xref: /sqlite-3.40.0/src/wal.c (revision fb32c44e)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 };
471 
472 /*
473 ** Candidate values for Wal.exclusiveMode.
474 */
475 #define WAL_NORMAL_MODE     0
476 #define WAL_EXCLUSIVE_MODE  1
477 #define WAL_HEAPMEMORY_MODE 2
478 
479 /*
480 ** Possible values for WAL.readOnly
481 */
482 #define WAL_RDWR        0    /* Normal read/write connection */
483 #define WAL_RDONLY      1    /* The WAL file is readonly */
484 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
485 
486 /*
487 ** Each page of the wal-index mapping contains a hash-table made up of
488 ** an array of HASHTABLE_NSLOT elements of the following type.
489 */
490 typedef u16 ht_slot;
491 
492 /*
493 ** This structure is used to implement an iterator that loops through
494 ** all frames in the WAL in database page order. Where two or more frames
495 ** correspond to the same database page, the iterator visits only the
496 ** frame most recently written to the WAL (in other words, the frame with
497 ** the largest index).
498 **
499 ** The internals of this structure are only accessed by:
500 **
501 **   walIteratorInit() - Create a new iterator,
502 **   walIteratorNext() - Step an iterator,
503 **   walIteratorFree() - Free an iterator.
504 **
505 ** This functionality is used by the checkpoint code (see walCheckpoint()).
506 */
507 struct WalIterator {
508   int iPrior;                     /* Last result returned from the iterator */
509   int nSegment;                   /* Number of entries in aSegment[] */
510   struct WalSegment {
511     int iNext;                    /* Next slot in aIndex[] not yet returned */
512     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
513     u32 *aPgno;                   /* Array of page numbers. */
514     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
515     int iZero;                    /* Frame number associated with aPgno[0] */
516   } aSegment[1];                  /* One for every 32KB page in the wal-index */
517 };
518 
519 /*
520 ** Define the parameters of the hash tables in the wal-index file. There
521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522 ** wal-index.
523 **
524 ** Changing any of these constants will alter the wal-index format and
525 ** create incompatibilities.
526 */
527 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
528 #define HASHTABLE_HASH_1     383                  /* Should be prime */
529 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
530 
531 /*
532 ** The block of page numbers associated with the first hash-table in a
533 ** wal-index is smaller than usual. This is so that there is a complete
534 ** hash-table on each aligned 32KB page of the wal-index.
535 */
536 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
537 
538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539 #define WALINDEX_PGSZ   (                                         \
540     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
541 )
542 
543 /*
544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
546 ** numbered from zero.
547 **
548 ** If the wal-index is currently smaller the iPage pages then the size
549 ** of the wal-index might be increased, but only if it is safe to do
550 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
552 **
553 ** If this call is successful, *ppPage is set to point to the wal-index
554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555 ** then an SQLite error code is returned and *ppPage is set to 0.
556 */
557 static SQLITE_NOINLINE int walIndexPageRealloc(
558   Wal *pWal,               /* The WAL context */
559   int iPage,               /* The page we seek */
560   volatile u32 **ppPage    /* Write the page pointer here */
561 ){
562   int rc = SQLITE_OK;
563 
564   /* Enlarge the pWal->apWiData[] array if required */
565   if( pWal->nWiData<=iPage ){
566     int nByte = sizeof(u32*)*(iPage+1);
567     volatile u32 **apNew;
568     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
569     if( !apNew ){
570       *ppPage = 0;
571       return SQLITE_NOMEM_BKPT;
572     }
573     memset((void*)&apNew[pWal->nWiData], 0,
574            sizeof(u32*)*(iPage+1-pWal->nWiData));
575     pWal->apWiData = apNew;
576     pWal->nWiData = iPage+1;
577   }
578 
579   /* Request a pointer to the required page from the VFS */
580   assert( pWal->apWiData[iPage]==0 );
581   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
582     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
583     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
584   }else{
585     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
586         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
587     );
588     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
589     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
590     if( (rc&0xff)==SQLITE_READONLY ){
591       pWal->readOnly |= WAL_SHM_RDONLY;
592       if( rc==SQLITE_READONLY ){
593         rc = SQLITE_OK;
594       }
595     }
596   }
597 
598   *ppPage = pWal->apWiData[iPage];
599   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
600   return rc;
601 }
602 static int walIndexPage(
603   Wal *pWal,               /* The WAL context */
604   int iPage,               /* The page we seek */
605   volatile u32 **ppPage    /* Write the page pointer here */
606 ){
607   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
608     return walIndexPageRealloc(pWal, iPage, ppPage);
609   }
610   return SQLITE_OK;
611 }
612 
613 /*
614 ** Return a pointer to the WalCkptInfo structure in the wal-index.
615 */
616 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
617   assert( pWal->nWiData>0 && pWal->apWiData[0] );
618   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
619 }
620 
621 /*
622 ** Return a pointer to the WalIndexHdr structure in the wal-index.
623 */
624 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
625   assert( pWal->nWiData>0 && pWal->apWiData[0] );
626   return (volatile WalIndexHdr*)pWal->apWiData[0];
627 }
628 
629 /*
630 ** The argument to this macro must be of type u32. On a little-endian
631 ** architecture, it returns the u32 value that results from interpreting
632 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
633 ** returns the value that would be produced by interpreting the 4 bytes
634 ** of the input value as a little-endian integer.
635 */
636 #define BYTESWAP32(x) ( \
637     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
638   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
639 )
640 
641 /*
642 ** Generate or extend an 8 byte checksum based on the data in
643 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
644 ** initial values of 0 and 0 if aIn==NULL).
645 **
646 ** The checksum is written back into aOut[] before returning.
647 **
648 ** nByte must be a positive multiple of 8.
649 */
650 static void walChecksumBytes(
651   int nativeCksum, /* True for native byte-order, false for non-native */
652   u8 *a,           /* Content to be checksummed */
653   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
654   const u32 *aIn,  /* Initial checksum value input */
655   u32 *aOut        /* OUT: Final checksum value output */
656 ){
657   u32 s1, s2;
658   u32 *aData = (u32 *)a;
659   u32 *aEnd = (u32 *)&a[nByte];
660 
661   if( aIn ){
662     s1 = aIn[0];
663     s2 = aIn[1];
664   }else{
665     s1 = s2 = 0;
666   }
667 
668   assert( nByte>=8 );
669   assert( (nByte&0x00000007)==0 );
670 
671   if( nativeCksum ){
672     do {
673       s1 += *aData++ + s2;
674       s2 += *aData++ + s1;
675     }while( aData<aEnd );
676   }else{
677     do {
678       s1 += BYTESWAP32(aData[0]) + s2;
679       s2 += BYTESWAP32(aData[1]) + s1;
680       aData += 2;
681     }while( aData<aEnd );
682   }
683 
684   aOut[0] = s1;
685   aOut[1] = s2;
686 }
687 
688 static void walShmBarrier(Wal *pWal){
689   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
690     sqlite3OsShmBarrier(pWal->pDbFd);
691   }
692 }
693 
694 /*
695 ** Write the header information in pWal->hdr into the wal-index.
696 **
697 ** The checksum on pWal->hdr is updated before it is written.
698 */
699 static void walIndexWriteHdr(Wal *pWal){
700   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
701   const int nCksum = offsetof(WalIndexHdr, aCksum);
702 
703   assert( pWal->writeLock );
704   pWal->hdr.isInit = 1;
705   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
706   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
707   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
708   walShmBarrier(pWal);
709   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
710 }
711 
712 /*
713 ** This function encodes a single frame header and writes it to a buffer
714 ** supplied by the caller. A frame-header is made up of a series of
715 ** 4-byte big-endian integers, as follows:
716 **
717 **     0: Page number.
718 **     4: For commit records, the size of the database image in pages
719 **        after the commit. For all other records, zero.
720 **     8: Salt-1 (copied from the wal-header)
721 **    12: Salt-2 (copied from the wal-header)
722 **    16: Checksum-1.
723 **    20: Checksum-2.
724 */
725 static void walEncodeFrame(
726   Wal *pWal,                      /* The write-ahead log */
727   u32 iPage,                      /* Database page number for frame */
728   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
729   u8 *aData,                      /* Pointer to page data */
730   u8 *aFrame                      /* OUT: Write encoded frame here */
731 ){
732   int nativeCksum;                /* True for native byte-order checksums */
733   u32 *aCksum = pWal->hdr.aFrameCksum;
734   assert( WAL_FRAME_HDRSIZE==24 );
735   sqlite3Put4byte(&aFrame[0], iPage);
736   sqlite3Put4byte(&aFrame[4], nTruncate);
737   if( pWal->iReCksum==0 ){
738     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
739 
740     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
741     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
742     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
743 
744     sqlite3Put4byte(&aFrame[16], aCksum[0]);
745     sqlite3Put4byte(&aFrame[20], aCksum[1]);
746   }else{
747     memset(&aFrame[8], 0, 16);
748   }
749 }
750 
751 /*
752 ** Check to see if the frame with header in aFrame[] and content
753 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
754 ** *pnTruncate and return true.  Return if the frame is not valid.
755 */
756 static int walDecodeFrame(
757   Wal *pWal,                      /* The write-ahead log */
758   u32 *piPage,                    /* OUT: Database page number for frame */
759   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
760   u8 *aData,                      /* Pointer to page data (for checksum) */
761   u8 *aFrame                      /* Frame data */
762 ){
763   int nativeCksum;                /* True for native byte-order checksums */
764   u32 *aCksum = pWal->hdr.aFrameCksum;
765   u32 pgno;                       /* Page number of the frame */
766   assert( WAL_FRAME_HDRSIZE==24 );
767 
768   /* A frame is only valid if the salt values in the frame-header
769   ** match the salt values in the wal-header.
770   */
771   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
772     return 0;
773   }
774 
775   /* A frame is only valid if the page number is creater than zero.
776   */
777   pgno = sqlite3Get4byte(&aFrame[0]);
778   if( pgno==0 ){
779     return 0;
780   }
781 
782   /* A frame is only valid if a checksum of the WAL header,
783   ** all prior frams, the first 16 bytes of this frame-header,
784   ** and the frame-data matches the checksum in the last 8
785   ** bytes of this frame-header.
786   */
787   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
788   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
789   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
790   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
791    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
792   ){
793     /* Checksum failed. */
794     return 0;
795   }
796 
797   /* If we reach this point, the frame is valid.  Return the page number
798   ** and the new database size.
799   */
800   *piPage = pgno;
801   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
802   return 1;
803 }
804 
805 
806 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
807 /*
808 ** Names of locks.  This routine is used to provide debugging output and is not
809 ** a part of an ordinary build.
810 */
811 static const char *walLockName(int lockIdx){
812   if( lockIdx==WAL_WRITE_LOCK ){
813     return "WRITE-LOCK";
814   }else if( lockIdx==WAL_CKPT_LOCK ){
815     return "CKPT-LOCK";
816   }else if( lockIdx==WAL_RECOVER_LOCK ){
817     return "RECOVER-LOCK";
818   }else{
819     static char zName[15];
820     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
821                      lockIdx-WAL_READ_LOCK(0));
822     return zName;
823   }
824 }
825 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
826 
827 
828 /*
829 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
830 ** A lock cannot be moved directly between shared and exclusive - it must go
831 ** through the unlocked state first.
832 **
833 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
834 */
835 static int walLockShared(Wal *pWal, int lockIdx){
836   int rc;
837   if( pWal->exclusiveMode ) return SQLITE_OK;
838   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
839                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
840   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
841             walLockName(lockIdx), rc ? "failed" : "ok"));
842   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
843   return rc;
844 }
845 static void walUnlockShared(Wal *pWal, int lockIdx){
846   if( pWal->exclusiveMode ) return;
847   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
848                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
849   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
850 }
851 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
852   int rc;
853   if( pWal->exclusiveMode ) return SQLITE_OK;
854   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
855                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
856   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
857             walLockName(lockIdx), n, rc ? "failed" : "ok"));
858   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
859   return rc;
860 }
861 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
862   if( pWal->exclusiveMode ) return;
863   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
864                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
865   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
866              walLockName(lockIdx), n));
867 }
868 
869 /*
870 ** Compute a hash on a page number.  The resulting hash value must land
871 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
872 ** the hash to the next value in the event of a collision.
873 */
874 static int walHash(u32 iPage){
875   assert( iPage>0 );
876   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
877   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
878 }
879 static int walNextHash(int iPriorHash){
880   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
881 }
882 
883 /*
884 ** Return pointers to the hash table and page number array stored on
885 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
886 ** numbered starting from 0.
887 **
888 ** Set output variable *paHash to point to the start of the hash table
889 ** in the wal-index file. Set *piZero to one less than the frame
890 ** number of the first frame indexed by this hash table. If a
891 ** slot in the hash table is set to N, it refers to frame number
892 ** (*piZero+N) in the log.
893 **
894 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
895 ** first frame indexed by the hash table, frame (*piZero+1).
896 */
897 static int walHashGet(
898   Wal *pWal,                      /* WAL handle */
899   int iHash,                      /* Find the iHash'th table */
900   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
901   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
902   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
903 ){
904   int rc;                         /* Return code */
905   volatile u32 *aPgno;
906 
907   rc = walIndexPage(pWal, iHash, &aPgno);
908   assert( rc==SQLITE_OK || iHash>0 );
909 
910   if( rc==SQLITE_OK ){
911     u32 iZero;
912     volatile ht_slot *aHash;
913 
914     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
915     if( iHash==0 ){
916       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
917       iZero = 0;
918     }else{
919       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
920     }
921 
922     *paPgno = &aPgno[-1];
923     *paHash = aHash;
924     *piZero = iZero;
925   }
926   return rc;
927 }
928 
929 /*
930 ** Return the number of the wal-index page that contains the hash-table
931 ** and page-number array that contain entries corresponding to WAL frame
932 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
933 ** are numbered starting from 0.
934 */
935 static int walFramePage(u32 iFrame){
936   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
937   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
938        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
939        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
940        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
941        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
942   );
943   return iHash;
944 }
945 
946 /*
947 ** Return the page number associated with frame iFrame in this WAL.
948 */
949 static u32 walFramePgno(Wal *pWal, u32 iFrame){
950   int iHash = walFramePage(iFrame);
951   if( iHash==0 ){
952     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
953   }
954   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
955 }
956 
957 /*
958 ** Remove entries from the hash table that point to WAL slots greater
959 ** than pWal->hdr.mxFrame.
960 **
961 ** This function is called whenever pWal->hdr.mxFrame is decreased due
962 ** to a rollback or savepoint.
963 **
964 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
965 ** updated.  Any later hash tables will be automatically cleared when
966 ** pWal->hdr.mxFrame advances to the point where those hash tables are
967 ** actually needed.
968 */
969 static void walCleanupHash(Wal *pWal){
970   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
971   volatile u32 *aPgno = 0;        /* Page number array for hash table */
972   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
973   int iLimit = 0;                 /* Zero values greater than this */
974   int nByte;                      /* Number of bytes to zero in aPgno[] */
975   int i;                          /* Used to iterate through aHash[] */
976 
977   assert( pWal->writeLock );
978   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
979   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
980   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
981 
982   if( pWal->hdr.mxFrame==0 ) return;
983 
984   /* Obtain pointers to the hash-table and page-number array containing
985   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
986   ** that the page said hash-table and array reside on is already mapped.
987   */
988   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
989   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
990   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
991 
992   /* Zero all hash-table entries that correspond to frame numbers greater
993   ** than pWal->hdr.mxFrame.
994   */
995   iLimit = pWal->hdr.mxFrame - iZero;
996   assert( iLimit>0 );
997   for(i=0; i<HASHTABLE_NSLOT; i++){
998     if( aHash[i]>iLimit ){
999       aHash[i] = 0;
1000     }
1001   }
1002 
1003   /* Zero the entries in the aPgno array that correspond to frames with
1004   ** frame numbers greater than pWal->hdr.mxFrame.
1005   */
1006   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
1007   memset((void *)&aPgno[iLimit+1], 0, nByte);
1008 
1009 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1010   /* Verify that the every entry in the mapping region is still reachable
1011   ** via the hash table even after the cleanup.
1012   */
1013   if( iLimit ){
1014     int j;           /* Loop counter */
1015     int iKey;        /* Hash key */
1016     for(j=1; j<=iLimit; j++){
1017       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
1018         if( aHash[iKey]==j ) break;
1019       }
1020       assert( aHash[iKey]==j );
1021     }
1022   }
1023 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1024 }
1025 
1026 
1027 /*
1028 ** Set an entry in the wal-index that will map database page number
1029 ** pPage into WAL frame iFrame.
1030 */
1031 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1032   int rc;                         /* Return code */
1033   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
1034   volatile u32 *aPgno = 0;        /* Page number array */
1035   volatile ht_slot *aHash = 0;    /* Hash table */
1036 
1037   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1038 
1039   /* Assuming the wal-index file was successfully mapped, populate the
1040   ** page number array and hash table entry.
1041   */
1042   if( rc==SQLITE_OK ){
1043     int iKey;                     /* Hash table key */
1044     int idx;                      /* Value to write to hash-table slot */
1045     int nCollide;                 /* Number of hash collisions */
1046 
1047     idx = iFrame - iZero;
1048     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1049 
1050     /* If this is the first entry to be added to this hash-table, zero the
1051     ** entire hash table and aPgno[] array before proceeding.
1052     */
1053     if( idx==1 ){
1054       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1055       memset((void*)&aPgno[1], 0, nByte);
1056     }
1057 
1058     /* If the entry in aPgno[] is already set, then the previous writer
1059     ** must have exited unexpectedly in the middle of a transaction (after
1060     ** writing one or more dirty pages to the WAL to free up memory).
1061     ** Remove the remnants of that writers uncommitted transaction from
1062     ** the hash-table before writing any new entries.
1063     */
1064     if( aPgno[idx] ){
1065       walCleanupHash(pWal);
1066       assert( !aPgno[idx] );
1067     }
1068 
1069     /* Write the aPgno[] array entry and the hash-table slot. */
1070     nCollide = idx;
1071     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1072       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1073     }
1074     aPgno[idx] = iPage;
1075     aHash[iKey] = (ht_slot)idx;
1076 
1077 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1078     /* Verify that the number of entries in the hash table exactly equals
1079     ** the number of entries in the mapping region.
1080     */
1081     {
1082       int i;           /* Loop counter */
1083       int nEntry = 0;  /* Number of entries in the hash table */
1084       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1085       assert( nEntry==idx );
1086     }
1087 
1088     /* Verify that the every entry in the mapping region is reachable
1089     ** via the hash table.  This turns out to be a really, really expensive
1090     ** thing to check, so only do this occasionally - not on every
1091     ** iteration.
1092     */
1093     if( (idx&0x3ff)==0 ){
1094       int i;           /* Loop counter */
1095       for(i=1; i<=idx; i++){
1096         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1097           if( aHash[iKey]==i ) break;
1098         }
1099         assert( aHash[iKey]==i );
1100       }
1101     }
1102 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1103   }
1104 
1105 
1106   return rc;
1107 }
1108 
1109 
1110 /*
1111 ** Recover the wal-index by reading the write-ahead log file.
1112 **
1113 ** This routine first tries to establish an exclusive lock on the
1114 ** wal-index to prevent other threads/processes from doing anything
1115 ** with the WAL or wal-index while recovery is running.  The
1116 ** WAL_RECOVER_LOCK is also held so that other threads will know
1117 ** that this thread is running recovery.  If unable to establish
1118 ** the necessary locks, this routine returns SQLITE_BUSY.
1119 */
1120 static int walIndexRecover(Wal *pWal){
1121   int rc;                         /* Return Code */
1122   i64 nSize;                      /* Size of log file */
1123   u32 aFrameCksum[2] = {0, 0};
1124   int iLock;                      /* Lock offset to lock for checkpoint */
1125 
1126   /* Obtain an exclusive lock on all byte in the locking range not already
1127   ** locked by the caller. The caller is guaranteed to have locked the
1128   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1129   ** If successful, the same bytes that are locked here are unlocked before
1130   ** this function returns.
1131   */
1132   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1133   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1134   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1135   assert( pWal->writeLock );
1136   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1137   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1138   if( rc==SQLITE_OK ){
1139     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1140     if( rc!=SQLITE_OK ){
1141       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1142     }
1143   }
1144   if( rc ){
1145     return rc;
1146   }
1147 
1148   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1149 
1150   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1151 
1152   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1153   if( rc!=SQLITE_OK ){
1154     goto recovery_error;
1155   }
1156 
1157   if( nSize>WAL_HDRSIZE ){
1158     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1159     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1160     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1161     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1162     int iFrame;                   /* Index of last frame read */
1163     i64 iOffset;                  /* Next offset to read from log file */
1164     int szPage;                   /* Page size according to the log */
1165     u32 magic;                    /* Magic value read from WAL header */
1166     u32 version;                  /* Magic value read from WAL header */
1167     int isValid;                  /* True if this frame is valid */
1168 
1169     /* Read in the WAL header. */
1170     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1171     if( rc!=SQLITE_OK ){
1172       goto recovery_error;
1173     }
1174 
1175     /* If the database page size is not a power of two, or is greater than
1176     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1177     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1178     ** WAL file.
1179     */
1180     magic = sqlite3Get4byte(&aBuf[0]);
1181     szPage = sqlite3Get4byte(&aBuf[8]);
1182     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1183      || szPage&(szPage-1)
1184      || szPage>SQLITE_MAX_PAGE_SIZE
1185      || szPage<512
1186     ){
1187       goto finished;
1188     }
1189     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1190     pWal->szPage = szPage;
1191     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1192     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1193 
1194     /* Verify that the WAL header checksum is correct */
1195     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1196         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1197     );
1198     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1199      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1200     ){
1201       goto finished;
1202     }
1203 
1204     /* Verify that the version number on the WAL format is one that
1205     ** are able to understand */
1206     version = sqlite3Get4byte(&aBuf[4]);
1207     if( version!=WAL_MAX_VERSION ){
1208       rc = SQLITE_CANTOPEN_BKPT;
1209       goto finished;
1210     }
1211 
1212     /* Malloc a buffer to read frames into. */
1213     szFrame = szPage + WAL_FRAME_HDRSIZE;
1214     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1215     if( !aFrame ){
1216       rc = SQLITE_NOMEM_BKPT;
1217       goto recovery_error;
1218     }
1219     aData = &aFrame[WAL_FRAME_HDRSIZE];
1220 
1221     /* Read all frames from the log file. */
1222     iFrame = 0;
1223     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1224       u32 pgno;                   /* Database page number for frame */
1225       u32 nTruncate;              /* dbsize field from frame header */
1226 
1227       /* Read and decode the next log frame. */
1228       iFrame++;
1229       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1230       if( rc!=SQLITE_OK ) break;
1231       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1232       if( !isValid ) break;
1233       rc = walIndexAppend(pWal, iFrame, pgno);
1234       if( rc!=SQLITE_OK ) break;
1235 
1236       /* If nTruncate is non-zero, this is a commit record. */
1237       if( nTruncate ){
1238         pWal->hdr.mxFrame = iFrame;
1239         pWal->hdr.nPage = nTruncate;
1240         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1241         testcase( szPage<=32768 );
1242         testcase( szPage>=65536 );
1243         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1244         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1245       }
1246     }
1247 
1248     sqlite3_free(aFrame);
1249   }
1250 
1251 finished:
1252   if( rc==SQLITE_OK ){
1253     volatile WalCkptInfo *pInfo;
1254     int i;
1255     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1256     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1257     walIndexWriteHdr(pWal);
1258 
1259     /* Reset the checkpoint-header. This is safe because this thread is
1260     ** currently holding locks that exclude all other readers, writers and
1261     ** checkpointers.
1262     */
1263     pInfo = walCkptInfo(pWal);
1264     pInfo->nBackfill = 0;
1265     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1266     pInfo->aReadMark[0] = 0;
1267     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1268     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1269 
1270     /* If more than one frame was recovered from the log file, report an
1271     ** event via sqlite3_log(). This is to help with identifying performance
1272     ** problems caused by applications routinely shutting down without
1273     ** checkpointing the log file.
1274     */
1275     if( pWal->hdr.nPage ){
1276       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1277           "recovered %d frames from WAL file %s",
1278           pWal->hdr.mxFrame, pWal->zWalName
1279       );
1280     }
1281   }
1282 
1283 recovery_error:
1284   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1285   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1286   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1287   return rc;
1288 }
1289 
1290 /*
1291 ** Close an open wal-index.
1292 */
1293 static void walIndexClose(Wal *pWal, int isDelete){
1294   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1295     int i;
1296     for(i=0; i<pWal->nWiData; i++){
1297       sqlite3_free((void *)pWal->apWiData[i]);
1298       pWal->apWiData[i] = 0;
1299     }
1300   }
1301   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1302     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1303   }
1304 }
1305 
1306 /*
1307 ** Open a connection to the WAL file zWalName. The database file must
1308 ** already be opened on connection pDbFd. The buffer that zWalName points
1309 ** to must remain valid for the lifetime of the returned Wal* handle.
1310 **
1311 ** A SHARED lock should be held on the database file when this function
1312 ** is called. The purpose of this SHARED lock is to prevent any other
1313 ** client from unlinking the WAL or wal-index file. If another process
1314 ** were to do this just after this client opened one of these files, the
1315 ** system would be badly broken.
1316 **
1317 ** If the log file is successfully opened, SQLITE_OK is returned and
1318 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1319 ** an SQLite error code is returned and *ppWal is left unmodified.
1320 */
1321 int sqlite3WalOpen(
1322   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1323   sqlite3_file *pDbFd,            /* The open database file */
1324   const char *zWalName,           /* Name of the WAL file */
1325   int bNoShm,                     /* True to run in heap-memory mode */
1326   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1327   Wal **ppWal                     /* OUT: Allocated Wal handle */
1328 ){
1329   int rc;                         /* Return Code */
1330   Wal *pRet;                      /* Object to allocate and return */
1331   int flags;                      /* Flags passed to OsOpen() */
1332 
1333   assert( zWalName && zWalName[0] );
1334   assert( pDbFd );
1335 
1336   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1337   ** this source file.  Verify that the #defines of the locking byte offsets
1338   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1339   ** For that matter, if the lock offset ever changes from its initial design
1340   ** value of 120, we need to know that so there is an assert() to check it.
1341   */
1342   assert( 120==WALINDEX_LOCK_OFFSET );
1343   assert( 136==WALINDEX_HDR_SIZE );
1344 #ifdef WIN_SHM_BASE
1345   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1346 #endif
1347 #ifdef UNIX_SHM_BASE
1348   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1349 #endif
1350 
1351 
1352   /* Allocate an instance of struct Wal to return. */
1353   *ppWal = 0;
1354   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1355   if( !pRet ){
1356     return SQLITE_NOMEM_BKPT;
1357   }
1358 
1359   pRet->pVfs = pVfs;
1360   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1361   pRet->pDbFd = pDbFd;
1362   pRet->readLock = -1;
1363   pRet->mxWalSize = mxWalSize;
1364   pRet->zWalName = zWalName;
1365   pRet->syncHeader = 1;
1366   pRet->padToSectorBoundary = 1;
1367   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1368 
1369   /* Open file handle on the write-ahead log file. */
1370   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1371   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1372   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1373     pRet->readOnly = WAL_RDONLY;
1374   }
1375 
1376   if( rc!=SQLITE_OK ){
1377     walIndexClose(pRet, 0);
1378     sqlite3OsClose(pRet->pWalFd);
1379     sqlite3_free(pRet);
1380   }else{
1381     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1382     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1383     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1384       pRet->padToSectorBoundary = 0;
1385     }
1386     *ppWal = pRet;
1387     WALTRACE(("WAL%d: opened\n", pRet));
1388   }
1389   return rc;
1390 }
1391 
1392 /*
1393 ** Change the size to which the WAL file is trucated on each reset.
1394 */
1395 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1396   if( pWal ) pWal->mxWalSize = iLimit;
1397 }
1398 
1399 /*
1400 ** Find the smallest page number out of all pages held in the WAL that
1401 ** has not been returned by any prior invocation of this method on the
1402 ** same WalIterator object.   Write into *piFrame the frame index where
1403 ** that page was last written into the WAL.  Write into *piPage the page
1404 ** number.
1405 **
1406 ** Return 0 on success.  If there are no pages in the WAL with a page
1407 ** number larger than *piPage, then return 1.
1408 */
1409 static int walIteratorNext(
1410   WalIterator *p,               /* Iterator */
1411   u32 *piPage,                  /* OUT: The page number of the next page */
1412   u32 *piFrame                  /* OUT: Wal frame index of next page */
1413 ){
1414   u32 iMin;                     /* Result pgno must be greater than iMin */
1415   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1416   int i;                        /* For looping through segments */
1417 
1418   iMin = p->iPrior;
1419   assert( iMin<0xffffffff );
1420   for(i=p->nSegment-1; i>=0; i--){
1421     struct WalSegment *pSegment = &p->aSegment[i];
1422     while( pSegment->iNext<pSegment->nEntry ){
1423       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1424       if( iPg>iMin ){
1425         if( iPg<iRet ){
1426           iRet = iPg;
1427           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1428         }
1429         break;
1430       }
1431       pSegment->iNext++;
1432     }
1433   }
1434 
1435   *piPage = p->iPrior = iRet;
1436   return (iRet==0xFFFFFFFF);
1437 }
1438 
1439 /*
1440 ** This function merges two sorted lists into a single sorted list.
1441 **
1442 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1443 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1444 ** is guaranteed for all J<K:
1445 **
1446 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1447 **        aContent[aRight[J]] < aContent[aRight[K]]
1448 **
1449 ** This routine overwrites aRight[] with a new (probably longer) sequence
1450 ** of indices such that the aRight[] contains every index that appears in
1451 ** either aLeft[] or the old aRight[] and such that the second condition
1452 ** above is still met.
1453 **
1454 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1455 ** aContent[aRight[X]] values will be unique too.  But there might be
1456 ** one or more combinations of X and Y such that
1457 **
1458 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1459 **
1460 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1461 */
1462 static void walMerge(
1463   const u32 *aContent,            /* Pages in wal - keys for the sort */
1464   ht_slot *aLeft,                 /* IN: Left hand input list */
1465   int nLeft,                      /* IN: Elements in array *paLeft */
1466   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1467   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1468   ht_slot *aTmp                   /* Temporary buffer */
1469 ){
1470   int iLeft = 0;                  /* Current index in aLeft */
1471   int iRight = 0;                 /* Current index in aRight */
1472   int iOut = 0;                   /* Current index in output buffer */
1473   int nRight = *pnRight;
1474   ht_slot *aRight = *paRight;
1475 
1476   assert( nLeft>0 && nRight>0 );
1477   while( iRight<nRight || iLeft<nLeft ){
1478     ht_slot logpage;
1479     Pgno dbpage;
1480 
1481     if( (iLeft<nLeft)
1482      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1483     ){
1484       logpage = aLeft[iLeft++];
1485     }else{
1486       logpage = aRight[iRight++];
1487     }
1488     dbpage = aContent[logpage];
1489 
1490     aTmp[iOut++] = logpage;
1491     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1492 
1493     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1494     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1495   }
1496 
1497   *paRight = aLeft;
1498   *pnRight = iOut;
1499   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1500 }
1501 
1502 /*
1503 ** Sort the elements in list aList using aContent[] as the sort key.
1504 ** Remove elements with duplicate keys, preferring to keep the
1505 ** larger aList[] values.
1506 **
1507 ** The aList[] entries are indices into aContent[].  The values in
1508 ** aList[] are to be sorted so that for all J<K:
1509 **
1510 **      aContent[aList[J]] < aContent[aList[K]]
1511 **
1512 ** For any X and Y such that
1513 **
1514 **      aContent[aList[X]] == aContent[aList[Y]]
1515 **
1516 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1517 ** the smaller.
1518 */
1519 static void walMergesort(
1520   const u32 *aContent,            /* Pages in wal */
1521   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1522   ht_slot *aList,                 /* IN/OUT: List to sort */
1523   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1524 ){
1525   struct Sublist {
1526     int nList;                    /* Number of elements in aList */
1527     ht_slot *aList;               /* Pointer to sub-list content */
1528   };
1529 
1530   const int nList = *pnList;      /* Size of input list */
1531   int nMerge = 0;                 /* Number of elements in list aMerge */
1532   ht_slot *aMerge = 0;            /* List to be merged */
1533   int iList;                      /* Index into input list */
1534   u32 iSub = 0;                   /* Index into aSub array */
1535   struct Sublist aSub[13];        /* Array of sub-lists */
1536 
1537   memset(aSub, 0, sizeof(aSub));
1538   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1539   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1540 
1541   for(iList=0; iList<nList; iList++){
1542     nMerge = 1;
1543     aMerge = &aList[iList];
1544     for(iSub=0; iList & (1<<iSub); iSub++){
1545       struct Sublist *p;
1546       assert( iSub<ArraySize(aSub) );
1547       p = &aSub[iSub];
1548       assert( p->aList && p->nList<=(1<<iSub) );
1549       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1550       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1551     }
1552     aSub[iSub].aList = aMerge;
1553     aSub[iSub].nList = nMerge;
1554   }
1555 
1556   for(iSub++; iSub<ArraySize(aSub); iSub++){
1557     if( nList & (1<<iSub) ){
1558       struct Sublist *p;
1559       assert( iSub<ArraySize(aSub) );
1560       p = &aSub[iSub];
1561       assert( p->nList<=(1<<iSub) );
1562       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1563       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1564     }
1565   }
1566   assert( aMerge==aList );
1567   *pnList = nMerge;
1568 
1569 #ifdef SQLITE_DEBUG
1570   {
1571     int i;
1572     for(i=1; i<*pnList; i++){
1573       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1574     }
1575   }
1576 #endif
1577 }
1578 
1579 /*
1580 ** Free an iterator allocated by walIteratorInit().
1581 */
1582 static void walIteratorFree(WalIterator *p){
1583   sqlite3_free(p);
1584 }
1585 
1586 /*
1587 ** Construct a WalInterator object that can be used to loop over all
1588 ** pages in the WAL following frame nBackfill in ascending order. Frames
1589 ** nBackfill or earlier may be included - excluding them is an optimization
1590 ** only. The caller must hold the checkpoint lock.
1591 **
1592 ** On success, make *pp point to the newly allocated WalInterator object
1593 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1594 ** returns an error, the value of *pp is undefined.
1595 **
1596 ** The calling routine should invoke walIteratorFree() to destroy the
1597 ** WalIterator object when it has finished with it.
1598 */
1599 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1600   WalIterator *p;                 /* Return value */
1601   int nSegment;                   /* Number of segments to merge */
1602   u32 iLast;                      /* Last frame in log */
1603   int nByte;                      /* Number of bytes to allocate */
1604   int i;                          /* Iterator variable */
1605   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1606   int rc = SQLITE_OK;             /* Return Code */
1607 
1608   /* This routine only runs while holding the checkpoint lock. And
1609   ** it only runs if there is actually content in the log (mxFrame>0).
1610   */
1611   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1612   iLast = pWal->hdr.mxFrame;
1613 
1614   /* Allocate space for the WalIterator object. */
1615   nSegment = walFramePage(iLast) + 1;
1616   nByte = sizeof(WalIterator)
1617         + (nSegment-1)*sizeof(struct WalSegment)
1618         + iLast*sizeof(ht_slot);
1619   p = (WalIterator *)sqlite3_malloc64(nByte);
1620   if( !p ){
1621     return SQLITE_NOMEM_BKPT;
1622   }
1623   memset(p, 0, nByte);
1624   p->nSegment = nSegment;
1625 
1626   /* Allocate temporary space used by the merge-sort routine. This block
1627   ** of memory will be freed before this function returns.
1628   */
1629   aTmp = (ht_slot *)sqlite3_malloc64(
1630       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1631   );
1632   if( !aTmp ){
1633     rc = SQLITE_NOMEM_BKPT;
1634   }
1635 
1636   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1637     volatile ht_slot *aHash;
1638     u32 iZero;
1639     volatile u32 *aPgno;
1640 
1641     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1642     if( rc==SQLITE_OK ){
1643       int j;                      /* Counter variable */
1644       int nEntry;                 /* Number of entries in this segment */
1645       ht_slot *aIndex;            /* Sorted index for this segment */
1646 
1647       aPgno++;
1648       if( (i+1)==nSegment ){
1649         nEntry = (int)(iLast - iZero);
1650       }else{
1651         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1652       }
1653       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1654       iZero++;
1655 
1656       for(j=0; j<nEntry; j++){
1657         aIndex[j] = (ht_slot)j;
1658       }
1659       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1660       p->aSegment[i].iZero = iZero;
1661       p->aSegment[i].nEntry = nEntry;
1662       p->aSegment[i].aIndex = aIndex;
1663       p->aSegment[i].aPgno = (u32 *)aPgno;
1664     }
1665   }
1666   sqlite3_free(aTmp);
1667 
1668   if( rc!=SQLITE_OK ){
1669     walIteratorFree(p);
1670     p = 0;
1671   }
1672   *pp = p;
1673   return rc;
1674 }
1675 
1676 /*
1677 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1678 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1679 ** busy-handler function. Invoke it and retry the lock until either the
1680 ** lock is successfully obtained or the busy-handler returns 0.
1681 */
1682 static int walBusyLock(
1683   Wal *pWal,                      /* WAL connection */
1684   int (*xBusy)(void*),            /* Function to call when busy */
1685   void *pBusyArg,                 /* Context argument for xBusyHandler */
1686   int lockIdx,                    /* Offset of first byte to lock */
1687   int n                           /* Number of bytes to lock */
1688 ){
1689   int rc;
1690   do {
1691     rc = walLockExclusive(pWal, lockIdx, n);
1692   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1693   return rc;
1694 }
1695 
1696 /*
1697 ** The cache of the wal-index header must be valid to call this function.
1698 ** Return the page-size in bytes used by the database.
1699 */
1700 static int walPagesize(Wal *pWal){
1701   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1702 }
1703 
1704 /*
1705 ** The following is guaranteed when this function is called:
1706 **
1707 **   a) the WRITER lock is held,
1708 **   b) the entire log file has been checkpointed, and
1709 **   c) any existing readers are reading exclusively from the database
1710 **      file - there are no readers that may attempt to read a frame from
1711 **      the log file.
1712 **
1713 ** This function updates the shared-memory structures so that the next
1714 ** client to write to the database (which may be this one) does so by
1715 ** writing frames into the start of the log file.
1716 **
1717 ** The value of parameter salt1 is used as the aSalt[1] value in the
1718 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1719 ** one obtained from sqlite3_randomness()).
1720 */
1721 static void walRestartHdr(Wal *pWal, u32 salt1){
1722   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1723   int i;                          /* Loop counter */
1724   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1725   pWal->nCkpt++;
1726   pWal->hdr.mxFrame = 0;
1727   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1728   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1729   walIndexWriteHdr(pWal);
1730   pInfo->nBackfill = 0;
1731   pInfo->nBackfillAttempted = 0;
1732   pInfo->aReadMark[1] = 0;
1733   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1734   assert( pInfo->aReadMark[0]==0 );
1735 }
1736 
1737 /*
1738 ** Copy as much content as we can from the WAL back into the database file
1739 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1740 **
1741 ** The amount of information copies from WAL to database might be limited
1742 ** by active readers.  This routine will never overwrite a database page
1743 ** that a concurrent reader might be using.
1744 **
1745 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1746 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1747 ** checkpoints are always run by a background thread or background
1748 ** process, foreground threads will never block on a lengthy fsync call.
1749 **
1750 ** Fsync is called on the WAL before writing content out of the WAL and
1751 ** into the database.  This ensures that if the new content is persistent
1752 ** in the WAL and can be recovered following a power-loss or hard reset.
1753 **
1754 ** Fsync is also called on the database file if (and only if) the entire
1755 ** WAL content is copied into the database file.  This second fsync makes
1756 ** it safe to delete the WAL since the new content will persist in the
1757 ** database file.
1758 **
1759 ** This routine uses and updates the nBackfill field of the wal-index header.
1760 ** This is the only routine that will increase the value of nBackfill.
1761 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1762 ** its value.)
1763 **
1764 ** The caller must be holding sufficient locks to ensure that no other
1765 ** checkpoint is running (in any other thread or process) at the same
1766 ** time.
1767 */
1768 static int walCheckpoint(
1769   Wal *pWal,                      /* Wal connection */
1770   sqlite3 *db,                    /* Check for interrupts on this handle */
1771   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1772   int (*xBusy)(void*),            /* Function to call when busy */
1773   void *pBusyArg,                 /* Context argument for xBusyHandler */
1774   int sync_flags,                 /* Flags for OsSync() (or 0) */
1775   u8 *zBuf                        /* Temporary buffer to use */
1776 ){
1777   int rc = SQLITE_OK;             /* Return code */
1778   int szPage;                     /* Database page-size */
1779   WalIterator *pIter = 0;         /* Wal iterator context */
1780   u32 iDbpage = 0;                /* Next database page to write */
1781   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1782   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1783   u32 mxPage;                     /* Max database page to write */
1784   int i;                          /* Loop counter */
1785   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1786 
1787   szPage = walPagesize(pWal);
1788   testcase( szPage<=32768 );
1789   testcase( szPage>=65536 );
1790   pInfo = walCkptInfo(pWal);
1791   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1792 
1793     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1794     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1795     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1796 
1797     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1798     ** safe to write into the database.  Frames beyond mxSafeFrame might
1799     ** overwrite database pages that are in use by active readers and thus
1800     ** cannot be backfilled from the WAL.
1801     */
1802     mxSafeFrame = pWal->hdr.mxFrame;
1803     mxPage = pWal->hdr.nPage;
1804     for(i=1; i<WAL_NREADER; i++){
1805       /* Thread-sanitizer reports that the following is an unsafe read,
1806       ** as some other thread may be in the process of updating the value
1807       ** of the aReadMark[] slot. The assumption here is that if that is
1808       ** happening, the other client may only be increasing the value,
1809       ** not decreasing it. So assuming either that either the "old" or
1810       ** "new" version of the value is read, and not some arbitrary value
1811       ** that would never be written by a real client, things are still
1812       ** safe.  */
1813       u32 y = pInfo->aReadMark[i];
1814       if( mxSafeFrame>y ){
1815         assert( y<=pWal->hdr.mxFrame );
1816         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1817         if( rc==SQLITE_OK ){
1818           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1819           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1820         }else if( rc==SQLITE_BUSY ){
1821           mxSafeFrame = y;
1822           xBusy = 0;
1823         }else{
1824           goto walcheckpoint_out;
1825         }
1826       }
1827     }
1828 
1829     /* Allocate the iterator */
1830     if( pInfo->nBackfill<mxSafeFrame ){
1831       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1832       assert( rc==SQLITE_OK || pIter==0 );
1833     }
1834 
1835     if( pIter
1836      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1837     ){
1838       i64 nSize;                    /* Current size of database file */
1839       u32 nBackfill = pInfo->nBackfill;
1840 
1841       pInfo->nBackfillAttempted = mxSafeFrame;
1842 
1843       /* Sync the WAL to disk */
1844       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1845 
1846       /* If the database may grow as a result of this checkpoint, hint
1847       ** about the eventual size of the db file to the VFS layer.
1848       */
1849       if( rc==SQLITE_OK ){
1850         i64 nReq = ((i64)mxPage * szPage);
1851         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1852         if( rc==SQLITE_OK && nSize<nReq ){
1853           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1854         }
1855       }
1856 
1857 
1858       /* Iterate through the contents of the WAL, copying data to the db file */
1859       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1860         i64 iOffset;
1861         assert( walFramePgno(pWal, iFrame)==iDbpage );
1862         if( db->u1.isInterrupted ){
1863           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1864           break;
1865         }
1866         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1867           continue;
1868         }
1869         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1870         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1871         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1872         if( rc!=SQLITE_OK ) break;
1873         iOffset = (iDbpage-1)*(i64)szPage;
1874         testcase( IS_BIG_INT(iOffset) );
1875         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1876         if( rc!=SQLITE_OK ) break;
1877       }
1878 
1879       /* If work was actually accomplished... */
1880       if( rc==SQLITE_OK ){
1881         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1882           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1883           testcase( IS_BIG_INT(szDb) );
1884           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1885           if( rc==SQLITE_OK ){
1886             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1887           }
1888         }
1889         if( rc==SQLITE_OK ){
1890           pInfo->nBackfill = mxSafeFrame;
1891         }
1892       }
1893 
1894       /* Release the reader lock held while backfilling */
1895       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1896     }
1897 
1898     if( rc==SQLITE_BUSY ){
1899       /* Reset the return code so as not to report a checkpoint failure
1900       ** just because there are active readers.  */
1901       rc = SQLITE_OK;
1902     }
1903   }
1904 
1905   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1906   ** entire wal file has been copied into the database file, then block
1907   ** until all readers have finished using the wal file. This ensures that
1908   ** the next process to write to the database restarts the wal file.
1909   */
1910   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1911     assert( pWal->writeLock );
1912     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1913       rc = SQLITE_BUSY;
1914     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1915       u32 salt1;
1916       sqlite3_randomness(4, &salt1);
1917       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1918       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1919       if( rc==SQLITE_OK ){
1920         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1921           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1922           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1923           ** truncates the log file to zero bytes just prior to a
1924           ** successful return.
1925           **
1926           ** In theory, it might be safe to do this without updating the
1927           ** wal-index header in shared memory, as all subsequent reader or
1928           ** writer clients should see that the entire log file has been
1929           ** checkpointed and behave accordingly. This seems unsafe though,
1930           ** as it would leave the system in a state where the contents of
1931           ** the wal-index header do not match the contents of the
1932           ** file-system. To avoid this, update the wal-index header to
1933           ** indicate that the log file contains zero valid frames.  */
1934           walRestartHdr(pWal, salt1);
1935           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1936         }
1937         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1938       }
1939     }
1940   }
1941 
1942  walcheckpoint_out:
1943   walIteratorFree(pIter);
1944   return rc;
1945 }
1946 
1947 /*
1948 ** If the WAL file is currently larger than nMax bytes in size, truncate
1949 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1950 */
1951 static void walLimitSize(Wal *pWal, i64 nMax){
1952   i64 sz;
1953   int rx;
1954   sqlite3BeginBenignMalloc();
1955   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1956   if( rx==SQLITE_OK && (sz > nMax ) ){
1957     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1958   }
1959   sqlite3EndBenignMalloc();
1960   if( rx ){
1961     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1962   }
1963 }
1964 
1965 /*
1966 ** Close a connection to a log file.
1967 */
1968 int sqlite3WalClose(
1969   Wal *pWal,                      /* Wal to close */
1970   sqlite3 *db,                    /* For interrupt flag */
1971   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1972   int nBuf,
1973   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1974 ){
1975   int rc = SQLITE_OK;
1976   if( pWal ){
1977     int isDelete = 0;             /* True to unlink wal and wal-index files */
1978 
1979     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1980     ** ordinary, rollback-mode locking methods, this guarantees that the
1981     ** connection associated with this log file is the only connection to
1982     ** the database. In this case checkpoint the database and unlink both
1983     ** the wal and wal-index files.
1984     **
1985     ** The EXCLUSIVE lock is not released before returning.
1986     */
1987     if( zBuf!=0
1988      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1989     ){
1990       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1991         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1992       }
1993       rc = sqlite3WalCheckpoint(pWal, db,
1994           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1995       );
1996       if( rc==SQLITE_OK ){
1997         int bPersist = -1;
1998         sqlite3OsFileControlHint(
1999             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2000         );
2001         if( bPersist!=1 ){
2002           /* Try to delete the WAL file if the checkpoint completed and
2003           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2004           ** mode (!bPersist) */
2005           isDelete = 1;
2006         }else if( pWal->mxWalSize>=0 ){
2007           /* Try to truncate the WAL file to zero bytes if the checkpoint
2008           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2009           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2010           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2011           ** to zero bytes as truncating to the journal_size_limit might
2012           ** leave a corrupt WAL file on disk. */
2013           walLimitSize(pWal, 0);
2014         }
2015       }
2016     }
2017 
2018     walIndexClose(pWal, isDelete);
2019     sqlite3OsClose(pWal->pWalFd);
2020     if( isDelete ){
2021       sqlite3BeginBenignMalloc();
2022       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2023       sqlite3EndBenignMalloc();
2024     }
2025     WALTRACE(("WAL%p: closed\n", pWal));
2026     sqlite3_free((void *)pWal->apWiData);
2027     sqlite3_free(pWal);
2028   }
2029   return rc;
2030 }
2031 
2032 /*
2033 ** Try to read the wal-index header.  Return 0 on success and 1 if
2034 ** there is a problem.
2035 **
2036 ** The wal-index is in shared memory.  Another thread or process might
2037 ** be writing the header at the same time this procedure is trying to
2038 ** read it, which might result in inconsistency.  A dirty read is detected
2039 ** by verifying that both copies of the header are the same and also by
2040 ** a checksum on the header.
2041 **
2042 ** If and only if the read is consistent and the header is different from
2043 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2044 ** and *pChanged is set to 1.
2045 **
2046 ** If the checksum cannot be verified return non-zero. If the header
2047 ** is read successfully and the checksum verified, return zero.
2048 */
2049 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2050   u32 aCksum[2];                  /* Checksum on the header content */
2051   WalIndexHdr h1, h2;             /* Two copies of the header content */
2052   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2053 
2054   /* The first page of the wal-index must be mapped at this point. */
2055   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2056 
2057   /* Read the header. This might happen concurrently with a write to the
2058   ** same area of shared memory on a different CPU in a SMP,
2059   ** meaning it is possible that an inconsistent snapshot is read
2060   ** from the file. If this happens, return non-zero.
2061   **
2062   ** There are two copies of the header at the beginning of the wal-index.
2063   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2064   ** Memory barriers are used to prevent the compiler or the hardware from
2065   ** reordering the reads and writes.
2066   */
2067   aHdr = walIndexHdr(pWal);
2068   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2069   walShmBarrier(pWal);
2070   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2071 
2072   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2073     return 1;   /* Dirty read */
2074   }
2075   if( h1.isInit==0 ){
2076     return 1;   /* Malformed header - probably all zeros */
2077   }
2078   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2079   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2080     return 1;   /* Checksum does not match */
2081   }
2082 
2083   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2084     *pChanged = 1;
2085     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2086     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2087     testcase( pWal->szPage<=32768 );
2088     testcase( pWal->szPage>=65536 );
2089   }
2090 
2091   /* The header was successfully read. Return zero. */
2092   return 0;
2093 }
2094 
2095 /*
2096 ** This is the value that walTryBeginRead returns when it needs to
2097 ** be retried.
2098 */
2099 #define WAL_RETRY  (-1)
2100 
2101 /*
2102 ** Read the wal-index header from the wal-index and into pWal->hdr.
2103 ** If the wal-header appears to be corrupt, try to reconstruct the
2104 ** wal-index from the WAL before returning.
2105 **
2106 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2107 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2108 ** to 0.
2109 **
2110 ** If the wal-index header is successfully read, return SQLITE_OK.
2111 ** Otherwise an SQLite error code.
2112 */
2113 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2114   int rc;                         /* Return code */
2115   int badHdr;                     /* True if a header read failed */
2116   volatile u32 *page0;            /* Chunk of wal-index containing header */
2117 
2118   /* Ensure that page 0 of the wal-index (the page that contains the
2119   ** wal-index header) is mapped. Return early if an error occurs here.
2120   */
2121   assert( pChanged );
2122   rc = walIndexPage(pWal, 0, &page0);
2123   if( rc!=SQLITE_OK ){
2124     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2125     if( rc==SQLITE_READONLY_CANTINIT ){
2126       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2127       ** was openable but is not writable, and this thread is unable to
2128       ** confirm that another write-capable connection has the shared-memory
2129       ** open, and hence the content of the shared-memory is unreliable,
2130       ** since the shared-memory might be inconsistent with the WAL file
2131       ** and there is no writer on hand to fix it. */
2132       assert( page0==0 );
2133       assert( pWal->writeLock==0 );
2134       assert( pWal->readOnly & WAL_SHM_RDONLY );
2135       pWal->bShmUnreliable = 1;
2136       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2137       *pChanged = 1;
2138     }else{
2139       return rc; /* Any other non-OK return is just an error */
2140     }
2141   }else{
2142     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2143     ** is zero, which prevents the SHM from growing */
2144     testcase( page0!=0 );
2145   }
2146   assert( page0!=0 || pWal->writeLock==0 );
2147 
2148   /* If the first page of the wal-index has been mapped, try to read the
2149   ** wal-index header immediately, without holding any lock. This usually
2150   ** works, but may fail if the wal-index header is corrupt or currently
2151   ** being modified by another thread or process.
2152   */
2153   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2154 
2155   /* If the first attempt failed, it might have been due to a race
2156   ** with a writer.  So get a WRITE lock and try again.
2157   */
2158   assert( badHdr==0 || pWal->writeLock==0 );
2159   if( badHdr ){
2160     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2161       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2162         walUnlockShared(pWal, WAL_WRITE_LOCK);
2163         rc = SQLITE_READONLY_RECOVERY;
2164       }
2165     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2166       pWal->writeLock = 1;
2167       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2168         badHdr = walIndexTryHdr(pWal, pChanged);
2169         if( badHdr ){
2170           /* If the wal-index header is still malformed even while holding
2171           ** a WRITE lock, it can only mean that the header is corrupted and
2172           ** needs to be reconstructed.  So run recovery to do exactly that.
2173           */
2174           rc = walIndexRecover(pWal);
2175           *pChanged = 1;
2176         }
2177       }
2178       pWal->writeLock = 0;
2179       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2180     }
2181   }
2182 
2183   /* If the header is read successfully, check the version number to make
2184   ** sure the wal-index was not constructed with some future format that
2185   ** this version of SQLite cannot understand.
2186   */
2187   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2188     rc = SQLITE_CANTOPEN_BKPT;
2189   }
2190   if( pWal->bShmUnreliable ){
2191     if( rc!=SQLITE_OK ){
2192       walIndexClose(pWal, 0);
2193       pWal->bShmUnreliable = 0;
2194       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2195       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2196       ** writer truncated the WAL out from under it.  If that happens, it
2197       ** indicates that a writer has fixed the SHM file for us, so retry */
2198       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2199     }
2200     pWal->exclusiveMode = WAL_NORMAL_MODE;
2201   }
2202 
2203   return rc;
2204 }
2205 
2206 /*
2207 ** Open a transaction in a connection where the shared-memory is read-only
2208 ** and where we cannot verify that there is a separate write-capable connection
2209 ** on hand to keep the shared-memory up-to-date with the WAL file.
2210 **
2211 ** This can happen, for example, when the shared-memory is implemented by
2212 ** memory-mapping a *-shm file, where a prior writer has shut down and
2213 ** left the *-shm file on disk, and now the present connection is trying
2214 ** to use that database but lacks write permission on the *-shm file.
2215 ** Other scenarios are also possible, depending on the VFS implementation.
2216 **
2217 ** Precondition:
2218 **
2219 **    The *-wal file has been read and an appropriate wal-index has been
2220 **    constructed in pWal->apWiData[] using heap memory instead of shared
2221 **    memory.
2222 **
2223 ** If this function returns SQLITE_OK, then the read transaction has
2224 ** been successfully opened. In this case output variable (*pChanged)
2225 ** is set to true before returning if the caller should discard the
2226 ** contents of the page cache before proceeding. Or, if it returns
2227 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2228 ** the caller should retry opening the read transaction from the
2229 ** beginning (including attempting to map the *-shm file).
2230 **
2231 ** If an error occurs, an SQLite error code is returned.
2232 */
2233 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2234   i64 szWal;                      /* Size of wal file on disk in bytes */
2235   i64 iOffset;                    /* Current offset when reading wal file */
2236   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2237   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2238   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2239   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2240   volatile void *pDummy;          /* Dummy argument for xShmMap */
2241   int rc;                         /* Return code */
2242   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2243 
2244   assert( pWal->bShmUnreliable );
2245   assert( pWal->readOnly & WAL_SHM_RDONLY );
2246   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2247 
2248   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2249   ** writers from running a checkpoint, but does not stop them
2250   ** from running recovery.  */
2251   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2252   if( rc!=SQLITE_OK ){
2253     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2254     goto begin_unreliable_shm_out;
2255   }
2256   pWal->readLock = 0;
2257 
2258   /* Check to see if a separate writer has attached to the shared-memory area,
2259   ** thus making the shared-memory "reliable" again.  Do this by invoking
2260   ** the xShmMap() routine of the VFS and looking to see if the return
2261   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2262   **
2263   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2264   ** cause the heap-memory WAL-index to be discarded and the actual
2265   ** shared memory to be used in its place.
2266   **
2267   ** This step is important because, even though this connection is holding
2268   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2269   ** have already checkpointed the WAL file and, while the current
2270   ** is active, wrap the WAL and start overwriting frames that this
2271   ** process wants to use.
2272   **
2273   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2274   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2275   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2276   ** even if some external agent does a "chmod" to make the shared-memory
2277   ** writable by us, until sqlite3OsShmUnmap() has been called.
2278   ** This is a requirement on the VFS implementation.
2279    */
2280   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2281   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2282   if( rc!=SQLITE_READONLY_CANTINIT ){
2283     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2284     goto begin_unreliable_shm_out;
2285   }
2286 
2287   /* We reach this point only if the real shared-memory is still unreliable.
2288   ** Assume the in-memory WAL-index substitute is correct and load it
2289   ** into pWal->hdr.
2290   */
2291   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2292 
2293   /* Make sure some writer hasn't come in and changed the WAL file out
2294   ** from under us, then disconnected, while we were not looking.
2295   */
2296   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2297   if( rc!=SQLITE_OK ){
2298     goto begin_unreliable_shm_out;
2299   }
2300   if( szWal<WAL_HDRSIZE ){
2301     /* If the wal file is too small to contain a wal-header and the
2302     ** wal-index header has mxFrame==0, then it must be safe to proceed
2303     ** reading the database file only. However, the page cache cannot
2304     ** be trusted, as a read/write connection may have connected, written
2305     ** the db, run a checkpoint, truncated the wal file and disconnected
2306     ** since this client's last read transaction.  */
2307     *pChanged = 1;
2308     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2309     goto begin_unreliable_shm_out;
2310   }
2311 
2312   /* Check the salt keys at the start of the wal file still match. */
2313   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2314   if( rc!=SQLITE_OK ){
2315     goto begin_unreliable_shm_out;
2316   }
2317   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2318     /* Some writer has wrapped the WAL file while we were not looking.
2319     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2320     ** rebuilt. */
2321     rc = WAL_RETRY;
2322     goto begin_unreliable_shm_out;
2323   }
2324 
2325   /* Allocate a buffer to read frames into */
2326   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2327   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2328   if( aFrame==0 ){
2329     rc = SQLITE_NOMEM_BKPT;
2330     goto begin_unreliable_shm_out;
2331   }
2332   aData = &aFrame[WAL_FRAME_HDRSIZE];
2333 
2334   /* Check to see if a complete transaction has been appended to the
2335   ** wal file since the heap-memory wal-index was created. If so, the
2336   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2337   ** the caller.  */
2338   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2339   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2340   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2341       iOffset+szFrame<=szWal;
2342       iOffset+=szFrame
2343   ){
2344     u32 pgno;                   /* Database page number for frame */
2345     u32 nTruncate;              /* dbsize field from frame header */
2346 
2347     /* Read and decode the next log frame. */
2348     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2349     if( rc!=SQLITE_OK ) break;
2350     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2351 
2352     /* If nTruncate is non-zero, then a complete transaction has been
2353     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2354     ** the loop.  */
2355     if( nTruncate ){
2356       rc = WAL_RETRY;
2357       break;
2358     }
2359   }
2360   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2361   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2362 
2363  begin_unreliable_shm_out:
2364   sqlite3_free(aFrame);
2365   if( rc!=SQLITE_OK ){
2366     int i;
2367     for(i=0; i<pWal->nWiData; i++){
2368       sqlite3_free((void*)pWal->apWiData[i]);
2369       pWal->apWiData[i] = 0;
2370     }
2371     pWal->bShmUnreliable = 0;
2372     sqlite3WalEndReadTransaction(pWal);
2373     *pChanged = 1;
2374   }
2375   return rc;
2376 }
2377 
2378 /*
2379 ** Attempt to start a read transaction.  This might fail due to a race or
2380 ** other transient condition.  When that happens, it returns WAL_RETRY to
2381 ** indicate to the caller that it is safe to retry immediately.
2382 **
2383 ** On success return SQLITE_OK.  On a permanent failure (such an
2384 ** I/O error or an SQLITE_BUSY because another process is running
2385 ** recovery) return a positive error code.
2386 **
2387 ** The useWal parameter is true to force the use of the WAL and disable
2388 ** the case where the WAL is bypassed because it has been completely
2389 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2390 ** to make a copy of the wal-index header into pWal->hdr.  If the
2391 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2392 ** to the caller that the local page cache is obsolete and needs to be
2393 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2394 ** be loaded and the pChanged parameter is unused.
2395 **
2396 ** The caller must set the cnt parameter to the number of prior calls to
2397 ** this routine during the current read attempt that returned WAL_RETRY.
2398 ** This routine will start taking more aggressive measures to clear the
2399 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2400 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2401 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2402 ** and is not honoring the locking protocol.  There is a vanishingly small
2403 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2404 ** bad luck when there is lots of contention for the wal-index, but that
2405 ** possibility is so small that it can be safely neglected, we believe.
2406 **
2407 ** On success, this routine obtains a read lock on
2408 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2409 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2410 ** that means the Wal does not hold any read lock.  The reader must not
2411 ** access any database page that is modified by a WAL frame up to and
2412 ** including frame number aReadMark[pWal->readLock].  The reader will
2413 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2414 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2415 ** completely and get all content directly from the database file.
2416 ** If the useWal parameter is 1 then the WAL will never be ignored and
2417 ** this routine will always set pWal->readLock>0 on success.
2418 ** When the read transaction is completed, the caller must release the
2419 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2420 **
2421 ** This routine uses the nBackfill and aReadMark[] fields of the header
2422 ** to select a particular WAL_READ_LOCK() that strives to let the
2423 ** checkpoint process do as much work as possible.  This routine might
2424 ** update values of the aReadMark[] array in the header, but if it does
2425 ** so it takes care to hold an exclusive lock on the corresponding
2426 ** WAL_READ_LOCK() while changing values.
2427 */
2428 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2429   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2430   u32 mxReadMark;                 /* Largest aReadMark[] value */
2431   int mxI;                        /* Index of largest aReadMark[] value */
2432   int i;                          /* Loop counter */
2433   int rc = SQLITE_OK;             /* Return code  */
2434   u32 mxFrame;                    /* Wal frame to lock to */
2435 
2436   assert( pWal->readLock<0 );     /* Not currently locked */
2437 
2438   /* useWal may only be set for read/write connections */
2439   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2440 
2441   /* Take steps to avoid spinning forever if there is a protocol error.
2442   **
2443   ** Circumstances that cause a RETRY should only last for the briefest
2444   ** instances of time.  No I/O or other system calls are done while the
2445   ** locks are held, so the locks should not be held for very long. But
2446   ** if we are unlucky, another process that is holding a lock might get
2447   ** paged out or take a page-fault that is time-consuming to resolve,
2448   ** during the few nanoseconds that it is holding the lock.  In that case,
2449   ** it might take longer than normal for the lock to free.
2450   **
2451   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2452   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2453   ** is more of a scheduler yield than an actual delay.  But on the 10th
2454   ** an subsequent retries, the delays start becoming longer and longer,
2455   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2456   ** The total delay time before giving up is less than 10 seconds.
2457   */
2458   if( cnt>5 ){
2459     int nDelay = 1;                      /* Pause time in microseconds */
2460     if( cnt>100 ){
2461       VVA_ONLY( pWal->lockError = 1; )
2462       return SQLITE_PROTOCOL;
2463     }
2464     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2465     sqlite3OsSleep(pWal->pVfs, nDelay);
2466   }
2467 
2468   if( !useWal ){
2469     assert( rc==SQLITE_OK );
2470     if( pWal->bShmUnreliable==0 ){
2471       rc = walIndexReadHdr(pWal, pChanged);
2472     }
2473     if( rc==SQLITE_BUSY ){
2474       /* If there is not a recovery running in another thread or process
2475       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2476       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2477       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2478       ** would be technically correct.  But the race is benign since with
2479       ** WAL_RETRY this routine will be called again and will probably be
2480       ** right on the second iteration.
2481       */
2482       if( pWal->apWiData[0]==0 ){
2483         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2484         ** We assume this is a transient condition, so return WAL_RETRY. The
2485         ** xShmMap() implementation used by the default unix and win32 VFS
2486         ** modules may return SQLITE_BUSY due to a race condition in the
2487         ** code that determines whether or not the shared-memory region
2488         ** must be zeroed before the requested page is returned.
2489         */
2490         rc = WAL_RETRY;
2491       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2492         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2493         rc = WAL_RETRY;
2494       }else if( rc==SQLITE_BUSY ){
2495         rc = SQLITE_BUSY_RECOVERY;
2496       }
2497     }
2498     if( rc!=SQLITE_OK ){
2499       return rc;
2500     }
2501     else if( pWal->bShmUnreliable ){
2502       return walBeginShmUnreliable(pWal, pChanged);
2503     }
2504   }
2505 
2506   assert( pWal->nWiData>0 );
2507   assert( pWal->apWiData[0]!=0 );
2508   pInfo = walCkptInfo(pWal);
2509   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2510 #ifdef SQLITE_ENABLE_SNAPSHOT
2511    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2512 #endif
2513   ){
2514     /* The WAL has been completely backfilled (or it is empty).
2515     ** and can be safely ignored.
2516     */
2517     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2518     walShmBarrier(pWal);
2519     if( rc==SQLITE_OK ){
2520       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2521         /* It is not safe to allow the reader to continue here if frames
2522         ** may have been appended to the log before READ_LOCK(0) was obtained.
2523         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2524         ** which implies that the database file contains a trustworthy
2525         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2526         ** happening, this is usually correct.
2527         **
2528         ** However, if frames have been appended to the log (or if the log
2529         ** is wrapped and written for that matter) before the READ_LOCK(0)
2530         ** is obtained, that is not necessarily true. A checkpointer may
2531         ** have started to backfill the appended frames but crashed before
2532         ** it finished. Leaving a corrupt image in the database file.
2533         */
2534         walUnlockShared(pWal, WAL_READ_LOCK(0));
2535         return WAL_RETRY;
2536       }
2537       pWal->readLock = 0;
2538       return SQLITE_OK;
2539     }else if( rc!=SQLITE_BUSY ){
2540       return rc;
2541     }
2542   }
2543 
2544   /* If we get this far, it means that the reader will want to use
2545   ** the WAL to get at content from recent commits.  The job now is
2546   ** to select one of the aReadMark[] entries that is closest to
2547   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2548   */
2549   mxReadMark = 0;
2550   mxI = 0;
2551   mxFrame = pWal->hdr.mxFrame;
2552 #ifdef SQLITE_ENABLE_SNAPSHOT
2553   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2554     mxFrame = pWal->pSnapshot->mxFrame;
2555   }
2556 #endif
2557   for(i=1; i<WAL_NREADER; i++){
2558     u32 thisMark = pInfo->aReadMark[i];
2559     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2560       assert( thisMark!=READMARK_NOT_USED );
2561       mxReadMark = thisMark;
2562       mxI = i;
2563     }
2564   }
2565   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2566    && (mxReadMark<mxFrame || mxI==0)
2567   ){
2568     for(i=1; i<WAL_NREADER; i++){
2569       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2570       if( rc==SQLITE_OK ){
2571         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2572         mxI = i;
2573         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2574         break;
2575       }else if( rc!=SQLITE_BUSY ){
2576         return rc;
2577       }
2578     }
2579   }
2580   if( mxI==0 ){
2581     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2582     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2583   }
2584 
2585   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2586   if( rc ){
2587     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2588   }
2589   /* Now that the read-lock has been obtained, check that neither the
2590   ** value in the aReadMark[] array or the contents of the wal-index
2591   ** header have changed.
2592   **
2593   ** It is necessary to check that the wal-index header did not change
2594   ** between the time it was read and when the shared-lock was obtained
2595   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2596   ** that the log file may have been wrapped by a writer, or that frames
2597   ** that occur later in the log than pWal->hdr.mxFrame may have been
2598   ** copied into the database by a checkpointer. If either of these things
2599   ** happened, then reading the database with the current value of
2600   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2601   ** instead.
2602   **
2603   ** Before checking that the live wal-index header has not changed
2604   ** since it was read, set Wal.minFrame to the first frame in the wal
2605   ** file that has not yet been checkpointed. This client will not need
2606   ** to read any frames earlier than minFrame from the wal file - they
2607   ** can be safely read directly from the database file.
2608   **
2609   ** Because a ShmBarrier() call is made between taking the copy of
2610   ** nBackfill and checking that the wal-header in shared-memory still
2611   ** matches the one cached in pWal->hdr, it is guaranteed that the
2612   ** checkpointer that set nBackfill was not working with a wal-index
2613   ** header newer than that cached in pWal->hdr. If it were, that could
2614   ** cause a problem. The checkpointer could omit to checkpoint
2615   ** a version of page X that lies before pWal->minFrame (call that version
2616   ** A) on the basis that there is a newer version (version B) of the same
2617   ** page later in the wal file. But if version B happens to like past
2618   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2619   ** that it can read version A from the database file. However, since
2620   ** we can guarantee that the checkpointer that set nBackfill could not
2621   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2622   */
2623   pWal->minFrame = pInfo->nBackfill+1;
2624   walShmBarrier(pWal);
2625   if( pInfo->aReadMark[mxI]!=mxReadMark
2626    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2627   ){
2628     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2629     return WAL_RETRY;
2630   }else{
2631     assert( mxReadMark<=pWal->hdr.mxFrame );
2632     pWal->readLock = (i16)mxI;
2633   }
2634   return rc;
2635 }
2636 
2637 #ifdef SQLITE_ENABLE_SNAPSHOT
2638 /*
2639 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2640 ** variable so that older snapshots can be accessed. To do this, loop
2641 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2642 ** comparing their content to the corresponding page with the database
2643 ** file, if any. Set nBackfillAttempted to the frame number of the
2644 ** first frame for which the wal file content matches the db file.
2645 **
2646 ** This is only really safe if the file-system is such that any page
2647 ** writes made by earlier checkpointers were atomic operations, which
2648 ** is not always true. It is also possible that nBackfillAttempted
2649 ** may be left set to a value larger than expected, if a wal frame
2650 ** contains content that duplicate of an earlier version of the same
2651 ** page.
2652 **
2653 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2654 ** error occurs. It is not an error if nBackfillAttempted cannot be
2655 ** decreased at all.
2656 */
2657 int sqlite3WalSnapshotRecover(Wal *pWal){
2658   int rc;
2659 
2660   assert( pWal->readLock>=0 );
2661   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2662   if( rc==SQLITE_OK ){
2663     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2664     int szPage = (int)pWal->szPage;
2665     i64 szDb;                   /* Size of db file in bytes */
2666 
2667     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2668     if( rc==SQLITE_OK ){
2669       void *pBuf1 = sqlite3_malloc(szPage);
2670       void *pBuf2 = sqlite3_malloc(szPage);
2671       if( pBuf1==0 || pBuf2==0 ){
2672         rc = SQLITE_NOMEM;
2673       }else{
2674         u32 i = pInfo->nBackfillAttempted;
2675         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2676           volatile ht_slot *dummy;
2677           volatile u32 *aPgno;      /* Array of page numbers */
2678           u32 iZero;                /* Frame corresponding to aPgno[0] */
2679           u32 pgno;                 /* Page number in db file */
2680           i64 iDbOff;               /* Offset of db file entry */
2681           i64 iWalOff;              /* Offset of wal file entry */
2682 
2683           rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2684           if( rc!=SQLITE_OK ) break;
2685           pgno = aPgno[i-iZero];
2686           iDbOff = (i64)(pgno-1) * szPage;
2687 
2688           if( iDbOff+szPage<=szDb ){
2689             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2690             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2691 
2692             if( rc==SQLITE_OK ){
2693               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2694             }
2695 
2696             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2697               break;
2698             }
2699           }
2700 
2701           pInfo->nBackfillAttempted = i-1;
2702         }
2703       }
2704 
2705       sqlite3_free(pBuf1);
2706       sqlite3_free(pBuf2);
2707     }
2708     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2709   }
2710 
2711   return rc;
2712 }
2713 #endif /* SQLITE_ENABLE_SNAPSHOT */
2714 
2715 /*
2716 ** Begin a read transaction on the database.
2717 **
2718 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2719 ** it takes a snapshot of the state of the WAL and wal-index for the current
2720 ** instant in time.  The current thread will continue to use this snapshot.
2721 ** Other threads might append new content to the WAL and wal-index but
2722 ** that extra content is ignored by the current thread.
2723 **
2724 ** If the database contents have changes since the previous read
2725 ** transaction, then *pChanged is set to 1 before returning.  The
2726 ** Pager layer will use this to know that is cache is stale and
2727 ** needs to be flushed.
2728 */
2729 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2730   int rc;                         /* Return code */
2731   int cnt = 0;                    /* Number of TryBeginRead attempts */
2732 
2733 #ifdef SQLITE_ENABLE_SNAPSHOT
2734   int bChanged = 0;
2735   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2736   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2737     bChanged = 1;
2738   }
2739 #endif
2740 
2741   do{
2742     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2743   }while( rc==WAL_RETRY );
2744   testcase( (rc&0xff)==SQLITE_BUSY );
2745   testcase( (rc&0xff)==SQLITE_IOERR );
2746   testcase( rc==SQLITE_PROTOCOL );
2747   testcase( rc==SQLITE_OK );
2748 
2749 #ifdef SQLITE_ENABLE_SNAPSHOT
2750   if( rc==SQLITE_OK ){
2751     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2752       /* At this point the client has a lock on an aReadMark[] slot holding
2753       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2754       ** is populated with the wal-index header corresponding to the head
2755       ** of the wal file. Verify that pSnapshot is still valid before
2756       ** continuing.  Reasons why pSnapshot might no longer be valid:
2757       **
2758       **    (1)  The WAL file has been reset since the snapshot was taken.
2759       **         In this case, the salt will have changed.
2760       **
2761       **    (2)  A checkpoint as been attempted that wrote frames past
2762       **         pSnapshot->mxFrame into the database file.  Note that the
2763       **         checkpoint need not have completed for this to cause problems.
2764       */
2765       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2766 
2767       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2768       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2769 
2770       /* It is possible that there is a checkpointer thread running
2771       ** concurrent with this code. If this is the case, it may be that the
2772       ** checkpointer has already determined that it will checkpoint
2773       ** snapshot X, where X is later in the wal file than pSnapshot, but
2774       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2775       ** its intent. To avoid the race condition this leads to, ensure that
2776       ** there is no checkpointer process by taking a shared CKPT lock
2777       ** before checking pInfo->nBackfillAttempted.
2778       **
2779       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2780       **       this already?
2781       */
2782       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2783 
2784       if( rc==SQLITE_OK ){
2785         /* Check that the wal file has not been wrapped. Assuming that it has
2786         ** not, also check that no checkpointer has attempted to checkpoint any
2787         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2788         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2789         ** with *pSnapshot and set *pChanged as appropriate for opening the
2790         ** snapshot.  */
2791         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2792          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2793         ){
2794           assert( pWal->readLock>0 );
2795           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2796           *pChanged = bChanged;
2797         }else{
2798           rc = SQLITE_BUSY_SNAPSHOT;
2799         }
2800 
2801         /* Release the shared CKPT lock obtained above. */
2802         walUnlockShared(pWal, WAL_CKPT_LOCK);
2803       }
2804 
2805 
2806       if( rc!=SQLITE_OK ){
2807         sqlite3WalEndReadTransaction(pWal);
2808       }
2809     }
2810   }
2811 #endif
2812   return rc;
2813 }
2814 
2815 /*
2816 ** Finish with a read transaction.  All this does is release the
2817 ** read-lock.
2818 */
2819 void sqlite3WalEndReadTransaction(Wal *pWal){
2820   sqlite3WalEndWriteTransaction(pWal);
2821   if( pWal->readLock>=0 ){
2822     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2823     pWal->readLock = -1;
2824   }
2825 }
2826 
2827 /*
2828 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2829 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2830 ** to zero.
2831 **
2832 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2833 ** error does occur, the final value of *piRead is undefined.
2834 */
2835 int sqlite3WalFindFrame(
2836   Wal *pWal,                      /* WAL handle */
2837   Pgno pgno,                      /* Database page number to read data for */
2838   u32 *piRead                     /* OUT: Frame number (or zero) */
2839 ){
2840   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2841   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2842   int iHash;                      /* Used to loop through N hash tables */
2843   int iMinHash;
2844 
2845   /* This routine is only be called from within a read transaction. */
2846   assert( pWal->readLock>=0 || pWal->lockError );
2847 
2848   /* If the "last page" field of the wal-index header snapshot is 0, then
2849   ** no data will be read from the wal under any circumstances. Return early
2850   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2851   ** then the WAL is ignored by the reader so return early, as if the
2852   ** WAL were empty.
2853   */
2854   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2855     *piRead = 0;
2856     return SQLITE_OK;
2857   }
2858 
2859   /* Search the hash table or tables for an entry matching page number
2860   ** pgno. Each iteration of the following for() loop searches one
2861   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2862   **
2863   ** This code might run concurrently to the code in walIndexAppend()
2864   ** that adds entries to the wal-index (and possibly to this hash
2865   ** table). This means the value just read from the hash
2866   ** slot (aHash[iKey]) may have been added before or after the
2867   ** current read transaction was opened. Values added after the
2868   ** read transaction was opened may have been written incorrectly -
2869   ** i.e. these slots may contain garbage data. However, we assume
2870   ** that any slots written before the current read transaction was
2871   ** opened remain unmodified.
2872   **
2873   ** For the reasons above, the if(...) condition featured in the inner
2874   ** loop of the following block is more stringent that would be required
2875   ** if we had exclusive access to the hash-table:
2876   **
2877   **   (aPgno[iFrame]==pgno):
2878   **     This condition filters out normal hash-table collisions.
2879   **
2880   **   (iFrame<=iLast):
2881   **     This condition filters out entries that were added to the hash
2882   **     table after the current read-transaction had started.
2883   */
2884   iMinHash = walFramePage(pWal->minFrame);
2885   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2886     volatile ht_slot *aHash;      /* Pointer to hash table */
2887     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2888     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2889     int iKey;                     /* Hash slot index */
2890     int nCollide;                 /* Number of hash collisions remaining */
2891     int rc;                       /* Error code */
2892 
2893     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2894     if( rc!=SQLITE_OK ){
2895       return rc;
2896     }
2897     nCollide = HASHTABLE_NSLOT;
2898     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2899       u32 iFrame = aHash[iKey] + iZero;
2900       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2901         assert( iFrame>iRead || CORRUPT_DB );
2902         iRead = iFrame;
2903       }
2904       if( (nCollide--)==0 ){
2905         return SQLITE_CORRUPT_BKPT;
2906       }
2907     }
2908     if( iRead ) break;
2909   }
2910 
2911 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2912   /* If expensive assert() statements are available, do a linear search
2913   ** of the wal-index file content. Make sure the results agree with the
2914   ** result obtained using the hash indexes above.  */
2915   {
2916     u32 iRead2 = 0;
2917     u32 iTest;
2918     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2919     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2920       if( walFramePgno(pWal, iTest)==pgno ){
2921         iRead2 = iTest;
2922         break;
2923       }
2924     }
2925     assert( iRead==iRead2 );
2926   }
2927 #endif
2928 
2929   *piRead = iRead;
2930   return SQLITE_OK;
2931 }
2932 
2933 /*
2934 ** Read the contents of frame iRead from the wal file into buffer pOut
2935 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2936 ** error code otherwise.
2937 */
2938 int sqlite3WalReadFrame(
2939   Wal *pWal,                      /* WAL handle */
2940   u32 iRead,                      /* Frame to read */
2941   int nOut,                       /* Size of buffer pOut in bytes */
2942   u8 *pOut                        /* Buffer to write page data to */
2943 ){
2944   int sz;
2945   i64 iOffset;
2946   sz = pWal->hdr.szPage;
2947   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2948   testcase( sz<=32768 );
2949   testcase( sz>=65536 );
2950   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2951   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2952   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2953 }
2954 
2955 /*
2956 ** Return the size of the database in pages (or zero, if unknown).
2957 */
2958 Pgno sqlite3WalDbsize(Wal *pWal){
2959   if( pWal && ALWAYS(pWal->readLock>=0) ){
2960     return pWal->hdr.nPage;
2961   }
2962   return 0;
2963 }
2964 
2965 
2966 /*
2967 ** This function starts a write transaction on the WAL.
2968 **
2969 ** A read transaction must have already been started by a prior call
2970 ** to sqlite3WalBeginReadTransaction().
2971 **
2972 ** If another thread or process has written into the database since
2973 ** the read transaction was started, then it is not possible for this
2974 ** thread to write as doing so would cause a fork.  So this routine
2975 ** returns SQLITE_BUSY in that case and no write transaction is started.
2976 **
2977 ** There can only be a single writer active at a time.
2978 */
2979 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2980   int rc;
2981 
2982   /* Cannot start a write transaction without first holding a read
2983   ** transaction. */
2984   assert( pWal->readLock>=0 );
2985   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2986 
2987   if( pWal->readOnly ){
2988     return SQLITE_READONLY;
2989   }
2990 
2991   /* Only one writer allowed at a time.  Get the write lock.  Return
2992   ** SQLITE_BUSY if unable.
2993   */
2994   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2995   if( rc ){
2996     return rc;
2997   }
2998   pWal->writeLock = 1;
2999 
3000   /* If another connection has written to the database file since the
3001   ** time the read transaction on this connection was started, then
3002   ** the write is disallowed.
3003   */
3004   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3005     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3006     pWal->writeLock = 0;
3007     rc = SQLITE_BUSY_SNAPSHOT;
3008   }
3009 
3010   return rc;
3011 }
3012 
3013 /*
3014 ** End a write transaction.  The commit has already been done.  This
3015 ** routine merely releases the lock.
3016 */
3017 int sqlite3WalEndWriteTransaction(Wal *pWal){
3018   if( pWal->writeLock ){
3019     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3020     pWal->writeLock = 0;
3021     pWal->iReCksum = 0;
3022     pWal->truncateOnCommit = 0;
3023   }
3024   return SQLITE_OK;
3025 }
3026 
3027 /*
3028 ** If any data has been written (but not committed) to the log file, this
3029 ** function moves the write-pointer back to the start of the transaction.
3030 **
3031 ** Additionally, the callback function is invoked for each frame written
3032 ** to the WAL since the start of the transaction. If the callback returns
3033 ** other than SQLITE_OK, it is not invoked again and the error code is
3034 ** returned to the caller.
3035 **
3036 ** Otherwise, if the callback function does not return an error, this
3037 ** function returns SQLITE_OK.
3038 */
3039 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3040   int rc = SQLITE_OK;
3041   if( ALWAYS(pWal->writeLock) ){
3042     Pgno iMax = pWal->hdr.mxFrame;
3043     Pgno iFrame;
3044 
3045     /* Restore the clients cache of the wal-index header to the state it
3046     ** was in before the client began writing to the database.
3047     */
3048     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3049 
3050     for(iFrame=pWal->hdr.mxFrame+1;
3051         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3052         iFrame++
3053     ){
3054       /* This call cannot fail. Unless the page for which the page number
3055       ** is passed as the second argument is (a) in the cache and
3056       ** (b) has an outstanding reference, then xUndo is either a no-op
3057       ** (if (a) is false) or simply expels the page from the cache (if (b)
3058       ** is false).
3059       **
3060       ** If the upper layer is doing a rollback, it is guaranteed that there
3061       ** are no outstanding references to any page other than page 1. And
3062       ** page 1 is never written to the log until the transaction is
3063       ** committed. As a result, the call to xUndo may not fail.
3064       */
3065       assert( walFramePgno(pWal, iFrame)!=1 );
3066       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3067     }
3068     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3069   }
3070   return rc;
3071 }
3072 
3073 /*
3074 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3075 ** values. This function populates the array with values required to
3076 ** "rollback" the write position of the WAL handle back to the current
3077 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3078 */
3079 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3080   assert( pWal->writeLock );
3081   aWalData[0] = pWal->hdr.mxFrame;
3082   aWalData[1] = pWal->hdr.aFrameCksum[0];
3083   aWalData[2] = pWal->hdr.aFrameCksum[1];
3084   aWalData[3] = pWal->nCkpt;
3085 }
3086 
3087 /*
3088 ** Move the write position of the WAL back to the point identified by
3089 ** the values in the aWalData[] array. aWalData must point to an array
3090 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3091 ** by a call to WalSavepoint().
3092 */
3093 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3094   int rc = SQLITE_OK;
3095 
3096   assert( pWal->writeLock );
3097   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3098 
3099   if( aWalData[3]!=pWal->nCkpt ){
3100     /* This savepoint was opened immediately after the write-transaction
3101     ** was started. Right after that, the writer decided to wrap around
3102     ** to the start of the log. Update the savepoint values to match.
3103     */
3104     aWalData[0] = 0;
3105     aWalData[3] = pWal->nCkpt;
3106   }
3107 
3108   if( aWalData[0]<pWal->hdr.mxFrame ){
3109     pWal->hdr.mxFrame = aWalData[0];
3110     pWal->hdr.aFrameCksum[0] = aWalData[1];
3111     pWal->hdr.aFrameCksum[1] = aWalData[2];
3112     walCleanupHash(pWal);
3113   }
3114 
3115   return rc;
3116 }
3117 
3118 /*
3119 ** This function is called just before writing a set of frames to the log
3120 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3121 ** to the current log file, it is possible to overwrite the start of the
3122 ** existing log file with the new frames (i.e. "reset" the log). If so,
3123 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3124 ** unchanged.
3125 **
3126 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3127 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3128 ** if an error occurs.
3129 */
3130 static int walRestartLog(Wal *pWal){
3131   int rc = SQLITE_OK;
3132   int cnt;
3133 
3134   if( pWal->readLock==0 ){
3135     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3136     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3137     if( pInfo->nBackfill>0 ){
3138       u32 salt1;
3139       sqlite3_randomness(4, &salt1);
3140       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3141       if( rc==SQLITE_OK ){
3142         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3143         ** readers are currently using the WAL), then the transactions
3144         ** frames will overwrite the start of the existing log. Update the
3145         ** wal-index header to reflect this.
3146         **
3147         ** In theory it would be Ok to update the cache of the header only
3148         ** at this point. But updating the actual wal-index header is also
3149         ** safe and means there is no special case for sqlite3WalUndo()
3150         ** to handle if this transaction is rolled back.  */
3151         walRestartHdr(pWal, salt1);
3152         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3153       }else if( rc!=SQLITE_BUSY ){
3154         return rc;
3155       }
3156     }
3157     walUnlockShared(pWal, WAL_READ_LOCK(0));
3158     pWal->readLock = -1;
3159     cnt = 0;
3160     do{
3161       int notUsed;
3162       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3163     }while( rc==WAL_RETRY );
3164     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3165     testcase( (rc&0xff)==SQLITE_IOERR );
3166     testcase( rc==SQLITE_PROTOCOL );
3167     testcase( rc==SQLITE_OK );
3168   }
3169   return rc;
3170 }
3171 
3172 /*
3173 ** Information about the current state of the WAL file and where
3174 ** the next fsync should occur - passed from sqlite3WalFrames() into
3175 ** walWriteToLog().
3176 */
3177 typedef struct WalWriter {
3178   Wal *pWal;                   /* The complete WAL information */
3179   sqlite3_file *pFd;           /* The WAL file to which we write */
3180   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3181   int syncFlags;               /* Flags for the fsync */
3182   int szPage;                  /* Size of one page */
3183 } WalWriter;
3184 
3185 /*
3186 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3187 ** Do a sync when crossing the p->iSyncPoint boundary.
3188 **
3189 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3190 ** first write the part before iSyncPoint, then sync, then write the
3191 ** rest.
3192 */
3193 static int walWriteToLog(
3194   WalWriter *p,              /* WAL to write to */
3195   void *pContent,            /* Content to be written */
3196   int iAmt,                  /* Number of bytes to write */
3197   sqlite3_int64 iOffset      /* Start writing at this offset */
3198 ){
3199   int rc;
3200   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3201     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3202     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3203     if( rc ) return rc;
3204     iOffset += iFirstAmt;
3205     iAmt -= iFirstAmt;
3206     pContent = (void*)(iFirstAmt + (char*)pContent);
3207     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3208     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3209     if( iAmt==0 || rc ) return rc;
3210   }
3211   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3212   return rc;
3213 }
3214 
3215 /*
3216 ** Write out a single frame of the WAL
3217 */
3218 static int walWriteOneFrame(
3219   WalWriter *p,               /* Where to write the frame */
3220   PgHdr *pPage,               /* The page of the frame to be written */
3221   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3222   sqlite3_int64 iOffset       /* Byte offset at which to write */
3223 ){
3224   int rc;                         /* Result code from subfunctions */
3225   void *pData;                    /* Data actually written */
3226   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3227 #if defined(SQLITE_HAS_CODEC)
3228   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3229 #else
3230   pData = pPage->pData;
3231 #endif
3232   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3233   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3234   if( rc ) return rc;
3235   /* Write the page data */
3236   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3237   return rc;
3238 }
3239 
3240 /*
3241 ** This function is called as part of committing a transaction within which
3242 ** one or more frames have been overwritten. It updates the checksums for
3243 ** all frames written to the wal file by the current transaction starting
3244 ** with the earliest to have been overwritten.
3245 **
3246 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3247 */
3248 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3249   const int szPage = pWal->szPage;/* Database page size */
3250   int rc = SQLITE_OK;             /* Return code */
3251   u8 *aBuf;                       /* Buffer to load data from wal file into */
3252   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3253   u32 iRead;                      /* Next frame to read from wal file */
3254   i64 iCksumOff;
3255 
3256   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3257   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3258 
3259   /* Find the checksum values to use as input for the recalculating the
3260   ** first checksum. If the first frame is frame 1 (implying that the current
3261   ** transaction restarted the wal file), these values must be read from the
3262   ** wal-file header. Otherwise, read them from the frame header of the
3263   ** previous frame.  */
3264   assert( pWal->iReCksum>0 );
3265   if( pWal->iReCksum==1 ){
3266     iCksumOff = 24;
3267   }else{
3268     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3269   }
3270   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3271   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3272   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3273 
3274   iRead = pWal->iReCksum;
3275   pWal->iReCksum = 0;
3276   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3277     i64 iOff = walFrameOffset(iRead, szPage);
3278     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3279     if( rc==SQLITE_OK ){
3280       u32 iPgno, nDbSize;
3281       iPgno = sqlite3Get4byte(aBuf);
3282       nDbSize = sqlite3Get4byte(&aBuf[4]);
3283 
3284       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3285       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3286     }
3287   }
3288 
3289   sqlite3_free(aBuf);
3290   return rc;
3291 }
3292 
3293 /*
3294 ** Write a set of frames to the log. The caller must hold the write-lock
3295 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3296 */
3297 int sqlite3WalFrames(
3298   Wal *pWal,                      /* Wal handle to write to */
3299   int szPage,                     /* Database page-size in bytes */
3300   PgHdr *pList,                   /* List of dirty pages to write */
3301   Pgno nTruncate,                 /* Database size after this commit */
3302   int isCommit,                   /* True if this is a commit */
3303   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3304 ){
3305   int rc;                         /* Used to catch return codes */
3306   u32 iFrame;                     /* Next frame address */
3307   PgHdr *p;                       /* Iterator to run through pList with. */
3308   PgHdr *pLast = 0;               /* Last frame in list */
3309   int nExtra = 0;                 /* Number of extra copies of last page */
3310   int szFrame;                    /* The size of a single frame */
3311   i64 iOffset;                    /* Next byte to write in WAL file */
3312   WalWriter w;                    /* The writer */
3313   u32 iFirst = 0;                 /* First frame that may be overwritten */
3314   WalIndexHdr *pLive;             /* Pointer to shared header */
3315 
3316   assert( pList );
3317   assert( pWal->writeLock );
3318 
3319   /* If this frame set completes a transaction, then nTruncate>0.  If
3320   ** nTruncate==0 then this frame set does not complete the transaction. */
3321   assert( (isCommit!=0)==(nTruncate!=0) );
3322 
3323 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3324   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3325     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3326               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3327   }
3328 #endif
3329 
3330   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3331   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3332     iFirst = pLive->mxFrame+1;
3333   }
3334 
3335   /* See if it is possible to write these frames into the start of the
3336   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3337   */
3338   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3339     return rc;
3340   }
3341 
3342   /* If this is the first frame written into the log, write the WAL
3343   ** header to the start of the WAL file. See comments at the top of
3344   ** this source file for a description of the WAL header format.
3345   */
3346   iFrame = pWal->hdr.mxFrame;
3347   if( iFrame==0 ){
3348     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3349     u32 aCksum[2];                /* Checksum for wal-header */
3350 
3351     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3352     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3353     sqlite3Put4byte(&aWalHdr[8], szPage);
3354     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3355     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3356     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3357     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3358     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3359     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3360 
3361     pWal->szPage = szPage;
3362     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3363     pWal->hdr.aFrameCksum[0] = aCksum[0];
3364     pWal->hdr.aFrameCksum[1] = aCksum[1];
3365     pWal->truncateOnCommit = 1;
3366 
3367     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3368     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3369     if( rc!=SQLITE_OK ){
3370       return rc;
3371     }
3372 
3373     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3374     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3375     ** an out-of-order write following a WAL restart could result in
3376     ** database corruption.  See the ticket:
3377     **
3378     **     https://sqlite.org/src/info/ff5be73dee
3379     */
3380     if( pWal->syncHeader ){
3381       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3382       if( rc ) return rc;
3383     }
3384   }
3385   assert( (int)pWal->szPage==szPage );
3386 
3387   /* Setup information needed to write frames into the WAL */
3388   w.pWal = pWal;
3389   w.pFd = pWal->pWalFd;
3390   w.iSyncPoint = 0;
3391   w.syncFlags = sync_flags;
3392   w.szPage = szPage;
3393   iOffset = walFrameOffset(iFrame+1, szPage);
3394   szFrame = szPage + WAL_FRAME_HDRSIZE;
3395 
3396   /* Write all frames into the log file exactly once */
3397   for(p=pList; p; p=p->pDirty){
3398     int nDbSize;   /* 0 normally.  Positive == commit flag */
3399 
3400     /* Check if this page has already been written into the wal file by
3401     ** the current transaction. If so, overwrite the existing frame and
3402     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3403     ** checksums must be recomputed when the transaction is committed.  */
3404     if( iFirst && (p->pDirty || isCommit==0) ){
3405       u32 iWrite = 0;
3406       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3407       assert( rc==SQLITE_OK || iWrite==0 );
3408       if( iWrite>=iFirst ){
3409         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3410         void *pData;
3411         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3412           pWal->iReCksum = iWrite;
3413         }
3414 #if defined(SQLITE_HAS_CODEC)
3415         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3416 #else
3417         pData = p->pData;
3418 #endif
3419         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3420         if( rc ) return rc;
3421         p->flags &= ~PGHDR_WAL_APPEND;
3422         continue;
3423       }
3424     }
3425 
3426     iFrame++;
3427     assert( iOffset==walFrameOffset(iFrame, szPage) );
3428     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3429     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3430     if( rc ) return rc;
3431     pLast = p;
3432     iOffset += szFrame;
3433     p->flags |= PGHDR_WAL_APPEND;
3434   }
3435 
3436   /* Recalculate checksums within the wal file if required. */
3437   if( isCommit && pWal->iReCksum ){
3438     rc = walRewriteChecksums(pWal, iFrame);
3439     if( rc ) return rc;
3440   }
3441 
3442   /* If this is the end of a transaction, then we might need to pad
3443   ** the transaction and/or sync the WAL file.
3444   **
3445   ** Padding and syncing only occur if this set of frames complete a
3446   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3447   ** or synchronous==OFF, then no padding or syncing are needed.
3448   **
3449   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3450   ** needed and only the sync is done.  If padding is needed, then the
3451   ** final frame is repeated (with its commit mark) until the next sector
3452   ** boundary is crossed.  Only the part of the WAL prior to the last
3453   ** sector boundary is synced; the part of the last frame that extends
3454   ** past the sector boundary is written after the sync.
3455   */
3456   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3457     int bSync = 1;
3458     if( pWal->padToSectorBoundary ){
3459       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3460       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3461       bSync = (w.iSyncPoint==iOffset);
3462       testcase( bSync );
3463       while( iOffset<w.iSyncPoint ){
3464         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3465         if( rc ) return rc;
3466         iOffset += szFrame;
3467         nExtra++;
3468       }
3469     }
3470     if( bSync ){
3471       assert( rc==SQLITE_OK );
3472       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3473     }
3474   }
3475 
3476   /* If this frame set completes the first transaction in the WAL and
3477   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3478   ** journal size limit, if possible.
3479   */
3480   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3481     i64 sz = pWal->mxWalSize;
3482     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3483       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3484     }
3485     walLimitSize(pWal, sz);
3486     pWal->truncateOnCommit = 0;
3487   }
3488 
3489   /* Append data to the wal-index. It is not necessary to lock the
3490   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3491   ** guarantees that there are no other writers, and no data that may
3492   ** be in use by existing readers is being overwritten.
3493   */
3494   iFrame = pWal->hdr.mxFrame;
3495   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3496     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3497     iFrame++;
3498     rc = walIndexAppend(pWal, iFrame, p->pgno);
3499   }
3500   while( rc==SQLITE_OK && nExtra>0 ){
3501     iFrame++;
3502     nExtra--;
3503     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3504   }
3505 
3506   if( rc==SQLITE_OK ){
3507     /* Update the private copy of the header. */
3508     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3509     testcase( szPage<=32768 );
3510     testcase( szPage>=65536 );
3511     pWal->hdr.mxFrame = iFrame;
3512     if( isCommit ){
3513       pWal->hdr.iChange++;
3514       pWal->hdr.nPage = nTruncate;
3515     }
3516     /* If this is a commit, update the wal-index header too. */
3517     if( isCommit ){
3518       walIndexWriteHdr(pWal);
3519       pWal->iCallback = iFrame;
3520     }
3521   }
3522 
3523   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3524   return rc;
3525 }
3526 
3527 /*
3528 ** This routine is called to implement sqlite3_wal_checkpoint() and
3529 ** related interfaces.
3530 **
3531 ** Obtain a CHECKPOINT lock and then backfill as much information as
3532 ** we can from WAL into the database.
3533 **
3534 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3535 ** callback. In this case this function runs a blocking checkpoint.
3536 */
3537 int sqlite3WalCheckpoint(
3538   Wal *pWal,                      /* Wal connection */
3539   sqlite3 *db,                    /* Check this handle's interrupt flag */
3540   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3541   int (*xBusy)(void*),            /* Function to call when busy */
3542   void *pBusyArg,                 /* Context argument for xBusyHandler */
3543   int sync_flags,                 /* Flags to sync db file with (or 0) */
3544   int nBuf,                       /* Size of temporary buffer */
3545   u8 *zBuf,                       /* Temporary buffer to use */
3546   int *pnLog,                     /* OUT: Number of frames in WAL */
3547   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3548 ){
3549   int rc;                         /* Return code */
3550   int isChanged = 0;              /* True if a new wal-index header is loaded */
3551   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3552   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3553 
3554   assert( pWal->ckptLock==0 );
3555   assert( pWal->writeLock==0 );
3556 
3557   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3558   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3559   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3560 
3561   if( pWal->readOnly ) return SQLITE_READONLY;
3562   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3563 
3564   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3565   ** "checkpoint" lock on the database file. */
3566   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3567   if( rc ){
3568     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3569     ** checkpoint operation at the same time, the lock cannot be obtained and
3570     ** SQLITE_BUSY is returned.
3571     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3572     ** it will not be invoked in this case.
3573     */
3574     testcase( rc==SQLITE_BUSY );
3575     testcase( xBusy!=0 );
3576     return rc;
3577   }
3578   pWal->ckptLock = 1;
3579 
3580   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3581   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3582   ** file.
3583   **
3584   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3585   ** immediately, and a busy-handler is configured, it is invoked and the
3586   ** writer lock retried until either the busy-handler returns 0 or the
3587   ** lock is successfully obtained.
3588   */
3589   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3590     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3591     if( rc==SQLITE_OK ){
3592       pWal->writeLock = 1;
3593     }else if( rc==SQLITE_BUSY ){
3594       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3595       xBusy2 = 0;
3596       rc = SQLITE_OK;
3597     }
3598   }
3599 
3600   /* Read the wal-index header. */
3601   if( rc==SQLITE_OK ){
3602     rc = walIndexReadHdr(pWal, &isChanged);
3603     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3604       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3605     }
3606   }
3607 
3608   /* Copy data from the log to the database file. */
3609   if( rc==SQLITE_OK ){
3610 
3611     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3612       rc = SQLITE_CORRUPT_BKPT;
3613     }else{
3614       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3615     }
3616 
3617     /* If no error occurred, set the output variables. */
3618     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3619       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3620       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3621     }
3622   }
3623 
3624   if( isChanged ){
3625     /* If a new wal-index header was loaded before the checkpoint was
3626     ** performed, then the pager-cache associated with pWal is now
3627     ** out of date. So zero the cached wal-index header to ensure that
3628     ** next time the pager opens a snapshot on this database it knows that
3629     ** the cache needs to be reset.
3630     */
3631     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3632   }
3633 
3634   /* Release the locks. */
3635   sqlite3WalEndWriteTransaction(pWal);
3636   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3637   pWal->ckptLock = 0;
3638   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3639   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3640 }
3641 
3642 /* Return the value to pass to a sqlite3_wal_hook callback, the
3643 ** number of frames in the WAL at the point of the last commit since
3644 ** sqlite3WalCallback() was called.  If no commits have occurred since
3645 ** the last call, then return 0.
3646 */
3647 int sqlite3WalCallback(Wal *pWal){
3648   u32 ret = 0;
3649   if( pWal ){
3650     ret = pWal->iCallback;
3651     pWal->iCallback = 0;
3652   }
3653   return (int)ret;
3654 }
3655 
3656 /*
3657 ** This function is called to change the WAL subsystem into or out
3658 ** of locking_mode=EXCLUSIVE.
3659 **
3660 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3661 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3662 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3663 ** or if the acquisition of the lock fails, then return 0.  If the
3664 ** transition out of exclusive-mode is successful, return 1.  This
3665 ** operation must occur while the pager is still holding the exclusive
3666 ** lock on the main database file.
3667 **
3668 ** If op is one, then change from locking_mode=NORMAL into
3669 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3670 ** be released.  Return 1 if the transition is made and 0 if the
3671 ** WAL is already in exclusive-locking mode - meaning that this
3672 ** routine is a no-op.  The pager must already hold the exclusive lock
3673 ** on the main database file before invoking this operation.
3674 **
3675 ** If op is negative, then do a dry-run of the op==1 case but do
3676 ** not actually change anything. The pager uses this to see if it
3677 ** should acquire the database exclusive lock prior to invoking
3678 ** the op==1 case.
3679 */
3680 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3681   int rc;
3682   assert( pWal->writeLock==0 );
3683   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3684 
3685   /* pWal->readLock is usually set, but might be -1 if there was a
3686   ** prior error while attempting to acquire are read-lock. This cannot
3687   ** happen if the connection is actually in exclusive mode (as no xShmLock
3688   ** locks are taken in this case). Nor should the pager attempt to
3689   ** upgrade to exclusive-mode following such an error.
3690   */
3691   assert( pWal->readLock>=0 || pWal->lockError );
3692   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3693 
3694   if( op==0 ){
3695     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3696       pWal->exclusiveMode = WAL_NORMAL_MODE;
3697       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3698         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3699       }
3700       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3701     }else{
3702       /* Already in locking_mode=NORMAL */
3703       rc = 0;
3704     }
3705   }else if( op>0 ){
3706     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3707     assert( pWal->readLock>=0 );
3708     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3709     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3710     rc = 1;
3711   }else{
3712     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3713   }
3714   return rc;
3715 }
3716 
3717 /*
3718 ** Return true if the argument is non-NULL and the WAL module is using
3719 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3720 ** WAL module is using shared-memory, return false.
3721 */
3722 int sqlite3WalHeapMemory(Wal *pWal){
3723   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3724 }
3725 
3726 #ifdef SQLITE_ENABLE_SNAPSHOT
3727 /* Create a snapshot object.  The content of a snapshot is opaque to
3728 ** every other subsystem, so the WAL module can put whatever it needs
3729 ** in the object.
3730 */
3731 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3732   int rc = SQLITE_OK;
3733   WalIndexHdr *pRet;
3734   static const u32 aZero[4] = { 0, 0, 0, 0 };
3735 
3736   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3737 
3738   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3739     *ppSnapshot = 0;
3740     return SQLITE_ERROR;
3741   }
3742   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3743   if( pRet==0 ){
3744     rc = SQLITE_NOMEM_BKPT;
3745   }else{
3746     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3747     *ppSnapshot = (sqlite3_snapshot*)pRet;
3748   }
3749 
3750   return rc;
3751 }
3752 
3753 /* Try to open on pSnapshot when the next read-transaction starts
3754 */
3755 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3756   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3757 }
3758 
3759 /*
3760 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3761 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3762 */
3763 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3764   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3765   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3766 
3767   /* aSalt[0] is a copy of the value stored in the wal file header. It
3768   ** is incremented each time the wal file is restarted.  */
3769   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3770   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3771   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3772   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3773   return 0;
3774 }
3775 #endif /* SQLITE_ENABLE_SNAPSHOT */
3776 
3777 #ifdef SQLITE_ENABLE_ZIPVFS
3778 /*
3779 ** If the argument is not NULL, it points to a Wal object that holds a
3780 ** read-lock. This function returns the database page-size if it is known,
3781 ** or zero if it is not (or if pWal is NULL).
3782 */
3783 int sqlite3WalFramesize(Wal *pWal){
3784   assert( pWal==0 || pWal->readLock>=0 );
3785   return (pWal ? pWal->szPage : 0);
3786 }
3787 #endif
3788 
3789 /* Return the sqlite3_file object for the WAL file
3790 */
3791 sqlite3_file *sqlite3WalFile(Wal *pWal){
3792   return pWal->pWalFd;
3793 }
3794 
3795 #endif /* #ifndef SQLITE_OMIT_WAL */
3796