*
3399 ** If this function is invoked from within an xBestIndex() callback, it
3400 ** returns a pointer to a buffer containing the name of the collation
3401 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3402 ** array. Or, if iCons is out of range or there is no active xBestIndex
3403 ** call, return NULL.
3404 */
3405 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3406   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3407   const char *zRet = 0;
3408   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3409     CollSeq *pC = 0;
3410     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3411     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3412     if( pX->pLeft ){
3413       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3414     }
3415     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3416   }
3417   return zRet;
3418 }
3419 
3420 /*
3421 ** Add all WhereLoop objects for a table of the join identified by
3422 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3423 **
3424 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3425 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3426 ** entries that occur before the virtual table in the FROM clause and are
3427 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3428 ** mUnusable mask contains all FROM clause entries that occur after the
3429 ** virtual table and are separated from it by at least one LEFT or
3430 ** CROSS JOIN.
3431 **
3432 ** For example, if the query were:
3433 **
3434 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3435 **
3436 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3437 **
3438 ** All the tables in mPrereq must be scanned before the current virtual
3439 ** table. So any terms for which all prerequisites are satisfied by
3440 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3441 ** Conversely, all tables in mUnusable must be scanned after the current
3442 ** virtual table, so any terms for which the prerequisites overlap with
3443 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3444 */
3445 static int whereLoopAddVirtual(
3446   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3447   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3448   Bitmask mUnusable            /* Tables that must be scanned after this one */
3449 ){
3450   int rc = SQLITE_OK;          /* Return code */
3451   WhereInfo *pWInfo;           /* WHERE analysis context */
3452   Parse *pParse;               /* The parsing context */
3453   WhereClause *pWC;            /* The WHERE clause */
3454   SrcItem *pSrc;               /* The FROM clause term to search */
3455   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3456   int nConstraint;             /* Number of constraints in p */
3457   int bIn;                     /* True if plan uses IN(...) operator */
3458   WhereLoop *pNew;
3459   Bitmask mBest;               /* Tables used by best possible plan */
3460   u16 mNoOmit;
3461 
3462   assert( (mPrereq & mUnusable)==0 );
3463   pWInfo = pBuilder->pWInfo;
3464   pParse = pWInfo->pParse;
3465   pWC = pBuilder->pWC;
3466   pNew = pBuilder->pNew;
3467   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3468   assert( IsVirtual(pSrc->pTab) );
3469   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3470       &mNoOmit);
3471   if( p==0 ) return SQLITE_NOMEM_BKPT;
3472   pNew->rSetup = 0;
3473   pNew->wsFlags = WHERE_VIRTUALTABLE;
3474   pNew->nLTerm = 0;
3475   pNew->u.vtab.needFree = 0;
3476   nConstraint = p->nConstraint;
3477   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3478     sqlite3DbFree(pParse->db, p);
3479     return SQLITE_NOMEM_BKPT;
3480   }
3481 
3482   /* First call xBestIndex() with all constraints usable. */
3483   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3484   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3485   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3486 
3487   /* If the call to xBestIndex() with all terms enabled produced a plan
3488   ** that does not require any source tables (IOW: a plan with mBest==0)
3489   ** and does not use an IN(...) operator, then there is no point in making
3490   ** any further calls to xBestIndex() since they will all return the same
3491   ** result (if the xBestIndex() implementation is sane). */
3492   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3493     int seenZero = 0;             /* True if a plan with no prereqs seen */
3494     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3495     Bitmask mPrev = 0;
3496     Bitmask mBestNoIn = 0;
3497 
3498     /* If the plan produced by the earlier call uses an IN(...) term, call
3499     ** xBestIndex again, this time with IN(...) terms disabled. */
3500     if( bIn ){
3501       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3502       rc = whereLoopAddVirtualOne(
3503           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3504       assert( bIn==0 );
3505       mBestNoIn = pNew->prereq & ~mPrereq;
3506       if( mBestNoIn==0 ){
3507         seenZero = 1;
3508         seenZeroNoIN = 1;
3509       }
3510     }
3511 
3512     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3513     ** in the set of terms that apply to the current virtual table.  */
3514     while( rc==SQLITE_OK ){
3515       int i;
3516       Bitmask mNext = ALLBITS;
3517       assert( mNext>0 );
3518       for(i=0; i<nConstraint; i++){
3519         Bitmask mThis = (
3520             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3521         );
3522         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3523       }
3524       mPrev = mNext;
3525       if( mNext==ALLBITS ) break;
3526       if( mNext==mBest || mNext==mBestNoIn ) continue;
3527       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3528                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3529       rc = whereLoopAddVirtualOne(
3530           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3531       if( pNew->prereq==mPrereq ){
3532         seenZero = 1;
3533         if( bIn==0 ) seenZeroNoIN = 1;
3534       }
3535     }
3536 
3537     /* If the calls to xBestIndex() in the above loop did not find a plan
3538     ** that requires no source tables at all (i.e. one guaranteed to be
3539     ** usable), make a call here with all source tables disabled */
3540     if( rc==SQLITE_OK && seenZero==0 ){
3541       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3542       rc = whereLoopAddVirtualOne(
3543           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3544       if( bIn==0 ) seenZeroNoIN = 1;
3545     }
3546 
3547     /* If the calls to xBestIndex() have so far failed to find a plan
3548     ** that requires no source tables at all and does not use an IN(...)
3549     ** operator, make a final call to obtain one here.  */
3550     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3551       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3552       rc = whereLoopAddVirtualOne(
3553           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3554     }
3555   }
3556 
3557   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3558   sqlite3DbFreeNN(pParse->db, p);
3559   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3560   return rc;
3561 }
3562 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3563 
3564 /*
3565 ** Add WhereLoop entries to handle OR terms.  This works for either
3566 ** btrees or virtual tables.
3567 */
3568 static int whereLoopAddOr(
3569   WhereLoopBuilder *pBuilder,
3570   Bitmask mPrereq,
3571   Bitmask mUnusable
3572 ){
3573   WhereInfo *pWInfo = pBuilder->pWInfo;
3574   WhereClause *pWC;
3575   WhereLoop *pNew;
3576   WhereTerm *pTerm, *pWCEnd;
3577   int rc = SQLITE_OK;
3578   int iCur;
3579   WhereClause tempWC;
3580   WhereLoopBuilder sSubBuild;
3581   WhereOrSet sSum, sCur;
3582   SrcItem *pItem;
3583 
3584   pWC = pBuilder->pWC;
3585   pWCEnd = pWC->a + pWC->nTerm;
3586   pNew = pBuilder->pNew;
3587   memset(&sSum, 0, sizeof(sSum));
3588   pItem = pWInfo->pTabList->a + pNew->iTab;
3589   iCur = pItem->iCursor;
3590 
3591   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3592     if( (pTerm->eOperator & WO_OR)!=0
3593      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3594     ){
3595       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3596       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3597       WhereTerm *pOrTerm;
3598       int once = 1;
3599       int i, j;
3600 
3601       sSubBuild = *pBuilder;
3602       sSubBuild.pOrderBy = 0;
3603       sSubBuild.pOrSet = &sCur;
3604 
3605       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3606       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3607         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3608           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3609         }else if( pOrTerm->leftCursor==iCur ){
3610           tempWC.pWInfo = pWC->pWInfo;
3611           tempWC.pOuter = pWC;
3612           tempWC.op = TK_AND;
3613           tempWC.nTerm = 1;
3614           tempWC.a = pOrTerm;
3615           sSubBuild.pWC = &tempWC;
3616         }else{
3617           continue;
3618         }
3619         sCur.n = 0;
3620 #ifdef WHERETRACE_ENABLED
3621         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3622                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3623         if( sqlite3WhereTrace & 0x400 ){
3624           sqlite3WhereClausePrint(sSubBuild.pWC);
3625         }
3626 #endif
3627 #ifndef SQLITE_OMIT_VIRTUALTABLE
3628         if( IsVirtual(pItem->pTab) ){
3629           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3630         }else
3631 #endif
3632         {
3633           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3634         }
3635         if( rc==SQLITE_OK ){
3636           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3637         }
3638         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3639                 || rc==SQLITE_NOMEM );
3640         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3641         testcase( rc==SQLITE_DONE );
3642         if( sCur.n==0 ){
3643           sSum.n = 0;
3644           break;
3645         }else if( once ){
3646           whereOrMove(&sSum, &sCur);
3647           once = 0;
3648         }else{
3649           WhereOrSet sPrev;
3650           whereOrMove(&sPrev, &sSum);
3651           sSum.n = 0;
3652           for(i=0; i<sPrev.n; i++){
3653             for(j=0; j<sCur.n; j++){
3654               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3655                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3656                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3657             }
3658           }
3659         }
3660       }
3661       pNew->nLTerm = 1;
3662       pNew->aLTerm[0] = pTerm;
3663       pNew->wsFlags = WHERE_MULTI_OR;
3664       pNew->rSetup = 0;
3665       pNew->iSortIdx = 0;
3666       memset(&pNew->u, 0, sizeof(pNew->u));
3667       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3668         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3669         ** of all sub-scans required by the OR-scan. However, due to rounding
3670         ** errors, it may be that the cost of the OR-scan is equal to its
3671         ** most expensive sub-scan. Add the smallest possible penalty
3672         ** (equivalent to multiplying the cost by 1.07) to ensure that
3673         ** this does not happen. Otherwise, for WHERE clauses such as the
3674         ** following where there is an index on "y":
3675         **
3676         **     WHERE likelihood(x=?, 0.99) OR y=?
3677         **
3678         ** the planner may elect to "OR" together a full-table scan and an
3679         ** index lookup. And other similarly odd results.  */
3680         pNew->rRun = sSum.a[i].rRun + 1;
3681         pNew->nOut = sSum.a[i].nOut;
3682         pNew->prereq = sSum.a[i].prereq;
3683         rc = whereLoopInsert(pBuilder, pNew);
3684       }
3685       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3686     }
3687   }
3688   return rc;
3689 }
3690 
3691 /*
3692 ** Add all WhereLoop objects for all tables
3693 */
3694 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3695   WhereInfo *pWInfo = pBuilder->pWInfo;
3696   Bitmask mPrereq = 0;
3697   Bitmask mPrior = 0;
3698   int iTab;
3699   SrcList *pTabList = pWInfo->pTabList;
3700   SrcItem *pItem;
3701   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3702   sqlite3 *db = pWInfo->pParse->db;
3703   int rc = SQLITE_OK;
3704   WhereLoop *pNew;
3705 
3706   /* Loop over the tables in the join, from left to right */
3707   pNew = pBuilder->pNew;
3708   whereLoopInit(pNew);
3709   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3710   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3711     Bitmask mUnusable = 0;
3712     pNew->iTab = iTab;
3713     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3714     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3715     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3716       /* This condition is true when pItem is the FROM clause term on the
3717       ** right-hand-side of a LEFT or CROSS JOIN.  */
3718       mPrereq = mPrior;
3719     }else{
3720       mPrereq = 0;
3721     }
3722 #ifndef SQLITE_OMIT_VIRTUALTABLE
3723     if( IsVirtual(pItem->pTab) ){
3724       SrcItem *p;
3725       for(p=&pItem[1]; p<pEnd; p++){
3726         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3727           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3728         }
3729       }
3730       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3731     }else
3732 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3733     {
3734       rc = whereLoopAddBtree(pBuilder, mPrereq);
3735     }
3736     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3737       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3738     }
3739     mPrior |= pNew->maskSelf;
3740     if( rc || db->mallocFailed ){
3741       if( rc==SQLITE_DONE ){
3742         /* We hit the query planner search limit set by iPlanLimit */
3743         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3744         rc = SQLITE_OK;
3745       }else{
3746         break;
3747       }
3748     }
3749   }
3750 
3751   whereLoopClear(db, pNew);
3752   return rc;
3753 }
3754 
3755 /*
3756 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3757 ** parameters) to see if it outputs rows in the requested ORDER BY
3758 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3759 **
3760 **   N>0:   N terms of the ORDER BY clause are satisfied
3761 **   N==0:  No terms of the ORDER BY clause are satisfied
3762 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3763 **
3764 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3765 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3766 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3767 ** and DISTINCT do not require rows to appear in any particular order as long
3768 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3769 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3770 ** pOrderBy terms must be matched in strict left-to-right order.
3771 */
3772 static i8 wherePathSatisfiesOrderBy(
3773   WhereInfo *pWInfo,    /* The WHERE clause */
3774   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3775   WherePath *pPath,     /* The WherePath to check */
3776   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3777   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3778   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3779   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3780 ){
3781   u8 revSet;            /* True if rev is known */
3782   u8 rev;               /* Composite sort order */
3783   u8 revIdx;            /* Index sort order */
3784   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3785   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3786   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3787   u16 eqOpMask;         /* Allowed equality operators */
3788   u16 nKeyCol;          /* Number of key columns in pIndex */
3789   u16 nColumn;          /* Total number of ordered columns in the index */
3790   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3791   int iLoop;            /* Index of WhereLoop in pPath being processed */
3792   int i, j;             /* Loop counters */
3793   int iCur;             /* Cursor number for current WhereLoop */
3794   int iColumn;          /* A column number within table iCur */
3795   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3796   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3797   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3798   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3799   Index *pIndex;        /* The index associated with pLoop */
3800   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3801   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3802   Bitmask obDone;       /* Mask of all ORDER BY terms */
3803   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3804   Bitmask ready;              /* Mask of inner loops */
3805 
3806   /*
3807   ** We say the WhereLoop is "one-row" if it generates no more than one
3808   ** row of output.  A WhereLoop is one-row if all of the following are true:
3809   **  (a) All index columns match with WHERE_COLUMN_EQ.
3810   **  (b) The index is unique
3811   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3812   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3813   **
3814   ** We say the WhereLoop is "order-distinct" if the set of columns from
3815   ** that WhereLoop that are in the ORDER BY clause are different for every
3816   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3817   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3818   ** is not order-distinct. To be order-distinct is not quite the same as being
3819   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3820   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3821   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3822   **
3823   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3824   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3825   ** automatically order-distinct.
3826   */
3827 
3828   assert( pOrderBy!=0 );
3829   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3830 
3831   nOrderBy = pOrderBy->nExpr;
3832   testcase( nOrderBy==BMS-1 );
3833   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3834   isOrderDistinct = 1;
3835   obDone = MASKBIT(nOrderBy)-1;
3836   orderDistinctMask = 0;
3837   ready = 0;
3838   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3839   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3840     eqOpMask |= WO_IN;
3841   }
3842   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3843     if( iLoop>0 ) ready |= pLoop->maskSelf;
3844     if( iLoop<nLoop ){
3845       pLoop = pPath->aLoop[iLoop];
3846       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3847     }else{
3848       pLoop = pLast;
3849     }
3850     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3851       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3852         obSat = obDone;
3853       }
3854       break;
3855     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3856       pLoop->u.btree.nDistinctCol = 0;
3857     }
3858     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3859 
3860     /* Mark off any ORDER BY term X that is a column in the table of
3861     ** the current loop for which there is term in the WHERE
3862     ** clause of the form X IS NULL or X=? that reference only outer
3863     ** loops.
3864     */
3865     for(i=0; i<nOrderBy; i++){
3866       if( MASKBIT(i) & obSat ) continue;
3867       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3868       if( NEVER(pOBExpr==0) ) continue;
3869       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3870       if( pOBExpr->iTable!=iCur ) continue;
3871       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3872                        ~ready, eqOpMask, 0);
3873       if( pTerm==0 ) continue;
3874       if( pTerm->eOperator==WO_IN ){
3875         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3876         ** optimization, and then only if they are actually used
3877         ** by the query plan */
3878         assert( wctrlFlags &
3879                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3880         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3881         if( j>=pLoop->nLTerm ) continue;
3882       }
3883       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3884         Parse *pParse = pWInfo->pParse;
3885         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3886         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3887         assert( pColl1 );
3888         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3889           continue;
3890         }
3891         testcase( pTerm->pExpr->op==TK_IS );
3892       }
3893       obSat |= MASKBIT(i);
3894     }
3895 
3896     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3897       if( pLoop->wsFlags & WHERE_IPK ){
3898         pIndex = 0;
3899         nKeyCol = 0;
3900         nColumn = 1;
3901       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3902         return 0;
3903       }else{
3904         nKeyCol = pIndex->nKeyCol;
3905         nColumn = pIndex->nColumn;
3906         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3907         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3908                           || !HasRowid(pIndex->pTable));
3909         /* All relevant terms of the index must also be non-NULL in order
3910         ** for isOrderDistinct to be true.  So the isOrderDistint value
3911         ** computed here might be a false positive.  Corrections will be
3912         ** made at tag-20210426-1 below */
3913         isOrderDistinct = IsUniqueIndex(pIndex)
3914                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3915       }
3916 
3917       /* Loop through all columns of the index and deal with the ones
3918       ** that are not constrained by == or IN.
3919       */
3920       rev = revSet = 0;
3921       distinctColumns = 0;
3922       for(j=0; j<nColumn; j++){
3923         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3924 
3925         assert( j>=pLoop->u.btree.nEq
3926             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3927         );
3928         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3929           u16 eOp = pLoop->aLTerm[j]->eOperator;
3930 
3931           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3932           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3933           ** terms imply that the index is not UNIQUE NOT NULL in which case
3934           ** the loop need to be marked as not order-distinct because it can
3935           ** have repeated NULL rows.
3936           **
3937           ** If the current term is a column of an ((?,?) IN (SELECT...))
3938           ** expression for which the SELECT returns more than one column,
3939           ** check that it is the only column used by this loop. Otherwise,
3940           ** if it is one of two or more, none of the columns can be
3941           ** considered to match an ORDER BY term.
3942           */
3943           if( (eOp & eqOpMask)!=0 ){
3944             if( eOp & (WO_ISNULL|WO_IS) ){
3945               testcase( eOp & WO_ISNULL );
3946               testcase( eOp & WO_IS );
3947               testcase( isOrderDistinct );
3948               isOrderDistinct = 0;
3949             }
3950             continue;
3951           }else if( ALWAYS(eOp & WO_IN) ){
3952             /* ALWAYS() justification: eOp is an equality operator due to the
3953             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3954             ** than WO_IN is captured by the previous "if".  So this one
3955             ** always has to be WO_IN. */
3956             Expr *pX = pLoop->aLTerm[j]->pExpr;
3957             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3958               if( pLoop->aLTerm[i]->pExpr==pX ){
3959                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3960                 bOnce = 0;
3961                 break;
3962               }
3963             }
3964           }
3965         }
3966 
3967         /* Get the column number in the table (iColumn) and sort order
3968         ** (revIdx) for the j-th column of the index.
3969         */
3970         if( pIndex ){
3971           iColumn = pIndex->aiColumn[j];
3972           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3973           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3974         }else{
3975           iColumn = XN_ROWID;
3976           revIdx = 0;
3977         }
3978 
3979         /* An unconstrained column that might be NULL means that this
3980         ** WhereLoop is not well-ordered.  tag-20210426-1
3981         */
3982         if( isOrderDistinct ){
3983           if( iColumn>=0
3984            && j>=pLoop->u.btree.nEq
3985            && pIndex->pTable->aCol[iColumn].notNull==0
3986           ){
3987             isOrderDistinct = 0;
3988           }
3989           if( iColumn==XN_EXPR ){
3990             isOrderDistinct = 0;
3991           }
3992         }
3993 
3994         /* Find the ORDER BY term that corresponds to the j-th column
3995         ** of the index and mark that ORDER BY term off
3996         */
3997         isMatch = 0;
3998         for(i=0; bOnce && i<nOrderBy; i++){
3999           if( MASKBIT(i) & obSat ) continue;
4000           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4001           testcase( wctrlFlags & WHERE_GROUPBY );
4002           testcase( wctrlFlags & WHERE_DISTINCTBY );
4003           if( NEVER(pOBExpr==0) ) continue;
4004           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4005           if( iColumn>=XN_ROWID ){
4006             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4007             if( pOBExpr->iTable!=iCur ) continue;
4008             if( pOBExpr->iColumn!=iColumn ) continue;
4009           }else{
4010             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4011             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4012               continue;
4013             }
4014           }
4015           if( iColumn!=XN_ROWID ){
4016             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4017             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4018           }
4019           if( wctrlFlags & WHERE_DISTINCTBY ){
4020             pLoop->u.btree.nDistinctCol = j+1;
4021           }
4022           isMatch = 1;
4023           break;
4024         }
4025         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4026           /* Make sure the sort order is compatible in an ORDER BY clause.
4027           ** Sort order is irrelevant for a GROUP BY clause. */
4028           if( revSet ){
4029             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4030               isMatch = 0;
4031             }
4032           }else{
4033             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4034             if( rev ) *pRevMask |= MASKBIT(iLoop);
4035             revSet = 1;
4036           }
4037         }
4038         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4039           if( j==pLoop->u.btree.nEq ){
4040             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4041           }else{
4042             isMatch = 0;
4043           }
4044         }
4045         if( isMatch ){
4046           if( iColumn==XN_ROWID ){
4047             testcase( distinctColumns==0 );
4048             distinctColumns = 1;
4049           }
4050           obSat |= MASKBIT(i);
4051         }else{
4052           /* No match found */
4053           if( j==0 || j<nKeyCol ){
4054             testcase( isOrderDistinct!=0 );
4055             isOrderDistinct = 0;
4056           }
4057           break;
4058         }
4059       } /* end Loop over all index columns */
4060       if( distinctColumns ){
4061         testcase( isOrderDistinct==0 );
4062         isOrderDistinct = 1;
4063       }
4064     } /* end-if not one-row */
4065 
4066     /* Mark off any other ORDER BY terms that reference pLoop */
4067     if( isOrderDistinct ){
4068       orderDistinctMask |= pLoop->maskSelf;
4069       for(i=0; i<nOrderBy; i++){
4070         Expr *p;
4071         Bitmask mTerm;
4072         if( MASKBIT(i) & obSat ) continue;
4073         p = pOrderBy->a[i].pExpr;
4074         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4075         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4076         if( (mTerm&~orderDistinctMask)==0 ){
4077           obSat |= MASKBIT(i);
4078         }
4079       }
4080     }
4081   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4082   if( obSat==obDone ) return (i8)nOrderBy;
4083   if( !isOrderDistinct ){
4084     for(i=nOrderBy-1; i>0; i--){
4085       Bitmask m = MASKBIT(i) - 1;
4086       if( (obSat&m)==m ) return i;
4087     }
4088     return 0;
4089   }
4090   return -1;
4091 }
4092 
4093 
4094 /*
4095 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4096 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4097 ** BY clause - and so any order that groups rows as required satisfies the
4098 ** request.
4099 **
4100 ** Normally, in this case it is not possible for the caller to determine
4101 ** whether or not the rows are really being delivered in sorted order, or
4102 ** just in some other order that provides the required grouping. However,
4103 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4104 ** this function may be called on the returned WhereInfo object. It returns
4105 ** true if the rows really will be sorted in the specified order, or false
4106 ** otherwise.
4107 **
4108 ** For example, assuming:
4109 **
4110 **   CREATE INDEX i1 ON t1(x, Y);
4111 **
4112 ** then
4113 **
4114 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4115 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4116 */
4117 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4118   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4119   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4120   return pWInfo->sorted;
4121 }
4122 
4123 #ifdef WHERETRACE_ENABLED
4124 /* For debugging use only: */
4125 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4126   static char zName[65];
4127   int i;
4128   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4129   if( pLast ) zName[i++] = pLast->cId;
4130   zName[i] = 0;
4131   return zName;
4132 }
4133 #endif
4134 
4135 /*
4136 ** Return the cost of sorting nRow rows, assuming that the keys have
4137 ** nOrderby columns and that the first nSorted columns are already in
4138 ** order.
4139 */
4140 static LogEst whereSortingCost(
4141   WhereInfo *pWInfo,
4142   LogEst nRow,
4143   int nOrderBy,
4144   int nSorted
4145 ){
4146   /* TUNING: Estimated cost of a full external sort, where N is
4147   ** the number of rows to sort is:
4148   **
4149   **   cost = (3.0 * N * log(N)).
4150   **
4151   ** Or, if the order-by clause has X terms but only the last Y
4152   ** terms are out of order, then block-sorting will reduce the
4153   ** sorting cost to:
4154   **
4155   **   cost = (3.0 * N * log(N)) * (Y/X)
4156   **
4157   ** The (Y/X) term is implemented using stack variable rScale
4158   ** below.
4159   */
4160   LogEst rScale, rSortCost;
4161   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4162   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4163   rSortCost = nRow + rScale + 16;
4164 
4165   /* Multiple by log(M) where M is the number of output rows.
4166   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4167   ** a DISTINCT operator, M will be the number of distinct output
4168   ** rows, so fudge it downwards a bit.
4169   */
4170   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4171     nRow = pWInfo->iLimit;
4172   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4173     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4174     ** reduces the number of output rows by a factor of 2 */
4175     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4176   }
4177   rSortCost += estLog(nRow);
4178   return rSortCost;
4179 }
4180 
4181 /*
4182 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4183 ** attempts to find the lowest cost path that visits each WhereLoop
4184 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4185 **
4186 ** Assume that the total number of output rows that will need to be sorted
4187 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4188 ** costs if nRowEst==0.
4189 **
4190 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4191 ** error occurs.
4192 */
4193 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4194   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4195   int nLoop;                /* Number of terms in the join */
4196   Parse *pParse;            /* Parsing context */
4197   sqlite3 *db;              /* The database connection */
4198   int iLoop;                /* Loop counter over the terms of the join */
4199   int ii, jj;               /* Loop counters */
4200   int mxI = 0;              /* Index of next entry to replace */
4201   int nOrderBy;             /* Number of ORDER BY clause terms */
4202   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4203   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4204   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4205   WherePath *aFrom;         /* All nFrom paths at the previous level */
4206   WherePath *aTo;           /* The nTo best paths at the current level */
4207   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4208   WherePath *pTo;           /* An element of aTo[] that we are working on */
4209   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4210   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4211   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4212   char *pSpace;             /* Temporary memory used by this routine */
4213   int nSpace;               /* Bytes of space allocated at pSpace */
4214 
4215   pParse = pWInfo->pParse;
4216   db = pParse->db;
4217   nLoop = pWInfo->nLevel;
4218   /* TUNING: For simple queries, only the best path is tracked.
4219   ** For 2-way joins, the 5 best paths are followed.
4220   ** For joins of 3 or more tables, track the 10 best paths */
4221   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4222   assert( nLoop<=pWInfo->pTabList->nSrc );
4223   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4224 
4225   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4226   ** case the purpose of this call is to estimate the number of rows returned
4227   ** by the overall query. Once this estimate has been obtained, the caller
4228   ** will invoke this function a second time, passing the estimate as the
4229   ** nRowEst parameter.  */
4230   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4231     nOrderBy = 0;
4232   }else{
4233     nOrderBy = pWInfo->pOrderBy->nExpr;
4234   }
4235 
4236   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4237   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4238   nSpace += sizeof(LogEst) * nOrderBy;
4239   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4240   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4241   aTo = (WherePath*)pSpace;
4242   aFrom = aTo+mxChoice;
4243   memset(aFrom, 0, sizeof(aFrom[0]));
4244   pX = (WhereLoop**)(aFrom+mxChoice);
4245   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4246     pFrom->aLoop = pX;
4247   }
4248   if( nOrderBy ){
4249     /* If there is an ORDER BY clause and it is not being ignored, set up
4250     ** space for the aSortCost[] array. Each element of the aSortCost array
4251     ** is either zero - meaning it has not yet been initialized - or the
4252     ** cost of sorting nRowEst rows of data where the first X terms of
4253     ** the ORDER BY clause are already in order, where X is the array
4254     ** index.  */
4255     aSortCost = (LogEst*)pX;
4256     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4257   }
4258   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4259   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4260 
4261   /* Seed the search with a single WherePath containing zero WhereLoops.
4262   **
4263   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4264   ** of computing an automatic index is not paid back within the first 28
4265   ** rows, then do not use the automatic index. */
4266   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4267   nFrom = 1;
4268   assert( aFrom[0].isOrdered==0 );
4269   if( nOrderBy ){
4270     /* If nLoop is zero, then there are no FROM terms in the query. Since
4271     ** in this case the query may return a maximum of one row, the results
4272     ** are already in the requested order. Set isOrdered to nOrderBy to
4273     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4274     ** -1, indicating that the result set may or may not be ordered,
4275     ** depending on the loops added to the current plan.  */
4276     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4277   }
4278 
4279   /* Compute successively longer WherePaths using the previous generation
4280   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4281   ** best paths at each generation */
4282   for(iLoop=0; iLoop<nLoop; iLoop++){
4283     nTo = 0;
4284     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4285       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4286         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4287         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4288         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4289         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4290         Bitmask maskNew;                  /* Mask of src visited by (..) */
4291         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4292 
4293         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4294         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4295         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4296           /* Do not use an automatic index if the this loop is expected
4297           ** to run less than 1.25 times.  It is tempting to also exclude
4298           ** automatic index usage on an outer loop, but sometimes an automatic
4299           ** index is useful in the outer loop of a correlated subquery. */
4300           assert( 10==sqlite3LogEst(2) );
4301           continue;
4302         }
4303 
4304         /* At this point, pWLoop is a candidate to be the next loop.
4305         ** Compute its cost */
4306         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4307         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4308         nOut = pFrom->nRow + pWLoop->nOut;
4309         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4310         if( isOrdered<0 ){
4311           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4312                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4313                        iLoop, pWLoop, &revMask);
4314         }else{
4315           revMask = pFrom->revLoop;
4316         }
4317         if( isOrdered>=0 && isOrdered<nOrderBy ){
4318           if( aSortCost[isOrdered]==0 ){
4319             aSortCost[isOrdered] = whereSortingCost(
4320                 pWInfo, nRowEst, nOrderBy, isOrdered
4321             );
4322           }
4323           /* TUNING:  Add a small extra penalty (5) to sorting as an
4324           ** extra encouragment to the query planner to select a plan
4325           ** where the rows emerge in the correct order without any sorting
4326           ** required. */
4327           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4328 
4329           WHERETRACE(0x002,
4330               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4331                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4332                rUnsorted, rCost));
4333         }else{
4334           rCost = rUnsorted;
4335           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4336         }
4337 
4338         /* Check to see if pWLoop should be added to the set of
4339         ** mxChoice best-so-far paths.
4340         **
4341         ** First look for an existing path among best-so-far paths
4342         ** that covers the same set of loops and has the same isOrdered
4343         ** setting as the current path candidate.
4344         **
4345         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4346         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4347         ** of legal values for isOrdered, -1..64.
4348         */
4349         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4350           if( pTo->maskLoop==maskNew
4351            && ((pTo->isOrdered^isOrdered)&0x80)==0
4352           ){
4353             testcase( jj==nTo-1 );
4354             break;
4355           }
4356         }
4357         if( jj>=nTo ){
4358           /* None of the existing best-so-far paths match the candidate. */
4359           if( nTo>=mxChoice
4360            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4361           ){
4362             /* The current candidate is no better than any of the mxChoice
4363             ** paths currently in the best-so-far buffer.  So discard
4364             ** this candidate as not viable. */
4365 #ifdef WHERETRACE_ENABLED /* 0x4 */
4366             if( sqlite3WhereTrace&0x4 ){
4367               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4368                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4369                   isOrdered>=0 ? isOrdered+'0' : '?');
4370             }
4371 #endif
4372             continue;
4373           }
4374           /* If we reach this points it means that the new candidate path
4375           ** needs to be added to the set of best-so-far paths. */
4376           if( nTo<mxChoice ){
4377             /* Increase the size of the aTo set by one */
4378             jj = nTo++;
4379           }else{
4380             /* New path replaces the prior worst to keep count below mxChoice */
4381             jj = mxI;
4382           }
4383           pTo = &aTo[jj];
4384 #ifdef WHERETRACE_ENABLED /* 0x4 */
4385           if( sqlite3WhereTrace&0x4 ){
4386             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4387                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4388                 isOrdered>=0 ? isOrdered+'0' : '?');
4389           }
4390 #endif
4391         }else{
4392           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4393           ** same set of loops and has the same isOrdered setting as the
4394           ** candidate path.  Check to see if the candidate should replace
4395           ** pTo or if the candidate should be skipped.
4396           **
4397           ** The conditional is an expanded vector comparison equivalent to:
4398           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4399           */
4400           if( pTo->rCost<rCost
4401            || (pTo->rCost==rCost
4402                && (pTo->nRow<nOut
4403                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4404                   )
4405               )
4406           ){
4407 #ifdef WHERETRACE_ENABLED /* 0x4 */
4408             if( sqlite3WhereTrace&0x4 ){
4409               sqlite3DebugPrintf(
4410                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4411                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4412                   isOrdered>=0 ? isOrdered+'0' : '?');
4413               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4414                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4415                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4416             }
4417 #endif
4418             /* Discard the candidate path from further consideration */
4419             testcase( pTo->rCost==rCost );
4420             continue;
4421           }
4422           testcase( pTo->rCost==rCost+1 );
4423           /* Control reaches here if the candidate path is better than the
4424           ** pTo path.  Replace pTo with the candidate. */
4425 #ifdef WHERETRACE_ENABLED /* 0x4 */
4426           if( sqlite3WhereTrace&0x4 ){
4427             sqlite3DebugPrintf(
4428                 "Update %s cost=%-3d,%3d,%3d order=%c",
4429                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4430                 isOrdered>=0 ? isOrdered+'0' : '?');
4431             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4432                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4433                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4434           }
4435 #endif
4436         }
4437         /* pWLoop is a winner.  Add it to the set of best so far */
4438         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4439         pTo->revLoop = revMask;
4440         pTo->nRow = nOut;
4441         pTo->rCost = rCost;
4442         pTo->rUnsorted = rUnsorted;
4443         pTo->isOrdered = isOrdered;
4444         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4445         pTo->aLoop[iLoop] = pWLoop;
4446         if( nTo>=mxChoice ){
4447           mxI = 0;
4448           mxCost = aTo[0].rCost;
4449           mxUnsorted = aTo[0].nRow;
4450           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4451             if( pTo->rCost>mxCost
4452              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4453             ){
4454               mxCost = pTo->rCost;
4455               mxUnsorted = pTo->rUnsorted;
4456               mxI = jj;
4457             }
4458           }
4459         }
4460       }
4461     }
4462 
4463 #ifdef WHERETRACE_ENABLED  /* >=2 */
4464     if( sqlite3WhereTrace & 0x02 ){
4465       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4466       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4467         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4468            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4469            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4470         if( pTo->isOrdered>0 ){
4471           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4472         }else{
4473           sqlite3DebugPrintf("\n");
4474         }
4475       }
4476     }
4477 #endif
4478 
4479     /* Swap the roles of aFrom and aTo for the next generation */
4480     pFrom = aTo;
4481     aTo = aFrom;
4482     aFrom = pFrom;
4483     nFrom = nTo;
4484   }
4485 
4486   if( nFrom==0 ){
4487     sqlite3ErrorMsg(pParse, "no query solution");
4488     sqlite3DbFreeNN(db, pSpace);
4489     return SQLITE_ERROR;
4490   }
4491 
4492   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4493   pFrom = aFrom;
4494   for(ii=1; ii<nFrom; ii++){
4495     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4496   }
4497   assert( pWInfo->nLevel==nLoop );
4498   /* Load the lowest cost path into pWInfo */
4499   for(iLoop=0; iLoop<nLoop; iLoop++){
4500     WhereLevel *pLevel = pWInfo->a + iLoop;
4501     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4502     pLevel->iFrom = pWLoop->iTab;
4503     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4504   }
4505   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4506    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4507    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4508    && nRowEst
4509   ){
4510     Bitmask notUsed;
4511     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4512                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4513     if( rc==pWInfo->pResultSet->nExpr ){
4514       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4515     }
4516   }
4517   pWInfo->bOrderedInnerLoop = 0;
4518   if( pWInfo->pOrderBy ){
4519     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4520       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4521         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4522       }
4523     }else{
4524       pWInfo->nOBSat = pFrom->isOrdered;
4525       pWInfo->revMask = pFrom->revLoop;
4526       if( pWInfo->nOBSat<=0 ){
4527         pWInfo->nOBSat = 0;
4528         if( nLoop>0 ){
4529           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4530           if( (wsFlags & WHERE_ONEROW)==0
4531            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4532           ){
4533             Bitmask m = 0;
4534             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4535                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4536             testcase( wsFlags & WHERE_IPK );
4537             testcase( wsFlags & WHERE_COLUMN_IN );
4538             if( rc==pWInfo->pOrderBy->nExpr ){
4539               pWInfo->bOrderedInnerLoop = 1;
4540               pWInfo->revMask = m;
4541             }
4542           }
4543         }
4544       }else if( nLoop
4545             && pWInfo->nOBSat==1
4546             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4547             ){
4548         pWInfo->bOrderedInnerLoop = 1;
4549       }
4550     }
4551     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4552         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4553     ){
4554       Bitmask revMask = 0;
4555       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4556           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4557       );
4558       assert( pWInfo->sorted==0 );
4559       if( nOrder==pWInfo->pOrderBy->nExpr ){
4560         pWInfo->sorted = 1;
4561         pWInfo->revMask = revMask;
4562       }
4563     }
4564   }
4565 
4566 
4567   pWInfo->nRowOut = pFrom->nRow;
4568 
4569   /* Free temporary memory and return success */
4570   sqlite3DbFreeNN(db, pSpace);
4571   return SQLITE_OK;
4572 }
4573 
4574 /*
4575 ** Most queries use only a single table (they are not joins) and have
4576 ** simple == constraints against indexed fields.  This routine attempts
4577 ** to plan those simple cases using much less ceremony than the
4578 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4579 ** times for the common case.
4580 **
4581 ** Return non-zero on success, if this query can be handled by this
4582 ** no-frills query planner.  Return zero if this query needs the
4583 ** general-purpose query planner.
4584 */
4585 static int whereShortCut(WhereLoopBuilder *pBuilder){
4586   WhereInfo *pWInfo;
4587   SrcItem *pItem;
4588   WhereClause *pWC;
4589   WhereTerm *pTerm;
4590   WhereLoop *pLoop;
4591   int iCur;
4592   int j;
4593   Table *pTab;
4594   Index *pIdx;
4595 
4596   pWInfo = pBuilder->pWInfo;
4597   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4598   assert( pWInfo->pTabList->nSrc>=1 );
4599   pItem = pWInfo->pTabList->a;
4600   pTab = pItem->pTab;
4601   if( IsVirtual(pTab) ) return 0;
4602   if( pItem->fg.isIndexedBy ) return 0;
4603   iCur = pItem->iCursor;
4604   pWC = &pWInfo->sWC;
4605   pLoop = pBuilder->pNew;
4606   pLoop->wsFlags = 0;
4607   pLoop->nSkip = 0;
4608   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4609   if( pTerm ){
4610     testcase( pTerm->eOperator & WO_IS );
4611     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4612     pLoop->aLTerm[0] = pTerm;
4613     pLoop->nLTerm = 1;
4614     pLoop->u.btree.nEq = 1;
4615     /* TUNING: Cost of a rowid lookup is 10 */
4616     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4617   }else{
4618     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4619       int opMask;
4620       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4621       if( !IsUniqueIndex(pIdx)
4622        || pIdx->pPartIdxWhere!=0
4623        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4624       ) continue;
4625       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4626       for(j=0; j<pIdx->nKeyCol; j++){
4627         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4628         if( pTerm==0 ) break;
4629         testcase( pTerm->eOperator & WO_IS );
4630         pLoop->aLTerm[j] = pTerm;
4631       }
4632       if( j!=pIdx->nKeyCol ) continue;
4633       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4634       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4635         pLoop->wsFlags |= WHERE_IDX_ONLY;
4636       }
4637       pLoop->nLTerm = j;
4638       pLoop->u.btree.nEq = j;
4639       pLoop->u.btree.pIndex = pIdx;
4640       /* TUNING: Cost of a unique index lookup is 15 */
4641       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4642       break;
4643     }
4644   }
4645   if( pLoop->wsFlags ){
4646     pLoop->nOut = (LogEst)1;
4647     pWInfo->a[0].pWLoop = pLoop;
4648     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4649     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4650     pWInfo->a[0].iTabCur = iCur;
4651     pWInfo->nRowOut = 1;
4652     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4653     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4654       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4655     }
4656 #ifdef SQLITE_DEBUG
4657     pLoop->cId = '0';
4658 #endif
4659     return 1;
4660   }
4661   return 0;
4662 }
4663 
4664 /*
4665 ** Helper function for exprIsDeterministic().
4666 */
4667 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4668   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4669     pWalker->eCode = 0;
4670     return WRC_Abort;
4671   }
4672   return WRC_Continue;
4673 }
4674 
4675 /*
4676 ** Return true if the expression contains no non-deterministic SQL
4677 ** functions. Do not consider non-deterministic SQL functions that are
4678 ** part of sub-select statements.
4679 */
4680 static int exprIsDeterministic(Expr *p){
4681   Walker w;
4682   memset(&w, 0, sizeof(w));
4683   w.eCode = 1;
4684   w.xExprCallback = exprNodeIsDeterministic;
4685   w.xSelectCallback = sqlite3SelectWalkFail;
4686   sqlite3WalkExpr(&w, p);
4687   return w.eCode;
4688 }
4689 
4690 
4691 #ifdef WHERETRACE_ENABLED
4692 /*
4693 ** Display all WhereLoops in pWInfo
4694 */
4695 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4696   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4697     WhereLoop *p;
4698     int i;
4699     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4700                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4701     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4702       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4703       sqlite3WhereLoopPrint(p, pWC);
4704     }
4705   }
4706 }
4707 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4708 #else
4709 # define WHERETRACE_ALL_LOOPS(W,C)
4710 #endif
4711 
4712 /*
4713 ** Generate the beginning of the loop used for WHERE clause processing.
4714 ** The return value is a pointer to an opaque structure that contains
4715 ** information needed to terminate the loop.  Later, the calling routine
4716 ** should invoke sqlite3WhereEnd() with the return value of this function
4717 ** in order to complete the WHERE clause processing.
4718 **
4719 ** If an error occurs, this routine returns NULL.
4720 **
4721 ** The basic idea is to do a nested loop, one loop for each table in
4722 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4723 ** same as a SELECT with only a single table in the FROM clause.)  For
4724 ** example, if the SQL is this:
4725 **
4726 **       SELECT * FROM t1, t2, t3 WHERE ...;
4727 **
4728 ** Then the code generated is conceptually like the following:
4729 **
4730 **      foreach row1 in t1 do       \    Code generated
4731 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4732 **          foreach row3 in t3 do   /
4733 **            ...
4734 **          end                     \    Code generated
4735 **        end                        |-- by sqlite3WhereEnd()
4736 **      end                         /
4737 **
4738 ** Note that the loops might not be nested in the order in which they
4739 ** appear in the FROM clause if a different order is better able to make
4740 ** use of indices.  Note also that when the IN operator appears in
4741 ** the WHERE clause, it might result in additional nested loops for
4742 ** scanning through all values on the right-hand side of the IN.
4743 **
4744 ** There are Btree cursors associated with each table.  t1 uses cursor
4745 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4746 ** And so forth.  This routine generates code to open those VDBE cursors
4747 ** and sqlite3WhereEnd() generates the code to close them.
4748 **
4749 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4750 ** in pTabList pointing at their appropriate entries.  The [...] code
4751 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4752 ** data from the various tables of the loop.
4753 **
4754 ** If the WHERE clause is empty, the foreach loops must each scan their
4755 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4756 ** the tables have indices and there are terms in the WHERE clause that
4757 ** refer to those indices, a complete table scan can be avoided and the
4758 ** code will run much faster.  Most of the work of this routine is checking
4759 ** to see if there are indices that can be used to speed up the loop.
4760 **
4761 ** Terms of the WHERE clause are also used to limit which rows actually
4762 ** make it to the "..." in the middle of the loop.  After each "foreach",
4763 ** terms of the WHERE clause that use only terms in that loop and outer
4764 ** loops are evaluated and if false a jump is made around all subsequent
4765 ** inner loops (or around the "..." if the test occurs within the inner-
4766 ** most loop)
4767 **
4768 ** OUTER JOINS
4769 **
4770 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4771 **
4772 **    foreach row1 in t1 do
4773 **      flag = 0
4774 **      foreach row2 in t2 do
4775 **        start:
4776 **          ...
4777 **          flag = 1
4778 **      end
4779 **      if flag==0 then
4780 **        move the row2 cursor to a null row
4781 **        goto start
4782 **      fi
4783 **    end
4784 **
4785 ** ORDER BY CLAUSE PROCESSING
4786 **
4787 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4788 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4789 ** if there is one.  If there is no ORDER BY clause or if this routine
4790 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4791 **
4792 ** The iIdxCur parameter is the cursor number of an index.  If
4793 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4794 ** to use for OR clause processing.  The WHERE clause should use this
4795 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4796 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4797 ** be used to compute the appropriate cursor depending on which index is
4798 ** used.
4799 */
4800 WhereInfo *sqlite3WhereBegin(
4801   Parse *pParse,          /* The parser context */
4802   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4803   Expr *pWhere,           /* The WHERE clause */
4804   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4805   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4806   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4807   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4808                           ** If WHERE_USE_LIMIT, then the limit amount */
4809 ){
4810   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4811   int nTabList;              /* Number of elements in pTabList */
4812   WhereInfo *pWInfo;         /* Will become the return value of this function */
4813   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4814   Bitmask notReady;          /* Cursors that are not yet positioned */
4815   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4816   WhereMaskSet *pMaskSet;    /* The expression mask set */
4817   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4818   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4819   int ii;                    /* Loop counter */
4820   sqlite3 *db;               /* Database connection */
4821   int rc;                    /* Return code */
4822   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4823 
4824   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4825         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4826      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4827   ));
4828 
4829   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4830   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4831             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4832 
4833   /* Variable initialization */
4834   db = pParse->db;
4835   memset(&sWLB, 0, sizeof(sWLB));
4836 
4837   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4838   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4839   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4840   sWLB.pOrderBy = pOrderBy;
4841 
4842   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4843   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4844   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4845     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4846   }
4847 
4848   /* The number of tables in the FROM clause is limited by the number of
4849   ** bits in a Bitmask
4850   */
4851   testcase( pTabList->nSrc==BMS );
4852   if( pTabList->nSrc>BMS ){
4853     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4854     return 0;
4855   }
4856 
4857   /* This function normally generates a nested loop for all tables in
4858   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4859   ** only generate code for the first table in pTabList and assume that
4860   ** any cursors associated with subsequent tables are uninitialized.
4861   */
4862   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4863 
4864   /* Allocate and initialize the WhereInfo structure that will become the
4865   ** return value. A single allocation is used to store the WhereInfo
4866   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4867   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4868   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4869   ** some architectures. Hence the ROUND8() below.
4870   */
4871   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4872   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4873   if( db->mallocFailed ){
4874     sqlite3DbFree(db, pWInfo);
4875     pWInfo = 0;
4876     goto whereBeginError;
4877   }
4878   pWInfo->pParse = pParse;
4879   pWInfo->pTabList = pTabList;
4880   pWInfo->pOrderBy = pOrderBy;
4881   pWInfo->pWhere = pWhere;
4882   pWInfo->pResultSet = pResultSet;
4883   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4884   pWInfo->nLevel = nTabList;
4885   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4886   pWInfo->wctrlFlags = wctrlFlags;
4887   pWInfo->iLimit = iAuxArg;
4888   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4889   memset(&pWInfo->nOBSat, 0,
4890          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4891   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4892   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4893   pMaskSet = &pWInfo->sMaskSet;
4894   sWLB.pWInfo = pWInfo;
4895   sWLB.pWC = &pWInfo->sWC;
4896   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4897   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4898   whereLoopInit(sWLB.pNew);
4899 #ifdef SQLITE_DEBUG
4900   sWLB.pNew->cId = '*';
4901 #endif
4902 
4903   /* Split the WHERE clause into separate subexpressions where each
4904   ** subexpression is separated by an AND operator.
4905   */
4906   initMaskSet(pMaskSet);
4907   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4908   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4909 
4910   /* Special case: No FROM clause
4911   */
4912   if( nTabList==0 ){
4913     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4914     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4915       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4916     }
4917     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4918   }else{
4919     /* Assign a bit from the bitmask to every term in the FROM clause.
4920     **
4921     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4922     **
4923     ** The rule of the previous sentence ensures thta if X is the bitmask for
4924     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4925     ** Knowing the bitmask for all tables to the left of a left join is
4926     ** important.  Ticket #3015.
4927     **
4928     ** Note that bitmasks are created for all pTabList->nSrc tables in
4929     ** pTabList, not just the first nTabList tables.  nTabList is normally
4930     ** equal to pTabList->nSrc but might be shortened to 1 if the
4931     ** WHERE_OR_SUBCLAUSE flag is set.
4932     */
4933     ii = 0;
4934     do{
4935       createMask(pMaskSet, pTabList->a[ii].iCursor);
4936       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4937     }while( (++ii)<pTabList->nSrc );
4938   #ifdef SQLITE_DEBUG
4939     {
4940       Bitmask mx = 0;
4941       for(ii=0; ii<pTabList->nSrc; ii++){
4942         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4943         assert( m>=mx );
4944         mx = m;
4945       }
4946     }
4947   #endif
4948   }
4949 
4950   /* Analyze all of the subexpressions. */
4951   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4952   if( db->mallocFailed ) goto whereBeginError;
4953 
4954   /* Special case: WHERE terms that do not refer to any tables in the join
4955   ** (constant expressions). Evaluate each such term, and jump over all the
4956   ** generated code if the result is not true.
4957   **
4958   ** Do not do this if the expression contains non-deterministic functions
4959   ** that are not within a sub-select. This is not strictly required, but
4960   ** preserves SQLite's legacy behaviour in the following two cases:
4961   **
4962   **   FROM ... WHERE random()>0;           -- eval random() once per row
4963   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4964   */
4965   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4966     WhereTerm *pT = &sWLB.pWC->a[ii];
4967     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4968     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4969       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4970       pT->wtFlags |= TERM_CODED;
4971     }
4972   }
4973 
4974   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4975     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4976       /* The DISTINCT marking is pointless.  Ignore it. */
4977       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4978     }else if( pOrderBy==0 ){
4979       /* Try to ORDER BY the result set to make distinct processing easier */
4980       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4981       pWInfo->pOrderBy = pResultSet;
4982     }
4983   }
4984 
4985   /* Construct the WhereLoop objects */
4986 #if defined(WHERETRACE_ENABLED)
4987   if( sqlite3WhereTrace & 0xffff ){
4988     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4989     if( wctrlFlags & WHERE_USE_LIMIT ){
4990       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4991     }
4992     sqlite3DebugPrintf(")\n");
4993     if( sqlite3WhereTrace & 0x100 ){
4994       Select sSelect;
4995       memset(&sSelect, 0, sizeof(sSelect));
4996       sSelect.selFlags = SF_WhereBegin;
4997       sSelect.pSrc = pTabList;
4998       sSelect.pWhere = pWhere;
4999       sSelect.pOrderBy = pOrderBy;
5000       sSelect.pEList = pResultSet;
5001       sqlite3TreeViewSelect(0, &sSelect, 0);
5002     }
5003   }
5004   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5005     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5006     sqlite3WhereClausePrint(sWLB.pWC);
5007   }
5008 #endif
5009 
5010   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5011     rc = whereLoopAddAll(&sWLB);
5012     if( rc ) goto whereBeginError;
5013 
5014 #ifdef SQLITE_ENABLE_STAT4
5015     /* If one or more WhereTerm.truthProb values were used in estimating
5016     ** loop parameters, but then those truthProb values were subsequently
5017     ** changed based on STAT4 information while computing subsequent loops,
5018     ** then we need to rerun the whole loop building process so that all
5019     ** loops will be built using the revised truthProb values. */
5020     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5021       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5022       WHERETRACE(0xffff,
5023            ("**** Redo all loop computations due to"
5024             " TERM_HIGHTRUTH changes ****\n"));
5025       while( pWInfo->pLoops ){
5026         WhereLoop *p = pWInfo->pLoops;
5027         pWInfo->pLoops = p->pNextLoop;
5028         whereLoopDelete(db, p);
5029       }
5030       rc = whereLoopAddAll(&sWLB);
5031       if( rc ) goto whereBeginError;
5032     }
5033 #endif
5034     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5035 
5036     wherePathSolver(pWInfo, 0);
5037     if( db->mallocFailed ) goto whereBeginError;
5038     if( pWInfo->pOrderBy ){
5039        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5040        if( db->mallocFailed ) goto whereBeginError;
5041     }
5042   }
5043   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5044      pWInfo->revMask = ALLBITS;
5045   }
5046   if( pParse->nErr || db->mallocFailed ){
5047     goto whereBeginError;
5048   }
5049 #ifdef WHERETRACE_ENABLED
5050   if( sqlite3WhereTrace ){
5051     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5052     if( pWInfo->nOBSat>0 ){
5053       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5054     }
5055     switch( pWInfo->eDistinct ){
5056       case WHERE_DISTINCT_UNIQUE: {
5057         sqlite3DebugPrintf("  DISTINCT=unique");
5058         break;
5059       }
5060       case WHERE_DISTINCT_ORDERED: {
5061         sqlite3DebugPrintf("  DISTINCT=ordered");
5062         break;
5063       }
5064       case WHERE_DISTINCT_UNORDERED: {
5065         sqlite3DebugPrintf("  DISTINCT=unordered");
5066         break;
5067       }
5068     }
5069     sqlite3DebugPrintf("\n");
5070     for(ii=0; ii<pWInfo->nLevel; ii++){
5071       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5072     }
5073   }
5074 #endif
5075 
5076   /* Attempt to omit tables from the join that do not affect the result.
5077   ** For a table to not affect the result, the following must be true:
5078   **
5079   **   1) The query must not be an aggregate.
5080   **   2) The table must be the RHS of a LEFT JOIN.
5081   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5082   **      must contain a constraint that limits the scan of the table to
5083   **      at most a single row.
5084   **   4) The table must not be referenced by any part of the query apart
5085   **      from its own USING or ON clause.
5086   **
5087   ** For example, given:
5088   **
5089   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5090   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5091   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5092   **
5093   ** then table t2 can be omitted from the following:
5094   **
5095   **     SELECT v1, v3 FROM t1
5096   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5097   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5098   **
5099   ** or from:
5100   **
5101   **     SELECT DISTINCT v1, v3 FROM t1
5102   **       LEFT JOIN t2
5103   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5104   */
5105   notReady = ~(Bitmask)0;
5106   if( pWInfo->nLevel>=2
5107    && pResultSet!=0                         /* these two combine to guarantee */
5108    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5109    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5110   ){
5111     int i;
5112     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5113     if( sWLB.pOrderBy ){
5114       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5115     }
5116     for(i=pWInfo->nLevel-1; i>=1; i--){
5117       WhereTerm *pTerm, *pEnd;
5118       SrcItem *pItem;
5119       pLoop = pWInfo->a[i].pWLoop;
5120       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5121       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5122       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5123        && (pLoop->wsFlags & WHERE_ONEROW)==0
5124       ){
5125         continue;
5126       }
5127       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5128       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5129       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5130         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5131           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5132            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5133           ){
5134             break;
5135           }
5136         }
5137       }
5138       if( pTerm<pEnd ) continue;
5139       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5140       notReady &= ~pLoop->maskSelf;
5141       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5142         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5143           pTerm->wtFlags |= TERM_CODED;
5144         }
5145       }
5146       if( i!=pWInfo->nLevel-1 ){
5147         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5148         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5149       }
5150       pWInfo->nLevel--;
5151       nTabList--;
5152     }
5153   }
5154 #if defined(WHERETRACE_ENABLED)
5155   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5156     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5157     sqlite3WhereClausePrint(sWLB.pWC);
5158   }
5159   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5160 #endif
5161   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5162 
5163   /* If the caller is an UPDATE or DELETE statement that is requesting
5164   ** to use a one-pass algorithm, determine if this is appropriate.
5165   **
5166   ** A one-pass approach can be used if the caller has requested one
5167   ** and either (a) the scan visits at most one row or (b) each
5168   ** of the following are true:
5169   **
5170   **   * the caller has indicated that a one-pass approach can be used
5171   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5172   **   * the table is not a virtual table, and
5173   **   * either the scan does not use the OR optimization or the caller
5174   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5175   **     for DELETE).
5176   **
5177   ** The last qualification is because an UPDATE statement uses
5178   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5179   ** use a one-pass approach, and this is not set accurately for scans
5180   ** that use the OR optimization.
5181   */
5182   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5183   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5184     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5185     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5186     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5187     if( bOnerow || (
5188         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5189      && !IsVirtual(pTabList->a[0].pTab)
5190      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5191     )){
5192       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5193       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5194         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5195           bFordelete = OPFLAG_FORDELETE;
5196         }
5197         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5198       }
5199     }
5200   }
5201 
5202   /* Open all tables in the pTabList and any indices selected for
5203   ** searching those tables.
5204   */
5205   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5206     Table *pTab;     /* Table to open */
5207     int iDb;         /* Index of database containing table/index */
5208     SrcItem *pTabItem;
5209 
5210     pTabItem = &pTabList->a[pLevel->iFrom];
5211     pTab = pTabItem->pTab;
5212     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5213     pLoop = pLevel->pWLoop;
5214     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5215       /* Do nothing */
5216     }else
5217 #ifndef SQLITE_OMIT_VIRTUALTABLE
5218     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5219       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5220       int iCur = pTabItem->iCursor;
5221       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5222     }else if( IsVirtual(pTab) ){
5223       /* noop */
5224     }else
5225 #endif
5226     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5227          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5228       int op = OP_OpenRead;
5229       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5230         op = OP_OpenWrite;
5231         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5232       };
5233       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5234       assert( pTabItem->iCursor==pLevel->iTabCur );
5235       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5236       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5237       if( pWInfo->eOnePass==ONEPASS_OFF
5238        && pTab->nCol<BMS
5239        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5240       ){
5241         /* If we know that only a prefix of the record will be used,
5242         ** it is advantageous to reduce the "column count" field in
5243         ** the P4 operand of the OP_OpenRead/Write opcode. */
5244         Bitmask b = pTabItem->colUsed;
5245         int n = 0;
5246         for(; b; b=b>>1, n++){}
5247         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5248         assert( n<=pTab->nCol );
5249       }
5250 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5251       if( pLoop->u.btree.pIndex!=0 ){
5252         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5253       }else
5254 #endif
5255       {
5256         sqlite3VdbeChangeP5(v, bFordelete);
5257       }
5258 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5259       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5260                             (const u8*)&pTabItem->colUsed, P4_INT64);
5261 #endif
5262     }else{
5263       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5264     }
5265     if( pLoop->wsFlags & WHERE_INDEXED ){
5266       Index *pIx = pLoop->u.btree.pIndex;
5267       int iIndexCur;
5268       int op = OP_OpenRead;
5269       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5270       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5271       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5272        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5273       ){
5274         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5275         ** WITHOUT ROWID table.  No need for a separate index */
5276         iIndexCur = pLevel->iTabCur;
5277         op = 0;
5278       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5279         Index *pJ = pTabItem->pTab->pIndex;
5280         iIndexCur = iAuxArg;
5281         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5282         while( ALWAYS(pJ) && pJ!=pIx ){
5283           iIndexCur++;
5284           pJ = pJ->pNext;
5285         }
5286         op = OP_OpenWrite;
5287         pWInfo->aiCurOnePass[1] = iIndexCur;
5288       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5289         iIndexCur = iAuxArg;
5290         op = OP_ReopenIdx;
5291       }else{
5292         iIndexCur = pParse->nTab++;
5293       }
5294       pLevel->iIdxCur = iIndexCur;
5295       assert( pIx->pSchema==pTab->pSchema );
5296       assert( iIndexCur>=0 );
5297       if( op ){
5298         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5299         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5300         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5301          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5302          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5303          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5304          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5305          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5306         ){
5307           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5308         }
5309         VdbeComment((v, "%s", pIx->zName));
5310 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5311         {
5312           u64 colUsed = 0;
5313           int ii, jj;
5314           for(ii=0; ii<pIx->nColumn; ii++){
5315             jj = pIx->aiColumn[ii];
5316             if( jj<0 ) continue;
5317             if( jj>63 ) jj = 63;
5318             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5319             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5320           }
5321           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5322                                 (u8*)&colUsed, P4_INT64);
5323         }
5324 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5325       }
5326     }
5327     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5328   }
5329   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5330   if( db->mallocFailed ) goto whereBeginError;
5331 
5332   /* Generate the code to do the search.  Each iteration of the for
5333   ** loop below generates code for a single nested loop of the VM
5334   ** program.
5335   */
5336   for(ii=0; ii<nTabList; ii++){
5337     int addrExplain;
5338     int wsFlags;
5339     pLevel = &pWInfo->a[ii];
5340     wsFlags = pLevel->pWLoop->wsFlags;
5341 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5342     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5343       constructAutomaticIndex(pParse, &pWInfo->sWC,
5344                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5345       if( db->mallocFailed ) goto whereBeginError;
5346     }
5347 #endif
5348     addrExplain = sqlite3WhereExplainOneScan(
5349         pParse, pTabList, pLevel, wctrlFlags
5350     );
5351     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5352     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5353     pWInfo->iContinue = pLevel->addrCont;
5354     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5355       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5356     }
5357   }
5358 
5359   /* Done. */
5360   VdbeModuleComment((v, "Begin WHERE-core"));
5361   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5362   return pWInfo;
5363 
5364   /* Jump here if malloc fails */
5365 whereBeginError:
5366   if( pWInfo ){
5367     testcase( pWInfo->pExprMods!=0 );
5368     whereUndoExprMods(pWInfo);
5369     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5370     whereInfoFree(db, pWInfo);
5371   }
5372   return 0;
5373 }
5374 
5375 /*
5376 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5377 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5378 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5379 ** does that.
5380 */
5381 #ifndef SQLITE_DEBUG
5382 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5383 #else
5384 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5385   static void sqlite3WhereOpcodeRewriteTrace(
5386     sqlite3 *db,
5387     int pc,
5388     VdbeOp *pOp
5389   ){
5390     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5391     sqlite3VdbePrintOp(0, pc, pOp);
5392   }
5393 #endif
5394 
5395 /*
5396 ** Generate the end of the WHERE loop.  See comments on
5397 ** sqlite3WhereBegin() for additional information.
5398 */
5399 void sqlite3WhereEnd(WhereInfo *pWInfo){
5400   Parse *pParse = pWInfo->pParse;
5401   Vdbe *v = pParse->pVdbe;
5402   int i;
5403   WhereLevel *pLevel;
5404   WhereLoop *pLoop;
5405   SrcList *pTabList = pWInfo->pTabList;
5406   sqlite3 *db = pParse->db;
5407   int iEnd = sqlite3VdbeCurrentAddr(v);
5408 
5409   /* Generate loop termination code.
5410   */
5411   VdbeModuleComment((v, "End WHERE-core"));
5412   for(i=pWInfo->nLevel-1; i>=0; i--){
5413     int addr;
5414     pLevel = &pWInfo->a[i];
5415     pLoop = pLevel->pWLoop;
5416     if( pLevel->op!=OP_Noop ){
5417 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5418       int addrSeek = 0;
5419       Index *pIdx;
5420       int n;
5421       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5422        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5423        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5424        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5425        && (n = pLoop->u.btree.nDistinctCol)>0
5426        && pIdx->aiRowLogEst[n]>=36
5427       ){
5428         int r1 = pParse->nMem+1;
5429         int j, op;
5430         for(j=0; j<n; j++){
5431           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5432         }
5433         pParse->nMem += n+1;
5434         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5435         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5436         VdbeCoverageIf(v, op==OP_SeekLT);
5437         VdbeCoverageIf(v, op==OP_SeekGT);
5438         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5439       }
5440 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5441       /* The common case: Advance to the next row */
5442       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5443       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5444       sqlite3VdbeChangeP5(v, pLevel->p5);
5445       VdbeCoverage(v);
5446       VdbeCoverageIf(v, pLevel->op==OP_Next);
5447       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5448       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5449       if( pLevel->regBignull ){
5450         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5451         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5452         VdbeCoverage(v);
5453       }
5454 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5455       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5456 #endif
5457     }else{
5458       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5459     }
5460     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5461       struct InLoop *pIn;
5462       int j;
5463       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5464       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5465         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5466                  || pParse->db->mallocFailed );
5467         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5468         if( pIn->eEndLoopOp!=OP_Noop ){
5469           if( pIn->nPrefix ){
5470             int bEarlyOut =
5471                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5472                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5473             if( pLevel->iLeftJoin ){
5474               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5475               ** opened yet. This occurs for WHERE clauses such as
5476               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5477               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5478               ** never have been coded, but the body of the loop run to
5479               ** return the null-row. So, if the cursor is not open yet,
5480               ** jump over the OP_Next or OP_Prev instruction about to
5481               ** be coded.  */
5482               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5483                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5484               VdbeCoverage(v);
5485             }
5486             if( bEarlyOut ){
5487               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5488                   sqlite3VdbeCurrentAddr(v)+2,
5489                   pIn->iBase, pIn->nPrefix);
5490               VdbeCoverage(v);
5491               /* Retarget the OP_IsNull against the left operand of IN so
5492               ** it jumps past the OP_IfNoHope.  This is because the
5493               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5494               ** required by OP_IfNoHope. */
5495               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5496             }
5497           }
5498           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5499           VdbeCoverage(v);
5500           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5501           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5502         }
5503         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5504       }
5505     }
5506     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5507     if( pLevel->addrSkip ){
5508       sqlite3VdbeGoto(v, pLevel->addrSkip);
5509       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5510       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5511       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5512     }
5513 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5514     if( pLevel->addrLikeRep ){
5515       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5516                         pLevel->addrLikeRep);
5517       VdbeCoverage(v);
5518     }
5519 #endif
5520     if( pLevel->iLeftJoin ){
5521       int ws = pLoop->wsFlags;
5522       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5523       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5524       if( (ws & WHERE_IDX_ONLY)==0 ){
5525         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5526         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5527       }
5528       if( (ws & WHERE_INDEXED)
5529        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5530       ){
5531         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5532       }
5533       if( pLevel->op==OP_Return ){
5534         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5535       }else{
5536         sqlite3VdbeGoto(v, pLevel->addrFirst);
5537       }
5538       sqlite3VdbeJumpHere(v, addr);
5539     }
5540     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5541                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5542   }
5543 
5544   /* The "break" point is here, just past the end of the outer loop.
5545   ** Set it.
5546   */
5547   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5548 
5549   assert( pWInfo->nLevel<=pTabList->nSrc );
5550   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5551     int k, last;
5552     VdbeOp *pOp, *pLastOp;
5553     Index *pIdx = 0;
5554     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5555     Table *pTab = pTabItem->pTab;
5556     assert( pTab!=0 );
5557     pLoop = pLevel->pWLoop;
5558 
5559     /* For a co-routine, change all OP_Column references to the table of
5560     ** the co-routine into OP_Copy of result contained in a register.
5561     ** OP_Rowid becomes OP_Null.
5562     */
5563     if( pTabItem->fg.viaCoroutine ){
5564       testcase( pParse->db->mallocFailed );
5565       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5566                             pTabItem->regResult, 0);
5567       continue;
5568     }
5569 
5570 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5571     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5572     ** Except, do not close cursors that will be reused by the OR optimization
5573     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5574     ** created for the ONEPASS optimization.
5575     */
5576     if( (pTab->tabFlags & TF_Ephemeral)==0
5577      && pTab->pSelect==0
5578      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5579     ){
5580       int ws = pLoop->wsFlags;
5581       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5582         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5583       }
5584       if( (ws & WHERE_INDEXED)!=0
5585        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5586        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5587       ){
5588         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5589       }
5590     }
5591 #endif
5592 
5593     /* If this scan uses an index, make VDBE code substitutions to read data
5594     ** from the index instead of from the table where possible.  In some cases
5595     ** this optimization prevents the table from ever being read, which can
5596     ** yield a significant performance boost.
5597     **
5598     ** Calls to the code generator in between sqlite3WhereBegin and
5599     ** sqlite3WhereEnd will have created code that references the table
5600     ** directly.  This loop scans all that code looking for opcodes
5601     ** that reference the table and converts them into opcodes that
5602     ** reference the index.
5603     */
5604     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5605       pIdx = pLoop->u.btree.pIndex;
5606     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5607       pIdx = pLevel->u.pCovidx;
5608     }
5609     if( pIdx
5610      && !db->mallocFailed
5611     ){
5612       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5613         last = iEnd;
5614       }else{
5615         last = pWInfo->iEndWhere;
5616       }
5617       k = pLevel->addrBody + 1;
5618 #ifdef SQLITE_DEBUG
5619       if( db->flags & SQLITE_VdbeAddopTrace ){
5620         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5621       }
5622       /* Proof that the "+1" on the k value above is safe */
5623       pOp = sqlite3VdbeGetOp(v, k - 1);
5624       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5625       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5626       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5627 #endif
5628       pOp = sqlite3VdbeGetOp(v, k);
5629       pLastOp = pOp + (last - k);
5630       assert( pOp<=pLastOp );
5631       do{
5632         if( pOp->p1!=pLevel->iTabCur ){
5633           /* no-op */
5634         }else if( pOp->opcode==OP_Column
5635 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5636          || pOp->opcode==OP_Offset
5637 #endif
5638         ){
5639           int x = pOp->p2;
5640           assert( pIdx->pTable==pTab );
5641           if( !HasRowid(pTab) ){
5642             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5643             x = pPk->aiColumn[x];
5644             assert( x>=0 );
5645           }else{
5646             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5647             x = sqlite3StorageColumnToTable(pTab,x);
5648           }
5649           x = sqlite3TableColumnToIndex(pIdx, x);
5650           if( x>=0 ){
5651             pOp->p2 = x;
5652             pOp->p1 = pLevel->iIdxCur;
5653             OpcodeRewriteTrace(db, k, pOp);
5654           }
5655           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5656               || pWInfo->eOnePass );
5657         }else if( pOp->opcode==OP_Rowid ){
5658           pOp->p1 = pLevel->iIdxCur;
5659           pOp->opcode = OP_IdxRowid;
5660           OpcodeRewriteTrace(db, k, pOp);
5661         }else if( pOp->opcode==OP_IfNullRow ){
5662           pOp->p1 = pLevel->iIdxCur;
5663           OpcodeRewriteTrace(db, k, pOp);
5664         }
5665 #ifdef SQLITE_DEBUG
5666         k++;
5667 #endif
5668       }while( (++pOp)<pLastOp );
5669 #ifdef SQLITE_DEBUG
5670       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5671 #endif
5672     }
5673   }
5674 
5675   /* Final cleanup
5676   */
5677   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
5678   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5679   whereInfoFree(db, pWInfo);
5680   return;
5681 }
5682