xref: /sqlite-3.40.0/src/wal.c (revision f31230af)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471   sqlite3 *db;
472 #endif
473 };
474 
475 /*
476 ** Candidate values for Wal.exclusiveMode.
477 */
478 #define WAL_NORMAL_MODE     0
479 #define WAL_EXCLUSIVE_MODE  1
480 #define WAL_HEAPMEMORY_MODE 2
481 
482 /*
483 ** Possible values for WAL.readOnly
484 */
485 #define WAL_RDWR        0    /* Normal read/write connection */
486 #define WAL_RDONLY      1    /* The WAL file is readonly */
487 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
488 
489 /*
490 ** Each page of the wal-index mapping contains a hash-table made up of
491 ** an array of HASHTABLE_NSLOT elements of the following type.
492 */
493 typedef u16 ht_slot;
494 
495 /*
496 ** This structure is used to implement an iterator that loops through
497 ** all frames in the WAL in database page order. Where two or more frames
498 ** correspond to the same database page, the iterator visits only the
499 ** frame most recently written to the WAL (in other words, the frame with
500 ** the largest index).
501 **
502 ** The internals of this structure are only accessed by:
503 **
504 **   walIteratorInit() - Create a new iterator,
505 **   walIteratorNext() - Step an iterator,
506 **   walIteratorFree() - Free an iterator.
507 **
508 ** This functionality is used by the checkpoint code (see walCheckpoint()).
509 */
510 struct WalIterator {
511   int iPrior;                     /* Last result returned from the iterator */
512   int nSegment;                   /* Number of entries in aSegment[] */
513   struct WalSegment {
514     int iNext;                    /* Next slot in aIndex[] not yet returned */
515     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
516     u32 *aPgno;                   /* Array of page numbers. */
517     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
518     int iZero;                    /* Frame number associated with aPgno[0] */
519   } aSegment[1];                  /* One for every 32KB page in the wal-index */
520 };
521 
522 /*
523 ** Define the parameters of the hash tables in the wal-index file. There
524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525 ** wal-index.
526 **
527 ** Changing any of these constants will alter the wal-index format and
528 ** create incompatibilities.
529 */
530 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
531 #define HASHTABLE_HASH_1     383                  /* Should be prime */
532 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
533 
534 /*
535 ** The block of page numbers associated with the first hash-table in a
536 ** wal-index is smaller than usual. This is so that there is a complete
537 ** hash-table on each aligned 32KB page of the wal-index.
538 */
539 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
540 
541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542 #define WALINDEX_PGSZ   (                                         \
543     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544 )
545 
546 /*
547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
549 ** numbered from zero.
550 **
551 ** If the wal-index is currently smaller the iPage pages then the size
552 ** of the wal-index might be increased, but only if it is safe to do
553 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555 **
556 ** If this call is successful, *ppPage is set to point to the wal-index
557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558 ** then an SQLite error code is returned and *ppPage is set to 0.
559 */
560 static SQLITE_NOINLINE int walIndexPageRealloc(
561   Wal *pWal,               /* The WAL context */
562   int iPage,               /* The page we seek */
563   volatile u32 **ppPage    /* Write the page pointer here */
564 ){
565   int rc = SQLITE_OK;
566 
567   /* Enlarge the pWal->apWiData[] array if required */
568   if( pWal->nWiData<=iPage ){
569     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
570     volatile u32 **apNew;
571     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
572     if( !apNew ){
573       *ppPage = 0;
574       return SQLITE_NOMEM_BKPT;
575     }
576     memset((void*)&apNew[pWal->nWiData], 0,
577            sizeof(u32*)*(iPage+1-pWal->nWiData));
578     pWal->apWiData = apNew;
579     pWal->nWiData = iPage+1;
580   }
581 
582   /* Request a pointer to the required page from the VFS */
583   assert( pWal->apWiData[iPage]==0 );
584   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587   }else{
588     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590     );
591     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
593     if( (rc&0xff)==SQLITE_READONLY ){
594       pWal->readOnly |= WAL_SHM_RDONLY;
595       if( rc==SQLITE_READONLY ){
596         rc = SQLITE_OK;
597       }
598     }
599   }
600 
601   *ppPage = pWal->apWiData[iPage];
602   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
603   return rc;
604 }
605 static int walIndexPage(
606   Wal *pWal,               /* The WAL context */
607   int iPage,               /* The page we seek */
608   volatile u32 **ppPage    /* Write the page pointer here */
609 ){
610   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
611     return walIndexPageRealloc(pWal, iPage, ppPage);
612   }
613   return SQLITE_OK;
614 }
615 
616 /*
617 ** Return a pointer to the WalCkptInfo structure in the wal-index.
618 */
619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
620   assert( pWal->nWiData>0 && pWal->apWiData[0] );
621   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
622 }
623 
624 /*
625 ** Return a pointer to the WalIndexHdr structure in the wal-index.
626 */
627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
628   assert( pWal->nWiData>0 && pWal->apWiData[0] );
629   return (volatile WalIndexHdr*)pWal->apWiData[0];
630 }
631 
632 /*
633 ** The argument to this macro must be of type u32. On a little-endian
634 ** architecture, it returns the u32 value that results from interpreting
635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
636 ** returns the value that would be produced by interpreting the 4 bytes
637 ** of the input value as a little-endian integer.
638 */
639 #define BYTESWAP32(x) ( \
640     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
641   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
642 )
643 
644 /*
645 ** Generate or extend an 8 byte checksum based on the data in
646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
647 ** initial values of 0 and 0 if aIn==NULL).
648 **
649 ** The checksum is written back into aOut[] before returning.
650 **
651 ** nByte must be a positive multiple of 8.
652 */
653 static void walChecksumBytes(
654   int nativeCksum, /* True for native byte-order, false for non-native */
655   u8 *a,           /* Content to be checksummed */
656   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
657   const u32 *aIn,  /* Initial checksum value input */
658   u32 *aOut        /* OUT: Final checksum value output */
659 ){
660   u32 s1, s2;
661   u32 *aData = (u32 *)a;
662   u32 *aEnd = (u32 *)&a[nByte];
663 
664   if( aIn ){
665     s1 = aIn[0];
666     s2 = aIn[1];
667   }else{
668     s1 = s2 = 0;
669   }
670 
671   assert( nByte>=8 );
672   assert( (nByte&0x00000007)==0 );
673   assert( nByte<=65536 );
674 
675   if( nativeCksum ){
676     do {
677       s1 += *aData++ + s2;
678       s2 += *aData++ + s1;
679     }while( aData<aEnd );
680   }else{
681     do {
682       s1 += BYTESWAP32(aData[0]) + s2;
683       s2 += BYTESWAP32(aData[1]) + s1;
684       aData += 2;
685     }while( aData<aEnd );
686   }
687 
688   aOut[0] = s1;
689   aOut[1] = s2;
690 }
691 
692 /*
693 ** If there is the possibility of concurrent access to the SHM file
694 ** from multiple threads and/or processes, then do a memory barrier.
695 */
696 static void walShmBarrier(Wal *pWal){
697   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
698     sqlite3OsShmBarrier(pWal->pDbFd);
699   }
700 }
701 
702 /*
703 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
704 ** definition as a hint that the function contains constructs that
705 ** might give false-positive TSAN warnings.
706 **
707 ** See tag-20200519-1.
708 */
709 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
710 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
711 #else
712 # define SQLITE_NO_TSAN
713 #endif
714 
715 /*
716 ** Write the header information in pWal->hdr into the wal-index.
717 **
718 ** The checksum on pWal->hdr is updated before it is written.
719 */
720 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
721   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
722   const int nCksum = offsetof(WalIndexHdr, aCksum);
723 
724   assert( pWal->writeLock );
725   pWal->hdr.isInit = 1;
726   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
727   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
728   /* Possible TSAN false-positive.  See tag-20200519-1 */
729   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
730   walShmBarrier(pWal);
731   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
732 }
733 
734 /*
735 ** This function encodes a single frame header and writes it to a buffer
736 ** supplied by the caller. A frame-header is made up of a series of
737 ** 4-byte big-endian integers, as follows:
738 **
739 **     0: Page number.
740 **     4: For commit records, the size of the database image in pages
741 **        after the commit. For all other records, zero.
742 **     8: Salt-1 (copied from the wal-header)
743 **    12: Salt-2 (copied from the wal-header)
744 **    16: Checksum-1.
745 **    20: Checksum-2.
746 */
747 static void walEncodeFrame(
748   Wal *pWal,                      /* The write-ahead log */
749   u32 iPage,                      /* Database page number for frame */
750   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
751   u8 *aData,                      /* Pointer to page data */
752   u8 *aFrame                      /* OUT: Write encoded frame here */
753 ){
754   int nativeCksum;                /* True for native byte-order checksums */
755   u32 *aCksum = pWal->hdr.aFrameCksum;
756   assert( WAL_FRAME_HDRSIZE==24 );
757   sqlite3Put4byte(&aFrame[0], iPage);
758   sqlite3Put4byte(&aFrame[4], nTruncate);
759   if( pWal->iReCksum==0 ){
760     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
761 
762     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
763     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
764     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
765 
766     sqlite3Put4byte(&aFrame[16], aCksum[0]);
767     sqlite3Put4byte(&aFrame[20], aCksum[1]);
768   }else{
769     memset(&aFrame[8], 0, 16);
770   }
771 }
772 
773 /*
774 ** Check to see if the frame with header in aFrame[] and content
775 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
776 ** *pnTruncate and return true.  Return if the frame is not valid.
777 */
778 static int walDecodeFrame(
779   Wal *pWal,                      /* The write-ahead log */
780   u32 *piPage,                    /* OUT: Database page number for frame */
781   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
782   u8 *aData,                      /* Pointer to page data (for checksum) */
783   u8 *aFrame                      /* Frame data */
784 ){
785   int nativeCksum;                /* True for native byte-order checksums */
786   u32 *aCksum = pWal->hdr.aFrameCksum;
787   u32 pgno;                       /* Page number of the frame */
788   assert( WAL_FRAME_HDRSIZE==24 );
789 
790   /* A frame is only valid if the salt values in the frame-header
791   ** match the salt values in the wal-header.
792   */
793   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
794     return 0;
795   }
796 
797   /* A frame is only valid if the page number is creater than zero.
798   */
799   pgno = sqlite3Get4byte(&aFrame[0]);
800   if( pgno==0 ){
801     return 0;
802   }
803 
804   /* A frame is only valid if a checksum of the WAL header,
805   ** all prior frams, the first 16 bytes of this frame-header,
806   ** and the frame-data matches the checksum in the last 8
807   ** bytes of this frame-header.
808   */
809   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
810   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
811   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
812   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
813    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
814   ){
815     /* Checksum failed. */
816     return 0;
817   }
818 
819   /* If we reach this point, the frame is valid.  Return the page number
820   ** and the new database size.
821   */
822   *piPage = pgno;
823   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
824   return 1;
825 }
826 
827 
828 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
829 /*
830 ** Names of locks.  This routine is used to provide debugging output and is not
831 ** a part of an ordinary build.
832 */
833 static const char *walLockName(int lockIdx){
834   if( lockIdx==WAL_WRITE_LOCK ){
835     return "WRITE-LOCK";
836   }else if( lockIdx==WAL_CKPT_LOCK ){
837     return "CKPT-LOCK";
838   }else if( lockIdx==WAL_RECOVER_LOCK ){
839     return "RECOVER-LOCK";
840   }else{
841     static char zName[15];
842     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
843                      lockIdx-WAL_READ_LOCK(0));
844     return zName;
845   }
846 }
847 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
848 
849 
850 /*
851 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
852 ** A lock cannot be moved directly between shared and exclusive - it must go
853 ** through the unlocked state first.
854 **
855 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
856 */
857 static int walLockShared(Wal *pWal, int lockIdx){
858   int rc;
859   if( pWal->exclusiveMode ) return SQLITE_OK;
860   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
861                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
862   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
863             walLockName(lockIdx), rc ? "failed" : "ok"));
864   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
865   return rc;
866 }
867 static void walUnlockShared(Wal *pWal, int lockIdx){
868   if( pWal->exclusiveMode ) return;
869   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
870                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
871   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
872 }
873 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
874   int rc;
875   if( pWal->exclusiveMode ) return SQLITE_OK;
876   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
877                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
878   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
879             walLockName(lockIdx), n, rc ? "failed" : "ok"));
880   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
881   return rc;
882 }
883 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
884   if( pWal->exclusiveMode ) return;
885   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
886                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
887   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
888              walLockName(lockIdx), n));
889 }
890 
891 /*
892 ** Compute a hash on a page number.  The resulting hash value must land
893 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
894 ** the hash to the next value in the event of a collision.
895 */
896 static int walHash(u32 iPage){
897   assert( iPage>0 );
898   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
899   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
900 }
901 static int walNextHash(int iPriorHash){
902   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
903 }
904 
905 /*
906 ** An instance of the WalHashLoc object is used to describe the location
907 ** of a page hash table in the wal-index.  This becomes the return value
908 ** from walHashGet().
909 */
910 typedef struct WalHashLoc WalHashLoc;
911 struct WalHashLoc {
912   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
913   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
914   u32 iZero;                /* One less than the frame number of first indexed*/
915 };
916 
917 /*
918 ** Return pointers to the hash table and page number array stored on
919 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
920 ** numbered starting from 0.
921 **
922 ** Set output variable pLoc->aHash to point to the start of the hash table
923 ** in the wal-index file. Set pLoc->iZero to one less than the frame
924 ** number of the first frame indexed by this hash table. If a
925 ** slot in the hash table is set to N, it refers to frame number
926 ** (pLoc->iZero+N) in the log.
927 **
928 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
929 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
930 */
931 static int walHashGet(
932   Wal *pWal,                      /* WAL handle */
933   int iHash,                      /* Find the iHash'th table */
934   WalHashLoc *pLoc                /* OUT: Hash table location */
935 ){
936   int rc;                         /* Return code */
937 
938   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
939   assert( rc==SQLITE_OK || iHash>0 );
940 
941   if( rc==SQLITE_OK ){
942     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
943     if( iHash==0 ){
944       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
945       pLoc->iZero = 0;
946     }else{
947       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
948     }
949     pLoc->aPgno = &pLoc->aPgno[-1];
950   }
951   return rc;
952 }
953 
954 /*
955 ** Return the number of the wal-index page that contains the hash-table
956 ** and page-number array that contain entries corresponding to WAL frame
957 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
958 ** are numbered starting from 0.
959 */
960 static int walFramePage(u32 iFrame){
961   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
962   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
963        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
964        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
965        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
966        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
967   );
968   return iHash;
969 }
970 
971 /*
972 ** Return the page number associated with frame iFrame in this WAL.
973 */
974 static u32 walFramePgno(Wal *pWal, u32 iFrame){
975   int iHash = walFramePage(iFrame);
976   if( iHash==0 ){
977     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
978   }
979   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
980 }
981 
982 /*
983 ** Remove entries from the hash table that point to WAL slots greater
984 ** than pWal->hdr.mxFrame.
985 **
986 ** This function is called whenever pWal->hdr.mxFrame is decreased due
987 ** to a rollback or savepoint.
988 **
989 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
990 ** updated.  Any later hash tables will be automatically cleared when
991 ** pWal->hdr.mxFrame advances to the point where those hash tables are
992 ** actually needed.
993 */
994 static void walCleanupHash(Wal *pWal){
995   WalHashLoc sLoc;                /* Hash table location */
996   int iLimit = 0;                 /* Zero values greater than this */
997   int nByte;                      /* Number of bytes to zero in aPgno[] */
998   int i;                          /* Used to iterate through aHash[] */
999   int rc;                         /* Return code form walHashGet() */
1000 
1001   assert( pWal->writeLock );
1002   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1003   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1004   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1005 
1006   if( pWal->hdr.mxFrame==0 ) return;
1007 
1008   /* Obtain pointers to the hash-table and page-number array containing
1009   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1010   ** that the page said hash-table and array reside on is already mapped.(1)
1011   */
1012   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1013   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1014   rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1015   if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1016 
1017   /* Zero all hash-table entries that correspond to frame numbers greater
1018   ** than pWal->hdr.mxFrame.
1019   */
1020   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1021   assert( iLimit>0 );
1022   for(i=0; i<HASHTABLE_NSLOT; i++){
1023     if( sLoc.aHash[i]>iLimit ){
1024       sLoc.aHash[i] = 0;
1025     }
1026   }
1027 
1028   /* Zero the entries in the aPgno array that correspond to frames with
1029   ** frame numbers greater than pWal->hdr.mxFrame.
1030   */
1031   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1032   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1033 
1034 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1035   /* Verify that the every entry in the mapping region is still reachable
1036   ** via the hash table even after the cleanup.
1037   */
1038   if( iLimit ){
1039     int j;           /* Loop counter */
1040     int iKey;        /* Hash key */
1041     for(j=1; j<=iLimit; j++){
1042       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1043         if( sLoc.aHash[iKey]==j ) break;
1044       }
1045       assert( sLoc.aHash[iKey]==j );
1046     }
1047   }
1048 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1049 }
1050 
1051 
1052 /*
1053 ** Set an entry in the wal-index that will map database page number
1054 ** pPage into WAL frame iFrame.
1055 */
1056 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1057   int rc;                         /* Return code */
1058   WalHashLoc sLoc;                /* Wal-index hash table location */
1059 
1060   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1061 
1062   /* Assuming the wal-index file was successfully mapped, populate the
1063   ** page number array and hash table entry.
1064   */
1065   if( ALWAYS(rc==SQLITE_OK) ){
1066     int iKey;                     /* Hash table key */
1067     int idx;                      /* Value to write to hash-table slot */
1068     int nCollide;                 /* Number of hash collisions */
1069 
1070     idx = iFrame - sLoc.iZero;
1071     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1072 
1073     /* If this is the first entry to be added to this hash-table, zero the
1074     ** entire hash table and aPgno[] array before proceeding.
1075     */
1076     if( idx==1 ){
1077       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1078                                - (u8 *)&sLoc.aPgno[1]);
1079       memset((void*)&sLoc.aPgno[1], 0, nByte);
1080     }
1081 
1082     /* If the entry in aPgno[] is already set, then the previous writer
1083     ** must have exited unexpectedly in the middle of a transaction (after
1084     ** writing one or more dirty pages to the WAL to free up memory).
1085     ** Remove the remnants of that writers uncommitted transaction from
1086     ** the hash-table before writing any new entries.
1087     */
1088     if( sLoc.aPgno[idx] ){
1089       walCleanupHash(pWal);
1090       assert( !sLoc.aPgno[idx] );
1091     }
1092 
1093     /* Write the aPgno[] array entry and the hash-table slot. */
1094     nCollide = idx;
1095     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1096       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1097     }
1098     sLoc.aPgno[idx] = iPage;
1099     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1100 
1101 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1102     /* Verify that the number of entries in the hash table exactly equals
1103     ** the number of entries in the mapping region.
1104     */
1105     {
1106       int i;           /* Loop counter */
1107       int nEntry = 0;  /* Number of entries in the hash table */
1108       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1109       assert( nEntry==idx );
1110     }
1111 
1112     /* Verify that the every entry in the mapping region is reachable
1113     ** via the hash table.  This turns out to be a really, really expensive
1114     ** thing to check, so only do this occasionally - not on every
1115     ** iteration.
1116     */
1117     if( (idx&0x3ff)==0 ){
1118       int i;           /* Loop counter */
1119       for(i=1; i<=idx; i++){
1120         for(iKey=walHash(sLoc.aPgno[i]);
1121             sLoc.aHash[iKey];
1122             iKey=walNextHash(iKey)){
1123           if( sLoc.aHash[iKey]==i ) break;
1124         }
1125         assert( sLoc.aHash[iKey]==i );
1126       }
1127     }
1128 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1129   }
1130 
1131 
1132   return rc;
1133 }
1134 
1135 
1136 /*
1137 ** Recover the wal-index by reading the write-ahead log file.
1138 **
1139 ** This routine first tries to establish an exclusive lock on the
1140 ** wal-index to prevent other threads/processes from doing anything
1141 ** with the WAL or wal-index while recovery is running.  The
1142 ** WAL_RECOVER_LOCK is also held so that other threads will know
1143 ** that this thread is running recovery.  If unable to establish
1144 ** the necessary locks, this routine returns SQLITE_BUSY.
1145 */
1146 static int walIndexRecover(Wal *pWal){
1147   int rc;                         /* Return Code */
1148   i64 nSize;                      /* Size of log file */
1149   u32 aFrameCksum[2] = {0, 0};
1150   int iLock;                      /* Lock offset to lock for checkpoint */
1151 
1152   /* Obtain an exclusive lock on all byte in the locking range not already
1153   ** locked by the caller. The caller is guaranteed to have locked the
1154   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1155   ** If successful, the same bytes that are locked here are unlocked before
1156   ** this function returns.
1157   */
1158   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1159   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1160   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1161   assert( pWal->writeLock );
1162   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1163   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1164   if( rc ){
1165     return rc;
1166   }
1167 
1168   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1169 
1170   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1171 
1172   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1173   if( rc!=SQLITE_OK ){
1174     goto recovery_error;
1175   }
1176 
1177   if( nSize>WAL_HDRSIZE ){
1178     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1179     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1180     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1181     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1182     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1183     int szPage;                   /* Page size according to the log */
1184     u32 magic;                    /* Magic value read from WAL header */
1185     u32 version;                  /* Magic value read from WAL header */
1186     int isValid;                  /* True if this frame is valid */
1187     int iPg;                      /* Current 32KB wal-index page */
1188     int iLastFrame;               /* Last frame in wal, based on nSize alone */
1189 
1190     /* Read in the WAL header. */
1191     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1192     if( rc!=SQLITE_OK ){
1193       goto recovery_error;
1194     }
1195 
1196     /* If the database page size is not a power of two, or is greater than
1197     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1198     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1199     ** WAL file.
1200     */
1201     magic = sqlite3Get4byte(&aBuf[0]);
1202     szPage = sqlite3Get4byte(&aBuf[8]);
1203     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1204      || szPage&(szPage-1)
1205      || szPage>SQLITE_MAX_PAGE_SIZE
1206      || szPage<512
1207     ){
1208       goto finished;
1209     }
1210     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1211     pWal->szPage = szPage;
1212     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1213     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1214 
1215     /* Verify that the WAL header checksum is correct */
1216     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1217         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1218     );
1219     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1220      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1221     ){
1222       goto finished;
1223     }
1224 
1225     /* Verify that the version number on the WAL format is one that
1226     ** are able to understand */
1227     version = sqlite3Get4byte(&aBuf[4]);
1228     if( version!=WAL_MAX_VERSION ){
1229       rc = SQLITE_CANTOPEN_BKPT;
1230       goto finished;
1231     }
1232 
1233     /* Malloc a buffer to read frames into. */
1234     szFrame = szPage + WAL_FRAME_HDRSIZE;
1235     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1236     if( !aFrame ){
1237       rc = SQLITE_NOMEM_BKPT;
1238       goto recovery_error;
1239     }
1240     aData = &aFrame[WAL_FRAME_HDRSIZE];
1241     aPrivate = (u32*)&aData[szPage];
1242 
1243     /* Read all frames from the log file. */
1244     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1245     for(iPg=0; iPg<=walFramePage(iLastFrame); iPg++){
1246       u32 *aShare;
1247       int iFrame;                 /* Index of last frame read */
1248       int iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1249       int iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1250       int nHdr, nHdr32;
1251       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1252       if( rc ) break;
1253       pWal->apWiData[iPg] = aPrivate;
1254 
1255       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1256         i64 iOffset = walFrameOffset(iFrame, szPage);
1257         u32 pgno;                 /* Database page number for frame */
1258         u32 nTruncate;            /* dbsize field from frame header */
1259 
1260         /* Read and decode the next log frame. */
1261         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1262         if( rc!=SQLITE_OK ) break;
1263         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1264         if( !isValid ) break;
1265         rc = walIndexAppend(pWal, iFrame, pgno);
1266         if( NEVER(rc!=SQLITE_OK) ) break;
1267 
1268         /* If nTruncate is non-zero, this is a commit record. */
1269         if( nTruncate ){
1270           pWal->hdr.mxFrame = iFrame;
1271           pWal->hdr.nPage = nTruncate;
1272           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1273           testcase( szPage<=32768 );
1274           testcase( szPage>=65536 );
1275           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1276           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1277         }
1278       }
1279       pWal->apWiData[iPg] = aShare;
1280       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1281       nHdr32 = nHdr / sizeof(u32);
1282       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1283       if( iFrame<=iLast ) break;
1284     }
1285 
1286     sqlite3_free(aFrame);
1287   }
1288 
1289 finished:
1290   if( rc==SQLITE_OK ){
1291     volatile WalCkptInfo *pInfo;
1292     int i;
1293     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1294     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1295     walIndexWriteHdr(pWal);
1296 
1297     /* Reset the checkpoint-header. This is safe because this thread is
1298     ** currently holding locks that exclude all other writers and
1299     ** checkpointers. Then set the values of read-mark slots 1 through N.
1300     */
1301     pInfo = walCkptInfo(pWal);
1302     pInfo->nBackfill = 0;
1303     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1304     pInfo->aReadMark[0] = 0;
1305     for(i=1; i<WAL_NREADER; i++){
1306       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1307       if( rc==SQLITE_OK ){
1308         if( i==1 && pWal->hdr.mxFrame ){
1309           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1310         }else{
1311           pInfo->aReadMark[i] = READMARK_NOT_USED;
1312         }
1313         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1314       }else if( rc!=SQLITE_BUSY ){
1315         goto recovery_error;
1316       }
1317     }
1318 
1319     /* If more than one frame was recovered from the log file, report an
1320     ** event via sqlite3_log(). This is to help with identifying performance
1321     ** problems caused by applications routinely shutting down without
1322     ** checkpointing the log file.
1323     */
1324     if( pWal->hdr.nPage ){
1325       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1326           "recovered %d frames from WAL file %s",
1327           pWal->hdr.mxFrame, pWal->zWalName
1328       );
1329     }
1330   }
1331 
1332 recovery_error:
1333   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1334   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1335   return rc;
1336 }
1337 
1338 /*
1339 ** Close an open wal-index.
1340 */
1341 static void walIndexClose(Wal *pWal, int isDelete){
1342   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1343     int i;
1344     for(i=0; i<pWal->nWiData; i++){
1345       sqlite3_free((void *)pWal->apWiData[i]);
1346       pWal->apWiData[i] = 0;
1347     }
1348   }
1349   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1350     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1351   }
1352 }
1353 
1354 /*
1355 ** Open a connection to the WAL file zWalName. The database file must
1356 ** already be opened on connection pDbFd. The buffer that zWalName points
1357 ** to must remain valid for the lifetime of the returned Wal* handle.
1358 **
1359 ** A SHARED lock should be held on the database file when this function
1360 ** is called. The purpose of this SHARED lock is to prevent any other
1361 ** client from unlinking the WAL or wal-index file. If another process
1362 ** were to do this just after this client opened one of these files, the
1363 ** system would be badly broken.
1364 **
1365 ** If the log file is successfully opened, SQLITE_OK is returned and
1366 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1367 ** an SQLite error code is returned and *ppWal is left unmodified.
1368 */
1369 int sqlite3WalOpen(
1370   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1371   sqlite3_file *pDbFd,            /* The open database file */
1372   const char *zWalName,           /* Name of the WAL file */
1373   int bNoShm,                     /* True to run in heap-memory mode */
1374   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1375   Wal **ppWal                     /* OUT: Allocated Wal handle */
1376 ){
1377   int rc;                         /* Return Code */
1378   Wal *pRet;                      /* Object to allocate and return */
1379   int flags;                      /* Flags passed to OsOpen() */
1380 
1381   assert( zWalName && zWalName[0] );
1382   assert( pDbFd );
1383 
1384   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1385   ** this source file.  Verify that the #defines of the locking byte offsets
1386   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1387   ** For that matter, if the lock offset ever changes from its initial design
1388   ** value of 120, we need to know that so there is an assert() to check it.
1389   */
1390   assert( 120==WALINDEX_LOCK_OFFSET );
1391   assert( 136==WALINDEX_HDR_SIZE );
1392 #ifdef WIN_SHM_BASE
1393   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1394 #endif
1395 #ifdef UNIX_SHM_BASE
1396   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1397 #endif
1398 
1399 
1400   /* Allocate an instance of struct Wal to return. */
1401   *ppWal = 0;
1402   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1403   if( !pRet ){
1404     return SQLITE_NOMEM_BKPT;
1405   }
1406 
1407   pRet->pVfs = pVfs;
1408   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1409   pRet->pDbFd = pDbFd;
1410   pRet->readLock = -1;
1411   pRet->mxWalSize = mxWalSize;
1412   pRet->zWalName = zWalName;
1413   pRet->syncHeader = 1;
1414   pRet->padToSectorBoundary = 1;
1415   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1416 
1417   /* Open file handle on the write-ahead log file. */
1418   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1419   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1420   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1421     pRet->readOnly = WAL_RDONLY;
1422   }
1423 
1424   if( rc!=SQLITE_OK ){
1425     walIndexClose(pRet, 0);
1426     sqlite3OsClose(pRet->pWalFd);
1427     sqlite3_free(pRet);
1428   }else{
1429     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1430     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1431     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1432       pRet->padToSectorBoundary = 0;
1433     }
1434     *ppWal = pRet;
1435     WALTRACE(("WAL%d: opened\n", pRet));
1436   }
1437   return rc;
1438 }
1439 
1440 /*
1441 ** Change the size to which the WAL file is trucated on each reset.
1442 */
1443 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1444   if( pWal ) pWal->mxWalSize = iLimit;
1445 }
1446 
1447 /*
1448 ** Find the smallest page number out of all pages held in the WAL that
1449 ** has not been returned by any prior invocation of this method on the
1450 ** same WalIterator object.   Write into *piFrame the frame index where
1451 ** that page was last written into the WAL.  Write into *piPage the page
1452 ** number.
1453 **
1454 ** Return 0 on success.  If there are no pages in the WAL with a page
1455 ** number larger than *piPage, then return 1.
1456 */
1457 static int walIteratorNext(
1458   WalIterator *p,               /* Iterator */
1459   u32 *piPage,                  /* OUT: The page number of the next page */
1460   u32 *piFrame                  /* OUT: Wal frame index of next page */
1461 ){
1462   u32 iMin;                     /* Result pgno must be greater than iMin */
1463   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1464   int i;                        /* For looping through segments */
1465 
1466   iMin = p->iPrior;
1467   assert( iMin<0xffffffff );
1468   for(i=p->nSegment-1; i>=0; i--){
1469     struct WalSegment *pSegment = &p->aSegment[i];
1470     while( pSegment->iNext<pSegment->nEntry ){
1471       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1472       if( iPg>iMin ){
1473         if( iPg<iRet ){
1474           iRet = iPg;
1475           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1476         }
1477         break;
1478       }
1479       pSegment->iNext++;
1480     }
1481   }
1482 
1483   *piPage = p->iPrior = iRet;
1484   return (iRet==0xFFFFFFFF);
1485 }
1486 
1487 /*
1488 ** This function merges two sorted lists into a single sorted list.
1489 **
1490 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1491 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1492 ** is guaranteed for all J<K:
1493 **
1494 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1495 **        aContent[aRight[J]] < aContent[aRight[K]]
1496 **
1497 ** This routine overwrites aRight[] with a new (probably longer) sequence
1498 ** of indices such that the aRight[] contains every index that appears in
1499 ** either aLeft[] or the old aRight[] and such that the second condition
1500 ** above is still met.
1501 **
1502 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1503 ** aContent[aRight[X]] values will be unique too.  But there might be
1504 ** one or more combinations of X and Y such that
1505 **
1506 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1507 **
1508 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1509 */
1510 static void walMerge(
1511   const u32 *aContent,            /* Pages in wal - keys for the sort */
1512   ht_slot *aLeft,                 /* IN: Left hand input list */
1513   int nLeft,                      /* IN: Elements in array *paLeft */
1514   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1515   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1516   ht_slot *aTmp                   /* Temporary buffer */
1517 ){
1518   int iLeft = 0;                  /* Current index in aLeft */
1519   int iRight = 0;                 /* Current index in aRight */
1520   int iOut = 0;                   /* Current index in output buffer */
1521   int nRight = *pnRight;
1522   ht_slot *aRight = *paRight;
1523 
1524   assert( nLeft>0 && nRight>0 );
1525   while( iRight<nRight || iLeft<nLeft ){
1526     ht_slot logpage;
1527     Pgno dbpage;
1528 
1529     if( (iLeft<nLeft)
1530      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1531     ){
1532       logpage = aLeft[iLeft++];
1533     }else{
1534       logpage = aRight[iRight++];
1535     }
1536     dbpage = aContent[logpage];
1537 
1538     aTmp[iOut++] = logpage;
1539     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1540 
1541     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1542     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1543   }
1544 
1545   *paRight = aLeft;
1546   *pnRight = iOut;
1547   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1548 }
1549 
1550 /*
1551 ** Sort the elements in list aList using aContent[] as the sort key.
1552 ** Remove elements with duplicate keys, preferring to keep the
1553 ** larger aList[] values.
1554 **
1555 ** The aList[] entries are indices into aContent[].  The values in
1556 ** aList[] are to be sorted so that for all J<K:
1557 **
1558 **      aContent[aList[J]] < aContent[aList[K]]
1559 **
1560 ** For any X and Y such that
1561 **
1562 **      aContent[aList[X]] == aContent[aList[Y]]
1563 **
1564 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1565 ** the smaller.
1566 */
1567 static void walMergesort(
1568   const u32 *aContent,            /* Pages in wal */
1569   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1570   ht_slot *aList,                 /* IN/OUT: List to sort */
1571   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1572 ){
1573   struct Sublist {
1574     int nList;                    /* Number of elements in aList */
1575     ht_slot *aList;               /* Pointer to sub-list content */
1576   };
1577 
1578   const int nList = *pnList;      /* Size of input list */
1579   int nMerge = 0;                 /* Number of elements in list aMerge */
1580   ht_slot *aMerge = 0;            /* List to be merged */
1581   int iList;                      /* Index into input list */
1582   u32 iSub = 0;                   /* Index into aSub array */
1583   struct Sublist aSub[13];        /* Array of sub-lists */
1584 
1585   memset(aSub, 0, sizeof(aSub));
1586   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1587   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1588 
1589   for(iList=0; iList<nList; iList++){
1590     nMerge = 1;
1591     aMerge = &aList[iList];
1592     for(iSub=0; iList & (1<<iSub); iSub++){
1593       struct Sublist *p;
1594       assert( iSub<ArraySize(aSub) );
1595       p = &aSub[iSub];
1596       assert( p->aList && p->nList<=(1<<iSub) );
1597       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1598       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1599     }
1600     aSub[iSub].aList = aMerge;
1601     aSub[iSub].nList = nMerge;
1602   }
1603 
1604   for(iSub++; iSub<ArraySize(aSub); iSub++){
1605     if( nList & (1<<iSub) ){
1606       struct Sublist *p;
1607       assert( iSub<ArraySize(aSub) );
1608       p = &aSub[iSub];
1609       assert( p->nList<=(1<<iSub) );
1610       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1611       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1612     }
1613   }
1614   assert( aMerge==aList );
1615   *pnList = nMerge;
1616 
1617 #ifdef SQLITE_DEBUG
1618   {
1619     int i;
1620     for(i=1; i<*pnList; i++){
1621       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1622     }
1623   }
1624 #endif
1625 }
1626 
1627 /*
1628 ** Free an iterator allocated by walIteratorInit().
1629 */
1630 static void walIteratorFree(WalIterator *p){
1631   sqlite3_free(p);
1632 }
1633 
1634 /*
1635 ** Construct a WalInterator object that can be used to loop over all
1636 ** pages in the WAL following frame nBackfill in ascending order. Frames
1637 ** nBackfill or earlier may be included - excluding them is an optimization
1638 ** only. The caller must hold the checkpoint lock.
1639 **
1640 ** On success, make *pp point to the newly allocated WalInterator object
1641 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1642 ** returns an error, the value of *pp is undefined.
1643 **
1644 ** The calling routine should invoke walIteratorFree() to destroy the
1645 ** WalIterator object when it has finished with it.
1646 */
1647 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1648   WalIterator *p;                 /* Return value */
1649   int nSegment;                   /* Number of segments to merge */
1650   u32 iLast;                      /* Last frame in log */
1651   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1652   int i;                          /* Iterator variable */
1653   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1654   int rc = SQLITE_OK;             /* Return Code */
1655 
1656   /* This routine only runs while holding the checkpoint lock. And
1657   ** it only runs if there is actually content in the log (mxFrame>0).
1658   */
1659   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1660   iLast = pWal->hdr.mxFrame;
1661 
1662   /* Allocate space for the WalIterator object. */
1663   nSegment = walFramePage(iLast) + 1;
1664   nByte = sizeof(WalIterator)
1665         + (nSegment-1)*sizeof(struct WalSegment)
1666         + iLast*sizeof(ht_slot);
1667   p = (WalIterator *)sqlite3_malloc64(nByte);
1668   if( !p ){
1669     return SQLITE_NOMEM_BKPT;
1670   }
1671   memset(p, 0, nByte);
1672   p->nSegment = nSegment;
1673 
1674   /* Allocate temporary space used by the merge-sort routine. This block
1675   ** of memory will be freed before this function returns.
1676   */
1677   aTmp = (ht_slot *)sqlite3_malloc64(
1678       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1679   );
1680   if( !aTmp ){
1681     rc = SQLITE_NOMEM_BKPT;
1682   }
1683 
1684   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1685     WalHashLoc sLoc;
1686 
1687     rc = walHashGet(pWal, i, &sLoc);
1688     if( rc==SQLITE_OK ){
1689       int j;                      /* Counter variable */
1690       int nEntry;                 /* Number of entries in this segment */
1691       ht_slot *aIndex;            /* Sorted index for this segment */
1692 
1693       sLoc.aPgno++;
1694       if( (i+1)==nSegment ){
1695         nEntry = (int)(iLast - sLoc.iZero);
1696       }else{
1697         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1698       }
1699       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1700       sLoc.iZero++;
1701 
1702       for(j=0; j<nEntry; j++){
1703         aIndex[j] = (ht_slot)j;
1704       }
1705       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1706       p->aSegment[i].iZero = sLoc.iZero;
1707       p->aSegment[i].nEntry = nEntry;
1708       p->aSegment[i].aIndex = aIndex;
1709       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1710     }
1711   }
1712   sqlite3_free(aTmp);
1713 
1714   if( rc!=SQLITE_OK ){
1715     walIteratorFree(p);
1716     p = 0;
1717   }
1718   *pp = p;
1719   return rc;
1720 }
1721 
1722 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1723 /*
1724 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1725 ** they are supported by the VFS, and (b) the database handle is configured
1726 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1727 ** or 0 otherwise.
1728 */
1729 static int walEnableBlocking(Wal *pWal){
1730   int res = 0;
1731   if( pWal->db ){
1732     int tmout = pWal->db->busyTimeout;
1733     if( tmout ){
1734       int rc;
1735       rc = sqlite3OsFileControl(
1736           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1737       );
1738       res = (rc==SQLITE_OK);
1739     }
1740   }
1741   return res;
1742 }
1743 
1744 /*
1745 ** Disable blocking locks.
1746 */
1747 static void walDisableBlocking(Wal *pWal){
1748   int tmout = 0;
1749   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1750 }
1751 
1752 /*
1753 ** If parameter bLock is true, attempt to enable blocking locks, take
1754 ** the WRITER lock, and then disable blocking locks. If blocking locks
1755 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1756 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1757 ** an error if blocking locks can not be enabled.
1758 **
1759 ** If the bLock parameter is false and the WRITER lock is held, release it.
1760 */
1761 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1762   int rc = SQLITE_OK;
1763   assert( pWal->readLock<0 || bLock==0 );
1764   if( bLock ){
1765     assert( pWal->db );
1766     if( walEnableBlocking(pWal) ){
1767       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1768       if( rc==SQLITE_OK ){
1769         pWal->writeLock = 1;
1770       }
1771       walDisableBlocking(pWal);
1772     }
1773   }else if( pWal->writeLock ){
1774     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1775     pWal->writeLock = 0;
1776   }
1777   return rc;
1778 }
1779 
1780 /*
1781 ** Set the database handle used to determine if blocking locks are required.
1782 */
1783 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1784   pWal->db = db;
1785 }
1786 
1787 /*
1788 ** Take an exclusive WRITE lock. Blocking if so configured.
1789 */
1790 static int walLockWriter(Wal *pWal){
1791   int rc;
1792   walEnableBlocking(pWal);
1793   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1794   walDisableBlocking(pWal);
1795   return rc;
1796 }
1797 #else
1798 # define walEnableBlocking(x) 0
1799 # define walDisableBlocking(x)
1800 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1801 # define sqlite3WalDb(pWal, db)
1802 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1803 
1804 
1805 /*
1806 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1807 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1808 ** busy-handler function. Invoke it and retry the lock until either the
1809 ** lock is successfully obtained or the busy-handler returns 0.
1810 */
1811 static int walBusyLock(
1812   Wal *pWal,                      /* WAL connection */
1813   int (*xBusy)(void*),            /* Function to call when busy */
1814   void *pBusyArg,                 /* Context argument for xBusyHandler */
1815   int lockIdx,                    /* Offset of first byte to lock */
1816   int n                           /* Number of bytes to lock */
1817 ){
1818   int rc;
1819   do {
1820     rc = walLockExclusive(pWal, lockIdx, n);
1821   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1822 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1823   if( rc==SQLITE_BUSY_TIMEOUT ){
1824     walDisableBlocking(pWal);
1825     rc = SQLITE_BUSY;
1826   }
1827 #endif
1828   return rc;
1829 }
1830 
1831 /*
1832 ** The cache of the wal-index header must be valid to call this function.
1833 ** Return the page-size in bytes used by the database.
1834 */
1835 static int walPagesize(Wal *pWal){
1836   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1837 }
1838 
1839 /*
1840 ** The following is guaranteed when this function is called:
1841 **
1842 **   a) the WRITER lock is held,
1843 **   b) the entire log file has been checkpointed, and
1844 **   c) any existing readers are reading exclusively from the database
1845 **      file - there are no readers that may attempt to read a frame from
1846 **      the log file.
1847 **
1848 ** This function updates the shared-memory structures so that the next
1849 ** client to write to the database (which may be this one) does so by
1850 ** writing frames into the start of the log file.
1851 **
1852 ** The value of parameter salt1 is used as the aSalt[1] value in the
1853 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1854 ** one obtained from sqlite3_randomness()).
1855 */
1856 static void walRestartHdr(Wal *pWal, u32 salt1){
1857   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1858   int i;                          /* Loop counter */
1859   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1860   pWal->nCkpt++;
1861   pWal->hdr.mxFrame = 0;
1862   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1863   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1864   walIndexWriteHdr(pWal);
1865   AtomicStore(&pInfo->nBackfill, 0);
1866   pInfo->nBackfillAttempted = 0;
1867   pInfo->aReadMark[1] = 0;
1868   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1869   assert( pInfo->aReadMark[0]==0 );
1870 }
1871 
1872 /*
1873 ** Copy as much content as we can from the WAL back into the database file
1874 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1875 **
1876 ** The amount of information copies from WAL to database might be limited
1877 ** by active readers.  This routine will never overwrite a database page
1878 ** that a concurrent reader might be using.
1879 **
1880 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1881 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1882 ** checkpoints are always run by a background thread or background
1883 ** process, foreground threads will never block on a lengthy fsync call.
1884 **
1885 ** Fsync is called on the WAL before writing content out of the WAL and
1886 ** into the database.  This ensures that if the new content is persistent
1887 ** in the WAL and can be recovered following a power-loss or hard reset.
1888 **
1889 ** Fsync is also called on the database file if (and only if) the entire
1890 ** WAL content is copied into the database file.  This second fsync makes
1891 ** it safe to delete the WAL since the new content will persist in the
1892 ** database file.
1893 **
1894 ** This routine uses and updates the nBackfill field of the wal-index header.
1895 ** This is the only routine that will increase the value of nBackfill.
1896 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1897 ** its value.)
1898 **
1899 ** The caller must be holding sufficient locks to ensure that no other
1900 ** checkpoint is running (in any other thread or process) at the same
1901 ** time.
1902 */
1903 static int walCheckpoint(
1904   Wal *pWal,                      /* Wal connection */
1905   sqlite3 *db,                    /* Check for interrupts on this handle */
1906   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1907   int (*xBusy)(void*),            /* Function to call when busy */
1908   void *pBusyArg,                 /* Context argument for xBusyHandler */
1909   int sync_flags,                 /* Flags for OsSync() (or 0) */
1910   u8 *zBuf                        /* Temporary buffer to use */
1911 ){
1912   int rc = SQLITE_OK;             /* Return code */
1913   int szPage;                     /* Database page-size */
1914   WalIterator *pIter = 0;         /* Wal iterator context */
1915   u32 iDbpage = 0;                /* Next database page to write */
1916   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1917   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1918   u32 mxPage;                     /* Max database page to write */
1919   int i;                          /* Loop counter */
1920   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1921 
1922   szPage = walPagesize(pWal);
1923   testcase( szPage<=32768 );
1924   testcase( szPage>=65536 );
1925   pInfo = walCkptInfo(pWal);
1926   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1927 
1928     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1929     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1930     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1931 
1932     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1933     ** safe to write into the database.  Frames beyond mxSafeFrame might
1934     ** overwrite database pages that are in use by active readers and thus
1935     ** cannot be backfilled from the WAL.
1936     */
1937     mxSafeFrame = pWal->hdr.mxFrame;
1938     mxPage = pWal->hdr.nPage;
1939     for(i=1; i<WAL_NREADER; i++){
1940       u32 y = AtomicLoad(pInfo->aReadMark+i);
1941       if( mxSafeFrame>y ){
1942         assert( y<=pWal->hdr.mxFrame );
1943         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1944         if( rc==SQLITE_OK ){
1945           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1946           AtomicStore(pInfo->aReadMark+i, iMark);
1947           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1948         }else if( rc==SQLITE_BUSY ){
1949           mxSafeFrame = y;
1950           xBusy = 0;
1951         }else{
1952           goto walcheckpoint_out;
1953         }
1954       }
1955     }
1956 
1957     /* Allocate the iterator */
1958     if( pInfo->nBackfill<mxSafeFrame ){
1959       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1960       assert( rc==SQLITE_OK || pIter==0 );
1961     }
1962 
1963     if( pIter
1964      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
1965     ){
1966       u32 nBackfill = pInfo->nBackfill;
1967 
1968       pInfo->nBackfillAttempted = mxSafeFrame;
1969 
1970       /* Sync the WAL to disk */
1971       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1972 
1973       /* If the database may grow as a result of this checkpoint, hint
1974       ** about the eventual size of the db file to the VFS layer.
1975       */
1976       if( rc==SQLITE_OK ){
1977         i64 nReq = ((i64)mxPage * szPage);
1978         i64 nSize;                    /* Current size of database file */
1979         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
1980         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1981         if( rc==SQLITE_OK && nSize<nReq ){
1982           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1983         }
1984       }
1985 
1986 
1987       /* Iterate through the contents of the WAL, copying data to the db file */
1988       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1989         i64 iOffset;
1990         assert( walFramePgno(pWal, iFrame)==iDbpage );
1991         if( AtomicLoad(&db->u1.isInterrupted) ){
1992           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1993           break;
1994         }
1995         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1996           continue;
1997         }
1998         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1999         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2000         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2001         if( rc!=SQLITE_OK ) break;
2002         iOffset = (iDbpage-1)*(i64)szPage;
2003         testcase( IS_BIG_INT(iOffset) );
2004         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2005         if( rc!=SQLITE_OK ) break;
2006       }
2007       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2008 
2009       /* If work was actually accomplished... */
2010       if( rc==SQLITE_OK ){
2011         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2012           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2013           testcase( IS_BIG_INT(szDb) );
2014           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2015           if( rc==SQLITE_OK ){
2016             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2017           }
2018         }
2019         if( rc==SQLITE_OK ){
2020           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2021         }
2022       }
2023 
2024       /* Release the reader lock held while backfilling */
2025       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2026     }
2027 
2028     if( rc==SQLITE_BUSY ){
2029       /* Reset the return code so as not to report a checkpoint failure
2030       ** just because there are active readers.  */
2031       rc = SQLITE_OK;
2032     }
2033   }
2034 
2035   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2036   ** entire wal file has been copied into the database file, then block
2037   ** until all readers have finished using the wal file. This ensures that
2038   ** the next process to write to the database restarts the wal file.
2039   */
2040   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2041     assert( pWal->writeLock );
2042     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2043       rc = SQLITE_BUSY;
2044     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2045       u32 salt1;
2046       sqlite3_randomness(4, &salt1);
2047       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2048       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2049       if( rc==SQLITE_OK ){
2050         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2051           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2052           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2053           ** truncates the log file to zero bytes just prior to a
2054           ** successful return.
2055           **
2056           ** In theory, it might be safe to do this without updating the
2057           ** wal-index header in shared memory, as all subsequent reader or
2058           ** writer clients should see that the entire log file has been
2059           ** checkpointed and behave accordingly. This seems unsafe though,
2060           ** as it would leave the system in a state where the contents of
2061           ** the wal-index header do not match the contents of the
2062           ** file-system. To avoid this, update the wal-index header to
2063           ** indicate that the log file contains zero valid frames.  */
2064           walRestartHdr(pWal, salt1);
2065           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2066         }
2067         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2068       }
2069     }
2070   }
2071 
2072  walcheckpoint_out:
2073   walIteratorFree(pIter);
2074   return rc;
2075 }
2076 
2077 /*
2078 ** If the WAL file is currently larger than nMax bytes in size, truncate
2079 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2080 */
2081 static void walLimitSize(Wal *pWal, i64 nMax){
2082   i64 sz;
2083   int rx;
2084   sqlite3BeginBenignMalloc();
2085   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2086   if( rx==SQLITE_OK && (sz > nMax ) ){
2087     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2088   }
2089   sqlite3EndBenignMalloc();
2090   if( rx ){
2091     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2092   }
2093 }
2094 
2095 /*
2096 ** Close a connection to a log file.
2097 */
2098 int sqlite3WalClose(
2099   Wal *pWal,                      /* Wal to close */
2100   sqlite3 *db,                    /* For interrupt flag */
2101   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2102   int nBuf,
2103   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2104 ){
2105   int rc = SQLITE_OK;
2106   if( pWal ){
2107     int isDelete = 0;             /* True to unlink wal and wal-index files */
2108 
2109     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2110     ** ordinary, rollback-mode locking methods, this guarantees that the
2111     ** connection associated with this log file is the only connection to
2112     ** the database. In this case checkpoint the database and unlink both
2113     ** the wal and wal-index files.
2114     **
2115     ** The EXCLUSIVE lock is not released before returning.
2116     */
2117     if( zBuf!=0
2118      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2119     ){
2120       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2121         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2122       }
2123       rc = sqlite3WalCheckpoint(pWal, db,
2124           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2125       );
2126       if( rc==SQLITE_OK ){
2127         int bPersist = -1;
2128         sqlite3OsFileControlHint(
2129             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2130         );
2131         if( bPersist!=1 ){
2132           /* Try to delete the WAL file if the checkpoint completed and
2133           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2134           ** mode (!bPersist) */
2135           isDelete = 1;
2136         }else if( pWal->mxWalSize>=0 ){
2137           /* Try to truncate the WAL file to zero bytes if the checkpoint
2138           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2139           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2140           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2141           ** to zero bytes as truncating to the journal_size_limit might
2142           ** leave a corrupt WAL file on disk. */
2143           walLimitSize(pWal, 0);
2144         }
2145       }
2146     }
2147 
2148     walIndexClose(pWal, isDelete);
2149     sqlite3OsClose(pWal->pWalFd);
2150     if( isDelete ){
2151       sqlite3BeginBenignMalloc();
2152       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2153       sqlite3EndBenignMalloc();
2154     }
2155     WALTRACE(("WAL%p: closed\n", pWal));
2156     sqlite3_free((void *)pWal->apWiData);
2157     sqlite3_free(pWal);
2158   }
2159   return rc;
2160 }
2161 
2162 /*
2163 ** Try to read the wal-index header.  Return 0 on success and 1 if
2164 ** there is a problem.
2165 **
2166 ** The wal-index is in shared memory.  Another thread or process might
2167 ** be writing the header at the same time this procedure is trying to
2168 ** read it, which might result in inconsistency.  A dirty read is detected
2169 ** by verifying that both copies of the header are the same and also by
2170 ** a checksum on the header.
2171 **
2172 ** If and only if the read is consistent and the header is different from
2173 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2174 ** and *pChanged is set to 1.
2175 **
2176 ** If the checksum cannot be verified return non-zero. If the header
2177 ** is read successfully and the checksum verified, return zero.
2178 */
2179 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2180   u32 aCksum[2];                  /* Checksum on the header content */
2181   WalIndexHdr h1, h2;             /* Two copies of the header content */
2182   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2183 
2184   /* The first page of the wal-index must be mapped at this point. */
2185   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2186 
2187   /* Read the header. This might happen concurrently with a write to the
2188   ** same area of shared memory on a different CPU in a SMP,
2189   ** meaning it is possible that an inconsistent snapshot is read
2190   ** from the file. If this happens, return non-zero.
2191   **
2192   ** tag-20200519-1:
2193   ** There are two copies of the header at the beginning of the wal-index.
2194   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2195   ** Memory barriers are used to prevent the compiler or the hardware from
2196   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2197   ** give false-positive warnings about these accesses because the tools do not
2198   ** account for the double-read and the memory barrier. The use of mutexes
2199   ** here would be problematic as the memory being accessed is potentially
2200   ** shared among multiple processes and not all mutex implementions work
2201   ** reliably in that environment.
2202   */
2203   aHdr = walIndexHdr(pWal);
2204   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2205   walShmBarrier(pWal);
2206   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2207 
2208   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2209     return 1;   /* Dirty read */
2210   }
2211   if( h1.isInit==0 ){
2212     return 1;   /* Malformed header - probably all zeros */
2213   }
2214   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2215   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2216     return 1;   /* Checksum does not match */
2217   }
2218 
2219   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2220     *pChanged = 1;
2221     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2222     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2223     testcase( pWal->szPage<=32768 );
2224     testcase( pWal->szPage>=65536 );
2225   }
2226 
2227   /* The header was successfully read. Return zero. */
2228   return 0;
2229 }
2230 
2231 /*
2232 ** This is the value that walTryBeginRead returns when it needs to
2233 ** be retried.
2234 */
2235 #define WAL_RETRY  (-1)
2236 
2237 /*
2238 ** Read the wal-index header from the wal-index and into pWal->hdr.
2239 ** If the wal-header appears to be corrupt, try to reconstruct the
2240 ** wal-index from the WAL before returning.
2241 **
2242 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2243 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2244 ** to 0.
2245 **
2246 ** If the wal-index header is successfully read, return SQLITE_OK.
2247 ** Otherwise an SQLite error code.
2248 */
2249 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2250   int rc;                         /* Return code */
2251   int badHdr;                     /* True if a header read failed */
2252   volatile u32 *page0;            /* Chunk of wal-index containing header */
2253 
2254   /* Ensure that page 0 of the wal-index (the page that contains the
2255   ** wal-index header) is mapped. Return early if an error occurs here.
2256   */
2257   assert( pChanged );
2258   rc = walIndexPage(pWal, 0, &page0);
2259   if( rc!=SQLITE_OK ){
2260     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2261     if( rc==SQLITE_READONLY_CANTINIT ){
2262       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2263       ** was openable but is not writable, and this thread is unable to
2264       ** confirm that another write-capable connection has the shared-memory
2265       ** open, and hence the content of the shared-memory is unreliable,
2266       ** since the shared-memory might be inconsistent with the WAL file
2267       ** and there is no writer on hand to fix it. */
2268       assert( page0==0 );
2269       assert( pWal->writeLock==0 );
2270       assert( pWal->readOnly & WAL_SHM_RDONLY );
2271       pWal->bShmUnreliable = 1;
2272       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2273       *pChanged = 1;
2274     }else{
2275       return rc; /* Any other non-OK return is just an error */
2276     }
2277   }else{
2278     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2279     ** is zero, which prevents the SHM from growing */
2280     testcase( page0!=0 );
2281   }
2282   assert( page0!=0 || pWal->writeLock==0 );
2283 
2284   /* If the first page of the wal-index has been mapped, try to read the
2285   ** wal-index header immediately, without holding any lock. This usually
2286   ** works, but may fail if the wal-index header is corrupt or currently
2287   ** being modified by another thread or process.
2288   */
2289   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2290 
2291   /* If the first attempt failed, it might have been due to a race
2292   ** with a writer.  So get a WRITE lock and try again.
2293   */
2294   if( badHdr ){
2295     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2296       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2297         walUnlockShared(pWal, WAL_WRITE_LOCK);
2298         rc = SQLITE_READONLY_RECOVERY;
2299       }
2300     }else{
2301       int bWriteLock = pWal->writeLock;
2302       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2303         pWal->writeLock = 1;
2304         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2305           badHdr = walIndexTryHdr(pWal, pChanged);
2306           if( badHdr ){
2307             /* If the wal-index header is still malformed even while holding
2308             ** a WRITE lock, it can only mean that the header is corrupted and
2309             ** needs to be reconstructed.  So run recovery to do exactly that.
2310             */
2311             rc = walIndexRecover(pWal);
2312             *pChanged = 1;
2313           }
2314         }
2315         if( bWriteLock==0 ){
2316           pWal->writeLock = 0;
2317           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2318         }
2319       }
2320     }
2321   }
2322 
2323   /* If the header is read successfully, check the version number to make
2324   ** sure the wal-index was not constructed with some future format that
2325   ** this version of SQLite cannot understand.
2326   */
2327   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2328     rc = SQLITE_CANTOPEN_BKPT;
2329   }
2330   if( pWal->bShmUnreliable ){
2331     if( rc!=SQLITE_OK ){
2332       walIndexClose(pWal, 0);
2333       pWal->bShmUnreliable = 0;
2334       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2335       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2336       ** writer truncated the WAL out from under it.  If that happens, it
2337       ** indicates that a writer has fixed the SHM file for us, so retry */
2338       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2339     }
2340     pWal->exclusiveMode = WAL_NORMAL_MODE;
2341   }
2342 
2343   return rc;
2344 }
2345 
2346 /*
2347 ** Open a transaction in a connection where the shared-memory is read-only
2348 ** and where we cannot verify that there is a separate write-capable connection
2349 ** on hand to keep the shared-memory up-to-date with the WAL file.
2350 **
2351 ** This can happen, for example, when the shared-memory is implemented by
2352 ** memory-mapping a *-shm file, where a prior writer has shut down and
2353 ** left the *-shm file on disk, and now the present connection is trying
2354 ** to use that database but lacks write permission on the *-shm file.
2355 ** Other scenarios are also possible, depending on the VFS implementation.
2356 **
2357 ** Precondition:
2358 **
2359 **    The *-wal file has been read and an appropriate wal-index has been
2360 **    constructed in pWal->apWiData[] using heap memory instead of shared
2361 **    memory.
2362 **
2363 ** If this function returns SQLITE_OK, then the read transaction has
2364 ** been successfully opened. In this case output variable (*pChanged)
2365 ** is set to true before returning if the caller should discard the
2366 ** contents of the page cache before proceeding. Or, if it returns
2367 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2368 ** the caller should retry opening the read transaction from the
2369 ** beginning (including attempting to map the *-shm file).
2370 **
2371 ** If an error occurs, an SQLite error code is returned.
2372 */
2373 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2374   i64 szWal;                      /* Size of wal file on disk in bytes */
2375   i64 iOffset;                    /* Current offset when reading wal file */
2376   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2377   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2378   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2379   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2380   volatile void *pDummy;          /* Dummy argument for xShmMap */
2381   int rc;                         /* Return code */
2382   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2383 
2384   assert( pWal->bShmUnreliable );
2385   assert( pWal->readOnly & WAL_SHM_RDONLY );
2386   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2387 
2388   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2389   ** writers from running a checkpoint, but does not stop them
2390   ** from running recovery.  */
2391   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2392   if( rc!=SQLITE_OK ){
2393     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2394     goto begin_unreliable_shm_out;
2395   }
2396   pWal->readLock = 0;
2397 
2398   /* Check to see if a separate writer has attached to the shared-memory area,
2399   ** thus making the shared-memory "reliable" again.  Do this by invoking
2400   ** the xShmMap() routine of the VFS and looking to see if the return
2401   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2402   **
2403   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2404   ** cause the heap-memory WAL-index to be discarded and the actual
2405   ** shared memory to be used in its place.
2406   **
2407   ** This step is important because, even though this connection is holding
2408   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2409   ** have already checkpointed the WAL file and, while the current
2410   ** is active, wrap the WAL and start overwriting frames that this
2411   ** process wants to use.
2412   **
2413   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2414   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2415   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2416   ** even if some external agent does a "chmod" to make the shared-memory
2417   ** writable by us, until sqlite3OsShmUnmap() has been called.
2418   ** This is a requirement on the VFS implementation.
2419    */
2420   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2421   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2422   if( rc!=SQLITE_READONLY_CANTINIT ){
2423     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2424     goto begin_unreliable_shm_out;
2425   }
2426 
2427   /* We reach this point only if the real shared-memory is still unreliable.
2428   ** Assume the in-memory WAL-index substitute is correct and load it
2429   ** into pWal->hdr.
2430   */
2431   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2432 
2433   /* Make sure some writer hasn't come in and changed the WAL file out
2434   ** from under us, then disconnected, while we were not looking.
2435   */
2436   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2437   if( rc!=SQLITE_OK ){
2438     goto begin_unreliable_shm_out;
2439   }
2440   if( szWal<WAL_HDRSIZE ){
2441     /* If the wal file is too small to contain a wal-header and the
2442     ** wal-index header has mxFrame==0, then it must be safe to proceed
2443     ** reading the database file only. However, the page cache cannot
2444     ** be trusted, as a read/write connection may have connected, written
2445     ** the db, run a checkpoint, truncated the wal file and disconnected
2446     ** since this client's last read transaction.  */
2447     *pChanged = 1;
2448     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2449     goto begin_unreliable_shm_out;
2450   }
2451 
2452   /* Check the salt keys at the start of the wal file still match. */
2453   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2454   if( rc!=SQLITE_OK ){
2455     goto begin_unreliable_shm_out;
2456   }
2457   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2458     /* Some writer has wrapped the WAL file while we were not looking.
2459     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2460     ** rebuilt. */
2461     rc = WAL_RETRY;
2462     goto begin_unreliable_shm_out;
2463   }
2464 
2465   /* Allocate a buffer to read frames into */
2466   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2467   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2468   if( aFrame==0 ){
2469     rc = SQLITE_NOMEM_BKPT;
2470     goto begin_unreliable_shm_out;
2471   }
2472   aData = &aFrame[WAL_FRAME_HDRSIZE];
2473 
2474   /* Check to see if a complete transaction has been appended to the
2475   ** wal file since the heap-memory wal-index was created. If so, the
2476   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2477   ** the caller.  */
2478   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2479   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2480   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2481       iOffset+szFrame<=szWal;
2482       iOffset+=szFrame
2483   ){
2484     u32 pgno;                   /* Database page number for frame */
2485     u32 nTruncate;              /* dbsize field from frame header */
2486 
2487     /* Read and decode the next log frame. */
2488     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2489     if( rc!=SQLITE_OK ) break;
2490     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2491 
2492     /* If nTruncate is non-zero, then a complete transaction has been
2493     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2494     ** the loop.  */
2495     if( nTruncate ){
2496       rc = WAL_RETRY;
2497       break;
2498     }
2499   }
2500   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2501   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2502 
2503  begin_unreliable_shm_out:
2504   sqlite3_free(aFrame);
2505   if( rc!=SQLITE_OK ){
2506     int i;
2507     for(i=0; i<pWal->nWiData; i++){
2508       sqlite3_free((void*)pWal->apWiData[i]);
2509       pWal->apWiData[i] = 0;
2510     }
2511     pWal->bShmUnreliable = 0;
2512     sqlite3WalEndReadTransaction(pWal);
2513     *pChanged = 1;
2514   }
2515   return rc;
2516 }
2517 
2518 /*
2519 ** Attempt to start a read transaction.  This might fail due to a race or
2520 ** other transient condition.  When that happens, it returns WAL_RETRY to
2521 ** indicate to the caller that it is safe to retry immediately.
2522 **
2523 ** On success return SQLITE_OK.  On a permanent failure (such an
2524 ** I/O error or an SQLITE_BUSY because another process is running
2525 ** recovery) return a positive error code.
2526 **
2527 ** The useWal parameter is true to force the use of the WAL and disable
2528 ** the case where the WAL is bypassed because it has been completely
2529 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2530 ** to make a copy of the wal-index header into pWal->hdr.  If the
2531 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2532 ** to the caller that the local page cache is obsolete and needs to be
2533 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2534 ** be loaded and the pChanged parameter is unused.
2535 **
2536 ** The caller must set the cnt parameter to the number of prior calls to
2537 ** this routine during the current read attempt that returned WAL_RETRY.
2538 ** This routine will start taking more aggressive measures to clear the
2539 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2540 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2541 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2542 ** and is not honoring the locking protocol.  There is a vanishingly small
2543 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2544 ** bad luck when there is lots of contention for the wal-index, but that
2545 ** possibility is so small that it can be safely neglected, we believe.
2546 **
2547 ** On success, this routine obtains a read lock on
2548 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2549 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2550 ** that means the Wal does not hold any read lock.  The reader must not
2551 ** access any database page that is modified by a WAL frame up to and
2552 ** including frame number aReadMark[pWal->readLock].  The reader will
2553 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2554 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2555 ** completely and get all content directly from the database file.
2556 ** If the useWal parameter is 1 then the WAL will never be ignored and
2557 ** this routine will always set pWal->readLock>0 on success.
2558 ** When the read transaction is completed, the caller must release the
2559 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2560 **
2561 ** This routine uses the nBackfill and aReadMark[] fields of the header
2562 ** to select a particular WAL_READ_LOCK() that strives to let the
2563 ** checkpoint process do as much work as possible.  This routine might
2564 ** update values of the aReadMark[] array in the header, but if it does
2565 ** so it takes care to hold an exclusive lock on the corresponding
2566 ** WAL_READ_LOCK() while changing values.
2567 */
2568 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2569   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2570   u32 mxReadMark;                 /* Largest aReadMark[] value */
2571   int mxI;                        /* Index of largest aReadMark[] value */
2572   int i;                          /* Loop counter */
2573   int rc = SQLITE_OK;             /* Return code  */
2574   u32 mxFrame;                    /* Wal frame to lock to */
2575 
2576   assert( pWal->readLock<0 );     /* Not currently locked */
2577 
2578   /* useWal may only be set for read/write connections */
2579   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2580 
2581   /* Take steps to avoid spinning forever if there is a protocol error.
2582   **
2583   ** Circumstances that cause a RETRY should only last for the briefest
2584   ** instances of time.  No I/O or other system calls are done while the
2585   ** locks are held, so the locks should not be held for very long. But
2586   ** if we are unlucky, another process that is holding a lock might get
2587   ** paged out or take a page-fault that is time-consuming to resolve,
2588   ** during the few nanoseconds that it is holding the lock.  In that case,
2589   ** it might take longer than normal for the lock to free.
2590   **
2591   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2592   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2593   ** is more of a scheduler yield than an actual delay.  But on the 10th
2594   ** an subsequent retries, the delays start becoming longer and longer,
2595   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2596   ** The total delay time before giving up is less than 10 seconds.
2597   */
2598   if( cnt>5 ){
2599     int nDelay = 1;                      /* Pause time in microseconds */
2600     if( cnt>100 ){
2601       VVA_ONLY( pWal->lockError = 1; )
2602       return SQLITE_PROTOCOL;
2603     }
2604     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2605     sqlite3OsSleep(pWal->pVfs, nDelay);
2606   }
2607 
2608   if( !useWal ){
2609     assert( rc==SQLITE_OK );
2610     if( pWal->bShmUnreliable==0 ){
2611       rc = walIndexReadHdr(pWal, pChanged);
2612     }
2613     if( rc==SQLITE_BUSY ){
2614       /* If there is not a recovery running in another thread or process
2615       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2616       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2617       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2618       ** would be technically correct.  But the race is benign since with
2619       ** WAL_RETRY this routine will be called again and will probably be
2620       ** right on the second iteration.
2621       */
2622       if( pWal->apWiData[0]==0 ){
2623         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2624         ** We assume this is a transient condition, so return WAL_RETRY. The
2625         ** xShmMap() implementation used by the default unix and win32 VFS
2626         ** modules may return SQLITE_BUSY due to a race condition in the
2627         ** code that determines whether or not the shared-memory region
2628         ** must be zeroed before the requested page is returned.
2629         */
2630         rc = WAL_RETRY;
2631       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2632         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2633         rc = WAL_RETRY;
2634       }else if( rc==SQLITE_BUSY ){
2635         rc = SQLITE_BUSY_RECOVERY;
2636       }
2637     }
2638     if( rc!=SQLITE_OK ){
2639       return rc;
2640     }
2641     else if( pWal->bShmUnreliable ){
2642       return walBeginShmUnreliable(pWal, pChanged);
2643     }
2644   }
2645 
2646   assert( pWal->nWiData>0 );
2647   assert( pWal->apWiData[0]!=0 );
2648   pInfo = walCkptInfo(pWal);
2649   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2650 #ifdef SQLITE_ENABLE_SNAPSHOT
2651    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2652 #endif
2653   ){
2654     /* The WAL has been completely backfilled (or it is empty).
2655     ** and can be safely ignored.
2656     */
2657     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2658     walShmBarrier(pWal);
2659     if( rc==SQLITE_OK ){
2660       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2661         /* It is not safe to allow the reader to continue here if frames
2662         ** may have been appended to the log before READ_LOCK(0) was obtained.
2663         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2664         ** which implies that the database file contains a trustworthy
2665         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2666         ** happening, this is usually correct.
2667         **
2668         ** However, if frames have been appended to the log (or if the log
2669         ** is wrapped and written for that matter) before the READ_LOCK(0)
2670         ** is obtained, that is not necessarily true. A checkpointer may
2671         ** have started to backfill the appended frames but crashed before
2672         ** it finished. Leaving a corrupt image in the database file.
2673         */
2674         walUnlockShared(pWal, WAL_READ_LOCK(0));
2675         return WAL_RETRY;
2676       }
2677       pWal->readLock = 0;
2678       return SQLITE_OK;
2679     }else if( rc!=SQLITE_BUSY ){
2680       return rc;
2681     }
2682   }
2683 
2684   /* If we get this far, it means that the reader will want to use
2685   ** the WAL to get at content from recent commits.  The job now is
2686   ** to select one of the aReadMark[] entries that is closest to
2687   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2688   */
2689   mxReadMark = 0;
2690   mxI = 0;
2691   mxFrame = pWal->hdr.mxFrame;
2692 #ifdef SQLITE_ENABLE_SNAPSHOT
2693   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2694     mxFrame = pWal->pSnapshot->mxFrame;
2695   }
2696 #endif
2697   for(i=1; i<WAL_NREADER; i++){
2698     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2699     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2700       assert( thisMark!=READMARK_NOT_USED );
2701       mxReadMark = thisMark;
2702       mxI = i;
2703     }
2704   }
2705   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2706    && (mxReadMark<mxFrame || mxI==0)
2707   ){
2708     for(i=1; i<WAL_NREADER; i++){
2709       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2710       if( rc==SQLITE_OK ){
2711         AtomicStore(pInfo->aReadMark+i,mxFrame);
2712         mxReadMark = mxFrame;
2713         mxI = i;
2714         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2715         break;
2716       }else if( rc!=SQLITE_BUSY ){
2717         return rc;
2718       }
2719     }
2720   }
2721   if( mxI==0 ){
2722     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2723     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2724   }
2725 
2726   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2727   if( rc ){
2728     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2729   }
2730   /* Now that the read-lock has been obtained, check that neither the
2731   ** value in the aReadMark[] array or the contents of the wal-index
2732   ** header have changed.
2733   **
2734   ** It is necessary to check that the wal-index header did not change
2735   ** between the time it was read and when the shared-lock was obtained
2736   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2737   ** that the log file may have been wrapped by a writer, or that frames
2738   ** that occur later in the log than pWal->hdr.mxFrame may have been
2739   ** copied into the database by a checkpointer. If either of these things
2740   ** happened, then reading the database with the current value of
2741   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2742   ** instead.
2743   **
2744   ** Before checking that the live wal-index header has not changed
2745   ** since it was read, set Wal.minFrame to the first frame in the wal
2746   ** file that has not yet been checkpointed. This client will not need
2747   ** to read any frames earlier than minFrame from the wal file - they
2748   ** can be safely read directly from the database file.
2749   **
2750   ** Because a ShmBarrier() call is made between taking the copy of
2751   ** nBackfill and checking that the wal-header in shared-memory still
2752   ** matches the one cached in pWal->hdr, it is guaranteed that the
2753   ** checkpointer that set nBackfill was not working with a wal-index
2754   ** header newer than that cached in pWal->hdr. If it were, that could
2755   ** cause a problem. The checkpointer could omit to checkpoint
2756   ** a version of page X that lies before pWal->minFrame (call that version
2757   ** A) on the basis that there is a newer version (version B) of the same
2758   ** page later in the wal file. But if version B happens to like past
2759   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2760   ** that it can read version A from the database file. However, since
2761   ** we can guarantee that the checkpointer that set nBackfill could not
2762   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2763   */
2764   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2765   walShmBarrier(pWal);
2766   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2767    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2768   ){
2769     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2770     return WAL_RETRY;
2771   }else{
2772     assert( mxReadMark<=pWal->hdr.mxFrame );
2773     pWal->readLock = (i16)mxI;
2774   }
2775   return rc;
2776 }
2777 
2778 #ifdef SQLITE_ENABLE_SNAPSHOT
2779 /*
2780 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2781 ** variable so that older snapshots can be accessed. To do this, loop
2782 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2783 ** comparing their content to the corresponding page with the database
2784 ** file, if any. Set nBackfillAttempted to the frame number of the
2785 ** first frame for which the wal file content matches the db file.
2786 **
2787 ** This is only really safe if the file-system is such that any page
2788 ** writes made by earlier checkpointers were atomic operations, which
2789 ** is not always true. It is also possible that nBackfillAttempted
2790 ** may be left set to a value larger than expected, if a wal frame
2791 ** contains content that duplicate of an earlier version of the same
2792 ** page.
2793 **
2794 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2795 ** error occurs. It is not an error if nBackfillAttempted cannot be
2796 ** decreased at all.
2797 */
2798 int sqlite3WalSnapshotRecover(Wal *pWal){
2799   int rc;
2800 
2801   assert( pWal->readLock>=0 );
2802   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2803   if( rc==SQLITE_OK ){
2804     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2805     int szPage = (int)pWal->szPage;
2806     i64 szDb;                   /* Size of db file in bytes */
2807 
2808     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2809     if( rc==SQLITE_OK ){
2810       void *pBuf1 = sqlite3_malloc(szPage);
2811       void *pBuf2 = sqlite3_malloc(szPage);
2812       if( pBuf1==0 || pBuf2==0 ){
2813         rc = SQLITE_NOMEM;
2814       }else{
2815         u32 i = pInfo->nBackfillAttempted;
2816         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2817           WalHashLoc sLoc;          /* Hash table location */
2818           u32 pgno;                 /* Page number in db file */
2819           i64 iDbOff;               /* Offset of db file entry */
2820           i64 iWalOff;              /* Offset of wal file entry */
2821 
2822           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2823           if( rc!=SQLITE_OK ) break;
2824           pgno = sLoc.aPgno[i-sLoc.iZero];
2825           iDbOff = (i64)(pgno-1) * szPage;
2826 
2827           if( iDbOff+szPage<=szDb ){
2828             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2829             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2830 
2831             if( rc==SQLITE_OK ){
2832               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2833             }
2834 
2835             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2836               break;
2837             }
2838           }
2839 
2840           pInfo->nBackfillAttempted = i-1;
2841         }
2842       }
2843 
2844       sqlite3_free(pBuf1);
2845       sqlite3_free(pBuf2);
2846     }
2847     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2848   }
2849 
2850   return rc;
2851 }
2852 #endif /* SQLITE_ENABLE_SNAPSHOT */
2853 
2854 /*
2855 ** Begin a read transaction on the database.
2856 **
2857 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2858 ** it takes a snapshot of the state of the WAL and wal-index for the current
2859 ** instant in time.  The current thread will continue to use this snapshot.
2860 ** Other threads might append new content to the WAL and wal-index but
2861 ** that extra content is ignored by the current thread.
2862 **
2863 ** If the database contents have changes since the previous read
2864 ** transaction, then *pChanged is set to 1 before returning.  The
2865 ** Pager layer will use this to know that its cache is stale and
2866 ** needs to be flushed.
2867 */
2868 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2869   int rc;                         /* Return code */
2870   int cnt = 0;                    /* Number of TryBeginRead attempts */
2871 #ifdef SQLITE_ENABLE_SNAPSHOT
2872   int bChanged = 0;
2873   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2874 #endif
2875 
2876   assert( pWal->ckptLock==0 );
2877 
2878 #ifdef SQLITE_ENABLE_SNAPSHOT
2879   if( pSnapshot ){
2880     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2881       bChanged = 1;
2882     }
2883 
2884     /* It is possible that there is a checkpointer thread running
2885     ** concurrent with this code. If this is the case, it may be that the
2886     ** checkpointer has already determined that it will checkpoint
2887     ** snapshot X, where X is later in the wal file than pSnapshot, but
2888     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2889     ** its intent. To avoid the race condition this leads to, ensure that
2890     ** there is no checkpointer process by taking a shared CKPT lock
2891     ** before checking pInfo->nBackfillAttempted.  */
2892     (void)walEnableBlocking(pWal);
2893     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2894     walDisableBlocking(pWal);
2895 
2896     if( rc!=SQLITE_OK ){
2897       return rc;
2898     }
2899     pWal->ckptLock = 1;
2900   }
2901 #endif
2902 
2903   do{
2904     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2905   }while( rc==WAL_RETRY );
2906   testcase( (rc&0xff)==SQLITE_BUSY );
2907   testcase( (rc&0xff)==SQLITE_IOERR );
2908   testcase( rc==SQLITE_PROTOCOL );
2909   testcase( rc==SQLITE_OK );
2910 
2911 #ifdef SQLITE_ENABLE_SNAPSHOT
2912   if( rc==SQLITE_OK ){
2913     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2914       /* At this point the client has a lock on an aReadMark[] slot holding
2915       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2916       ** is populated with the wal-index header corresponding to the head
2917       ** of the wal file. Verify that pSnapshot is still valid before
2918       ** continuing.  Reasons why pSnapshot might no longer be valid:
2919       **
2920       **    (1)  The WAL file has been reset since the snapshot was taken.
2921       **         In this case, the salt will have changed.
2922       **
2923       **    (2)  A checkpoint as been attempted that wrote frames past
2924       **         pSnapshot->mxFrame into the database file.  Note that the
2925       **         checkpoint need not have completed for this to cause problems.
2926       */
2927       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2928 
2929       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2930       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2931 
2932       /* Check that the wal file has not been wrapped. Assuming that it has
2933       ** not, also check that no checkpointer has attempted to checkpoint any
2934       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2935       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2936       ** with *pSnapshot and set *pChanged as appropriate for opening the
2937       ** snapshot.  */
2938       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2939        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2940       ){
2941         assert( pWal->readLock>0 );
2942         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2943         *pChanged = bChanged;
2944       }else{
2945         rc = SQLITE_ERROR_SNAPSHOT;
2946       }
2947 
2948       /* A client using a non-current snapshot may not ignore any frames
2949       ** from the start of the wal file. This is because, for a system
2950       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2951       ** have omitted to checkpoint a frame earlier than minFrame in
2952       ** the file because there exists a frame after iSnapshot that
2953       ** is the same database page.  */
2954       pWal->minFrame = 1;
2955 
2956       if( rc!=SQLITE_OK ){
2957         sqlite3WalEndReadTransaction(pWal);
2958       }
2959     }
2960   }
2961 
2962   /* Release the shared CKPT lock obtained above. */
2963   if( pWal->ckptLock ){
2964     assert( pSnapshot );
2965     walUnlockShared(pWal, WAL_CKPT_LOCK);
2966     pWal->ckptLock = 0;
2967   }
2968 #endif
2969   return rc;
2970 }
2971 
2972 /*
2973 ** Finish with a read transaction.  All this does is release the
2974 ** read-lock.
2975 */
2976 void sqlite3WalEndReadTransaction(Wal *pWal){
2977   sqlite3WalEndWriteTransaction(pWal);
2978   if( pWal->readLock>=0 ){
2979     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2980     pWal->readLock = -1;
2981   }
2982 }
2983 
2984 /*
2985 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2986 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2987 ** to zero.
2988 **
2989 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2990 ** error does occur, the final value of *piRead is undefined.
2991 */
2992 int sqlite3WalFindFrame(
2993   Wal *pWal,                      /* WAL handle */
2994   Pgno pgno,                      /* Database page number to read data for */
2995   u32 *piRead                     /* OUT: Frame number (or zero) */
2996 ){
2997   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2998   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2999   int iHash;                      /* Used to loop through N hash tables */
3000   int iMinHash;
3001 
3002   /* This routine is only be called from within a read transaction. */
3003   assert( pWal->readLock>=0 || pWal->lockError );
3004 
3005   /* If the "last page" field of the wal-index header snapshot is 0, then
3006   ** no data will be read from the wal under any circumstances. Return early
3007   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3008   ** then the WAL is ignored by the reader so return early, as if the
3009   ** WAL were empty.
3010   */
3011   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3012     *piRead = 0;
3013     return SQLITE_OK;
3014   }
3015 
3016   /* Search the hash table or tables for an entry matching page number
3017   ** pgno. Each iteration of the following for() loop searches one
3018   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3019   **
3020   ** This code might run concurrently to the code in walIndexAppend()
3021   ** that adds entries to the wal-index (and possibly to this hash
3022   ** table). This means the value just read from the hash
3023   ** slot (aHash[iKey]) may have been added before or after the
3024   ** current read transaction was opened. Values added after the
3025   ** read transaction was opened may have been written incorrectly -
3026   ** i.e. these slots may contain garbage data. However, we assume
3027   ** that any slots written before the current read transaction was
3028   ** opened remain unmodified.
3029   **
3030   ** For the reasons above, the if(...) condition featured in the inner
3031   ** loop of the following block is more stringent that would be required
3032   ** if we had exclusive access to the hash-table:
3033   **
3034   **   (aPgno[iFrame]==pgno):
3035   **     This condition filters out normal hash-table collisions.
3036   **
3037   **   (iFrame<=iLast):
3038   **     This condition filters out entries that were added to the hash
3039   **     table after the current read-transaction had started.
3040   */
3041   iMinHash = walFramePage(pWal->minFrame);
3042   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3043     WalHashLoc sLoc;              /* Hash table location */
3044     int iKey;                     /* Hash slot index */
3045     int nCollide;                 /* Number of hash collisions remaining */
3046     int rc;                       /* Error code */
3047     u32 iH;
3048 
3049     rc = walHashGet(pWal, iHash, &sLoc);
3050     if( rc!=SQLITE_OK ){
3051       return rc;
3052     }
3053     nCollide = HASHTABLE_NSLOT;
3054     iKey = walHash(pgno);
3055     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3056       u32 iFrame = iH + sLoc.iZero;
3057       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3058         assert( iFrame>iRead || CORRUPT_DB );
3059         iRead = iFrame;
3060       }
3061       if( (nCollide--)==0 ){
3062         return SQLITE_CORRUPT_BKPT;
3063       }
3064       iKey = walNextHash(iKey);
3065     }
3066     if( iRead ) break;
3067   }
3068 
3069 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3070   /* If expensive assert() statements are available, do a linear search
3071   ** of the wal-index file content. Make sure the results agree with the
3072   ** result obtained using the hash indexes above.  */
3073   {
3074     u32 iRead2 = 0;
3075     u32 iTest;
3076     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3077     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3078       if( walFramePgno(pWal, iTest)==pgno ){
3079         iRead2 = iTest;
3080         break;
3081       }
3082     }
3083     assert( iRead==iRead2 );
3084   }
3085 #endif
3086 
3087   *piRead = iRead;
3088   return SQLITE_OK;
3089 }
3090 
3091 /*
3092 ** Read the contents of frame iRead from the wal file into buffer pOut
3093 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3094 ** error code otherwise.
3095 */
3096 int sqlite3WalReadFrame(
3097   Wal *pWal,                      /* WAL handle */
3098   u32 iRead,                      /* Frame to read */
3099   int nOut,                       /* Size of buffer pOut in bytes */
3100   u8 *pOut                        /* Buffer to write page data to */
3101 ){
3102   int sz;
3103   i64 iOffset;
3104   sz = pWal->hdr.szPage;
3105   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3106   testcase( sz<=32768 );
3107   testcase( sz>=65536 );
3108   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3109   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3110   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3111 }
3112 
3113 /*
3114 ** Return the size of the database in pages (or zero, if unknown).
3115 */
3116 Pgno sqlite3WalDbsize(Wal *pWal){
3117   if( pWal && ALWAYS(pWal->readLock>=0) ){
3118     return pWal->hdr.nPage;
3119   }
3120   return 0;
3121 }
3122 
3123 
3124 /*
3125 ** This function starts a write transaction on the WAL.
3126 **
3127 ** A read transaction must have already been started by a prior call
3128 ** to sqlite3WalBeginReadTransaction().
3129 **
3130 ** If another thread or process has written into the database since
3131 ** the read transaction was started, then it is not possible for this
3132 ** thread to write as doing so would cause a fork.  So this routine
3133 ** returns SQLITE_BUSY in that case and no write transaction is started.
3134 **
3135 ** There can only be a single writer active at a time.
3136 */
3137 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3138   int rc;
3139 
3140 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3141   /* If the write-lock is already held, then it was obtained before the
3142   ** read-transaction was even opened, making this call a no-op.
3143   ** Return early. */
3144   if( pWal->writeLock ){
3145     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3146     return SQLITE_OK;
3147   }
3148 #endif
3149 
3150   /* Cannot start a write transaction without first holding a read
3151   ** transaction. */
3152   assert( pWal->readLock>=0 );
3153   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3154 
3155   if( pWal->readOnly ){
3156     return SQLITE_READONLY;
3157   }
3158 
3159   /* Only one writer allowed at a time.  Get the write lock.  Return
3160   ** SQLITE_BUSY if unable.
3161   */
3162   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3163   if( rc ){
3164     return rc;
3165   }
3166   pWal->writeLock = 1;
3167 
3168   /* If another connection has written to the database file since the
3169   ** time the read transaction on this connection was started, then
3170   ** the write is disallowed.
3171   */
3172   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3173     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3174     pWal->writeLock = 0;
3175     rc = SQLITE_BUSY_SNAPSHOT;
3176   }
3177 
3178   return rc;
3179 }
3180 
3181 /*
3182 ** End a write transaction.  The commit has already been done.  This
3183 ** routine merely releases the lock.
3184 */
3185 int sqlite3WalEndWriteTransaction(Wal *pWal){
3186   if( pWal->writeLock ){
3187     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3188     pWal->writeLock = 0;
3189     pWal->iReCksum = 0;
3190     pWal->truncateOnCommit = 0;
3191   }
3192   return SQLITE_OK;
3193 }
3194 
3195 /*
3196 ** If any data has been written (but not committed) to the log file, this
3197 ** function moves the write-pointer back to the start of the transaction.
3198 **
3199 ** Additionally, the callback function is invoked for each frame written
3200 ** to the WAL since the start of the transaction. If the callback returns
3201 ** other than SQLITE_OK, it is not invoked again and the error code is
3202 ** returned to the caller.
3203 **
3204 ** Otherwise, if the callback function does not return an error, this
3205 ** function returns SQLITE_OK.
3206 */
3207 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3208   int rc = SQLITE_OK;
3209   if( ALWAYS(pWal->writeLock) ){
3210     Pgno iMax = pWal->hdr.mxFrame;
3211     Pgno iFrame;
3212 
3213     /* Restore the clients cache of the wal-index header to the state it
3214     ** was in before the client began writing to the database.
3215     */
3216     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3217 
3218     for(iFrame=pWal->hdr.mxFrame+1;
3219         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3220         iFrame++
3221     ){
3222       /* This call cannot fail. Unless the page for which the page number
3223       ** is passed as the second argument is (a) in the cache and
3224       ** (b) has an outstanding reference, then xUndo is either a no-op
3225       ** (if (a) is false) or simply expels the page from the cache (if (b)
3226       ** is false).
3227       **
3228       ** If the upper layer is doing a rollback, it is guaranteed that there
3229       ** are no outstanding references to any page other than page 1. And
3230       ** page 1 is never written to the log until the transaction is
3231       ** committed. As a result, the call to xUndo may not fail.
3232       */
3233       assert( walFramePgno(pWal, iFrame)!=1 );
3234       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3235     }
3236     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3237   }
3238   return rc;
3239 }
3240 
3241 /*
3242 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3243 ** values. This function populates the array with values required to
3244 ** "rollback" the write position of the WAL handle back to the current
3245 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3246 */
3247 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3248   assert( pWal->writeLock );
3249   aWalData[0] = pWal->hdr.mxFrame;
3250   aWalData[1] = pWal->hdr.aFrameCksum[0];
3251   aWalData[2] = pWal->hdr.aFrameCksum[1];
3252   aWalData[3] = pWal->nCkpt;
3253 }
3254 
3255 /*
3256 ** Move the write position of the WAL back to the point identified by
3257 ** the values in the aWalData[] array. aWalData must point to an array
3258 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3259 ** by a call to WalSavepoint().
3260 */
3261 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3262   int rc = SQLITE_OK;
3263 
3264   assert( pWal->writeLock );
3265   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3266 
3267   if( aWalData[3]!=pWal->nCkpt ){
3268     /* This savepoint was opened immediately after the write-transaction
3269     ** was started. Right after that, the writer decided to wrap around
3270     ** to the start of the log. Update the savepoint values to match.
3271     */
3272     aWalData[0] = 0;
3273     aWalData[3] = pWal->nCkpt;
3274   }
3275 
3276   if( aWalData[0]<pWal->hdr.mxFrame ){
3277     pWal->hdr.mxFrame = aWalData[0];
3278     pWal->hdr.aFrameCksum[0] = aWalData[1];
3279     pWal->hdr.aFrameCksum[1] = aWalData[2];
3280     walCleanupHash(pWal);
3281   }
3282 
3283   return rc;
3284 }
3285 
3286 /*
3287 ** This function is called just before writing a set of frames to the log
3288 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3289 ** to the current log file, it is possible to overwrite the start of the
3290 ** existing log file with the new frames (i.e. "reset" the log). If so,
3291 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3292 ** unchanged.
3293 **
3294 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3295 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3296 ** if an error occurs.
3297 */
3298 static int walRestartLog(Wal *pWal){
3299   int rc = SQLITE_OK;
3300   int cnt;
3301 
3302   if( pWal->readLock==0 ){
3303     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3304     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3305     if( pInfo->nBackfill>0 ){
3306       u32 salt1;
3307       sqlite3_randomness(4, &salt1);
3308       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3309       if( rc==SQLITE_OK ){
3310         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3311         ** readers are currently using the WAL), then the transactions
3312         ** frames will overwrite the start of the existing log. Update the
3313         ** wal-index header to reflect this.
3314         **
3315         ** In theory it would be Ok to update the cache of the header only
3316         ** at this point. But updating the actual wal-index header is also
3317         ** safe and means there is no special case for sqlite3WalUndo()
3318         ** to handle if this transaction is rolled back.  */
3319         walRestartHdr(pWal, salt1);
3320         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3321       }else if( rc!=SQLITE_BUSY ){
3322         return rc;
3323       }
3324     }
3325     walUnlockShared(pWal, WAL_READ_LOCK(0));
3326     pWal->readLock = -1;
3327     cnt = 0;
3328     do{
3329       int notUsed;
3330       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3331     }while( rc==WAL_RETRY );
3332     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3333     testcase( (rc&0xff)==SQLITE_IOERR );
3334     testcase( rc==SQLITE_PROTOCOL );
3335     testcase( rc==SQLITE_OK );
3336   }
3337   return rc;
3338 }
3339 
3340 /*
3341 ** Information about the current state of the WAL file and where
3342 ** the next fsync should occur - passed from sqlite3WalFrames() into
3343 ** walWriteToLog().
3344 */
3345 typedef struct WalWriter {
3346   Wal *pWal;                   /* The complete WAL information */
3347   sqlite3_file *pFd;           /* The WAL file to which we write */
3348   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3349   int syncFlags;               /* Flags for the fsync */
3350   int szPage;                  /* Size of one page */
3351 } WalWriter;
3352 
3353 /*
3354 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3355 ** Do a sync when crossing the p->iSyncPoint boundary.
3356 **
3357 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3358 ** first write the part before iSyncPoint, then sync, then write the
3359 ** rest.
3360 */
3361 static int walWriteToLog(
3362   WalWriter *p,              /* WAL to write to */
3363   void *pContent,            /* Content to be written */
3364   int iAmt,                  /* Number of bytes to write */
3365   sqlite3_int64 iOffset      /* Start writing at this offset */
3366 ){
3367   int rc;
3368   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3369     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3370     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3371     if( rc ) return rc;
3372     iOffset += iFirstAmt;
3373     iAmt -= iFirstAmt;
3374     pContent = (void*)(iFirstAmt + (char*)pContent);
3375     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3376     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3377     if( iAmt==0 || rc ) return rc;
3378   }
3379   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3380   return rc;
3381 }
3382 
3383 /*
3384 ** Write out a single frame of the WAL
3385 */
3386 static int walWriteOneFrame(
3387   WalWriter *p,               /* Where to write the frame */
3388   PgHdr *pPage,               /* The page of the frame to be written */
3389   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3390   sqlite3_int64 iOffset       /* Byte offset at which to write */
3391 ){
3392   int rc;                         /* Result code from subfunctions */
3393   void *pData;                    /* Data actually written */
3394   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3395   pData = pPage->pData;
3396   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3397   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3398   if( rc ) return rc;
3399   /* Write the page data */
3400   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3401   return rc;
3402 }
3403 
3404 /*
3405 ** This function is called as part of committing a transaction within which
3406 ** one or more frames have been overwritten. It updates the checksums for
3407 ** all frames written to the wal file by the current transaction starting
3408 ** with the earliest to have been overwritten.
3409 **
3410 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3411 */
3412 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3413   const int szPage = pWal->szPage;/* Database page size */
3414   int rc = SQLITE_OK;             /* Return code */
3415   u8 *aBuf;                       /* Buffer to load data from wal file into */
3416   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3417   u32 iRead;                      /* Next frame to read from wal file */
3418   i64 iCksumOff;
3419 
3420   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3421   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3422 
3423   /* Find the checksum values to use as input for the recalculating the
3424   ** first checksum. If the first frame is frame 1 (implying that the current
3425   ** transaction restarted the wal file), these values must be read from the
3426   ** wal-file header. Otherwise, read them from the frame header of the
3427   ** previous frame.  */
3428   assert( pWal->iReCksum>0 );
3429   if( pWal->iReCksum==1 ){
3430     iCksumOff = 24;
3431   }else{
3432     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3433   }
3434   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3435   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3436   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3437 
3438   iRead = pWal->iReCksum;
3439   pWal->iReCksum = 0;
3440   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3441     i64 iOff = walFrameOffset(iRead, szPage);
3442     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3443     if( rc==SQLITE_OK ){
3444       u32 iPgno, nDbSize;
3445       iPgno = sqlite3Get4byte(aBuf);
3446       nDbSize = sqlite3Get4byte(&aBuf[4]);
3447 
3448       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3449       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3450     }
3451   }
3452 
3453   sqlite3_free(aBuf);
3454   return rc;
3455 }
3456 
3457 /*
3458 ** Write a set of frames to the log. The caller must hold the write-lock
3459 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3460 */
3461 int sqlite3WalFrames(
3462   Wal *pWal,                      /* Wal handle to write to */
3463   int szPage,                     /* Database page-size in bytes */
3464   PgHdr *pList,                   /* List of dirty pages to write */
3465   Pgno nTruncate,                 /* Database size after this commit */
3466   int isCommit,                   /* True if this is a commit */
3467   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3468 ){
3469   int rc;                         /* Used to catch return codes */
3470   u32 iFrame;                     /* Next frame address */
3471   PgHdr *p;                       /* Iterator to run through pList with. */
3472   PgHdr *pLast = 0;               /* Last frame in list */
3473   int nExtra = 0;                 /* Number of extra copies of last page */
3474   int szFrame;                    /* The size of a single frame */
3475   i64 iOffset;                    /* Next byte to write in WAL file */
3476   WalWriter w;                    /* The writer */
3477   u32 iFirst = 0;                 /* First frame that may be overwritten */
3478   WalIndexHdr *pLive;             /* Pointer to shared header */
3479 
3480   assert( pList );
3481   assert( pWal->writeLock );
3482 
3483   /* If this frame set completes a transaction, then nTruncate>0.  If
3484   ** nTruncate==0 then this frame set does not complete the transaction. */
3485   assert( (isCommit!=0)==(nTruncate!=0) );
3486 
3487 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3488   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3489     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3490               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3491   }
3492 #endif
3493 
3494   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3495   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3496     iFirst = pLive->mxFrame+1;
3497   }
3498 
3499   /* See if it is possible to write these frames into the start of the
3500   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3501   */
3502   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3503     return rc;
3504   }
3505 
3506   /* If this is the first frame written into the log, write the WAL
3507   ** header to the start of the WAL file. See comments at the top of
3508   ** this source file for a description of the WAL header format.
3509   */
3510   iFrame = pWal->hdr.mxFrame;
3511   if( iFrame==0 ){
3512     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3513     u32 aCksum[2];                /* Checksum for wal-header */
3514 
3515     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3516     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3517     sqlite3Put4byte(&aWalHdr[8], szPage);
3518     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3519     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3520     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3521     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3522     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3523     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3524 
3525     pWal->szPage = szPage;
3526     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3527     pWal->hdr.aFrameCksum[0] = aCksum[0];
3528     pWal->hdr.aFrameCksum[1] = aCksum[1];
3529     pWal->truncateOnCommit = 1;
3530 
3531     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3532     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3533     if( rc!=SQLITE_OK ){
3534       return rc;
3535     }
3536 
3537     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3538     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3539     ** an out-of-order write following a WAL restart could result in
3540     ** database corruption.  See the ticket:
3541     **
3542     **     https://sqlite.org/src/info/ff5be73dee
3543     */
3544     if( pWal->syncHeader ){
3545       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3546       if( rc ) return rc;
3547     }
3548   }
3549   assert( (int)pWal->szPage==szPage );
3550 
3551   /* Setup information needed to write frames into the WAL */
3552   w.pWal = pWal;
3553   w.pFd = pWal->pWalFd;
3554   w.iSyncPoint = 0;
3555   w.syncFlags = sync_flags;
3556   w.szPage = szPage;
3557   iOffset = walFrameOffset(iFrame+1, szPage);
3558   szFrame = szPage + WAL_FRAME_HDRSIZE;
3559 
3560   /* Write all frames into the log file exactly once */
3561   for(p=pList; p; p=p->pDirty){
3562     int nDbSize;   /* 0 normally.  Positive == commit flag */
3563 
3564     /* Check if this page has already been written into the wal file by
3565     ** the current transaction. If so, overwrite the existing frame and
3566     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3567     ** checksums must be recomputed when the transaction is committed.  */
3568     if( iFirst && (p->pDirty || isCommit==0) ){
3569       u32 iWrite = 0;
3570       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3571       assert( rc==SQLITE_OK || iWrite==0 );
3572       if( iWrite>=iFirst ){
3573         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3574         void *pData;
3575         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3576           pWal->iReCksum = iWrite;
3577         }
3578         pData = p->pData;
3579         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3580         if( rc ) return rc;
3581         p->flags &= ~PGHDR_WAL_APPEND;
3582         continue;
3583       }
3584     }
3585 
3586     iFrame++;
3587     assert( iOffset==walFrameOffset(iFrame, szPage) );
3588     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3589     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3590     if( rc ) return rc;
3591     pLast = p;
3592     iOffset += szFrame;
3593     p->flags |= PGHDR_WAL_APPEND;
3594   }
3595 
3596   /* Recalculate checksums within the wal file if required. */
3597   if( isCommit && pWal->iReCksum ){
3598     rc = walRewriteChecksums(pWal, iFrame);
3599     if( rc ) return rc;
3600   }
3601 
3602   /* If this is the end of a transaction, then we might need to pad
3603   ** the transaction and/or sync the WAL file.
3604   **
3605   ** Padding and syncing only occur if this set of frames complete a
3606   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3607   ** or synchronous==OFF, then no padding or syncing are needed.
3608   **
3609   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3610   ** needed and only the sync is done.  If padding is needed, then the
3611   ** final frame is repeated (with its commit mark) until the next sector
3612   ** boundary is crossed.  Only the part of the WAL prior to the last
3613   ** sector boundary is synced; the part of the last frame that extends
3614   ** past the sector boundary is written after the sync.
3615   */
3616   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3617     int bSync = 1;
3618     if( pWal->padToSectorBoundary ){
3619       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3620       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3621       bSync = (w.iSyncPoint==iOffset);
3622       testcase( bSync );
3623       while( iOffset<w.iSyncPoint ){
3624         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3625         if( rc ) return rc;
3626         iOffset += szFrame;
3627         nExtra++;
3628         assert( pLast!=0 );
3629       }
3630     }
3631     if( bSync ){
3632       assert( rc==SQLITE_OK );
3633       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3634     }
3635   }
3636 
3637   /* If this frame set completes the first transaction in the WAL and
3638   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3639   ** journal size limit, if possible.
3640   */
3641   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3642     i64 sz = pWal->mxWalSize;
3643     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3644       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3645     }
3646     walLimitSize(pWal, sz);
3647     pWal->truncateOnCommit = 0;
3648   }
3649 
3650   /* Append data to the wal-index. It is not necessary to lock the
3651   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3652   ** guarantees that there are no other writers, and no data that may
3653   ** be in use by existing readers is being overwritten.
3654   */
3655   iFrame = pWal->hdr.mxFrame;
3656   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3657     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3658     iFrame++;
3659     rc = walIndexAppend(pWal, iFrame, p->pgno);
3660   }
3661   assert( pLast!=0 || nExtra==0 );
3662   while( rc==SQLITE_OK && nExtra>0 ){
3663     iFrame++;
3664     nExtra--;
3665     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3666   }
3667 
3668   if( rc==SQLITE_OK ){
3669     /* Update the private copy of the header. */
3670     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3671     testcase( szPage<=32768 );
3672     testcase( szPage>=65536 );
3673     pWal->hdr.mxFrame = iFrame;
3674     if( isCommit ){
3675       pWal->hdr.iChange++;
3676       pWal->hdr.nPage = nTruncate;
3677     }
3678     /* If this is a commit, update the wal-index header too. */
3679     if( isCommit ){
3680       walIndexWriteHdr(pWal);
3681       pWal->iCallback = iFrame;
3682     }
3683   }
3684 
3685   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3686   return rc;
3687 }
3688 
3689 /*
3690 ** This routine is called to implement sqlite3_wal_checkpoint() and
3691 ** related interfaces.
3692 **
3693 ** Obtain a CHECKPOINT lock and then backfill as much information as
3694 ** we can from WAL into the database.
3695 **
3696 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3697 ** callback. In this case this function runs a blocking checkpoint.
3698 */
3699 int sqlite3WalCheckpoint(
3700   Wal *pWal,                      /* Wal connection */
3701   sqlite3 *db,                    /* Check this handle's interrupt flag */
3702   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3703   int (*xBusy)(void*),            /* Function to call when busy */
3704   void *pBusyArg,                 /* Context argument for xBusyHandler */
3705   int sync_flags,                 /* Flags to sync db file with (or 0) */
3706   int nBuf,                       /* Size of temporary buffer */
3707   u8 *zBuf,                       /* Temporary buffer to use */
3708   int *pnLog,                     /* OUT: Number of frames in WAL */
3709   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3710 ){
3711   int rc;                         /* Return code */
3712   int isChanged = 0;              /* True if a new wal-index header is loaded */
3713   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3714   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3715 
3716   assert( pWal->ckptLock==0 );
3717   assert( pWal->writeLock==0 );
3718 
3719   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3720   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3721   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3722 
3723   if( pWal->readOnly ) return SQLITE_READONLY;
3724   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3725 
3726   /* Enable blocking locks, if possible. If blocking locks are successfully
3727   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3728   sqlite3WalDb(pWal, db);
3729   (void)walEnableBlocking(pWal);
3730 
3731   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3732   ** "checkpoint" lock on the database file.
3733   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3734   ** checkpoint operation at the same time, the lock cannot be obtained and
3735   ** SQLITE_BUSY is returned.
3736   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3737   ** it will not be invoked in this case.
3738   */
3739   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3740   testcase( rc==SQLITE_BUSY );
3741   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3742   if( rc==SQLITE_OK ){
3743     pWal->ckptLock = 1;
3744 
3745     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3746     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3747     ** file.
3748     **
3749     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3750     ** immediately, and a busy-handler is configured, it is invoked and the
3751     ** writer lock retried until either the busy-handler returns 0 or the
3752     ** lock is successfully obtained.
3753     */
3754     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3755       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3756       if( rc==SQLITE_OK ){
3757         pWal->writeLock = 1;
3758       }else if( rc==SQLITE_BUSY ){
3759         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3760         xBusy2 = 0;
3761         rc = SQLITE_OK;
3762       }
3763     }
3764   }
3765 
3766 
3767   /* Read the wal-index header. */
3768   if( rc==SQLITE_OK ){
3769     walDisableBlocking(pWal);
3770     rc = walIndexReadHdr(pWal, &isChanged);
3771     (void)walEnableBlocking(pWal);
3772     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3773       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3774     }
3775   }
3776 
3777   /* Copy data from the log to the database file. */
3778   if( rc==SQLITE_OK ){
3779 
3780     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3781       rc = SQLITE_CORRUPT_BKPT;
3782     }else{
3783       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3784     }
3785 
3786     /* If no error occurred, set the output variables. */
3787     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3788       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3789       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3790     }
3791   }
3792 
3793   if( isChanged ){
3794     /* If a new wal-index header was loaded before the checkpoint was
3795     ** performed, then the pager-cache associated with pWal is now
3796     ** out of date. So zero the cached wal-index header to ensure that
3797     ** next time the pager opens a snapshot on this database it knows that
3798     ** the cache needs to be reset.
3799     */
3800     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3801   }
3802 
3803   walDisableBlocking(pWal);
3804   sqlite3WalDb(pWal, 0);
3805 
3806   /* Release the locks. */
3807   sqlite3WalEndWriteTransaction(pWal);
3808   if( pWal->ckptLock ){
3809     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3810     pWal->ckptLock = 0;
3811   }
3812   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3813 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3814   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3815 #endif
3816   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3817 }
3818 
3819 /* Return the value to pass to a sqlite3_wal_hook callback, the
3820 ** number of frames in the WAL at the point of the last commit since
3821 ** sqlite3WalCallback() was called.  If no commits have occurred since
3822 ** the last call, then return 0.
3823 */
3824 int sqlite3WalCallback(Wal *pWal){
3825   u32 ret = 0;
3826   if( pWal ){
3827     ret = pWal->iCallback;
3828     pWal->iCallback = 0;
3829   }
3830   return (int)ret;
3831 }
3832 
3833 /*
3834 ** This function is called to change the WAL subsystem into or out
3835 ** of locking_mode=EXCLUSIVE.
3836 **
3837 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3838 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3839 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3840 ** or if the acquisition of the lock fails, then return 0.  If the
3841 ** transition out of exclusive-mode is successful, return 1.  This
3842 ** operation must occur while the pager is still holding the exclusive
3843 ** lock on the main database file.
3844 **
3845 ** If op is one, then change from locking_mode=NORMAL into
3846 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3847 ** be released.  Return 1 if the transition is made and 0 if the
3848 ** WAL is already in exclusive-locking mode - meaning that this
3849 ** routine is a no-op.  The pager must already hold the exclusive lock
3850 ** on the main database file before invoking this operation.
3851 **
3852 ** If op is negative, then do a dry-run of the op==1 case but do
3853 ** not actually change anything. The pager uses this to see if it
3854 ** should acquire the database exclusive lock prior to invoking
3855 ** the op==1 case.
3856 */
3857 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3858   int rc;
3859   assert( pWal->writeLock==0 );
3860   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3861 
3862   /* pWal->readLock is usually set, but might be -1 if there was a
3863   ** prior error while attempting to acquire are read-lock. This cannot
3864   ** happen if the connection is actually in exclusive mode (as no xShmLock
3865   ** locks are taken in this case). Nor should the pager attempt to
3866   ** upgrade to exclusive-mode following such an error.
3867   */
3868   assert( pWal->readLock>=0 || pWal->lockError );
3869   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3870 
3871   if( op==0 ){
3872     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3873       pWal->exclusiveMode = WAL_NORMAL_MODE;
3874       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3875         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3876       }
3877       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3878     }else{
3879       /* Already in locking_mode=NORMAL */
3880       rc = 0;
3881     }
3882   }else if( op>0 ){
3883     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3884     assert( pWal->readLock>=0 );
3885     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3886     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3887     rc = 1;
3888   }else{
3889     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3890   }
3891   return rc;
3892 }
3893 
3894 /*
3895 ** Return true if the argument is non-NULL and the WAL module is using
3896 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3897 ** WAL module is using shared-memory, return false.
3898 */
3899 int sqlite3WalHeapMemory(Wal *pWal){
3900   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3901 }
3902 
3903 #ifdef SQLITE_ENABLE_SNAPSHOT
3904 /* Create a snapshot object.  The content of a snapshot is opaque to
3905 ** every other subsystem, so the WAL module can put whatever it needs
3906 ** in the object.
3907 */
3908 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3909   int rc = SQLITE_OK;
3910   WalIndexHdr *pRet;
3911   static const u32 aZero[4] = { 0, 0, 0, 0 };
3912 
3913   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3914 
3915   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3916     *ppSnapshot = 0;
3917     return SQLITE_ERROR;
3918   }
3919   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3920   if( pRet==0 ){
3921     rc = SQLITE_NOMEM_BKPT;
3922   }else{
3923     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3924     *ppSnapshot = (sqlite3_snapshot*)pRet;
3925   }
3926 
3927   return rc;
3928 }
3929 
3930 /* Try to open on pSnapshot when the next read-transaction starts
3931 */
3932 void sqlite3WalSnapshotOpen(
3933   Wal *pWal,
3934   sqlite3_snapshot *pSnapshot
3935 ){
3936   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3937 }
3938 
3939 /*
3940 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3941 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3942 */
3943 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3944   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3945   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3946 
3947   /* aSalt[0] is a copy of the value stored in the wal file header. It
3948   ** is incremented each time the wal file is restarted.  */
3949   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3950   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3951   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3952   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3953   return 0;
3954 }
3955 
3956 /*
3957 ** The caller currently has a read transaction open on the database.
3958 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3959 ** checks if the snapshot passed as the second argument is still
3960 ** available. If so, SQLITE_OK is returned.
3961 **
3962 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3963 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3964 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3965 ** lock is released before returning.
3966 */
3967 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3968   int rc;
3969   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3970   if( rc==SQLITE_OK ){
3971     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3972     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3973      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3974     ){
3975       rc = SQLITE_ERROR_SNAPSHOT;
3976       walUnlockShared(pWal, WAL_CKPT_LOCK);
3977     }
3978   }
3979   return rc;
3980 }
3981 
3982 /*
3983 ** Release a lock obtained by an earlier successful call to
3984 ** sqlite3WalSnapshotCheck().
3985 */
3986 void sqlite3WalSnapshotUnlock(Wal *pWal){
3987   assert( pWal );
3988   walUnlockShared(pWal, WAL_CKPT_LOCK);
3989 }
3990 
3991 
3992 #endif /* SQLITE_ENABLE_SNAPSHOT */
3993 
3994 #ifdef SQLITE_ENABLE_ZIPVFS
3995 /*
3996 ** If the argument is not NULL, it points to a Wal object that holds a
3997 ** read-lock. This function returns the database page-size if it is known,
3998 ** or zero if it is not (or if pWal is NULL).
3999 */
4000 int sqlite3WalFramesize(Wal *pWal){
4001   assert( pWal==0 || pWal->readLock>=0 );
4002   return (pWal ? pWal->szPage : 0);
4003 }
4004 #endif
4005 
4006 /* Return the sqlite3_file object for the WAL file
4007 */
4008 sqlite3_file *sqlite3WalFile(Wal *pWal){
4009   return pWal->pWalFd;
4010 }
4011 
4012 #endif /* #ifndef SQLITE_OMIT_WAL */
4013