xref: /sqlite-3.40.0/src/wal.c (revision fd779e2f)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.  The values are:
165 **
166 **   HASHTABLE_NPAGE      4096
167 **   HASHTABLE_NPAGE_ONE  4062
168 **
169 ** Each index block contains two sections, a page-mapping that contains the
170 ** database page number associated with each wal frame, and a hash-table
171 ** that allows readers to query an index block for a specific page number.
172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
173 ** for the first index block) 32-bit page numbers. The first entry in the
174 ** first index-block contains the database page number corresponding to the
175 ** first frame in the WAL file. The first entry in the second index block
176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
177 ** the log, and so on.
178 **
179 ** The last index block in a wal-index usually contains less than the full
180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
181 ** depending on the contents of the WAL file. This does not change the
182 ** allocated size of the page-mapping array - the page-mapping array merely
183 ** contains unused entries.
184 **
185 ** Even without using the hash table, the last frame for page P
186 ** can be found by scanning the page-mapping sections of each index block
187 ** starting with the last index block and moving toward the first, and
188 ** within each index block, starting at the end and moving toward the
189 ** beginning.  The first entry that equals P corresponds to the frame
190 ** holding the content for that page.
191 **
192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
194 ** hash table for each page number in the mapping section, so the hash
195 ** table is never more than half full.  The expected number of collisions
196 ** prior to finding a match is 1.  Each entry of the hash table is an
197 ** 1-based index of an entry in the mapping section of the same
198 ** index block.   Let K be the 1-based index of the largest entry in
199 ** the mapping section.  (For index blocks other than the last, K will
200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
201 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
202 ** contain a value of 0.
203 **
204 ** To look for page P in the hash table, first compute a hash iKey on
205 ** P as follows:
206 **
207 **      iKey = (P * 383) % HASHTABLE_NSLOT
208 **
209 ** Then start scanning entries of the hash table, starting with iKey
210 ** (wrapping around to the beginning when the end of the hash table is
211 ** reached) until an unused hash slot is found. Let the first unused slot
212 ** be at index iUnused.  (iUnused might be less than iKey if there was
213 ** wrap-around.) Because the hash table is never more than half full,
214 ** the search is guaranteed to eventually hit an unused entry.  Let
215 ** iMax be the value between iKey and iUnused, closest to iUnused,
216 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
217 ** no hash slot such that aHash[i]==p) then page P is not in the
218 ** current index block.  Otherwise the iMax-th mapping entry of the
219 ** current index block corresponds to the last entry that references
220 ** page P.
221 **
222 ** A hash search begins with the last index block and moves toward the
223 ** first index block, looking for entries corresponding to page P.  On
224 ** average, only two or three slots in each index block need to be
225 ** examined in order to either find the last entry for page P, or to
226 ** establish that no such entry exists in the block.  Each index block
227 ** holds over 4000 entries.  So two or three index blocks are sufficient
228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
229 ** comparisons (on average) suffice to either locate a frame in the
230 ** WAL or to establish that the frame does not exist in the WAL.  This
231 ** is much faster than scanning the entire 10MB WAL.
232 **
233 ** Note that entries are added in order of increasing K.  Hence, one
234 ** reader might be using some value K0 and a second reader that started
235 ** at a later time (after additional transactions were added to the WAL
236 ** and to the wal-index) might be using a different value K1, where K1>K0.
237 ** Both readers can use the same hash table and mapping section to get
238 ** the correct result.  There may be entries in the hash table with
239 ** K>K0 but to the first reader, those entries will appear to be unused
240 ** slots in the hash table and so the first reader will get an answer as
241 ** if no values greater than K0 had ever been inserted into the hash table
242 ** in the first place - which is what reader one wants.  Meanwhile, the
243 ** second reader using K1 will see additional values that were inserted
244 ** later, which is exactly what reader two wants.
245 **
246 ** When a rollback occurs, the value of K is decreased. Hash table entries
247 ** that correspond to frames greater than the new K value are removed
248 ** from the hash table at this point.
249 */
250 #ifndef SQLITE_OMIT_WAL
251 
252 #include "wal.h"
253 
254 /*
255 ** Trace output macros
256 */
257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
258 int sqlite3WalTrace = 0;
259 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
260 #else
261 # define WALTRACE(X)
262 #endif
263 
264 /*
265 ** The maximum (and only) versions of the wal and wal-index formats
266 ** that may be interpreted by this version of SQLite.
267 **
268 ** If a client begins recovering a WAL file and finds that (a) the checksum
269 ** values in the wal-header are correct and (b) the version field is not
270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
271 **
272 ** Similarly, if a client successfully reads a wal-index header (i.e. the
273 ** checksum test is successful) and finds that the version field is not
274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
275 ** returns SQLITE_CANTOPEN.
276 */
277 #define WAL_MAX_VERSION      3007000
278 #define WALINDEX_MAX_VERSION 3007000
279 
280 /*
281 ** Index numbers for various locking bytes.   WAL_NREADER is the number
282 ** of available reader locks and should be at least 3.  The default
283 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
284 **
285 ** Technically, the various VFSes are free to implement these locks however
286 ** they see fit.  However, compatibility is encouraged so that VFSes can
287 ** interoperate.  The standard implemention used on both unix and windows
288 ** is for the index number to indicate a byte offset into the
289 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
290 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
291 ** should be 120) is the location in the shm file for the first locking
292 ** byte.
293 */
294 #define WAL_WRITE_LOCK         0
295 #define WAL_ALL_BUT_WRITE      1
296 #define WAL_CKPT_LOCK          1
297 #define WAL_RECOVER_LOCK       2
298 #define WAL_READ_LOCK(I)       (3+(I))
299 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
300 
301 
302 /* Object declarations */
303 typedef struct WalIndexHdr WalIndexHdr;
304 typedef struct WalIterator WalIterator;
305 typedef struct WalCkptInfo WalCkptInfo;
306 
307 
308 /*
309 ** The following object holds a copy of the wal-index header content.
310 **
311 ** The actual header in the wal-index consists of two copies of this
312 ** object followed by one instance of the WalCkptInfo object.
313 ** For all versions of SQLite through 3.10.0 and probably beyond,
314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
315 ** the total header size is 136 bytes.
316 **
317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
318 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
319 ** added in 3.7.1 when support for 64K pages was added.
320 */
321 struct WalIndexHdr {
322   u32 iVersion;                   /* Wal-index version */
323   u32 unused;                     /* Unused (padding) field */
324   u32 iChange;                    /* Counter incremented each transaction */
325   u8 isInit;                      /* 1 when initialized */
326   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
327   u16 szPage;                     /* Database page size in bytes. 1==64K */
328   u32 mxFrame;                    /* Index of last valid frame in the WAL */
329   u32 nPage;                      /* Size of database in pages */
330   u32 aFrameCksum[2];             /* Checksum of last frame in log */
331   u32 aSalt[2];                   /* Two salt values copied from WAL header */
332   u32 aCksum[2];                  /* Checksum over all prior fields */
333 };
334 
335 /*
336 ** A copy of the following object occurs in the wal-index immediately
337 ** following the second copy of the WalIndexHdr.  This object stores
338 ** information used by checkpoint.
339 **
340 ** nBackfill is the number of frames in the WAL that have been written
341 ** back into the database. (We call the act of moving content from WAL to
342 ** database "backfilling".)  The nBackfill number is never greater than
343 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
346 ** mxFrame back to zero when the WAL is reset.
347 **
348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
349 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
350 ** the nBackfillAttempted is set before any backfilling is done and the
351 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
352 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
354 **
355 ** The aLock[] field is a set of bytes used for locking.  These bytes should
356 ** never be read or written.
357 **
358 ** There is one entry in aReadMark[] for each reader lock.  If a reader
359 ** holds read-lock K, then the value in aReadMark[K] is no greater than
360 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
361 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
362 ** a special case; its value is never used and it exists as a place-holder
363 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
365 ** directly from the database.
366 **
367 ** The value of aReadMark[K] may only be changed by a thread that
368 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
369 ** aReadMark[K] cannot changed while there is a reader is using that mark
370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
371 **
372 ** The checkpointer may only transfer frames from WAL to database where
373 ** the frame numbers are less than or equal to every aReadMark[] that is
374 ** in use (that is, every aReadMark[j] for which there is a corresponding
375 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
376 ** largest value and will increase an unused aReadMark[] to mxFrame if there
377 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
379 ** in the WAL has been backfilled into the database) then new readers
380 ** will choose aReadMark[0] which has value 0 and hence such reader will
381 ** get all their all content directly from the database file and ignore
382 ** the WAL.
383 **
384 ** Writers normally append new frames to the end of the WAL.  However,
385 ** if nBackfill equals mxFrame (meaning that all WAL content has been
386 ** written back into the database) and if no readers are using the WAL
387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
388 ** the writer will first "reset" the WAL back to the beginning and start
389 ** writing new content beginning at frame 1.
390 **
391 ** We assume that 32-bit loads are atomic and so no locks are needed in
392 ** order to read from any aReadMark[] entries.
393 */
394 struct WalCkptInfo {
395   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
396   u32 aReadMark[WAL_NREADER];     /* Reader marks */
397   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
398   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
399   u32 notUsed0;                   /* Available for future enhancements */
400 };
401 #define READMARK_NOT_USED  0xffffffff
402 
403 /*
404 ** This is a schematic view of the complete 136-byte header of the
405 ** wal-index file (also known as the -shm file):
406 **
407 **      +-----------------------------+
408 **   0: | iVersion                    | \
409 **      +-----------------------------+  |
410 **   4: | (unused padding)            |  |
411 **      +-----------------------------+  |
412 **   8: | iChange                     |  |
413 **      +-------+-------+-------------+  |
414 **  12: | bInit |  bBig |   szPage    |  |
415 **      +-------+-------+-------------+  |
416 **  16: | mxFrame                     |  |  First copy of the
417 **      +-----------------------------+  |  WalIndexHdr object
418 **  20: | nPage                       |  |
419 **      +-----------------------------+  |
420 **  24: | aFrameCksum                 |  |
421 **      |                             |  |
422 **      +-----------------------------+  |
423 **  32: | aSalt                       |  |
424 **      |                             |  |
425 **      +-----------------------------+  |
426 **  40: | aCksum                      |  |
427 **      |                             | /
428 **      +-----------------------------+
429 **  48: | iVersion                    | \
430 **      +-----------------------------+  |
431 **  52: | (unused padding)            |  |
432 **      +-----------------------------+  |
433 **  56: | iChange                     |  |
434 **      +-------+-------+-------------+  |
435 **  60: | bInit |  bBig |   szPage    |  |
436 **      +-------+-------+-------------+  |  Second copy of the
437 **  64: | mxFrame                     |  |  WalIndexHdr
438 **      +-----------------------------+  |
439 **  68: | nPage                       |  |
440 **      +-----------------------------+  |
441 **  72: | aFrameCksum                 |  |
442 **      |                             |  |
443 **      +-----------------------------+  |
444 **  80: | aSalt                       |  |
445 **      |                             |  |
446 **      +-----------------------------+  |
447 **  88: | aCksum                      |  |
448 **      |                             | /
449 **      +-----------------------------+
450 **  96: | nBackfill                   |
451 **      +-----------------------------+
452 ** 100: | 5 read marks                |
453 **      |                             |
454 **      |                             |
455 **      |                             |
456 **      |                             |
457 **      +-------+-------+------+------+
458 ** 120: | Write | Ckpt  | Rcvr | Rd0  | \
459 **      +-------+-------+------+------+  ) 8 lock bytes
460 **      | Read1 | Read2 | Rd3  | Rd4  | /
461 **      +-------+-------+------+------+
462 ** 128: | nBackfillAttempted          |
463 **      +-----------------------------+
464 ** 132: | (unused padding)            |
465 **      +-----------------------------+
466 */
467 
468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
470 ** only support mandatory file-locks, we do not read or write data
471 ** from the region of the file on which locks are applied.
472 */
473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
474 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
475 
476 /* Size of header before each frame in wal */
477 #define WAL_FRAME_HDRSIZE 24
478 
479 /* Size of write ahead log header, including checksum. */
480 #define WAL_HDRSIZE 32
481 
482 /* WAL magic value. Either this value, or the same value with the least
483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
484 ** big-endian format in the first 4 bytes of a WAL file.
485 **
486 ** If the LSB is set, then the checksums for each frame within the WAL
487 ** file are calculated by treating all data as an array of 32-bit
488 ** big-endian words. Otherwise, they are calculated by interpreting
489 ** all data as 32-bit little-endian words.
490 */
491 #define WAL_MAGIC 0x377f0682
492 
493 /*
494 ** Return the offset of frame iFrame in the write-ahead log file,
495 ** assuming a database page size of szPage bytes. The offset returned
496 ** is to the start of the write-ahead log frame-header.
497 */
498 #define walFrameOffset(iFrame, szPage) (                               \
499   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
500 )
501 
502 /*
503 ** An open write-ahead log file is represented by an instance of the
504 ** following object.
505 */
506 struct Wal {
507   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
508   sqlite3_file *pDbFd;       /* File handle for the database file */
509   sqlite3_file *pWalFd;      /* File handle for WAL file */
510   u32 iCallback;             /* Value to pass to log callback (or 0) */
511   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
512   int nWiData;               /* Size of array apWiData */
513   int szFirstBlock;          /* Size of first block written to WAL file */
514   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
515   u32 szPage;                /* Database page size */
516   i16 readLock;              /* Which read lock is being held.  -1 for none */
517   u8 syncFlags;              /* Flags to use to sync header writes */
518   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
519   u8 writeLock;              /* True if in a write transaction */
520   u8 ckptLock;               /* True if holding a checkpoint lock */
521   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
522   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
523   u8 syncHeader;             /* Fsync the WAL header if true */
524   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
525   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
526   WalIndexHdr hdr;           /* Wal-index header for current transaction */
527   u32 minFrame;              /* Ignore wal frames before this one */
528   u32 iReCksum;              /* On commit, recalculate checksums from here */
529   const char *zWalName;      /* Name of WAL file */
530   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
531 #ifdef SQLITE_DEBUG
532   u8 lockError;              /* True if a locking error has occurred */
533 #endif
534 #ifdef SQLITE_ENABLE_SNAPSHOT
535   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
536 #endif
537 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
538   sqlite3 *db;
539 #endif
540 };
541 
542 /*
543 ** Candidate values for Wal.exclusiveMode.
544 */
545 #define WAL_NORMAL_MODE     0
546 #define WAL_EXCLUSIVE_MODE  1
547 #define WAL_HEAPMEMORY_MODE 2
548 
549 /*
550 ** Possible values for WAL.readOnly
551 */
552 #define WAL_RDWR        0    /* Normal read/write connection */
553 #define WAL_RDONLY      1    /* The WAL file is readonly */
554 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
555 
556 /*
557 ** Each page of the wal-index mapping contains a hash-table made up of
558 ** an array of HASHTABLE_NSLOT elements of the following type.
559 */
560 typedef u16 ht_slot;
561 
562 /*
563 ** This structure is used to implement an iterator that loops through
564 ** all frames in the WAL in database page order. Where two or more frames
565 ** correspond to the same database page, the iterator visits only the
566 ** frame most recently written to the WAL (in other words, the frame with
567 ** the largest index).
568 **
569 ** The internals of this structure are only accessed by:
570 **
571 **   walIteratorInit() - Create a new iterator,
572 **   walIteratorNext() - Step an iterator,
573 **   walIteratorFree() - Free an iterator.
574 **
575 ** This functionality is used by the checkpoint code (see walCheckpoint()).
576 */
577 struct WalIterator {
578   u32 iPrior;                     /* Last result returned from the iterator */
579   int nSegment;                   /* Number of entries in aSegment[] */
580   struct WalSegment {
581     int iNext;                    /* Next slot in aIndex[] not yet returned */
582     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
583     u32 *aPgno;                   /* Array of page numbers. */
584     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
585     int iZero;                    /* Frame number associated with aPgno[0] */
586   } aSegment[1];                  /* One for every 32KB page in the wal-index */
587 };
588 
589 /*
590 ** Define the parameters of the hash tables in the wal-index file. There
591 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
592 ** wal-index.
593 **
594 ** Changing any of these constants will alter the wal-index format and
595 ** create incompatibilities.
596 */
597 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
598 #define HASHTABLE_HASH_1     383                  /* Should be prime */
599 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
600 
601 /*
602 ** The block of page numbers associated with the first hash-table in a
603 ** wal-index is smaller than usual. This is so that there is a complete
604 ** hash-table on each aligned 32KB page of the wal-index.
605 */
606 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
607 
608 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
609 #define WALINDEX_PGSZ   (                                         \
610     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
611 )
612 
613 /*
614 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
615 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
616 ** numbered from zero.
617 **
618 ** If the wal-index is currently smaller the iPage pages then the size
619 ** of the wal-index might be increased, but only if it is safe to do
620 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
621 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
622 **
623 ** If this call is successful, *ppPage is set to point to the wal-index
624 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
625 ** then an SQLite error code is returned and *ppPage is set to 0.
626 */
627 static SQLITE_NOINLINE int walIndexPageRealloc(
628   Wal *pWal,               /* The WAL context */
629   int iPage,               /* The page we seek */
630   volatile u32 **ppPage    /* Write the page pointer here */
631 ){
632   int rc = SQLITE_OK;
633 
634   /* Enlarge the pWal->apWiData[] array if required */
635   if( pWal->nWiData<=iPage ){
636     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
637     volatile u32 **apNew;
638     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
639     if( !apNew ){
640       *ppPage = 0;
641       return SQLITE_NOMEM_BKPT;
642     }
643     memset((void*)&apNew[pWal->nWiData], 0,
644            sizeof(u32*)*(iPage+1-pWal->nWiData));
645     pWal->apWiData = apNew;
646     pWal->nWiData = iPage+1;
647   }
648 
649   /* Request a pointer to the required page from the VFS */
650   assert( pWal->apWiData[iPage]==0 );
651   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
652     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
653     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
654   }else{
655     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
656         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
657     );
658     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
659     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
660     if( rc==SQLITE_OK ){
661       if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
662     }else if( (rc&0xff)==SQLITE_READONLY ){
663       pWal->readOnly |= WAL_SHM_RDONLY;
664       if( rc==SQLITE_READONLY ){
665         rc = SQLITE_OK;
666       }
667     }
668   }
669 
670   *ppPage = pWal->apWiData[iPage];
671   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
672   return rc;
673 }
674 static int walIndexPage(
675   Wal *pWal,               /* The WAL context */
676   int iPage,               /* The page we seek */
677   volatile u32 **ppPage    /* Write the page pointer here */
678 ){
679   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
680     return walIndexPageRealloc(pWal, iPage, ppPage);
681   }
682   return SQLITE_OK;
683 }
684 
685 /*
686 ** Return a pointer to the WalCkptInfo structure in the wal-index.
687 */
688 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
689   assert( pWal->nWiData>0 && pWal->apWiData[0] );
690   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
691 }
692 
693 /*
694 ** Return a pointer to the WalIndexHdr structure in the wal-index.
695 */
696 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
697   assert( pWal->nWiData>0 && pWal->apWiData[0] );
698   return (volatile WalIndexHdr*)pWal->apWiData[0];
699 }
700 
701 /*
702 ** The argument to this macro must be of type u32. On a little-endian
703 ** architecture, it returns the u32 value that results from interpreting
704 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
705 ** returns the value that would be produced by interpreting the 4 bytes
706 ** of the input value as a little-endian integer.
707 */
708 #define BYTESWAP32(x) ( \
709     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
710   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
711 )
712 
713 /*
714 ** Generate or extend an 8 byte checksum based on the data in
715 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
716 ** initial values of 0 and 0 if aIn==NULL).
717 **
718 ** The checksum is written back into aOut[] before returning.
719 **
720 ** nByte must be a positive multiple of 8.
721 */
722 static void walChecksumBytes(
723   int nativeCksum, /* True for native byte-order, false for non-native */
724   u8 *a,           /* Content to be checksummed */
725   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
726   const u32 *aIn,  /* Initial checksum value input */
727   u32 *aOut        /* OUT: Final checksum value output */
728 ){
729   u32 s1, s2;
730   u32 *aData = (u32 *)a;
731   u32 *aEnd = (u32 *)&a[nByte];
732 
733   if( aIn ){
734     s1 = aIn[0];
735     s2 = aIn[1];
736   }else{
737     s1 = s2 = 0;
738   }
739 
740   assert( nByte>=8 );
741   assert( (nByte&0x00000007)==0 );
742   assert( nByte<=65536 );
743 
744   if( nativeCksum ){
745     do {
746       s1 += *aData++ + s2;
747       s2 += *aData++ + s1;
748     }while( aData<aEnd );
749   }else{
750     do {
751       s1 += BYTESWAP32(aData[0]) + s2;
752       s2 += BYTESWAP32(aData[1]) + s1;
753       aData += 2;
754     }while( aData<aEnd );
755   }
756 
757   aOut[0] = s1;
758   aOut[1] = s2;
759 }
760 
761 /*
762 ** If there is the possibility of concurrent access to the SHM file
763 ** from multiple threads and/or processes, then do a memory barrier.
764 */
765 static void walShmBarrier(Wal *pWal){
766   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
767     sqlite3OsShmBarrier(pWal->pDbFd);
768   }
769 }
770 
771 /*
772 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
773 ** definition as a hint that the function contains constructs that
774 ** might give false-positive TSAN warnings.
775 **
776 ** See tag-20200519-1.
777 */
778 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
779 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
780 #else
781 # define SQLITE_NO_TSAN
782 #endif
783 
784 /*
785 ** Write the header information in pWal->hdr into the wal-index.
786 **
787 ** The checksum on pWal->hdr is updated before it is written.
788 */
789 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
790   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
791   const int nCksum = offsetof(WalIndexHdr, aCksum);
792 
793   assert( pWal->writeLock );
794   pWal->hdr.isInit = 1;
795   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
796   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
797   /* Possible TSAN false-positive.  See tag-20200519-1 */
798   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
799   walShmBarrier(pWal);
800   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
801 }
802 
803 /*
804 ** This function encodes a single frame header and writes it to a buffer
805 ** supplied by the caller. A frame-header is made up of a series of
806 ** 4-byte big-endian integers, as follows:
807 **
808 **     0: Page number.
809 **     4: For commit records, the size of the database image in pages
810 **        after the commit. For all other records, zero.
811 **     8: Salt-1 (copied from the wal-header)
812 **    12: Salt-2 (copied from the wal-header)
813 **    16: Checksum-1.
814 **    20: Checksum-2.
815 */
816 static void walEncodeFrame(
817   Wal *pWal,                      /* The write-ahead log */
818   u32 iPage,                      /* Database page number for frame */
819   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
820   u8 *aData,                      /* Pointer to page data */
821   u8 *aFrame                      /* OUT: Write encoded frame here */
822 ){
823   int nativeCksum;                /* True for native byte-order checksums */
824   u32 *aCksum = pWal->hdr.aFrameCksum;
825   assert( WAL_FRAME_HDRSIZE==24 );
826   sqlite3Put4byte(&aFrame[0], iPage);
827   sqlite3Put4byte(&aFrame[4], nTruncate);
828   if( pWal->iReCksum==0 ){
829     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
830 
831     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
832     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
833     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
834 
835     sqlite3Put4byte(&aFrame[16], aCksum[0]);
836     sqlite3Put4byte(&aFrame[20], aCksum[1]);
837   }else{
838     memset(&aFrame[8], 0, 16);
839   }
840 }
841 
842 /*
843 ** Check to see if the frame with header in aFrame[] and content
844 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
845 ** *pnTruncate and return true.  Return if the frame is not valid.
846 */
847 static int walDecodeFrame(
848   Wal *pWal,                      /* The write-ahead log */
849   u32 *piPage,                    /* OUT: Database page number for frame */
850   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
851   u8 *aData,                      /* Pointer to page data (for checksum) */
852   u8 *aFrame                      /* Frame data */
853 ){
854   int nativeCksum;                /* True for native byte-order checksums */
855   u32 *aCksum = pWal->hdr.aFrameCksum;
856   u32 pgno;                       /* Page number of the frame */
857   assert( WAL_FRAME_HDRSIZE==24 );
858 
859   /* A frame is only valid if the salt values in the frame-header
860   ** match the salt values in the wal-header.
861   */
862   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
863     return 0;
864   }
865 
866   /* A frame is only valid if the page number is creater than zero.
867   */
868   pgno = sqlite3Get4byte(&aFrame[0]);
869   if( pgno==0 ){
870     return 0;
871   }
872 
873   /* A frame is only valid if a checksum of the WAL header,
874   ** all prior frams, the first 16 bytes of this frame-header,
875   ** and the frame-data matches the checksum in the last 8
876   ** bytes of this frame-header.
877   */
878   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
879   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
880   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
881   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
882    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
883   ){
884     /* Checksum failed. */
885     return 0;
886   }
887 
888   /* If we reach this point, the frame is valid.  Return the page number
889   ** and the new database size.
890   */
891   *piPage = pgno;
892   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
893   return 1;
894 }
895 
896 
897 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
898 /*
899 ** Names of locks.  This routine is used to provide debugging output and is not
900 ** a part of an ordinary build.
901 */
902 static const char *walLockName(int lockIdx){
903   if( lockIdx==WAL_WRITE_LOCK ){
904     return "WRITE-LOCK";
905   }else if( lockIdx==WAL_CKPT_LOCK ){
906     return "CKPT-LOCK";
907   }else if( lockIdx==WAL_RECOVER_LOCK ){
908     return "RECOVER-LOCK";
909   }else{
910     static char zName[15];
911     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
912                      lockIdx-WAL_READ_LOCK(0));
913     return zName;
914   }
915 }
916 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
917 
918 
919 /*
920 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
921 ** A lock cannot be moved directly between shared and exclusive - it must go
922 ** through the unlocked state first.
923 **
924 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
925 */
926 static int walLockShared(Wal *pWal, int lockIdx){
927   int rc;
928   if( pWal->exclusiveMode ) return SQLITE_OK;
929   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
930                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
931   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
932             walLockName(lockIdx), rc ? "failed" : "ok"));
933   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
934   return rc;
935 }
936 static void walUnlockShared(Wal *pWal, int lockIdx){
937   if( pWal->exclusiveMode ) return;
938   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
939                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
940   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
941 }
942 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
943   int rc;
944   if( pWal->exclusiveMode ) return SQLITE_OK;
945   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
946                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
947   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
948             walLockName(lockIdx), n, rc ? "failed" : "ok"));
949   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
950   return rc;
951 }
952 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
953   if( pWal->exclusiveMode ) return;
954   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
955                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
956   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
957              walLockName(lockIdx), n));
958 }
959 
960 /*
961 ** Compute a hash on a page number.  The resulting hash value must land
962 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
963 ** the hash to the next value in the event of a collision.
964 */
965 static int walHash(u32 iPage){
966   assert( iPage>0 );
967   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
968   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
969 }
970 static int walNextHash(int iPriorHash){
971   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
972 }
973 
974 /*
975 ** An instance of the WalHashLoc object is used to describe the location
976 ** of a page hash table in the wal-index.  This becomes the return value
977 ** from walHashGet().
978 */
979 typedef struct WalHashLoc WalHashLoc;
980 struct WalHashLoc {
981   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
982   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
983   u32 iZero;                /* One less than the frame number of first indexed*/
984 };
985 
986 /*
987 ** Return pointers to the hash table and page number array stored on
988 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
989 ** numbered starting from 0.
990 **
991 ** Set output variable pLoc->aHash to point to the start of the hash table
992 ** in the wal-index file. Set pLoc->iZero to one less than the frame
993 ** number of the first frame indexed by this hash table. If a
994 ** slot in the hash table is set to N, it refers to frame number
995 ** (pLoc->iZero+N) in the log.
996 **
997 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
998 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
999 */
1000 static int walHashGet(
1001   Wal *pWal,                      /* WAL handle */
1002   int iHash,                      /* Find the iHash'th table */
1003   WalHashLoc *pLoc                /* OUT: Hash table location */
1004 ){
1005   int rc;                         /* Return code */
1006 
1007   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
1008   assert( rc==SQLITE_OK || iHash>0 );
1009 
1010   if( rc==SQLITE_OK ){
1011     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
1012     if( iHash==0 ){
1013       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
1014       pLoc->iZero = 0;
1015     }else{
1016       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
1017     }
1018     pLoc->aPgno = &pLoc->aPgno[-1];
1019   }
1020   return rc;
1021 }
1022 
1023 /*
1024 ** Return the number of the wal-index page that contains the hash-table
1025 ** and page-number array that contain entries corresponding to WAL frame
1026 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
1027 ** are numbered starting from 0.
1028 */
1029 static int walFramePage(u32 iFrame){
1030   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
1031   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
1032        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
1033        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
1034        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
1035        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
1036   );
1037   assert( iHash>=0 );
1038   return iHash;
1039 }
1040 
1041 /*
1042 ** Return the page number associated with frame iFrame in this WAL.
1043 */
1044 static u32 walFramePgno(Wal *pWal, u32 iFrame){
1045   int iHash = walFramePage(iFrame);
1046   if( iHash==0 ){
1047     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
1048   }
1049   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
1050 }
1051 
1052 /*
1053 ** Remove entries from the hash table that point to WAL slots greater
1054 ** than pWal->hdr.mxFrame.
1055 **
1056 ** This function is called whenever pWal->hdr.mxFrame is decreased due
1057 ** to a rollback or savepoint.
1058 **
1059 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
1060 ** updated.  Any later hash tables will be automatically cleared when
1061 ** pWal->hdr.mxFrame advances to the point where those hash tables are
1062 ** actually needed.
1063 */
1064 static void walCleanupHash(Wal *pWal){
1065   WalHashLoc sLoc;                /* Hash table location */
1066   int iLimit = 0;                 /* Zero values greater than this */
1067   int nByte;                      /* Number of bytes to zero in aPgno[] */
1068   int i;                          /* Used to iterate through aHash[] */
1069 
1070   assert( pWal->writeLock );
1071   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1072   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1073   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1074 
1075   if( pWal->hdr.mxFrame==0 ) return;
1076 
1077   /* Obtain pointers to the hash-table and page-number array containing
1078   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1079   ** that the page said hash-table and array reside on is already mapped.(1)
1080   */
1081   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1082   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1083   i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1084   if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
1085 
1086   /* Zero all hash-table entries that correspond to frame numbers greater
1087   ** than pWal->hdr.mxFrame.
1088   */
1089   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1090   assert( iLimit>0 );
1091   for(i=0; i<HASHTABLE_NSLOT; i++){
1092     if( sLoc.aHash[i]>iLimit ){
1093       sLoc.aHash[i] = 0;
1094     }
1095   }
1096 
1097   /* Zero the entries in the aPgno array that correspond to frames with
1098   ** frame numbers greater than pWal->hdr.mxFrame.
1099   */
1100   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1101   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1102 
1103 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1104   /* Verify that the every entry in the mapping region is still reachable
1105   ** via the hash table even after the cleanup.
1106   */
1107   if( iLimit ){
1108     int j;           /* Loop counter */
1109     int iKey;        /* Hash key */
1110     for(j=1; j<=iLimit; j++){
1111       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1112         if( sLoc.aHash[iKey]==j ) break;
1113       }
1114       assert( sLoc.aHash[iKey]==j );
1115     }
1116   }
1117 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1118 }
1119 
1120 
1121 /*
1122 ** Set an entry in the wal-index that will map database page number
1123 ** pPage into WAL frame iFrame.
1124 */
1125 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1126   int rc;                         /* Return code */
1127   WalHashLoc sLoc;                /* Wal-index hash table location */
1128 
1129   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1130 
1131   /* Assuming the wal-index file was successfully mapped, populate the
1132   ** page number array and hash table entry.
1133   */
1134   if( rc==SQLITE_OK ){
1135     int iKey;                     /* Hash table key */
1136     int idx;                      /* Value to write to hash-table slot */
1137     int nCollide;                 /* Number of hash collisions */
1138 
1139     idx = iFrame - sLoc.iZero;
1140     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1141 
1142     /* If this is the first entry to be added to this hash-table, zero the
1143     ** entire hash table and aPgno[] array before proceeding.
1144     */
1145     if( idx==1 ){
1146       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1147                                - (u8 *)&sLoc.aPgno[1]);
1148       memset((void*)&sLoc.aPgno[1], 0, nByte);
1149     }
1150 
1151     /* If the entry in aPgno[] is already set, then the previous writer
1152     ** must have exited unexpectedly in the middle of a transaction (after
1153     ** writing one or more dirty pages to the WAL to free up memory).
1154     ** Remove the remnants of that writers uncommitted transaction from
1155     ** the hash-table before writing any new entries.
1156     */
1157     if( sLoc.aPgno[idx] ){
1158       walCleanupHash(pWal);
1159       assert( !sLoc.aPgno[idx] );
1160     }
1161 
1162     /* Write the aPgno[] array entry and the hash-table slot. */
1163     nCollide = idx;
1164     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1165       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1166     }
1167     sLoc.aPgno[idx] = iPage;
1168     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1169 
1170 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1171     /* Verify that the number of entries in the hash table exactly equals
1172     ** the number of entries in the mapping region.
1173     */
1174     {
1175       int i;           /* Loop counter */
1176       int nEntry = 0;  /* Number of entries in the hash table */
1177       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1178       assert( nEntry==idx );
1179     }
1180 
1181     /* Verify that the every entry in the mapping region is reachable
1182     ** via the hash table.  This turns out to be a really, really expensive
1183     ** thing to check, so only do this occasionally - not on every
1184     ** iteration.
1185     */
1186     if( (idx&0x3ff)==0 ){
1187       int i;           /* Loop counter */
1188       for(i=1; i<=idx; i++){
1189         for(iKey=walHash(sLoc.aPgno[i]);
1190             sLoc.aHash[iKey];
1191             iKey=walNextHash(iKey)){
1192           if( sLoc.aHash[iKey]==i ) break;
1193         }
1194         assert( sLoc.aHash[iKey]==i );
1195       }
1196     }
1197 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1198   }
1199 
1200 
1201   return rc;
1202 }
1203 
1204 
1205 /*
1206 ** Recover the wal-index by reading the write-ahead log file.
1207 **
1208 ** This routine first tries to establish an exclusive lock on the
1209 ** wal-index to prevent other threads/processes from doing anything
1210 ** with the WAL or wal-index while recovery is running.  The
1211 ** WAL_RECOVER_LOCK is also held so that other threads will know
1212 ** that this thread is running recovery.  If unable to establish
1213 ** the necessary locks, this routine returns SQLITE_BUSY.
1214 */
1215 static int walIndexRecover(Wal *pWal){
1216   int rc;                         /* Return Code */
1217   i64 nSize;                      /* Size of log file */
1218   u32 aFrameCksum[2] = {0, 0};
1219   int iLock;                      /* Lock offset to lock for checkpoint */
1220 
1221   /* Obtain an exclusive lock on all byte in the locking range not already
1222   ** locked by the caller. The caller is guaranteed to have locked the
1223   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1224   ** If successful, the same bytes that are locked here are unlocked before
1225   ** this function returns.
1226   */
1227   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1228   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1229   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1230   assert( pWal->writeLock );
1231   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1232   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1233   if( rc ){
1234     return rc;
1235   }
1236 
1237   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1238 
1239   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1240 
1241   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1242   if( rc!=SQLITE_OK ){
1243     goto recovery_error;
1244   }
1245 
1246   if( nSize>WAL_HDRSIZE ){
1247     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1248     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1249     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1250     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1251     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1252     int szPage;                   /* Page size according to the log */
1253     u32 magic;                    /* Magic value read from WAL header */
1254     u32 version;                  /* Magic value read from WAL header */
1255     int isValid;                  /* True if this frame is valid */
1256     u32 iPg;                      /* Current 32KB wal-index page */
1257     u32 iLastFrame;               /* Last frame in wal, based on nSize alone */
1258 
1259     /* Read in the WAL header. */
1260     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1261     if( rc!=SQLITE_OK ){
1262       goto recovery_error;
1263     }
1264 
1265     /* If the database page size is not a power of two, or is greater than
1266     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1267     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1268     ** WAL file.
1269     */
1270     magic = sqlite3Get4byte(&aBuf[0]);
1271     szPage = sqlite3Get4byte(&aBuf[8]);
1272     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1273      || szPage&(szPage-1)
1274      || szPage>SQLITE_MAX_PAGE_SIZE
1275      || szPage<512
1276     ){
1277       goto finished;
1278     }
1279     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1280     pWal->szPage = szPage;
1281     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1282     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1283 
1284     /* Verify that the WAL header checksum is correct */
1285     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1286         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1287     );
1288     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1289      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1290     ){
1291       goto finished;
1292     }
1293 
1294     /* Verify that the version number on the WAL format is one that
1295     ** are able to understand */
1296     version = sqlite3Get4byte(&aBuf[4]);
1297     if( version!=WAL_MAX_VERSION ){
1298       rc = SQLITE_CANTOPEN_BKPT;
1299       goto finished;
1300     }
1301 
1302     /* Malloc a buffer to read frames into. */
1303     szFrame = szPage + WAL_FRAME_HDRSIZE;
1304     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1305     if( !aFrame ){
1306       rc = SQLITE_NOMEM_BKPT;
1307       goto recovery_error;
1308     }
1309     aData = &aFrame[WAL_FRAME_HDRSIZE];
1310     aPrivate = (u32*)&aData[szPage];
1311 
1312     /* Read all frames from the log file. */
1313     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1314     for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1315       u32 *aShare;
1316       u32 iFrame;                 /* Index of last frame read */
1317       u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1318       u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1319       u32 nHdr, nHdr32;
1320       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1321       if( rc ) break;
1322       pWal->apWiData[iPg] = aPrivate;
1323 
1324       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1325         i64 iOffset = walFrameOffset(iFrame, szPage);
1326         u32 pgno;                 /* Database page number for frame */
1327         u32 nTruncate;            /* dbsize field from frame header */
1328 
1329         /* Read and decode the next log frame. */
1330         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1331         if( rc!=SQLITE_OK ) break;
1332         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1333         if( !isValid ) break;
1334         rc = walIndexAppend(pWal, iFrame, pgno);
1335         if( NEVER(rc!=SQLITE_OK) ) break;
1336 
1337         /* If nTruncate is non-zero, this is a commit record. */
1338         if( nTruncate ){
1339           pWal->hdr.mxFrame = iFrame;
1340           pWal->hdr.nPage = nTruncate;
1341           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1342           testcase( szPage<=32768 );
1343           testcase( szPage>=65536 );
1344           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1345           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1346         }
1347       }
1348       pWal->apWiData[iPg] = aShare;
1349       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1350       nHdr32 = nHdr / sizeof(u32);
1351 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1352       /* Memcpy() should work fine here, on all reasonable implementations.
1353       ** Technically, memcpy() might change the destination to some
1354       ** intermediate value before setting to the final value, and that might
1355       ** cause a concurrent reader to malfunction.  Memcpy() is allowed to
1356       ** do that, according to the spec, but no memcpy() implementation that
1357       ** we know of actually does that, which is why we say that memcpy()
1358       ** is safe for this.  Memcpy() is certainly a lot faster.
1359       */
1360       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1361 #else
1362       /* In the event that some platform is found for which memcpy()
1363       ** changes the destination to some intermediate value before
1364       ** setting the final value, this alternative copy routine is
1365       ** provided.
1366       */
1367       {
1368         int i;
1369         for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1370           if( aShare[i]!=aPrivate[i] ){
1371             /* Atomic memory operations are not required here because if
1372             ** the value needs to be changed, that means it is not being
1373             ** accessed concurrently. */
1374             aShare[i] = aPrivate[i];
1375           }
1376         }
1377       }
1378 #endif
1379       if( iFrame<=iLast ) break;
1380     }
1381 
1382     sqlite3_free(aFrame);
1383   }
1384 
1385 finished:
1386   if( rc==SQLITE_OK ){
1387     volatile WalCkptInfo *pInfo;
1388     int i;
1389     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1390     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1391     walIndexWriteHdr(pWal);
1392 
1393     /* Reset the checkpoint-header. This is safe because this thread is
1394     ** currently holding locks that exclude all other writers and
1395     ** checkpointers. Then set the values of read-mark slots 1 through N.
1396     */
1397     pInfo = walCkptInfo(pWal);
1398     pInfo->nBackfill = 0;
1399     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1400     pInfo->aReadMark[0] = 0;
1401     for(i=1; i<WAL_NREADER; i++){
1402       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1403       if( rc==SQLITE_OK ){
1404         if( i==1 && pWal->hdr.mxFrame ){
1405           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1406         }else{
1407           pInfo->aReadMark[i] = READMARK_NOT_USED;
1408         }
1409         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1410       }else if( rc!=SQLITE_BUSY ){
1411         goto recovery_error;
1412       }
1413     }
1414 
1415     /* If more than one frame was recovered from the log file, report an
1416     ** event via sqlite3_log(). This is to help with identifying performance
1417     ** problems caused by applications routinely shutting down without
1418     ** checkpointing the log file.
1419     */
1420     if( pWal->hdr.nPage ){
1421       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1422           "recovered %d frames from WAL file %s",
1423           pWal->hdr.mxFrame, pWal->zWalName
1424       );
1425     }
1426   }
1427 
1428 recovery_error:
1429   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1430   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1431   return rc;
1432 }
1433 
1434 /*
1435 ** Close an open wal-index.
1436 */
1437 static void walIndexClose(Wal *pWal, int isDelete){
1438   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1439     int i;
1440     for(i=0; i<pWal->nWiData; i++){
1441       sqlite3_free((void *)pWal->apWiData[i]);
1442       pWal->apWiData[i] = 0;
1443     }
1444   }
1445   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1446     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1447   }
1448 }
1449 
1450 /*
1451 ** Open a connection to the WAL file zWalName. The database file must
1452 ** already be opened on connection pDbFd. The buffer that zWalName points
1453 ** to must remain valid for the lifetime of the returned Wal* handle.
1454 **
1455 ** A SHARED lock should be held on the database file when this function
1456 ** is called. The purpose of this SHARED lock is to prevent any other
1457 ** client from unlinking the WAL or wal-index file. If another process
1458 ** were to do this just after this client opened one of these files, the
1459 ** system would be badly broken.
1460 **
1461 ** If the log file is successfully opened, SQLITE_OK is returned and
1462 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1463 ** an SQLite error code is returned and *ppWal is left unmodified.
1464 */
1465 int sqlite3WalOpen(
1466   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1467   sqlite3_file *pDbFd,            /* The open database file */
1468   const char *zWalName,           /* Name of the WAL file */
1469   int bNoShm,                     /* True to run in heap-memory mode */
1470   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1471   Wal **ppWal                     /* OUT: Allocated Wal handle */
1472 ){
1473   int rc;                         /* Return Code */
1474   Wal *pRet;                      /* Object to allocate and return */
1475   int flags;                      /* Flags passed to OsOpen() */
1476 
1477   assert( zWalName && zWalName[0] );
1478   assert( pDbFd );
1479 
1480   /* Verify the values of various constants.  Any changes to the values
1481   ** of these constants would result in an incompatible on-disk format
1482   ** for the -shm file.  Any change that causes one of these asserts to
1483   ** fail is a backward compatibility problem, even if the change otherwise
1484   ** works.
1485   **
1486   ** This table also serves as a helpful cross-reference when trying to
1487   ** interpret hex dumps of the -shm file.
1488   */
1489   assert(    48 ==  sizeof(WalIndexHdr)  );
1490   assert(    40 ==  sizeof(WalCkptInfo)  );
1491   assert(   120 ==  WALINDEX_LOCK_OFFSET );
1492   assert(   136 ==  WALINDEX_HDR_SIZE    );
1493   assert(  4096 ==  HASHTABLE_NPAGE      );
1494   assert(  4062 ==  HASHTABLE_NPAGE_ONE  );
1495   assert(  8192 ==  HASHTABLE_NSLOT      );
1496   assert(   383 ==  HASHTABLE_HASH_1     );
1497   assert( 32768 ==  WALINDEX_PGSZ        );
1498   assert(     8 ==  SQLITE_SHM_NLOCK     );
1499   assert(     5 ==  WAL_NREADER          );
1500   assert(    24 ==  WAL_FRAME_HDRSIZE    );
1501   assert(    32 ==  WAL_HDRSIZE          );
1502   assert(   120 ==  WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK   );
1503   assert(   121 ==  WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK    );
1504   assert(   122 ==  WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
1505   assert(   123 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
1506   assert(   124 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
1507   assert(   125 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
1508   assert(   126 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
1509   assert(   127 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
1510 
1511   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1512   ** this source file.  Verify that the #defines of the locking byte offsets
1513   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1514   ** For that matter, if the lock offset ever changes from its initial design
1515   ** value of 120, we need to know that so there is an assert() to check it.
1516   */
1517 #ifdef WIN_SHM_BASE
1518   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1519 #endif
1520 #ifdef UNIX_SHM_BASE
1521   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1522 #endif
1523 
1524 
1525   /* Allocate an instance of struct Wal to return. */
1526   *ppWal = 0;
1527   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1528   if( !pRet ){
1529     return SQLITE_NOMEM_BKPT;
1530   }
1531 
1532   pRet->pVfs = pVfs;
1533   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1534   pRet->pDbFd = pDbFd;
1535   pRet->readLock = -1;
1536   pRet->mxWalSize = mxWalSize;
1537   pRet->zWalName = zWalName;
1538   pRet->syncHeader = 1;
1539   pRet->padToSectorBoundary = 1;
1540   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1541 
1542   /* Open file handle on the write-ahead log file. */
1543   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1544   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1545   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1546     pRet->readOnly = WAL_RDONLY;
1547   }
1548 
1549   if( rc!=SQLITE_OK ){
1550     walIndexClose(pRet, 0);
1551     sqlite3OsClose(pRet->pWalFd);
1552     sqlite3_free(pRet);
1553   }else{
1554     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1555     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1556     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1557       pRet->padToSectorBoundary = 0;
1558     }
1559     *ppWal = pRet;
1560     WALTRACE(("WAL%d: opened\n", pRet));
1561   }
1562   return rc;
1563 }
1564 
1565 /*
1566 ** Change the size to which the WAL file is trucated on each reset.
1567 */
1568 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1569   if( pWal ) pWal->mxWalSize = iLimit;
1570 }
1571 
1572 /*
1573 ** Find the smallest page number out of all pages held in the WAL that
1574 ** has not been returned by any prior invocation of this method on the
1575 ** same WalIterator object.   Write into *piFrame the frame index where
1576 ** that page was last written into the WAL.  Write into *piPage the page
1577 ** number.
1578 **
1579 ** Return 0 on success.  If there are no pages in the WAL with a page
1580 ** number larger than *piPage, then return 1.
1581 */
1582 static int walIteratorNext(
1583   WalIterator *p,               /* Iterator */
1584   u32 *piPage,                  /* OUT: The page number of the next page */
1585   u32 *piFrame                  /* OUT: Wal frame index of next page */
1586 ){
1587   u32 iMin;                     /* Result pgno must be greater than iMin */
1588   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1589   int i;                        /* For looping through segments */
1590 
1591   iMin = p->iPrior;
1592   assert( iMin<0xffffffff );
1593   for(i=p->nSegment-1; i>=0; i--){
1594     struct WalSegment *pSegment = &p->aSegment[i];
1595     while( pSegment->iNext<pSegment->nEntry ){
1596       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1597       if( iPg>iMin ){
1598         if( iPg<iRet ){
1599           iRet = iPg;
1600           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1601         }
1602         break;
1603       }
1604       pSegment->iNext++;
1605     }
1606   }
1607 
1608   *piPage = p->iPrior = iRet;
1609   return (iRet==0xFFFFFFFF);
1610 }
1611 
1612 /*
1613 ** This function merges two sorted lists into a single sorted list.
1614 **
1615 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1616 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1617 ** is guaranteed for all J<K:
1618 **
1619 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1620 **        aContent[aRight[J]] < aContent[aRight[K]]
1621 **
1622 ** This routine overwrites aRight[] with a new (probably longer) sequence
1623 ** of indices such that the aRight[] contains every index that appears in
1624 ** either aLeft[] or the old aRight[] and such that the second condition
1625 ** above is still met.
1626 **
1627 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1628 ** aContent[aRight[X]] values will be unique too.  But there might be
1629 ** one or more combinations of X and Y such that
1630 **
1631 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1632 **
1633 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1634 */
1635 static void walMerge(
1636   const u32 *aContent,            /* Pages in wal - keys for the sort */
1637   ht_slot *aLeft,                 /* IN: Left hand input list */
1638   int nLeft,                      /* IN: Elements in array *paLeft */
1639   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1640   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1641   ht_slot *aTmp                   /* Temporary buffer */
1642 ){
1643   int iLeft = 0;                  /* Current index in aLeft */
1644   int iRight = 0;                 /* Current index in aRight */
1645   int iOut = 0;                   /* Current index in output buffer */
1646   int nRight = *pnRight;
1647   ht_slot *aRight = *paRight;
1648 
1649   assert( nLeft>0 && nRight>0 );
1650   while( iRight<nRight || iLeft<nLeft ){
1651     ht_slot logpage;
1652     Pgno dbpage;
1653 
1654     if( (iLeft<nLeft)
1655      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1656     ){
1657       logpage = aLeft[iLeft++];
1658     }else{
1659       logpage = aRight[iRight++];
1660     }
1661     dbpage = aContent[logpage];
1662 
1663     aTmp[iOut++] = logpage;
1664     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1665 
1666     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1667     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1668   }
1669 
1670   *paRight = aLeft;
1671   *pnRight = iOut;
1672   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1673 }
1674 
1675 /*
1676 ** Sort the elements in list aList using aContent[] as the sort key.
1677 ** Remove elements with duplicate keys, preferring to keep the
1678 ** larger aList[] values.
1679 **
1680 ** The aList[] entries are indices into aContent[].  The values in
1681 ** aList[] are to be sorted so that for all J<K:
1682 **
1683 **      aContent[aList[J]] < aContent[aList[K]]
1684 **
1685 ** For any X and Y such that
1686 **
1687 **      aContent[aList[X]] == aContent[aList[Y]]
1688 **
1689 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1690 ** the smaller.
1691 */
1692 static void walMergesort(
1693   const u32 *aContent,            /* Pages in wal */
1694   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1695   ht_slot *aList,                 /* IN/OUT: List to sort */
1696   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1697 ){
1698   struct Sublist {
1699     int nList;                    /* Number of elements in aList */
1700     ht_slot *aList;               /* Pointer to sub-list content */
1701   };
1702 
1703   const int nList = *pnList;      /* Size of input list */
1704   int nMerge = 0;                 /* Number of elements in list aMerge */
1705   ht_slot *aMerge = 0;            /* List to be merged */
1706   int iList;                      /* Index into input list */
1707   u32 iSub = 0;                   /* Index into aSub array */
1708   struct Sublist aSub[13];        /* Array of sub-lists */
1709 
1710   memset(aSub, 0, sizeof(aSub));
1711   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1712   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1713 
1714   for(iList=0; iList<nList; iList++){
1715     nMerge = 1;
1716     aMerge = &aList[iList];
1717     for(iSub=0; iList & (1<<iSub); iSub++){
1718       struct Sublist *p;
1719       assert( iSub<ArraySize(aSub) );
1720       p = &aSub[iSub];
1721       assert( p->aList && p->nList<=(1<<iSub) );
1722       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1723       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1724     }
1725     aSub[iSub].aList = aMerge;
1726     aSub[iSub].nList = nMerge;
1727   }
1728 
1729   for(iSub++; iSub<ArraySize(aSub); iSub++){
1730     if( nList & (1<<iSub) ){
1731       struct Sublist *p;
1732       assert( iSub<ArraySize(aSub) );
1733       p = &aSub[iSub];
1734       assert( p->nList<=(1<<iSub) );
1735       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1736       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1737     }
1738   }
1739   assert( aMerge==aList );
1740   *pnList = nMerge;
1741 
1742 #ifdef SQLITE_DEBUG
1743   {
1744     int i;
1745     for(i=1; i<*pnList; i++){
1746       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1747     }
1748   }
1749 #endif
1750 }
1751 
1752 /*
1753 ** Free an iterator allocated by walIteratorInit().
1754 */
1755 static void walIteratorFree(WalIterator *p){
1756   sqlite3_free(p);
1757 }
1758 
1759 /*
1760 ** Construct a WalInterator object that can be used to loop over all
1761 ** pages in the WAL following frame nBackfill in ascending order. Frames
1762 ** nBackfill or earlier may be included - excluding them is an optimization
1763 ** only. The caller must hold the checkpoint lock.
1764 **
1765 ** On success, make *pp point to the newly allocated WalInterator object
1766 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1767 ** returns an error, the value of *pp is undefined.
1768 **
1769 ** The calling routine should invoke walIteratorFree() to destroy the
1770 ** WalIterator object when it has finished with it.
1771 */
1772 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1773   WalIterator *p;                 /* Return value */
1774   int nSegment;                   /* Number of segments to merge */
1775   u32 iLast;                      /* Last frame in log */
1776   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1777   int i;                          /* Iterator variable */
1778   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1779   int rc = SQLITE_OK;             /* Return Code */
1780 
1781   /* This routine only runs while holding the checkpoint lock. And
1782   ** it only runs if there is actually content in the log (mxFrame>0).
1783   */
1784   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1785   iLast = pWal->hdr.mxFrame;
1786 
1787   /* Allocate space for the WalIterator object. */
1788   nSegment = walFramePage(iLast) + 1;
1789   nByte = sizeof(WalIterator)
1790         + (nSegment-1)*sizeof(struct WalSegment)
1791         + iLast*sizeof(ht_slot);
1792   p = (WalIterator *)sqlite3_malloc64(nByte);
1793   if( !p ){
1794     return SQLITE_NOMEM_BKPT;
1795   }
1796   memset(p, 0, nByte);
1797   p->nSegment = nSegment;
1798 
1799   /* Allocate temporary space used by the merge-sort routine. This block
1800   ** of memory will be freed before this function returns.
1801   */
1802   aTmp = (ht_slot *)sqlite3_malloc64(
1803       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1804   );
1805   if( !aTmp ){
1806     rc = SQLITE_NOMEM_BKPT;
1807   }
1808 
1809   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1810     WalHashLoc sLoc;
1811 
1812     rc = walHashGet(pWal, i, &sLoc);
1813     if( rc==SQLITE_OK ){
1814       int j;                      /* Counter variable */
1815       int nEntry;                 /* Number of entries in this segment */
1816       ht_slot *aIndex;            /* Sorted index for this segment */
1817 
1818       sLoc.aPgno++;
1819       if( (i+1)==nSegment ){
1820         nEntry = (int)(iLast - sLoc.iZero);
1821       }else{
1822         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1823       }
1824       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1825       sLoc.iZero++;
1826 
1827       for(j=0; j<nEntry; j++){
1828         aIndex[j] = (ht_slot)j;
1829       }
1830       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1831       p->aSegment[i].iZero = sLoc.iZero;
1832       p->aSegment[i].nEntry = nEntry;
1833       p->aSegment[i].aIndex = aIndex;
1834       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1835     }
1836   }
1837   sqlite3_free(aTmp);
1838 
1839   if( rc!=SQLITE_OK ){
1840     walIteratorFree(p);
1841     p = 0;
1842   }
1843   *pp = p;
1844   return rc;
1845 }
1846 
1847 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1848 /*
1849 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1850 ** they are supported by the VFS, and (b) the database handle is configured
1851 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1852 ** or 0 otherwise.
1853 */
1854 static int walEnableBlocking(Wal *pWal){
1855   int res = 0;
1856   if( pWal->db ){
1857     int tmout = pWal->db->busyTimeout;
1858     if( tmout ){
1859       int rc;
1860       rc = sqlite3OsFileControl(
1861           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1862       );
1863       res = (rc==SQLITE_OK);
1864     }
1865   }
1866   return res;
1867 }
1868 
1869 /*
1870 ** Disable blocking locks.
1871 */
1872 static void walDisableBlocking(Wal *pWal){
1873   int tmout = 0;
1874   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1875 }
1876 
1877 /*
1878 ** If parameter bLock is true, attempt to enable blocking locks, take
1879 ** the WRITER lock, and then disable blocking locks. If blocking locks
1880 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1881 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1882 ** an error if blocking locks can not be enabled.
1883 **
1884 ** If the bLock parameter is false and the WRITER lock is held, release it.
1885 */
1886 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1887   int rc = SQLITE_OK;
1888   assert( pWal->readLock<0 || bLock==0 );
1889   if( bLock ){
1890     assert( pWal->db );
1891     if( walEnableBlocking(pWal) ){
1892       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1893       if( rc==SQLITE_OK ){
1894         pWal->writeLock = 1;
1895       }
1896       walDisableBlocking(pWal);
1897     }
1898   }else if( pWal->writeLock ){
1899     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1900     pWal->writeLock = 0;
1901   }
1902   return rc;
1903 }
1904 
1905 /*
1906 ** Set the database handle used to determine if blocking locks are required.
1907 */
1908 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1909   pWal->db = db;
1910 }
1911 
1912 /*
1913 ** Take an exclusive WRITE lock. Blocking if so configured.
1914 */
1915 static int walLockWriter(Wal *pWal){
1916   int rc;
1917   walEnableBlocking(pWal);
1918   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1919   walDisableBlocking(pWal);
1920   return rc;
1921 }
1922 #else
1923 # define walEnableBlocking(x) 0
1924 # define walDisableBlocking(x)
1925 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1926 # define sqlite3WalDb(pWal, db)
1927 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1928 
1929 
1930 /*
1931 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1932 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1933 ** busy-handler function. Invoke it and retry the lock until either the
1934 ** lock is successfully obtained or the busy-handler returns 0.
1935 */
1936 static int walBusyLock(
1937   Wal *pWal,                      /* WAL connection */
1938   int (*xBusy)(void*),            /* Function to call when busy */
1939   void *pBusyArg,                 /* Context argument for xBusyHandler */
1940   int lockIdx,                    /* Offset of first byte to lock */
1941   int n                           /* Number of bytes to lock */
1942 ){
1943   int rc;
1944   do {
1945     rc = walLockExclusive(pWal, lockIdx, n);
1946   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1947 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1948   if( rc==SQLITE_BUSY_TIMEOUT ){
1949     walDisableBlocking(pWal);
1950     rc = SQLITE_BUSY;
1951   }
1952 #endif
1953   return rc;
1954 }
1955 
1956 /*
1957 ** The cache of the wal-index header must be valid to call this function.
1958 ** Return the page-size in bytes used by the database.
1959 */
1960 static int walPagesize(Wal *pWal){
1961   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1962 }
1963 
1964 /*
1965 ** The following is guaranteed when this function is called:
1966 **
1967 **   a) the WRITER lock is held,
1968 **   b) the entire log file has been checkpointed, and
1969 **   c) any existing readers are reading exclusively from the database
1970 **      file - there are no readers that may attempt to read a frame from
1971 **      the log file.
1972 **
1973 ** This function updates the shared-memory structures so that the next
1974 ** client to write to the database (which may be this one) does so by
1975 ** writing frames into the start of the log file.
1976 **
1977 ** The value of parameter salt1 is used as the aSalt[1] value in the
1978 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1979 ** one obtained from sqlite3_randomness()).
1980 */
1981 static void walRestartHdr(Wal *pWal, u32 salt1){
1982   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1983   int i;                          /* Loop counter */
1984   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1985   pWal->nCkpt++;
1986   pWal->hdr.mxFrame = 0;
1987   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1988   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1989   walIndexWriteHdr(pWal);
1990   AtomicStore(&pInfo->nBackfill, 0);
1991   pInfo->nBackfillAttempted = 0;
1992   pInfo->aReadMark[1] = 0;
1993   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1994   assert( pInfo->aReadMark[0]==0 );
1995 }
1996 
1997 /*
1998 ** Copy as much content as we can from the WAL back into the database file
1999 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
2000 **
2001 ** The amount of information copies from WAL to database might be limited
2002 ** by active readers.  This routine will never overwrite a database page
2003 ** that a concurrent reader might be using.
2004 **
2005 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
2006 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
2007 ** checkpoints are always run by a background thread or background
2008 ** process, foreground threads will never block on a lengthy fsync call.
2009 **
2010 ** Fsync is called on the WAL before writing content out of the WAL and
2011 ** into the database.  This ensures that if the new content is persistent
2012 ** in the WAL and can be recovered following a power-loss or hard reset.
2013 **
2014 ** Fsync is also called on the database file if (and only if) the entire
2015 ** WAL content is copied into the database file.  This second fsync makes
2016 ** it safe to delete the WAL since the new content will persist in the
2017 ** database file.
2018 **
2019 ** This routine uses and updates the nBackfill field of the wal-index header.
2020 ** This is the only routine that will increase the value of nBackfill.
2021 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
2022 ** its value.)
2023 **
2024 ** The caller must be holding sufficient locks to ensure that no other
2025 ** checkpoint is running (in any other thread or process) at the same
2026 ** time.
2027 */
2028 static int walCheckpoint(
2029   Wal *pWal,                      /* Wal connection */
2030   sqlite3 *db,                    /* Check for interrupts on this handle */
2031   int eMode,                      /* One of PASSIVE, FULL or RESTART */
2032   int (*xBusy)(void*),            /* Function to call when busy */
2033   void *pBusyArg,                 /* Context argument for xBusyHandler */
2034   int sync_flags,                 /* Flags for OsSync() (or 0) */
2035   u8 *zBuf                        /* Temporary buffer to use */
2036 ){
2037   int rc = SQLITE_OK;             /* Return code */
2038   int szPage;                     /* Database page-size */
2039   WalIterator *pIter = 0;         /* Wal iterator context */
2040   u32 iDbpage = 0;                /* Next database page to write */
2041   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
2042   u32 mxSafeFrame;                /* Max frame that can be backfilled */
2043   u32 mxPage;                     /* Max database page to write */
2044   int i;                          /* Loop counter */
2045   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
2046 
2047   szPage = walPagesize(pWal);
2048   testcase( szPage<=32768 );
2049   testcase( szPage>=65536 );
2050   pInfo = walCkptInfo(pWal);
2051   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2052 
2053     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2054     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2055     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2056 
2057     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
2058     ** safe to write into the database.  Frames beyond mxSafeFrame might
2059     ** overwrite database pages that are in use by active readers and thus
2060     ** cannot be backfilled from the WAL.
2061     */
2062     mxSafeFrame = pWal->hdr.mxFrame;
2063     mxPage = pWal->hdr.nPage;
2064     for(i=1; i<WAL_NREADER; i++){
2065       u32 y = AtomicLoad(pInfo->aReadMark+i);
2066       if( mxSafeFrame>y ){
2067         assert( y<=pWal->hdr.mxFrame );
2068         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
2069         if( rc==SQLITE_OK ){
2070           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
2071           AtomicStore(pInfo->aReadMark+i, iMark);
2072           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2073         }else if( rc==SQLITE_BUSY ){
2074           mxSafeFrame = y;
2075           xBusy = 0;
2076         }else{
2077           goto walcheckpoint_out;
2078         }
2079       }
2080     }
2081 
2082     /* Allocate the iterator */
2083     if( pInfo->nBackfill<mxSafeFrame ){
2084       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
2085       assert( rc==SQLITE_OK || pIter==0 );
2086     }
2087 
2088     if( pIter
2089      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
2090     ){
2091       u32 nBackfill = pInfo->nBackfill;
2092 
2093       pInfo->nBackfillAttempted = mxSafeFrame;
2094 
2095       /* Sync the WAL to disk */
2096       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2097 
2098       /* If the database may grow as a result of this checkpoint, hint
2099       ** about the eventual size of the db file to the VFS layer.
2100       */
2101       if( rc==SQLITE_OK ){
2102         i64 nReq = ((i64)mxPage * szPage);
2103         i64 nSize;                    /* Current size of database file */
2104         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2105         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2106         if( rc==SQLITE_OK && nSize<nReq ){
2107           if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2108             /* If the size of the final database is larger than the current
2109             ** database plus the amount of data in the wal file, plus the
2110             ** maximum size of the pending-byte page (65536 bytes), then
2111             ** must be corruption somewhere.  */
2112             rc = SQLITE_CORRUPT_BKPT;
2113           }else{
2114             sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2115           }
2116         }
2117 
2118       }
2119 
2120       /* Iterate through the contents of the WAL, copying data to the db file */
2121       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2122         i64 iOffset;
2123         assert( walFramePgno(pWal, iFrame)==iDbpage );
2124         if( AtomicLoad(&db->u1.isInterrupted) ){
2125           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2126           break;
2127         }
2128         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2129           continue;
2130         }
2131         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2132         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2133         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2134         if( rc!=SQLITE_OK ) break;
2135         iOffset = (iDbpage-1)*(i64)szPage;
2136         testcase( IS_BIG_INT(iOffset) );
2137         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2138         if( rc!=SQLITE_OK ) break;
2139       }
2140       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2141 
2142       /* If work was actually accomplished... */
2143       if( rc==SQLITE_OK ){
2144         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2145           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2146           testcase( IS_BIG_INT(szDb) );
2147           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2148           if( rc==SQLITE_OK ){
2149             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2150           }
2151         }
2152         if( rc==SQLITE_OK ){
2153           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2154         }
2155       }
2156 
2157       /* Release the reader lock held while backfilling */
2158       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2159     }
2160 
2161     if( rc==SQLITE_BUSY ){
2162       /* Reset the return code so as not to report a checkpoint failure
2163       ** just because there are active readers.  */
2164       rc = SQLITE_OK;
2165     }
2166   }
2167 
2168   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2169   ** entire wal file has been copied into the database file, then block
2170   ** until all readers have finished using the wal file. This ensures that
2171   ** the next process to write to the database restarts the wal file.
2172   */
2173   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2174     assert( pWal->writeLock );
2175     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2176       rc = SQLITE_BUSY;
2177     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2178       u32 salt1;
2179       sqlite3_randomness(4, &salt1);
2180       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2181       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2182       if( rc==SQLITE_OK ){
2183         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2184           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2185           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2186           ** truncates the log file to zero bytes just prior to a
2187           ** successful return.
2188           **
2189           ** In theory, it might be safe to do this without updating the
2190           ** wal-index header in shared memory, as all subsequent reader or
2191           ** writer clients should see that the entire log file has been
2192           ** checkpointed and behave accordingly. This seems unsafe though,
2193           ** as it would leave the system in a state where the contents of
2194           ** the wal-index header do not match the contents of the
2195           ** file-system. To avoid this, update the wal-index header to
2196           ** indicate that the log file contains zero valid frames.  */
2197           walRestartHdr(pWal, salt1);
2198           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2199         }
2200         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2201       }
2202     }
2203   }
2204 
2205  walcheckpoint_out:
2206   walIteratorFree(pIter);
2207   return rc;
2208 }
2209 
2210 /*
2211 ** If the WAL file is currently larger than nMax bytes in size, truncate
2212 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2213 */
2214 static void walLimitSize(Wal *pWal, i64 nMax){
2215   i64 sz;
2216   int rx;
2217   sqlite3BeginBenignMalloc();
2218   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2219   if( rx==SQLITE_OK && (sz > nMax ) ){
2220     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2221   }
2222   sqlite3EndBenignMalloc();
2223   if( rx ){
2224     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2225   }
2226 }
2227 
2228 /*
2229 ** Close a connection to a log file.
2230 */
2231 int sqlite3WalClose(
2232   Wal *pWal,                      /* Wal to close */
2233   sqlite3 *db,                    /* For interrupt flag */
2234   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2235   int nBuf,
2236   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2237 ){
2238   int rc = SQLITE_OK;
2239   if( pWal ){
2240     int isDelete = 0;             /* True to unlink wal and wal-index files */
2241 
2242     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2243     ** ordinary, rollback-mode locking methods, this guarantees that the
2244     ** connection associated with this log file is the only connection to
2245     ** the database. In this case checkpoint the database and unlink both
2246     ** the wal and wal-index files.
2247     **
2248     ** The EXCLUSIVE lock is not released before returning.
2249     */
2250     if( zBuf!=0
2251      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2252     ){
2253       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2254         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2255       }
2256       rc = sqlite3WalCheckpoint(pWal, db,
2257           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2258       );
2259       if( rc==SQLITE_OK ){
2260         int bPersist = -1;
2261         sqlite3OsFileControlHint(
2262             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2263         );
2264         if( bPersist!=1 ){
2265           /* Try to delete the WAL file if the checkpoint completed and
2266           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2267           ** mode (!bPersist) */
2268           isDelete = 1;
2269         }else if( pWal->mxWalSize>=0 ){
2270           /* Try to truncate the WAL file to zero bytes if the checkpoint
2271           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2272           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2273           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2274           ** to zero bytes as truncating to the journal_size_limit might
2275           ** leave a corrupt WAL file on disk. */
2276           walLimitSize(pWal, 0);
2277         }
2278       }
2279     }
2280 
2281     walIndexClose(pWal, isDelete);
2282     sqlite3OsClose(pWal->pWalFd);
2283     if( isDelete ){
2284       sqlite3BeginBenignMalloc();
2285       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2286       sqlite3EndBenignMalloc();
2287     }
2288     WALTRACE(("WAL%p: closed\n", pWal));
2289     sqlite3_free((void *)pWal->apWiData);
2290     sqlite3_free(pWal);
2291   }
2292   return rc;
2293 }
2294 
2295 /*
2296 ** Try to read the wal-index header.  Return 0 on success and 1 if
2297 ** there is a problem.
2298 **
2299 ** The wal-index is in shared memory.  Another thread or process might
2300 ** be writing the header at the same time this procedure is trying to
2301 ** read it, which might result in inconsistency.  A dirty read is detected
2302 ** by verifying that both copies of the header are the same and also by
2303 ** a checksum on the header.
2304 **
2305 ** If and only if the read is consistent and the header is different from
2306 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2307 ** and *pChanged is set to 1.
2308 **
2309 ** If the checksum cannot be verified return non-zero. If the header
2310 ** is read successfully and the checksum verified, return zero.
2311 */
2312 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2313   u32 aCksum[2];                  /* Checksum on the header content */
2314   WalIndexHdr h1, h2;             /* Two copies of the header content */
2315   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2316 
2317   /* The first page of the wal-index must be mapped at this point. */
2318   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2319 
2320   /* Read the header. This might happen concurrently with a write to the
2321   ** same area of shared memory on a different CPU in a SMP,
2322   ** meaning it is possible that an inconsistent snapshot is read
2323   ** from the file. If this happens, return non-zero.
2324   **
2325   ** tag-20200519-1:
2326   ** There are two copies of the header at the beginning of the wal-index.
2327   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2328   ** Memory barriers are used to prevent the compiler or the hardware from
2329   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2330   ** give false-positive warnings about these accesses because the tools do not
2331   ** account for the double-read and the memory barrier. The use of mutexes
2332   ** here would be problematic as the memory being accessed is potentially
2333   ** shared among multiple processes and not all mutex implementions work
2334   ** reliably in that environment.
2335   */
2336   aHdr = walIndexHdr(pWal);
2337   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2338   walShmBarrier(pWal);
2339   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2340 
2341   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2342     return 1;   /* Dirty read */
2343   }
2344   if( h1.isInit==0 ){
2345     return 1;   /* Malformed header - probably all zeros */
2346   }
2347   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2348   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2349     return 1;   /* Checksum does not match */
2350   }
2351 
2352   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2353     *pChanged = 1;
2354     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2355     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2356     testcase( pWal->szPage<=32768 );
2357     testcase( pWal->szPage>=65536 );
2358   }
2359 
2360   /* The header was successfully read. Return zero. */
2361   return 0;
2362 }
2363 
2364 /*
2365 ** This is the value that walTryBeginRead returns when it needs to
2366 ** be retried.
2367 */
2368 #define WAL_RETRY  (-1)
2369 
2370 /*
2371 ** Read the wal-index header from the wal-index and into pWal->hdr.
2372 ** If the wal-header appears to be corrupt, try to reconstruct the
2373 ** wal-index from the WAL before returning.
2374 **
2375 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2376 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2377 ** to 0.
2378 **
2379 ** If the wal-index header is successfully read, return SQLITE_OK.
2380 ** Otherwise an SQLite error code.
2381 */
2382 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2383   int rc;                         /* Return code */
2384   int badHdr;                     /* True if a header read failed */
2385   volatile u32 *page0;            /* Chunk of wal-index containing header */
2386 
2387   /* Ensure that page 0 of the wal-index (the page that contains the
2388   ** wal-index header) is mapped. Return early if an error occurs here.
2389   */
2390   assert( pChanged );
2391   rc = walIndexPage(pWal, 0, &page0);
2392   if( rc!=SQLITE_OK ){
2393     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2394     if( rc==SQLITE_READONLY_CANTINIT ){
2395       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2396       ** was openable but is not writable, and this thread is unable to
2397       ** confirm that another write-capable connection has the shared-memory
2398       ** open, and hence the content of the shared-memory is unreliable,
2399       ** since the shared-memory might be inconsistent with the WAL file
2400       ** and there is no writer on hand to fix it. */
2401       assert( page0==0 );
2402       assert( pWal->writeLock==0 );
2403       assert( pWal->readOnly & WAL_SHM_RDONLY );
2404       pWal->bShmUnreliable = 1;
2405       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2406       *pChanged = 1;
2407     }else{
2408       return rc; /* Any other non-OK return is just an error */
2409     }
2410   }else{
2411     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2412     ** is zero, which prevents the SHM from growing */
2413     testcase( page0!=0 );
2414   }
2415   assert( page0!=0 || pWal->writeLock==0 );
2416 
2417   /* If the first page of the wal-index has been mapped, try to read the
2418   ** wal-index header immediately, without holding any lock. This usually
2419   ** works, but may fail if the wal-index header is corrupt or currently
2420   ** being modified by another thread or process.
2421   */
2422   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2423 
2424   /* If the first attempt failed, it might have been due to a race
2425   ** with a writer.  So get a WRITE lock and try again.
2426   */
2427   if( badHdr ){
2428     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2429       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2430         walUnlockShared(pWal, WAL_WRITE_LOCK);
2431         rc = SQLITE_READONLY_RECOVERY;
2432       }
2433     }else{
2434       int bWriteLock = pWal->writeLock;
2435       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2436         pWal->writeLock = 1;
2437         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2438           badHdr = walIndexTryHdr(pWal, pChanged);
2439           if( badHdr ){
2440             /* If the wal-index header is still malformed even while holding
2441             ** a WRITE lock, it can only mean that the header is corrupted and
2442             ** needs to be reconstructed.  So run recovery to do exactly that.
2443             */
2444             rc = walIndexRecover(pWal);
2445             *pChanged = 1;
2446           }
2447         }
2448         if( bWriteLock==0 ){
2449           pWal->writeLock = 0;
2450           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2451         }
2452       }
2453     }
2454   }
2455 
2456   /* If the header is read successfully, check the version number to make
2457   ** sure the wal-index was not constructed with some future format that
2458   ** this version of SQLite cannot understand.
2459   */
2460   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2461     rc = SQLITE_CANTOPEN_BKPT;
2462   }
2463   if( pWal->bShmUnreliable ){
2464     if( rc!=SQLITE_OK ){
2465       walIndexClose(pWal, 0);
2466       pWal->bShmUnreliable = 0;
2467       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2468       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2469       ** writer truncated the WAL out from under it.  If that happens, it
2470       ** indicates that a writer has fixed the SHM file for us, so retry */
2471       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2472     }
2473     pWal->exclusiveMode = WAL_NORMAL_MODE;
2474   }
2475 
2476   return rc;
2477 }
2478 
2479 /*
2480 ** Open a transaction in a connection where the shared-memory is read-only
2481 ** and where we cannot verify that there is a separate write-capable connection
2482 ** on hand to keep the shared-memory up-to-date with the WAL file.
2483 **
2484 ** This can happen, for example, when the shared-memory is implemented by
2485 ** memory-mapping a *-shm file, where a prior writer has shut down and
2486 ** left the *-shm file on disk, and now the present connection is trying
2487 ** to use that database but lacks write permission on the *-shm file.
2488 ** Other scenarios are also possible, depending on the VFS implementation.
2489 **
2490 ** Precondition:
2491 **
2492 **    The *-wal file has been read and an appropriate wal-index has been
2493 **    constructed in pWal->apWiData[] using heap memory instead of shared
2494 **    memory.
2495 **
2496 ** If this function returns SQLITE_OK, then the read transaction has
2497 ** been successfully opened. In this case output variable (*pChanged)
2498 ** is set to true before returning if the caller should discard the
2499 ** contents of the page cache before proceeding. Or, if it returns
2500 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2501 ** the caller should retry opening the read transaction from the
2502 ** beginning (including attempting to map the *-shm file).
2503 **
2504 ** If an error occurs, an SQLite error code is returned.
2505 */
2506 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2507   i64 szWal;                      /* Size of wal file on disk in bytes */
2508   i64 iOffset;                    /* Current offset when reading wal file */
2509   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2510   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2511   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2512   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2513   volatile void *pDummy;          /* Dummy argument for xShmMap */
2514   int rc;                         /* Return code */
2515   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2516 
2517   assert( pWal->bShmUnreliable );
2518   assert( pWal->readOnly & WAL_SHM_RDONLY );
2519   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2520 
2521   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2522   ** writers from running a checkpoint, but does not stop them
2523   ** from running recovery.  */
2524   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2525   if( rc!=SQLITE_OK ){
2526     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2527     goto begin_unreliable_shm_out;
2528   }
2529   pWal->readLock = 0;
2530 
2531   /* Check to see if a separate writer has attached to the shared-memory area,
2532   ** thus making the shared-memory "reliable" again.  Do this by invoking
2533   ** the xShmMap() routine of the VFS and looking to see if the return
2534   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2535   **
2536   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2537   ** cause the heap-memory WAL-index to be discarded and the actual
2538   ** shared memory to be used in its place.
2539   **
2540   ** This step is important because, even though this connection is holding
2541   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2542   ** have already checkpointed the WAL file and, while the current
2543   ** is active, wrap the WAL and start overwriting frames that this
2544   ** process wants to use.
2545   **
2546   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2547   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2548   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2549   ** even if some external agent does a "chmod" to make the shared-memory
2550   ** writable by us, until sqlite3OsShmUnmap() has been called.
2551   ** This is a requirement on the VFS implementation.
2552    */
2553   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2554   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2555   if( rc!=SQLITE_READONLY_CANTINIT ){
2556     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2557     goto begin_unreliable_shm_out;
2558   }
2559 
2560   /* We reach this point only if the real shared-memory is still unreliable.
2561   ** Assume the in-memory WAL-index substitute is correct and load it
2562   ** into pWal->hdr.
2563   */
2564   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2565 
2566   /* Make sure some writer hasn't come in and changed the WAL file out
2567   ** from under us, then disconnected, while we were not looking.
2568   */
2569   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2570   if( rc!=SQLITE_OK ){
2571     goto begin_unreliable_shm_out;
2572   }
2573   if( szWal<WAL_HDRSIZE ){
2574     /* If the wal file is too small to contain a wal-header and the
2575     ** wal-index header has mxFrame==0, then it must be safe to proceed
2576     ** reading the database file only. However, the page cache cannot
2577     ** be trusted, as a read/write connection may have connected, written
2578     ** the db, run a checkpoint, truncated the wal file and disconnected
2579     ** since this client's last read transaction.  */
2580     *pChanged = 1;
2581     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2582     goto begin_unreliable_shm_out;
2583   }
2584 
2585   /* Check the salt keys at the start of the wal file still match. */
2586   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2587   if( rc!=SQLITE_OK ){
2588     goto begin_unreliable_shm_out;
2589   }
2590   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2591     /* Some writer has wrapped the WAL file while we were not looking.
2592     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2593     ** rebuilt. */
2594     rc = WAL_RETRY;
2595     goto begin_unreliable_shm_out;
2596   }
2597 
2598   /* Allocate a buffer to read frames into */
2599   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2600   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2601   if( aFrame==0 ){
2602     rc = SQLITE_NOMEM_BKPT;
2603     goto begin_unreliable_shm_out;
2604   }
2605   aData = &aFrame[WAL_FRAME_HDRSIZE];
2606 
2607   /* Check to see if a complete transaction has been appended to the
2608   ** wal file since the heap-memory wal-index was created. If so, the
2609   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2610   ** the caller.  */
2611   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2612   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2613   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2614       iOffset+szFrame<=szWal;
2615       iOffset+=szFrame
2616   ){
2617     u32 pgno;                   /* Database page number for frame */
2618     u32 nTruncate;              /* dbsize field from frame header */
2619 
2620     /* Read and decode the next log frame. */
2621     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2622     if( rc!=SQLITE_OK ) break;
2623     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2624 
2625     /* If nTruncate is non-zero, then a complete transaction has been
2626     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2627     ** the loop.  */
2628     if( nTruncate ){
2629       rc = WAL_RETRY;
2630       break;
2631     }
2632   }
2633   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2634   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2635 
2636  begin_unreliable_shm_out:
2637   sqlite3_free(aFrame);
2638   if( rc!=SQLITE_OK ){
2639     int i;
2640     for(i=0; i<pWal->nWiData; i++){
2641       sqlite3_free((void*)pWal->apWiData[i]);
2642       pWal->apWiData[i] = 0;
2643     }
2644     pWal->bShmUnreliable = 0;
2645     sqlite3WalEndReadTransaction(pWal);
2646     *pChanged = 1;
2647   }
2648   return rc;
2649 }
2650 
2651 /*
2652 ** Attempt to start a read transaction.  This might fail due to a race or
2653 ** other transient condition.  When that happens, it returns WAL_RETRY to
2654 ** indicate to the caller that it is safe to retry immediately.
2655 **
2656 ** On success return SQLITE_OK.  On a permanent failure (such an
2657 ** I/O error or an SQLITE_BUSY because another process is running
2658 ** recovery) return a positive error code.
2659 **
2660 ** The useWal parameter is true to force the use of the WAL and disable
2661 ** the case where the WAL is bypassed because it has been completely
2662 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2663 ** to make a copy of the wal-index header into pWal->hdr.  If the
2664 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2665 ** to the caller that the local page cache is obsolete and needs to be
2666 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2667 ** be loaded and the pChanged parameter is unused.
2668 **
2669 ** The caller must set the cnt parameter to the number of prior calls to
2670 ** this routine during the current read attempt that returned WAL_RETRY.
2671 ** This routine will start taking more aggressive measures to clear the
2672 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2673 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2674 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2675 ** and is not honoring the locking protocol.  There is a vanishingly small
2676 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2677 ** bad luck when there is lots of contention for the wal-index, but that
2678 ** possibility is so small that it can be safely neglected, we believe.
2679 **
2680 ** On success, this routine obtains a read lock on
2681 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2682 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2683 ** that means the Wal does not hold any read lock.  The reader must not
2684 ** access any database page that is modified by a WAL frame up to and
2685 ** including frame number aReadMark[pWal->readLock].  The reader will
2686 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2687 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2688 ** completely and get all content directly from the database file.
2689 ** If the useWal parameter is 1 then the WAL will never be ignored and
2690 ** this routine will always set pWal->readLock>0 on success.
2691 ** When the read transaction is completed, the caller must release the
2692 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2693 **
2694 ** This routine uses the nBackfill and aReadMark[] fields of the header
2695 ** to select a particular WAL_READ_LOCK() that strives to let the
2696 ** checkpoint process do as much work as possible.  This routine might
2697 ** update values of the aReadMark[] array in the header, but if it does
2698 ** so it takes care to hold an exclusive lock on the corresponding
2699 ** WAL_READ_LOCK() while changing values.
2700 */
2701 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2702   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2703   u32 mxReadMark;                 /* Largest aReadMark[] value */
2704   int mxI;                        /* Index of largest aReadMark[] value */
2705   int i;                          /* Loop counter */
2706   int rc = SQLITE_OK;             /* Return code  */
2707   u32 mxFrame;                    /* Wal frame to lock to */
2708 
2709   assert( pWal->readLock<0 );     /* Not currently locked */
2710 
2711   /* useWal may only be set for read/write connections */
2712   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2713 
2714   /* Take steps to avoid spinning forever if there is a protocol error.
2715   **
2716   ** Circumstances that cause a RETRY should only last for the briefest
2717   ** instances of time.  No I/O or other system calls are done while the
2718   ** locks are held, so the locks should not be held for very long. But
2719   ** if we are unlucky, another process that is holding a lock might get
2720   ** paged out or take a page-fault that is time-consuming to resolve,
2721   ** during the few nanoseconds that it is holding the lock.  In that case,
2722   ** it might take longer than normal for the lock to free.
2723   **
2724   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2725   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2726   ** is more of a scheduler yield than an actual delay.  But on the 10th
2727   ** an subsequent retries, the delays start becoming longer and longer,
2728   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2729   ** The total delay time before giving up is less than 10 seconds.
2730   */
2731   if( cnt>5 ){
2732     int nDelay = 1;                      /* Pause time in microseconds */
2733     if( cnt>100 ){
2734       VVA_ONLY( pWal->lockError = 1; )
2735       return SQLITE_PROTOCOL;
2736     }
2737     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2738     sqlite3OsSleep(pWal->pVfs, nDelay);
2739   }
2740 
2741   if( !useWal ){
2742     assert( rc==SQLITE_OK );
2743     if( pWal->bShmUnreliable==0 ){
2744       rc = walIndexReadHdr(pWal, pChanged);
2745     }
2746     if( rc==SQLITE_BUSY ){
2747       /* If there is not a recovery running in another thread or process
2748       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2749       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2750       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2751       ** would be technically correct.  But the race is benign since with
2752       ** WAL_RETRY this routine will be called again and will probably be
2753       ** right on the second iteration.
2754       */
2755       if( pWal->apWiData[0]==0 ){
2756         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2757         ** We assume this is a transient condition, so return WAL_RETRY. The
2758         ** xShmMap() implementation used by the default unix and win32 VFS
2759         ** modules may return SQLITE_BUSY due to a race condition in the
2760         ** code that determines whether or not the shared-memory region
2761         ** must be zeroed before the requested page is returned.
2762         */
2763         rc = WAL_RETRY;
2764       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2765         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2766         rc = WAL_RETRY;
2767       }else if( rc==SQLITE_BUSY ){
2768         rc = SQLITE_BUSY_RECOVERY;
2769       }
2770     }
2771     if( rc!=SQLITE_OK ){
2772       return rc;
2773     }
2774     else if( pWal->bShmUnreliable ){
2775       return walBeginShmUnreliable(pWal, pChanged);
2776     }
2777   }
2778 
2779   assert( pWal->nWiData>0 );
2780   assert( pWal->apWiData[0]!=0 );
2781   pInfo = walCkptInfo(pWal);
2782   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2783 #ifdef SQLITE_ENABLE_SNAPSHOT
2784    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2785 #endif
2786   ){
2787     /* The WAL has been completely backfilled (or it is empty).
2788     ** and can be safely ignored.
2789     */
2790     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2791     walShmBarrier(pWal);
2792     if( rc==SQLITE_OK ){
2793       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2794         /* It is not safe to allow the reader to continue here if frames
2795         ** may have been appended to the log before READ_LOCK(0) was obtained.
2796         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2797         ** which implies that the database file contains a trustworthy
2798         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2799         ** happening, this is usually correct.
2800         **
2801         ** However, if frames have been appended to the log (or if the log
2802         ** is wrapped and written for that matter) before the READ_LOCK(0)
2803         ** is obtained, that is not necessarily true. A checkpointer may
2804         ** have started to backfill the appended frames but crashed before
2805         ** it finished. Leaving a corrupt image in the database file.
2806         */
2807         walUnlockShared(pWal, WAL_READ_LOCK(0));
2808         return WAL_RETRY;
2809       }
2810       pWal->readLock = 0;
2811       return SQLITE_OK;
2812     }else if( rc!=SQLITE_BUSY ){
2813       return rc;
2814     }
2815   }
2816 
2817   /* If we get this far, it means that the reader will want to use
2818   ** the WAL to get at content from recent commits.  The job now is
2819   ** to select one of the aReadMark[] entries that is closest to
2820   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2821   */
2822   mxReadMark = 0;
2823   mxI = 0;
2824   mxFrame = pWal->hdr.mxFrame;
2825 #ifdef SQLITE_ENABLE_SNAPSHOT
2826   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2827     mxFrame = pWal->pSnapshot->mxFrame;
2828   }
2829 #endif
2830   for(i=1; i<WAL_NREADER; i++){
2831     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2832     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2833       assert( thisMark!=READMARK_NOT_USED );
2834       mxReadMark = thisMark;
2835       mxI = i;
2836     }
2837   }
2838   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2839    && (mxReadMark<mxFrame || mxI==0)
2840   ){
2841     for(i=1; i<WAL_NREADER; i++){
2842       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2843       if( rc==SQLITE_OK ){
2844         AtomicStore(pInfo->aReadMark+i,mxFrame);
2845         mxReadMark = mxFrame;
2846         mxI = i;
2847         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2848         break;
2849       }else if( rc!=SQLITE_BUSY ){
2850         return rc;
2851       }
2852     }
2853   }
2854   if( mxI==0 ){
2855     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2856     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2857   }
2858 
2859   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2860   if( rc ){
2861     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2862   }
2863   /* Now that the read-lock has been obtained, check that neither the
2864   ** value in the aReadMark[] array or the contents of the wal-index
2865   ** header have changed.
2866   **
2867   ** It is necessary to check that the wal-index header did not change
2868   ** between the time it was read and when the shared-lock was obtained
2869   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2870   ** that the log file may have been wrapped by a writer, or that frames
2871   ** that occur later in the log than pWal->hdr.mxFrame may have been
2872   ** copied into the database by a checkpointer. If either of these things
2873   ** happened, then reading the database with the current value of
2874   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2875   ** instead.
2876   **
2877   ** Before checking that the live wal-index header has not changed
2878   ** since it was read, set Wal.minFrame to the first frame in the wal
2879   ** file that has not yet been checkpointed. This client will not need
2880   ** to read any frames earlier than minFrame from the wal file - they
2881   ** can be safely read directly from the database file.
2882   **
2883   ** Because a ShmBarrier() call is made between taking the copy of
2884   ** nBackfill and checking that the wal-header in shared-memory still
2885   ** matches the one cached in pWal->hdr, it is guaranteed that the
2886   ** checkpointer that set nBackfill was not working with a wal-index
2887   ** header newer than that cached in pWal->hdr. If it were, that could
2888   ** cause a problem. The checkpointer could omit to checkpoint
2889   ** a version of page X that lies before pWal->minFrame (call that version
2890   ** A) on the basis that there is a newer version (version B) of the same
2891   ** page later in the wal file. But if version B happens to like past
2892   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2893   ** that it can read version A from the database file. However, since
2894   ** we can guarantee that the checkpointer that set nBackfill could not
2895   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2896   */
2897   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2898   walShmBarrier(pWal);
2899   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2900    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2901   ){
2902     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2903     return WAL_RETRY;
2904   }else{
2905     assert( mxReadMark<=pWal->hdr.mxFrame );
2906     pWal->readLock = (i16)mxI;
2907   }
2908   return rc;
2909 }
2910 
2911 #ifdef SQLITE_ENABLE_SNAPSHOT
2912 /*
2913 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2914 ** variable so that older snapshots can be accessed. To do this, loop
2915 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2916 ** comparing their content to the corresponding page with the database
2917 ** file, if any. Set nBackfillAttempted to the frame number of the
2918 ** first frame for which the wal file content matches the db file.
2919 **
2920 ** This is only really safe if the file-system is such that any page
2921 ** writes made by earlier checkpointers were atomic operations, which
2922 ** is not always true. It is also possible that nBackfillAttempted
2923 ** may be left set to a value larger than expected, if a wal frame
2924 ** contains content that duplicate of an earlier version of the same
2925 ** page.
2926 **
2927 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2928 ** error occurs. It is not an error if nBackfillAttempted cannot be
2929 ** decreased at all.
2930 */
2931 int sqlite3WalSnapshotRecover(Wal *pWal){
2932   int rc;
2933 
2934   assert( pWal->readLock>=0 );
2935   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2936   if( rc==SQLITE_OK ){
2937     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2938     int szPage = (int)pWal->szPage;
2939     i64 szDb;                   /* Size of db file in bytes */
2940 
2941     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2942     if( rc==SQLITE_OK ){
2943       void *pBuf1 = sqlite3_malloc(szPage);
2944       void *pBuf2 = sqlite3_malloc(szPage);
2945       if( pBuf1==0 || pBuf2==0 ){
2946         rc = SQLITE_NOMEM;
2947       }else{
2948         u32 i = pInfo->nBackfillAttempted;
2949         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2950           WalHashLoc sLoc;          /* Hash table location */
2951           u32 pgno;                 /* Page number in db file */
2952           i64 iDbOff;               /* Offset of db file entry */
2953           i64 iWalOff;              /* Offset of wal file entry */
2954 
2955           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2956           if( rc!=SQLITE_OK ) break;
2957           pgno = sLoc.aPgno[i-sLoc.iZero];
2958           iDbOff = (i64)(pgno-1) * szPage;
2959 
2960           if( iDbOff+szPage<=szDb ){
2961             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2962             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2963 
2964             if( rc==SQLITE_OK ){
2965               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2966             }
2967 
2968             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2969               break;
2970             }
2971           }
2972 
2973           pInfo->nBackfillAttempted = i-1;
2974         }
2975       }
2976 
2977       sqlite3_free(pBuf1);
2978       sqlite3_free(pBuf2);
2979     }
2980     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2981   }
2982 
2983   return rc;
2984 }
2985 #endif /* SQLITE_ENABLE_SNAPSHOT */
2986 
2987 /*
2988 ** Begin a read transaction on the database.
2989 **
2990 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2991 ** it takes a snapshot of the state of the WAL and wal-index for the current
2992 ** instant in time.  The current thread will continue to use this snapshot.
2993 ** Other threads might append new content to the WAL and wal-index but
2994 ** that extra content is ignored by the current thread.
2995 **
2996 ** If the database contents have changes since the previous read
2997 ** transaction, then *pChanged is set to 1 before returning.  The
2998 ** Pager layer will use this to know that its cache is stale and
2999 ** needs to be flushed.
3000 */
3001 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
3002   int rc;                         /* Return code */
3003   int cnt = 0;                    /* Number of TryBeginRead attempts */
3004 #ifdef SQLITE_ENABLE_SNAPSHOT
3005   int bChanged = 0;
3006   WalIndexHdr *pSnapshot = pWal->pSnapshot;
3007 #endif
3008 
3009   assert( pWal->ckptLock==0 );
3010 
3011 #ifdef SQLITE_ENABLE_SNAPSHOT
3012   if( pSnapshot ){
3013     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3014       bChanged = 1;
3015     }
3016 
3017     /* It is possible that there is a checkpointer thread running
3018     ** concurrent with this code. If this is the case, it may be that the
3019     ** checkpointer has already determined that it will checkpoint
3020     ** snapshot X, where X is later in the wal file than pSnapshot, but
3021     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
3022     ** its intent. To avoid the race condition this leads to, ensure that
3023     ** there is no checkpointer process by taking a shared CKPT lock
3024     ** before checking pInfo->nBackfillAttempted.  */
3025     (void)walEnableBlocking(pWal);
3026     rc = walLockShared(pWal, WAL_CKPT_LOCK);
3027     walDisableBlocking(pWal);
3028 
3029     if( rc!=SQLITE_OK ){
3030       return rc;
3031     }
3032     pWal->ckptLock = 1;
3033   }
3034 #endif
3035 
3036   do{
3037     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
3038   }while( rc==WAL_RETRY );
3039   testcase( (rc&0xff)==SQLITE_BUSY );
3040   testcase( (rc&0xff)==SQLITE_IOERR );
3041   testcase( rc==SQLITE_PROTOCOL );
3042   testcase( rc==SQLITE_OK );
3043 
3044 #ifdef SQLITE_ENABLE_SNAPSHOT
3045   if( rc==SQLITE_OK ){
3046     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3047       /* At this point the client has a lock on an aReadMark[] slot holding
3048       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
3049       ** is populated with the wal-index header corresponding to the head
3050       ** of the wal file. Verify that pSnapshot is still valid before
3051       ** continuing.  Reasons why pSnapshot might no longer be valid:
3052       **
3053       **    (1)  The WAL file has been reset since the snapshot was taken.
3054       **         In this case, the salt will have changed.
3055       **
3056       **    (2)  A checkpoint as been attempted that wrote frames past
3057       **         pSnapshot->mxFrame into the database file.  Note that the
3058       **         checkpoint need not have completed for this to cause problems.
3059       */
3060       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3061 
3062       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
3063       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
3064 
3065       /* Check that the wal file has not been wrapped. Assuming that it has
3066       ** not, also check that no checkpointer has attempted to checkpoint any
3067       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
3068       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
3069       ** with *pSnapshot and set *pChanged as appropriate for opening the
3070       ** snapshot.  */
3071       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3072        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
3073       ){
3074         assert( pWal->readLock>0 );
3075         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
3076         *pChanged = bChanged;
3077       }else{
3078         rc = SQLITE_ERROR_SNAPSHOT;
3079       }
3080 
3081       /* A client using a non-current snapshot may not ignore any frames
3082       ** from the start of the wal file. This is because, for a system
3083       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3084       ** have omitted to checkpoint a frame earlier than minFrame in
3085       ** the file because there exists a frame after iSnapshot that
3086       ** is the same database page.  */
3087       pWal->minFrame = 1;
3088 
3089       if( rc!=SQLITE_OK ){
3090         sqlite3WalEndReadTransaction(pWal);
3091       }
3092     }
3093   }
3094 
3095   /* Release the shared CKPT lock obtained above. */
3096   if( pWal->ckptLock ){
3097     assert( pSnapshot );
3098     walUnlockShared(pWal, WAL_CKPT_LOCK);
3099     pWal->ckptLock = 0;
3100   }
3101 #endif
3102   return rc;
3103 }
3104 
3105 /*
3106 ** Finish with a read transaction.  All this does is release the
3107 ** read-lock.
3108 */
3109 void sqlite3WalEndReadTransaction(Wal *pWal){
3110   sqlite3WalEndWriteTransaction(pWal);
3111   if( pWal->readLock>=0 ){
3112     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3113     pWal->readLock = -1;
3114   }
3115 }
3116 
3117 /*
3118 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3119 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3120 ** to zero.
3121 **
3122 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3123 ** error does occur, the final value of *piRead is undefined.
3124 */
3125 int sqlite3WalFindFrame(
3126   Wal *pWal,                      /* WAL handle */
3127   Pgno pgno,                      /* Database page number to read data for */
3128   u32 *piRead                     /* OUT: Frame number (or zero) */
3129 ){
3130   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
3131   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
3132   int iHash;                      /* Used to loop through N hash tables */
3133   int iMinHash;
3134 
3135   /* This routine is only be called from within a read transaction. */
3136   assert( pWal->readLock>=0 || pWal->lockError );
3137 
3138   /* If the "last page" field of the wal-index header snapshot is 0, then
3139   ** no data will be read from the wal under any circumstances. Return early
3140   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3141   ** then the WAL is ignored by the reader so return early, as if the
3142   ** WAL were empty.
3143   */
3144   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3145     *piRead = 0;
3146     return SQLITE_OK;
3147   }
3148 
3149   /* Search the hash table or tables for an entry matching page number
3150   ** pgno. Each iteration of the following for() loop searches one
3151   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3152   **
3153   ** This code might run concurrently to the code in walIndexAppend()
3154   ** that adds entries to the wal-index (and possibly to this hash
3155   ** table). This means the value just read from the hash
3156   ** slot (aHash[iKey]) may have been added before or after the
3157   ** current read transaction was opened. Values added after the
3158   ** read transaction was opened may have been written incorrectly -
3159   ** i.e. these slots may contain garbage data. However, we assume
3160   ** that any slots written before the current read transaction was
3161   ** opened remain unmodified.
3162   **
3163   ** For the reasons above, the if(...) condition featured in the inner
3164   ** loop of the following block is more stringent that would be required
3165   ** if we had exclusive access to the hash-table:
3166   **
3167   **   (aPgno[iFrame]==pgno):
3168   **     This condition filters out normal hash-table collisions.
3169   **
3170   **   (iFrame<=iLast):
3171   **     This condition filters out entries that were added to the hash
3172   **     table after the current read-transaction had started.
3173   */
3174   iMinHash = walFramePage(pWal->minFrame);
3175   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3176     WalHashLoc sLoc;              /* Hash table location */
3177     int iKey;                     /* Hash slot index */
3178     int nCollide;                 /* Number of hash collisions remaining */
3179     int rc;                       /* Error code */
3180     u32 iH;
3181 
3182     rc = walHashGet(pWal, iHash, &sLoc);
3183     if( rc!=SQLITE_OK ){
3184       return rc;
3185     }
3186     nCollide = HASHTABLE_NSLOT;
3187     iKey = walHash(pgno);
3188     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3189       u32 iFrame = iH + sLoc.iZero;
3190       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3191         assert( iFrame>iRead || CORRUPT_DB );
3192         iRead = iFrame;
3193       }
3194       if( (nCollide--)==0 ){
3195         return SQLITE_CORRUPT_BKPT;
3196       }
3197       iKey = walNextHash(iKey);
3198     }
3199     if( iRead ) break;
3200   }
3201 
3202 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3203   /* If expensive assert() statements are available, do a linear search
3204   ** of the wal-index file content. Make sure the results agree with the
3205   ** result obtained using the hash indexes above.  */
3206   {
3207     u32 iRead2 = 0;
3208     u32 iTest;
3209     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3210     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3211       if( walFramePgno(pWal, iTest)==pgno ){
3212         iRead2 = iTest;
3213         break;
3214       }
3215     }
3216     assert( iRead==iRead2 );
3217   }
3218 #endif
3219 
3220   *piRead = iRead;
3221   return SQLITE_OK;
3222 }
3223 
3224 /*
3225 ** Read the contents of frame iRead from the wal file into buffer pOut
3226 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3227 ** error code otherwise.
3228 */
3229 int sqlite3WalReadFrame(
3230   Wal *pWal,                      /* WAL handle */
3231   u32 iRead,                      /* Frame to read */
3232   int nOut,                       /* Size of buffer pOut in bytes */
3233   u8 *pOut                        /* Buffer to write page data to */
3234 ){
3235   int sz;
3236   i64 iOffset;
3237   sz = pWal->hdr.szPage;
3238   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3239   testcase( sz<=32768 );
3240   testcase( sz>=65536 );
3241   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3242   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3243   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3244 }
3245 
3246 /*
3247 ** Return the size of the database in pages (or zero, if unknown).
3248 */
3249 Pgno sqlite3WalDbsize(Wal *pWal){
3250   if( pWal && ALWAYS(pWal->readLock>=0) ){
3251     return pWal->hdr.nPage;
3252   }
3253   return 0;
3254 }
3255 
3256 
3257 /*
3258 ** This function starts a write transaction on the WAL.
3259 **
3260 ** A read transaction must have already been started by a prior call
3261 ** to sqlite3WalBeginReadTransaction().
3262 **
3263 ** If another thread or process has written into the database since
3264 ** the read transaction was started, then it is not possible for this
3265 ** thread to write as doing so would cause a fork.  So this routine
3266 ** returns SQLITE_BUSY in that case and no write transaction is started.
3267 **
3268 ** There can only be a single writer active at a time.
3269 */
3270 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3271   int rc;
3272 
3273 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3274   /* If the write-lock is already held, then it was obtained before the
3275   ** read-transaction was even opened, making this call a no-op.
3276   ** Return early. */
3277   if( pWal->writeLock ){
3278     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3279     return SQLITE_OK;
3280   }
3281 #endif
3282 
3283   /* Cannot start a write transaction without first holding a read
3284   ** transaction. */
3285   assert( pWal->readLock>=0 );
3286   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3287 
3288   if( pWal->readOnly ){
3289     return SQLITE_READONLY;
3290   }
3291 
3292   /* Only one writer allowed at a time.  Get the write lock.  Return
3293   ** SQLITE_BUSY if unable.
3294   */
3295   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3296   if( rc ){
3297     return rc;
3298   }
3299   pWal->writeLock = 1;
3300 
3301   /* If another connection has written to the database file since the
3302   ** time the read transaction on this connection was started, then
3303   ** the write is disallowed.
3304   */
3305   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3306     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3307     pWal->writeLock = 0;
3308     rc = SQLITE_BUSY_SNAPSHOT;
3309   }
3310 
3311   return rc;
3312 }
3313 
3314 /*
3315 ** End a write transaction.  The commit has already been done.  This
3316 ** routine merely releases the lock.
3317 */
3318 int sqlite3WalEndWriteTransaction(Wal *pWal){
3319   if( pWal->writeLock ){
3320     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3321     pWal->writeLock = 0;
3322     pWal->iReCksum = 0;
3323     pWal->truncateOnCommit = 0;
3324   }
3325   return SQLITE_OK;
3326 }
3327 
3328 /*
3329 ** If any data has been written (but not committed) to the log file, this
3330 ** function moves the write-pointer back to the start of the transaction.
3331 **
3332 ** Additionally, the callback function is invoked for each frame written
3333 ** to the WAL since the start of the transaction. If the callback returns
3334 ** other than SQLITE_OK, it is not invoked again and the error code is
3335 ** returned to the caller.
3336 **
3337 ** Otherwise, if the callback function does not return an error, this
3338 ** function returns SQLITE_OK.
3339 */
3340 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3341   int rc = SQLITE_OK;
3342   if( ALWAYS(pWal->writeLock) ){
3343     Pgno iMax = pWal->hdr.mxFrame;
3344     Pgno iFrame;
3345 
3346     /* Restore the clients cache of the wal-index header to the state it
3347     ** was in before the client began writing to the database.
3348     */
3349     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3350 
3351     for(iFrame=pWal->hdr.mxFrame+1;
3352         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3353         iFrame++
3354     ){
3355       /* This call cannot fail. Unless the page for which the page number
3356       ** is passed as the second argument is (a) in the cache and
3357       ** (b) has an outstanding reference, then xUndo is either a no-op
3358       ** (if (a) is false) or simply expels the page from the cache (if (b)
3359       ** is false).
3360       **
3361       ** If the upper layer is doing a rollback, it is guaranteed that there
3362       ** are no outstanding references to any page other than page 1. And
3363       ** page 1 is never written to the log until the transaction is
3364       ** committed. As a result, the call to xUndo may not fail.
3365       */
3366       assert( walFramePgno(pWal, iFrame)!=1 );
3367       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3368     }
3369     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3370   }
3371   return rc;
3372 }
3373 
3374 /*
3375 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3376 ** values. This function populates the array with values required to
3377 ** "rollback" the write position of the WAL handle back to the current
3378 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3379 */
3380 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3381   assert( pWal->writeLock );
3382   aWalData[0] = pWal->hdr.mxFrame;
3383   aWalData[1] = pWal->hdr.aFrameCksum[0];
3384   aWalData[2] = pWal->hdr.aFrameCksum[1];
3385   aWalData[3] = pWal->nCkpt;
3386 }
3387 
3388 /*
3389 ** Move the write position of the WAL back to the point identified by
3390 ** the values in the aWalData[] array. aWalData must point to an array
3391 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3392 ** by a call to WalSavepoint().
3393 */
3394 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3395   int rc = SQLITE_OK;
3396 
3397   assert( pWal->writeLock );
3398   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3399 
3400   if( aWalData[3]!=pWal->nCkpt ){
3401     /* This savepoint was opened immediately after the write-transaction
3402     ** was started. Right after that, the writer decided to wrap around
3403     ** to the start of the log. Update the savepoint values to match.
3404     */
3405     aWalData[0] = 0;
3406     aWalData[3] = pWal->nCkpt;
3407   }
3408 
3409   if( aWalData[0]<pWal->hdr.mxFrame ){
3410     pWal->hdr.mxFrame = aWalData[0];
3411     pWal->hdr.aFrameCksum[0] = aWalData[1];
3412     pWal->hdr.aFrameCksum[1] = aWalData[2];
3413     walCleanupHash(pWal);
3414   }
3415 
3416   return rc;
3417 }
3418 
3419 /*
3420 ** This function is called just before writing a set of frames to the log
3421 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3422 ** to the current log file, it is possible to overwrite the start of the
3423 ** existing log file with the new frames (i.e. "reset" the log). If so,
3424 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3425 ** unchanged.
3426 **
3427 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3428 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3429 ** if an error occurs.
3430 */
3431 static int walRestartLog(Wal *pWal){
3432   int rc = SQLITE_OK;
3433   int cnt;
3434 
3435   if( pWal->readLock==0 ){
3436     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3437     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3438     if( pInfo->nBackfill>0 ){
3439       u32 salt1;
3440       sqlite3_randomness(4, &salt1);
3441       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3442       if( rc==SQLITE_OK ){
3443         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3444         ** readers are currently using the WAL), then the transactions
3445         ** frames will overwrite the start of the existing log. Update the
3446         ** wal-index header to reflect this.
3447         **
3448         ** In theory it would be Ok to update the cache of the header only
3449         ** at this point. But updating the actual wal-index header is also
3450         ** safe and means there is no special case for sqlite3WalUndo()
3451         ** to handle if this transaction is rolled back.  */
3452         walRestartHdr(pWal, salt1);
3453         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3454       }else if( rc!=SQLITE_BUSY ){
3455         return rc;
3456       }
3457     }
3458     walUnlockShared(pWal, WAL_READ_LOCK(0));
3459     pWal->readLock = -1;
3460     cnt = 0;
3461     do{
3462       int notUsed;
3463       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3464     }while( rc==WAL_RETRY );
3465     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3466     testcase( (rc&0xff)==SQLITE_IOERR );
3467     testcase( rc==SQLITE_PROTOCOL );
3468     testcase( rc==SQLITE_OK );
3469   }
3470   return rc;
3471 }
3472 
3473 /*
3474 ** Information about the current state of the WAL file and where
3475 ** the next fsync should occur - passed from sqlite3WalFrames() into
3476 ** walWriteToLog().
3477 */
3478 typedef struct WalWriter {
3479   Wal *pWal;                   /* The complete WAL information */
3480   sqlite3_file *pFd;           /* The WAL file to which we write */
3481   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3482   int syncFlags;               /* Flags for the fsync */
3483   int szPage;                  /* Size of one page */
3484 } WalWriter;
3485 
3486 /*
3487 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3488 ** Do a sync when crossing the p->iSyncPoint boundary.
3489 **
3490 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3491 ** first write the part before iSyncPoint, then sync, then write the
3492 ** rest.
3493 */
3494 static int walWriteToLog(
3495   WalWriter *p,              /* WAL to write to */
3496   void *pContent,            /* Content to be written */
3497   int iAmt,                  /* Number of bytes to write */
3498   sqlite3_int64 iOffset      /* Start writing at this offset */
3499 ){
3500   int rc;
3501   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3502     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3503     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3504     if( rc ) return rc;
3505     iOffset += iFirstAmt;
3506     iAmt -= iFirstAmt;
3507     pContent = (void*)(iFirstAmt + (char*)pContent);
3508     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3509     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3510     if( iAmt==0 || rc ) return rc;
3511   }
3512   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3513   return rc;
3514 }
3515 
3516 /*
3517 ** Write out a single frame of the WAL
3518 */
3519 static int walWriteOneFrame(
3520   WalWriter *p,               /* Where to write the frame */
3521   PgHdr *pPage,               /* The page of the frame to be written */
3522   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3523   sqlite3_int64 iOffset       /* Byte offset at which to write */
3524 ){
3525   int rc;                         /* Result code from subfunctions */
3526   void *pData;                    /* Data actually written */
3527   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3528   pData = pPage->pData;
3529   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3530   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3531   if( rc ) return rc;
3532   /* Write the page data */
3533   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3534   return rc;
3535 }
3536 
3537 /*
3538 ** This function is called as part of committing a transaction within which
3539 ** one or more frames have been overwritten. It updates the checksums for
3540 ** all frames written to the wal file by the current transaction starting
3541 ** with the earliest to have been overwritten.
3542 **
3543 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3544 */
3545 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3546   const int szPage = pWal->szPage;/* Database page size */
3547   int rc = SQLITE_OK;             /* Return code */
3548   u8 *aBuf;                       /* Buffer to load data from wal file into */
3549   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3550   u32 iRead;                      /* Next frame to read from wal file */
3551   i64 iCksumOff;
3552 
3553   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3554   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3555 
3556   /* Find the checksum values to use as input for the recalculating the
3557   ** first checksum. If the first frame is frame 1 (implying that the current
3558   ** transaction restarted the wal file), these values must be read from the
3559   ** wal-file header. Otherwise, read them from the frame header of the
3560   ** previous frame.  */
3561   assert( pWal->iReCksum>0 );
3562   if( pWal->iReCksum==1 ){
3563     iCksumOff = 24;
3564   }else{
3565     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3566   }
3567   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3568   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3569   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3570 
3571   iRead = pWal->iReCksum;
3572   pWal->iReCksum = 0;
3573   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3574     i64 iOff = walFrameOffset(iRead, szPage);
3575     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3576     if( rc==SQLITE_OK ){
3577       u32 iPgno, nDbSize;
3578       iPgno = sqlite3Get4byte(aBuf);
3579       nDbSize = sqlite3Get4byte(&aBuf[4]);
3580 
3581       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3582       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3583     }
3584   }
3585 
3586   sqlite3_free(aBuf);
3587   return rc;
3588 }
3589 
3590 /*
3591 ** Write a set of frames to the log. The caller must hold the write-lock
3592 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3593 */
3594 int sqlite3WalFrames(
3595   Wal *pWal,                      /* Wal handle to write to */
3596   int szPage,                     /* Database page-size in bytes */
3597   PgHdr *pList,                   /* List of dirty pages to write */
3598   Pgno nTruncate,                 /* Database size after this commit */
3599   int isCommit,                   /* True if this is a commit */
3600   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3601 ){
3602   int rc;                         /* Used to catch return codes */
3603   u32 iFrame;                     /* Next frame address */
3604   PgHdr *p;                       /* Iterator to run through pList with. */
3605   PgHdr *pLast = 0;               /* Last frame in list */
3606   int nExtra = 0;                 /* Number of extra copies of last page */
3607   int szFrame;                    /* The size of a single frame */
3608   i64 iOffset;                    /* Next byte to write in WAL file */
3609   WalWriter w;                    /* The writer */
3610   u32 iFirst = 0;                 /* First frame that may be overwritten */
3611   WalIndexHdr *pLive;             /* Pointer to shared header */
3612 
3613   assert( pList );
3614   assert( pWal->writeLock );
3615 
3616   /* If this frame set completes a transaction, then nTruncate>0.  If
3617   ** nTruncate==0 then this frame set does not complete the transaction. */
3618   assert( (isCommit!=0)==(nTruncate!=0) );
3619 
3620 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3621   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3622     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3623               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3624   }
3625 #endif
3626 
3627   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3628   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3629     iFirst = pLive->mxFrame+1;
3630   }
3631 
3632   /* See if it is possible to write these frames into the start of the
3633   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3634   */
3635   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3636     return rc;
3637   }
3638 
3639   /* If this is the first frame written into the log, write the WAL
3640   ** header to the start of the WAL file. See comments at the top of
3641   ** this source file for a description of the WAL header format.
3642   */
3643   iFrame = pWal->hdr.mxFrame;
3644   if( iFrame==0 ){
3645     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3646     u32 aCksum[2];                /* Checksum for wal-header */
3647 
3648     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3649     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3650     sqlite3Put4byte(&aWalHdr[8], szPage);
3651     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3652     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3653     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3654     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3655     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3656     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3657 
3658     pWal->szPage = szPage;
3659     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3660     pWal->hdr.aFrameCksum[0] = aCksum[0];
3661     pWal->hdr.aFrameCksum[1] = aCksum[1];
3662     pWal->truncateOnCommit = 1;
3663 
3664     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3665     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3666     if( rc!=SQLITE_OK ){
3667       return rc;
3668     }
3669 
3670     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3671     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3672     ** an out-of-order write following a WAL restart could result in
3673     ** database corruption.  See the ticket:
3674     **
3675     **     https://sqlite.org/src/info/ff5be73dee
3676     */
3677     if( pWal->syncHeader ){
3678       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3679       if( rc ) return rc;
3680     }
3681   }
3682   assert( (int)pWal->szPage==szPage );
3683 
3684   /* Setup information needed to write frames into the WAL */
3685   w.pWal = pWal;
3686   w.pFd = pWal->pWalFd;
3687   w.iSyncPoint = 0;
3688   w.syncFlags = sync_flags;
3689   w.szPage = szPage;
3690   iOffset = walFrameOffset(iFrame+1, szPage);
3691   szFrame = szPage + WAL_FRAME_HDRSIZE;
3692 
3693   /* Write all frames into the log file exactly once */
3694   for(p=pList; p; p=p->pDirty){
3695     int nDbSize;   /* 0 normally.  Positive == commit flag */
3696 
3697     /* Check if this page has already been written into the wal file by
3698     ** the current transaction. If so, overwrite the existing frame and
3699     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3700     ** checksums must be recomputed when the transaction is committed.  */
3701     if( iFirst && (p->pDirty || isCommit==0) ){
3702       u32 iWrite = 0;
3703       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3704       assert( rc==SQLITE_OK || iWrite==0 );
3705       if( iWrite>=iFirst ){
3706         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3707         void *pData;
3708         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3709           pWal->iReCksum = iWrite;
3710         }
3711         pData = p->pData;
3712         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3713         if( rc ) return rc;
3714         p->flags &= ~PGHDR_WAL_APPEND;
3715         continue;
3716       }
3717     }
3718 
3719     iFrame++;
3720     assert( iOffset==walFrameOffset(iFrame, szPage) );
3721     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3722     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3723     if( rc ) return rc;
3724     pLast = p;
3725     iOffset += szFrame;
3726     p->flags |= PGHDR_WAL_APPEND;
3727   }
3728 
3729   /* Recalculate checksums within the wal file if required. */
3730   if( isCommit && pWal->iReCksum ){
3731     rc = walRewriteChecksums(pWal, iFrame);
3732     if( rc ) return rc;
3733   }
3734 
3735   /* If this is the end of a transaction, then we might need to pad
3736   ** the transaction and/or sync the WAL file.
3737   **
3738   ** Padding and syncing only occur if this set of frames complete a
3739   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3740   ** or synchronous==OFF, then no padding or syncing are needed.
3741   **
3742   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3743   ** needed and only the sync is done.  If padding is needed, then the
3744   ** final frame is repeated (with its commit mark) until the next sector
3745   ** boundary is crossed.  Only the part of the WAL prior to the last
3746   ** sector boundary is synced; the part of the last frame that extends
3747   ** past the sector boundary is written after the sync.
3748   */
3749   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3750     int bSync = 1;
3751     if( pWal->padToSectorBoundary ){
3752       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3753       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3754       bSync = (w.iSyncPoint==iOffset);
3755       testcase( bSync );
3756       while( iOffset<w.iSyncPoint ){
3757         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3758         if( rc ) return rc;
3759         iOffset += szFrame;
3760         nExtra++;
3761         assert( pLast!=0 );
3762       }
3763     }
3764     if( bSync ){
3765       assert( rc==SQLITE_OK );
3766       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3767     }
3768   }
3769 
3770   /* If this frame set completes the first transaction in the WAL and
3771   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3772   ** journal size limit, if possible.
3773   */
3774   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3775     i64 sz = pWal->mxWalSize;
3776     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3777       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3778     }
3779     walLimitSize(pWal, sz);
3780     pWal->truncateOnCommit = 0;
3781   }
3782 
3783   /* Append data to the wal-index. It is not necessary to lock the
3784   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3785   ** guarantees that there are no other writers, and no data that may
3786   ** be in use by existing readers is being overwritten.
3787   */
3788   iFrame = pWal->hdr.mxFrame;
3789   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3790     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3791     iFrame++;
3792     rc = walIndexAppend(pWal, iFrame, p->pgno);
3793   }
3794   assert( pLast!=0 || nExtra==0 );
3795   while( rc==SQLITE_OK && nExtra>0 ){
3796     iFrame++;
3797     nExtra--;
3798     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3799   }
3800 
3801   if( rc==SQLITE_OK ){
3802     /* Update the private copy of the header. */
3803     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3804     testcase( szPage<=32768 );
3805     testcase( szPage>=65536 );
3806     pWal->hdr.mxFrame = iFrame;
3807     if( isCommit ){
3808       pWal->hdr.iChange++;
3809       pWal->hdr.nPage = nTruncate;
3810     }
3811     /* If this is a commit, update the wal-index header too. */
3812     if( isCommit ){
3813       walIndexWriteHdr(pWal);
3814       pWal->iCallback = iFrame;
3815     }
3816   }
3817 
3818   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3819   return rc;
3820 }
3821 
3822 /*
3823 ** This routine is called to implement sqlite3_wal_checkpoint() and
3824 ** related interfaces.
3825 **
3826 ** Obtain a CHECKPOINT lock and then backfill as much information as
3827 ** we can from WAL into the database.
3828 **
3829 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3830 ** callback. In this case this function runs a blocking checkpoint.
3831 */
3832 int sqlite3WalCheckpoint(
3833   Wal *pWal,                      /* Wal connection */
3834   sqlite3 *db,                    /* Check this handle's interrupt flag */
3835   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3836   int (*xBusy)(void*),            /* Function to call when busy */
3837   void *pBusyArg,                 /* Context argument for xBusyHandler */
3838   int sync_flags,                 /* Flags to sync db file with (or 0) */
3839   int nBuf,                       /* Size of temporary buffer */
3840   u8 *zBuf,                       /* Temporary buffer to use */
3841   int *pnLog,                     /* OUT: Number of frames in WAL */
3842   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3843 ){
3844   int rc;                         /* Return code */
3845   int isChanged = 0;              /* True if a new wal-index header is loaded */
3846   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3847   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3848 
3849   assert( pWal->ckptLock==0 );
3850   assert( pWal->writeLock==0 );
3851 
3852   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3853   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3854   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3855 
3856   if( pWal->readOnly ) return SQLITE_READONLY;
3857   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3858 
3859   /* Enable blocking locks, if possible. If blocking locks are successfully
3860   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3861   sqlite3WalDb(pWal, db);
3862   (void)walEnableBlocking(pWal);
3863 
3864   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3865   ** "checkpoint" lock on the database file.
3866   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3867   ** checkpoint operation at the same time, the lock cannot be obtained and
3868   ** SQLITE_BUSY is returned.
3869   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3870   ** it will not be invoked in this case.
3871   */
3872   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3873   testcase( rc==SQLITE_BUSY );
3874   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3875   if( rc==SQLITE_OK ){
3876     pWal->ckptLock = 1;
3877 
3878     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3879     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3880     ** file.
3881     **
3882     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3883     ** immediately, and a busy-handler is configured, it is invoked and the
3884     ** writer lock retried until either the busy-handler returns 0 or the
3885     ** lock is successfully obtained.
3886     */
3887     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3888       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3889       if( rc==SQLITE_OK ){
3890         pWal->writeLock = 1;
3891       }else if( rc==SQLITE_BUSY ){
3892         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3893         xBusy2 = 0;
3894         rc = SQLITE_OK;
3895       }
3896     }
3897   }
3898 
3899 
3900   /* Read the wal-index header. */
3901   if( rc==SQLITE_OK ){
3902     walDisableBlocking(pWal);
3903     rc = walIndexReadHdr(pWal, &isChanged);
3904     (void)walEnableBlocking(pWal);
3905     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3906       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3907     }
3908   }
3909 
3910   /* Copy data from the log to the database file. */
3911   if( rc==SQLITE_OK ){
3912 
3913     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3914       rc = SQLITE_CORRUPT_BKPT;
3915     }else{
3916       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3917     }
3918 
3919     /* If no error occurred, set the output variables. */
3920     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3921       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3922       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3923     }
3924   }
3925 
3926   if( isChanged ){
3927     /* If a new wal-index header was loaded before the checkpoint was
3928     ** performed, then the pager-cache associated with pWal is now
3929     ** out of date. So zero the cached wal-index header to ensure that
3930     ** next time the pager opens a snapshot on this database it knows that
3931     ** the cache needs to be reset.
3932     */
3933     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3934   }
3935 
3936   walDisableBlocking(pWal);
3937   sqlite3WalDb(pWal, 0);
3938 
3939   /* Release the locks. */
3940   sqlite3WalEndWriteTransaction(pWal);
3941   if( pWal->ckptLock ){
3942     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3943     pWal->ckptLock = 0;
3944   }
3945   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3946 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3947   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3948 #endif
3949   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3950 }
3951 
3952 /* Return the value to pass to a sqlite3_wal_hook callback, the
3953 ** number of frames in the WAL at the point of the last commit since
3954 ** sqlite3WalCallback() was called.  If no commits have occurred since
3955 ** the last call, then return 0.
3956 */
3957 int sqlite3WalCallback(Wal *pWal){
3958   u32 ret = 0;
3959   if( pWal ){
3960     ret = pWal->iCallback;
3961     pWal->iCallback = 0;
3962   }
3963   return (int)ret;
3964 }
3965 
3966 /*
3967 ** This function is called to change the WAL subsystem into or out
3968 ** of locking_mode=EXCLUSIVE.
3969 **
3970 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3971 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3972 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3973 ** or if the acquisition of the lock fails, then return 0.  If the
3974 ** transition out of exclusive-mode is successful, return 1.  This
3975 ** operation must occur while the pager is still holding the exclusive
3976 ** lock on the main database file.
3977 **
3978 ** If op is one, then change from locking_mode=NORMAL into
3979 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3980 ** be released.  Return 1 if the transition is made and 0 if the
3981 ** WAL is already in exclusive-locking mode - meaning that this
3982 ** routine is a no-op.  The pager must already hold the exclusive lock
3983 ** on the main database file before invoking this operation.
3984 **
3985 ** If op is negative, then do a dry-run of the op==1 case but do
3986 ** not actually change anything. The pager uses this to see if it
3987 ** should acquire the database exclusive lock prior to invoking
3988 ** the op==1 case.
3989 */
3990 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3991   int rc;
3992   assert( pWal->writeLock==0 );
3993   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3994 
3995   /* pWal->readLock is usually set, but might be -1 if there was a
3996   ** prior error while attempting to acquire are read-lock. This cannot
3997   ** happen if the connection is actually in exclusive mode (as no xShmLock
3998   ** locks are taken in this case). Nor should the pager attempt to
3999   ** upgrade to exclusive-mode following such an error.
4000   */
4001   assert( pWal->readLock>=0 || pWal->lockError );
4002   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
4003 
4004   if( op==0 ){
4005     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
4006       pWal->exclusiveMode = WAL_NORMAL_MODE;
4007       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
4008         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4009       }
4010       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4011     }else{
4012       /* Already in locking_mode=NORMAL */
4013       rc = 0;
4014     }
4015   }else if( op>0 ){
4016     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
4017     assert( pWal->readLock>=0 );
4018     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
4019     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4020     rc = 1;
4021   }else{
4022     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4023   }
4024   return rc;
4025 }
4026 
4027 /*
4028 ** Return true if the argument is non-NULL and the WAL module is using
4029 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
4030 ** WAL module is using shared-memory, return false.
4031 */
4032 int sqlite3WalHeapMemory(Wal *pWal){
4033   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
4034 }
4035 
4036 #ifdef SQLITE_ENABLE_SNAPSHOT
4037 /* Create a snapshot object.  The content of a snapshot is opaque to
4038 ** every other subsystem, so the WAL module can put whatever it needs
4039 ** in the object.
4040 */
4041 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
4042   int rc = SQLITE_OK;
4043   WalIndexHdr *pRet;
4044   static const u32 aZero[4] = { 0, 0, 0, 0 };
4045 
4046   assert( pWal->readLock>=0 && pWal->writeLock==0 );
4047 
4048   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
4049     *ppSnapshot = 0;
4050     return SQLITE_ERROR;
4051   }
4052   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
4053   if( pRet==0 ){
4054     rc = SQLITE_NOMEM_BKPT;
4055   }else{
4056     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
4057     *ppSnapshot = (sqlite3_snapshot*)pRet;
4058   }
4059 
4060   return rc;
4061 }
4062 
4063 /* Try to open on pSnapshot when the next read-transaction starts
4064 */
4065 void sqlite3WalSnapshotOpen(
4066   Wal *pWal,
4067   sqlite3_snapshot *pSnapshot
4068 ){
4069   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4070 }
4071 
4072 /*
4073 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4074 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4075 */
4076 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4077   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4078   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4079 
4080   /* aSalt[0] is a copy of the value stored in the wal file header. It
4081   ** is incremented each time the wal file is restarted.  */
4082   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4083   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4084   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4085   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4086   return 0;
4087 }
4088 
4089 /*
4090 ** The caller currently has a read transaction open on the database.
4091 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4092 ** checks if the snapshot passed as the second argument is still
4093 ** available. If so, SQLITE_OK is returned.
4094 **
4095 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4096 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4097 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4098 ** lock is released before returning.
4099 */
4100 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4101   int rc;
4102   rc = walLockShared(pWal, WAL_CKPT_LOCK);
4103   if( rc==SQLITE_OK ){
4104     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4105     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4106      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4107     ){
4108       rc = SQLITE_ERROR_SNAPSHOT;
4109       walUnlockShared(pWal, WAL_CKPT_LOCK);
4110     }
4111   }
4112   return rc;
4113 }
4114 
4115 /*
4116 ** Release a lock obtained by an earlier successful call to
4117 ** sqlite3WalSnapshotCheck().
4118 */
4119 void sqlite3WalSnapshotUnlock(Wal *pWal){
4120   assert( pWal );
4121   walUnlockShared(pWal, WAL_CKPT_LOCK);
4122 }
4123 
4124 
4125 #endif /* SQLITE_ENABLE_SNAPSHOT */
4126 
4127 #ifdef SQLITE_ENABLE_ZIPVFS
4128 /*
4129 ** If the argument is not NULL, it points to a Wal object that holds a
4130 ** read-lock. This function returns the database page-size if it is known,
4131 ** or zero if it is not (or if pWal is NULL).
4132 */
4133 int sqlite3WalFramesize(Wal *pWal){
4134   assert( pWal==0 || pWal->readLock>=0 );
4135   return (pWal ? pWal->szPage : 0);
4136 }
4137 #endif
4138 
4139 /* Return the sqlite3_file object for the WAL file
4140 */
4141 sqlite3_file *sqlite3WalFile(Wal *pWal){
4142   return pWal->pWalFd;
4143 }
4144 
4145 #endif /* #ifndef SQLITE_OMIT_WAL */
4146