xref: /sqlite-3.40.0/src/where.c (revision 119fc11e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return pWInfo->nRowOut;
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
57 **
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted.  As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
61 */
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63   return pWInfo->bOrderedInnerLoop;
64 }
65 
66 /*
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
69 */
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71   assert( pWInfo->iContinue!=0 );
72   return pWInfo->iContinue;
73 }
74 
75 /*
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
78 */
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80   return pWInfo->iBreak;
81 }
82 
83 /*
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause.  Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
89 **
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
96 **
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
99 */
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104     sqlite3DebugPrintf("%s cursors: %d %d\n",
105          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106          aiCur[0], aiCur[1]);
107   }
108 #endif
109   return pWInfo->eOnePass;
110 }
111 
112 /*
113 ** Move the content of pSrc into pDest
114 */
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116   pDest->n = pSrc->n;
117   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
118 }
119 
120 /*
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
122 **
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded.  Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
126 */
127 static int whereOrInsert(
128   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
129   Bitmask prereq,        /* Prerequisites of the new entry */
130   LogEst rRun,           /* Run-cost of the new entry */
131   LogEst nOut            /* Number of outputs for the new entry */
132 ){
133   u16 i;
134   WhereOrCost *p;
135   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137       goto whereOrInsert_done;
138     }
139     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140       return 0;
141     }
142   }
143   if( pSet->n<N_OR_COST ){
144     p = &pSet->a[pSet->n++];
145     p->nOut = nOut;
146   }else{
147     p = pSet->a;
148     for(i=1; i<pSet->n; i++){
149       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
150     }
151     if( p->rRun<=rRun ) return 0;
152   }
153 whereOrInsert_done:
154   p->prereq = prereq;
155   p->rRun = rRun;
156   if( p->nOut>nOut ) p->nOut = nOut;
157   return 1;
158 }
159 
160 /*
161 ** Return the bitmask for the given cursor number.  Return 0 if
162 ** iCursor is not in the set.
163 */
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165   int i;
166   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167   for(i=0; i<pMaskSet->n; i++){
168     if( pMaskSet->ix[i]==iCursor ){
169       return MASKBIT(i);
170     }
171   }
172   return 0;
173 }
174 
175 /*
176 ** Create a new mask for cursor iCursor.
177 **
178 ** There is one cursor per table in the FROM clause.  The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
181 ** array will never overflow.
182 */
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185   pMaskSet->ix[pMaskSet->n++] = iCursor;
186 }
187 
188 /*
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
192 */
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194   int iCur;            /* The cursor on the LHS of the term */
195   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
196   Expr *pX;            /* An expression being tested */
197   WhereClause *pWC;    /* Shorthand for pScan->pWC */
198   WhereTerm *pTerm;    /* The term being tested */
199   int k = pScan->k;    /* Where to start scanning */
200 
201   assert( pScan->iEquiv<=pScan->nEquiv );
202   pWC = pScan->pWC;
203   while(1){
204     iColumn = pScan->aiColumn[pScan->iEquiv-1];
205     iCur = pScan->aiCur[pScan->iEquiv-1];
206     assert( pWC!=0 );
207     do{
208       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209         if( pTerm->leftCursor==iCur
210          && pTerm->u.leftColumn==iColumn
211          && (iColumn!=XN_EXPR
212              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
213                                        pScan->pIdxExpr,iCur)==0)
214          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
215         ){
216           if( (pTerm->eOperator & WO_EQUIV)!=0
217            && pScan->nEquiv<ArraySize(pScan->aiCur)
218            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
219           ){
220             int j;
221             for(j=0; j<pScan->nEquiv; j++){
222               if( pScan->aiCur[j]==pX->iTable
223                && pScan->aiColumn[j]==pX->iColumn ){
224                   break;
225               }
226             }
227             if( j==pScan->nEquiv ){
228               pScan->aiCur[j] = pX->iTable;
229               pScan->aiColumn[j] = pX->iColumn;
230               pScan->nEquiv++;
231             }
232           }
233           if( (pTerm->eOperator & pScan->opMask)!=0 ){
234             /* Verify the affinity and collating sequence match */
235             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
236               CollSeq *pColl;
237               Parse *pParse = pWC->pWInfo->pParse;
238               pX = pTerm->pExpr;
239               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
240                 continue;
241               }
242               assert(pX->pLeft);
243               pColl = sqlite3BinaryCompareCollSeq(pParse,
244                                                   pX->pLeft, pX->pRight);
245               if( pColl==0 ) pColl = pParse->db->pDfltColl;
246               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
247                 continue;
248               }
249             }
250             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
251              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
252              && pX->iTable==pScan->aiCur[0]
253              && pX->iColumn==pScan->aiColumn[0]
254             ){
255               testcase( pTerm->eOperator & WO_IS );
256               continue;
257             }
258             pScan->pWC = pWC;
259             pScan->k = k+1;
260             return pTerm;
261           }
262         }
263       }
264       pWC = pWC->pOuter;
265       k = 0;
266     }while( pWC!=0 );
267     if( pScan->iEquiv>=pScan->nEquiv ) break;
268     pWC = pScan->pOrigWC;
269     k = 0;
270     pScan->iEquiv++;
271   }
272   return 0;
273 }
274 
275 /*
276 ** Initialize a WHERE clause scanner object.  Return a pointer to the
277 ** first match.  Return NULL if there are no matches.
278 **
279 ** The scanner will be searching the WHERE clause pWC.  It will look
280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
281 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
282 ** must be one of the indexes of table iCur.
283 **
284 ** The <op> must be one of the operators described by opMask.
285 **
286 ** If the search is for X and the WHERE clause contains terms of the
287 ** form X=Y then this routine might also return terms of the form
288 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
289 ** but is enough to handle most commonly occurring SQL statements.
290 **
291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
292 ** index pIdx.
293 */
294 static WhereTerm *whereScanInit(
295   WhereScan *pScan,       /* The WhereScan object being initialized */
296   WhereClause *pWC,       /* The WHERE clause to be scanned */
297   int iCur,               /* Cursor to scan for */
298   int iColumn,            /* Column to scan for */
299   u32 opMask,             /* Operator(s) to scan for */
300   Index *pIdx             /* Must be compatible with this index */
301 ){
302   pScan->pOrigWC = pWC;
303   pScan->pWC = pWC;
304   pScan->pIdxExpr = 0;
305   pScan->idxaff = 0;
306   pScan->zCollName = 0;
307   if( pIdx ){
308     int j = iColumn;
309     iColumn = pIdx->aiColumn[j];
310     if( iColumn==XN_EXPR ){
311       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
312       pScan->zCollName = pIdx->azColl[j];
313     }else if( iColumn==pIdx->pTable->iPKey ){
314       iColumn = XN_ROWID;
315     }else if( iColumn>=0 ){
316       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
317       pScan->zCollName = pIdx->azColl[j];
318     }
319   }else if( iColumn==XN_EXPR ){
320     return 0;
321   }
322   pScan->opMask = opMask;
323   pScan->k = 0;
324   pScan->aiCur[0] = iCur;
325   pScan->aiColumn[0] = iColumn;
326   pScan->nEquiv = 1;
327   pScan->iEquiv = 1;
328   return whereScanNext(pScan);
329 }
330 
331 /*
332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
333 ** where X is a reference to the iColumn of table iCur or of index pIdx
334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
335 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
336 **
337 ** If pIdx!=0 then it must be one of the indexes of table iCur.
338 ** Search for terms matching the iColumn-th column of pIdx
339 ** rather than the iColumn-th column of table iCur.
340 **
341 ** The term returned might by Y=<expr> if there is another constraint in
342 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
346 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
348 **
349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
350 ** then try for the one with no dependencies on <expr> - in other words where
351 ** <expr> is a constant expression of some kind.  Only return entries of
352 ** the form "X <op> Y" where Y is a column in another table if no terms of
353 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
354 ** exist, try to return a term that does not use WO_EQUIV.
355 */
356 WhereTerm *sqlite3WhereFindTerm(
357   WhereClause *pWC,     /* The WHERE clause to be searched */
358   int iCur,             /* Cursor number of LHS */
359   int iColumn,          /* Column number of LHS */
360   Bitmask notReady,     /* RHS must not overlap with this mask */
361   u32 op,               /* Mask of WO_xx values describing operator */
362   Index *pIdx           /* Must be compatible with this index, if not NULL */
363 ){
364   WhereTerm *pResult = 0;
365   WhereTerm *p;
366   WhereScan scan;
367 
368   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
369   op &= WO_EQ|WO_IS;
370   while( p ){
371     if( (p->prereqRight & notReady)==0 ){
372       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
373         testcase( p->eOperator & WO_IS );
374         return p;
375       }
376       if( pResult==0 ) pResult = p;
377     }
378     p = whereScanNext(&scan);
379   }
380   return pResult;
381 }
382 
383 /*
384 ** This function searches pList for an entry that matches the iCol-th column
385 ** of index pIdx.
386 **
387 ** If such an expression is found, its index in pList->a[] is returned. If
388 ** no expression is found, -1 is returned.
389 */
390 static int findIndexCol(
391   Parse *pParse,                  /* Parse context */
392   ExprList *pList,                /* Expression list to search */
393   int iBase,                      /* Cursor for table associated with pIdx */
394   Index *pIdx,                    /* Index to match column of */
395   int iCol                        /* Column of index to match */
396 ){
397   int i;
398   const char *zColl = pIdx->azColl[iCol];
399 
400   for(i=0; i<pList->nExpr; i++){
401     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
402     if( p->op==TK_COLUMN
403      && p->iColumn==pIdx->aiColumn[iCol]
404      && p->iTable==iBase
405     ){
406       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
407       if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
408         return i;
409       }
410     }
411   }
412 
413   return -1;
414 }
415 
416 /*
417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
418 */
419 static int indexColumnNotNull(Index *pIdx, int iCol){
420   int j;
421   assert( pIdx!=0 );
422   assert( iCol>=0 && iCol<pIdx->nColumn );
423   j = pIdx->aiColumn[iCol];
424   if( j>=0 ){
425     return pIdx->pTable->aCol[j].notNull;
426   }else if( j==(-1) ){
427     return 1;
428   }else{
429     assert( j==(-2) );
430     return 0;  /* Assume an indexed expression can always yield a NULL */
431 
432   }
433 }
434 
435 /*
436 ** Return true if the DISTINCT expression-list passed as the third argument
437 ** is redundant.
438 **
439 ** A DISTINCT list is redundant if any subset of the columns in the
440 ** DISTINCT list are collectively unique and individually non-null.
441 */
442 static int isDistinctRedundant(
443   Parse *pParse,            /* Parsing context */
444   SrcList *pTabList,        /* The FROM clause */
445   WhereClause *pWC,         /* The WHERE clause */
446   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
447 ){
448   Table *pTab;
449   Index *pIdx;
450   int i;
451   int iBase;
452 
453   /* If there is more than one table or sub-select in the FROM clause of
454   ** this query, then it will not be possible to show that the DISTINCT
455   ** clause is redundant. */
456   if( pTabList->nSrc!=1 ) return 0;
457   iBase = pTabList->a[0].iCursor;
458   pTab = pTabList->a[0].pTab;
459 
460   /* If any of the expressions is an IPK column on table iBase, then return
461   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
462   ** current SELECT is a correlated sub-query.
463   */
464   for(i=0; i<pDistinct->nExpr; i++){
465     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
466     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
467   }
468 
469   /* Loop through all indices on the table, checking each to see if it makes
470   ** the DISTINCT qualifier redundant. It does so if:
471   **
472   **   1. The index is itself UNIQUE, and
473   **
474   **   2. All of the columns in the index are either part of the pDistinct
475   **      list, or else the WHERE clause contains a term of the form "col=X",
476   **      where X is a constant value. The collation sequences of the
477   **      comparison and select-list expressions must match those of the index.
478   **
479   **   3. All of those index columns for which the WHERE clause does not
480   **      contain a "col=X" term are subject to a NOT NULL constraint.
481   */
482   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
483     if( !IsUniqueIndex(pIdx) ) continue;
484     for(i=0; i<pIdx->nKeyCol; i++){
485       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
486         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
487         if( indexColumnNotNull(pIdx, i)==0 ) break;
488       }
489     }
490     if( i==pIdx->nKeyCol ){
491       /* This index implies that the DISTINCT qualifier is redundant. */
492       return 1;
493     }
494   }
495 
496   return 0;
497 }
498 
499 
500 /*
501 ** Estimate the logarithm of the input value to base 2.
502 */
503 static LogEst estLog(LogEst N){
504   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
505 }
506 
507 /*
508 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
509 **
510 ** This routine runs over generated VDBE code and translates OP_Column
511 ** opcodes into OP_Copy when the table is being accessed via co-routine
512 ** instead of via table lookup.
513 **
514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
516 ** then each OP_Rowid is transformed into an instruction to increment the
517 ** value stored in its output register.
518 */
519 static void translateColumnToCopy(
520   Parse *pParse,      /* Parsing context */
521   int iStart,         /* Translate from this opcode to the end */
522   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
523   int iRegister,      /* The first column is in this register */
524   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
525 ){
526   Vdbe *v = pParse->pVdbe;
527   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
528   int iEnd = sqlite3VdbeCurrentAddr(v);
529   if( pParse->db->mallocFailed ) return;
530   for(; iStart<iEnd; iStart++, pOp++){
531     if( pOp->p1!=iTabCur ) continue;
532     if( pOp->opcode==OP_Column ){
533       pOp->opcode = OP_Copy;
534       pOp->p1 = pOp->p2 + iRegister;
535       pOp->p2 = pOp->p3;
536       pOp->p3 = 0;
537     }else if( pOp->opcode==OP_Rowid ){
538       if( bIncrRowid ){
539         /* Increment the value stored in the P2 operand of the OP_Rowid. */
540         pOp->opcode = OP_AddImm;
541         pOp->p1 = pOp->p2;
542         pOp->p2 = 1;
543       }else{
544         pOp->opcode = OP_Null;
545         pOp->p1 = 0;
546         pOp->p3 = 0;
547       }
548     }
549   }
550 }
551 
552 /*
553 ** Two routines for printing the content of an sqlite3_index_info
554 ** structure.  Used for testing and debugging only.  If neither
555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
556 ** are no-ops.
557 */
558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
560   int i;
561   if( !sqlite3WhereTrace ) return;
562   for(i=0; i<p->nConstraint; i++){
563     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
564        i,
565        p->aConstraint[i].iColumn,
566        p->aConstraint[i].iTermOffset,
567        p->aConstraint[i].op,
568        p->aConstraint[i].usable);
569   }
570   for(i=0; i<p->nOrderBy; i++){
571     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
572        i,
573        p->aOrderBy[i].iColumn,
574        p->aOrderBy[i].desc);
575   }
576 }
577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
578   int i;
579   if( !sqlite3WhereTrace ) return;
580   for(i=0; i<p->nConstraint; i++){
581     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
582        i,
583        p->aConstraintUsage[i].argvIndex,
584        p->aConstraintUsage[i].omit);
585   }
586   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
587   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
588   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
589   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
590   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
591 }
592 #else
593 #define TRACE_IDX_INPUTS(A)
594 #define TRACE_IDX_OUTPUTS(A)
595 #endif
596 
597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
598 /*
599 ** Return TRUE if the WHERE clause term pTerm is of a form where it
600 ** could be used with an index to access pSrc, assuming an appropriate
601 ** index existed.
602 */
603 static int termCanDriveIndex(
604   WhereTerm *pTerm,              /* WHERE clause term to check */
605   struct SrcList_item *pSrc,     /* Table we are trying to access */
606   Bitmask notReady               /* Tables in outer loops of the join */
607 ){
608   char aff;
609   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
610   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
611   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
612   if( pTerm->u.leftColumn<0 ) return 0;
613   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
614   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
615   testcase( pTerm->pExpr->op==TK_IS );
616   return 1;
617 }
618 #endif
619 
620 
621 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
622 /*
623 ** Generate code to construct the Index object for an automatic index
624 ** and to set up the WhereLevel object pLevel so that the code generator
625 ** makes use of the automatic index.
626 */
627 static void constructAutomaticIndex(
628   Parse *pParse,              /* The parsing context */
629   WhereClause *pWC,           /* The WHERE clause */
630   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
631   Bitmask notReady,           /* Mask of cursors that are not available */
632   WhereLevel *pLevel          /* Write new index here */
633 ){
634   int nKeyCol;                /* Number of columns in the constructed index */
635   WhereTerm *pTerm;           /* A single term of the WHERE clause */
636   WhereTerm *pWCEnd;          /* End of pWC->a[] */
637   Index *pIdx;                /* Object describing the transient index */
638   Vdbe *v;                    /* Prepared statement under construction */
639   int addrInit;               /* Address of the initialization bypass jump */
640   Table *pTable;              /* The table being indexed */
641   int addrTop;                /* Top of the index fill loop */
642   int regRecord;              /* Register holding an index record */
643   int n;                      /* Column counter */
644   int i;                      /* Loop counter */
645   int mxBitCol;               /* Maximum column in pSrc->colUsed */
646   CollSeq *pColl;             /* Collating sequence to on a column */
647   WhereLoop *pLoop;           /* The Loop object */
648   char *zNotUsed;             /* Extra space on the end of pIdx */
649   Bitmask idxCols;            /* Bitmap of columns used for indexing */
650   Bitmask extraCols;          /* Bitmap of additional columns */
651   u8 sentWarning = 0;         /* True if a warnning has been issued */
652   Expr *pPartial = 0;         /* Partial Index Expression */
653   int iContinue = 0;          /* Jump here to skip excluded rows */
654   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
655   int addrCounter = 0;        /* Address where integer counter is initialized */
656   int regBase;                /* Array of registers where record is assembled */
657 
658   /* Generate code to skip over the creation and initialization of the
659   ** transient index on 2nd and subsequent iterations of the loop. */
660   v = pParse->pVdbe;
661   assert( v!=0 );
662   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
663 
664   /* Count the number of columns that will be added to the index
665   ** and used to match WHERE clause constraints */
666   nKeyCol = 0;
667   pTable = pSrc->pTab;
668   pWCEnd = &pWC->a[pWC->nTerm];
669   pLoop = pLevel->pWLoop;
670   idxCols = 0;
671   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
672     Expr *pExpr = pTerm->pExpr;
673     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
674          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
675          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
676     if( pLoop->prereq==0
677      && (pTerm->wtFlags & TERM_VIRTUAL)==0
678      && !ExprHasProperty(pExpr, EP_FromJoin)
679      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
680       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
681                                 sqlite3ExprDup(pParse->db, pExpr, 0));
682     }
683     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
684       int iCol = pTerm->u.leftColumn;
685       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
686       testcase( iCol==BMS );
687       testcase( iCol==BMS-1 );
688       if( !sentWarning ){
689         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
690             "automatic index on %s(%s)", pTable->zName,
691             pTable->aCol[iCol].zName);
692         sentWarning = 1;
693       }
694       if( (idxCols & cMask)==0 ){
695         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
696           goto end_auto_index_create;
697         }
698         pLoop->aLTerm[nKeyCol++] = pTerm;
699         idxCols |= cMask;
700       }
701     }
702   }
703   assert( nKeyCol>0 );
704   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
705   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
706                      | WHERE_AUTO_INDEX;
707 
708   /* Count the number of additional columns needed to create a
709   ** covering index.  A "covering index" is an index that contains all
710   ** columns that are needed by the query.  With a covering index, the
711   ** original table never needs to be accessed.  Automatic indices must
712   ** be a covering index because the index will not be updated if the
713   ** original table changes and the index and table cannot both be used
714   ** if they go out of sync.
715   */
716   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
717   mxBitCol = MIN(BMS-1,pTable->nCol);
718   testcase( pTable->nCol==BMS-1 );
719   testcase( pTable->nCol==BMS-2 );
720   for(i=0; i<mxBitCol; i++){
721     if( extraCols & MASKBIT(i) ) nKeyCol++;
722   }
723   if( pSrc->colUsed & MASKBIT(BMS-1) ){
724     nKeyCol += pTable->nCol - BMS + 1;
725   }
726 
727   /* Construct the Index object to describe this index */
728   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
729   if( pIdx==0 ) goto end_auto_index_create;
730   pLoop->u.btree.pIndex = pIdx;
731   pIdx->zName = "auto-index";
732   pIdx->pTable = pTable;
733   n = 0;
734   idxCols = 0;
735   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
736     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
737       int iCol = pTerm->u.leftColumn;
738       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
739       testcase( iCol==BMS-1 );
740       testcase( iCol==BMS );
741       if( (idxCols & cMask)==0 ){
742         Expr *pX = pTerm->pExpr;
743         idxCols |= cMask;
744         pIdx->aiColumn[n] = pTerm->u.leftColumn;
745         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
746         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
747         n++;
748       }
749     }
750   }
751   assert( (u32)n==pLoop->u.btree.nEq );
752 
753   /* Add additional columns needed to make the automatic index into
754   ** a covering index */
755   for(i=0; i<mxBitCol; i++){
756     if( extraCols & MASKBIT(i) ){
757       pIdx->aiColumn[n] = i;
758       pIdx->azColl[n] = sqlite3StrBINARY;
759       n++;
760     }
761   }
762   if( pSrc->colUsed & MASKBIT(BMS-1) ){
763     for(i=BMS-1; i<pTable->nCol; i++){
764       pIdx->aiColumn[n] = i;
765       pIdx->azColl[n] = sqlite3StrBINARY;
766       n++;
767     }
768   }
769   assert( n==nKeyCol );
770   pIdx->aiColumn[n] = XN_ROWID;
771   pIdx->azColl[n] = sqlite3StrBINARY;
772 
773   /* Create the automatic index */
774   assert( pLevel->iIdxCur>=0 );
775   pLevel->iIdxCur = pParse->nTab++;
776   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
777   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
778   VdbeComment((v, "for %s", pTable->zName));
779 
780   /* Fill the automatic index with content */
781   sqlite3ExprCachePush(pParse);
782   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
783   if( pTabItem->fg.viaCoroutine ){
784     int regYield = pTabItem->regReturn;
785     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
786     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
787     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
788     VdbeCoverage(v);
789     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
790   }else{
791     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
792   }
793   if( pPartial ){
794     iContinue = sqlite3VdbeMakeLabel(v);
795     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
796     pLoop->wsFlags |= WHERE_PARTIALIDX;
797   }
798   regRecord = sqlite3GetTempReg(pParse);
799   regBase = sqlite3GenerateIndexKey(
800       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
801   );
802   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
803   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
804   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
805   if( pTabItem->fg.viaCoroutine ){
806     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
807     testcase( pParse->db->mallocFailed );
808     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
809                           pTabItem->regResult, 1);
810     sqlite3VdbeGoto(v, addrTop);
811     pTabItem->fg.viaCoroutine = 0;
812   }else{
813     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
814   }
815   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
816   sqlite3VdbeJumpHere(v, addrTop);
817   sqlite3ReleaseTempReg(pParse, regRecord);
818   sqlite3ExprCachePop(pParse);
819 
820   /* Jump here when skipping the initialization */
821   sqlite3VdbeJumpHere(v, addrInit);
822 
823 end_auto_index_create:
824   sqlite3ExprDelete(pParse->db, pPartial);
825 }
826 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
827 
828 #ifndef SQLITE_OMIT_VIRTUALTABLE
829 /*
830 ** Allocate and populate an sqlite3_index_info structure. It is the
831 ** responsibility of the caller to eventually release the structure
832 ** by passing the pointer returned by this function to sqlite3_free().
833 */
834 static sqlite3_index_info *allocateIndexInfo(
835   Parse *pParse,
836   WhereClause *pWC,
837   Bitmask mUnusable,              /* Ignore terms with these prereqs */
838   struct SrcList_item *pSrc,
839   ExprList *pOrderBy,
840   u16 *pmNoOmit                   /* Mask of terms not to omit */
841 ){
842   int i, j;
843   int nTerm;
844   struct sqlite3_index_constraint *pIdxCons;
845   struct sqlite3_index_orderby *pIdxOrderBy;
846   struct sqlite3_index_constraint_usage *pUsage;
847   WhereTerm *pTerm;
848   int nOrderBy;
849   sqlite3_index_info *pIdxInfo;
850   u16 mNoOmit = 0;
851 
852   /* Count the number of possible WHERE clause constraints referring
853   ** to this virtual table */
854   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
855     if( pTerm->leftCursor != pSrc->iCursor ) continue;
856     if( pTerm->prereqRight & mUnusable ) continue;
857     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
858     testcase( pTerm->eOperator & WO_IN );
859     testcase( pTerm->eOperator & WO_ISNULL );
860     testcase( pTerm->eOperator & WO_IS );
861     testcase( pTerm->eOperator & WO_ALL );
862     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
863     if( pTerm->wtFlags & TERM_VNULL ) continue;
864     assert( pTerm->u.leftColumn>=(-1) );
865     nTerm++;
866   }
867 
868   /* If the ORDER BY clause contains only columns in the current
869   ** virtual table then allocate space for the aOrderBy part of
870   ** the sqlite3_index_info structure.
871   */
872   nOrderBy = 0;
873   if( pOrderBy ){
874     int n = pOrderBy->nExpr;
875     for(i=0; i<n; i++){
876       Expr *pExpr = pOrderBy->a[i].pExpr;
877       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
878     }
879     if( i==n){
880       nOrderBy = n;
881     }
882   }
883 
884   /* Allocate the sqlite3_index_info structure
885   */
886   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
887                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
888                            + sizeof(*pIdxOrderBy)*nOrderBy );
889   if( pIdxInfo==0 ){
890     sqlite3ErrorMsg(pParse, "out of memory");
891     return 0;
892   }
893 
894   /* Initialize the structure.  The sqlite3_index_info structure contains
895   ** many fields that are declared "const" to prevent xBestIndex from
896   ** changing them.  We have to do some funky casting in order to
897   ** initialize those fields.
898   */
899   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
900   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
901   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
902   *(int*)&pIdxInfo->nConstraint = nTerm;
903   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
904   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
905   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
906   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
907                                                                    pUsage;
908 
909   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
910     u8 op;
911     if( pTerm->leftCursor != pSrc->iCursor ) continue;
912     if( pTerm->prereqRight & mUnusable ) continue;
913     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
914     testcase( pTerm->eOperator & WO_IN );
915     testcase( pTerm->eOperator & WO_IS );
916     testcase( pTerm->eOperator & WO_ISNULL );
917     testcase( pTerm->eOperator & WO_ALL );
918     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
919     if( pTerm->wtFlags & TERM_VNULL ) continue;
920     assert( pTerm->u.leftColumn>=(-1) );
921     pIdxCons[j].iColumn = pTerm->u.leftColumn;
922     pIdxCons[j].iTermOffset = i;
923     op = (u8)pTerm->eOperator & WO_ALL;
924     if( op==WO_IN ) op = WO_EQ;
925     if( op==WO_MATCH ){
926       op = pTerm->eMatchOp;
927     }
928     pIdxCons[j].op = op;
929     /* The direct assignment in the previous line is possible only because
930     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
931     ** following asserts verify this fact. */
932     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
933     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
934     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
935     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
936     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
937     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
938     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
939 
940     if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
941      && sqlite3ExprIsVector(pTerm->pExpr->pRight)
942     ){
943       if( i<16 ) mNoOmit |= (1 << i);
944       if( op==WO_LT ) pIdxCons[j].op = WO_LE;
945       if( op==WO_GT ) pIdxCons[j].op = WO_GE;
946     }
947 
948     j++;
949   }
950   for(i=0; i<nOrderBy; i++){
951     Expr *pExpr = pOrderBy->a[i].pExpr;
952     pIdxOrderBy[i].iColumn = pExpr->iColumn;
953     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
954   }
955 
956   *pmNoOmit = mNoOmit;
957   return pIdxInfo;
958 }
959 
960 /*
961 ** The table object reference passed as the second argument to this function
962 ** must represent a virtual table. This function invokes the xBestIndex()
963 ** method of the virtual table with the sqlite3_index_info object that
964 ** comes in as the 3rd argument to this function.
965 **
966 ** If an error occurs, pParse is populated with an error message and a
967 ** non-zero value is returned. Otherwise, 0 is returned and the output
968 ** part of the sqlite3_index_info structure is left populated.
969 **
970 ** Whether or not an error is returned, it is the responsibility of the
971 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
972 ** that this is required.
973 */
974 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
975   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
976   int rc;
977 
978   TRACE_IDX_INPUTS(p);
979   rc = pVtab->pModule->xBestIndex(pVtab, p);
980   TRACE_IDX_OUTPUTS(p);
981 
982   if( rc!=SQLITE_OK ){
983     if( rc==SQLITE_NOMEM ){
984       sqlite3OomFault(pParse->db);
985     }else if( !pVtab->zErrMsg ){
986       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
987     }else{
988       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
989     }
990   }
991   sqlite3_free(pVtab->zErrMsg);
992   pVtab->zErrMsg = 0;
993 
994 #if 0
995   /* This error is now caught by the caller.
996   ** Search for "xBestIndex malfunction" below */
997   for(i=0; i<p->nConstraint; i++){
998     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
999       sqlite3ErrorMsg(pParse,
1000           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1001     }
1002   }
1003 #endif
1004 
1005   return pParse->nErr;
1006 }
1007 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1008 
1009 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1010 /*
1011 ** Estimate the location of a particular key among all keys in an
1012 ** index.  Store the results in aStat as follows:
1013 **
1014 **    aStat[0]      Est. number of rows less than pRec
1015 **    aStat[1]      Est. number of rows equal to pRec
1016 **
1017 ** Return the index of the sample that is the smallest sample that
1018 ** is greater than or equal to pRec. Note that this index is not an index
1019 ** into the aSample[] array - it is an index into a virtual set of samples
1020 ** based on the contents of aSample[] and the number of fields in record
1021 ** pRec.
1022 */
1023 static int whereKeyStats(
1024   Parse *pParse,              /* Database connection */
1025   Index *pIdx,                /* Index to consider domain of */
1026   UnpackedRecord *pRec,       /* Vector of values to consider */
1027   int roundUp,                /* Round up if true.  Round down if false */
1028   tRowcnt *aStat              /* OUT: stats written here */
1029 ){
1030   IndexSample *aSample = pIdx->aSample;
1031   int iCol;                   /* Index of required stats in anEq[] etc. */
1032   int i;                      /* Index of first sample >= pRec */
1033   int iSample;                /* Smallest sample larger than or equal to pRec */
1034   int iMin = 0;               /* Smallest sample not yet tested */
1035   int iTest;                  /* Next sample to test */
1036   int res;                    /* Result of comparison operation */
1037   int nField;                 /* Number of fields in pRec */
1038   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1039 
1040 #ifndef SQLITE_DEBUG
1041   UNUSED_PARAMETER( pParse );
1042 #endif
1043   assert( pRec!=0 );
1044   assert( pIdx->nSample>0 );
1045   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1046 
1047   /* Do a binary search to find the first sample greater than or equal
1048   ** to pRec. If pRec contains a single field, the set of samples to search
1049   ** is simply the aSample[] array. If the samples in aSample[] contain more
1050   ** than one fields, all fields following the first are ignored.
1051   **
1052   ** If pRec contains N fields, where N is more than one, then as well as the
1053   ** samples in aSample[] (truncated to N fields), the search also has to
1054   ** consider prefixes of those samples. For example, if the set of samples
1055   ** in aSample is:
1056   **
1057   **     aSample[0] = (a, 5)
1058   **     aSample[1] = (a, 10)
1059   **     aSample[2] = (b, 5)
1060   **     aSample[3] = (c, 100)
1061   **     aSample[4] = (c, 105)
1062   **
1063   ** Then the search space should ideally be the samples above and the
1064   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1065   ** the code actually searches this set:
1066   **
1067   **     0: (a)
1068   **     1: (a, 5)
1069   **     2: (a, 10)
1070   **     3: (a, 10)
1071   **     4: (b)
1072   **     5: (b, 5)
1073   **     6: (c)
1074   **     7: (c, 100)
1075   **     8: (c, 105)
1076   **     9: (c, 105)
1077   **
1078   ** For each sample in the aSample[] array, N samples are present in the
1079   ** effective sample array. In the above, samples 0 and 1 are based on
1080   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1081   **
1082   ** Often, sample i of each block of N effective samples has (i+1) fields.
1083   ** Except, each sample may be extended to ensure that it is greater than or
1084   ** equal to the previous sample in the array. For example, in the above,
1085   ** sample 2 is the first sample of a block of N samples, so at first it
1086   ** appears that it should be 1 field in size. However, that would make it
1087   ** smaller than sample 1, so the binary search would not work. As a result,
1088   ** it is extended to two fields. The duplicates that this creates do not
1089   ** cause any problems.
1090   */
1091   nField = pRec->nField;
1092   iCol = 0;
1093   iSample = pIdx->nSample * nField;
1094   do{
1095     int iSamp;                    /* Index in aSample[] of test sample */
1096     int n;                        /* Number of fields in test sample */
1097 
1098     iTest = (iMin+iSample)/2;
1099     iSamp = iTest / nField;
1100     if( iSamp>0 ){
1101       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1102       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1103       ** fields that is greater than the previous effective sample.  */
1104       for(n=(iTest % nField) + 1; n<nField; n++){
1105         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1106       }
1107     }else{
1108       n = iTest + 1;
1109     }
1110 
1111     pRec->nField = n;
1112     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1113     if( res<0 ){
1114       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1115       iMin = iTest+1;
1116     }else if( res==0 && n<nField ){
1117       iLower = aSample[iSamp].anLt[n-1];
1118       iMin = iTest+1;
1119       res = -1;
1120     }else{
1121       iSample = iTest;
1122       iCol = n-1;
1123     }
1124   }while( res && iMin<iSample );
1125   i = iSample / nField;
1126 
1127 #ifdef SQLITE_DEBUG
1128   /* The following assert statements check that the binary search code
1129   ** above found the right answer. This block serves no purpose other
1130   ** than to invoke the asserts.  */
1131   if( pParse->db->mallocFailed==0 ){
1132     if( res==0 ){
1133       /* If (res==0) is true, then pRec must be equal to sample i. */
1134       assert( i<pIdx->nSample );
1135       assert( iCol==nField-1 );
1136       pRec->nField = nField;
1137       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1138            || pParse->db->mallocFailed
1139       );
1140     }else{
1141       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1142       ** all samples in the aSample[] array, pRec must be smaller than the
1143       ** (iCol+1) field prefix of sample i.  */
1144       assert( i<=pIdx->nSample && i>=0 );
1145       pRec->nField = iCol+1;
1146       assert( i==pIdx->nSample
1147            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1148            || pParse->db->mallocFailed );
1149 
1150       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1151       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1152       ** be greater than or equal to the (iCol) field prefix of sample i.
1153       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1154       if( iCol>0 ){
1155         pRec->nField = iCol;
1156         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1157              || pParse->db->mallocFailed );
1158       }
1159       if( i>0 ){
1160         pRec->nField = nField;
1161         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1162              || pParse->db->mallocFailed );
1163       }
1164     }
1165   }
1166 #endif /* ifdef SQLITE_DEBUG */
1167 
1168   if( res==0 ){
1169     /* Record pRec is equal to sample i */
1170     assert( iCol==nField-1 );
1171     aStat[0] = aSample[i].anLt[iCol];
1172     aStat[1] = aSample[i].anEq[iCol];
1173   }else{
1174     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1175     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1176     ** is larger than all samples in the array. */
1177     tRowcnt iUpper, iGap;
1178     if( i>=pIdx->nSample ){
1179       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1180     }else{
1181       iUpper = aSample[i].anLt[iCol];
1182     }
1183 
1184     if( iLower>=iUpper ){
1185       iGap = 0;
1186     }else{
1187       iGap = iUpper - iLower;
1188     }
1189     if( roundUp ){
1190       iGap = (iGap*2)/3;
1191     }else{
1192       iGap = iGap/3;
1193     }
1194     aStat[0] = iLower + iGap;
1195     aStat[1] = pIdx->aAvgEq[iCol];
1196   }
1197 
1198   /* Restore the pRec->nField value before returning.  */
1199   pRec->nField = nField;
1200   return i;
1201 }
1202 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1203 
1204 /*
1205 ** If it is not NULL, pTerm is a term that provides an upper or lower
1206 ** bound on a range scan. Without considering pTerm, it is estimated
1207 ** that the scan will visit nNew rows. This function returns the number
1208 ** estimated to be visited after taking pTerm into account.
1209 **
1210 ** If the user explicitly specified a likelihood() value for this term,
1211 ** then the return value is the likelihood multiplied by the number of
1212 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1213 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1214 */
1215 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1216   LogEst nRet = nNew;
1217   if( pTerm ){
1218     if( pTerm->truthProb<=0 ){
1219       nRet += pTerm->truthProb;
1220     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1221       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1222     }
1223   }
1224   return nRet;
1225 }
1226 
1227 
1228 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1229 /*
1230 ** Return the affinity for a single column of an index.
1231 */
1232 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1233   assert( iCol>=0 && iCol<pIdx->nColumn );
1234   if( !pIdx->zColAff ){
1235     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1236   }
1237   return pIdx->zColAff[iCol];
1238 }
1239 #endif
1240 
1241 
1242 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1243 /*
1244 ** This function is called to estimate the number of rows visited by a
1245 ** range-scan on a skip-scan index. For example:
1246 **
1247 **   CREATE INDEX i1 ON t1(a, b, c);
1248 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1249 **
1250 ** Value pLoop->nOut is currently set to the estimated number of rows
1251 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1252 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1253 ** on the stat4 data for the index. this scan will be peformed multiple
1254 ** times (once for each (a,b) combination that matches a=?) is dealt with
1255 ** by the caller.
1256 **
1257 ** It does this by scanning through all stat4 samples, comparing values
1258 ** extracted from pLower and pUpper with the corresponding column in each
1259 ** sample. If L and U are the number of samples found to be less than or
1260 ** equal to the values extracted from pLower and pUpper respectively, and
1261 ** N is the total number of samples, the pLoop->nOut value is adjusted
1262 ** as follows:
1263 **
1264 **   nOut = nOut * ( min(U - L, 1) / N )
1265 **
1266 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1267 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1268 ** U is set to N.
1269 **
1270 ** Normally, this function sets *pbDone to 1 before returning. However,
1271 ** if no value can be extracted from either pLower or pUpper (and so the
1272 ** estimate of the number of rows delivered remains unchanged), *pbDone
1273 ** is left as is.
1274 **
1275 ** If an error occurs, an SQLite error code is returned. Otherwise,
1276 ** SQLITE_OK.
1277 */
1278 static int whereRangeSkipScanEst(
1279   Parse *pParse,       /* Parsing & code generating context */
1280   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1281   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1282   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1283   int *pbDone          /* Set to true if at least one expr. value extracted */
1284 ){
1285   Index *p = pLoop->u.btree.pIndex;
1286   int nEq = pLoop->u.btree.nEq;
1287   sqlite3 *db = pParse->db;
1288   int nLower = -1;
1289   int nUpper = p->nSample+1;
1290   int rc = SQLITE_OK;
1291   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1292   CollSeq *pColl;
1293 
1294   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1295   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1296   sqlite3_value *pVal = 0;        /* Value extracted from record */
1297 
1298   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1299   if( pLower ){
1300     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1301     nLower = 0;
1302   }
1303   if( pUpper && rc==SQLITE_OK ){
1304     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1305     nUpper = p2 ? 0 : p->nSample;
1306   }
1307 
1308   if( p1 || p2 ){
1309     int i;
1310     int nDiff;
1311     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1312       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1313       if( rc==SQLITE_OK && p1 ){
1314         int res = sqlite3MemCompare(p1, pVal, pColl);
1315         if( res>=0 ) nLower++;
1316       }
1317       if( rc==SQLITE_OK && p2 ){
1318         int res = sqlite3MemCompare(p2, pVal, pColl);
1319         if( res>=0 ) nUpper++;
1320       }
1321     }
1322     nDiff = (nUpper - nLower);
1323     if( nDiff<=0 ) nDiff = 1;
1324 
1325     /* If there is both an upper and lower bound specified, and the
1326     ** comparisons indicate that they are close together, use the fallback
1327     ** method (assume that the scan visits 1/64 of the rows) for estimating
1328     ** the number of rows visited. Otherwise, estimate the number of rows
1329     ** using the method described in the header comment for this function. */
1330     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1331       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1332       pLoop->nOut -= nAdjust;
1333       *pbDone = 1;
1334       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1335                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1336     }
1337 
1338   }else{
1339     assert( *pbDone==0 );
1340   }
1341 
1342   sqlite3ValueFree(p1);
1343   sqlite3ValueFree(p2);
1344   sqlite3ValueFree(pVal);
1345 
1346   return rc;
1347 }
1348 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1349 
1350 /*
1351 ** This function is used to estimate the number of rows that will be visited
1352 ** by scanning an index for a range of values. The range may have an upper
1353 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1354 ** and lower bounds are represented by pLower and pUpper respectively. For
1355 ** example, assuming that index p is on t1(a):
1356 **
1357 **   ... FROM t1 WHERE a > ? AND a < ? ...
1358 **                    |_____|   |_____|
1359 **                       |         |
1360 **                     pLower    pUpper
1361 **
1362 ** If either of the upper or lower bound is not present, then NULL is passed in
1363 ** place of the corresponding WhereTerm.
1364 **
1365 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1366 ** column subject to the range constraint. Or, equivalently, the number of
1367 ** equality constraints optimized by the proposed index scan. For example,
1368 ** assuming index p is on t1(a, b), and the SQL query is:
1369 **
1370 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1371 **
1372 ** then nEq is set to 1 (as the range restricted column, b, is the second
1373 ** left-most column of the index). Or, if the query is:
1374 **
1375 **   ... FROM t1 WHERE a > ? AND a < ? ...
1376 **
1377 ** then nEq is set to 0.
1378 **
1379 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1380 ** number of rows that the index scan is expected to visit without
1381 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1382 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1383 ** to account for the range constraints pLower and pUpper.
1384 **
1385 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1386 ** used, a single range inequality reduces the search space by a factor of 4.
1387 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1388 ** rows visited by a factor of 64.
1389 */
1390 static int whereRangeScanEst(
1391   Parse *pParse,       /* Parsing & code generating context */
1392   WhereLoopBuilder *pBuilder,
1393   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1394   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1395   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1396 ){
1397   int rc = SQLITE_OK;
1398   int nOut = pLoop->nOut;
1399   LogEst nNew;
1400 
1401 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1402   Index *p = pLoop->u.btree.pIndex;
1403   int nEq = pLoop->u.btree.nEq;
1404 
1405   if( p->nSample>0 && nEq<p->nSampleCol ){
1406     if( nEq==pBuilder->nRecValid ){
1407       UnpackedRecord *pRec = pBuilder->pRec;
1408       tRowcnt a[2];
1409       int nBtm = pLoop->u.btree.nBtm;
1410       int nTop = pLoop->u.btree.nTop;
1411 
1412       /* Variable iLower will be set to the estimate of the number of rows in
1413       ** the index that are less than the lower bound of the range query. The
1414       ** lower bound being the concatenation of $P and $L, where $P is the
1415       ** key-prefix formed by the nEq values matched against the nEq left-most
1416       ** columns of the index, and $L is the value in pLower.
1417       **
1418       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1419       ** is not a simple variable or literal value), the lower bound of the
1420       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1421       ** if $L is available, whereKeyStats() is called for both ($P) and
1422       ** ($P:$L) and the larger of the two returned values is used.
1423       **
1424       ** Similarly, iUpper is to be set to the estimate of the number of rows
1425       ** less than the upper bound of the range query. Where the upper bound
1426       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1427       ** of iUpper are requested of whereKeyStats() and the smaller used.
1428       **
1429       ** The number of rows between the two bounds is then just iUpper-iLower.
1430       */
1431       tRowcnt iLower;     /* Rows less than the lower bound */
1432       tRowcnt iUpper;     /* Rows less than the upper bound */
1433       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1434       int iUprIdx = -1;   /* aSample[] for the upper bound */
1435 
1436       if( pRec ){
1437         testcase( pRec->nField!=pBuilder->nRecValid );
1438         pRec->nField = pBuilder->nRecValid;
1439       }
1440       /* Determine iLower and iUpper using ($P) only. */
1441       if( nEq==0 ){
1442         iLower = 0;
1443         iUpper = p->nRowEst0;
1444       }else{
1445         /* Note: this call could be optimized away - since the same values must
1446         ** have been requested when testing key $P in whereEqualScanEst().  */
1447         whereKeyStats(pParse, p, pRec, 0, a);
1448         iLower = a[0];
1449         iUpper = a[0] + a[1];
1450       }
1451 
1452       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1453       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1454       assert( p->aSortOrder!=0 );
1455       if( p->aSortOrder[nEq] ){
1456         /* The roles of pLower and pUpper are swapped for a DESC index */
1457         SWAP(WhereTerm*, pLower, pUpper);
1458         SWAP(int, nBtm, nTop);
1459       }
1460 
1461       /* If possible, improve on the iLower estimate using ($P:$L). */
1462       if( pLower ){
1463         int n;                    /* Values extracted from pExpr */
1464         Expr *pExpr = pLower->pExpr->pRight;
1465         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1466         if( rc==SQLITE_OK && n ){
1467           tRowcnt iNew;
1468           u16 mask = WO_GT|WO_LE;
1469           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1470           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1471           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1472           if( iNew>iLower ) iLower = iNew;
1473           nOut--;
1474           pLower = 0;
1475         }
1476       }
1477 
1478       /* If possible, improve on the iUpper estimate using ($P:$U). */
1479       if( pUpper ){
1480         int n;                    /* Values extracted from pExpr */
1481         Expr *pExpr = pUpper->pExpr->pRight;
1482         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1483         if( rc==SQLITE_OK && n ){
1484           tRowcnt iNew;
1485           u16 mask = WO_GT|WO_LE;
1486           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1487           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1488           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1489           if( iNew<iUpper ) iUpper = iNew;
1490           nOut--;
1491           pUpper = 0;
1492         }
1493       }
1494 
1495       pBuilder->pRec = pRec;
1496       if( rc==SQLITE_OK ){
1497         if( iUpper>iLower ){
1498           nNew = sqlite3LogEst(iUpper - iLower);
1499           /* TUNING:  If both iUpper and iLower are derived from the same
1500           ** sample, then assume they are 4x more selective.  This brings
1501           ** the estimated selectivity more in line with what it would be
1502           ** if estimated without the use of STAT3/4 tables. */
1503           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1504         }else{
1505           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1506         }
1507         if( nNew<nOut ){
1508           nOut = nNew;
1509         }
1510         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1511                            (u32)iLower, (u32)iUpper, nOut));
1512       }
1513     }else{
1514       int bDone = 0;
1515       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1516       if( bDone ) return rc;
1517     }
1518   }
1519 #else
1520   UNUSED_PARAMETER(pParse);
1521   UNUSED_PARAMETER(pBuilder);
1522   assert( pLower || pUpper );
1523 #endif
1524   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1525   nNew = whereRangeAdjust(pLower, nOut);
1526   nNew = whereRangeAdjust(pUpper, nNew);
1527 
1528   /* TUNING: If there is both an upper and lower limit and neither limit
1529   ** has an application-defined likelihood(), assume the range is
1530   ** reduced by an additional 75%. This means that, by default, an open-ended
1531   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1532   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1533   ** match 1/64 of the index. */
1534   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1535     nNew -= 20;
1536   }
1537 
1538   nOut -= (pLower!=0) + (pUpper!=0);
1539   if( nNew<10 ) nNew = 10;
1540   if( nNew<nOut ) nOut = nNew;
1541 #if defined(WHERETRACE_ENABLED)
1542   if( pLoop->nOut>nOut ){
1543     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1544                     pLoop->nOut, nOut));
1545   }
1546 #endif
1547   pLoop->nOut = (LogEst)nOut;
1548   return rc;
1549 }
1550 
1551 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1552 /*
1553 ** Estimate the number of rows that will be returned based on
1554 ** an equality constraint x=VALUE and where that VALUE occurs in
1555 ** the histogram data.  This only works when x is the left-most
1556 ** column of an index and sqlite_stat3 histogram data is available
1557 ** for that index.  When pExpr==NULL that means the constraint is
1558 ** "x IS NULL" instead of "x=VALUE".
1559 **
1560 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1561 ** If unable to make an estimate, leave *pnRow unchanged and return
1562 ** non-zero.
1563 **
1564 ** This routine can fail if it is unable to load a collating sequence
1565 ** required for string comparison, or if unable to allocate memory
1566 ** for a UTF conversion required for comparison.  The error is stored
1567 ** in the pParse structure.
1568 */
1569 static int whereEqualScanEst(
1570   Parse *pParse,       /* Parsing & code generating context */
1571   WhereLoopBuilder *pBuilder,
1572   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1573   tRowcnt *pnRow       /* Write the revised row estimate here */
1574 ){
1575   Index *p = pBuilder->pNew->u.btree.pIndex;
1576   int nEq = pBuilder->pNew->u.btree.nEq;
1577   UnpackedRecord *pRec = pBuilder->pRec;
1578   int rc;                   /* Subfunction return code */
1579   tRowcnt a[2];             /* Statistics */
1580   int bOk;
1581 
1582   assert( nEq>=1 );
1583   assert( nEq<=p->nColumn );
1584   assert( p->aSample!=0 );
1585   assert( p->nSample>0 );
1586   assert( pBuilder->nRecValid<nEq );
1587 
1588   /* If values are not available for all fields of the index to the left
1589   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1590   if( pBuilder->nRecValid<(nEq-1) ){
1591     return SQLITE_NOTFOUND;
1592   }
1593 
1594   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1595   ** below would return the same value.  */
1596   if( nEq>=p->nColumn ){
1597     *pnRow = 1;
1598     return SQLITE_OK;
1599   }
1600 
1601   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1602   pBuilder->pRec = pRec;
1603   if( rc!=SQLITE_OK ) return rc;
1604   if( bOk==0 ) return SQLITE_NOTFOUND;
1605   pBuilder->nRecValid = nEq;
1606 
1607   whereKeyStats(pParse, p, pRec, 0, a);
1608   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1609                    p->zName, nEq-1, (int)a[1]));
1610   *pnRow = a[1];
1611 
1612   return rc;
1613 }
1614 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1615 
1616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1617 /*
1618 ** Estimate the number of rows that will be returned based on
1619 ** an IN constraint where the right-hand side of the IN operator
1620 ** is a list of values.  Example:
1621 **
1622 **        WHERE x IN (1,2,3,4)
1623 **
1624 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1625 ** If unable to make an estimate, leave *pnRow unchanged and return
1626 ** non-zero.
1627 **
1628 ** This routine can fail if it is unable to load a collating sequence
1629 ** required for string comparison, or if unable to allocate memory
1630 ** for a UTF conversion required for comparison.  The error is stored
1631 ** in the pParse structure.
1632 */
1633 static int whereInScanEst(
1634   Parse *pParse,       /* Parsing & code generating context */
1635   WhereLoopBuilder *pBuilder,
1636   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1637   tRowcnt *pnRow       /* Write the revised row estimate here */
1638 ){
1639   Index *p = pBuilder->pNew->u.btree.pIndex;
1640   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1641   int nRecValid = pBuilder->nRecValid;
1642   int rc = SQLITE_OK;     /* Subfunction return code */
1643   tRowcnt nEst;           /* Number of rows for a single term */
1644   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1645   int i;                  /* Loop counter */
1646 
1647   assert( p->aSample!=0 );
1648   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1649     nEst = nRow0;
1650     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1651     nRowEst += nEst;
1652     pBuilder->nRecValid = nRecValid;
1653   }
1654 
1655   if( rc==SQLITE_OK ){
1656     if( nRowEst > nRow0 ) nRowEst = nRow0;
1657     *pnRow = nRowEst;
1658     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1659   }
1660   assert( pBuilder->nRecValid==nRecValid );
1661   return rc;
1662 }
1663 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1664 
1665 
1666 #ifdef WHERETRACE_ENABLED
1667 /*
1668 ** Print the content of a WhereTerm object
1669 */
1670 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1671   if( pTerm==0 ){
1672     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1673   }else{
1674     char zType[4];
1675     char zLeft[50];
1676     memcpy(zType, "...", 4);
1677     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1678     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1679     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1680     if( pTerm->eOperator & WO_SINGLE ){
1681       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1682                        pTerm->leftCursor, pTerm->u.leftColumn);
1683     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1684       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1685                        pTerm->u.pOrInfo->indexable);
1686     }else{
1687       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1688     }
1689     sqlite3DebugPrintf(
1690        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1691        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1692        pTerm->eOperator, pTerm->wtFlags);
1693     if( pTerm->iField ){
1694       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1695     }else{
1696       sqlite3DebugPrintf("\n");
1697     }
1698     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1699   }
1700 }
1701 #endif
1702 
1703 #ifdef WHERETRACE_ENABLED
1704 /*
1705 ** Show the complete content of a WhereClause
1706 */
1707 void sqlite3WhereClausePrint(WhereClause *pWC){
1708   int i;
1709   for(i=0; i<pWC->nTerm; i++){
1710     whereTermPrint(&pWC->a[i], i);
1711   }
1712 }
1713 #endif
1714 
1715 #ifdef WHERETRACE_ENABLED
1716 /*
1717 ** Print a WhereLoop object for debugging purposes
1718 */
1719 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1720   WhereInfo *pWInfo = pWC->pWInfo;
1721   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1722   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1723   Table *pTab = pItem->pTab;
1724   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1725   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1726                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1727   sqlite3DebugPrintf(" %12s",
1728                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1729   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1730     const char *zName;
1731     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1732       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1733         int i = sqlite3Strlen30(zName) - 1;
1734         while( zName[i]!='_' ) i--;
1735         zName += i;
1736       }
1737       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1738     }else{
1739       sqlite3DebugPrintf("%20s","");
1740     }
1741   }else{
1742     char *z;
1743     if( p->u.vtab.idxStr ){
1744       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1745                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1746     }else{
1747       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1748     }
1749     sqlite3DebugPrintf(" %-19s", z);
1750     sqlite3_free(z);
1751   }
1752   if( p->wsFlags & WHERE_SKIPSCAN ){
1753     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1754   }else{
1755     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1756   }
1757   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1758   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1759     int i;
1760     for(i=0; i<p->nLTerm; i++){
1761       whereTermPrint(p->aLTerm[i], i);
1762     }
1763   }
1764 }
1765 #endif
1766 
1767 /*
1768 ** Convert bulk memory into a valid WhereLoop that can be passed
1769 ** to whereLoopClear harmlessly.
1770 */
1771 static void whereLoopInit(WhereLoop *p){
1772   p->aLTerm = p->aLTermSpace;
1773   p->nLTerm = 0;
1774   p->nLSlot = ArraySize(p->aLTermSpace);
1775   p->wsFlags = 0;
1776 }
1777 
1778 /*
1779 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1780 */
1781 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1782   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1783     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1784       sqlite3_free(p->u.vtab.idxStr);
1785       p->u.vtab.needFree = 0;
1786       p->u.vtab.idxStr = 0;
1787     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1788       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1789       sqlite3DbFree(db, p->u.btree.pIndex);
1790       p->u.btree.pIndex = 0;
1791     }
1792   }
1793 }
1794 
1795 /*
1796 ** Deallocate internal memory used by a WhereLoop object
1797 */
1798 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1799   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1800   whereLoopClearUnion(db, p);
1801   whereLoopInit(p);
1802 }
1803 
1804 /*
1805 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1806 */
1807 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1808   WhereTerm **paNew;
1809   if( p->nLSlot>=n ) return SQLITE_OK;
1810   n = (n+7)&~7;
1811   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1812   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1813   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1814   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1815   p->aLTerm = paNew;
1816   p->nLSlot = n;
1817   return SQLITE_OK;
1818 }
1819 
1820 /*
1821 ** Transfer content from the second pLoop into the first.
1822 */
1823 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1824   whereLoopClearUnion(db, pTo);
1825   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1826     memset(&pTo->u, 0, sizeof(pTo->u));
1827     return SQLITE_NOMEM_BKPT;
1828   }
1829   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1830   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1831   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1832     pFrom->u.vtab.needFree = 0;
1833   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1834     pFrom->u.btree.pIndex = 0;
1835   }
1836   return SQLITE_OK;
1837 }
1838 
1839 /*
1840 ** Delete a WhereLoop object
1841 */
1842 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1843   whereLoopClear(db, p);
1844   sqlite3DbFree(db, p);
1845 }
1846 
1847 /*
1848 ** Free a WhereInfo structure
1849 */
1850 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1851   if( ALWAYS(pWInfo) ){
1852     int i;
1853     for(i=0; i<pWInfo->nLevel; i++){
1854       WhereLevel *pLevel = &pWInfo->a[i];
1855       if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1856         sqlite3DbFree(db, pLevel->u.in.aInLoop);
1857       }
1858     }
1859     sqlite3WhereClauseClear(&pWInfo->sWC);
1860     while( pWInfo->pLoops ){
1861       WhereLoop *p = pWInfo->pLoops;
1862       pWInfo->pLoops = p->pNextLoop;
1863       whereLoopDelete(db, p);
1864     }
1865     sqlite3DbFree(db, pWInfo);
1866   }
1867 }
1868 
1869 /*
1870 ** Return TRUE if all of the following are true:
1871 **
1872 **   (1)  X has the same or lower cost that Y
1873 **   (2)  X is a proper subset of Y
1874 **   (3)  X skips at least as many columns as Y
1875 **
1876 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1877 ** than Y and that every WHERE clause term used by X is also used
1878 ** by Y.
1879 **
1880 ** If X is a proper subset of Y then Y is a better choice and ought
1881 ** to have a lower cost.  This routine returns TRUE when that cost
1882 ** relationship is inverted and needs to be adjusted.  The third rule
1883 ** was added because if X uses skip-scan less than Y it still might
1884 ** deserve a lower cost even if it is a proper subset of Y.
1885 */
1886 static int whereLoopCheaperProperSubset(
1887   const WhereLoop *pX,       /* First WhereLoop to compare */
1888   const WhereLoop *pY        /* Compare against this WhereLoop */
1889 ){
1890   int i, j;
1891   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1892     return 0; /* X is not a subset of Y */
1893   }
1894   if( pY->nSkip > pX->nSkip ) return 0;
1895   if( pX->rRun >= pY->rRun ){
1896     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1897     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1898   }
1899   for(i=pX->nLTerm-1; i>=0; i--){
1900     if( pX->aLTerm[i]==0 ) continue;
1901     for(j=pY->nLTerm-1; j>=0; j--){
1902       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1903     }
1904     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1905   }
1906   return 1;  /* All conditions meet */
1907 }
1908 
1909 /*
1910 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1911 ** that:
1912 **
1913 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1914 **       subset of pTemplate
1915 **
1916 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1917 **       is a proper subset.
1918 **
1919 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1920 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1921 ** also used by Y.
1922 */
1923 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1924   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1925   for(; p; p=p->pNextLoop){
1926     if( p->iTab!=pTemplate->iTab ) continue;
1927     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1928     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1929       /* Adjust pTemplate cost downward so that it is cheaper than its
1930       ** subset p. */
1931       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1932                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1933       pTemplate->rRun = p->rRun;
1934       pTemplate->nOut = p->nOut - 1;
1935     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1936       /* Adjust pTemplate cost upward so that it is costlier than p since
1937       ** pTemplate is a proper subset of p */
1938       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1939                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1940       pTemplate->rRun = p->rRun;
1941       pTemplate->nOut = p->nOut + 1;
1942     }
1943   }
1944 }
1945 
1946 /*
1947 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1948 ** supplanted by pTemplate.
1949 **
1950 ** Return NULL if the WhereLoop list contains an entry that can supplant
1951 ** pTemplate, in other words if pTemplate does not belong on the list.
1952 **
1953 ** If pX is a WhereLoop that pTemplate can supplant, then return the
1954 ** link that points to pX.
1955 **
1956 ** If pTemplate cannot supplant any existing element of the list but needs
1957 ** to be added to the list, then return a pointer to the tail of the list.
1958 */
1959 static WhereLoop **whereLoopFindLesser(
1960   WhereLoop **ppPrev,
1961   const WhereLoop *pTemplate
1962 ){
1963   WhereLoop *p;
1964   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1965     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1966       /* If either the iTab or iSortIdx values for two WhereLoop are different
1967       ** then those WhereLoops need to be considered separately.  Neither is
1968       ** a candidate to replace the other. */
1969       continue;
1970     }
1971     /* In the current implementation, the rSetup value is either zero
1972     ** or the cost of building an automatic index (NlogN) and the NlogN
1973     ** is the same for compatible WhereLoops. */
1974     assert( p->rSetup==0 || pTemplate->rSetup==0
1975                  || p->rSetup==pTemplate->rSetup );
1976 
1977     /* whereLoopAddBtree() always generates and inserts the automatic index
1978     ** case first.  Hence compatible candidate WhereLoops never have a larger
1979     ** rSetup. Call this SETUP-INVARIANT */
1980     assert( p->rSetup>=pTemplate->rSetup );
1981 
1982     /* Any loop using an appliation-defined index (or PRIMARY KEY or
1983     ** UNIQUE constraint) with one or more == constraints is better
1984     ** than an automatic index. Unless it is a skip-scan. */
1985     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1986      && (pTemplate->nSkip)==0
1987      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1988      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1989      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1990     ){
1991       break;
1992     }
1993 
1994     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1995     ** discarded.  WhereLoop p is better if:
1996     **   (1)  p has no more dependencies than pTemplate, and
1997     **   (2)  p has an equal or lower cost than pTemplate
1998     */
1999     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2000      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2001      && p->rRun<=pTemplate->rRun                      /* (2b) */
2002      && p->nOut<=pTemplate->nOut                      /* (2c) */
2003     ){
2004       return 0;  /* Discard pTemplate */
2005     }
2006 
2007     /* If pTemplate is always better than p, then cause p to be overwritten
2008     ** with pTemplate.  pTemplate is better than p if:
2009     **   (1)  pTemplate has no more dependences than p, and
2010     **   (2)  pTemplate has an equal or lower cost than p.
2011     */
2012     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2013      && p->rRun>=pTemplate->rRun                             /* (2a) */
2014      && p->nOut>=pTemplate->nOut                             /* (2b) */
2015     ){
2016       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2017       break;   /* Cause p to be overwritten by pTemplate */
2018     }
2019   }
2020   return ppPrev;
2021 }
2022 
2023 /*
2024 ** Insert or replace a WhereLoop entry using the template supplied.
2025 **
2026 ** An existing WhereLoop entry might be overwritten if the new template
2027 ** is better and has fewer dependencies.  Or the template will be ignored
2028 ** and no insert will occur if an existing WhereLoop is faster and has
2029 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2030 ** added based on the template.
2031 **
2032 ** If pBuilder->pOrSet is not NULL then we care about only the
2033 ** prerequisites and rRun and nOut costs of the N best loops.  That
2034 ** information is gathered in the pBuilder->pOrSet object.  This special
2035 ** processing mode is used only for OR clause processing.
2036 **
2037 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2038 ** still might overwrite similar loops with the new template if the
2039 ** new template is better.  Loops may be overwritten if the following
2040 ** conditions are met:
2041 **
2042 **    (1)  They have the same iTab.
2043 **    (2)  They have the same iSortIdx.
2044 **    (3)  The template has same or fewer dependencies than the current loop
2045 **    (4)  The template has the same or lower cost than the current loop
2046 */
2047 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2048   WhereLoop **ppPrev, *p;
2049   WhereInfo *pWInfo = pBuilder->pWInfo;
2050   sqlite3 *db = pWInfo->pParse->db;
2051   int rc;
2052 
2053   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2054   ** and prereqs.
2055   */
2056   if( pBuilder->pOrSet!=0 ){
2057     if( pTemplate->nLTerm ){
2058 #if WHERETRACE_ENABLED
2059       u16 n = pBuilder->pOrSet->n;
2060       int x =
2061 #endif
2062       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2063                                     pTemplate->nOut);
2064 #if WHERETRACE_ENABLED /* 0x8 */
2065       if( sqlite3WhereTrace & 0x8 ){
2066         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2067         whereLoopPrint(pTemplate, pBuilder->pWC);
2068       }
2069 #endif
2070     }
2071     return SQLITE_OK;
2072   }
2073 
2074   /* Look for an existing WhereLoop to replace with pTemplate
2075   */
2076   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2077   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2078 
2079   if( ppPrev==0 ){
2080     /* There already exists a WhereLoop on the list that is better
2081     ** than pTemplate, so just ignore pTemplate */
2082 #if WHERETRACE_ENABLED /* 0x8 */
2083     if( sqlite3WhereTrace & 0x8 ){
2084       sqlite3DebugPrintf("   skip: ");
2085       whereLoopPrint(pTemplate, pBuilder->pWC);
2086     }
2087 #endif
2088     return SQLITE_OK;
2089   }else{
2090     p = *ppPrev;
2091   }
2092 
2093   /* If we reach this point it means that either p[] should be overwritten
2094   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2095   ** WhereLoop and insert it.
2096   */
2097 #if WHERETRACE_ENABLED /* 0x8 */
2098   if( sqlite3WhereTrace & 0x8 ){
2099     if( p!=0 ){
2100       sqlite3DebugPrintf("replace: ");
2101       whereLoopPrint(p, pBuilder->pWC);
2102     }
2103     sqlite3DebugPrintf("    add: ");
2104     whereLoopPrint(pTemplate, pBuilder->pWC);
2105   }
2106 #endif
2107   if( p==0 ){
2108     /* Allocate a new WhereLoop to add to the end of the list */
2109     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2110     if( p==0 ) return SQLITE_NOMEM_BKPT;
2111     whereLoopInit(p);
2112     p->pNextLoop = 0;
2113   }else{
2114     /* We will be overwriting WhereLoop p[].  But before we do, first
2115     ** go through the rest of the list and delete any other entries besides
2116     ** p[] that are also supplated by pTemplate */
2117     WhereLoop **ppTail = &p->pNextLoop;
2118     WhereLoop *pToDel;
2119     while( *ppTail ){
2120       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2121       if( ppTail==0 ) break;
2122       pToDel = *ppTail;
2123       if( pToDel==0 ) break;
2124       *ppTail = pToDel->pNextLoop;
2125 #if WHERETRACE_ENABLED /* 0x8 */
2126       if( sqlite3WhereTrace & 0x8 ){
2127         sqlite3DebugPrintf(" delete: ");
2128         whereLoopPrint(pToDel, pBuilder->pWC);
2129       }
2130 #endif
2131       whereLoopDelete(db, pToDel);
2132     }
2133   }
2134   rc = whereLoopXfer(db, p, pTemplate);
2135   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2136     Index *pIndex = p->u.btree.pIndex;
2137     if( pIndex && pIndex->tnum==0 ){
2138       p->u.btree.pIndex = 0;
2139     }
2140   }
2141   return rc;
2142 }
2143 
2144 /*
2145 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2146 ** WHERE clause that reference the loop but which are not used by an
2147 ** index.
2148 *
2149 ** For every WHERE clause term that is not used by the index
2150 ** and which has a truth probability assigned by one of the likelihood(),
2151 ** likely(), or unlikely() SQL functions, reduce the estimated number
2152 ** of output rows by the probability specified.
2153 **
2154 ** TUNING:  For every WHERE clause term that is not used by the index
2155 ** and which does not have an assigned truth probability, heuristics
2156 ** described below are used to try to estimate the truth probability.
2157 ** TODO --> Perhaps this is something that could be improved by better
2158 ** table statistics.
2159 **
2160 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2161 ** value corresponds to -1 in LogEst notation, so this means decrement
2162 ** the WhereLoop.nOut field for every such WHERE clause term.
2163 **
2164 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2165 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2166 ** final output row estimate is no greater than 1/4 of the total number
2167 ** of rows in the table.  In other words, assume that x==EXPR will filter
2168 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2169 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2170 ** on the "x" column and so in that case only cap the output row estimate
2171 ** at 1/2 instead of 1/4.
2172 */
2173 static void whereLoopOutputAdjust(
2174   WhereClause *pWC,      /* The WHERE clause */
2175   WhereLoop *pLoop,      /* The loop to adjust downward */
2176   LogEst nRow            /* Number of rows in the entire table */
2177 ){
2178   WhereTerm *pTerm, *pX;
2179   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2180   int i, j, k;
2181   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2182 
2183   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2184   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2185     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2186     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2187     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2188     for(j=pLoop->nLTerm-1; j>=0; j--){
2189       pX = pLoop->aLTerm[j];
2190       if( pX==0 ) continue;
2191       if( pX==pTerm ) break;
2192       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2193     }
2194     if( j<0 ){
2195       if( pTerm->truthProb<=0 ){
2196         /* If a truth probability is specified using the likelihood() hints,
2197         ** then use the probability provided by the application. */
2198         pLoop->nOut += pTerm->truthProb;
2199       }else{
2200         /* In the absence of explicit truth probabilities, use heuristics to
2201         ** guess a reasonable truth probability. */
2202         pLoop->nOut--;
2203         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2204           Expr *pRight = pTerm->pExpr->pRight;
2205           testcase( pTerm->pExpr->op==TK_IS );
2206           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2207             k = 10;
2208           }else{
2209             k = 20;
2210           }
2211           if( iReduce<k ) iReduce = k;
2212         }
2213       }
2214     }
2215   }
2216   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2217 }
2218 
2219 /*
2220 ** Term pTerm is a vector range comparison operation. The first comparison
2221 ** in the vector can be optimized using column nEq of the index. This
2222 ** function returns the total number of vector elements that can be used
2223 ** as part of the range comparison.
2224 **
2225 ** For example, if the query is:
2226 **
2227 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2228 **
2229 ** and the index:
2230 **
2231 **   CREATE INDEX ... ON (a, b, c, d, e)
2232 **
2233 ** then this function would be invoked with nEq=1. The value returned in
2234 ** this case is 3.
2235 */
2236 static int whereRangeVectorLen(
2237   Parse *pParse,       /* Parsing context */
2238   int iCur,            /* Cursor open on pIdx */
2239   Index *pIdx,         /* The index to be used for a inequality constraint */
2240   int nEq,             /* Number of prior equality constraints on same index */
2241   WhereTerm *pTerm     /* The vector inequality constraint */
2242 ){
2243   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2244   int i;
2245 
2246   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2247   for(i=1; i<nCmp; i++){
2248     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2249     ** of the index. If not, exit the loop.  */
2250     char aff;                     /* Comparison affinity */
2251     char idxaff = 0;              /* Indexed columns affinity */
2252     CollSeq *pColl;               /* Comparison collation sequence */
2253     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2254     Expr *pRhs = pTerm->pExpr->pRight;
2255     if( pRhs->flags & EP_xIsSelect ){
2256       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2257     }else{
2258       pRhs = pRhs->x.pList->a[i].pExpr;
2259     }
2260 
2261     /* Check that the LHS of the comparison is a column reference to
2262     ** the right column of the right source table. And that the sort
2263     ** order of the index column is the same as the sort order of the
2264     ** leftmost index column.  */
2265     if( pLhs->op!=TK_COLUMN
2266      || pLhs->iTable!=iCur
2267      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2268      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2269     ){
2270       break;
2271     }
2272 
2273     testcase( pLhs->iColumn==XN_ROWID );
2274     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2275     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2276     if( aff!=idxaff ) break;
2277 
2278     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2279     if( pColl==0 ) break;
2280     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2281   }
2282   return i;
2283 }
2284 
2285 /*
2286 ** Adjust the cost C by the costMult facter T.  This only occurs if
2287 ** compiled with -DSQLITE_ENABLE_COSTMULT
2288 */
2289 #ifdef SQLITE_ENABLE_COSTMULT
2290 # define ApplyCostMultiplier(C,T)  C += T
2291 #else
2292 # define ApplyCostMultiplier(C,T)
2293 #endif
2294 
2295 /*
2296 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2297 ** index pIndex. Try to match one more.
2298 **
2299 ** When this function is called, pBuilder->pNew->nOut contains the
2300 ** number of rows expected to be visited by filtering using the nEq
2301 ** terms only. If it is modified, this value is restored before this
2302 ** function returns.
2303 **
2304 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2305 ** INTEGER PRIMARY KEY.
2306 */
2307 static int whereLoopAddBtreeIndex(
2308   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2309   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2310   Index *pProbe,                  /* An index on pSrc */
2311   LogEst nInMul                   /* log(Number of iterations due to IN) */
2312 ){
2313   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2314   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2315   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2316   WhereLoop *pNew;                /* Template WhereLoop under construction */
2317   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2318   int opMask;                     /* Valid operators for constraints */
2319   WhereScan scan;                 /* Iterator for WHERE terms */
2320   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2321   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2322   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2323   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2324   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2325   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2326   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2327   LogEst saved_nOut;              /* Original value of pNew->nOut */
2328   int rc = SQLITE_OK;             /* Return code */
2329   LogEst rSize;                   /* Number of rows in the table */
2330   LogEst rLogSize;                /* Logarithm of table size */
2331   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2332 
2333   pNew = pBuilder->pNew;
2334   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2335   WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2336                      pProbe->zName, pNew->u.btree.nEq));
2337 
2338   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2339   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2340   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2341     opMask = WO_LT|WO_LE;
2342   }else{
2343     assert( pNew->u.btree.nBtm==0 );
2344     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2345   }
2346   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2347 
2348   assert( pNew->u.btree.nEq<pProbe->nColumn );
2349 
2350   saved_nEq = pNew->u.btree.nEq;
2351   saved_nBtm = pNew->u.btree.nBtm;
2352   saved_nTop = pNew->u.btree.nTop;
2353   saved_nSkip = pNew->nSkip;
2354   saved_nLTerm = pNew->nLTerm;
2355   saved_wsFlags = pNew->wsFlags;
2356   saved_prereq = pNew->prereq;
2357   saved_nOut = pNew->nOut;
2358   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2359                         opMask, pProbe);
2360   pNew->rSetup = 0;
2361   rSize = pProbe->aiRowLogEst[0];
2362   rLogSize = estLog(rSize);
2363   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2364     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2365     LogEst rCostIdx;
2366     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2367     int nIn = 0;
2368 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2369     int nRecValid = pBuilder->nRecValid;
2370 #endif
2371     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2372      && indexColumnNotNull(pProbe, saved_nEq)
2373     ){
2374       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2375     }
2376     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2377 
2378     /* Do not allow the upper bound of a LIKE optimization range constraint
2379     ** to mix with a lower range bound from some other source */
2380     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2381 
2382     /* Do not allow IS constraints from the WHERE clause to be used by the
2383     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2384     ** allowed */
2385     if( (pSrc->fg.jointype & JT_LEFT)!=0
2386      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2387      && (eOp & (WO_IS|WO_ISNULL))!=0
2388     ){
2389       testcase( eOp & WO_IS );
2390       testcase( eOp & WO_ISNULL );
2391       continue;
2392     }
2393 
2394     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2395       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2396     }else{
2397       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2398     }
2399     pNew->wsFlags = saved_wsFlags;
2400     pNew->u.btree.nEq = saved_nEq;
2401     pNew->u.btree.nBtm = saved_nBtm;
2402     pNew->u.btree.nTop = saved_nTop;
2403     pNew->nLTerm = saved_nLTerm;
2404     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2405     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2406     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2407 
2408     assert( nInMul==0
2409         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2410         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2411         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2412     );
2413 
2414     if( eOp & WO_IN ){
2415       Expr *pExpr = pTerm->pExpr;
2416       pNew->wsFlags |= WHERE_COLUMN_IN;
2417       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2418         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2419         int i;
2420         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2421 
2422         /* The expression may actually be of the form (x, y) IN (SELECT...).
2423         ** In this case there is a separate term for each of (x) and (y).
2424         ** However, the nIn multiplier should only be applied once, not once
2425         ** for each such term. The following loop checks that pTerm is the
2426         ** first such term in use, and sets nIn back to 0 if it is not. */
2427         for(i=0; i<pNew->nLTerm-1; i++){
2428           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2429         }
2430       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2431         /* "x IN (value, value, ...)" */
2432         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2433         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2434                           ** changes "x IN (?)" into "x=?". */
2435       }
2436     }else if( eOp & (WO_EQ|WO_IS) ){
2437       int iCol = pProbe->aiColumn[saved_nEq];
2438       pNew->wsFlags |= WHERE_COLUMN_EQ;
2439       assert( saved_nEq==pNew->u.btree.nEq );
2440       if( iCol==XN_ROWID
2441        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2442       ){
2443         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2444           pNew->wsFlags |= WHERE_UNQ_WANTED;
2445         }else{
2446           pNew->wsFlags |= WHERE_ONEROW;
2447         }
2448       }
2449     }else if( eOp & WO_ISNULL ){
2450       pNew->wsFlags |= WHERE_COLUMN_NULL;
2451     }else if( eOp & (WO_GT|WO_GE) ){
2452       testcase( eOp & WO_GT );
2453       testcase( eOp & WO_GE );
2454       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2455       pNew->u.btree.nBtm = whereRangeVectorLen(
2456           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2457       );
2458       pBtm = pTerm;
2459       pTop = 0;
2460       if( pTerm->wtFlags & TERM_LIKEOPT ){
2461         /* Range contraints that come from the LIKE optimization are
2462         ** always used in pairs. */
2463         pTop = &pTerm[1];
2464         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2465         assert( pTop->wtFlags & TERM_LIKEOPT );
2466         assert( pTop->eOperator==WO_LT );
2467         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2468         pNew->aLTerm[pNew->nLTerm++] = pTop;
2469         pNew->wsFlags |= WHERE_TOP_LIMIT;
2470         pNew->u.btree.nTop = 1;
2471       }
2472     }else{
2473       assert( eOp & (WO_LT|WO_LE) );
2474       testcase( eOp & WO_LT );
2475       testcase( eOp & WO_LE );
2476       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2477       pNew->u.btree.nTop = whereRangeVectorLen(
2478           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2479       );
2480       pTop = pTerm;
2481       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2482                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2483     }
2484 
2485     /* At this point pNew->nOut is set to the number of rows expected to
2486     ** be visited by the index scan before considering term pTerm, or the
2487     ** values of nIn and nInMul. In other words, assuming that all
2488     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2489     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2490     assert( pNew->nOut==saved_nOut );
2491     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2492       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2493       ** data, using some other estimate.  */
2494       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2495     }else{
2496       int nEq = ++pNew->u.btree.nEq;
2497       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2498 
2499       assert( pNew->nOut==saved_nOut );
2500       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2501         assert( (eOp & WO_IN) || nIn==0 );
2502         testcase( eOp & WO_IN );
2503         pNew->nOut += pTerm->truthProb;
2504         pNew->nOut -= nIn;
2505       }else{
2506 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2507         tRowcnt nOut = 0;
2508         if( nInMul==0
2509          && pProbe->nSample
2510          && pNew->u.btree.nEq<=pProbe->nSampleCol
2511          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2512         ){
2513           Expr *pExpr = pTerm->pExpr;
2514           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2515             testcase( eOp & WO_EQ );
2516             testcase( eOp & WO_IS );
2517             testcase( eOp & WO_ISNULL );
2518             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2519           }else{
2520             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2521           }
2522           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2523           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2524           if( nOut ){
2525             pNew->nOut = sqlite3LogEst(nOut);
2526             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2527             pNew->nOut -= nIn;
2528           }
2529         }
2530         if( nOut==0 )
2531 #endif
2532         {
2533           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2534           if( eOp & WO_ISNULL ){
2535             /* TUNING: If there is no likelihood() value, assume that a
2536             ** "col IS NULL" expression matches twice as many rows
2537             ** as (col=?). */
2538             pNew->nOut += 10;
2539           }
2540         }
2541       }
2542     }
2543 
2544     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2545     ** it to pNew->rRun, which is currently set to the cost of the index
2546     ** seek only. Then, if this is a non-covering index, add the cost of
2547     ** visiting the rows in the main table.  */
2548     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2549     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2550     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2551       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2552     }
2553     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2554 
2555     nOutUnadjusted = pNew->nOut;
2556     pNew->rRun += nInMul + nIn;
2557     pNew->nOut += nInMul + nIn;
2558     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2559     rc = whereLoopInsert(pBuilder, pNew);
2560 
2561     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2562       pNew->nOut = saved_nOut;
2563     }else{
2564       pNew->nOut = nOutUnadjusted;
2565     }
2566 
2567     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2568      && pNew->u.btree.nEq<pProbe->nColumn
2569     ){
2570       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2571     }
2572     pNew->nOut = saved_nOut;
2573 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2574     pBuilder->nRecValid = nRecValid;
2575 #endif
2576   }
2577   pNew->prereq = saved_prereq;
2578   pNew->u.btree.nEq = saved_nEq;
2579   pNew->u.btree.nBtm = saved_nBtm;
2580   pNew->u.btree.nTop = saved_nTop;
2581   pNew->nSkip = saved_nSkip;
2582   pNew->wsFlags = saved_wsFlags;
2583   pNew->nOut = saved_nOut;
2584   pNew->nLTerm = saved_nLTerm;
2585 
2586   /* Consider using a skip-scan if there are no WHERE clause constraints
2587   ** available for the left-most terms of the index, and if the average
2588   ** number of repeats in the left-most terms is at least 18.
2589   **
2590   ** The magic number 18 is selected on the basis that scanning 17 rows
2591   ** is almost always quicker than an index seek (even though if the index
2592   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2593   ** the code). And, even if it is not, it should not be too much slower.
2594   ** On the other hand, the extra seeks could end up being significantly
2595   ** more expensive.  */
2596   assert( 42==sqlite3LogEst(18) );
2597   if( saved_nEq==saved_nSkip
2598    && saved_nEq+1<pProbe->nKeyCol
2599    && pProbe->noSkipScan==0
2600    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2601    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2602   ){
2603     LogEst nIter;
2604     pNew->u.btree.nEq++;
2605     pNew->nSkip++;
2606     pNew->aLTerm[pNew->nLTerm++] = 0;
2607     pNew->wsFlags |= WHERE_SKIPSCAN;
2608     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2609     pNew->nOut -= nIter;
2610     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2611     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2612     nIter += 5;
2613     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2614     pNew->nOut = saved_nOut;
2615     pNew->u.btree.nEq = saved_nEq;
2616     pNew->nSkip = saved_nSkip;
2617     pNew->wsFlags = saved_wsFlags;
2618   }
2619 
2620   WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2621                       pProbe->zName, saved_nEq, rc));
2622   return rc;
2623 }
2624 
2625 /*
2626 ** Return True if it is possible that pIndex might be useful in
2627 ** implementing the ORDER BY clause in pBuilder.
2628 **
2629 ** Return False if pBuilder does not contain an ORDER BY clause or
2630 ** if there is no way for pIndex to be useful in implementing that
2631 ** ORDER BY clause.
2632 */
2633 static int indexMightHelpWithOrderBy(
2634   WhereLoopBuilder *pBuilder,
2635   Index *pIndex,
2636   int iCursor
2637 ){
2638   ExprList *pOB;
2639   ExprList *aColExpr;
2640   int ii, jj;
2641 
2642   if( pIndex->bUnordered ) return 0;
2643   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2644   for(ii=0; ii<pOB->nExpr; ii++){
2645     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2646     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2647       if( pExpr->iColumn<0 ) return 1;
2648       for(jj=0; jj<pIndex->nKeyCol; jj++){
2649         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2650       }
2651     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2652       for(jj=0; jj<pIndex->nKeyCol; jj++){
2653         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2654         if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2655           return 1;
2656         }
2657       }
2658     }
2659   }
2660   return 0;
2661 }
2662 
2663 /*
2664 ** Return a bitmask where 1s indicate that the corresponding column of
2665 ** the table is used by an index.  Only the first 63 columns are considered.
2666 */
2667 static Bitmask columnsInIndex(Index *pIdx){
2668   Bitmask m = 0;
2669   int j;
2670   for(j=pIdx->nColumn-1; j>=0; j--){
2671     int x = pIdx->aiColumn[j];
2672     if( x>=0 ){
2673       testcase( x==BMS-1 );
2674       testcase( x==BMS-2 );
2675       if( x<BMS-1 ) m |= MASKBIT(x);
2676     }
2677   }
2678   return m;
2679 }
2680 
2681 /* Check to see if a partial index with pPartIndexWhere can be used
2682 ** in the current query.  Return true if it can be and false if not.
2683 */
2684 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2685   int i;
2686   WhereTerm *pTerm;
2687   while( pWhere->op==TK_AND ){
2688     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2689     pWhere = pWhere->pRight;
2690   }
2691   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2692     Expr *pExpr = pTerm->pExpr;
2693     if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
2694      && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2695     ){
2696       return 1;
2697     }
2698   }
2699   return 0;
2700 }
2701 
2702 /*
2703 ** Add all WhereLoop objects for a single table of the join where the table
2704 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2705 ** a b-tree table, not a virtual table.
2706 **
2707 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2708 ** are calculated as follows:
2709 **
2710 ** For a full scan, assuming the table (or index) contains nRow rows:
2711 **
2712 **     cost = nRow * 3.0                    // full-table scan
2713 **     cost = nRow * K                      // scan of covering index
2714 **     cost = nRow * (K+3.0)                // scan of non-covering index
2715 **
2716 ** where K is a value between 1.1 and 3.0 set based on the relative
2717 ** estimated average size of the index and table records.
2718 **
2719 ** For an index scan, where nVisit is the number of index rows visited
2720 ** by the scan, and nSeek is the number of seek operations required on
2721 ** the index b-tree:
2722 **
2723 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2724 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2725 **
2726 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2727 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2728 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2729 **
2730 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2731 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2732 ** "do the least harm" if the estimates are inaccurate.  For example, a
2733 ** log(nRow) factor is omitted from a non-covering index scan in order to
2734 ** bias the scoring in favor of using an index, since the worst-case
2735 ** performance of using an index is far better than the worst-case performance
2736 ** of a full table scan.
2737 */
2738 static int whereLoopAddBtree(
2739   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2740   Bitmask mPrereq             /* Extra prerequesites for using this table */
2741 ){
2742   WhereInfo *pWInfo;          /* WHERE analysis context */
2743   Index *pProbe;              /* An index we are evaluating */
2744   Index sPk;                  /* A fake index object for the primary key */
2745   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2746   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2747   SrcList *pTabList;          /* The FROM clause */
2748   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2749   WhereLoop *pNew;            /* Template WhereLoop object */
2750   int rc = SQLITE_OK;         /* Return code */
2751   int iSortIdx = 1;           /* Index number */
2752   int b;                      /* A boolean value */
2753   LogEst rSize;               /* number of rows in the table */
2754   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2755   WhereClause *pWC;           /* The parsed WHERE clause */
2756   Table *pTab;                /* Table being queried */
2757 
2758   pNew = pBuilder->pNew;
2759   pWInfo = pBuilder->pWInfo;
2760   pTabList = pWInfo->pTabList;
2761   pSrc = pTabList->a + pNew->iTab;
2762   pTab = pSrc->pTab;
2763   pWC = pBuilder->pWC;
2764   assert( !IsVirtual(pSrc->pTab) );
2765 
2766   if( pSrc->pIBIndex ){
2767     /* An INDEXED BY clause specifies a particular index to use */
2768     pProbe = pSrc->pIBIndex;
2769   }else if( !HasRowid(pTab) ){
2770     pProbe = pTab->pIndex;
2771   }else{
2772     /* There is no INDEXED BY clause.  Create a fake Index object in local
2773     ** variable sPk to represent the rowid primary key index.  Make this
2774     ** fake index the first in a chain of Index objects with all of the real
2775     ** indices to follow */
2776     Index *pFirst;                  /* First of real indices on the table */
2777     memset(&sPk, 0, sizeof(Index));
2778     sPk.nKeyCol = 1;
2779     sPk.nColumn = 1;
2780     sPk.aiColumn = &aiColumnPk;
2781     sPk.aiRowLogEst = aiRowEstPk;
2782     sPk.onError = OE_Replace;
2783     sPk.pTable = pTab;
2784     sPk.szIdxRow = pTab->szTabRow;
2785     aiRowEstPk[0] = pTab->nRowLogEst;
2786     aiRowEstPk[1] = 0;
2787     pFirst = pSrc->pTab->pIndex;
2788     if( pSrc->fg.notIndexed==0 ){
2789       /* The real indices of the table are only considered if the
2790       ** NOT INDEXED qualifier is omitted from the FROM clause */
2791       sPk.pNext = pFirst;
2792     }
2793     pProbe = &sPk;
2794   }
2795   rSize = pTab->nRowLogEst;
2796   rLogSize = estLog(rSize);
2797 
2798 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2799   /* Automatic indexes */
2800   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2801    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2802    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2803    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2804    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2805    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2806    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2807    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2808   ){
2809     /* Generate auto-index WhereLoops */
2810     WhereTerm *pTerm;
2811     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2812     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2813       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2814       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2815         pNew->u.btree.nEq = 1;
2816         pNew->nSkip = 0;
2817         pNew->u.btree.pIndex = 0;
2818         pNew->nLTerm = 1;
2819         pNew->aLTerm[0] = pTerm;
2820         /* TUNING: One-time cost for computing the automatic index is
2821         ** estimated to be X*N*log2(N) where N is the number of rows in
2822         ** the table being indexed and where X is 7 (LogEst=28) for normal
2823         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2824         ** of X is smaller for views and subqueries so that the query planner
2825         ** will be more aggressive about generating automatic indexes for
2826         ** those objects, since there is no opportunity to add schema
2827         ** indexes on subqueries and views. */
2828         pNew->rSetup = rLogSize + rSize + 4;
2829         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2830           pNew->rSetup += 24;
2831         }
2832         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2833         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2834         /* TUNING: Each index lookup yields 20 rows in the table.  This
2835         ** is more than the usual guess of 10 rows, since we have no way
2836         ** of knowing how selective the index will ultimately be.  It would
2837         ** not be unreasonable to make this value much larger. */
2838         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2839         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2840         pNew->wsFlags = WHERE_AUTO_INDEX;
2841         pNew->prereq = mPrereq | pTerm->prereqRight;
2842         rc = whereLoopInsert(pBuilder, pNew);
2843       }
2844     }
2845   }
2846 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2847 
2848   /* Loop over all indices
2849   */
2850   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2851     if( pProbe->pPartIdxWhere!=0
2852      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2853       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2854       continue;  /* Partial index inappropriate for this query */
2855     }
2856     rSize = pProbe->aiRowLogEst[0];
2857     pNew->u.btree.nEq = 0;
2858     pNew->u.btree.nBtm = 0;
2859     pNew->u.btree.nTop = 0;
2860     pNew->nSkip = 0;
2861     pNew->nLTerm = 0;
2862     pNew->iSortIdx = 0;
2863     pNew->rSetup = 0;
2864     pNew->prereq = mPrereq;
2865     pNew->nOut = rSize;
2866     pNew->u.btree.pIndex = pProbe;
2867     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2868     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2869     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2870     if( pProbe->tnum<=0 ){
2871       /* Integer primary key index */
2872       pNew->wsFlags = WHERE_IPK;
2873 
2874       /* Full table scan */
2875       pNew->iSortIdx = b ? iSortIdx : 0;
2876       /* TUNING: Cost of full table scan is (N*3.0). */
2877       pNew->rRun = rSize + 16;
2878       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2879       whereLoopOutputAdjust(pWC, pNew, rSize);
2880       rc = whereLoopInsert(pBuilder, pNew);
2881       pNew->nOut = rSize;
2882       if( rc ) break;
2883     }else{
2884       Bitmask m;
2885       if( pProbe->isCovering ){
2886         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2887         m = 0;
2888       }else{
2889         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2890         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2891       }
2892 
2893       /* Full scan via index */
2894       if( b
2895        || !HasRowid(pTab)
2896        || pProbe->pPartIdxWhere!=0
2897        || ( m==0
2898          && pProbe->bUnordered==0
2899          && (pProbe->szIdxRow<pTab->szTabRow)
2900          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2901          && sqlite3GlobalConfig.bUseCis
2902          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2903           )
2904       ){
2905         pNew->iSortIdx = b ? iSortIdx : 0;
2906 
2907         /* The cost of visiting the index rows is N*K, where K is
2908         ** between 1.1 and 3.0, depending on the relative sizes of the
2909         ** index and table rows. */
2910         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2911         if( m!=0 ){
2912           /* If this is a non-covering index scan, add in the cost of
2913           ** doing table lookups.  The cost will be 3x the number of
2914           ** lookups.  Take into account WHERE clause terms that can be
2915           ** satisfied using just the index, and that do not require a
2916           ** table lookup. */
2917           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2918           int ii;
2919           int iCur = pSrc->iCursor;
2920           WhereClause *pWC2 = &pWInfo->sWC;
2921           for(ii=0; ii<pWC2->nTerm; ii++){
2922             WhereTerm *pTerm = &pWC2->a[ii];
2923             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2924               break;
2925             }
2926             /* pTerm can be evaluated using just the index.  So reduce
2927             ** the expected number of table lookups accordingly */
2928             if( pTerm->truthProb<=0 ){
2929               nLookup += pTerm->truthProb;
2930             }else{
2931               nLookup--;
2932               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2933             }
2934           }
2935 
2936           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2937         }
2938         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2939         whereLoopOutputAdjust(pWC, pNew, rSize);
2940         rc = whereLoopInsert(pBuilder, pNew);
2941         pNew->nOut = rSize;
2942         if( rc ) break;
2943       }
2944     }
2945 
2946     pBuilder->bldFlags = 0;
2947     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2948     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
2949       /* If a non-unique index is used, or if a prefix of the key for
2950       ** unique index is used (making the index functionally non-unique)
2951       ** then the sqlite_stat1 data becomes important for scoring the
2952       ** plan */
2953       pTab->tabFlags |= TF_StatsUsed;
2954     }
2955 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2956     sqlite3Stat4ProbeFree(pBuilder->pRec);
2957     pBuilder->nRecValid = 0;
2958     pBuilder->pRec = 0;
2959 #endif
2960 
2961     /* If there was an INDEXED BY clause, then only that one index is
2962     ** considered. */
2963     if( pSrc->pIBIndex ) break;
2964   }
2965   return rc;
2966 }
2967 
2968 #ifndef SQLITE_OMIT_VIRTUALTABLE
2969 
2970 /*
2971 ** Argument pIdxInfo is already populated with all constraints that may
2972 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2973 ** function marks a subset of those constraints usable, invokes the
2974 ** xBestIndex method and adds the returned plan to pBuilder.
2975 **
2976 ** A constraint is marked usable if:
2977 **
2978 **   * Argument mUsable indicates that its prerequisites are available, and
2979 **
2980 **   * It is not one of the operators specified in the mExclude mask passed
2981 **     as the fourth argument (which in practice is either WO_IN or 0).
2982 **
2983 ** Argument mPrereq is a mask of tables that must be scanned before the
2984 ** virtual table in question. These are added to the plans prerequisites
2985 ** before it is added to pBuilder.
2986 **
2987 ** Output parameter *pbIn is set to true if the plan added to pBuilder
2988 ** uses one or more WO_IN terms, or false otherwise.
2989 */
2990 static int whereLoopAddVirtualOne(
2991   WhereLoopBuilder *pBuilder,
2992   Bitmask mPrereq,                /* Mask of tables that must be used. */
2993   Bitmask mUsable,                /* Mask of usable tables */
2994   u16 mExclude,                   /* Exclude terms using these operators */
2995   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
2996   u16 mNoOmit,                    /* Do not omit these constraints */
2997   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
2998 ){
2999   WhereClause *pWC = pBuilder->pWC;
3000   struct sqlite3_index_constraint *pIdxCons;
3001   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3002   int i;
3003   int mxTerm;
3004   int rc = SQLITE_OK;
3005   WhereLoop *pNew = pBuilder->pNew;
3006   Parse *pParse = pBuilder->pWInfo->pParse;
3007   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3008   int nConstraint = pIdxInfo->nConstraint;
3009 
3010   assert( (mUsable & mPrereq)==mPrereq );
3011   *pbIn = 0;
3012   pNew->prereq = mPrereq;
3013 
3014   /* Set the usable flag on the subset of constraints identified by
3015   ** arguments mUsable and mExclude. */
3016   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3017   for(i=0; i<nConstraint; i++, pIdxCons++){
3018     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3019     pIdxCons->usable = 0;
3020     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3021      && (pTerm->eOperator & mExclude)==0
3022     ){
3023       pIdxCons->usable = 1;
3024     }
3025   }
3026 
3027   /* Initialize the output fields of the sqlite3_index_info structure */
3028   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3029   assert( pIdxInfo->needToFreeIdxStr==0 );
3030   pIdxInfo->idxStr = 0;
3031   pIdxInfo->idxNum = 0;
3032   pIdxInfo->orderByConsumed = 0;
3033   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3034   pIdxInfo->estimatedRows = 25;
3035   pIdxInfo->idxFlags = 0;
3036   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3037 
3038   /* Invoke the virtual table xBestIndex() method */
3039   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3040   if( rc ) return rc;
3041 
3042   mxTerm = -1;
3043   assert( pNew->nLSlot>=nConstraint );
3044   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3045   pNew->u.vtab.omitMask = 0;
3046   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3047   for(i=0; i<nConstraint; i++, pIdxCons++){
3048     int iTerm;
3049     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3050       WhereTerm *pTerm;
3051       int j = pIdxCons->iTermOffset;
3052       if( iTerm>=nConstraint
3053        || j<0
3054        || j>=pWC->nTerm
3055        || pNew->aLTerm[iTerm]!=0
3056        || pIdxCons->usable==0
3057       ){
3058         rc = SQLITE_ERROR;
3059         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3060         return rc;
3061       }
3062       testcase( iTerm==nConstraint-1 );
3063       testcase( j==0 );
3064       testcase( j==pWC->nTerm-1 );
3065       pTerm = &pWC->a[j];
3066       pNew->prereq |= pTerm->prereqRight;
3067       assert( iTerm<pNew->nLSlot );
3068       pNew->aLTerm[iTerm] = pTerm;
3069       if( iTerm>mxTerm ) mxTerm = iTerm;
3070       testcase( iTerm==15 );
3071       testcase( iTerm==16 );
3072       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3073       if( (pTerm->eOperator & WO_IN)!=0 ){
3074         /* A virtual table that is constrained by an IN clause may not
3075         ** consume the ORDER BY clause because (1) the order of IN terms
3076         ** is not necessarily related to the order of output terms and
3077         ** (2) Multiple outputs from a single IN value will not merge
3078         ** together.  */
3079         pIdxInfo->orderByConsumed = 0;
3080         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3081         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3082       }
3083     }
3084   }
3085   pNew->u.vtab.omitMask &= ~mNoOmit;
3086 
3087   pNew->nLTerm = mxTerm+1;
3088   assert( pNew->nLTerm<=pNew->nLSlot );
3089   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3090   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3091   pIdxInfo->needToFreeIdxStr = 0;
3092   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3093   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3094       pIdxInfo->nOrderBy : 0);
3095   pNew->rSetup = 0;
3096   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3097   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3098 
3099   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3100   ** that the scan will visit at most one row. Clear it otherwise. */
3101   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3102     pNew->wsFlags |= WHERE_ONEROW;
3103   }else{
3104     pNew->wsFlags &= ~WHERE_ONEROW;
3105   }
3106   rc = whereLoopInsert(pBuilder, pNew);
3107   if( pNew->u.vtab.needFree ){
3108     sqlite3_free(pNew->u.vtab.idxStr);
3109     pNew->u.vtab.needFree = 0;
3110   }
3111   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3112                       *pbIn, (sqlite3_uint64)mPrereq,
3113                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3114 
3115   return rc;
3116 }
3117 
3118 
3119 /*
3120 ** Add all WhereLoop objects for a table of the join identified by
3121 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3122 **
3123 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3124 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3125 ** entries that occur before the virtual table in the FROM clause and are
3126 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3127 ** mUnusable mask contains all FROM clause entries that occur after the
3128 ** virtual table and are separated from it by at least one LEFT or
3129 ** CROSS JOIN.
3130 **
3131 ** For example, if the query were:
3132 **
3133 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3134 **
3135 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3136 **
3137 ** All the tables in mPrereq must be scanned before the current virtual
3138 ** table. So any terms for which all prerequisites are satisfied by
3139 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3140 ** Conversely, all tables in mUnusable must be scanned after the current
3141 ** virtual table, so any terms for which the prerequisites overlap with
3142 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3143 */
3144 static int whereLoopAddVirtual(
3145   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3146   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3147   Bitmask mUnusable            /* Tables that must be scanned after this one */
3148 ){
3149   int rc = SQLITE_OK;          /* Return code */
3150   WhereInfo *pWInfo;           /* WHERE analysis context */
3151   Parse *pParse;               /* The parsing context */
3152   WhereClause *pWC;            /* The WHERE clause */
3153   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3154   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3155   int nConstraint;             /* Number of constraints in p */
3156   int bIn;                     /* True if plan uses IN(...) operator */
3157   WhereLoop *pNew;
3158   Bitmask mBest;               /* Tables used by best possible plan */
3159   u16 mNoOmit;
3160 
3161   assert( (mPrereq & mUnusable)==0 );
3162   pWInfo = pBuilder->pWInfo;
3163   pParse = pWInfo->pParse;
3164   pWC = pBuilder->pWC;
3165   pNew = pBuilder->pNew;
3166   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3167   assert( IsVirtual(pSrc->pTab) );
3168   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3169       &mNoOmit);
3170   if( p==0 ) return SQLITE_NOMEM_BKPT;
3171   pNew->rSetup = 0;
3172   pNew->wsFlags = WHERE_VIRTUALTABLE;
3173   pNew->nLTerm = 0;
3174   pNew->u.vtab.needFree = 0;
3175   nConstraint = p->nConstraint;
3176   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3177     sqlite3DbFree(pParse->db, p);
3178     return SQLITE_NOMEM_BKPT;
3179   }
3180 
3181   /* First call xBestIndex() with all constraints usable. */
3182   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3183   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3184 
3185   /* If the call to xBestIndex() with all terms enabled produced a plan
3186   ** that does not require any source tables (IOW: a plan with mBest==0),
3187   ** then there is no point in making any further calls to xBestIndex()
3188   ** since they will all return the same result (if the xBestIndex()
3189   ** implementation is sane). */
3190   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3191     int seenZero = 0;             /* True if a plan with no prereqs seen */
3192     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3193     Bitmask mPrev = 0;
3194     Bitmask mBestNoIn = 0;
3195 
3196     /* If the plan produced by the earlier call uses an IN(...) term, call
3197     ** xBestIndex again, this time with IN(...) terms disabled. */
3198     if( bIn ){
3199       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3200       rc = whereLoopAddVirtualOne(
3201           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3202       assert( bIn==0 );
3203       mBestNoIn = pNew->prereq & ~mPrereq;
3204       if( mBestNoIn==0 ){
3205         seenZero = 1;
3206         seenZeroNoIN = 1;
3207       }
3208     }
3209 
3210     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3211     ** in the set of terms that apply to the current virtual table.  */
3212     while( rc==SQLITE_OK ){
3213       int i;
3214       Bitmask mNext = ALLBITS;
3215       assert( mNext>0 );
3216       for(i=0; i<nConstraint; i++){
3217         Bitmask mThis = (
3218             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3219         );
3220         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3221       }
3222       mPrev = mNext;
3223       if( mNext==ALLBITS ) break;
3224       if( mNext==mBest || mNext==mBestNoIn ) continue;
3225       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3226                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3227       rc = whereLoopAddVirtualOne(
3228           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3229       if( pNew->prereq==mPrereq ){
3230         seenZero = 1;
3231         if( bIn==0 ) seenZeroNoIN = 1;
3232       }
3233     }
3234 
3235     /* If the calls to xBestIndex() in the above loop did not find a plan
3236     ** that requires no source tables at all (i.e. one guaranteed to be
3237     ** usable), make a call here with all source tables disabled */
3238     if( rc==SQLITE_OK && seenZero==0 ){
3239       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3240       rc = whereLoopAddVirtualOne(
3241           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3242       if( bIn==0 ) seenZeroNoIN = 1;
3243     }
3244 
3245     /* If the calls to xBestIndex() have so far failed to find a plan
3246     ** that requires no source tables at all and does not use an IN(...)
3247     ** operator, make a final call to obtain one here.  */
3248     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3249       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3250       rc = whereLoopAddVirtualOne(
3251           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3252     }
3253   }
3254 
3255   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3256   sqlite3DbFree(pParse->db, p);
3257   return rc;
3258 }
3259 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3260 
3261 /*
3262 ** Add WhereLoop entries to handle OR terms.  This works for either
3263 ** btrees or virtual tables.
3264 */
3265 static int whereLoopAddOr(
3266   WhereLoopBuilder *pBuilder,
3267   Bitmask mPrereq,
3268   Bitmask mUnusable
3269 ){
3270   WhereInfo *pWInfo = pBuilder->pWInfo;
3271   WhereClause *pWC;
3272   WhereLoop *pNew;
3273   WhereTerm *pTerm, *pWCEnd;
3274   int rc = SQLITE_OK;
3275   int iCur;
3276   WhereClause tempWC;
3277   WhereLoopBuilder sSubBuild;
3278   WhereOrSet sSum, sCur;
3279   struct SrcList_item *pItem;
3280 
3281   pWC = pBuilder->pWC;
3282   pWCEnd = pWC->a + pWC->nTerm;
3283   pNew = pBuilder->pNew;
3284   memset(&sSum, 0, sizeof(sSum));
3285   pItem = pWInfo->pTabList->a + pNew->iTab;
3286   iCur = pItem->iCursor;
3287 
3288   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3289     if( (pTerm->eOperator & WO_OR)!=0
3290      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3291     ){
3292       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3293       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3294       WhereTerm *pOrTerm;
3295       int once = 1;
3296       int i, j;
3297 
3298       sSubBuild = *pBuilder;
3299       sSubBuild.pOrderBy = 0;
3300       sSubBuild.pOrSet = &sCur;
3301 
3302       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3303       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3304         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3305           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3306         }else if( pOrTerm->leftCursor==iCur ){
3307           tempWC.pWInfo = pWC->pWInfo;
3308           tempWC.pOuter = pWC;
3309           tempWC.op = TK_AND;
3310           tempWC.nTerm = 1;
3311           tempWC.a = pOrTerm;
3312           sSubBuild.pWC = &tempWC;
3313         }else{
3314           continue;
3315         }
3316         sCur.n = 0;
3317 #ifdef WHERETRACE_ENABLED
3318         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3319                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3320         if( sqlite3WhereTrace & 0x400 ){
3321           sqlite3WhereClausePrint(sSubBuild.pWC);
3322         }
3323 #endif
3324 #ifndef SQLITE_OMIT_VIRTUALTABLE
3325         if( IsVirtual(pItem->pTab) ){
3326           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3327         }else
3328 #endif
3329         {
3330           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3331         }
3332         if( rc==SQLITE_OK ){
3333           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3334         }
3335         assert( rc==SQLITE_OK || sCur.n==0 );
3336         if( sCur.n==0 ){
3337           sSum.n = 0;
3338           break;
3339         }else if( once ){
3340           whereOrMove(&sSum, &sCur);
3341           once = 0;
3342         }else{
3343           WhereOrSet sPrev;
3344           whereOrMove(&sPrev, &sSum);
3345           sSum.n = 0;
3346           for(i=0; i<sPrev.n; i++){
3347             for(j=0; j<sCur.n; j++){
3348               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3349                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3350                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3351             }
3352           }
3353         }
3354       }
3355       pNew->nLTerm = 1;
3356       pNew->aLTerm[0] = pTerm;
3357       pNew->wsFlags = WHERE_MULTI_OR;
3358       pNew->rSetup = 0;
3359       pNew->iSortIdx = 0;
3360       memset(&pNew->u, 0, sizeof(pNew->u));
3361       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3362         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3363         ** of all sub-scans required by the OR-scan. However, due to rounding
3364         ** errors, it may be that the cost of the OR-scan is equal to its
3365         ** most expensive sub-scan. Add the smallest possible penalty
3366         ** (equivalent to multiplying the cost by 1.07) to ensure that
3367         ** this does not happen. Otherwise, for WHERE clauses such as the
3368         ** following where there is an index on "y":
3369         **
3370         **     WHERE likelihood(x=?, 0.99) OR y=?
3371         **
3372         ** the planner may elect to "OR" together a full-table scan and an
3373         ** index lookup. And other similarly odd results.  */
3374         pNew->rRun = sSum.a[i].rRun + 1;
3375         pNew->nOut = sSum.a[i].nOut;
3376         pNew->prereq = sSum.a[i].prereq;
3377         rc = whereLoopInsert(pBuilder, pNew);
3378       }
3379       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3380     }
3381   }
3382   return rc;
3383 }
3384 
3385 /*
3386 ** Add all WhereLoop objects for all tables
3387 */
3388 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3389   WhereInfo *pWInfo = pBuilder->pWInfo;
3390   Bitmask mPrereq = 0;
3391   Bitmask mPrior = 0;
3392   int iTab;
3393   SrcList *pTabList = pWInfo->pTabList;
3394   struct SrcList_item *pItem;
3395   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3396   sqlite3 *db = pWInfo->pParse->db;
3397   int rc = SQLITE_OK;
3398   WhereLoop *pNew;
3399   u8 priorJointype = 0;
3400 
3401   /* Loop over the tables in the join, from left to right */
3402   pNew = pBuilder->pNew;
3403   whereLoopInit(pNew);
3404   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3405     Bitmask mUnusable = 0;
3406     pNew->iTab = iTab;
3407     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3408     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3409       /* This condition is true when pItem is the FROM clause term on the
3410       ** right-hand-side of a LEFT or CROSS JOIN.  */
3411       mPrereq = mPrior;
3412     }
3413     priorJointype = pItem->fg.jointype;
3414 #ifndef SQLITE_OMIT_VIRTUALTABLE
3415     if( IsVirtual(pItem->pTab) ){
3416       struct SrcList_item *p;
3417       for(p=&pItem[1]; p<pEnd; p++){
3418         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3419           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3420         }
3421       }
3422       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3423     }else
3424 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3425     {
3426       rc = whereLoopAddBtree(pBuilder, mPrereq);
3427     }
3428     if( rc==SQLITE_OK ){
3429       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3430     }
3431     mPrior |= pNew->maskSelf;
3432     if( rc || db->mallocFailed ) break;
3433   }
3434 
3435   whereLoopClear(db, pNew);
3436   return rc;
3437 }
3438 
3439 /*
3440 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
3441 ** parameters) to see if it outputs rows in the requested ORDER BY
3442 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3443 **
3444 **   N>0:   N terms of the ORDER BY clause are satisfied
3445 **   N==0:  No terms of the ORDER BY clause are satisfied
3446 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3447 **
3448 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3449 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3450 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3451 ** and DISTINCT do not require rows to appear in any particular order as long
3452 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3453 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3454 ** pOrderBy terms must be matched in strict left-to-right order.
3455 */
3456 static i8 wherePathSatisfiesOrderBy(
3457   WhereInfo *pWInfo,    /* The WHERE clause */
3458   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3459   WherePath *pPath,     /* The WherePath to check */
3460   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3461   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3462   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3463   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3464 ){
3465   u8 revSet;            /* True if rev is known */
3466   u8 rev;               /* Composite sort order */
3467   u8 revIdx;            /* Index sort order */
3468   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3469   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3470   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3471   u16 eqOpMask;         /* Allowed equality operators */
3472   u16 nKeyCol;          /* Number of key columns in pIndex */
3473   u16 nColumn;          /* Total number of ordered columns in the index */
3474   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3475   int iLoop;            /* Index of WhereLoop in pPath being processed */
3476   int i, j;             /* Loop counters */
3477   int iCur;             /* Cursor number for current WhereLoop */
3478   int iColumn;          /* A column number within table iCur */
3479   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3480   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3481   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3482   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3483   Index *pIndex;        /* The index associated with pLoop */
3484   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3485   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3486   Bitmask obDone;       /* Mask of all ORDER BY terms */
3487   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3488   Bitmask ready;              /* Mask of inner loops */
3489 
3490   /*
3491   ** We say the WhereLoop is "one-row" if it generates no more than one
3492   ** row of output.  A WhereLoop is one-row if all of the following are true:
3493   **  (a) All index columns match with WHERE_COLUMN_EQ.
3494   **  (b) The index is unique
3495   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3496   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3497   **
3498   ** We say the WhereLoop is "order-distinct" if the set of columns from
3499   ** that WhereLoop that are in the ORDER BY clause are different for every
3500   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3501   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3502   ** is not order-distinct. To be order-distinct is not quite the same as being
3503   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3504   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3505   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3506   **
3507   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3508   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3509   ** automatically order-distinct.
3510   */
3511 
3512   assert( pOrderBy!=0 );
3513   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3514 
3515   nOrderBy = pOrderBy->nExpr;
3516   testcase( nOrderBy==BMS-1 );
3517   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3518   isOrderDistinct = 1;
3519   obDone = MASKBIT(nOrderBy)-1;
3520   orderDistinctMask = 0;
3521   ready = 0;
3522   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3523   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3524   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3525     if( iLoop>0 ) ready |= pLoop->maskSelf;
3526     if( iLoop<nLoop ){
3527       pLoop = pPath->aLoop[iLoop];
3528       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3529     }else{
3530       pLoop = pLast;
3531     }
3532     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3533       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3534       break;
3535     }
3536     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3537 
3538     /* Mark off any ORDER BY term X that is a column in the table of
3539     ** the current loop for which there is term in the WHERE
3540     ** clause of the form X IS NULL or X=? that reference only outer
3541     ** loops.
3542     */
3543     for(i=0; i<nOrderBy; i++){
3544       if( MASKBIT(i) & obSat ) continue;
3545       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3546       if( pOBExpr->op!=TK_COLUMN ) continue;
3547       if( pOBExpr->iTable!=iCur ) continue;
3548       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3549                        ~ready, eqOpMask, 0);
3550       if( pTerm==0 ) continue;
3551       if( pTerm->eOperator==WO_IN ){
3552         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3553         ** optimization, and then only if they are actually used
3554         ** by the query plan */
3555         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3556         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3557         if( j>=pLoop->nLTerm ) continue;
3558       }
3559       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3560         const char *z1, *z2;
3561         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3562         if( !pColl ) pColl = db->pDfltColl;
3563         z1 = pColl->zName;
3564         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3565         if( !pColl ) pColl = db->pDfltColl;
3566         z2 = pColl->zName;
3567         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3568         testcase( pTerm->pExpr->op==TK_IS );
3569       }
3570       obSat |= MASKBIT(i);
3571     }
3572 
3573     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3574       if( pLoop->wsFlags & WHERE_IPK ){
3575         pIndex = 0;
3576         nKeyCol = 0;
3577         nColumn = 1;
3578       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3579         return 0;
3580       }else{
3581         nKeyCol = pIndex->nKeyCol;
3582         nColumn = pIndex->nColumn;
3583         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3584         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3585                           || !HasRowid(pIndex->pTable));
3586         isOrderDistinct = IsUniqueIndex(pIndex);
3587       }
3588 
3589       /* Loop through all columns of the index and deal with the ones
3590       ** that are not constrained by == or IN.
3591       */
3592       rev = revSet = 0;
3593       distinctColumns = 0;
3594       for(j=0; j<nColumn; j++){
3595         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3596 
3597         assert( j>=pLoop->u.btree.nEq
3598             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3599         );
3600         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3601           u16 eOp = pLoop->aLTerm[j]->eOperator;
3602 
3603           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3604           ** doing WHERE_ORDERBY_LIMIT processing).
3605           **
3606           ** If the current term is a column of an ((?,?) IN (SELECT...))
3607           ** expression for which the SELECT returns more than one column,
3608           ** check that it is the only column used by this loop. Otherwise,
3609           ** if it is one of two or more, none of the columns can be
3610           ** considered to match an ORDER BY term.  */
3611           if( (eOp & eqOpMask)!=0 ){
3612             if( eOp & WO_ISNULL ){
3613               testcase( isOrderDistinct );
3614               isOrderDistinct = 0;
3615             }
3616             continue;
3617           }else if( ALWAYS(eOp & WO_IN) ){
3618             /* ALWAYS() justification: eOp is an equality operator due to the
3619             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3620             ** than WO_IN is captured by the previous "if".  So this one
3621             ** always has to be WO_IN. */
3622             Expr *pX = pLoop->aLTerm[j]->pExpr;
3623             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3624               if( pLoop->aLTerm[i]->pExpr==pX ){
3625                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3626                 bOnce = 0;
3627                 break;
3628               }
3629             }
3630           }
3631         }
3632 
3633         /* Get the column number in the table (iColumn) and sort order
3634         ** (revIdx) for the j-th column of the index.
3635         */
3636         if( pIndex ){
3637           iColumn = pIndex->aiColumn[j];
3638           revIdx = pIndex->aSortOrder[j];
3639           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3640         }else{
3641           iColumn = XN_ROWID;
3642           revIdx = 0;
3643         }
3644 
3645         /* An unconstrained column that might be NULL means that this
3646         ** WhereLoop is not well-ordered
3647         */
3648         if( isOrderDistinct
3649          && iColumn>=0
3650          && j>=pLoop->u.btree.nEq
3651          && pIndex->pTable->aCol[iColumn].notNull==0
3652         ){
3653           isOrderDistinct = 0;
3654         }
3655 
3656         /* Find the ORDER BY term that corresponds to the j-th column
3657         ** of the index and mark that ORDER BY term off
3658         */
3659         isMatch = 0;
3660         for(i=0; bOnce && i<nOrderBy; i++){
3661           if( MASKBIT(i) & obSat ) continue;
3662           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3663           testcase( wctrlFlags & WHERE_GROUPBY );
3664           testcase( wctrlFlags & WHERE_DISTINCTBY );
3665           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3666           if( iColumn>=(-1) ){
3667             if( pOBExpr->op!=TK_COLUMN ) continue;
3668             if( pOBExpr->iTable!=iCur ) continue;
3669             if( pOBExpr->iColumn!=iColumn ) continue;
3670           }else{
3671             if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3672               continue;
3673             }
3674           }
3675           if( iColumn>=0 ){
3676             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3677             if( !pColl ) pColl = db->pDfltColl;
3678             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3679           }
3680           isMatch = 1;
3681           break;
3682         }
3683         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3684           /* Make sure the sort order is compatible in an ORDER BY clause.
3685           ** Sort order is irrelevant for a GROUP BY clause. */
3686           if( revSet ){
3687             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3688           }else{
3689             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3690             if( rev ) *pRevMask |= MASKBIT(iLoop);
3691             revSet = 1;
3692           }
3693         }
3694         if( isMatch ){
3695           if( iColumn==XN_ROWID ){
3696             testcase( distinctColumns==0 );
3697             distinctColumns = 1;
3698           }
3699           obSat |= MASKBIT(i);
3700         }else{
3701           /* No match found */
3702           if( j==0 || j<nKeyCol ){
3703             testcase( isOrderDistinct!=0 );
3704             isOrderDistinct = 0;
3705           }
3706           break;
3707         }
3708       } /* end Loop over all index columns */
3709       if( distinctColumns ){
3710         testcase( isOrderDistinct==0 );
3711         isOrderDistinct = 1;
3712       }
3713     } /* end-if not one-row */
3714 
3715     /* Mark off any other ORDER BY terms that reference pLoop */
3716     if( isOrderDistinct ){
3717       orderDistinctMask |= pLoop->maskSelf;
3718       for(i=0; i<nOrderBy; i++){
3719         Expr *p;
3720         Bitmask mTerm;
3721         if( MASKBIT(i) & obSat ) continue;
3722         p = pOrderBy->a[i].pExpr;
3723         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3724         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3725         if( (mTerm&~orderDistinctMask)==0 ){
3726           obSat |= MASKBIT(i);
3727         }
3728       }
3729     }
3730   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3731   if( obSat==obDone ) return (i8)nOrderBy;
3732   if( !isOrderDistinct ){
3733     for(i=nOrderBy-1; i>0; i--){
3734       Bitmask m = MASKBIT(i) - 1;
3735       if( (obSat&m)==m ) return i;
3736     }
3737     return 0;
3738   }
3739   return -1;
3740 }
3741 
3742 
3743 /*
3744 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3745 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3746 ** BY clause - and so any order that groups rows as required satisfies the
3747 ** request.
3748 **
3749 ** Normally, in this case it is not possible for the caller to determine
3750 ** whether or not the rows are really being delivered in sorted order, or
3751 ** just in some other order that provides the required grouping. However,
3752 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3753 ** this function may be called on the returned WhereInfo object. It returns
3754 ** true if the rows really will be sorted in the specified order, or false
3755 ** otherwise.
3756 **
3757 ** For example, assuming:
3758 **
3759 **   CREATE INDEX i1 ON t1(x, Y);
3760 **
3761 ** then
3762 **
3763 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3764 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3765 */
3766 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3767   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3768   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3769   return pWInfo->sorted;
3770 }
3771 
3772 #ifdef WHERETRACE_ENABLED
3773 /* For debugging use only: */
3774 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3775   static char zName[65];
3776   int i;
3777   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3778   if( pLast ) zName[i++] = pLast->cId;
3779   zName[i] = 0;
3780   return zName;
3781 }
3782 #endif
3783 
3784 /*
3785 ** Return the cost of sorting nRow rows, assuming that the keys have
3786 ** nOrderby columns and that the first nSorted columns are already in
3787 ** order.
3788 */
3789 static LogEst whereSortingCost(
3790   WhereInfo *pWInfo,
3791   LogEst nRow,
3792   int nOrderBy,
3793   int nSorted
3794 ){
3795   /* TUNING: Estimated cost of a full external sort, where N is
3796   ** the number of rows to sort is:
3797   **
3798   **   cost = (3.0 * N * log(N)).
3799   **
3800   ** Or, if the order-by clause has X terms but only the last Y
3801   ** terms are out of order, then block-sorting will reduce the
3802   ** sorting cost to:
3803   **
3804   **   cost = (3.0 * N * log(N)) * (Y/X)
3805   **
3806   ** The (Y/X) term is implemented using stack variable rScale
3807   ** below.  */
3808   LogEst rScale, rSortCost;
3809   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3810   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3811   rSortCost = nRow + rScale + 16;
3812 
3813   /* Multiple by log(M) where M is the number of output rows.
3814   ** Use the LIMIT for M if it is smaller */
3815   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3816     nRow = pWInfo->iLimit;
3817   }
3818   rSortCost += estLog(nRow);
3819   return rSortCost;
3820 }
3821 
3822 /*
3823 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3824 ** attempts to find the lowest cost path that visits each WhereLoop
3825 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3826 **
3827 ** Assume that the total number of output rows that will need to be sorted
3828 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3829 ** costs if nRowEst==0.
3830 **
3831 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3832 ** error occurs.
3833 */
3834 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3835   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3836   int nLoop;                /* Number of terms in the join */
3837   Parse *pParse;            /* Parsing context */
3838   sqlite3 *db;              /* The database connection */
3839   int iLoop;                /* Loop counter over the terms of the join */
3840   int ii, jj;               /* Loop counters */
3841   int mxI = 0;              /* Index of next entry to replace */
3842   int nOrderBy;             /* Number of ORDER BY clause terms */
3843   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3844   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3845   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3846   WherePath *aFrom;         /* All nFrom paths at the previous level */
3847   WherePath *aTo;           /* The nTo best paths at the current level */
3848   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3849   WherePath *pTo;           /* An element of aTo[] that we are working on */
3850   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3851   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3852   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3853   char *pSpace;             /* Temporary memory used by this routine */
3854   int nSpace;               /* Bytes of space allocated at pSpace */
3855 
3856   pParse = pWInfo->pParse;
3857   db = pParse->db;
3858   nLoop = pWInfo->nLevel;
3859   /* TUNING: For simple queries, only the best path is tracked.
3860   ** For 2-way joins, the 5 best paths are followed.
3861   ** For joins of 3 or more tables, track the 10 best paths */
3862   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3863   assert( nLoop<=pWInfo->pTabList->nSrc );
3864   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3865 
3866   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3867   ** case the purpose of this call is to estimate the number of rows returned
3868   ** by the overall query. Once this estimate has been obtained, the caller
3869   ** will invoke this function a second time, passing the estimate as the
3870   ** nRowEst parameter.  */
3871   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3872     nOrderBy = 0;
3873   }else{
3874     nOrderBy = pWInfo->pOrderBy->nExpr;
3875   }
3876 
3877   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3878   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3879   nSpace += sizeof(LogEst) * nOrderBy;
3880   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3881   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3882   aTo = (WherePath*)pSpace;
3883   aFrom = aTo+mxChoice;
3884   memset(aFrom, 0, sizeof(aFrom[0]));
3885   pX = (WhereLoop**)(aFrom+mxChoice);
3886   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3887     pFrom->aLoop = pX;
3888   }
3889   if( nOrderBy ){
3890     /* If there is an ORDER BY clause and it is not being ignored, set up
3891     ** space for the aSortCost[] array. Each element of the aSortCost array
3892     ** is either zero - meaning it has not yet been initialized - or the
3893     ** cost of sorting nRowEst rows of data where the first X terms of
3894     ** the ORDER BY clause are already in order, where X is the array
3895     ** index.  */
3896     aSortCost = (LogEst*)pX;
3897     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3898   }
3899   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3900   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3901 
3902   /* Seed the search with a single WherePath containing zero WhereLoops.
3903   **
3904   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3905   ** of computing an automatic index is not paid back within the first 28
3906   ** rows, then do not use the automatic index. */
3907   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3908   nFrom = 1;
3909   assert( aFrom[0].isOrdered==0 );
3910   if( nOrderBy ){
3911     /* If nLoop is zero, then there are no FROM terms in the query. Since
3912     ** in this case the query may return a maximum of one row, the results
3913     ** are already in the requested order. Set isOrdered to nOrderBy to
3914     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3915     ** -1, indicating that the result set may or may not be ordered,
3916     ** depending on the loops added to the current plan.  */
3917     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3918   }
3919 
3920   /* Compute successively longer WherePaths using the previous generation
3921   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3922   ** best paths at each generation */
3923   for(iLoop=0; iLoop<nLoop; iLoop++){
3924     nTo = 0;
3925     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3926       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3927         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3928         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3929         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3930         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3931         Bitmask maskNew;                  /* Mask of src visited by (..) */
3932         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3933 
3934         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3935         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3936         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3937           /* Do not use an automatic index if the this loop is expected
3938           ** to run less than 2 times. */
3939           assert( 10==sqlite3LogEst(2) );
3940           continue;
3941         }
3942         /* At this point, pWLoop is a candidate to be the next loop.
3943         ** Compute its cost */
3944         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3945         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3946         nOut = pFrom->nRow + pWLoop->nOut;
3947         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3948         if( isOrdered<0 ){
3949           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3950                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3951                        iLoop, pWLoop, &revMask);
3952         }else{
3953           revMask = pFrom->revLoop;
3954         }
3955         if( isOrdered>=0 && isOrdered<nOrderBy ){
3956           if( aSortCost[isOrdered]==0 ){
3957             aSortCost[isOrdered] = whereSortingCost(
3958                 pWInfo, nRowEst, nOrderBy, isOrdered
3959             );
3960           }
3961           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3962 
3963           WHERETRACE(0x002,
3964               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3965                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3966                rUnsorted, rCost));
3967         }else{
3968           rCost = rUnsorted;
3969         }
3970 
3971         /* Check to see if pWLoop should be added to the set of
3972         ** mxChoice best-so-far paths.
3973         **
3974         ** First look for an existing path among best-so-far paths
3975         ** that covers the same set of loops and has the same isOrdered
3976         ** setting as the current path candidate.
3977         **
3978         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3979         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3980         ** of legal values for isOrdered, -1..64.
3981         */
3982         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3983           if( pTo->maskLoop==maskNew
3984            && ((pTo->isOrdered^isOrdered)&0x80)==0
3985           ){
3986             testcase( jj==nTo-1 );
3987             break;
3988           }
3989         }
3990         if( jj>=nTo ){
3991           /* None of the existing best-so-far paths match the candidate. */
3992           if( nTo>=mxChoice
3993            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
3994           ){
3995             /* The current candidate is no better than any of the mxChoice
3996             ** paths currently in the best-so-far buffer.  So discard
3997             ** this candidate as not viable. */
3998 #ifdef WHERETRACE_ENABLED /* 0x4 */
3999             if( sqlite3WhereTrace&0x4 ){
4000               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
4001                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4002                   isOrdered>=0 ? isOrdered+'0' : '?');
4003             }
4004 #endif
4005             continue;
4006           }
4007           /* If we reach this points it means that the new candidate path
4008           ** needs to be added to the set of best-so-far paths. */
4009           if( nTo<mxChoice ){
4010             /* Increase the size of the aTo set by one */
4011             jj = nTo++;
4012           }else{
4013             /* New path replaces the prior worst to keep count below mxChoice */
4014             jj = mxI;
4015           }
4016           pTo = &aTo[jj];
4017 #ifdef WHERETRACE_ENABLED /* 0x4 */
4018           if( sqlite3WhereTrace&0x4 ){
4019             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
4020                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4021                 isOrdered>=0 ? isOrdered+'0' : '?');
4022           }
4023 #endif
4024         }else{
4025           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4026           ** same set of loops and has the sam isOrdered setting as the
4027           ** candidate path.  Check to see if the candidate should replace
4028           ** pTo or if the candidate should be skipped */
4029           if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
4030 #ifdef WHERETRACE_ENABLED /* 0x4 */
4031             if( sqlite3WhereTrace&0x4 ){
4032               sqlite3DebugPrintf(
4033                   "Skip   %s cost=%-3d,%3d order=%c",
4034                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4035                   isOrdered>=0 ? isOrdered+'0' : '?');
4036               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
4037                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4038                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4039             }
4040 #endif
4041             /* Discard the candidate path from further consideration */
4042             testcase( pTo->rCost==rCost );
4043             continue;
4044           }
4045           testcase( pTo->rCost==rCost+1 );
4046           /* Control reaches here if the candidate path is better than the
4047           ** pTo path.  Replace pTo with the candidate. */
4048 #ifdef WHERETRACE_ENABLED /* 0x4 */
4049           if( sqlite3WhereTrace&0x4 ){
4050             sqlite3DebugPrintf(
4051                 "Update %s cost=%-3d,%3d order=%c",
4052                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4053                 isOrdered>=0 ? isOrdered+'0' : '?');
4054             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
4055                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4056                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4057           }
4058 #endif
4059         }
4060         /* pWLoop is a winner.  Add it to the set of best so far */
4061         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4062         pTo->revLoop = revMask;
4063         pTo->nRow = nOut;
4064         pTo->rCost = rCost;
4065         pTo->rUnsorted = rUnsorted;
4066         pTo->isOrdered = isOrdered;
4067         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4068         pTo->aLoop[iLoop] = pWLoop;
4069         if( nTo>=mxChoice ){
4070           mxI = 0;
4071           mxCost = aTo[0].rCost;
4072           mxUnsorted = aTo[0].nRow;
4073           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4074             if( pTo->rCost>mxCost
4075              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4076             ){
4077               mxCost = pTo->rCost;
4078               mxUnsorted = pTo->rUnsorted;
4079               mxI = jj;
4080             }
4081           }
4082         }
4083       }
4084     }
4085 
4086 #ifdef WHERETRACE_ENABLED  /* >=2 */
4087     if( sqlite3WhereTrace & 0x02 ){
4088       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4089       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4090         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4091            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4092            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4093         if( pTo->isOrdered>0 ){
4094           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4095         }else{
4096           sqlite3DebugPrintf("\n");
4097         }
4098       }
4099     }
4100 #endif
4101 
4102     /* Swap the roles of aFrom and aTo for the next generation */
4103     pFrom = aTo;
4104     aTo = aFrom;
4105     aFrom = pFrom;
4106     nFrom = nTo;
4107   }
4108 
4109   if( nFrom==0 ){
4110     sqlite3ErrorMsg(pParse, "no query solution");
4111     sqlite3DbFree(db, pSpace);
4112     return SQLITE_ERROR;
4113   }
4114 
4115   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4116   pFrom = aFrom;
4117   for(ii=1; ii<nFrom; ii++){
4118     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4119   }
4120   assert( pWInfo->nLevel==nLoop );
4121   /* Load the lowest cost path into pWInfo */
4122   for(iLoop=0; iLoop<nLoop; iLoop++){
4123     WhereLevel *pLevel = pWInfo->a + iLoop;
4124     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4125     pLevel->iFrom = pWLoop->iTab;
4126     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4127   }
4128   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4129    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4130    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4131    && nRowEst
4132   ){
4133     Bitmask notUsed;
4134     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4135                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4136     if( rc==pWInfo->pResultSet->nExpr ){
4137       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4138     }
4139   }
4140   if( pWInfo->pOrderBy ){
4141     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4142       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4143         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4144       }
4145     }else{
4146       pWInfo->nOBSat = pFrom->isOrdered;
4147       pWInfo->revMask = pFrom->revLoop;
4148       if( pWInfo->nOBSat<=0 ){
4149         pWInfo->nOBSat = 0;
4150         if( nLoop>0 ){
4151           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4152           if( (wsFlags & WHERE_ONEROW)==0
4153            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4154           ){
4155             Bitmask m = 0;
4156             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4157                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4158             testcase( wsFlags & WHERE_IPK );
4159             testcase( wsFlags & WHERE_COLUMN_IN );
4160             if( rc==pWInfo->pOrderBy->nExpr ){
4161               pWInfo->bOrderedInnerLoop = 1;
4162               pWInfo->revMask = m;
4163             }
4164           }
4165         }
4166       }
4167     }
4168     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4169         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4170     ){
4171       Bitmask revMask = 0;
4172       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4173           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4174       );
4175       assert( pWInfo->sorted==0 );
4176       if( nOrder==pWInfo->pOrderBy->nExpr ){
4177         pWInfo->sorted = 1;
4178         pWInfo->revMask = revMask;
4179       }
4180     }
4181   }
4182 
4183 
4184   pWInfo->nRowOut = pFrom->nRow;
4185 
4186   /* Free temporary memory and return success */
4187   sqlite3DbFree(db, pSpace);
4188   return SQLITE_OK;
4189 }
4190 
4191 /*
4192 ** Most queries use only a single table (they are not joins) and have
4193 ** simple == constraints against indexed fields.  This routine attempts
4194 ** to plan those simple cases using much less ceremony than the
4195 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4196 ** times for the common case.
4197 **
4198 ** Return non-zero on success, if this query can be handled by this
4199 ** no-frills query planner.  Return zero if this query needs the
4200 ** general-purpose query planner.
4201 */
4202 static int whereShortCut(WhereLoopBuilder *pBuilder){
4203   WhereInfo *pWInfo;
4204   struct SrcList_item *pItem;
4205   WhereClause *pWC;
4206   WhereTerm *pTerm;
4207   WhereLoop *pLoop;
4208   int iCur;
4209   int j;
4210   Table *pTab;
4211   Index *pIdx;
4212 
4213   pWInfo = pBuilder->pWInfo;
4214   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4215   assert( pWInfo->pTabList->nSrc>=1 );
4216   pItem = pWInfo->pTabList->a;
4217   pTab = pItem->pTab;
4218   if( IsVirtual(pTab) ) return 0;
4219   if( pItem->fg.isIndexedBy ) return 0;
4220   iCur = pItem->iCursor;
4221   pWC = &pWInfo->sWC;
4222   pLoop = pBuilder->pNew;
4223   pLoop->wsFlags = 0;
4224   pLoop->nSkip = 0;
4225   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4226   if( pTerm ){
4227     testcase( pTerm->eOperator & WO_IS );
4228     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4229     pLoop->aLTerm[0] = pTerm;
4230     pLoop->nLTerm = 1;
4231     pLoop->u.btree.nEq = 1;
4232     /* TUNING: Cost of a rowid lookup is 10 */
4233     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4234   }else{
4235     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4236       int opMask;
4237       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4238       if( !IsUniqueIndex(pIdx)
4239        || pIdx->pPartIdxWhere!=0
4240        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4241       ) continue;
4242       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4243       for(j=0; j<pIdx->nKeyCol; j++){
4244         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4245         if( pTerm==0 ) break;
4246         testcase( pTerm->eOperator & WO_IS );
4247         pLoop->aLTerm[j] = pTerm;
4248       }
4249       if( j!=pIdx->nKeyCol ) continue;
4250       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4251       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4252         pLoop->wsFlags |= WHERE_IDX_ONLY;
4253       }
4254       pLoop->nLTerm = j;
4255       pLoop->u.btree.nEq = j;
4256       pLoop->u.btree.pIndex = pIdx;
4257       /* TUNING: Cost of a unique index lookup is 15 */
4258       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4259       break;
4260     }
4261   }
4262   if( pLoop->wsFlags ){
4263     pLoop->nOut = (LogEst)1;
4264     pWInfo->a[0].pWLoop = pLoop;
4265     pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
4266     pWInfo->a[0].iTabCur = iCur;
4267     pWInfo->nRowOut = 1;
4268     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4269     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4270       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4271     }
4272 #ifdef SQLITE_DEBUG
4273     pLoop->cId = '0';
4274 #endif
4275     return 1;
4276   }
4277   return 0;
4278 }
4279 
4280 /*
4281 ** Generate the beginning of the loop used for WHERE clause processing.
4282 ** The return value is a pointer to an opaque structure that contains
4283 ** information needed to terminate the loop.  Later, the calling routine
4284 ** should invoke sqlite3WhereEnd() with the return value of this function
4285 ** in order to complete the WHERE clause processing.
4286 **
4287 ** If an error occurs, this routine returns NULL.
4288 **
4289 ** The basic idea is to do a nested loop, one loop for each table in
4290 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4291 ** same as a SELECT with only a single table in the FROM clause.)  For
4292 ** example, if the SQL is this:
4293 **
4294 **       SELECT * FROM t1, t2, t3 WHERE ...;
4295 **
4296 ** Then the code generated is conceptually like the following:
4297 **
4298 **      foreach row1 in t1 do       \    Code generated
4299 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4300 **          foreach row3 in t3 do   /
4301 **            ...
4302 **          end                     \    Code generated
4303 **        end                        |-- by sqlite3WhereEnd()
4304 **      end                         /
4305 **
4306 ** Note that the loops might not be nested in the order in which they
4307 ** appear in the FROM clause if a different order is better able to make
4308 ** use of indices.  Note also that when the IN operator appears in
4309 ** the WHERE clause, it might result in additional nested loops for
4310 ** scanning through all values on the right-hand side of the IN.
4311 **
4312 ** There are Btree cursors associated with each table.  t1 uses cursor
4313 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4314 ** And so forth.  This routine generates code to open those VDBE cursors
4315 ** and sqlite3WhereEnd() generates the code to close them.
4316 **
4317 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4318 ** in pTabList pointing at their appropriate entries.  The [...] code
4319 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4320 ** data from the various tables of the loop.
4321 **
4322 ** If the WHERE clause is empty, the foreach loops must each scan their
4323 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4324 ** the tables have indices and there are terms in the WHERE clause that
4325 ** refer to those indices, a complete table scan can be avoided and the
4326 ** code will run much faster.  Most of the work of this routine is checking
4327 ** to see if there are indices that can be used to speed up the loop.
4328 **
4329 ** Terms of the WHERE clause are also used to limit which rows actually
4330 ** make it to the "..." in the middle of the loop.  After each "foreach",
4331 ** terms of the WHERE clause that use only terms in that loop and outer
4332 ** loops are evaluated and if false a jump is made around all subsequent
4333 ** inner loops (or around the "..." if the test occurs within the inner-
4334 ** most loop)
4335 **
4336 ** OUTER JOINS
4337 **
4338 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4339 **
4340 **    foreach row1 in t1 do
4341 **      flag = 0
4342 **      foreach row2 in t2 do
4343 **        start:
4344 **          ...
4345 **          flag = 1
4346 **      end
4347 **      if flag==0 then
4348 **        move the row2 cursor to a null row
4349 **        goto start
4350 **      fi
4351 **    end
4352 **
4353 ** ORDER BY CLAUSE PROCESSING
4354 **
4355 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4356 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4357 ** if there is one.  If there is no ORDER BY clause or if this routine
4358 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4359 **
4360 ** The iIdxCur parameter is the cursor number of an index.  If
4361 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4362 ** to use for OR clause processing.  The WHERE clause should use this
4363 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4364 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4365 ** be used to compute the appropriate cursor depending on which index is
4366 ** used.
4367 */
4368 WhereInfo *sqlite3WhereBegin(
4369   Parse *pParse,          /* The parser context */
4370   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4371   Expr *pWhere,           /* The WHERE clause */
4372   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4373   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4374   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4375   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4376                           ** If WHERE_USE_LIMIT, then the limit amount */
4377 ){
4378   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4379   int nTabList;              /* Number of elements in pTabList */
4380   WhereInfo *pWInfo;         /* Will become the return value of this function */
4381   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4382   Bitmask notReady;          /* Cursors that are not yet positioned */
4383   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4384   WhereMaskSet *pMaskSet;    /* The expression mask set */
4385   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4386   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4387   int ii;                    /* Loop counter */
4388   sqlite3 *db;               /* Database connection */
4389   int rc;                    /* Return code */
4390   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4391 
4392   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4393         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4394      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4395   ));
4396 
4397   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4398   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4399             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4400 
4401   /* Variable initialization */
4402   db = pParse->db;
4403   memset(&sWLB, 0, sizeof(sWLB));
4404 
4405   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4406   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4407   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4408   sWLB.pOrderBy = pOrderBy;
4409 
4410   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4411   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4412   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4413     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4414   }
4415 
4416   /* The number of tables in the FROM clause is limited by the number of
4417   ** bits in a Bitmask
4418   */
4419   testcase( pTabList->nSrc==BMS );
4420   if( pTabList->nSrc>BMS ){
4421     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4422     return 0;
4423   }
4424 
4425   /* This function normally generates a nested loop for all tables in
4426   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4427   ** only generate code for the first table in pTabList and assume that
4428   ** any cursors associated with subsequent tables are uninitialized.
4429   */
4430   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4431 
4432   /* Allocate and initialize the WhereInfo structure that will become the
4433   ** return value. A single allocation is used to store the WhereInfo
4434   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4435   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4436   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4437   ** some architectures. Hence the ROUND8() below.
4438   */
4439   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4440   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4441   if( db->mallocFailed ){
4442     sqlite3DbFree(db, pWInfo);
4443     pWInfo = 0;
4444     goto whereBeginError;
4445   }
4446   pWInfo->pParse = pParse;
4447   pWInfo->pTabList = pTabList;
4448   pWInfo->pOrderBy = pOrderBy;
4449   pWInfo->pResultSet = pResultSet;
4450   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4451   pWInfo->nLevel = nTabList;
4452   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4453   pWInfo->wctrlFlags = wctrlFlags;
4454   pWInfo->iLimit = iAuxArg;
4455   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4456   memset(&pWInfo->nOBSat, 0,
4457          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4458   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4459   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4460   pMaskSet = &pWInfo->sMaskSet;
4461   sWLB.pWInfo = pWInfo;
4462   sWLB.pWC = &pWInfo->sWC;
4463   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4464   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4465   whereLoopInit(sWLB.pNew);
4466 #ifdef SQLITE_DEBUG
4467   sWLB.pNew->cId = '*';
4468 #endif
4469 
4470   /* Split the WHERE clause into separate subexpressions where each
4471   ** subexpression is separated by an AND operator.
4472   */
4473   initMaskSet(pMaskSet);
4474   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4475   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4476 
4477   /* Special case: a WHERE clause that is constant.  Evaluate the
4478   ** expression and either jump over all of the code or fall thru.
4479   */
4480   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4481     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
4482       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
4483                          SQLITE_JUMPIFNULL);
4484       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
4485     }
4486   }
4487 
4488   /* Special case: No FROM clause
4489   */
4490   if( nTabList==0 ){
4491     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4492     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4493       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4494     }
4495   }
4496 
4497   /* Assign a bit from the bitmask to every term in the FROM clause.
4498   **
4499   ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4500   **
4501   ** The rule of the previous sentence ensures thta if X is the bitmask for
4502   ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4503   ** Knowing the bitmask for all tables to the left of a left join is
4504   ** important.  Ticket #3015.
4505   **
4506   ** Note that bitmasks are created for all pTabList->nSrc tables in
4507   ** pTabList, not just the first nTabList tables.  nTabList is normally
4508   ** equal to pTabList->nSrc but might be shortened to 1 if the
4509   ** WHERE_OR_SUBCLAUSE flag is set.
4510   */
4511   for(ii=0; ii<pTabList->nSrc; ii++){
4512     createMask(pMaskSet, pTabList->a[ii].iCursor);
4513     sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4514   }
4515 #ifdef SQLITE_DEBUG
4516   for(ii=0; ii<pTabList->nSrc; ii++){
4517     Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4518     assert( m==MASKBIT(ii) );
4519   }
4520 #endif
4521 
4522   /* Analyze all of the subexpressions. */
4523   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4524   if( db->mallocFailed ) goto whereBeginError;
4525 
4526   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4527     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4528       /* The DISTINCT marking is pointless.  Ignore it. */
4529       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4530     }else if( pOrderBy==0 ){
4531       /* Try to ORDER BY the result set to make distinct processing easier */
4532       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4533       pWInfo->pOrderBy = pResultSet;
4534     }
4535   }
4536 
4537   /* Construct the WhereLoop objects */
4538 #if defined(WHERETRACE_ENABLED)
4539   if( sqlite3WhereTrace & 0xffff ){
4540     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4541     if( wctrlFlags & WHERE_USE_LIMIT ){
4542       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4543     }
4544     sqlite3DebugPrintf(")\n");
4545   }
4546   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4547     sqlite3WhereClausePrint(sWLB.pWC);
4548   }
4549 #endif
4550 
4551   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4552     rc = whereLoopAddAll(&sWLB);
4553     if( rc ) goto whereBeginError;
4554 
4555 #ifdef WHERETRACE_ENABLED
4556     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4557       WhereLoop *p;
4558       int i;
4559       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4560                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4561       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4562         p->cId = zLabel[i%sizeof(zLabel)];
4563         whereLoopPrint(p, sWLB.pWC);
4564       }
4565     }
4566 #endif
4567 
4568     wherePathSolver(pWInfo, 0);
4569     if( db->mallocFailed ) goto whereBeginError;
4570     if( pWInfo->pOrderBy ){
4571        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4572        if( db->mallocFailed ) goto whereBeginError;
4573     }
4574   }
4575   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4576      pWInfo->revMask = ALLBITS;
4577   }
4578   if( pParse->nErr || NEVER(db->mallocFailed) ){
4579     goto whereBeginError;
4580   }
4581 #ifdef WHERETRACE_ENABLED
4582   if( sqlite3WhereTrace ){
4583     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4584     if( pWInfo->nOBSat>0 ){
4585       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4586     }
4587     switch( pWInfo->eDistinct ){
4588       case WHERE_DISTINCT_UNIQUE: {
4589         sqlite3DebugPrintf("  DISTINCT=unique");
4590         break;
4591       }
4592       case WHERE_DISTINCT_ORDERED: {
4593         sqlite3DebugPrintf("  DISTINCT=ordered");
4594         break;
4595       }
4596       case WHERE_DISTINCT_UNORDERED: {
4597         sqlite3DebugPrintf("  DISTINCT=unordered");
4598         break;
4599       }
4600     }
4601     sqlite3DebugPrintf("\n");
4602     for(ii=0; ii<pWInfo->nLevel; ii++){
4603       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4604     }
4605   }
4606 #endif
4607   /* Attempt to omit tables from the join that do not effect the result */
4608   if( pWInfo->nLevel>=2
4609    && pResultSet!=0
4610    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4611   ){
4612     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4613     if( sWLB.pOrderBy ){
4614       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4615     }
4616     while( pWInfo->nLevel>=2 ){
4617       WhereTerm *pTerm, *pEnd;
4618       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4619       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4620       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4621        && (pLoop->wsFlags & WHERE_ONEROW)==0
4622       ){
4623         break;
4624       }
4625       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4626       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4627       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4628         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4629          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4630         ){
4631           break;
4632         }
4633       }
4634       if( pTerm<pEnd ) break;
4635       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4636       pWInfo->nLevel--;
4637       nTabList--;
4638     }
4639   }
4640   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4641   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4642 
4643   /* If the caller is an UPDATE or DELETE statement that is requesting
4644   ** to use a one-pass algorithm, determine if this is appropriate.
4645   */
4646   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4647   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4648     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4649     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4650     if( bOnerow
4651      || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4652            && 0==(wsFlags & WHERE_VIRTUALTABLE))
4653     ){
4654       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4655       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4656         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4657           bFordelete = OPFLAG_FORDELETE;
4658         }
4659         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4660       }
4661     }
4662   }
4663 
4664   /* Open all tables in the pTabList and any indices selected for
4665   ** searching those tables.
4666   */
4667   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4668     Table *pTab;     /* Table to open */
4669     int iDb;         /* Index of database containing table/index */
4670     struct SrcList_item *pTabItem;
4671 
4672     pTabItem = &pTabList->a[pLevel->iFrom];
4673     pTab = pTabItem->pTab;
4674     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4675     pLoop = pLevel->pWLoop;
4676     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4677       /* Do nothing */
4678     }else
4679 #ifndef SQLITE_OMIT_VIRTUALTABLE
4680     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4681       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4682       int iCur = pTabItem->iCursor;
4683       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4684     }else if( IsVirtual(pTab) ){
4685       /* noop */
4686     }else
4687 #endif
4688     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4689          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4690       int op = OP_OpenRead;
4691       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4692         op = OP_OpenWrite;
4693         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4694       };
4695       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4696       assert( pTabItem->iCursor==pLevel->iTabCur );
4697       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4698       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4699       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4700         Bitmask b = pTabItem->colUsed;
4701         int n = 0;
4702         for(; b; b=b>>1, n++){}
4703         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4704         assert( n<=pTab->nCol );
4705       }
4706 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4707       if( pLoop->u.btree.pIndex!=0 ){
4708         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4709       }else
4710 #endif
4711       {
4712         sqlite3VdbeChangeP5(v, bFordelete);
4713       }
4714 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4715       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4716                             (const u8*)&pTabItem->colUsed, P4_INT64);
4717 #endif
4718     }else{
4719       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4720     }
4721     if( pLoop->wsFlags & WHERE_INDEXED ){
4722       Index *pIx = pLoop->u.btree.pIndex;
4723       int iIndexCur;
4724       int op = OP_OpenRead;
4725       /* iAuxArg is always set if to a positive value if ONEPASS is possible */
4726       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4727       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4728        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4729       ){
4730         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4731         ** WITHOUT ROWID table.  No need for a separate index */
4732         iIndexCur = pLevel->iTabCur;
4733         op = 0;
4734       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4735         Index *pJ = pTabItem->pTab->pIndex;
4736         iIndexCur = iAuxArg;
4737         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4738         while( ALWAYS(pJ) && pJ!=pIx ){
4739           iIndexCur++;
4740           pJ = pJ->pNext;
4741         }
4742         op = OP_OpenWrite;
4743         pWInfo->aiCurOnePass[1] = iIndexCur;
4744       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4745         iIndexCur = iAuxArg;
4746         op = OP_ReopenIdx;
4747       }else{
4748         iIndexCur = pParse->nTab++;
4749       }
4750       pLevel->iIdxCur = iIndexCur;
4751       assert( pIx->pSchema==pTab->pSchema );
4752       assert( iIndexCur>=0 );
4753       if( op ){
4754         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4755         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4756         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4757          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4758          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4759         ){
4760           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4761         }
4762         VdbeComment((v, "%s", pIx->zName));
4763 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4764         {
4765           u64 colUsed = 0;
4766           int ii, jj;
4767           for(ii=0; ii<pIx->nColumn; ii++){
4768             jj = pIx->aiColumn[ii];
4769             if( jj<0 ) continue;
4770             if( jj>63 ) jj = 63;
4771             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4772             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4773           }
4774           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4775                                 (u8*)&colUsed, P4_INT64);
4776         }
4777 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4778       }
4779     }
4780     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4781   }
4782   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4783   if( db->mallocFailed ) goto whereBeginError;
4784 
4785   /* Generate the code to do the search.  Each iteration of the for
4786   ** loop below generates code for a single nested loop of the VM
4787   ** program.
4788   */
4789   notReady = ~(Bitmask)0;
4790   for(ii=0; ii<nTabList; ii++){
4791     int addrExplain;
4792     int wsFlags;
4793     pLevel = &pWInfo->a[ii];
4794     wsFlags = pLevel->pWLoop->wsFlags;
4795 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4796     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4797       constructAutomaticIndex(pParse, &pWInfo->sWC,
4798                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4799       if( db->mallocFailed ) goto whereBeginError;
4800     }
4801 #endif
4802     addrExplain = sqlite3WhereExplainOneScan(
4803         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4804     );
4805     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4806     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4807     pWInfo->iContinue = pLevel->addrCont;
4808     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4809       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4810     }
4811   }
4812 
4813   /* Done. */
4814   VdbeModuleComment((v, "Begin WHERE-core"));
4815   return pWInfo;
4816 
4817   /* Jump here if malloc fails */
4818 whereBeginError:
4819   if( pWInfo ){
4820     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4821     whereInfoFree(db, pWInfo);
4822   }
4823   return 0;
4824 }
4825 
4826 /*
4827 ** Generate the end of the WHERE loop.  See comments on
4828 ** sqlite3WhereBegin() for additional information.
4829 */
4830 void sqlite3WhereEnd(WhereInfo *pWInfo){
4831   Parse *pParse = pWInfo->pParse;
4832   Vdbe *v = pParse->pVdbe;
4833   int i;
4834   WhereLevel *pLevel;
4835   WhereLoop *pLoop;
4836   SrcList *pTabList = pWInfo->pTabList;
4837   sqlite3 *db = pParse->db;
4838 
4839   /* Generate loop termination code.
4840   */
4841   VdbeModuleComment((v, "End WHERE-core"));
4842   sqlite3ExprCacheClear(pParse);
4843   for(i=pWInfo->nLevel-1; i>=0; i--){
4844     int addr;
4845     pLevel = &pWInfo->a[i];
4846     pLoop = pLevel->pWLoop;
4847     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4848     if( pLevel->op!=OP_Noop ){
4849       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4850       sqlite3VdbeChangeP5(v, pLevel->p5);
4851       VdbeCoverage(v);
4852       VdbeCoverageIf(v, pLevel->op==OP_Next);
4853       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4854       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4855     }
4856     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4857       struct InLoop *pIn;
4858       int j;
4859       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4860       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4861         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4862         if( pIn->eEndLoopOp!=OP_Noop ){
4863           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4864           VdbeCoverage(v);
4865           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4866           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4867         }
4868         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4869       }
4870     }
4871     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4872     if( pLevel->addrSkip ){
4873       sqlite3VdbeGoto(v, pLevel->addrSkip);
4874       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4875       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4876       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4877     }
4878 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4879     if( pLevel->addrLikeRep ){
4880       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
4881                         pLevel->addrLikeRep);
4882       VdbeCoverage(v);
4883     }
4884 #endif
4885     if( pLevel->iLeftJoin ){
4886       int ws = pLoop->wsFlags;
4887       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4888       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
4889       if( (ws & WHERE_IDX_ONLY)==0 ){
4890         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4891       }
4892       if( (ws & WHERE_INDEXED)
4893        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
4894       ){
4895         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4896       }
4897       if( pLevel->op==OP_Return ){
4898         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4899       }else{
4900         sqlite3VdbeGoto(v, pLevel->addrFirst);
4901       }
4902       sqlite3VdbeJumpHere(v, addr);
4903     }
4904     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4905                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4906   }
4907 
4908   /* The "break" point is here, just past the end of the outer loop.
4909   ** Set it.
4910   */
4911   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4912 
4913   assert( pWInfo->nLevel<=pTabList->nSrc );
4914   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4915     int k, last;
4916     VdbeOp *pOp;
4917     Index *pIdx = 0;
4918     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4919     Table *pTab = pTabItem->pTab;
4920     assert( pTab!=0 );
4921     pLoop = pLevel->pWLoop;
4922 
4923     /* For a co-routine, change all OP_Column references to the table of
4924     ** the co-routine into OP_Copy of result contained in a register.
4925     ** OP_Rowid becomes OP_Null.
4926     */
4927     if( pTabItem->fg.viaCoroutine ){
4928       testcase( pParse->db->mallocFailed );
4929       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
4930                             pTabItem->regResult, 0);
4931       continue;
4932     }
4933 
4934     /* If this scan uses an index, make VDBE code substitutions to read data
4935     ** from the index instead of from the table where possible.  In some cases
4936     ** this optimization prevents the table from ever being read, which can
4937     ** yield a significant performance boost.
4938     **
4939     ** Calls to the code generator in between sqlite3WhereBegin and
4940     ** sqlite3WhereEnd will have created code that references the table
4941     ** directly.  This loop scans all that code looking for opcodes
4942     ** that reference the table and converts them into opcodes that
4943     ** reference the index.
4944     */
4945     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
4946       pIdx = pLoop->u.btree.pIndex;
4947     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
4948       pIdx = pLevel->u.pCovidx;
4949     }
4950     if( pIdx
4951      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
4952      && !db->mallocFailed
4953     ){
4954       last = sqlite3VdbeCurrentAddr(v);
4955       k = pLevel->addrBody;
4956       pOp = sqlite3VdbeGetOp(v, k);
4957       for(; k<last; k++, pOp++){
4958         if( pOp->p1!=pLevel->iTabCur ) continue;
4959         if( pOp->opcode==OP_Column ){
4960           int x = pOp->p2;
4961           assert( pIdx->pTable==pTab );
4962           if( !HasRowid(pTab) ){
4963             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
4964             x = pPk->aiColumn[x];
4965             assert( x>=0 );
4966           }
4967           x = sqlite3ColumnOfIndex(pIdx, x);
4968           if( x>=0 ){
4969             pOp->p2 = x;
4970             pOp->p1 = pLevel->iIdxCur;
4971           }
4972           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
4973               || pWInfo->eOnePass );
4974         }else if( pOp->opcode==OP_Rowid ){
4975           pOp->p1 = pLevel->iIdxCur;
4976           pOp->opcode = OP_IdxRowid;
4977         }
4978       }
4979     }
4980   }
4981 
4982   /* Final cleanup
4983   */
4984   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4985   whereInfoFree(db, pWInfo);
4986   return;
4987 }
4988