1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return pWInfo->nRowOut; 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return TRUE if the innermost loop of the WHERE clause implementation 56 ** returns rows in ORDER BY order for complete run of the inner loop. 57 ** 58 ** Across multiple iterations of outer loops, the output rows need not be 59 ** sorted. As long as rows are sorted for just the innermost loop, this 60 ** routine can return TRUE. 61 */ 62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ 63 return pWInfo->bOrderedInnerLoop; 64 } 65 66 /* 67 ** Return the VDBE address or label to jump to in order to continue 68 ** immediately with the next row of a WHERE clause. 69 */ 70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 71 assert( pWInfo->iContinue!=0 ); 72 return pWInfo->iContinue; 73 } 74 75 /* 76 ** Return the VDBE address or label to jump to in order to break 77 ** out of a WHERE loop. 78 */ 79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 80 return pWInfo->iBreak; 81 } 82 83 /* 84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 85 ** operate directly on the rowis returned by a WHERE clause. Return 86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 88 ** optimization can be used on multiple 89 ** 90 ** If the ONEPASS optimization is used (if this routine returns true) 91 ** then also write the indices of open cursors used by ONEPASS 92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 93 ** table and iaCur[1] gets the cursor used by an auxiliary index. 94 ** Either value may be -1, indicating that cursor is not used. 95 ** Any cursors returned will have been opened for writing. 96 ** 97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 98 ** unable to use the ONEPASS optimization. 99 */ 100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 102 #ifdef WHERETRACE_ENABLED 103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 104 sqlite3DebugPrintf("%s cursors: %d %d\n", 105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 106 aiCur[0], aiCur[1]); 107 } 108 #endif 109 return pWInfo->eOnePass; 110 } 111 112 /* 113 ** Move the content of pSrc into pDest 114 */ 115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 116 pDest->n = pSrc->n; 117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 118 } 119 120 /* 121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 122 ** 123 ** The new entry might overwrite an existing entry, or it might be 124 ** appended, or it might be discarded. Do whatever is the right thing 125 ** so that pSet keeps the N_OR_COST best entries seen so far. 126 */ 127 static int whereOrInsert( 128 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 129 Bitmask prereq, /* Prerequisites of the new entry */ 130 LogEst rRun, /* Run-cost of the new entry */ 131 LogEst nOut /* Number of outputs for the new entry */ 132 ){ 133 u16 i; 134 WhereOrCost *p; 135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 137 goto whereOrInsert_done; 138 } 139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 140 return 0; 141 } 142 } 143 if( pSet->n<N_OR_COST ){ 144 p = &pSet->a[pSet->n++]; 145 p->nOut = nOut; 146 }else{ 147 p = pSet->a; 148 for(i=1; i<pSet->n; i++){ 149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 150 } 151 if( p->rRun<=rRun ) return 0; 152 } 153 whereOrInsert_done: 154 p->prereq = prereq; 155 p->rRun = rRun; 156 if( p->nOut>nOut ) p->nOut = nOut; 157 return 1; 158 } 159 160 /* 161 ** Return the bitmask for the given cursor number. Return 0 if 162 ** iCursor is not in the set. 163 */ 164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 165 int i; 166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 167 for(i=0; i<pMaskSet->n; i++){ 168 if( pMaskSet->ix[i]==iCursor ){ 169 return MASKBIT(i); 170 } 171 } 172 return 0; 173 } 174 175 /* 176 ** Create a new mask for cursor iCursor. 177 ** 178 ** There is one cursor per table in the FROM clause. The number of 179 ** tables in the FROM clause is limited by a test early in the 180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 181 ** array will never overflow. 182 */ 183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 185 pMaskSet->ix[pMaskSet->n++] = iCursor; 186 } 187 188 /* 189 ** Advance to the next WhereTerm that matches according to the criteria 190 ** established when the pScan object was initialized by whereScanInit(). 191 ** Return NULL if there are no more matching WhereTerms. 192 */ 193 static WhereTerm *whereScanNext(WhereScan *pScan){ 194 int iCur; /* The cursor on the LHS of the term */ 195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 196 Expr *pX; /* An expression being tested */ 197 WhereClause *pWC; /* Shorthand for pScan->pWC */ 198 WhereTerm *pTerm; /* The term being tested */ 199 int k = pScan->k; /* Where to start scanning */ 200 201 assert( pScan->iEquiv<=pScan->nEquiv ); 202 pWC = pScan->pWC; 203 while(1){ 204 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 205 iCur = pScan->aiCur[pScan->iEquiv-1]; 206 assert( pWC!=0 ); 207 do{ 208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 209 if( pTerm->leftCursor==iCur 210 && pTerm->u.leftColumn==iColumn 211 && (iColumn!=XN_EXPR 212 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 213 pScan->pIdxExpr,iCur)==0) 214 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 215 ){ 216 if( (pTerm->eOperator & WO_EQUIV)!=0 217 && pScan->nEquiv<ArraySize(pScan->aiCur) 218 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 219 ){ 220 int j; 221 for(j=0; j<pScan->nEquiv; j++){ 222 if( pScan->aiCur[j]==pX->iTable 223 && pScan->aiColumn[j]==pX->iColumn ){ 224 break; 225 } 226 } 227 if( j==pScan->nEquiv ){ 228 pScan->aiCur[j] = pX->iTable; 229 pScan->aiColumn[j] = pX->iColumn; 230 pScan->nEquiv++; 231 } 232 } 233 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 234 /* Verify the affinity and collating sequence match */ 235 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 236 CollSeq *pColl; 237 Parse *pParse = pWC->pWInfo->pParse; 238 pX = pTerm->pExpr; 239 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 240 continue; 241 } 242 assert(pX->pLeft); 243 pColl = sqlite3BinaryCompareCollSeq(pParse, 244 pX->pLeft, pX->pRight); 245 if( pColl==0 ) pColl = pParse->db->pDfltColl; 246 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 247 continue; 248 } 249 } 250 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 251 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 252 && pX->iTable==pScan->aiCur[0] 253 && pX->iColumn==pScan->aiColumn[0] 254 ){ 255 testcase( pTerm->eOperator & WO_IS ); 256 continue; 257 } 258 pScan->pWC = pWC; 259 pScan->k = k+1; 260 return pTerm; 261 } 262 } 263 } 264 pWC = pWC->pOuter; 265 k = 0; 266 }while( pWC!=0 ); 267 if( pScan->iEquiv>=pScan->nEquiv ) break; 268 pWC = pScan->pOrigWC; 269 k = 0; 270 pScan->iEquiv++; 271 } 272 return 0; 273 } 274 275 /* 276 ** Initialize a WHERE clause scanner object. Return a pointer to the 277 ** first match. Return NULL if there are no matches. 278 ** 279 ** The scanner will be searching the WHERE clause pWC. It will look 280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 281 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 282 ** must be one of the indexes of table iCur. 283 ** 284 ** The <op> must be one of the operators described by opMask. 285 ** 286 ** If the search is for X and the WHERE clause contains terms of the 287 ** form X=Y then this routine might also return terms of the form 288 ** "Y <op> <expr>". The number of levels of transitivity is limited, 289 ** but is enough to handle most commonly occurring SQL statements. 290 ** 291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 292 ** index pIdx. 293 */ 294 static WhereTerm *whereScanInit( 295 WhereScan *pScan, /* The WhereScan object being initialized */ 296 WhereClause *pWC, /* The WHERE clause to be scanned */ 297 int iCur, /* Cursor to scan for */ 298 int iColumn, /* Column to scan for */ 299 u32 opMask, /* Operator(s) to scan for */ 300 Index *pIdx /* Must be compatible with this index */ 301 ){ 302 pScan->pOrigWC = pWC; 303 pScan->pWC = pWC; 304 pScan->pIdxExpr = 0; 305 pScan->idxaff = 0; 306 pScan->zCollName = 0; 307 if( pIdx ){ 308 int j = iColumn; 309 iColumn = pIdx->aiColumn[j]; 310 if( iColumn==XN_EXPR ){ 311 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 312 pScan->zCollName = pIdx->azColl[j]; 313 }else if( iColumn==pIdx->pTable->iPKey ){ 314 iColumn = XN_ROWID; 315 }else if( iColumn>=0 ){ 316 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 317 pScan->zCollName = pIdx->azColl[j]; 318 } 319 }else if( iColumn==XN_EXPR ){ 320 return 0; 321 } 322 pScan->opMask = opMask; 323 pScan->k = 0; 324 pScan->aiCur[0] = iCur; 325 pScan->aiColumn[0] = iColumn; 326 pScan->nEquiv = 1; 327 pScan->iEquiv = 1; 328 return whereScanNext(pScan); 329 } 330 331 /* 332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 333 ** where X is a reference to the iColumn of table iCur or of index pIdx 334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 335 ** the op parameter. Return a pointer to the term. Return 0 if not found. 336 ** 337 ** If pIdx!=0 then it must be one of the indexes of table iCur. 338 ** Search for terms matching the iColumn-th column of pIdx 339 ** rather than the iColumn-th column of table iCur. 340 ** 341 ** The term returned might by Y=<expr> if there is another constraint in 342 ** the WHERE clause that specifies that X=Y. Any such constraints will be 343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 346 ** other equivalent values. Hence a search for X will return <expr> if X=A1 347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 348 ** 349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 350 ** then try for the one with no dependencies on <expr> - in other words where 351 ** <expr> is a constant expression of some kind. Only return entries of 352 ** the form "X <op> Y" where Y is a column in another table if no terms of 353 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 354 ** exist, try to return a term that does not use WO_EQUIV. 355 */ 356 WhereTerm *sqlite3WhereFindTerm( 357 WhereClause *pWC, /* The WHERE clause to be searched */ 358 int iCur, /* Cursor number of LHS */ 359 int iColumn, /* Column number of LHS */ 360 Bitmask notReady, /* RHS must not overlap with this mask */ 361 u32 op, /* Mask of WO_xx values describing operator */ 362 Index *pIdx /* Must be compatible with this index, if not NULL */ 363 ){ 364 WhereTerm *pResult = 0; 365 WhereTerm *p; 366 WhereScan scan; 367 368 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 369 op &= WO_EQ|WO_IS; 370 while( p ){ 371 if( (p->prereqRight & notReady)==0 ){ 372 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 373 testcase( p->eOperator & WO_IS ); 374 return p; 375 } 376 if( pResult==0 ) pResult = p; 377 } 378 p = whereScanNext(&scan); 379 } 380 return pResult; 381 } 382 383 /* 384 ** This function searches pList for an entry that matches the iCol-th column 385 ** of index pIdx. 386 ** 387 ** If such an expression is found, its index in pList->a[] is returned. If 388 ** no expression is found, -1 is returned. 389 */ 390 static int findIndexCol( 391 Parse *pParse, /* Parse context */ 392 ExprList *pList, /* Expression list to search */ 393 int iBase, /* Cursor for table associated with pIdx */ 394 Index *pIdx, /* Index to match column of */ 395 int iCol /* Column of index to match */ 396 ){ 397 int i; 398 const char *zColl = pIdx->azColl[iCol]; 399 400 for(i=0; i<pList->nExpr; i++){ 401 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 402 if( p->op==TK_COLUMN 403 && p->iColumn==pIdx->aiColumn[iCol] 404 && p->iTable==iBase 405 ){ 406 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 407 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 408 return i; 409 } 410 } 411 } 412 413 return -1; 414 } 415 416 /* 417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 418 */ 419 static int indexColumnNotNull(Index *pIdx, int iCol){ 420 int j; 421 assert( pIdx!=0 ); 422 assert( iCol>=0 && iCol<pIdx->nColumn ); 423 j = pIdx->aiColumn[iCol]; 424 if( j>=0 ){ 425 return pIdx->pTable->aCol[j].notNull; 426 }else if( j==(-1) ){ 427 return 1; 428 }else{ 429 assert( j==(-2) ); 430 return 0; /* Assume an indexed expression can always yield a NULL */ 431 432 } 433 } 434 435 /* 436 ** Return true if the DISTINCT expression-list passed as the third argument 437 ** is redundant. 438 ** 439 ** A DISTINCT list is redundant if any subset of the columns in the 440 ** DISTINCT list are collectively unique and individually non-null. 441 */ 442 static int isDistinctRedundant( 443 Parse *pParse, /* Parsing context */ 444 SrcList *pTabList, /* The FROM clause */ 445 WhereClause *pWC, /* The WHERE clause */ 446 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 447 ){ 448 Table *pTab; 449 Index *pIdx; 450 int i; 451 int iBase; 452 453 /* If there is more than one table or sub-select in the FROM clause of 454 ** this query, then it will not be possible to show that the DISTINCT 455 ** clause is redundant. */ 456 if( pTabList->nSrc!=1 ) return 0; 457 iBase = pTabList->a[0].iCursor; 458 pTab = pTabList->a[0].pTab; 459 460 /* If any of the expressions is an IPK column on table iBase, then return 461 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 462 ** current SELECT is a correlated sub-query. 463 */ 464 for(i=0; i<pDistinct->nExpr; i++){ 465 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 466 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 467 } 468 469 /* Loop through all indices on the table, checking each to see if it makes 470 ** the DISTINCT qualifier redundant. It does so if: 471 ** 472 ** 1. The index is itself UNIQUE, and 473 ** 474 ** 2. All of the columns in the index are either part of the pDistinct 475 ** list, or else the WHERE clause contains a term of the form "col=X", 476 ** where X is a constant value. The collation sequences of the 477 ** comparison and select-list expressions must match those of the index. 478 ** 479 ** 3. All of those index columns for which the WHERE clause does not 480 ** contain a "col=X" term are subject to a NOT NULL constraint. 481 */ 482 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 483 if( !IsUniqueIndex(pIdx) ) continue; 484 for(i=0; i<pIdx->nKeyCol; i++){ 485 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 486 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 487 if( indexColumnNotNull(pIdx, i)==0 ) break; 488 } 489 } 490 if( i==pIdx->nKeyCol ){ 491 /* This index implies that the DISTINCT qualifier is redundant. */ 492 return 1; 493 } 494 } 495 496 return 0; 497 } 498 499 500 /* 501 ** Estimate the logarithm of the input value to base 2. 502 */ 503 static LogEst estLog(LogEst N){ 504 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 505 } 506 507 /* 508 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 509 ** 510 ** This routine runs over generated VDBE code and translates OP_Column 511 ** opcodes into OP_Copy when the table is being accessed via co-routine 512 ** instead of via table lookup. 513 ** 514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 516 ** then each OP_Rowid is transformed into an instruction to increment the 517 ** value stored in its output register. 518 */ 519 static void translateColumnToCopy( 520 Parse *pParse, /* Parsing context */ 521 int iStart, /* Translate from this opcode to the end */ 522 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 523 int iRegister, /* The first column is in this register */ 524 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 525 ){ 526 Vdbe *v = pParse->pVdbe; 527 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 528 int iEnd = sqlite3VdbeCurrentAddr(v); 529 if( pParse->db->mallocFailed ) return; 530 for(; iStart<iEnd; iStart++, pOp++){ 531 if( pOp->p1!=iTabCur ) continue; 532 if( pOp->opcode==OP_Column ){ 533 pOp->opcode = OP_Copy; 534 pOp->p1 = pOp->p2 + iRegister; 535 pOp->p2 = pOp->p3; 536 pOp->p3 = 0; 537 }else if( pOp->opcode==OP_Rowid ){ 538 if( bIncrRowid ){ 539 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 540 pOp->opcode = OP_AddImm; 541 pOp->p1 = pOp->p2; 542 pOp->p2 = 1; 543 }else{ 544 pOp->opcode = OP_Null; 545 pOp->p1 = 0; 546 pOp->p3 = 0; 547 } 548 } 549 } 550 } 551 552 /* 553 ** Two routines for printing the content of an sqlite3_index_info 554 ** structure. Used for testing and debugging only. If neither 555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 556 ** are no-ops. 557 */ 558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 560 int i; 561 if( !sqlite3WhereTrace ) return; 562 for(i=0; i<p->nConstraint; i++){ 563 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 564 i, 565 p->aConstraint[i].iColumn, 566 p->aConstraint[i].iTermOffset, 567 p->aConstraint[i].op, 568 p->aConstraint[i].usable); 569 } 570 for(i=0; i<p->nOrderBy; i++){ 571 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 572 i, 573 p->aOrderBy[i].iColumn, 574 p->aOrderBy[i].desc); 575 } 576 } 577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 578 int i; 579 if( !sqlite3WhereTrace ) return; 580 for(i=0; i<p->nConstraint; i++){ 581 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 582 i, 583 p->aConstraintUsage[i].argvIndex, 584 p->aConstraintUsage[i].omit); 585 } 586 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 587 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 588 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 589 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 590 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 591 } 592 #else 593 #define TRACE_IDX_INPUTS(A) 594 #define TRACE_IDX_OUTPUTS(A) 595 #endif 596 597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 598 /* 599 ** Return TRUE if the WHERE clause term pTerm is of a form where it 600 ** could be used with an index to access pSrc, assuming an appropriate 601 ** index existed. 602 */ 603 static int termCanDriveIndex( 604 WhereTerm *pTerm, /* WHERE clause term to check */ 605 struct SrcList_item *pSrc, /* Table we are trying to access */ 606 Bitmask notReady /* Tables in outer loops of the join */ 607 ){ 608 char aff; 609 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 610 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 611 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 612 if( pTerm->u.leftColumn<0 ) return 0; 613 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 614 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 615 testcase( pTerm->pExpr->op==TK_IS ); 616 return 1; 617 } 618 #endif 619 620 621 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 622 /* 623 ** Generate code to construct the Index object for an automatic index 624 ** and to set up the WhereLevel object pLevel so that the code generator 625 ** makes use of the automatic index. 626 */ 627 static void constructAutomaticIndex( 628 Parse *pParse, /* The parsing context */ 629 WhereClause *pWC, /* The WHERE clause */ 630 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 631 Bitmask notReady, /* Mask of cursors that are not available */ 632 WhereLevel *pLevel /* Write new index here */ 633 ){ 634 int nKeyCol; /* Number of columns in the constructed index */ 635 WhereTerm *pTerm; /* A single term of the WHERE clause */ 636 WhereTerm *pWCEnd; /* End of pWC->a[] */ 637 Index *pIdx; /* Object describing the transient index */ 638 Vdbe *v; /* Prepared statement under construction */ 639 int addrInit; /* Address of the initialization bypass jump */ 640 Table *pTable; /* The table being indexed */ 641 int addrTop; /* Top of the index fill loop */ 642 int regRecord; /* Register holding an index record */ 643 int n; /* Column counter */ 644 int i; /* Loop counter */ 645 int mxBitCol; /* Maximum column in pSrc->colUsed */ 646 CollSeq *pColl; /* Collating sequence to on a column */ 647 WhereLoop *pLoop; /* The Loop object */ 648 char *zNotUsed; /* Extra space on the end of pIdx */ 649 Bitmask idxCols; /* Bitmap of columns used for indexing */ 650 Bitmask extraCols; /* Bitmap of additional columns */ 651 u8 sentWarning = 0; /* True if a warnning has been issued */ 652 Expr *pPartial = 0; /* Partial Index Expression */ 653 int iContinue = 0; /* Jump here to skip excluded rows */ 654 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 655 int addrCounter = 0; /* Address where integer counter is initialized */ 656 int regBase; /* Array of registers where record is assembled */ 657 658 /* Generate code to skip over the creation and initialization of the 659 ** transient index on 2nd and subsequent iterations of the loop. */ 660 v = pParse->pVdbe; 661 assert( v!=0 ); 662 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 663 664 /* Count the number of columns that will be added to the index 665 ** and used to match WHERE clause constraints */ 666 nKeyCol = 0; 667 pTable = pSrc->pTab; 668 pWCEnd = &pWC->a[pWC->nTerm]; 669 pLoop = pLevel->pWLoop; 670 idxCols = 0; 671 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 672 Expr *pExpr = pTerm->pExpr; 673 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 674 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 675 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 676 if( pLoop->prereq==0 677 && (pTerm->wtFlags & TERM_VIRTUAL)==0 678 && !ExprHasProperty(pExpr, EP_FromJoin) 679 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 680 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 681 sqlite3ExprDup(pParse->db, pExpr, 0)); 682 } 683 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 684 int iCol = pTerm->u.leftColumn; 685 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 686 testcase( iCol==BMS ); 687 testcase( iCol==BMS-1 ); 688 if( !sentWarning ){ 689 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 690 "automatic index on %s(%s)", pTable->zName, 691 pTable->aCol[iCol].zName); 692 sentWarning = 1; 693 } 694 if( (idxCols & cMask)==0 ){ 695 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 696 goto end_auto_index_create; 697 } 698 pLoop->aLTerm[nKeyCol++] = pTerm; 699 idxCols |= cMask; 700 } 701 } 702 } 703 assert( nKeyCol>0 ); 704 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 705 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 706 | WHERE_AUTO_INDEX; 707 708 /* Count the number of additional columns needed to create a 709 ** covering index. A "covering index" is an index that contains all 710 ** columns that are needed by the query. With a covering index, the 711 ** original table never needs to be accessed. Automatic indices must 712 ** be a covering index because the index will not be updated if the 713 ** original table changes and the index and table cannot both be used 714 ** if they go out of sync. 715 */ 716 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 717 mxBitCol = MIN(BMS-1,pTable->nCol); 718 testcase( pTable->nCol==BMS-1 ); 719 testcase( pTable->nCol==BMS-2 ); 720 for(i=0; i<mxBitCol; i++){ 721 if( extraCols & MASKBIT(i) ) nKeyCol++; 722 } 723 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 724 nKeyCol += pTable->nCol - BMS + 1; 725 } 726 727 /* Construct the Index object to describe this index */ 728 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 729 if( pIdx==0 ) goto end_auto_index_create; 730 pLoop->u.btree.pIndex = pIdx; 731 pIdx->zName = "auto-index"; 732 pIdx->pTable = pTable; 733 n = 0; 734 idxCols = 0; 735 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 736 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 737 int iCol = pTerm->u.leftColumn; 738 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 739 testcase( iCol==BMS-1 ); 740 testcase( iCol==BMS ); 741 if( (idxCols & cMask)==0 ){ 742 Expr *pX = pTerm->pExpr; 743 idxCols |= cMask; 744 pIdx->aiColumn[n] = pTerm->u.leftColumn; 745 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 746 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 747 n++; 748 } 749 } 750 } 751 assert( (u32)n==pLoop->u.btree.nEq ); 752 753 /* Add additional columns needed to make the automatic index into 754 ** a covering index */ 755 for(i=0; i<mxBitCol; i++){ 756 if( extraCols & MASKBIT(i) ){ 757 pIdx->aiColumn[n] = i; 758 pIdx->azColl[n] = sqlite3StrBINARY; 759 n++; 760 } 761 } 762 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 763 for(i=BMS-1; i<pTable->nCol; i++){ 764 pIdx->aiColumn[n] = i; 765 pIdx->azColl[n] = sqlite3StrBINARY; 766 n++; 767 } 768 } 769 assert( n==nKeyCol ); 770 pIdx->aiColumn[n] = XN_ROWID; 771 pIdx->azColl[n] = sqlite3StrBINARY; 772 773 /* Create the automatic index */ 774 assert( pLevel->iIdxCur>=0 ); 775 pLevel->iIdxCur = pParse->nTab++; 776 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 777 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 778 VdbeComment((v, "for %s", pTable->zName)); 779 780 /* Fill the automatic index with content */ 781 sqlite3ExprCachePush(pParse); 782 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 783 if( pTabItem->fg.viaCoroutine ){ 784 int regYield = pTabItem->regReturn; 785 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 786 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 787 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 788 VdbeCoverage(v); 789 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 790 }else{ 791 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 792 } 793 if( pPartial ){ 794 iContinue = sqlite3VdbeMakeLabel(v); 795 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 796 pLoop->wsFlags |= WHERE_PARTIALIDX; 797 } 798 regRecord = sqlite3GetTempReg(pParse); 799 regBase = sqlite3GenerateIndexKey( 800 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 801 ); 802 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 803 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 804 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 805 if( pTabItem->fg.viaCoroutine ){ 806 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 807 testcase( pParse->db->mallocFailed ); 808 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 809 pTabItem->regResult, 1); 810 sqlite3VdbeGoto(v, addrTop); 811 pTabItem->fg.viaCoroutine = 0; 812 }else{ 813 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 814 } 815 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 816 sqlite3VdbeJumpHere(v, addrTop); 817 sqlite3ReleaseTempReg(pParse, regRecord); 818 sqlite3ExprCachePop(pParse); 819 820 /* Jump here when skipping the initialization */ 821 sqlite3VdbeJumpHere(v, addrInit); 822 823 end_auto_index_create: 824 sqlite3ExprDelete(pParse->db, pPartial); 825 } 826 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 827 828 #ifndef SQLITE_OMIT_VIRTUALTABLE 829 /* 830 ** Allocate and populate an sqlite3_index_info structure. It is the 831 ** responsibility of the caller to eventually release the structure 832 ** by passing the pointer returned by this function to sqlite3_free(). 833 */ 834 static sqlite3_index_info *allocateIndexInfo( 835 Parse *pParse, 836 WhereClause *pWC, 837 Bitmask mUnusable, /* Ignore terms with these prereqs */ 838 struct SrcList_item *pSrc, 839 ExprList *pOrderBy, 840 u16 *pmNoOmit /* Mask of terms not to omit */ 841 ){ 842 int i, j; 843 int nTerm; 844 struct sqlite3_index_constraint *pIdxCons; 845 struct sqlite3_index_orderby *pIdxOrderBy; 846 struct sqlite3_index_constraint_usage *pUsage; 847 WhereTerm *pTerm; 848 int nOrderBy; 849 sqlite3_index_info *pIdxInfo; 850 u16 mNoOmit = 0; 851 852 /* Count the number of possible WHERE clause constraints referring 853 ** to this virtual table */ 854 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 855 if( pTerm->leftCursor != pSrc->iCursor ) continue; 856 if( pTerm->prereqRight & mUnusable ) continue; 857 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 858 testcase( pTerm->eOperator & WO_IN ); 859 testcase( pTerm->eOperator & WO_ISNULL ); 860 testcase( pTerm->eOperator & WO_IS ); 861 testcase( pTerm->eOperator & WO_ALL ); 862 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 863 if( pTerm->wtFlags & TERM_VNULL ) continue; 864 assert( pTerm->u.leftColumn>=(-1) ); 865 nTerm++; 866 } 867 868 /* If the ORDER BY clause contains only columns in the current 869 ** virtual table then allocate space for the aOrderBy part of 870 ** the sqlite3_index_info structure. 871 */ 872 nOrderBy = 0; 873 if( pOrderBy ){ 874 int n = pOrderBy->nExpr; 875 for(i=0; i<n; i++){ 876 Expr *pExpr = pOrderBy->a[i].pExpr; 877 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 878 } 879 if( i==n){ 880 nOrderBy = n; 881 } 882 } 883 884 /* Allocate the sqlite3_index_info structure 885 */ 886 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 887 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 888 + sizeof(*pIdxOrderBy)*nOrderBy ); 889 if( pIdxInfo==0 ){ 890 sqlite3ErrorMsg(pParse, "out of memory"); 891 return 0; 892 } 893 894 /* Initialize the structure. The sqlite3_index_info structure contains 895 ** many fields that are declared "const" to prevent xBestIndex from 896 ** changing them. We have to do some funky casting in order to 897 ** initialize those fields. 898 */ 899 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 900 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 901 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 902 *(int*)&pIdxInfo->nConstraint = nTerm; 903 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 904 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 905 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 906 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 907 pUsage; 908 909 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 910 u8 op; 911 if( pTerm->leftCursor != pSrc->iCursor ) continue; 912 if( pTerm->prereqRight & mUnusable ) continue; 913 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 914 testcase( pTerm->eOperator & WO_IN ); 915 testcase( pTerm->eOperator & WO_IS ); 916 testcase( pTerm->eOperator & WO_ISNULL ); 917 testcase( pTerm->eOperator & WO_ALL ); 918 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 919 if( pTerm->wtFlags & TERM_VNULL ) continue; 920 assert( pTerm->u.leftColumn>=(-1) ); 921 pIdxCons[j].iColumn = pTerm->u.leftColumn; 922 pIdxCons[j].iTermOffset = i; 923 op = (u8)pTerm->eOperator & WO_ALL; 924 if( op==WO_IN ) op = WO_EQ; 925 if( op==WO_MATCH ){ 926 op = pTerm->eMatchOp; 927 } 928 pIdxCons[j].op = op; 929 /* The direct assignment in the previous line is possible only because 930 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 931 ** following asserts verify this fact. */ 932 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 933 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 934 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 935 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 936 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 937 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 938 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 939 940 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 941 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 942 ){ 943 if( i<16 ) mNoOmit |= (1 << i); 944 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 945 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 946 } 947 948 j++; 949 } 950 for(i=0; i<nOrderBy; i++){ 951 Expr *pExpr = pOrderBy->a[i].pExpr; 952 pIdxOrderBy[i].iColumn = pExpr->iColumn; 953 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 954 } 955 956 *pmNoOmit = mNoOmit; 957 return pIdxInfo; 958 } 959 960 /* 961 ** The table object reference passed as the second argument to this function 962 ** must represent a virtual table. This function invokes the xBestIndex() 963 ** method of the virtual table with the sqlite3_index_info object that 964 ** comes in as the 3rd argument to this function. 965 ** 966 ** If an error occurs, pParse is populated with an error message and a 967 ** non-zero value is returned. Otherwise, 0 is returned and the output 968 ** part of the sqlite3_index_info structure is left populated. 969 ** 970 ** Whether or not an error is returned, it is the responsibility of the 971 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 972 ** that this is required. 973 */ 974 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 975 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 976 int rc; 977 978 TRACE_IDX_INPUTS(p); 979 rc = pVtab->pModule->xBestIndex(pVtab, p); 980 TRACE_IDX_OUTPUTS(p); 981 982 if( rc!=SQLITE_OK ){ 983 if( rc==SQLITE_NOMEM ){ 984 sqlite3OomFault(pParse->db); 985 }else if( !pVtab->zErrMsg ){ 986 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 987 }else{ 988 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 989 } 990 } 991 sqlite3_free(pVtab->zErrMsg); 992 pVtab->zErrMsg = 0; 993 994 #if 0 995 /* This error is now caught by the caller. 996 ** Search for "xBestIndex malfunction" below */ 997 for(i=0; i<p->nConstraint; i++){ 998 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 999 sqlite3ErrorMsg(pParse, 1000 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1001 } 1002 } 1003 #endif 1004 1005 return pParse->nErr; 1006 } 1007 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1008 1009 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1010 /* 1011 ** Estimate the location of a particular key among all keys in an 1012 ** index. Store the results in aStat as follows: 1013 ** 1014 ** aStat[0] Est. number of rows less than pRec 1015 ** aStat[1] Est. number of rows equal to pRec 1016 ** 1017 ** Return the index of the sample that is the smallest sample that 1018 ** is greater than or equal to pRec. Note that this index is not an index 1019 ** into the aSample[] array - it is an index into a virtual set of samples 1020 ** based on the contents of aSample[] and the number of fields in record 1021 ** pRec. 1022 */ 1023 static int whereKeyStats( 1024 Parse *pParse, /* Database connection */ 1025 Index *pIdx, /* Index to consider domain of */ 1026 UnpackedRecord *pRec, /* Vector of values to consider */ 1027 int roundUp, /* Round up if true. Round down if false */ 1028 tRowcnt *aStat /* OUT: stats written here */ 1029 ){ 1030 IndexSample *aSample = pIdx->aSample; 1031 int iCol; /* Index of required stats in anEq[] etc. */ 1032 int i; /* Index of first sample >= pRec */ 1033 int iSample; /* Smallest sample larger than or equal to pRec */ 1034 int iMin = 0; /* Smallest sample not yet tested */ 1035 int iTest; /* Next sample to test */ 1036 int res; /* Result of comparison operation */ 1037 int nField; /* Number of fields in pRec */ 1038 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1039 1040 #ifndef SQLITE_DEBUG 1041 UNUSED_PARAMETER( pParse ); 1042 #endif 1043 assert( pRec!=0 ); 1044 assert( pIdx->nSample>0 ); 1045 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1046 1047 /* Do a binary search to find the first sample greater than or equal 1048 ** to pRec. If pRec contains a single field, the set of samples to search 1049 ** is simply the aSample[] array. If the samples in aSample[] contain more 1050 ** than one fields, all fields following the first are ignored. 1051 ** 1052 ** If pRec contains N fields, where N is more than one, then as well as the 1053 ** samples in aSample[] (truncated to N fields), the search also has to 1054 ** consider prefixes of those samples. For example, if the set of samples 1055 ** in aSample is: 1056 ** 1057 ** aSample[0] = (a, 5) 1058 ** aSample[1] = (a, 10) 1059 ** aSample[2] = (b, 5) 1060 ** aSample[3] = (c, 100) 1061 ** aSample[4] = (c, 105) 1062 ** 1063 ** Then the search space should ideally be the samples above and the 1064 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1065 ** the code actually searches this set: 1066 ** 1067 ** 0: (a) 1068 ** 1: (a, 5) 1069 ** 2: (a, 10) 1070 ** 3: (a, 10) 1071 ** 4: (b) 1072 ** 5: (b, 5) 1073 ** 6: (c) 1074 ** 7: (c, 100) 1075 ** 8: (c, 105) 1076 ** 9: (c, 105) 1077 ** 1078 ** For each sample in the aSample[] array, N samples are present in the 1079 ** effective sample array. In the above, samples 0 and 1 are based on 1080 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1081 ** 1082 ** Often, sample i of each block of N effective samples has (i+1) fields. 1083 ** Except, each sample may be extended to ensure that it is greater than or 1084 ** equal to the previous sample in the array. For example, in the above, 1085 ** sample 2 is the first sample of a block of N samples, so at first it 1086 ** appears that it should be 1 field in size. However, that would make it 1087 ** smaller than sample 1, so the binary search would not work. As a result, 1088 ** it is extended to two fields. The duplicates that this creates do not 1089 ** cause any problems. 1090 */ 1091 nField = pRec->nField; 1092 iCol = 0; 1093 iSample = pIdx->nSample * nField; 1094 do{ 1095 int iSamp; /* Index in aSample[] of test sample */ 1096 int n; /* Number of fields in test sample */ 1097 1098 iTest = (iMin+iSample)/2; 1099 iSamp = iTest / nField; 1100 if( iSamp>0 ){ 1101 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1102 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1103 ** fields that is greater than the previous effective sample. */ 1104 for(n=(iTest % nField) + 1; n<nField; n++){ 1105 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1106 } 1107 }else{ 1108 n = iTest + 1; 1109 } 1110 1111 pRec->nField = n; 1112 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1113 if( res<0 ){ 1114 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1115 iMin = iTest+1; 1116 }else if( res==0 && n<nField ){ 1117 iLower = aSample[iSamp].anLt[n-1]; 1118 iMin = iTest+1; 1119 res = -1; 1120 }else{ 1121 iSample = iTest; 1122 iCol = n-1; 1123 } 1124 }while( res && iMin<iSample ); 1125 i = iSample / nField; 1126 1127 #ifdef SQLITE_DEBUG 1128 /* The following assert statements check that the binary search code 1129 ** above found the right answer. This block serves no purpose other 1130 ** than to invoke the asserts. */ 1131 if( pParse->db->mallocFailed==0 ){ 1132 if( res==0 ){ 1133 /* If (res==0) is true, then pRec must be equal to sample i. */ 1134 assert( i<pIdx->nSample ); 1135 assert( iCol==nField-1 ); 1136 pRec->nField = nField; 1137 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1138 || pParse->db->mallocFailed 1139 ); 1140 }else{ 1141 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1142 ** all samples in the aSample[] array, pRec must be smaller than the 1143 ** (iCol+1) field prefix of sample i. */ 1144 assert( i<=pIdx->nSample && i>=0 ); 1145 pRec->nField = iCol+1; 1146 assert( i==pIdx->nSample 1147 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1148 || pParse->db->mallocFailed ); 1149 1150 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1151 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1152 ** be greater than or equal to the (iCol) field prefix of sample i. 1153 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1154 if( iCol>0 ){ 1155 pRec->nField = iCol; 1156 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1157 || pParse->db->mallocFailed ); 1158 } 1159 if( i>0 ){ 1160 pRec->nField = nField; 1161 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1162 || pParse->db->mallocFailed ); 1163 } 1164 } 1165 } 1166 #endif /* ifdef SQLITE_DEBUG */ 1167 1168 if( res==0 ){ 1169 /* Record pRec is equal to sample i */ 1170 assert( iCol==nField-1 ); 1171 aStat[0] = aSample[i].anLt[iCol]; 1172 aStat[1] = aSample[i].anEq[iCol]; 1173 }else{ 1174 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1175 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1176 ** is larger than all samples in the array. */ 1177 tRowcnt iUpper, iGap; 1178 if( i>=pIdx->nSample ){ 1179 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1180 }else{ 1181 iUpper = aSample[i].anLt[iCol]; 1182 } 1183 1184 if( iLower>=iUpper ){ 1185 iGap = 0; 1186 }else{ 1187 iGap = iUpper - iLower; 1188 } 1189 if( roundUp ){ 1190 iGap = (iGap*2)/3; 1191 }else{ 1192 iGap = iGap/3; 1193 } 1194 aStat[0] = iLower + iGap; 1195 aStat[1] = pIdx->aAvgEq[iCol]; 1196 } 1197 1198 /* Restore the pRec->nField value before returning. */ 1199 pRec->nField = nField; 1200 return i; 1201 } 1202 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1203 1204 /* 1205 ** If it is not NULL, pTerm is a term that provides an upper or lower 1206 ** bound on a range scan. Without considering pTerm, it is estimated 1207 ** that the scan will visit nNew rows. This function returns the number 1208 ** estimated to be visited after taking pTerm into account. 1209 ** 1210 ** If the user explicitly specified a likelihood() value for this term, 1211 ** then the return value is the likelihood multiplied by the number of 1212 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1213 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1214 */ 1215 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1216 LogEst nRet = nNew; 1217 if( pTerm ){ 1218 if( pTerm->truthProb<=0 ){ 1219 nRet += pTerm->truthProb; 1220 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1221 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1222 } 1223 } 1224 return nRet; 1225 } 1226 1227 1228 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1229 /* 1230 ** Return the affinity for a single column of an index. 1231 */ 1232 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1233 assert( iCol>=0 && iCol<pIdx->nColumn ); 1234 if( !pIdx->zColAff ){ 1235 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1236 } 1237 return pIdx->zColAff[iCol]; 1238 } 1239 #endif 1240 1241 1242 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1243 /* 1244 ** This function is called to estimate the number of rows visited by a 1245 ** range-scan on a skip-scan index. For example: 1246 ** 1247 ** CREATE INDEX i1 ON t1(a, b, c); 1248 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1249 ** 1250 ** Value pLoop->nOut is currently set to the estimated number of rows 1251 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1252 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1253 ** on the stat4 data for the index. this scan will be peformed multiple 1254 ** times (once for each (a,b) combination that matches a=?) is dealt with 1255 ** by the caller. 1256 ** 1257 ** It does this by scanning through all stat4 samples, comparing values 1258 ** extracted from pLower and pUpper with the corresponding column in each 1259 ** sample. If L and U are the number of samples found to be less than or 1260 ** equal to the values extracted from pLower and pUpper respectively, and 1261 ** N is the total number of samples, the pLoop->nOut value is adjusted 1262 ** as follows: 1263 ** 1264 ** nOut = nOut * ( min(U - L, 1) / N ) 1265 ** 1266 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1267 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1268 ** U is set to N. 1269 ** 1270 ** Normally, this function sets *pbDone to 1 before returning. However, 1271 ** if no value can be extracted from either pLower or pUpper (and so the 1272 ** estimate of the number of rows delivered remains unchanged), *pbDone 1273 ** is left as is. 1274 ** 1275 ** If an error occurs, an SQLite error code is returned. Otherwise, 1276 ** SQLITE_OK. 1277 */ 1278 static int whereRangeSkipScanEst( 1279 Parse *pParse, /* Parsing & code generating context */ 1280 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1281 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1282 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1283 int *pbDone /* Set to true if at least one expr. value extracted */ 1284 ){ 1285 Index *p = pLoop->u.btree.pIndex; 1286 int nEq = pLoop->u.btree.nEq; 1287 sqlite3 *db = pParse->db; 1288 int nLower = -1; 1289 int nUpper = p->nSample+1; 1290 int rc = SQLITE_OK; 1291 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1292 CollSeq *pColl; 1293 1294 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1295 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1296 sqlite3_value *pVal = 0; /* Value extracted from record */ 1297 1298 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1299 if( pLower ){ 1300 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1301 nLower = 0; 1302 } 1303 if( pUpper && rc==SQLITE_OK ){ 1304 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1305 nUpper = p2 ? 0 : p->nSample; 1306 } 1307 1308 if( p1 || p2 ){ 1309 int i; 1310 int nDiff; 1311 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1312 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1313 if( rc==SQLITE_OK && p1 ){ 1314 int res = sqlite3MemCompare(p1, pVal, pColl); 1315 if( res>=0 ) nLower++; 1316 } 1317 if( rc==SQLITE_OK && p2 ){ 1318 int res = sqlite3MemCompare(p2, pVal, pColl); 1319 if( res>=0 ) nUpper++; 1320 } 1321 } 1322 nDiff = (nUpper - nLower); 1323 if( nDiff<=0 ) nDiff = 1; 1324 1325 /* If there is both an upper and lower bound specified, and the 1326 ** comparisons indicate that they are close together, use the fallback 1327 ** method (assume that the scan visits 1/64 of the rows) for estimating 1328 ** the number of rows visited. Otherwise, estimate the number of rows 1329 ** using the method described in the header comment for this function. */ 1330 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1331 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1332 pLoop->nOut -= nAdjust; 1333 *pbDone = 1; 1334 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1335 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1336 } 1337 1338 }else{ 1339 assert( *pbDone==0 ); 1340 } 1341 1342 sqlite3ValueFree(p1); 1343 sqlite3ValueFree(p2); 1344 sqlite3ValueFree(pVal); 1345 1346 return rc; 1347 } 1348 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1349 1350 /* 1351 ** This function is used to estimate the number of rows that will be visited 1352 ** by scanning an index for a range of values. The range may have an upper 1353 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1354 ** and lower bounds are represented by pLower and pUpper respectively. For 1355 ** example, assuming that index p is on t1(a): 1356 ** 1357 ** ... FROM t1 WHERE a > ? AND a < ? ... 1358 ** |_____| |_____| 1359 ** | | 1360 ** pLower pUpper 1361 ** 1362 ** If either of the upper or lower bound is not present, then NULL is passed in 1363 ** place of the corresponding WhereTerm. 1364 ** 1365 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1366 ** column subject to the range constraint. Or, equivalently, the number of 1367 ** equality constraints optimized by the proposed index scan. For example, 1368 ** assuming index p is on t1(a, b), and the SQL query is: 1369 ** 1370 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1371 ** 1372 ** then nEq is set to 1 (as the range restricted column, b, is the second 1373 ** left-most column of the index). Or, if the query is: 1374 ** 1375 ** ... FROM t1 WHERE a > ? AND a < ? ... 1376 ** 1377 ** then nEq is set to 0. 1378 ** 1379 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1380 ** number of rows that the index scan is expected to visit without 1381 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1382 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1383 ** to account for the range constraints pLower and pUpper. 1384 ** 1385 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1386 ** used, a single range inequality reduces the search space by a factor of 4. 1387 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1388 ** rows visited by a factor of 64. 1389 */ 1390 static int whereRangeScanEst( 1391 Parse *pParse, /* Parsing & code generating context */ 1392 WhereLoopBuilder *pBuilder, 1393 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1394 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1395 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1396 ){ 1397 int rc = SQLITE_OK; 1398 int nOut = pLoop->nOut; 1399 LogEst nNew; 1400 1401 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1402 Index *p = pLoop->u.btree.pIndex; 1403 int nEq = pLoop->u.btree.nEq; 1404 1405 if( p->nSample>0 && nEq<p->nSampleCol ){ 1406 if( nEq==pBuilder->nRecValid ){ 1407 UnpackedRecord *pRec = pBuilder->pRec; 1408 tRowcnt a[2]; 1409 int nBtm = pLoop->u.btree.nBtm; 1410 int nTop = pLoop->u.btree.nTop; 1411 1412 /* Variable iLower will be set to the estimate of the number of rows in 1413 ** the index that are less than the lower bound of the range query. The 1414 ** lower bound being the concatenation of $P and $L, where $P is the 1415 ** key-prefix formed by the nEq values matched against the nEq left-most 1416 ** columns of the index, and $L is the value in pLower. 1417 ** 1418 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1419 ** is not a simple variable or literal value), the lower bound of the 1420 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1421 ** if $L is available, whereKeyStats() is called for both ($P) and 1422 ** ($P:$L) and the larger of the two returned values is used. 1423 ** 1424 ** Similarly, iUpper is to be set to the estimate of the number of rows 1425 ** less than the upper bound of the range query. Where the upper bound 1426 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1427 ** of iUpper are requested of whereKeyStats() and the smaller used. 1428 ** 1429 ** The number of rows between the two bounds is then just iUpper-iLower. 1430 */ 1431 tRowcnt iLower; /* Rows less than the lower bound */ 1432 tRowcnt iUpper; /* Rows less than the upper bound */ 1433 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1434 int iUprIdx = -1; /* aSample[] for the upper bound */ 1435 1436 if( pRec ){ 1437 testcase( pRec->nField!=pBuilder->nRecValid ); 1438 pRec->nField = pBuilder->nRecValid; 1439 } 1440 /* Determine iLower and iUpper using ($P) only. */ 1441 if( nEq==0 ){ 1442 iLower = 0; 1443 iUpper = p->nRowEst0; 1444 }else{ 1445 /* Note: this call could be optimized away - since the same values must 1446 ** have been requested when testing key $P in whereEqualScanEst(). */ 1447 whereKeyStats(pParse, p, pRec, 0, a); 1448 iLower = a[0]; 1449 iUpper = a[0] + a[1]; 1450 } 1451 1452 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1453 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1454 assert( p->aSortOrder!=0 ); 1455 if( p->aSortOrder[nEq] ){ 1456 /* The roles of pLower and pUpper are swapped for a DESC index */ 1457 SWAP(WhereTerm*, pLower, pUpper); 1458 SWAP(int, nBtm, nTop); 1459 } 1460 1461 /* If possible, improve on the iLower estimate using ($P:$L). */ 1462 if( pLower ){ 1463 int n; /* Values extracted from pExpr */ 1464 Expr *pExpr = pLower->pExpr->pRight; 1465 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1466 if( rc==SQLITE_OK && n ){ 1467 tRowcnt iNew; 1468 u16 mask = WO_GT|WO_LE; 1469 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1470 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1471 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1472 if( iNew>iLower ) iLower = iNew; 1473 nOut--; 1474 pLower = 0; 1475 } 1476 } 1477 1478 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1479 if( pUpper ){ 1480 int n; /* Values extracted from pExpr */ 1481 Expr *pExpr = pUpper->pExpr->pRight; 1482 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1483 if( rc==SQLITE_OK && n ){ 1484 tRowcnt iNew; 1485 u16 mask = WO_GT|WO_LE; 1486 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1487 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1488 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1489 if( iNew<iUpper ) iUpper = iNew; 1490 nOut--; 1491 pUpper = 0; 1492 } 1493 } 1494 1495 pBuilder->pRec = pRec; 1496 if( rc==SQLITE_OK ){ 1497 if( iUpper>iLower ){ 1498 nNew = sqlite3LogEst(iUpper - iLower); 1499 /* TUNING: If both iUpper and iLower are derived from the same 1500 ** sample, then assume they are 4x more selective. This brings 1501 ** the estimated selectivity more in line with what it would be 1502 ** if estimated without the use of STAT3/4 tables. */ 1503 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1504 }else{ 1505 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1506 } 1507 if( nNew<nOut ){ 1508 nOut = nNew; 1509 } 1510 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1511 (u32)iLower, (u32)iUpper, nOut)); 1512 } 1513 }else{ 1514 int bDone = 0; 1515 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1516 if( bDone ) return rc; 1517 } 1518 } 1519 #else 1520 UNUSED_PARAMETER(pParse); 1521 UNUSED_PARAMETER(pBuilder); 1522 assert( pLower || pUpper ); 1523 #endif 1524 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1525 nNew = whereRangeAdjust(pLower, nOut); 1526 nNew = whereRangeAdjust(pUpper, nNew); 1527 1528 /* TUNING: If there is both an upper and lower limit and neither limit 1529 ** has an application-defined likelihood(), assume the range is 1530 ** reduced by an additional 75%. This means that, by default, an open-ended 1531 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1532 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1533 ** match 1/64 of the index. */ 1534 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1535 nNew -= 20; 1536 } 1537 1538 nOut -= (pLower!=0) + (pUpper!=0); 1539 if( nNew<10 ) nNew = 10; 1540 if( nNew<nOut ) nOut = nNew; 1541 #if defined(WHERETRACE_ENABLED) 1542 if( pLoop->nOut>nOut ){ 1543 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1544 pLoop->nOut, nOut)); 1545 } 1546 #endif 1547 pLoop->nOut = (LogEst)nOut; 1548 return rc; 1549 } 1550 1551 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1552 /* 1553 ** Estimate the number of rows that will be returned based on 1554 ** an equality constraint x=VALUE and where that VALUE occurs in 1555 ** the histogram data. This only works when x is the left-most 1556 ** column of an index and sqlite_stat3 histogram data is available 1557 ** for that index. When pExpr==NULL that means the constraint is 1558 ** "x IS NULL" instead of "x=VALUE". 1559 ** 1560 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1561 ** If unable to make an estimate, leave *pnRow unchanged and return 1562 ** non-zero. 1563 ** 1564 ** This routine can fail if it is unable to load a collating sequence 1565 ** required for string comparison, or if unable to allocate memory 1566 ** for a UTF conversion required for comparison. The error is stored 1567 ** in the pParse structure. 1568 */ 1569 static int whereEqualScanEst( 1570 Parse *pParse, /* Parsing & code generating context */ 1571 WhereLoopBuilder *pBuilder, 1572 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1573 tRowcnt *pnRow /* Write the revised row estimate here */ 1574 ){ 1575 Index *p = pBuilder->pNew->u.btree.pIndex; 1576 int nEq = pBuilder->pNew->u.btree.nEq; 1577 UnpackedRecord *pRec = pBuilder->pRec; 1578 int rc; /* Subfunction return code */ 1579 tRowcnt a[2]; /* Statistics */ 1580 int bOk; 1581 1582 assert( nEq>=1 ); 1583 assert( nEq<=p->nColumn ); 1584 assert( p->aSample!=0 ); 1585 assert( p->nSample>0 ); 1586 assert( pBuilder->nRecValid<nEq ); 1587 1588 /* If values are not available for all fields of the index to the left 1589 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1590 if( pBuilder->nRecValid<(nEq-1) ){ 1591 return SQLITE_NOTFOUND; 1592 } 1593 1594 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1595 ** below would return the same value. */ 1596 if( nEq>=p->nColumn ){ 1597 *pnRow = 1; 1598 return SQLITE_OK; 1599 } 1600 1601 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1602 pBuilder->pRec = pRec; 1603 if( rc!=SQLITE_OK ) return rc; 1604 if( bOk==0 ) return SQLITE_NOTFOUND; 1605 pBuilder->nRecValid = nEq; 1606 1607 whereKeyStats(pParse, p, pRec, 0, a); 1608 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1609 p->zName, nEq-1, (int)a[1])); 1610 *pnRow = a[1]; 1611 1612 return rc; 1613 } 1614 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1615 1616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1617 /* 1618 ** Estimate the number of rows that will be returned based on 1619 ** an IN constraint where the right-hand side of the IN operator 1620 ** is a list of values. Example: 1621 ** 1622 ** WHERE x IN (1,2,3,4) 1623 ** 1624 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1625 ** If unable to make an estimate, leave *pnRow unchanged and return 1626 ** non-zero. 1627 ** 1628 ** This routine can fail if it is unable to load a collating sequence 1629 ** required for string comparison, or if unable to allocate memory 1630 ** for a UTF conversion required for comparison. The error is stored 1631 ** in the pParse structure. 1632 */ 1633 static int whereInScanEst( 1634 Parse *pParse, /* Parsing & code generating context */ 1635 WhereLoopBuilder *pBuilder, 1636 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1637 tRowcnt *pnRow /* Write the revised row estimate here */ 1638 ){ 1639 Index *p = pBuilder->pNew->u.btree.pIndex; 1640 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1641 int nRecValid = pBuilder->nRecValid; 1642 int rc = SQLITE_OK; /* Subfunction return code */ 1643 tRowcnt nEst; /* Number of rows for a single term */ 1644 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1645 int i; /* Loop counter */ 1646 1647 assert( p->aSample!=0 ); 1648 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1649 nEst = nRow0; 1650 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1651 nRowEst += nEst; 1652 pBuilder->nRecValid = nRecValid; 1653 } 1654 1655 if( rc==SQLITE_OK ){ 1656 if( nRowEst > nRow0 ) nRowEst = nRow0; 1657 *pnRow = nRowEst; 1658 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1659 } 1660 assert( pBuilder->nRecValid==nRecValid ); 1661 return rc; 1662 } 1663 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1664 1665 1666 #ifdef WHERETRACE_ENABLED 1667 /* 1668 ** Print the content of a WhereTerm object 1669 */ 1670 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1671 if( pTerm==0 ){ 1672 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1673 }else{ 1674 char zType[4]; 1675 char zLeft[50]; 1676 memcpy(zType, "...", 4); 1677 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1678 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1679 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1680 if( pTerm->eOperator & WO_SINGLE ){ 1681 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1682 pTerm->leftCursor, pTerm->u.leftColumn); 1683 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1684 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1685 pTerm->u.pOrInfo->indexable); 1686 }else{ 1687 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1688 } 1689 sqlite3DebugPrintf( 1690 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1691 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1692 pTerm->eOperator, pTerm->wtFlags); 1693 if( pTerm->iField ){ 1694 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1695 }else{ 1696 sqlite3DebugPrintf("\n"); 1697 } 1698 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1699 } 1700 } 1701 #endif 1702 1703 #ifdef WHERETRACE_ENABLED 1704 /* 1705 ** Show the complete content of a WhereClause 1706 */ 1707 void sqlite3WhereClausePrint(WhereClause *pWC){ 1708 int i; 1709 for(i=0; i<pWC->nTerm; i++){ 1710 whereTermPrint(&pWC->a[i], i); 1711 } 1712 } 1713 #endif 1714 1715 #ifdef WHERETRACE_ENABLED 1716 /* 1717 ** Print a WhereLoop object for debugging purposes 1718 */ 1719 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1720 WhereInfo *pWInfo = pWC->pWInfo; 1721 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1722 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1723 Table *pTab = pItem->pTab; 1724 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1725 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1726 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1727 sqlite3DebugPrintf(" %12s", 1728 pItem->zAlias ? pItem->zAlias : pTab->zName); 1729 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1730 const char *zName; 1731 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1732 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1733 int i = sqlite3Strlen30(zName) - 1; 1734 while( zName[i]!='_' ) i--; 1735 zName += i; 1736 } 1737 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1738 }else{ 1739 sqlite3DebugPrintf("%20s",""); 1740 } 1741 }else{ 1742 char *z; 1743 if( p->u.vtab.idxStr ){ 1744 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1745 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1746 }else{ 1747 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1748 } 1749 sqlite3DebugPrintf(" %-19s", z); 1750 sqlite3_free(z); 1751 } 1752 if( p->wsFlags & WHERE_SKIPSCAN ){ 1753 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1754 }else{ 1755 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1756 } 1757 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1758 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1759 int i; 1760 for(i=0; i<p->nLTerm; i++){ 1761 whereTermPrint(p->aLTerm[i], i); 1762 } 1763 } 1764 } 1765 #endif 1766 1767 /* 1768 ** Convert bulk memory into a valid WhereLoop that can be passed 1769 ** to whereLoopClear harmlessly. 1770 */ 1771 static void whereLoopInit(WhereLoop *p){ 1772 p->aLTerm = p->aLTermSpace; 1773 p->nLTerm = 0; 1774 p->nLSlot = ArraySize(p->aLTermSpace); 1775 p->wsFlags = 0; 1776 } 1777 1778 /* 1779 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1780 */ 1781 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1782 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1783 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1784 sqlite3_free(p->u.vtab.idxStr); 1785 p->u.vtab.needFree = 0; 1786 p->u.vtab.idxStr = 0; 1787 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1788 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1789 sqlite3DbFree(db, p->u.btree.pIndex); 1790 p->u.btree.pIndex = 0; 1791 } 1792 } 1793 } 1794 1795 /* 1796 ** Deallocate internal memory used by a WhereLoop object 1797 */ 1798 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1799 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1800 whereLoopClearUnion(db, p); 1801 whereLoopInit(p); 1802 } 1803 1804 /* 1805 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1806 */ 1807 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1808 WhereTerm **paNew; 1809 if( p->nLSlot>=n ) return SQLITE_OK; 1810 n = (n+7)&~7; 1811 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1812 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1813 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1814 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1815 p->aLTerm = paNew; 1816 p->nLSlot = n; 1817 return SQLITE_OK; 1818 } 1819 1820 /* 1821 ** Transfer content from the second pLoop into the first. 1822 */ 1823 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1824 whereLoopClearUnion(db, pTo); 1825 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1826 memset(&pTo->u, 0, sizeof(pTo->u)); 1827 return SQLITE_NOMEM_BKPT; 1828 } 1829 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1830 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1831 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1832 pFrom->u.vtab.needFree = 0; 1833 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1834 pFrom->u.btree.pIndex = 0; 1835 } 1836 return SQLITE_OK; 1837 } 1838 1839 /* 1840 ** Delete a WhereLoop object 1841 */ 1842 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1843 whereLoopClear(db, p); 1844 sqlite3DbFree(db, p); 1845 } 1846 1847 /* 1848 ** Free a WhereInfo structure 1849 */ 1850 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1851 if( ALWAYS(pWInfo) ){ 1852 int i; 1853 for(i=0; i<pWInfo->nLevel; i++){ 1854 WhereLevel *pLevel = &pWInfo->a[i]; 1855 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1856 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1857 } 1858 } 1859 sqlite3WhereClauseClear(&pWInfo->sWC); 1860 while( pWInfo->pLoops ){ 1861 WhereLoop *p = pWInfo->pLoops; 1862 pWInfo->pLoops = p->pNextLoop; 1863 whereLoopDelete(db, p); 1864 } 1865 sqlite3DbFree(db, pWInfo); 1866 } 1867 } 1868 1869 /* 1870 ** Return TRUE if all of the following are true: 1871 ** 1872 ** (1) X has the same or lower cost that Y 1873 ** (2) X is a proper subset of Y 1874 ** (3) X skips at least as many columns as Y 1875 ** 1876 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1877 ** than Y and that every WHERE clause term used by X is also used 1878 ** by Y. 1879 ** 1880 ** If X is a proper subset of Y then Y is a better choice and ought 1881 ** to have a lower cost. This routine returns TRUE when that cost 1882 ** relationship is inverted and needs to be adjusted. The third rule 1883 ** was added because if X uses skip-scan less than Y it still might 1884 ** deserve a lower cost even if it is a proper subset of Y. 1885 */ 1886 static int whereLoopCheaperProperSubset( 1887 const WhereLoop *pX, /* First WhereLoop to compare */ 1888 const WhereLoop *pY /* Compare against this WhereLoop */ 1889 ){ 1890 int i, j; 1891 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1892 return 0; /* X is not a subset of Y */ 1893 } 1894 if( pY->nSkip > pX->nSkip ) return 0; 1895 if( pX->rRun >= pY->rRun ){ 1896 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1897 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1898 } 1899 for(i=pX->nLTerm-1; i>=0; i--){ 1900 if( pX->aLTerm[i]==0 ) continue; 1901 for(j=pY->nLTerm-1; j>=0; j--){ 1902 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1903 } 1904 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1905 } 1906 return 1; /* All conditions meet */ 1907 } 1908 1909 /* 1910 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1911 ** that: 1912 ** 1913 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1914 ** subset of pTemplate 1915 ** 1916 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1917 ** is a proper subset. 1918 ** 1919 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1920 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1921 ** also used by Y. 1922 */ 1923 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1924 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1925 for(; p; p=p->pNextLoop){ 1926 if( p->iTab!=pTemplate->iTab ) continue; 1927 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1928 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1929 /* Adjust pTemplate cost downward so that it is cheaper than its 1930 ** subset p. */ 1931 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1932 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1933 pTemplate->rRun = p->rRun; 1934 pTemplate->nOut = p->nOut - 1; 1935 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1936 /* Adjust pTemplate cost upward so that it is costlier than p since 1937 ** pTemplate is a proper subset of p */ 1938 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1939 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1940 pTemplate->rRun = p->rRun; 1941 pTemplate->nOut = p->nOut + 1; 1942 } 1943 } 1944 } 1945 1946 /* 1947 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1948 ** supplanted by pTemplate. 1949 ** 1950 ** Return NULL if the WhereLoop list contains an entry that can supplant 1951 ** pTemplate, in other words if pTemplate does not belong on the list. 1952 ** 1953 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1954 ** link that points to pX. 1955 ** 1956 ** If pTemplate cannot supplant any existing element of the list but needs 1957 ** to be added to the list, then return a pointer to the tail of the list. 1958 */ 1959 static WhereLoop **whereLoopFindLesser( 1960 WhereLoop **ppPrev, 1961 const WhereLoop *pTemplate 1962 ){ 1963 WhereLoop *p; 1964 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1965 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1966 /* If either the iTab or iSortIdx values for two WhereLoop are different 1967 ** then those WhereLoops need to be considered separately. Neither is 1968 ** a candidate to replace the other. */ 1969 continue; 1970 } 1971 /* In the current implementation, the rSetup value is either zero 1972 ** or the cost of building an automatic index (NlogN) and the NlogN 1973 ** is the same for compatible WhereLoops. */ 1974 assert( p->rSetup==0 || pTemplate->rSetup==0 1975 || p->rSetup==pTemplate->rSetup ); 1976 1977 /* whereLoopAddBtree() always generates and inserts the automatic index 1978 ** case first. Hence compatible candidate WhereLoops never have a larger 1979 ** rSetup. Call this SETUP-INVARIANT */ 1980 assert( p->rSetup>=pTemplate->rSetup ); 1981 1982 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1983 ** UNIQUE constraint) with one or more == constraints is better 1984 ** than an automatic index. Unless it is a skip-scan. */ 1985 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1986 && (pTemplate->nSkip)==0 1987 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1988 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1989 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1990 ){ 1991 break; 1992 } 1993 1994 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1995 ** discarded. WhereLoop p is better if: 1996 ** (1) p has no more dependencies than pTemplate, and 1997 ** (2) p has an equal or lower cost than pTemplate 1998 */ 1999 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2000 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2001 && p->rRun<=pTemplate->rRun /* (2b) */ 2002 && p->nOut<=pTemplate->nOut /* (2c) */ 2003 ){ 2004 return 0; /* Discard pTemplate */ 2005 } 2006 2007 /* If pTemplate is always better than p, then cause p to be overwritten 2008 ** with pTemplate. pTemplate is better than p if: 2009 ** (1) pTemplate has no more dependences than p, and 2010 ** (2) pTemplate has an equal or lower cost than p. 2011 */ 2012 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2013 && p->rRun>=pTemplate->rRun /* (2a) */ 2014 && p->nOut>=pTemplate->nOut /* (2b) */ 2015 ){ 2016 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2017 break; /* Cause p to be overwritten by pTemplate */ 2018 } 2019 } 2020 return ppPrev; 2021 } 2022 2023 /* 2024 ** Insert or replace a WhereLoop entry using the template supplied. 2025 ** 2026 ** An existing WhereLoop entry might be overwritten if the new template 2027 ** is better and has fewer dependencies. Or the template will be ignored 2028 ** and no insert will occur if an existing WhereLoop is faster and has 2029 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2030 ** added based on the template. 2031 ** 2032 ** If pBuilder->pOrSet is not NULL then we care about only the 2033 ** prerequisites and rRun and nOut costs of the N best loops. That 2034 ** information is gathered in the pBuilder->pOrSet object. This special 2035 ** processing mode is used only for OR clause processing. 2036 ** 2037 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2038 ** still might overwrite similar loops with the new template if the 2039 ** new template is better. Loops may be overwritten if the following 2040 ** conditions are met: 2041 ** 2042 ** (1) They have the same iTab. 2043 ** (2) They have the same iSortIdx. 2044 ** (3) The template has same or fewer dependencies than the current loop 2045 ** (4) The template has the same or lower cost than the current loop 2046 */ 2047 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2048 WhereLoop **ppPrev, *p; 2049 WhereInfo *pWInfo = pBuilder->pWInfo; 2050 sqlite3 *db = pWInfo->pParse->db; 2051 int rc; 2052 2053 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2054 ** and prereqs. 2055 */ 2056 if( pBuilder->pOrSet!=0 ){ 2057 if( pTemplate->nLTerm ){ 2058 #if WHERETRACE_ENABLED 2059 u16 n = pBuilder->pOrSet->n; 2060 int x = 2061 #endif 2062 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2063 pTemplate->nOut); 2064 #if WHERETRACE_ENABLED /* 0x8 */ 2065 if( sqlite3WhereTrace & 0x8 ){ 2066 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2067 whereLoopPrint(pTemplate, pBuilder->pWC); 2068 } 2069 #endif 2070 } 2071 return SQLITE_OK; 2072 } 2073 2074 /* Look for an existing WhereLoop to replace with pTemplate 2075 */ 2076 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2077 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2078 2079 if( ppPrev==0 ){ 2080 /* There already exists a WhereLoop on the list that is better 2081 ** than pTemplate, so just ignore pTemplate */ 2082 #if WHERETRACE_ENABLED /* 0x8 */ 2083 if( sqlite3WhereTrace & 0x8 ){ 2084 sqlite3DebugPrintf(" skip: "); 2085 whereLoopPrint(pTemplate, pBuilder->pWC); 2086 } 2087 #endif 2088 return SQLITE_OK; 2089 }else{ 2090 p = *ppPrev; 2091 } 2092 2093 /* If we reach this point it means that either p[] should be overwritten 2094 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2095 ** WhereLoop and insert it. 2096 */ 2097 #if WHERETRACE_ENABLED /* 0x8 */ 2098 if( sqlite3WhereTrace & 0x8 ){ 2099 if( p!=0 ){ 2100 sqlite3DebugPrintf("replace: "); 2101 whereLoopPrint(p, pBuilder->pWC); 2102 } 2103 sqlite3DebugPrintf(" add: "); 2104 whereLoopPrint(pTemplate, pBuilder->pWC); 2105 } 2106 #endif 2107 if( p==0 ){ 2108 /* Allocate a new WhereLoop to add to the end of the list */ 2109 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2110 if( p==0 ) return SQLITE_NOMEM_BKPT; 2111 whereLoopInit(p); 2112 p->pNextLoop = 0; 2113 }else{ 2114 /* We will be overwriting WhereLoop p[]. But before we do, first 2115 ** go through the rest of the list and delete any other entries besides 2116 ** p[] that are also supplated by pTemplate */ 2117 WhereLoop **ppTail = &p->pNextLoop; 2118 WhereLoop *pToDel; 2119 while( *ppTail ){ 2120 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2121 if( ppTail==0 ) break; 2122 pToDel = *ppTail; 2123 if( pToDel==0 ) break; 2124 *ppTail = pToDel->pNextLoop; 2125 #if WHERETRACE_ENABLED /* 0x8 */ 2126 if( sqlite3WhereTrace & 0x8 ){ 2127 sqlite3DebugPrintf(" delete: "); 2128 whereLoopPrint(pToDel, pBuilder->pWC); 2129 } 2130 #endif 2131 whereLoopDelete(db, pToDel); 2132 } 2133 } 2134 rc = whereLoopXfer(db, p, pTemplate); 2135 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2136 Index *pIndex = p->u.btree.pIndex; 2137 if( pIndex && pIndex->tnum==0 ){ 2138 p->u.btree.pIndex = 0; 2139 } 2140 } 2141 return rc; 2142 } 2143 2144 /* 2145 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2146 ** WHERE clause that reference the loop but which are not used by an 2147 ** index. 2148 * 2149 ** For every WHERE clause term that is not used by the index 2150 ** and which has a truth probability assigned by one of the likelihood(), 2151 ** likely(), or unlikely() SQL functions, reduce the estimated number 2152 ** of output rows by the probability specified. 2153 ** 2154 ** TUNING: For every WHERE clause term that is not used by the index 2155 ** and which does not have an assigned truth probability, heuristics 2156 ** described below are used to try to estimate the truth probability. 2157 ** TODO --> Perhaps this is something that could be improved by better 2158 ** table statistics. 2159 ** 2160 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2161 ** value corresponds to -1 in LogEst notation, so this means decrement 2162 ** the WhereLoop.nOut field for every such WHERE clause term. 2163 ** 2164 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2165 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2166 ** final output row estimate is no greater than 1/4 of the total number 2167 ** of rows in the table. In other words, assume that x==EXPR will filter 2168 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2169 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2170 ** on the "x" column and so in that case only cap the output row estimate 2171 ** at 1/2 instead of 1/4. 2172 */ 2173 static void whereLoopOutputAdjust( 2174 WhereClause *pWC, /* The WHERE clause */ 2175 WhereLoop *pLoop, /* The loop to adjust downward */ 2176 LogEst nRow /* Number of rows in the entire table */ 2177 ){ 2178 WhereTerm *pTerm, *pX; 2179 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2180 int i, j, k; 2181 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2182 2183 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2184 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2185 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2186 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2187 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2188 for(j=pLoop->nLTerm-1; j>=0; j--){ 2189 pX = pLoop->aLTerm[j]; 2190 if( pX==0 ) continue; 2191 if( pX==pTerm ) break; 2192 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2193 } 2194 if( j<0 ){ 2195 if( pTerm->truthProb<=0 ){ 2196 /* If a truth probability is specified using the likelihood() hints, 2197 ** then use the probability provided by the application. */ 2198 pLoop->nOut += pTerm->truthProb; 2199 }else{ 2200 /* In the absence of explicit truth probabilities, use heuristics to 2201 ** guess a reasonable truth probability. */ 2202 pLoop->nOut--; 2203 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2204 Expr *pRight = pTerm->pExpr->pRight; 2205 testcase( pTerm->pExpr->op==TK_IS ); 2206 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2207 k = 10; 2208 }else{ 2209 k = 20; 2210 } 2211 if( iReduce<k ) iReduce = k; 2212 } 2213 } 2214 } 2215 } 2216 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2217 } 2218 2219 /* 2220 ** Term pTerm is a vector range comparison operation. The first comparison 2221 ** in the vector can be optimized using column nEq of the index. This 2222 ** function returns the total number of vector elements that can be used 2223 ** as part of the range comparison. 2224 ** 2225 ** For example, if the query is: 2226 ** 2227 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2228 ** 2229 ** and the index: 2230 ** 2231 ** CREATE INDEX ... ON (a, b, c, d, e) 2232 ** 2233 ** then this function would be invoked with nEq=1. The value returned in 2234 ** this case is 3. 2235 */ 2236 static int whereRangeVectorLen( 2237 Parse *pParse, /* Parsing context */ 2238 int iCur, /* Cursor open on pIdx */ 2239 Index *pIdx, /* The index to be used for a inequality constraint */ 2240 int nEq, /* Number of prior equality constraints on same index */ 2241 WhereTerm *pTerm /* The vector inequality constraint */ 2242 ){ 2243 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2244 int i; 2245 2246 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2247 for(i=1; i<nCmp; i++){ 2248 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2249 ** of the index. If not, exit the loop. */ 2250 char aff; /* Comparison affinity */ 2251 char idxaff = 0; /* Indexed columns affinity */ 2252 CollSeq *pColl; /* Comparison collation sequence */ 2253 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2254 Expr *pRhs = pTerm->pExpr->pRight; 2255 if( pRhs->flags & EP_xIsSelect ){ 2256 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2257 }else{ 2258 pRhs = pRhs->x.pList->a[i].pExpr; 2259 } 2260 2261 /* Check that the LHS of the comparison is a column reference to 2262 ** the right column of the right source table. And that the sort 2263 ** order of the index column is the same as the sort order of the 2264 ** leftmost index column. */ 2265 if( pLhs->op!=TK_COLUMN 2266 || pLhs->iTable!=iCur 2267 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2268 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2269 ){ 2270 break; 2271 } 2272 2273 testcase( pLhs->iColumn==XN_ROWID ); 2274 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2275 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2276 if( aff!=idxaff ) break; 2277 2278 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2279 if( pColl==0 ) break; 2280 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2281 } 2282 return i; 2283 } 2284 2285 /* 2286 ** Adjust the cost C by the costMult facter T. This only occurs if 2287 ** compiled with -DSQLITE_ENABLE_COSTMULT 2288 */ 2289 #ifdef SQLITE_ENABLE_COSTMULT 2290 # define ApplyCostMultiplier(C,T) C += T 2291 #else 2292 # define ApplyCostMultiplier(C,T) 2293 #endif 2294 2295 /* 2296 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2297 ** index pIndex. Try to match one more. 2298 ** 2299 ** When this function is called, pBuilder->pNew->nOut contains the 2300 ** number of rows expected to be visited by filtering using the nEq 2301 ** terms only. If it is modified, this value is restored before this 2302 ** function returns. 2303 ** 2304 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2305 ** INTEGER PRIMARY KEY. 2306 */ 2307 static int whereLoopAddBtreeIndex( 2308 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2309 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2310 Index *pProbe, /* An index on pSrc */ 2311 LogEst nInMul /* log(Number of iterations due to IN) */ 2312 ){ 2313 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2314 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2315 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2316 WhereLoop *pNew; /* Template WhereLoop under construction */ 2317 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2318 int opMask; /* Valid operators for constraints */ 2319 WhereScan scan; /* Iterator for WHERE terms */ 2320 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2321 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2322 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2323 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2324 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2325 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2326 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2327 LogEst saved_nOut; /* Original value of pNew->nOut */ 2328 int rc = SQLITE_OK; /* Return code */ 2329 LogEst rSize; /* Number of rows in the table */ 2330 LogEst rLogSize; /* Logarithm of table size */ 2331 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2332 2333 pNew = pBuilder->pNew; 2334 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2335 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n", 2336 pProbe->zName, pNew->u.btree.nEq)); 2337 2338 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2339 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2340 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2341 opMask = WO_LT|WO_LE; 2342 }else{ 2343 assert( pNew->u.btree.nBtm==0 ); 2344 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2345 } 2346 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2347 2348 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2349 2350 saved_nEq = pNew->u.btree.nEq; 2351 saved_nBtm = pNew->u.btree.nBtm; 2352 saved_nTop = pNew->u.btree.nTop; 2353 saved_nSkip = pNew->nSkip; 2354 saved_nLTerm = pNew->nLTerm; 2355 saved_wsFlags = pNew->wsFlags; 2356 saved_prereq = pNew->prereq; 2357 saved_nOut = pNew->nOut; 2358 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2359 opMask, pProbe); 2360 pNew->rSetup = 0; 2361 rSize = pProbe->aiRowLogEst[0]; 2362 rLogSize = estLog(rSize); 2363 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2364 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2365 LogEst rCostIdx; 2366 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2367 int nIn = 0; 2368 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2369 int nRecValid = pBuilder->nRecValid; 2370 #endif 2371 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2372 && indexColumnNotNull(pProbe, saved_nEq) 2373 ){ 2374 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2375 } 2376 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2377 2378 /* Do not allow the upper bound of a LIKE optimization range constraint 2379 ** to mix with a lower range bound from some other source */ 2380 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2381 2382 /* Do not allow IS constraints from the WHERE clause to be used by the 2383 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2384 ** allowed */ 2385 if( (pSrc->fg.jointype & JT_LEFT)!=0 2386 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2387 && (eOp & (WO_IS|WO_ISNULL))!=0 2388 ){ 2389 testcase( eOp & WO_IS ); 2390 testcase( eOp & WO_ISNULL ); 2391 continue; 2392 } 2393 2394 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2395 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2396 }else{ 2397 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2398 } 2399 pNew->wsFlags = saved_wsFlags; 2400 pNew->u.btree.nEq = saved_nEq; 2401 pNew->u.btree.nBtm = saved_nBtm; 2402 pNew->u.btree.nTop = saved_nTop; 2403 pNew->nLTerm = saved_nLTerm; 2404 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2405 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2406 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2407 2408 assert( nInMul==0 2409 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2410 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2411 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2412 ); 2413 2414 if( eOp & WO_IN ){ 2415 Expr *pExpr = pTerm->pExpr; 2416 pNew->wsFlags |= WHERE_COLUMN_IN; 2417 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2418 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2419 int i; 2420 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2421 2422 /* The expression may actually be of the form (x, y) IN (SELECT...). 2423 ** In this case there is a separate term for each of (x) and (y). 2424 ** However, the nIn multiplier should only be applied once, not once 2425 ** for each such term. The following loop checks that pTerm is the 2426 ** first such term in use, and sets nIn back to 0 if it is not. */ 2427 for(i=0; i<pNew->nLTerm-1; i++){ 2428 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2429 } 2430 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2431 /* "x IN (value, value, ...)" */ 2432 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2433 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2434 ** changes "x IN (?)" into "x=?". */ 2435 } 2436 }else if( eOp & (WO_EQ|WO_IS) ){ 2437 int iCol = pProbe->aiColumn[saved_nEq]; 2438 pNew->wsFlags |= WHERE_COLUMN_EQ; 2439 assert( saved_nEq==pNew->u.btree.nEq ); 2440 if( iCol==XN_ROWID 2441 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2442 ){ 2443 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2444 pNew->wsFlags |= WHERE_UNQ_WANTED; 2445 }else{ 2446 pNew->wsFlags |= WHERE_ONEROW; 2447 } 2448 } 2449 }else if( eOp & WO_ISNULL ){ 2450 pNew->wsFlags |= WHERE_COLUMN_NULL; 2451 }else if( eOp & (WO_GT|WO_GE) ){ 2452 testcase( eOp & WO_GT ); 2453 testcase( eOp & WO_GE ); 2454 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2455 pNew->u.btree.nBtm = whereRangeVectorLen( 2456 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2457 ); 2458 pBtm = pTerm; 2459 pTop = 0; 2460 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2461 /* Range contraints that come from the LIKE optimization are 2462 ** always used in pairs. */ 2463 pTop = &pTerm[1]; 2464 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2465 assert( pTop->wtFlags & TERM_LIKEOPT ); 2466 assert( pTop->eOperator==WO_LT ); 2467 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2468 pNew->aLTerm[pNew->nLTerm++] = pTop; 2469 pNew->wsFlags |= WHERE_TOP_LIMIT; 2470 pNew->u.btree.nTop = 1; 2471 } 2472 }else{ 2473 assert( eOp & (WO_LT|WO_LE) ); 2474 testcase( eOp & WO_LT ); 2475 testcase( eOp & WO_LE ); 2476 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2477 pNew->u.btree.nTop = whereRangeVectorLen( 2478 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2479 ); 2480 pTop = pTerm; 2481 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2482 pNew->aLTerm[pNew->nLTerm-2] : 0; 2483 } 2484 2485 /* At this point pNew->nOut is set to the number of rows expected to 2486 ** be visited by the index scan before considering term pTerm, or the 2487 ** values of nIn and nInMul. In other words, assuming that all 2488 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2489 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2490 assert( pNew->nOut==saved_nOut ); 2491 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2492 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2493 ** data, using some other estimate. */ 2494 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2495 }else{ 2496 int nEq = ++pNew->u.btree.nEq; 2497 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2498 2499 assert( pNew->nOut==saved_nOut ); 2500 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2501 assert( (eOp & WO_IN) || nIn==0 ); 2502 testcase( eOp & WO_IN ); 2503 pNew->nOut += pTerm->truthProb; 2504 pNew->nOut -= nIn; 2505 }else{ 2506 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2507 tRowcnt nOut = 0; 2508 if( nInMul==0 2509 && pProbe->nSample 2510 && pNew->u.btree.nEq<=pProbe->nSampleCol 2511 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2512 ){ 2513 Expr *pExpr = pTerm->pExpr; 2514 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2515 testcase( eOp & WO_EQ ); 2516 testcase( eOp & WO_IS ); 2517 testcase( eOp & WO_ISNULL ); 2518 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2519 }else{ 2520 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2521 } 2522 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2523 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2524 if( nOut ){ 2525 pNew->nOut = sqlite3LogEst(nOut); 2526 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2527 pNew->nOut -= nIn; 2528 } 2529 } 2530 if( nOut==0 ) 2531 #endif 2532 { 2533 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2534 if( eOp & WO_ISNULL ){ 2535 /* TUNING: If there is no likelihood() value, assume that a 2536 ** "col IS NULL" expression matches twice as many rows 2537 ** as (col=?). */ 2538 pNew->nOut += 10; 2539 } 2540 } 2541 } 2542 } 2543 2544 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2545 ** it to pNew->rRun, which is currently set to the cost of the index 2546 ** seek only. Then, if this is a non-covering index, add the cost of 2547 ** visiting the rows in the main table. */ 2548 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2549 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2550 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2551 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2552 } 2553 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2554 2555 nOutUnadjusted = pNew->nOut; 2556 pNew->rRun += nInMul + nIn; 2557 pNew->nOut += nInMul + nIn; 2558 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2559 rc = whereLoopInsert(pBuilder, pNew); 2560 2561 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2562 pNew->nOut = saved_nOut; 2563 }else{ 2564 pNew->nOut = nOutUnadjusted; 2565 } 2566 2567 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2568 && pNew->u.btree.nEq<pProbe->nColumn 2569 ){ 2570 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2571 } 2572 pNew->nOut = saved_nOut; 2573 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2574 pBuilder->nRecValid = nRecValid; 2575 #endif 2576 } 2577 pNew->prereq = saved_prereq; 2578 pNew->u.btree.nEq = saved_nEq; 2579 pNew->u.btree.nBtm = saved_nBtm; 2580 pNew->u.btree.nTop = saved_nTop; 2581 pNew->nSkip = saved_nSkip; 2582 pNew->wsFlags = saved_wsFlags; 2583 pNew->nOut = saved_nOut; 2584 pNew->nLTerm = saved_nLTerm; 2585 2586 /* Consider using a skip-scan if there are no WHERE clause constraints 2587 ** available for the left-most terms of the index, and if the average 2588 ** number of repeats in the left-most terms is at least 18. 2589 ** 2590 ** The magic number 18 is selected on the basis that scanning 17 rows 2591 ** is almost always quicker than an index seek (even though if the index 2592 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2593 ** the code). And, even if it is not, it should not be too much slower. 2594 ** On the other hand, the extra seeks could end up being significantly 2595 ** more expensive. */ 2596 assert( 42==sqlite3LogEst(18) ); 2597 if( saved_nEq==saved_nSkip 2598 && saved_nEq+1<pProbe->nKeyCol 2599 && pProbe->noSkipScan==0 2600 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2601 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2602 ){ 2603 LogEst nIter; 2604 pNew->u.btree.nEq++; 2605 pNew->nSkip++; 2606 pNew->aLTerm[pNew->nLTerm++] = 0; 2607 pNew->wsFlags |= WHERE_SKIPSCAN; 2608 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2609 pNew->nOut -= nIter; 2610 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2611 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2612 nIter += 5; 2613 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2614 pNew->nOut = saved_nOut; 2615 pNew->u.btree.nEq = saved_nEq; 2616 pNew->nSkip = saved_nSkip; 2617 pNew->wsFlags = saved_wsFlags; 2618 } 2619 2620 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n", 2621 pProbe->zName, saved_nEq, rc)); 2622 return rc; 2623 } 2624 2625 /* 2626 ** Return True if it is possible that pIndex might be useful in 2627 ** implementing the ORDER BY clause in pBuilder. 2628 ** 2629 ** Return False if pBuilder does not contain an ORDER BY clause or 2630 ** if there is no way for pIndex to be useful in implementing that 2631 ** ORDER BY clause. 2632 */ 2633 static int indexMightHelpWithOrderBy( 2634 WhereLoopBuilder *pBuilder, 2635 Index *pIndex, 2636 int iCursor 2637 ){ 2638 ExprList *pOB; 2639 ExprList *aColExpr; 2640 int ii, jj; 2641 2642 if( pIndex->bUnordered ) return 0; 2643 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2644 for(ii=0; ii<pOB->nExpr; ii++){ 2645 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2646 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2647 if( pExpr->iColumn<0 ) return 1; 2648 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2649 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2650 } 2651 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2652 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2653 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2654 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2655 return 1; 2656 } 2657 } 2658 } 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 ** Return a bitmask where 1s indicate that the corresponding column of 2665 ** the table is used by an index. Only the first 63 columns are considered. 2666 */ 2667 static Bitmask columnsInIndex(Index *pIdx){ 2668 Bitmask m = 0; 2669 int j; 2670 for(j=pIdx->nColumn-1; j>=0; j--){ 2671 int x = pIdx->aiColumn[j]; 2672 if( x>=0 ){ 2673 testcase( x==BMS-1 ); 2674 testcase( x==BMS-2 ); 2675 if( x<BMS-1 ) m |= MASKBIT(x); 2676 } 2677 } 2678 return m; 2679 } 2680 2681 /* Check to see if a partial index with pPartIndexWhere can be used 2682 ** in the current query. Return true if it can be and false if not. 2683 */ 2684 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2685 int i; 2686 WhereTerm *pTerm; 2687 while( pWhere->op==TK_AND ){ 2688 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2689 pWhere = pWhere->pRight; 2690 } 2691 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2692 Expr *pExpr = pTerm->pExpr; 2693 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2694 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2695 ){ 2696 return 1; 2697 } 2698 } 2699 return 0; 2700 } 2701 2702 /* 2703 ** Add all WhereLoop objects for a single table of the join where the table 2704 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2705 ** a b-tree table, not a virtual table. 2706 ** 2707 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2708 ** are calculated as follows: 2709 ** 2710 ** For a full scan, assuming the table (or index) contains nRow rows: 2711 ** 2712 ** cost = nRow * 3.0 // full-table scan 2713 ** cost = nRow * K // scan of covering index 2714 ** cost = nRow * (K+3.0) // scan of non-covering index 2715 ** 2716 ** where K is a value between 1.1 and 3.0 set based on the relative 2717 ** estimated average size of the index and table records. 2718 ** 2719 ** For an index scan, where nVisit is the number of index rows visited 2720 ** by the scan, and nSeek is the number of seek operations required on 2721 ** the index b-tree: 2722 ** 2723 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2724 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2725 ** 2726 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2727 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2728 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2729 ** 2730 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2731 ** of uncertainty. For this reason, scoring is designed to pick plans that 2732 ** "do the least harm" if the estimates are inaccurate. For example, a 2733 ** log(nRow) factor is omitted from a non-covering index scan in order to 2734 ** bias the scoring in favor of using an index, since the worst-case 2735 ** performance of using an index is far better than the worst-case performance 2736 ** of a full table scan. 2737 */ 2738 static int whereLoopAddBtree( 2739 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2740 Bitmask mPrereq /* Extra prerequesites for using this table */ 2741 ){ 2742 WhereInfo *pWInfo; /* WHERE analysis context */ 2743 Index *pProbe; /* An index we are evaluating */ 2744 Index sPk; /* A fake index object for the primary key */ 2745 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2746 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2747 SrcList *pTabList; /* The FROM clause */ 2748 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2749 WhereLoop *pNew; /* Template WhereLoop object */ 2750 int rc = SQLITE_OK; /* Return code */ 2751 int iSortIdx = 1; /* Index number */ 2752 int b; /* A boolean value */ 2753 LogEst rSize; /* number of rows in the table */ 2754 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2755 WhereClause *pWC; /* The parsed WHERE clause */ 2756 Table *pTab; /* Table being queried */ 2757 2758 pNew = pBuilder->pNew; 2759 pWInfo = pBuilder->pWInfo; 2760 pTabList = pWInfo->pTabList; 2761 pSrc = pTabList->a + pNew->iTab; 2762 pTab = pSrc->pTab; 2763 pWC = pBuilder->pWC; 2764 assert( !IsVirtual(pSrc->pTab) ); 2765 2766 if( pSrc->pIBIndex ){ 2767 /* An INDEXED BY clause specifies a particular index to use */ 2768 pProbe = pSrc->pIBIndex; 2769 }else if( !HasRowid(pTab) ){ 2770 pProbe = pTab->pIndex; 2771 }else{ 2772 /* There is no INDEXED BY clause. Create a fake Index object in local 2773 ** variable sPk to represent the rowid primary key index. Make this 2774 ** fake index the first in a chain of Index objects with all of the real 2775 ** indices to follow */ 2776 Index *pFirst; /* First of real indices on the table */ 2777 memset(&sPk, 0, sizeof(Index)); 2778 sPk.nKeyCol = 1; 2779 sPk.nColumn = 1; 2780 sPk.aiColumn = &aiColumnPk; 2781 sPk.aiRowLogEst = aiRowEstPk; 2782 sPk.onError = OE_Replace; 2783 sPk.pTable = pTab; 2784 sPk.szIdxRow = pTab->szTabRow; 2785 aiRowEstPk[0] = pTab->nRowLogEst; 2786 aiRowEstPk[1] = 0; 2787 pFirst = pSrc->pTab->pIndex; 2788 if( pSrc->fg.notIndexed==0 ){ 2789 /* The real indices of the table are only considered if the 2790 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2791 sPk.pNext = pFirst; 2792 } 2793 pProbe = &sPk; 2794 } 2795 rSize = pTab->nRowLogEst; 2796 rLogSize = estLog(rSize); 2797 2798 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2799 /* Automatic indexes */ 2800 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2801 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2802 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2803 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2804 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2805 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2806 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2807 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2808 ){ 2809 /* Generate auto-index WhereLoops */ 2810 WhereTerm *pTerm; 2811 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2812 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2813 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2814 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2815 pNew->u.btree.nEq = 1; 2816 pNew->nSkip = 0; 2817 pNew->u.btree.pIndex = 0; 2818 pNew->nLTerm = 1; 2819 pNew->aLTerm[0] = pTerm; 2820 /* TUNING: One-time cost for computing the automatic index is 2821 ** estimated to be X*N*log2(N) where N is the number of rows in 2822 ** the table being indexed and where X is 7 (LogEst=28) for normal 2823 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2824 ** of X is smaller for views and subqueries so that the query planner 2825 ** will be more aggressive about generating automatic indexes for 2826 ** those objects, since there is no opportunity to add schema 2827 ** indexes on subqueries and views. */ 2828 pNew->rSetup = rLogSize + rSize + 4; 2829 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2830 pNew->rSetup += 24; 2831 } 2832 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2833 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2834 /* TUNING: Each index lookup yields 20 rows in the table. This 2835 ** is more than the usual guess of 10 rows, since we have no way 2836 ** of knowing how selective the index will ultimately be. It would 2837 ** not be unreasonable to make this value much larger. */ 2838 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2839 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2840 pNew->wsFlags = WHERE_AUTO_INDEX; 2841 pNew->prereq = mPrereq | pTerm->prereqRight; 2842 rc = whereLoopInsert(pBuilder, pNew); 2843 } 2844 } 2845 } 2846 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2847 2848 /* Loop over all indices 2849 */ 2850 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2851 if( pProbe->pPartIdxWhere!=0 2852 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2853 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2854 continue; /* Partial index inappropriate for this query */ 2855 } 2856 rSize = pProbe->aiRowLogEst[0]; 2857 pNew->u.btree.nEq = 0; 2858 pNew->u.btree.nBtm = 0; 2859 pNew->u.btree.nTop = 0; 2860 pNew->nSkip = 0; 2861 pNew->nLTerm = 0; 2862 pNew->iSortIdx = 0; 2863 pNew->rSetup = 0; 2864 pNew->prereq = mPrereq; 2865 pNew->nOut = rSize; 2866 pNew->u.btree.pIndex = pProbe; 2867 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2868 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2869 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2870 if( pProbe->tnum<=0 ){ 2871 /* Integer primary key index */ 2872 pNew->wsFlags = WHERE_IPK; 2873 2874 /* Full table scan */ 2875 pNew->iSortIdx = b ? iSortIdx : 0; 2876 /* TUNING: Cost of full table scan is (N*3.0). */ 2877 pNew->rRun = rSize + 16; 2878 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2879 whereLoopOutputAdjust(pWC, pNew, rSize); 2880 rc = whereLoopInsert(pBuilder, pNew); 2881 pNew->nOut = rSize; 2882 if( rc ) break; 2883 }else{ 2884 Bitmask m; 2885 if( pProbe->isCovering ){ 2886 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2887 m = 0; 2888 }else{ 2889 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2890 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2891 } 2892 2893 /* Full scan via index */ 2894 if( b 2895 || !HasRowid(pTab) 2896 || pProbe->pPartIdxWhere!=0 2897 || ( m==0 2898 && pProbe->bUnordered==0 2899 && (pProbe->szIdxRow<pTab->szTabRow) 2900 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2901 && sqlite3GlobalConfig.bUseCis 2902 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2903 ) 2904 ){ 2905 pNew->iSortIdx = b ? iSortIdx : 0; 2906 2907 /* The cost of visiting the index rows is N*K, where K is 2908 ** between 1.1 and 3.0, depending on the relative sizes of the 2909 ** index and table rows. */ 2910 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2911 if( m!=0 ){ 2912 /* If this is a non-covering index scan, add in the cost of 2913 ** doing table lookups. The cost will be 3x the number of 2914 ** lookups. Take into account WHERE clause terms that can be 2915 ** satisfied using just the index, and that do not require a 2916 ** table lookup. */ 2917 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 2918 int ii; 2919 int iCur = pSrc->iCursor; 2920 WhereClause *pWC2 = &pWInfo->sWC; 2921 for(ii=0; ii<pWC2->nTerm; ii++){ 2922 WhereTerm *pTerm = &pWC2->a[ii]; 2923 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 2924 break; 2925 } 2926 /* pTerm can be evaluated using just the index. So reduce 2927 ** the expected number of table lookups accordingly */ 2928 if( pTerm->truthProb<=0 ){ 2929 nLookup += pTerm->truthProb; 2930 }else{ 2931 nLookup--; 2932 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 2933 } 2934 } 2935 2936 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 2937 } 2938 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2939 whereLoopOutputAdjust(pWC, pNew, rSize); 2940 rc = whereLoopInsert(pBuilder, pNew); 2941 pNew->nOut = rSize; 2942 if( rc ) break; 2943 } 2944 } 2945 2946 pBuilder->bldFlags = 0; 2947 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2948 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 2949 /* If a non-unique index is used, or if a prefix of the key for 2950 ** unique index is used (making the index functionally non-unique) 2951 ** then the sqlite_stat1 data becomes important for scoring the 2952 ** plan */ 2953 pTab->tabFlags |= TF_StatsUsed; 2954 } 2955 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2956 sqlite3Stat4ProbeFree(pBuilder->pRec); 2957 pBuilder->nRecValid = 0; 2958 pBuilder->pRec = 0; 2959 #endif 2960 2961 /* If there was an INDEXED BY clause, then only that one index is 2962 ** considered. */ 2963 if( pSrc->pIBIndex ) break; 2964 } 2965 return rc; 2966 } 2967 2968 #ifndef SQLITE_OMIT_VIRTUALTABLE 2969 2970 /* 2971 ** Argument pIdxInfo is already populated with all constraints that may 2972 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 2973 ** function marks a subset of those constraints usable, invokes the 2974 ** xBestIndex method and adds the returned plan to pBuilder. 2975 ** 2976 ** A constraint is marked usable if: 2977 ** 2978 ** * Argument mUsable indicates that its prerequisites are available, and 2979 ** 2980 ** * It is not one of the operators specified in the mExclude mask passed 2981 ** as the fourth argument (which in practice is either WO_IN or 0). 2982 ** 2983 ** Argument mPrereq is a mask of tables that must be scanned before the 2984 ** virtual table in question. These are added to the plans prerequisites 2985 ** before it is added to pBuilder. 2986 ** 2987 ** Output parameter *pbIn is set to true if the plan added to pBuilder 2988 ** uses one or more WO_IN terms, or false otherwise. 2989 */ 2990 static int whereLoopAddVirtualOne( 2991 WhereLoopBuilder *pBuilder, 2992 Bitmask mPrereq, /* Mask of tables that must be used. */ 2993 Bitmask mUsable, /* Mask of usable tables */ 2994 u16 mExclude, /* Exclude terms using these operators */ 2995 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 2996 u16 mNoOmit, /* Do not omit these constraints */ 2997 int *pbIn /* OUT: True if plan uses an IN(...) op */ 2998 ){ 2999 WhereClause *pWC = pBuilder->pWC; 3000 struct sqlite3_index_constraint *pIdxCons; 3001 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3002 int i; 3003 int mxTerm; 3004 int rc = SQLITE_OK; 3005 WhereLoop *pNew = pBuilder->pNew; 3006 Parse *pParse = pBuilder->pWInfo->pParse; 3007 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3008 int nConstraint = pIdxInfo->nConstraint; 3009 3010 assert( (mUsable & mPrereq)==mPrereq ); 3011 *pbIn = 0; 3012 pNew->prereq = mPrereq; 3013 3014 /* Set the usable flag on the subset of constraints identified by 3015 ** arguments mUsable and mExclude. */ 3016 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3017 for(i=0; i<nConstraint; i++, pIdxCons++){ 3018 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3019 pIdxCons->usable = 0; 3020 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3021 && (pTerm->eOperator & mExclude)==0 3022 ){ 3023 pIdxCons->usable = 1; 3024 } 3025 } 3026 3027 /* Initialize the output fields of the sqlite3_index_info structure */ 3028 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3029 assert( pIdxInfo->needToFreeIdxStr==0 ); 3030 pIdxInfo->idxStr = 0; 3031 pIdxInfo->idxNum = 0; 3032 pIdxInfo->orderByConsumed = 0; 3033 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3034 pIdxInfo->estimatedRows = 25; 3035 pIdxInfo->idxFlags = 0; 3036 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3037 3038 /* Invoke the virtual table xBestIndex() method */ 3039 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3040 if( rc ) return rc; 3041 3042 mxTerm = -1; 3043 assert( pNew->nLSlot>=nConstraint ); 3044 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3045 pNew->u.vtab.omitMask = 0; 3046 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3047 for(i=0; i<nConstraint; i++, pIdxCons++){ 3048 int iTerm; 3049 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3050 WhereTerm *pTerm; 3051 int j = pIdxCons->iTermOffset; 3052 if( iTerm>=nConstraint 3053 || j<0 3054 || j>=pWC->nTerm 3055 || pNew->aLTerm[iTerm]!=0 3056 || pIdxCons->usable==0 3057 ){ 3058 rc = SQLITE_ERROR; 3059 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3060 return rc; 3061 } 3062 testcase( iTerm==nConstraint-1 ); 3063 testcase( j==0 ); 3064 testcase( j==pWC->nTerm-1 ); 3065 pTerm = &pWC->a[j]; 3066 pNew->prereq |= pTerm->prereqRight; 3067 assert( iTerm<pNew->nLSlot ); 3068 pNew->aLTerm[iTerm] = pTerm; 3069 if( iTerm>mxTerm ) mxTerm = iTerm; 3070 testcase( iTerm==15 ); 3071 testcase( iTerm==16 ); 3072 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3073 if( (pTerm->eOperator & WO_IN)!=0 ){ 3074 /* A virtual table that is constrained by an IN clause may not 3075 ** consume the ORDER BY clause because (1) the order of IN terms 3076 ** is not necessarily related to the order of output terms and 3077 ** (2) Multiple outputs from a single IN value will not merge 3078 ** together. */ 3079 pIdxInfo->orderByConsumed = 0; 3080 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3081 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3082 } 3083 } 3084 } 3085 pNew->u.vtab.omitMask &= ~mNoOmit; 3086 3087 pNew->nLTerm = mxTerm+1; 3088 assert( pNew->nLTerm<=pNew->nLSlot ); 3089 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3090 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3091 pIdxInfo->needToFreeIdxStr = 0; 3092 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3093 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3094 pIdxInfo->nOrderBy : 0); 3095 pNew->rSetup = 0; 3096 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3097 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3098 3099 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3100 ** that the scan will visit at most one row. Clear it otherwise. */ 3101 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3102 pNew->wsFlags |= WHERE_ONEROW; 3103 }else{ 3104 pNew->wsFlags &= ~WHERE_ONEROW; 3105 } 3106 rc = whereLoopInsert(pBuilder, pNew); 3107 if( pNew->u.vtab.needFree ){ 3108 sqlite3_free(pNew->u.vtab.idxStr); 3109 pNew->u.vtab.needFree = 0; 3110 } 3111 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3112 *pbIn, (sqlite3_uint64)mPrereq, 3113 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3114 3115 return rc; 3116 } 3117 3118 3119 /* 3120 ** Add all WhereLoop objects for a table of the join identified by 3121 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3122 ** 3123 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3124 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3125 ** entries that occur before the virtual table in the FROM clause and are 3126 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3127 ** mUnusable mask contains all FROM clause entries that occur after the 3128 ** virtual table and are separated from it by at least one LEFT or 3129 ** CROSS JOIN. 3130 ** 3131 ** For example, if the query were: 3132 ** 3133 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3134 ** 3135 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3136 ** 3137 ** All the tables in mPrereq must be scanned before the current virtual 3138 ** table. So any terms for which all prerequisites are satisfied by 3139 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3140 ** Conversely, all tables in mUnusable must be scanned after the current 3141 ** virtual table, so any terms for which the prerequisites overlap with 3142 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3143 */ 3144 static int whereLoopAddVirtual( 3145 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3146 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3147 Bitmask mUnusable /* Tables that must be scanned after this one */ 3148 ){ 3149 int rc = SQLITE_OK; /* Return code */ 3150 WhereInfo *pWInfo; /* WHERE analysis context */ 3151 Parse *pParse; /* The parsing context */ 3152 WhereClause *pWC; /* The WHERE clause */ 3153 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3154 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3155 int nConstraint; /* Number of constraints in p */ 3156 int bIn; /* True if plan uses IN(...) operator */ 3157 WhereLoop *pNew; 3158 Bitmask mBest; /* Tables used by best possible plan */ 3159 u16 mNoOmit; 3160 3161 assert( (mPrereq & mUnusable)==0 ); 3162 pWInfo = pBuilder->pWInfo; 3163 pParse = pWInfo->pParse; 3164 pWC = pBuilder->pWC; 3165 pNew = pBuilder->pNew; 3166 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3167 assert( IsVirtual(pSrc->pTab) ); 3168 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3169 &mNoOmit); 3170 if( p==0 ) return SQLITE_NOMEM_BKPT; 3171 pNew->rSetup = 0; 3172 pNew->wsFlags = WHERE_VIRTUALTABLE; 3173 pNew->nLTerm = 0; 3174 pNew->u.vtab.needFree = 0; 3175 nConstraint = p->nConstraint; 3176 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3177 sqlite3DbFree(pParse->db, p); 3178 return SQLITE_NOMEM_BKPT; 3179 } 3180 3181 /* First call xBestIndex() with all constraints usable. */ 3182 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3183 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3184 3185 /* If the call to xBestIndex() with all terms enabled produced a plan 3186 ** that does not require any source tables (IOW: a plan with mBest==0), 3187 ** then there is no point in making any further calls to xBestIndex() 3188 ** since they will all return the same result (if the xBestIndex() 3189 ** implementation is sane). */ 3190 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3191 int seenZero = 0; /* True if a plan with no prereqs seen */ 3192 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3193 Bitmask mPrev = 0; 3194 Bitmask mBestNoIn = 0; 3195 3196 /* If the plan produced by the earlier call uses an IN(...) term, call 3197 ** xBestIndex again, this time with IN(...) terms disabled. */ 3198 if( bIn ){ 3199 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3200 rc = whereLoopAddVirtualOne( 3201 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3202 assert( bIn==0 ); 3203 mBestNoIn = pNew->prereq & ~mPrereq; 3204 if( mBestNoIn==0 ){ 3205 seenZero = 1; 3206 seenZeroNoIN = 1; 3207 } 3208 } 3209 3210 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3211 ** in the set of terms that apply to the current virtual table. */ 3212 while( rc==SQLITE_OK ){ 3213 int i; 3214 Bitmask mNext = ALLBITS; 3215 assert( mNext>0 ); 3216 for(i=0; i<nConstraint; i++){ 3217 Bitmask mThis = ( 3218 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3219 ); 3220 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3221 } 3222 mPrev = mNext; 3223 if( mNext==ALLBITS ) break; 3224 if( mNext==mBest || mNext==mBestNoIn ) continue; 3225 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3226 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3227 rc = whereLoopAddVirtualOne( 3228 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3229 if( pNew->prereq==mPrereq ){ 3230 seenZero = 1; 3231 if( bIn==0 ) seenZeroNoIN = 1; 3232 } 3233 } 3234 3235 /* If the calls to xBestIndex() in the above loop did not find a plan 3236 ** that requires no source tables at all (i.e. one guaranteed to be 3237 ** usable), make a call here with all source tables disabled */ 3238 if( rc==SQLITE_OK && seenZero==0 ){ 3239 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3240 rc = whereLoopAddVirtualOne( 3241 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3242 if( bIn==0 ) seenZeroNoIN = 1; 3243 } 3244 3245 /* If the calls to xBestIndex() have so far failed to find a plan 3246 ** that requires no source tables at all and does not use an IN(...) 3247 ** operator, make a final call to obtain one here. */ 3248 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3249 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3250 rc = whereLoopAddVirtualOne( 3251 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3252 } 3253 } 3254 3255 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3256 sqlite3DbFree(pParse->db, p); 3257 return rc; 3258 } 3259 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3260 3261 /* 3262 ** Add WhereLoop entries to handle OR terms. This works for either 3263 ** btrees or virtual tables. 3264 */ 3265 static int whereLoopAddOr( 3266 WhereLoopBuilder *pBuilder, 3267 Bitmask mPrereq, 3268 Bitmask mUnusable 3269 ){ 3270 WhereInfo *pWInfo = pBuilder->pWInfo; 3271 WhereClause *pWC; 3272 WhereLoop *pNew; 3273 WhereTerm *pTerm, *pWCEnd; 3274 int rc = SQLITE_OK; 3275 int iCur; 3276 WhereClause tempWC; 3277 WhereLoopBuilder sSubBuild; 3278 WhereOrSet sSum, sCur; 3279 struct SrcList_item *pItem; 3280 3281 pWC = pBuilder->pWC; 3282 pWCEnd = pWC->a + pWC->nTerm; 3283 pNew = pBuilder->pNew; 3284 memset(&sSum, 0, sizeof(sSum)); 3285 pItem = pWInfo->pTabList->a + pNew->iTab; 3286 iCur = pItem->iCursor; 3287 3288 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3289 if( (pTerm->eOperator & WO_OR)!=0 3290 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3291 ){ 3292 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3293 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3294 WhereTerm *pOrTerm; 3295 int once = 1; 3296 int i, j; 3297 3298 sSubBuild = *pBuilder; 3299 sSubBuild.pOrderBy = 0; 3300 sSubBuild.pOrSet = &sCur; 3301 3302 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3303 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3304 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3305 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3306 }else if( pOrTerm->leftCursor==iCur ){ 3307 tempWC.pWInfo = pWC->pWInfo; 3308 tempWC.pOuter = pWC; 3309 tempWC.op = TK_AND; 3310 tempWC.nTerm = 1; 3311 tempWC.a = pOrTerm; 3312 sSubBuild.pWC = &tempWC; 3313 }else{ 3314 continue; 3315 } 3316 sCur.n = 0; 3317 #ifdef WHERETRACE_ENABLED 3318 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3319 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3320 if( sqlite3WhereTrace & 0x400 ){ 3321 sqlite3WhereClausePrint(sSubBuild.pWC); 3322 } 3323 #endif 3324 #ifndef SQLITE_OMIT_VIRTUALTABLE 3325 if( IsVirtual(pItem->pTab) ){ 3326 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3327 }else 3328 #endif 3329 { 3330 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3331 } 3332 if( rc==SQLITE_OK ){ 3333 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3334 } 3335 assert( rc==SQLITE_OK || sCur.n==0 ); 3336 if( sCur.n==0 ){ 3337 sSum.n = 0; 3338 break; 3339 }else if( once ){ 3340 whereOrMove(&sSum, &sCur); 3341 once = 0; 3342 }else{ 3343 WhereOrSet sPrev; 3344 whereOrMove(&sPrev, &sSum); 3345 sSum.n = 0; 3346 for(i=0; i<sPrev.n; i++){ 3347 for(j=0; j<sCur.n; j++){ 3348 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3349 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3350 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3351 } 3352 } 3353 } 3354 } 3355 pNew->nLTerm = 1; 3356 pNew->aLTerm[0] = pTerm; 3357 pNew->wsFlags = WHERE_MULTI_OR; 3358 pNew->rSetup = 0; 3359 pNew->iSortIdx = 0; 3360 memset(&pNew->u, 0, sizeof(pNew->u)); 3361 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3362 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3363 ** of all sub-scans required by the OR-scan. However, due to rounding 3364 ** errors, it may be that the cost of the OR-scan is equal to its 3365 ** most expensive sub-scan. Add the smallest possible penalty 3366 ** (equivalent to multiplying the cost by 1.07) to ensure that 3367 ** this does not happen. Otherwise, for WHERE clauses such as the 3368 ** following where there is an index on "y": 3369 ** 3370 ** WHERE likelihood(x=?, 0.99) OR y=? 3371 ** 3372 ** the planner may elect to "OR" together a full-table scan and an 3373 ** index lookup. And other similarly odd results. */ 3374 pNew->rRun = sSum.a[i].rRun + 1; 3375 pNew->nOut = sSum.a[i].nOut; 3376 pNew->prereq = sSum.a[i].prereq; 3377 rc = whereLoopInsert(pBuilder, pNew); 3378 } 3379 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3380 } 3381 } 3382 return rc; 3383 } 3384 3385 /* 3386 ** Add all WhereLoop objects for all tables 3387 */ 3388 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3389 WhereInfo *pWInfo = pBuilder->pWInfo; 3390 Bitmask mPrereq = 0; 3391 Bitmask mPrior = 0; 3392 int iTab; 3393 SrcList *pTabList = pWInfo->pTabList; 3394 struct SrcList_item *pItem; 3395 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3396 sqlite3 *db = pWInfo->pParse->db; 3397 int rc = SQLITE_OK; 3398 WhereLoop *pNew; 3399 u8 priorJointype = 0; 3400 3401 /* Loop over the tables in the join, from left to right */ 3402 pNew = pBuilder->pNew; 3403 whereLoopInit(pNew); 3404 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3405 Bitmask mUnusable = 0; 3406 pNew->iTab = iTab; 3407 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3408 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3409 /* This condition is true when pItem is the FROM clause term on the 3410 ** right-hand-side of a LEFT or CROSS JOIN. */ 3411 mPrereq = mPrior; 3412 } 3413 priorJointype = pItem->fg.jointype; 3414 #ifndef SQLITE_OMIT_VIRTUALTABLE 3415 if( IsVirtual(pItem->pTab) ){ 3416 struct SrcList_item *p; 3417 for(p=&pItem[1]; p<pEnd; p++){ 3418 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3419 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3420 } 3421 } 3422 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3423 }else 3424 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3425 { 3426 rc = whereLoopAddBtree(pBuilder, mPrereq); 3427 } 3428 if( rc==SQLITE_OK ){ 3429 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3430 } 3431 mPrior |= pNew->maskSelf; 3432 if( rc || db->mallocFailed ) break; 3433 } 3434 3435 whereLoopClear(db, pNew); 3436 return rc; 3437 } 3438 3439 /* 3440 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3441 ** parameters) to see if it outputs rows in the requested ORDER BY 3442 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3443 ** 3444 ** N>0: N terms of the ORDER BY clause are satisfied 3445 ** N==0: No terms of the ORDER BY clause are satisfied 3446 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3447 ** 3448 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3449 ** strict. With GROUP BY and DISTINCT the only requirement is that 3450 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3451 ** and DISTINCT do not require rows to appear in any particular order as long 3452 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3453 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3454 ** pOrderBy terms must be matched in strict left-to-right order. 3455 */ 3456 static i8 wherePathSatisfiesOrderBy( 3457 WhereInfo *pWInfo, /* The WHERE clause */ 3458 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3459 WherePath *pPath, /* The WherePath to check */ 3460 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3461 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3462 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3463 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3464 ){ 3465 u8 revSet; /* True if rev is known */ 3466 u8 rev; /* Composite sort order */ 3467 u8 revIdx; /* Index sort order */ 3468 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3469 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3470 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3471 u16 eqOpMask; /* Allowed equality operators */ 3472 u16 nKeyCol; /* Number of key columns in pIndex */ 3473 u16 nColumn; /* Total number of ordered columns in the index */ 3474 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3475 int iLoop; /* Index of WhereLoop in pPath being processed */ 3476 int i, j; /* Loop counters */ 3477 int iCur; /* Cursor number for current WhereLoop */ 3478 int iColumn; /* A column number within table iCur */ 3479 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3480 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3481 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3482 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3483 Index *pIndex; /* The index associated with pLoop */ 3484 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3485 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3486 Bitmask obDone; /* Mask of all ORDER BY terms */ 3487 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3488 Bitmask ready; /* Mask of inner loops */ 3489 3490 /* 3491 ** We say the WhereLoop is "one-row" if it generates no more than one 3492 ** row of output. A WhereLoop is one-row if all of the following are true: 3493 ** (a) All index columns match with WHERE_COLUMN_EQ. 3494 ** (b) The index is unique 3495 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3496 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3497 ** 3498 ** We say the WhereLoop is "order-distinct" if the set of columns from 3499 ** that WhereLoop that are in the ORDER BY clause are different for every 3500 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3501 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3502 ** is not order-distinct. To be order-distinct is not quite the same as being 3503 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3504 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3505 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3506 ** 3507 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3508 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3509 ** automatically order-distinct. 3510 */ 3511 3512 assert( pOrderBy!=0 ); 3513 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3514 3515 nOrderBy = pOrderBy->nExpr; 3516 testcase( nOrderBy==BMS-1 ); 3517 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3518 isOrderDistinct = 1; 3519 obDone = MASKBIT(nOrderBy)-1; 3520 orderDistinctMask = 0; 3521 ready = 0; 3522 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3523 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3524 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3525 if( iLoop>0 ) ready |= pLoop->maskSelf; 3526 if( iLoop<nLoop ){ 3527 pLoop = pPath->aLoop[iLoop]; 3528 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3529 }else{ 3530 pLoop = pLast; 3531 } 3532 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3533 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3534 break; 3535 } 3536 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3537 3538 /* Mark off any ORDER BY term X that is a column in the table of 3539 ** the current loop for which there is term in the WHERE 3540 ** clause of the form X IS NULL or X=? that reference only outer 3541 ** loops. 3542 */ 3543 for(i=0; i<nOrderBy; i++){ 3544 if( MASKBIT(i) & obSat ) continue; 3545 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3546 if( pOBExpr->op!=TK_COLUMN ) continue; 3547 if( pOBExpr->iTable!=iCur ) continue; 3548 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3549 ~ready, eqOpMask, 0); 3550 if( pTerm==0 ) continue; 3551 if( pTerm->eOperator==WO_IN ){ 3552 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3553 ** optimization, and then only if they are actually used 3554 ** by the query plan */ 3555 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3556 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3557 if( j>=pLoop->nLTerm ) continue; 3558 } 3559 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3560 const char *z1, *z2; 3561 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3562 if( !pColl ) pColl = db->pDfltColl; 3563 z1 = pColl->zName; 3564 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3565 if( !pColl ) pColl = db->pDfltColl; 3566 z2 = pColl->zName; 3567 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3568 testcase( pTerm->pExpr->op==TK_IS ); 3569 } 3570 obSat |= MASKBIT(i); 3571 } 3572 3573 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3574 if( pLoop->wsFlags & WHERE_IPK ){ 3575 pIndex = 0; 3576 nKeyCol = 0; 3577 nColumn = 1; 3578 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3579 return 0; 3580 }else{ 3581 nKeyCol = pIndex->nKeyCol; 3582 nColumn = pIndex->nColumn; 3583 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3584 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3585 || !HasRowid(pIndex->pTable)); 3586 isOrderDistinct = IsUniqueIndex(pIndex); 3587 } 3588 3589 /* Loop through all columns of the index and deal with the ones 3590 ** that are not constrained by == or IN. 3591 */ 3592 rev = revSet = 0; 3593 distinctColumns = 0; 3594 for(j=0; j<nColumn; j++){ 3595 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3596 3597 assert( j>=pLoop->u.btree.nEq 3598 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3599 ); 3600 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3601 u16 eOp = pLoop->aLTerm[j]->eOperator; 3602 3603 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3604 ** doing WHERE_ORDERBY_LIMIT processing). 3605 ** 3606 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3607 ** expression for which the SELECT returns more than one column, 3608 ** check that it is the only column used by this loop. Otherwise, 3609 ** if it is one of two or more, none of the columns can be 3610 ** considered to match an ORDER BY term. */ 3611 if( (eOp & eqOpMask)!=0 ){ 3612 if( eOp & WO_ISNULL ){ 3613 testcase( isOrderDistinct ); 3614 isOrderDistinct = 0; 3615 } 3616 continue; 3617 }else if( ALWAYS(eOp & WO_IN) ){ 3618 /* ALWAYS() justification: eOp is an equality operator due to the 3619 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3620 ** than WO_IN is captured by the previous "if". So this one 3621 ** always has to be WO_IN. */ 3622 Expr *pX = pLoop->aLTerm[j]->pExpr; 3623 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3624 if( pLoop->aLTerm[i]->pExpr==pX ){ 3625 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3626 bOnce = 0; 3627 break; 3628 } 3629 } 3630 } 3631 } 3632 3633 /* Get the column number in the table (iColumn) and sort order 3634 ** (revIdx) for the j-th column of the index. 3635 */ 3636 if( pIndex ){ 3637 iColumn = pIndex->aiColumn[j]; 3638 revIdx = pIndex->aSortOrder[j]; 3639 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3640 }else{ 3641 iColumn = XN_ROWID; 3642 revIdx = 0; 3643 } 3644 3645 /* An unconstrained column that might be NULL means that this 3646 ** WhereLoop is not well-ordered 3647 */ 3648 if( isOrderDistinct 3649 && iColumn>=0 3650 && j>=pLoop->u.btree.nEq 3651 && pIndex->pTable->aCol[iColumn].notNull==0 3652 ){ 3653 isOrderDistinct = 0; 3654 } 3655 3656 /* Find the ORDER BY term that corresponds to the j-th column 3657 ** of the index and mark that ORDER BY term off 3658 */ 3659 isMatch = 0; 3660 for(i=0; bOnce && i<nOrderBy; i++){ 3661 if( MASKBIT(i) & obSat ) continue; 3662 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3663 testcase( wctrlFlags & WHERE_GROUPBY ); 3664 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3665 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3666 if( iColumn>=(-1) ){ 3667 if( pOBExpr->op!=TK_COLUMN ) continue; 3668 if( pOBExpr->iTable!=iCur ) continue; 3669 if( pOBExpr->iColumn!=iColumn ) continue; 3670 }else{ 3671 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3672 continue; 3673 } 3674 } 3675 if( iColumn>=0 ){ 3676 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3677 if( !pColl ) pColl = db->pDfltColl; 3678 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3679 } 3680 isMatch = 1; 3681 break; 3682 } 3683 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3684 /* Make sure the sort order is compatible in an ORDER BY clause. 3685 ** Sort order is irrelevant for a GROUP BY clause. */ 3686 if( revSet ){ 3687 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3688 }else{ 3689 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3690 if( rev ) *pRevMask |= MASKBIT(iLoop); 3691 revSet = 1; 3692 } 3693 } 3694 if( isMatch ){ 3695 if( iColumn==XN_ROWID ){ 3696 testcase( distinctColumns==0 ); 3697 distinctColumns = 1; 3698 } 3699 obSat |= MASKBIT(i); 3700 }else{ 3701 /* No match found */ 3702 if( j==0 || j<nKeyCol ){ 3703 testcase( isOrderDistinct!=0 ); 3704 isOrderDistinct = 0; 3705 } 3706 break; 3707 } 3708 } /* end Loop over all index columns */ 3709 if( distinctColumns ){ 3710 testcase( isOrderDistinct==0 ); 3711 isOrderDistinct = 1; 3712 } 3713 } /* end-if not one-row */ 3714 3715 /* Mark off any other ORDER BY terms that reference pLoop */ 3716 if( isOrderDistinct ){ 3717 orderDistinctMask |= pLoop->maskSelf; 3718 for(i=0; i<nOrderBy; i++){ 3719 Expr *p; 3720 Bitmask mTerm; 3721 if( MASKBIT(i) & obSat ) continue; 3722 p = pOrderBy->a[i].pExpr; 3723 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3724 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3725 if( (mTerm&~orderDistinctMask)==0 ){ 3726 obSat |= MASKBIT(i); 3727 } 3728 } 3729 } 3730 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3731 if( obSat==obDone ) return (i8)nOrderBy; 3732 if( !isOrderDistinct ){ 3733 for(i=nOrderBy-1; i>0; i--){ 3734 Bitmask m = MASKBIT(i) - 1; 3735 if( (obSat&m)==m ) return i; 3736 } 3737 return 0; 3738 } 3739 return -1; 3740 } 3741 3742 3743 /* 3744 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3745 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3746 ** BY clause - and so any order that groups rows as required satisfies the 3747 ** request. 3748 ** 3749 ** Normally, in this case it is not possible for the caller to determine 3750 ** whether or not the rows are really being delivered in sorted order, or 3751 ** just in some other order that provides the required grouping. However, 3752 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3753 ** this function may be called on the returned WhereInfo object. It returns 3754 ** true if the rows really will be sorted in the specified order, or false 3755 ** otherwise. 3756 ** 3757 ** For example, assuming: 3758 ** 3759 ** CREATE INDEX i1 ON t1(x, Y); 3760 ** 3761 ** then 3762 ** 3763 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3764 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3765 */ 3766 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3767 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3768 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3769 return pWInfo->sorted; 3770 } 3771 3772 #ifdef WHERETRACE_ENABLED 3773 /* For debugging use only: */ 3774 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3775 static char zName[65]; 3776 int i; 3777 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3778 if( pLast ) zName[i++] = pLast->cId; 3779 zName[i] = 0; 3780 return zName; 3781 } 3782 #endif 3783 3784 /* 3785 ** Return the cost of sorting nRow rows, assuming that the keys have 3786 ** nOrderby columns and that the first nSorted columns are already in 3787 ** order. 3788 */ 3789 static LogEst whereSortingCost( 3790 WhereInfo *pWInfo, 3791 LogEst nRow, 3792 int nOrderBy, 3793 int nSorted 3794 ){ 3795 /* TUNING: Estimated cost of a full external sort, where N is 3796 ** the number of rows to sort is: 3797 ** 3798 ** cost = (3.0 * N * log(N)). 3799 ** 3800 ** Or, if the order-by clause has X terms but only the last Y 3801 ** terms are out of order, then block-sorting will reduce the 3802 ** sorting cost to: 3803 ** 3804 ** cost = (3.0 * N * log(N)) * (Y/X) 3805 ** 3806 ** The (Y/X) term is implemented using stack variable rScale 3807 ** below. */ 3808 LogEst rScale, rSortCost; 3809 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3810 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3811 rSortCost = nRow + rScale + 16; 3812 3813 /* Multiple by log(M) where M is the number of output rows. 3814 ** Use the LIMIT for M if it is smaller */ 3815 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3816 nRow = pWInfo->iLimit; 3817 } 3818 rSortCost += estLog(nRow); 3819 return rSortCost; 3820 } 3821 3822 /* 3823 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3824 ** attempts to find the lowest cost path that visits each WhereLoop 3825 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3826 ** 3827 ** Assume that the total number of output rows that will need to be sorted 3828 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3829 ** costs if nRowEst==0. 3830 ** 3831 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3832 ** error occurs. 3833 */ 3834 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3835 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3836 int nLoop; /* Number of terms in the join */ 3837 Parse *pParse; /* Parsing context */ 3838 sqlite3 *db; /* The database connection */ 3839 int iLoop; /* Loop counter over the terms of the join */ 3840 int ii, jj; /* Loop counters */ 3841 int mxI = 0; /* Index of next entry to replace */ 3842 int nOrderBy; /* Number of ORDER BY clause terms */ 3843 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3844 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3845 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3846 WherePath *aFrom; /* All nFrom paths at the previous level */ 3847 WherePath *aTo; /* The nTo best paths at the current level */ 3848 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3849 WherePath *pTo; /* An element of aTo[] that we are working on */ 3850 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3851 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3852 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3853 char *pSpace; /* Temporary memory used by this routine */ 3854 int nSpace; /* Bytes of space allocated at pSpace */ 3855 3856 pParse = pWInfo->pParse; 3857 db = pParse->db; 3858 nLoop = pWInfo->nLevel; 3859 /* TUNING: For simple queries, only the best path is tracked. 3860 ** For 2-way joins, the 5 best paths are followed. 3861 ** For joins of 3 or more tables, track the 10 best paths */ 3862 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3863 assert( nLoop<=pWInfo->pTabList->nSrc ); 3864 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3865 3866 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3867 ** case the purpose of this call is to estimate the number of rows returned 3868 ** by the overall query. Once this estimate has been obtained, the caller 3869 ** will invoke this function a second time, passing the estimate as the 3870 ** nRowEst parameter. */ 3871 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3872 nOrderBy = 0; 3873 }else{ 3874 nOrderBy = pWInfo->pOrderBy->nExpr; 3875 } 3876 3877 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3878 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3879 nSpace += sizeof(LogEst) * nOrderBy; 3880 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3881 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3882 aTo = (WherePath*)pSpace; 3883 aFrom = aTo+mxChoice; 3884 memset(aFrom, 0, sizeof(aFrom[0])); 3885 pX = (WhereLoop**)(aFrom+mxChoice); 3886 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3887 pFrom->aLoop = pX; 3888 } 3889 if( nOrderBy ){ 3890 /* If there is an ORDER BY clause and it is not being ignored, set up 3891 ** space for the aSortCost[] array. Each element of the aSortCost array 3892 ** is either zero - meaning it has not yet been initialized - or the 3893 ** cost of sorting nRowEst rows of data where the first X terms of 3894 ** the ORDER BY clause are already in order, where X is the array 3895 ** index. */ 3896 aSortCost = (LogEst*)pX; 3897 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3898 } 3899 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3900 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3901 3902 /* Seed the search with a single WherePath containing zero WhereLoops. 3903 ** 3904 ** TUNING: Do not let the number of iterations go above 28. If the cost 3905 ** of computing an automatic index is not paid back within the first 28 3906 ** rows, then do not use the automatic index. */ 3907 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3908 nFrom = 1; 3909 assert( aFrom[0].isOrdered==0 ); 3910 if( nOrderBy ){ 3911 /* If nLoop is zero, then there are no FROM terms in the query. Since 3912 ** in this case the query may return a maximum of one row, the results 3913 ** are already in the requested order. Set isOrdered to nOrderBy to 3914 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3915 ** -1, indicating that the result set may or may not be ordered, 3916 ** depending on the loops added to the current plan. */ 3917 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3918 } 3919 3920 /* Compute successively longer WherePaths using the previous generation 3921 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3922 ** best paths at each generation */ 3923 for(iLoop=0; iLoop<nLoop; iLoop++){ 3924 nTo = 0; 3925 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3926 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3927 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3928 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3929 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3930 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3931 Bitmask maskNew; /* Mask of src visited by (..) */ 3932 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3933 3934 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3935 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3936 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ 3937 /* Do not use an automatic index if the this loop is expected 3938 ** to run less than 2 times. */ 3939 assert( 10==sqlite3LogEst(2) ); 3940 continue; 3941 } 3942 /* At this point, pWLoop is a candidate to be the next loop. 3943 ** Compute its cost */ 3944 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3945 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3946 nOut = pFrom->nRow + pWLoop->nOut; 3947 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3948 if( isOrdered<0 ){ 3949 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3950 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3951 iLoop, pWLoop, &revMask); 3952 }else{ 3953 revMask = pFrom->revLoop; 3954 } 3955 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3956 if( aSortCost[isOrdered]==0 ){ 3957 aSortCost[isOrdered] = whereSortingCost( 3958 pWInfo, nRowEst, nOrderBy, isOrdered 3959 ); 3960 } 3961 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3962 3963 WHERETRACE(0x002, 3964 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3965 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3966 rUnsorted, rCost)); 3967 }else{ 3968 rCost = rUnsorted; 3969 } 3970 3971 /* Check to see if pWLoop should be added to the set of 3972 ** mxChoice best-so-far paths. 3973 ** 3974 ** First look for an existing path among best-so-far paths 3975 ** that covers the same set of loops and has the same isOrdered 3976 ** setting as the current path candidate. 3977 ** 3978 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3979 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3980 ** of legal values for isOrdered, -1..64. 3981 */ 3982 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3983 if( pTo->maskLoop==maskNew 3984 && ((pTo->isOrdered^isOrdered)&0x80)==0 3985 ){ 3986 testcase( jj==nTo-1 ); 3987 break; 3988 } 3989 } 3990 if( jj>=nTo ){ 3991 /* None of the existing best-so-far paths match the candidate. */ 3992 if( nTo>=mxChoice 3993 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3994 ){ 3995 /* The current candidate is no better than any of the mxChoice 3996 ** paths currently in the best-so-far buffer. So discard 3997 ** this candidate as not viable. */ 3998 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3999 if( sqlite3WhereTrace&0x4 ){ 4000 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 4001 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4002 isOrdered>=0 ? isOrdered+'0' : '?'); 4003 } 4004 #endif 4005 continue; 4006 } 4007 /* If we reach this points it means that the new candidate path 4008 ** needs to be added to the set of best-so-far paths. */ 4009 if( nTo<mxChoice ){ 4010 /* Increase the size of the aTo set by one */ 4011 jj = nTo++; 4012 }else{ 4013 /* New path replaces the prior worst to keep count below mxChoice */ 4014 jj = mxI; 4015 } 4016 pTo = &aTo[jj]; 4017 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4018 if( sqlite3WhereTrace&0x4 ){ 4019 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 4020 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4021 isOrdered>=0 ? isOrdered+'0' : '?'); 4022 } 4023 #endif 4024 }else{ 4025 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4026 ** same set of loops and has the sam isOrdered setting as the 4027 ** candidate path. Check to see if the candidate should replace 4028 ** pTo or if the candidate should be skipped */ 4029 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 4030 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4031 if( sqlite3WhereTrace&0x4 ){ 4032 sqlite3DebugPrintf( 4033 "Skip %s cost=%-3d,%3d order=%c", 4034 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4035 isOrdered>=0 ? isOrdered+'0' : '?'); 4036 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 4037 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4038 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4039 } 4040 #endif 4041 /* Discard the candidate path from further consideration */ 4042 testcase( pTo->rCost==rCost ); 4043 continue; 4044 } 4045 testcase( pTo->rCost==rCost+1 ); 4046 /* Control reaches here if the candidate path is better than the 4047 ** pTo path. Replace pTo with the candidate. */ 4048 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4049 if( sqlite3WhereTrace&0x4 ){ 4050 sqlite3DebugPrintf( 4051 "Update %s cost=%-3d,%3d order=%c", 4052 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4053 isOrdered>=0 ? isOrdered+'0' : '?'); 4054 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 4055 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4056 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4057 } 4058 #endif 4059 } 4060 /* pWLoop is a winner. Add it to the set of best so far */ 4061 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4062 pTo->revLoop = revMask; 4063 pTo->nRow = nOut; 4064 pTo->rCost = rCost; 4065 pTo->rUnsorted = rUnsorted; 4066 pTo->isOrdered = isOrdered; 4067 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4068 pTo->aLoop[iLoop] = pWLoop; 4069 if( nTo>=mxChoice ){ 4070 mxI = 0; 4071 mxCost = aTo[0].rCost; 4072 mxUnsorted = aTo[0].nRow; 4073 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4074 if( pTo->rCost>mxCost 4075 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4076 ){ 4077 mxCost = pTo->rCost; 4078 mxUnsorted = pTo->rUnsorted; 4079 mxI = jj; 4080 } 4081 } 4082 } 4083 } 4084 } 4085 4086 #ifdef WHERETRACE_ENABLED /* >=2 */ 4087 if( sqlite3WhereTrace & 0x02 ){ 4088 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4089 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4090 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4091 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4092 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4093 if( pTo->isOrdered>0 ){ 4094 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4095 }else{ 4096 sqlite3DebugPrintf("\n"); 4097 } 4098 } 4099 } 4100 #endif 4101 4102 /* Swap the roles of aFrom and aTo for the next generation */ 4103 pFrom = aTo; 4104 aTo = aFrom; 4105 aFrom = pFrom; 4106 nFrom = nTo; 4107 } 4108 4109 if( nFrom==0 ){ 4110 sqlite3ErrorMsg(pParse, "no query solution"); 4111 sqlite3DbFree(db, pSpace); 4112 return SQLITE_ERROR; 4113 } 4114 4115 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4116 pFrom = aFrom; 4117 for(ii=1; ii<nFrom; ii++){ 4118 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4119 } 4120 assert( pWInfo->nLevel==nLoop ); 4121 /* Load the lowest cost path into pWInfo */ 4122 for(iLoop=0; iLoop<nLoop; iLoop++){ 4123 WhereLevel *pLevel = pWInfo->a + iLoop; 4124 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4125 pLevel->iFrom = pWLoop->iTab; 4126 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4127 } 4128 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4129 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4130 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4131 && nRowEst 4132 ){ 4133 Bitmask notUsed; 4134 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4135 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4136 if( rc==pWInfo->pResultSet->nExpr ){ 4137 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4138 } 4139 } 4140 if( pWInfo->pOrderBy ){ 4141 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4142 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4143 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4144 } 4145 }else{ 4146 pWInfo->nOBSat = pFrom->isOrdered; 4147 pWInfo->revMask = pFrom->revLoop; 4148 if( pWInfo->nOBSat<=0 ){ 4149 pWInfo->nOBSat = 0; 4150 if( nLoop>0 ){ 4151 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4152 if( (wsFlags & WHERE_ONEROW)==0 4153 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4154 ){ 4155 Bitmask m = 0; 4156 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4157 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4158 testcase( wsFlags & WHERE_IPK ); 4159 testcase( wsFlags & WHERE_COLUMN_IN ); 4160 if( rc==pWInfo->pOrderBy->nExpr ){ 4161 pWInfo->bOrderedInnerLoop = 1; 4162 pWInfo->revMask = m; 4163 } 4164 } 4165 } 4166 } 4167 } 4168 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4169 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4170 ){ 4171 Bitmask revMask = 0; 4172 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4173 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4174 ); 4175 assert( pWInfo->sorted==0 ); 4176 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4177 pWInfo->sorted = 1; 4178 pWInfo->revMask = revMask; 4179 } 4180 } 4181 } 4182 4183 4184 pWInfo->nRowOut = pFrom->nRow; 4185 4186 /* Free temporary memory and return success */ 4187 sqlite3DbFree(db, pSpace); 4188 return SQLITE_OK; 4189 } 4190 4191 /* 4192 ** Most queries use only a single table (they are not joins) and have 4193 ** simple == constraints against indexed fields. This routine attempts 4194 ** to plan those simple cases using much less ceremony than the 4195 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4196 ** times for the common case. 4197 ** 4198 ** Return non-zero on success, if this query can be handled by this 4199 ** no-frills query planner. Return zero if this query needs the 4200 ** general-purpose query planner. 4201 */ 4202 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4203 WhereInfo *pWInfo; 4204 struct SrcList_item *pItem; 4205 WhereClause *pWC; 4206 WhereTerm *pTerm; 4207 WhereLoop *pLoop; 4208 int iCur; 4209 int j; 4210 Table *pTab; 4211 Index *pIdx; 4212 4213 pWInfo = pBuilder->pWInfo; 4214 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4215 assert( pWInfo->pTabList->nSrc>=1 ); 4216 pItem = pWInfo->pTabList->a; 4217 pTab = pItem->pTab; 4218 if( IsVirtual(pTab) ) return 0; 4219 if( pItem->fg.isIndexedBy ) return 0; 4220 iCur = pItem->iCursor; 4221 pWC = &pWInfo->sWC; 4222 pLoop = pBuilder->pNew; 4223 pLoop->wsFlags = 0; 4224 pLoop->nSkip = 0; 4225 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4226 if( pTerm ){ 4227 testcase( pTerm->eOperator & WO_IS ); 4228 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4229 pLoop->aLTerm[0] = pTerm; 4230 pLoop->nLTerm = 1; 4231 pLoop->u.btree.nEq = 1; 4232 /* TUNING: Cost of a rowid lookup is 10 */ 4233 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4234 }else{ 4235 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4236 int opMask; 4237 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4238 if( !IsUniqueIndex(pIdx) 4239 || pIdx->pPartIdxWhere!=0 4240 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4241 ) continue; 4242 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4243 for(j=0; j<pIdx->nKeyCol; j++){ 4244 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4245 if( pTerm==0 ) break; 4246 testcase( pTerm->eOperator & WO_IS ); 4247 pLoop->aLTerm[j] = pTerm; 4248 } 4249 if( j!=pIdx->nKeyCol ) continue; 4250 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4251 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 4252 pLoop->wsFlags |= WHERE_IDX_ONLY; 4253 } 4254 pLoop->nLTerm = j; 4255 pLoop->u.btree.nEq = j; 4256 pLoop->u.btree.pIndex = pIdx; 4257 /* TUNING: Cost of a unique index lookup is 15 */ 4258 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4259 break; 4260 } 4261 } 4262 if( pLoop->wsFlags ){ 4263 pLoop->nOut = (LogEst)1; 4264 pWInfo->a[0].pWLoop = pLoop; 4265 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 4266 pWInfo->a[0].iTabCur = iCur; 4267 pWInfo->nRowOut = 1; 4268 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4269 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4270 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4271 } 4272 #ifdef SQLITE_DEBUG 4273 pLoop->cId = '0'; 4274 #endif 4275 return 1; 4276 } 4277 return 0; 4278 } 4279 4280 /* 4281 ** Generate the beginning of the loop used for WHERE clause processing. 4282 ** The return value is a pointer to an opaque structure that contains 4283 ** information needed to terminate the loop. Later, the calling routine 4284 ** should invoke sqlite3WhereEnd() with the return value of this function 4285 ** in order to complete the WHERE clause processing. 4286 ** 4287 ** If an error occurs, this routine returns NULL. 4288 ** 4289 ** The basic idea is to do a nested loop, one loop for each table in 4290 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4291 ** same as a SELECT with only a single table in the FROM clause.) For 4292 ** example, if the SQL is this: 4293 ** 4294 ** SELECT * FROM t1, t2, t3 WHERE ...; 4295 ** 4296 ** Then the code generated is conceptually like the following: 4297 ** 4298 ** foreach row1 in t1 do \ Code generated 4299 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4300 ** foreach row3 in t3 do / 4301 ** ... 4302 ** end \ Code generated 4303 ** end |-- by sqlite3WhereEnd() 4304 ** end / 4305 ** 4306 ** Note that the loops might not be nested in the order in which they 4307 ** appear in the FROM clause if a different order is better able to make 4308 ** use of indices. Note also that when the IN operator appears in 4309 ** the WHERE clause, it might result in additional nested loops for 4310 ** scanning through all values on the right-hand side of the IN. 4311 ** 4312 ** There are Btree cursors associated with each table. t1 uses cursor 4313 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4314 ** And so forth. This routine generates code to open those VDBE cursors 4315 ** and sqlite3WhereEnd() generates the code to close them. 4316 ** 4317 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4318 ** in pTabList pointing at their appropriate entries. The [...] code 4319 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4320 ** data from the various tables of the loop. 4321 ** 4322 ** If the WHERE clause is empty, the foreach loops must each scan their 4323 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4324 ** the tables have indices and there are terms in the WHERE clause that 4325 ** refer to those indices, a complete table scan can be avoided and the 4326 ** code will run much faster. Most of the work of this routine is checking 4327 ** to see if there are indices that can be used to speed up the loop. 4328 ** 4329 ** Terms of the WHERE clause are also used to limit which rows actually 4330 ** make it to the "..." in the middle of the loop. After each "foreach", 4331 ** terms of the WHERE clause that use only terms in that loop and outer 4332 ** loops are evaluated and if false a jump is made around all subsequent 4333 ** inner loops (or around the "..." if the test occurs within the inner- 4334 ** most loop) 4335 ** 4336 ** OUTER JOINS 4337 ** 4338 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4339 ** 4340 ** foreach row1 in t1 do 4341 ** flag = 0 4342 ** foreach row2 in t2 do 4343 ** start: 4344 ** ... 4345 ** flag = 1 4346 ** end 4347 ** if flag==0 then 4348 ** move the row2 cursor to a null row 4349 ** goto start 4350 ** fi 4351 ** end 4352 ** 4353 ** ORDER BY CLAUSE PROCESSING 4354 ** 4355 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4356 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4357 ** if there is one. If there is no ORDER BY clause or if this routine 4358 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4359 ** 4360 ** The iIdxCur parameter is the cursor number of an index. If 4361 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4362 ** to use for OR clause processing. The WHERE clause should use this 4363 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4364 ** the first cursor in an array of cursors for all indices. iIdxCur should 4365 ** be used to compute the appropriate cursor depending on which index is 4366 ** used. 4367 */ 4368 WhereInfo *sqlite3WhereBegin( 4369 Parse *pParse, /* The parser context */ 4370 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4371 Expr *pWhere, /* The WHERE clause */ 4372 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4373 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4374 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4375 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4376 ** If WHERE_USE_LIMIT, then the limit amount */ 4377 ){ 4378 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4379 int nTabList; /* Number of elements in pTabList */ 4380 WhereInfo *pWInfo; /* Will become the return value of this function */ 4381 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4382 Bitmask notReady; /* Cursors that are not yet positioned */ 4383 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4384 WhereMaskSet *pMaskSet; /* The expression mask set */ 4385 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4386 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4387 int ii; /* Loop counter */ 4388 sqlite3 *db; /* Database connection */ 4389 int rc; /* Return code */ 4390 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4391 4392 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4393 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4394 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4395 )); 4396 4397 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4398 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4399 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4400 4401 /* Variable initialization */ 4402 db = pParse->db; 4403 memset(&sWLB, 0, sizeof(sWLB)); 4404 4405 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4406 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4407 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4408 sWLB.pOrderBy = pOrderBy; 4409 4410 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4411 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4412 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4413 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4414 } 4415 4416 /* The number of tables in the FROM clause is limited by the number of 4417 ** bits in a Bitmask 4418 */ 4419 testcase( pTabList->nSrc==BMS ); 4420 if( pTabList->nSrc>BMS ){ 4421 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4422 return 0; 4423 } 4424 4425 /* This function normally generates a nested loop for all tables in 4426 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4427 ** only generate code for the first table in pTabList and assume that 4428 ** any cursors associated with subsequent tables are uninitialized. 4429 */ 4430 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4431 4432 /* Allocate and initialize the WhereInfo structure that will become the 4433 ** return value. A single allocation is used to store the WhereInfo 4434 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4435 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4436 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4437 ** some architectures. Hence the ROUND8() below. 4438 */ 4439 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4440 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4441 if( db->mallocFailed ){ 4442 sqlite3DbFree(db, pWInfo); 4443 pWInfo = 0; 4444 goto whereBeginError; 4445 } 4446 pWInfo->pParse = pParse; 4447 pWInfo->pTabList = pTabList; 4448 pWInfo->pOrderBy = pOrderBy; 4449 pWInfo->pResultSet = pResultSet; 4450 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4451 pWInfo->nLevel = nTabList; 4452 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4453 pWInfo->wctrlFlags = wctrlFlags; 4454 pWInfo->iLimit = iAuxArg; 4455 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4456 memset(&pWInfo->nOBSat, 0, 4457 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4458 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4459 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4460 pMaskSet = &pWInfo->sMaskSet; 4461 sWLB.pWInfo = pWInfo; 4462 sWLB.pWC = &pWInfo->sWC; 4463 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4464 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4465 whereLoopInit(sWLB.pNew); 4466 #ifdef SQLITE_DEBUG 4467 sWLB.pNew->cId = '*'; 4468 #endif 4469 4470 /* Split the WHERE clause into separate subexpressions where each 4471 ** subexpression is separated by an AND operator. 4472 */ 4473 initMaskSet(pMaskSet); 4474 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4475 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4476 4477 /* Special case: a WHERE clause that is constant. Evaluate the 4478 ** expression and either jump over all of the code or fall thru. 4479 */ 4480 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4481 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4482 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4483 SQLITE_JUMPIFNULL); 4484 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4485 } 4486 } 4487 4488 /* Special case: No FROM clause 4489 */ 4490 if( nTabList==0 ){ 4491 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4492 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4493 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4494 } 4495 } 4496 4497 /* Assign a bit from the bitmask to every term in the FROM clause. 4498 ** 4499 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4500 ** 4501 ** The rule of the previous sentence ensures thta if X is the bitmask for 4502 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4503 ** Knowing the bitmask for all tables to the left of a left join is 4504 ** important. Ticket #3015. 4505 ** 4506 ** Note that bitmasks are created for all pTabList->nSrc tables in 4507 ** pTabList, not just the first nTabList tables. nTabList is normally 4508 ** equal to pTabList->nSrc but might be shortened to 1 if the 4509 ** WHERE_OR_SUBCLAUSE flag is set. 4510 */ 4511 for(ii=0; ii<pTabList->nSrc; ii++){ 4512 createMask(pMaskSet, pTabList->a[ii].iCursor); 4513 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4514 } 4515 #ifdef SQLITE_DEBUG 4516 for(ii=0; ii<pTabList->nSrc; ii++){ 4517 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4518 assert( m==MASKBIT(ii) ); 4519 } 4520 #endif 4521 4522 /* Analyze all of the subexpressions. */ 4523 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4524 if( db->mallocFailed ) goto whereBeginError; 4525 4526 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4527 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4528 /* The DISTINCT marking is pointless. Ignore it. */ 4529 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4530 }else if( pOrderBy==0 ){ 4531 /* Try to ORDER BY the result set to make distinct processing easier */ 4532 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4533 pWInfo->pOrderBy = pResultSet; 4534 } 4535 } 4536 4537 /* Construct the WhereLoop objects */ 4538 #if defined(WHERETRACE_ENABLED) 4539 if( sqlite3WhereTrace & 0xffff ){ 4540 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4541 if( wctrlFlags & WHERE_USE_LIMIT ){ 4542 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4543 } 4544 sqlite3DebugPrintf(")\n"); 4545 } 4546 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4547 sqlite3WhereClausePrint(sWLB.pWC); 4548 } 4549 #endif 4550 4551 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4552 rc = whereLoopAddAll(&sWLB); 4553 if( rc ) goto whereBeginError; 4554 4555 #ifdef WHERETRACE_ENABLED 4556 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4557 WhereLoop *p; 4558 int i; 4559 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4560 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4561 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4562 p->cId = zLabel[i%sizeof(zLabel)]; 4563 whereLoopPrint(p, sWLB.pWC); 4564 } 4565 } 4566 #endif 4567 4568 wherePathSolver(pWInfo, 0); 4569 if( db->mallocFailed ) goto whereBeginError; 4570 if( pWInfo->pOrderBy ){ 4571 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4572 if( db->mallocFailed ) goto whereBeginError; 4573 } 4574 } 4575 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4576 pWInfo->revMask = ALLBITS; 4577 } 4578 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4579 goto whereBeginError; 4580 } 4581 #ifdef WHERETRACE_ENABLED 4582 if( sqlite3WhereTrace ){ 4583 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4584 if( pWInfo->nOBSat>0 ){ 4585 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4586 } 4587 switch( pWInfo->eDistinct ){ 4588 case WHERE_DISTINCT_UNIQUE: { 4589 sqlite3DebugPrintf(" DISTINCT=unique"); 4590 break; 4591 } 4592 case WHERE_DISTINCT_ORDERED: { 4593 sqlite3DebugPrintf(" DISTINCT=ordered"); 4594 break; 4595 } 4596 case WHERE_DISTINCT_UNORDERED: { 4597 sqlite3DebugPrintf(" DISTINCT=unordered"); 4598 break; 4599 } 4600 } 4601 sqlite3DebugPrintf("\n"); 4602 for(ii=0; ii<pWInfo->nLevel; ii++){ 4603 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4604 } 4605 } 4606 #endif 4607 /* Attempt to omit tables from the join that do not effect the result */ 4608 if( pWInfo->nLevel>=2 4609 && pResultSet!=0 4610 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4611 ){ 4612 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4613 if( sWLB.pOrderBy ){ 4614 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4615 } 4616 while( pWInfo->nLevel>=2 ){ 4617 WhereTerm *pTerm, *pEnd; 4618 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4619 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4620 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4621 && (pLoop->wsFlags & WHERE_ONEROW)==0 4622 ){ 4623 break; 4624 } 4625 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4626 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4627 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4628 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4629 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4630 ){ 4631 break; 4632 } 4633 } 4634 if( pTerm<pEnd ) break; 4635 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4636 pWInfo->nLevel--; 4637 nTabList--; 4638 } 4639 } 4640 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4641 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4642 4643 /* If the caller is an UPDATE or DELETE statement that is requesting 4644 ** to use a one-pass algorithm, determine if this is appropriate. 4645 */ 4646 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4647 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4648 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4649 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4650 if( bOnerow 4651 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4652 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4653 ){ 4654 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4655 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4656 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4657 bFordelete = OPFLAG_FORDELETE; 4658 } 4659 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4660 } 4661 } 4662 } 4663 4664 /* Open all tables in the pTabList and any indices selected for 4665 ** searching those tables. 4666 */ 4667 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4668 Table *pTab; /* Table to open */ 4669 int iDb; /* Index of database containing table/index */ 4670 struct SrcList_item *pTabItem; 4671 4672 pTabItem = &pTabList->a[pLevel->iFrom]; 4673 pTab = pTabItem->pTab; 4674 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4675 pLoop = pLevel->pWLoop; 4676 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4677 /* Do nothing */ 4678 }else 4679 #ifndef SQLITE_OMIT_VIRTUALTABLE 4680 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4681 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4682 int iCur = pTabItem->iCursor; 4683 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4684 }else if( IsVirtual(pTab) ){ 4685 /* noop */ 4686 }else 4687 #endif 4688 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4689 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4690 int op = OP_OpenRead; 4691 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4692 op = OP_OpenWrite; 4693 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4694 }; 4695 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4696 assert( pTabItem->iCursor==pLevel->iTabCur ); 4697 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4698 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4699 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4700 Bitmask b = pTabItem->colUsed; 4701 int n = 0; 4702 for(; b; b=b>>1, n++){} 4703 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4704 assert( n<=pTab->nCol ); 4705 } 4706 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4707 if( pLoop->u.btree.pIndex!=0 ){ 4708 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4709 }else 4710 #endif 4711 { 4712 sqlite3VdbeChangeP5(v, bFordelete); 4713 } 4714 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4715 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4716 (const u8*)&pTabItem->colUsed, P4_INT64); 4717 #endif 4718 }else{ 4719 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4720 } 4721 if( pLoop->wsFlags & WHERE_INDEXED ){ 4722 Index *pIx = pLoop->u.btree.pIndex; 4723 int iIndexCur; 4724 int op = OP_OpenRead; 4725 /* iAuxArg is always set if to a positive value if ONEPASS is possible */ 4726 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4727 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4728 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 4729 ){ 4730 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4731 ** WITHOUT ROWID table. No need for a separate index */ 4732 iIndexCur = pLevel->iTabCur; 4733 op = 0; 4734 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4735 Index *pJ = pTabItem->pTab->pIndex; 4736 iIndexCur = iAuxArg; 4737 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4738 while( ALWAYS(pJ) && pJ!=pIx ){ 4739 iIndexCur++; 4740 pJ = pJ->pNext; 4741 } 4742 op = OP_OpenWrite; 4743 pWInfo->aiCurOnePass[1] = iIndexCur; 4744 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 4745 iIndexCur = iAuxArg; 4746 op = OP_ReopenIdx; 4747 }else{ 4748 iIndexCur = pParse->nTab++; 4749 } 4750 pLevel->iIdxCur = iIndexCur; 4751 assert( pIx->pSchema==pTab->pSchema ); 4752 assert( iIndexCur>=0 ); 4753 if( op ){ 4754 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4755 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4756 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4757 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4758 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4759 ){ 4760 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4761 } 4762 VdbeComment((v, "%s", pIx->zName)); 4763 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4764 { 4765 u64 colUsed = 0; 4766 int ii, jj; 4767 for(ii=0; ii<pIx->nColumn; ii++){ 4768 jj = pIx->aiColumn[ii]; 4769 if( jj<0 ) continue; 4770 if( jj>63 ) jj = 63; 4771 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4772 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4773 } 4774 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4775 (u8*)&colUsed, P4_INT64); 4776 } 4777 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4778 } 4779 } 4780 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4781 } 4782 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4783 if( db->mallocFailed ) goto whereBeginError; 4784 4785 /* Generate the code to do the search. Each iteration of the for 4786 ** loop below generates code for a single nested loop of the VM 4787 ** program. 4788 */ 4789 notReady = ~(Bitmask)0; 4790 for(ii=0; ii<nTabList; ii++){ 4791 int addrExplain; 4792 int wsFlags; 4793 pLevel = &pWInfo->a[ii]; 4794 wsFlags = pLevel->pWLoop->wsFlags; 4795 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4796 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4797 constructAutomaticIndex(pParse, &pWInfo->sWC, 4798 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4799 if( db->mallocFailed ) goto whereBeginError; 4800 } 4801 #endif 4802 addrExplain = sqlite3WhereExplainOneScan( 4803 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4804 ); 4805 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4806 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4807 pWInfo->iContinue = pLevel->addrCont; 4808 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 4809 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4810 } 4811 } 4812 4813 /* Done. */ 4814 VdbeModuleComment((v, "Begin WHERE-core")); 4815 return pWInfo; 4816 4817 /* Jump here if malloc fails */ 4818 whereBeginError: 4819 if( pWInfo ){ 4820 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4821 whereInfoFree(db, pWInfo); 4822 } 4823 return 0; 4824 } 4825 4826 /* 4827 ** Generate the end of the WHERE loop. See comments on 4828 ** sqlite3WhereBegin() for additional information. 4829 */ 4830 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4831 Parse *pParse = pWInfo->pParse; 4832 Vdbe *v = pParse->pVdbe; 4833 int i; 4834 WhereLevel *pLevel; 4835 WhereLoop *pLoop; 4836 SrcList *pTabList = pWInfo->pTabList; 4837 sqlite3 *db = pParse->db; 4838 4839 /* Generate loop termination code. 4840 */ 4841 VdbeModuleComment((v, "End WHERE-core")); 4842 sqlite3ExprCacheClear(pParse); 4843 for(i=pWInfo->nLevel-1; i>=0; i--){ 4844 int addr; 4845 pLevel = &pWInfo->a[i]; 4846 pLoop = pLevel->pWLoop; 4847 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4848 if( pLevel->op!=OP_Noop ){ 4849 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4850 sqlite3VdbeChangeP5(v, pLevel->p5); 4851 VdbeCoverage(v); 4852 VdbeCoverageIf(v, pLevel->op==OP_Next); 4853 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4854 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4855 } 4856 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4857 struct InLoop *pIn; 4858 int j; 4859 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4860 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4861 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4862 if( pIn->eEndLoopOp!=OP_Noop ){ 4863 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4864 VdbeCoverage(v); 4865 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4866 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4867 } 4868 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4869 } 4870 } 4871 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4872 if( pLevel->addrSkip ){ 4873 sqlite3VdbeGoto(v, pLevel->addrSkip); 4874 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4875 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4876 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4877 } 4878 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4879 if( pLevel->addrLikeRep ){ 4880 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 4881 pLevel->addrLikeRep); 4882 VdbeCoverage(v); 4883 } 4884 #endif 4885 if( pLevel->iLeftJoin ){ 4886 int ws = pLoop->wsFlags; 4887 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4888 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 4889 if( (ws & WHERE_IDX_ONLY)==0 ){ 4890 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4891 } 4892 if( (ws & WHERE_INDEXED) 4893 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 4894 ){ 4895 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4896 } 4897 if( pLevel->op==OP_Return ){ 4898 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4899 }else{ 4900 sqlite3VdbeGoto(v, pLevel->addrFirst); 4901 } 4902 sqlite3VdbeJumpHere(v, addr); 4903 } 4904 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4905 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4906 } 4907 4908 /* The "break" point is here, just past the end of the outer loop. 4909 ** Set it. 4910 */ 4911 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4912 4913 assert( pWInfo->nLevel<=pTabList->nSrc ); 4914 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4915 int k, last; 4916 VdbeOp *pOp; 4917 Index *pIdx = 0; 4918 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4919 Table *pTab = pTabItem->pTab; 4920 assert( pTab!=0 ); 4921 pLoop = pLevel->pWLoop; 4922 4923 /* For a co-routine, change all OP_Column references to the table of 4924 ** the co-routine into OP_Copy of result contained in a register. 4925 ** OP_Rowid becomes OP_Null. 4926 */ 4927 if( pTabItem->fg.viaCoroutine ){ 4928 testcase( pParse->db->mallocFailed ); 4929 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 4930 pTabItem->regResult, 0); 4931 continue; 4932 } 4933 4934 /* If this scan uses an index, make VDBE code substitutions to read data 4935 ** from the index instead of from the table where possible. In some cases 4936 ** this optimization prevents the table from ever being read, which can 4937 ** yield a significant performance boost. 4938 ** 4939 ** Calls to the code generator in between sqlite3WhereBegin and 4940 ** sqlite3WhereEnd will have created code that references the table 4941 ** directly. This loop scans all that code looking for opcodes 4942 ** that reference the table and converts them into opcodes that 4943 ** reference the index. 4944 */ 4945 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4946 pIdx = pLoop->u.btree.pIndex; 4947 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4948 pIdx = pLevel->u.pCovidx; 4949 } 4950 if( pIdx 4951 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4952 && !db->mallocFailed 4953 ){ 4954 last = sqlite3VdbeCurrentAddr(v); 4955 k = pLevel->addrBody; 4956 pOp = sqlite3VdbeGetOp(v, k); 4957 for(; k<last; k++, pOp++){ 4958 if( pOp->p1!=pLevel->iTabCur ) continue; 4959 if( pOp->opcode==OP_Column ){ 4960 int x = pOp->p2; 4961 assert( pIdx->pTable==pTab ); 4962 if( !HasRowid(pTab) ){ 4963 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4964 x = pPk->aiColumn[x]; 4965 assert( x>=0 ); 4966 } 4967 x = sqlite3ColumnOfIndex(pIdx, x); 4968 if( x>=0 ){ 4969 pOp->p2 = x; 4970 pOp->p1 = pLevel->iIdxCur; 4971 } 4972 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 4973 || pWInfo->eOnePass ); 4974 }else if( pOp->opcode==OP_Rowid ){ 4975 pOp->p1 = pLevel->iIdxCur; 4976 pOp->opcode = OP_IdxRowid; 4977 } 4978 } 4979 } 4980 } 4981 4982 /* Final cleanup 4983 */ 4984 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4985 whereInfoFree(db, pWInfo); 4986 return; 4987 } 4988