1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 471 sqlite3 *db; 472 #endif 473 }; 474 475 /* 476 ** Candidate values for Wal.exclusiveMode. 477 */ 478 #define WAL_NORMAL_MODE 0 479 #define WAL_EXCLUSIVE_MODE 1 480 #define WAL_HEAPMEMORY_MODE 2 481 482 /* 483 ** Possible values for WAL.readOnly 484 */ 485 #define WAL_RDWR 0 /* Normal read/write connection */ 486 #define WAL_RDONLY 1 /* The WAL file is readonly */ 487 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 488 489 /* 490 ** Each page of the wal-index mapping contains a hash-table made up of 491 ** an array of HASHTABLE_NSLOT elements of the following type. 492 */ 493 typedef u16 ht_slot; 494 495 /* 496 ** This structure is used to implement an iterator that loops through 497 ** all frames in the WAL in database page order. Where two or more frames 498 ** correspond to the same database page, the iterator visits only the 499 ** frame most recently written to the WAL (in other words, the frame with 500 ** the largest index). 501 ** 502 ** The internals of this structure are only accessed by: 503 ** 504 ** walIteratorInit() - Create a new iterator, 505 ** walIteratorNext() - Step an iterator, 506 ** walIteratorFree() - Free an iterator. 507 ** 508 ** This functionality is used by the checkpoint code (see walCheckpoint()). 509 */ 510 struct WalIterator { 511 int iPrior; /* Last result returned from the iterator */ 512 int nSegment; /* Number of entries in aSegment[] */ 513 struct WalSegment { 514 int iNext; /* Next slot in aIndex[] not yet returned */ 515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 516 u32 *aPgno; /* Array of page numbers. */ 517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 518 int iZero; /* Frame number associated with aPgno[0] */ 519 } aSegment[1]; /* One for every 32KB page in the wal-index */ 520 }; 521 522 /* 523 ** Define the parameters of the hash tables in the wal-index file. There 524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 525 ** wal-index. 526 ** 527 ** Changing any of these constants will alter the wal-index format and 528 ** create incompatibilities. 529 */ 530 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 531 #define HASHTABLE_HASH_1 383 /* Should be prime */ 532 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 533 534 /* 535 ** The block of page numbers associated with the first hash-table in a 536 ** wal-index is smaller than usual. This is so that there is a complete 537 ** hash-table on each aligned 32KB page of the wal-index. 538 */ 539 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 540 541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 542 #define WALINDEX_PGSZ ( \ 543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 544 ) 545 546 /* 547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 549 ** numbered from zero. 550 ** 551 ** If the wal-index is currently smaller the iPage pages then the size 552 ** of the wal-index might be increased, but only if it is safe to do 553 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 555 ** 556 ** If this call is successful, *ppPage is set to point to the wal-index 557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 558 ** then an SQLite error code is returned and *ppPage is set to 0. 559 */ 560 static SQLITE_NOINLINE int walIndexPageRealloc( 561 Wal *pWal, /* The WAL context */ 562 int iPage, /* The page we seek */ 563 volatile u32 **ppPage /* Write the page pointer here */ 564 ){ 565 int rc = SQLITE_OK; 566 567 /* Enlarge the pWal->apWiData[] array if required */ 568 if( pWal->nWiData<=iPage ){ 569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 570 volatile u32 **apNew; 571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 572 if( !apNew ){ 573 *ppPage = 0; 574 return SQLITE_NOMEM_BKPT; 575 } 576 memset((void*)&apNew[pWal->nWiData], 0, 577 sizeof(u32*)*(iPage+1-pWal->nWiData)); 578 pWal->apWiData = apNew; 579 pWal->nWiData = iPage+1; 580 } 581 582 /* Request a pointer to the required page from the VFS */ 583 assert( pWal->apWiData[iPage]==0 ); 584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 587 }else{ 588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 590 ); 591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 593 if( (rc&0xff)==SQLITE_READONLY ){ 594 pWal->readOnly |= WAL_SHM_RDONLY; 595 if( rc==SQLITE_READONLY ){ 596 rc = SQLITE_OK; 597 } 598 } 599 } 600 601 *ppPage = pWal->apWiData[iPage]; 602 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 603 return rc; 604 } 605 static int walIndexPage( 606 Wal *pWal, /* The WAL context */ 607 int iPage, /* The page we seek */ 608 volatile u32 **ppPage /* Write the page pointer here */ 609 ){ 610 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 611 return walIndexPageRealloc(pWal, iPage, ppPage); 612 } 613 return SQLITE_OK; 614 } 615 616 /* 617 ** Return a pointer to the WalCkptInfo structure in the wal-index. 618 */ 619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 620 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 621 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 622 } 623 624 /* 625 ** Return a pointer to the WalIndexHdr structure in the wal-index. 626 */ 627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 628 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 629 return (volatile WalIndexHdr*)pWal->apWiData[0]; 630 } 631 632 /* 633 ** The argument to this macro must be of type u32. On a little-endian 634 ** architecture, it returns the u32 value that results from interpreting 635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 636 ** returns the value that would be produced by interpreting the 4 bytes 637 ** of the input value as a little-endian integer. 638 */ 639 #define BYTESWAP32(x) ( \ 640 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 641 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 642 ) 643 644 /* 645 ** Generate or extend an 8 byte checksum based on the data in 646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 647 ** initial values of 0 and 0 if aIn==NULL). 648 ** 649 ** The checksum is written back into aOut[] before returning. 650 ** 651 ** nByte must be a positive multiple of 8. 652 */ 653 static void walChecksumBytes( 654 int nativeCksum, /* True for native byte-order, false for non-native */ 655 u8 *a, /* Content to be checksummed */ 656 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 657 const u32 *aIn, /* Initial checksum value input */ 658 u32 *aOut /* OUT: Final checksum value output */ 659 ){ 660 u32 s1, s2; 661 u32 *aData = (u32 *)a; 662 u32 *aEnd = (u32 *)&a[nByte]; 663 664 if( aIn ){ 665 s1 = aIn[0]; 666 s2 = aIn[1]; 667 }else{ 668 s1 = s2 = 0; 669 } 670 671 assert( nByte>=8 ); 672 assert( (nByte&0x00000007)==0 ); 673 assert( nByte<=65536 ); 674 675 if( nativeCksum ){ 676 do { 677 s1 += *aData++ + s2; 678 s2 += *aData++ + s1; 679 }while( aData<aEnd ); 680 }else{ 681 do { 682 s1 += BYTESWAP32(aData[0]) + s2; 683 s2 += BYTESWAP32(aData[1]) + s1; 684 aData += 2; 685 }while( aData<aEnd ); 686 } 687 688 aOut[0] = s1; 689 aOut[1] = s2; 690 } 691 692 /* 693 ** If there is the possibility of concurrent access to the SHM file 694 ** from multiple threads and/or processes, then do a memory barrier. 695 */ 696 static void walShmBarrier(Wal *pWal){ 697 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 698 sqlite3OsShmBarrier(pWal->pDbFd); 699 } 700 } 701 702 /* 703 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 704 ** definition as a hint that the function contains constructs that 705 ** might give false-positive TSAN warnings. 706 ** 707 ** See tag-20200519-1. 708 */ 709 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 710 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 711 #else 712 # define SQLITE_NO_TSAN 713 #endif 714 715 /* 716 ** Write the header information in pWal->hdr into the wal-index. 717 ** 718 ** The checksum on pWal->hdr is updated before it is written. 719 */ 720 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 721 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 722 const int nCksum = offsetof(WalIndexHdr, aCksum); 723 724 assert( pWal->writeLock ); 725 pWal->hdr.isInit = 1; 726 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 727 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 728 /* Possible TSAN false-positive. See tag-20200519-1 */ 729 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 730 walShmBarrier(pWal); 731 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 732 } 733 734 /* 735 ** This function encodes a single frame header and writes it to a buffer 736 ** supplied by the caller. A frame-header is made up of a series of 737 ** 4-byte big-endian integers, as follows: 738 ** 739 ** 0: Page number. 740 ** 4: For commit records, the size of the database image in pages 741 ** after the commit. For all other records, zero. 742 ** 8: Salt-1 (copied from the wal-header) 743 ** 12: Salt-2 (copied from the wal-header) 744 ** 16: Checksum-1. 745 ** 20: Checksum-2. 746 */ 747 static void walEncodeFrame( 748 Wal *pWal, /* The write-ahead log */ 749 u32 iPage, /* Database page number for frame */ 750 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 751 u8 *aData, /* Pointer to page data */ 752 u8 *aFrame /* OUT: Write encoded frame here */ 753 ){ 754 int nativeCksum; /* True for native byte-order checksums */ 755 u32 *aCksum = pWal->hdr.aFrameCksum; 756 assert( WAL_FRAME_HDRSIZE==24 ); 757 sqlite3Put4byte(&aFrame[0], iPage); 758 sqlite3Put4byte(&aFrame[4], nTruncate); 759 if( pWal->iReCksum==0 ){ 760 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 761 762 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 763 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 764 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 765 766 sqlite3Put4byte(&aFrame[16], aCksum[0]); 767 sqlite3Put4byte(&aFrame[20], aCksum[1]); 768 }else{ 769 memset(&aFrame[8], 0, 16); 770 } 771 } 772 773 /* 774 ** Check to see if the frame with header in aFrame[] and content 775 ** in aData[] is valid. If it is a valid frame, fill *piPage and 776 ** *pnTruncate and return true. Return if the frame is not valid. 777 */ 778 static int walDecodeFrame( 779 Wal *pWal, /* The write-ahead log */ 780 u32 *piPage, /* OUT: Database page number for frame */ 781 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 782 u8 *aData, /* Pointer to page data (for checksum) */ 783 u8 *aFrame /* Frame data */ 784 ){ 785 int nativeCksum; /* True for native byte-order checksums */ 786 u32 *aCksum = pWal->hdr.aFrameCksum; 787 u32 pgno; /* Page number of the frame */ 788 assert( WAL_FRAME_HDRSIZE==24 ); 789 790 /* A frame is only valid if the salt values in the frame-header 791 ** match the salt values in the wal-header. 792 */ 793 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 794 return 0; 795 } 796 797 /* A frame is only valid if the page number is creater than zero. 798 */ 799 pgno = sqlite3Get4byte(&aFrame[0]); 800 if( pgno==0 ){ 801 return 0; 802 } 803 804 /* A frame is only valid if a checksum of the WAL header, 805 ** all prior frams, the first 16 bytes of this frame-header, 806 ** and the frame-data matches the checksum in the last 8 807 ** bytes of this frame-header. 808 */ 809 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 810 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 811 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 812 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 813 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 814 ){ 815 /* Checksum failed. */ 816 return 0; 817 } 818 819 /* If we reach this point, the frame is valid. Return the page number 820 ** and the new database size. 821 */ 822 *piPage = pgno; 823 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 824 return 1; 825 } 826 827 828 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 829 /* 830 ** Names of locks. This routine is used to provide debugging output and is not 831 ** a part of an ordinary build. 832 */ 833 static const char *walLockName(int lockIdx){ 834 if( lockIdx==WAL_WRITE_LOCK ){ 835 return "WRITE-LOCK"; 836 }else if( lockIdx==WAL_CKPT_LOCK ){ 837 return "CKPT-LOCK"; 838 }else if( lockIdx==WAL_RECOVER_LOCK ){ 839 return "RECOVER-LOCK"; 840 }else{ 841 static char zName[15]; 842 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 843 lockIdx-WAL_READ_LOCK(0)); 844 return zName; 845 } 846 } 847 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 848 849 850 /* 851 ** Set or release locks on the WAL. Locks are either shared or exclusive. 852 ** A lock cannot be moved directly between shared and exclusive - it must go 853 ** through the unlocked state first. 854 ** 855 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 856 */ 857 static int walLockShared(Wal *pWal, int lockIdx){ 858 int rc; 859 if( pWal->exclusiveMode ) return SQLITE_OK; 860 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 861 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 862 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 863 walLockName(lockIdx), rc ? "failed" : "ok")); 864 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 865 return rc; 866 } 867 static void walUnlockShared(Wal *pWal, int lockIdx){ 868 if( pWal->exclusiveMode ) return; 869 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 870 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 871 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 872 } 873 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 874 int rc; 875 if( pWal->exclusiveMode ) return SQLITE_OK; 876 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 877 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 878 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 879 walLockName(lockIdx), n, rc ? "failed" : "ok")); 880 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 881 return rc; 882 } 883 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 884 if( pWal->exclusiveMode ) return; 885 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 886 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 887 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 888 walLockName(lockIdx), n)); 889 } 890 891 /* 892 ** Compute a hash on a page number. The resulting hash value must land 893 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 894 ** the hash to the next value in the event of a collision. 895 */ 896 static int walHash(u32 iPage){ 897 assert( iPage>0 ); 898 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 899 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 900 } 901 static int walNextHash(int iPriorHash){ 902 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 903 } 904 905 /* 906 ** An instance of the WalHashLoc object is used to describe the location 907 ** of a page hash table in the wal-index. This becomes the return value 908 ** from walHashGet(). 909 */ 910 typedef struct WalHashLoc WalHashLoc; 911 struct WalHashLoc { 912 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 913 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 914 u32 iZero; /* One less than the frame number of first indexed*/ 915 }; 916 917 /* 918 ** Return pointers to the hash table and page number array stored on 919 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 920 ** numbered starting from 0. 921 ** 922 ** Set output variable pLoc->aHash to point to the start of the hash table 923 ** in the wal-index file. Set pLoc->iZero to one less than the frame 924 ** number of the first frame indexed by this hash table. If a 925 ** slot in the hash table is set to N, it refers to frame number 926 ** (pLoc->iZero+N) in the log. 927 ** 928 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 929 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 930 */ 931 static int walHashGet( 932 Wal *pWal, /* WAL handle */ 933 int iHash, /* Find the iHash'th table */ 934 WalHashLoc *pLoc /* OUT: Hash table location */ 935 ){ 936 int rc; /* Return code */ 937 938 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 939 assert( rc==SQLITE_OK || iHash>0 ); 940 941 if( rc==SQLITE_OK ){ 942 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 943 if( iHash==0 ){ 944 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 945 pLoc->iZero = 0; 946 }else{ 947 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 948 } 949 pLoc->aPgno = &pLoc->aPgno[-1]; 950 } 951 return rc; 952 } 953 954 /* 955 ** Return the number of the wal-index page that contains the hash-table 956 ** and page-number array that contain entries corresponding to WAL frame 957 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 958 ** are numbered starting from 0. 959 */ 960 static int walFramePage(u32 iFrame){ 961 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 962 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 963 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 964 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 965 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 966 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 967 ); 968 return iHash; 969 } 970 971 /* 972 ** Return the page number associated with frame iFrame in this WAL. 973 */ 974 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 975 int iHash = walFramePage(iFrame); 976 if( iHash==0 ){ 977 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 978 } 979 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 980 } 981 982 /* 983 ** Remove entries from the hash table that point to WAL slots greater 984 ** than pWal->hdr.mxFrame. 985 ** 986 ** This function is called whenever pWal->hdr.mxFrame is decreased due 987 ** to a rollback or savepoint. 988 ** 989 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 990 ** updated. Any later hash tables will be automatically cleared when 991 ** pWal->hdr.mxFrame advances to the point where those hash tables are 992 ** actually needed. 993 */ 994 static void walCleanupHash(Wal *pWal){ 995 WalHashLoc sLoc; /* Hash table location */ 996 int iLimit = 0; /* Zero values greater than this */ 997 int nByte; /* Number of bytes to zero in aPgno[] */ 998 int i; /* Used to iterate through aHash[] */ 999 int rc; /* Return code form walHashGet() */ 1000 1001 assert( pWal->writeLock ); 1002 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1003 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1004 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1005 1006 if( pWal->hdr.mxFrame==0 ) return; 1007 1008 /* Obtain pointers to the hash-table and page-number array containing 1009 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1010 ** that the page said hash-table and array reside on is already mapped.(1) 1011 */ 1012 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1013 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1014 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1015 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1016 1017 /* Zero all hash-table entries that correspond to frame numbers greater 1018 ** than pWal->hdr.mxFrame. 1019 */ 1020 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1021 assert( iLimit>0 ); 1022 for(i=0; i<HASHTABLE_NSLOT; i++){ 1023 if( sLoc.aHash[i]>iLimit ){ 1024 sLoc.aHash[i] = 0; 1025 } 1026 } 1027 1028 /* Zero the entries in the aPgno array that correspond to frames with 1029 ** frame numbers greater than pWal->hdr.mxFrame. 1030 */ 1031 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1032 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1033 1034 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1035 /* Verify that the every entry in the mapping region is still reachable 1036 ** via the hash table even after the cleanup. 1037 */ 1038 if( iLimit ){ 1039 int j; /* Loop counter */ 1040 int iKey; /* Hash key */ 1041 for(j=1; j<=iLimit; j++){ 1042 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1043 if( sLoc.aHash[iKey]==j ) break; 1044 } 1045 assert( sLoc.aHash[iKey]==j ); 1046 } 1047 } 1048 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1049 } 1050 1051 1052 /* 1053 ** Set an entry in the wal-index that will map database page number 1054 ** pPage into WAL frame iFrame. 1055 */ 1056 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1057 int rc; /* Return code */ 1058 WalHashLoc sLoc; /* Wal-index hash table location */ 1059 1060 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1061 1062 /* Assuming the wal-index file was successfully mapped, populate the 1063 ** page number array and hash table entry. 1064 */ 1065 if( ALWAYS(rc==SQLITE_OK) ){ 1066 int iKey; /* Hash table key */ 1067 int idx; /* Value to write to hash-table slot */ 1068 int nCollide; /* Number of hash collisions */ 1069 1070 idx = iFrame - sLoc.iZero; 1071 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1072 1073 /* If this is the first entry to be added to this hash-table, zero the 1074 ** entire hash table and aPgno[] array before proceeding. 1075 */ 1076 if( idx==1 ){ 1077 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1078 - (u8 *)&sLoc.aPgno[1]); 1079 memset((void*)&sLoc.aPgno[1], 0, nByte); 1080 } 1081 1082 /* If the entry in aPgno[] is already set, then the previous writer 1083 ** must have exited unexpectedly in the middle of a transaction (after 1084 ** writing one or more dirty pages to the WAL to free up memory). 1085 ** Remove the remnants of that writers uncommitted transaction from 1086 ** the hash-table before writing any new entries. 1087 */ 1088 if( sLoc.aPgno[idx] ){ 1089 walCleanupHash(pWal); 1090 assert( !sLoc.aPgno[idx] ); 1091 } 1092 1093 /* Write the aPgno[] array entry and the hash-table slot. */ 1094 nCollide = idx; 1095 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1096 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1097 } 1098 sLoc.aPgno[idx] = iPage; 1099 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1100 1101 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1102 /* Verify that the number of entries in the hash table exactly equals 1103 ** the number of entries in the mapping region. 1104 */ 1105 { 1106 int i; /* Loop counter */ 1107 int nEntry = 0; /* Number of entries in the hash table */ 1108 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1109 assert( nEntry==idx ); 1110 } 1111 1112 /* Verify that the every entry in the mapping region is reachable 1113 ** via the hash table. This turns out to be a really, really expensive 1114 ** thing to check, so only do this occasionally - not on every 1115 ** iteration. 1116 */ 1117 if( (idx&0x3ff)==0 ){ 1118 int i; /* Loop counter */ 1119 for(i=1; i<=idx; i++){ 1120 for(iKey=walHash(sLoc.aPgno[i]); 1121 sLoc.aHash[iKey]; 1122 iKey=walNextHash(iKey)){ 1123 if( sLoc.aHash[iKey]==i ) break; 1124 } 1125 assert( sLoc.aHash[iKey]==i ); 1126 } 1127 } 1128 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1129 } 1130 1131 1132 return rc; 1133 } 1134 1135 1136 /* 1137 ** Recover the wal-index by reading the write-ahead log file. 1138 ** 1139 ** This routine first tries to establish an exclusive lock on the 1140 ** wal-index to prevent other threads/processes from doing anything 1141 ** with the WAL or wal-index while recovery is running. The 1142 ** WAL_RECOVER_LOCK is also held so that other threads will know 1143 ** that this thread is running recovery. If unable to establish 1144 ** the necessary locks, this routine returns SQLITE_BUSY. 1145 */ 1146 static int walIndexRecover(Wal *pWal){ 1147 int rc; /* Return Code */ 1148 i64 nSize; /* Size of log file */ 1149 u32 aFrameCksum[2] = {0, 0}; 1150 int iLock; /* Lock offset to lock for checkpoint */ 1151 1152 /* Obtain an exclusive lock on all byte in the locking range not already 1153 ** locked by the caller. The caller is guaranteed to have locked the 1154 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1155 ** If successful, the same bytes that are locked here are unlocked before 1156 ** this function returns. 1157 */ 1158 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1159 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1160 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1161 assert( pWal->writeLock ); 1162 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1163 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1164 if( rc ){ 1165 return rc; 1166 } 1167 1168 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1169 1170 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1171 1172 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1173 if( rc!=SQLITE_OK ){ 1174 goto recovery_error; 1175 } 1176 1177 if( nSize>WAL_HDRSIZE ){ 1178 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1179 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1180 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1181 int szFrame; /* Number of bytes in buffer aFrame[] */ 1182 u8 *aData; /* Pointer to data part of aFrame buffer */ 1183 int szPage; /* Page size according to the log */ 1184 u32 magic; /* Magic value read from WAL header */ 1185 u32 version; /* Magic value read from WAL header */ 1186 int isValid; /* True if this frame is valid */ 1187 int iPg; /* Current 32KB wal-index page */ 1188 int iLastFrame; /* Last frame in wal, based on nSize alone */ 1189 1190 /* Read in the WAL header. */ 1191 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1192 if( rc!=SQLITE_OK ){ 1193 goto recovery_error; 1194 } 1195 1196 /* If the database page size is not a power of two, or is greater than 1197 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1198 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1199 ** WAL file. 1200 */ 1201 magic = sqlite3Get4byte(&aBuf[0]); 1202 szPage = sqlite3Get4byte(&aBuf[8]); 1203 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1204 || szPage&(szPage-1) 1205 || szPage>SQLITE_MAX_PAGE_SIZE 1206 || szPage<512 1207 ){ 1208 goto finished; 1209 } 1210 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1211 pWal->szPage = szPage; 1212 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1213 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1214 1215 /* Verify that the WAL header checksum is correct */ 1216 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1217 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1218 ); 1219 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1220 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1221 ){ 1222 goto finished; 1223 } 1224 1225 /* Verify that the version number on the WAL format is one that 1226 ** are able to understand */ 1227 version = sqlite3Get4byte(&aBuf[4]); 1228 if( version!=WAL_MAX_VERSION ){ 1229 rc = SQLITE_CANTOPEN_BKPT; 1230 goto finished; 1231 } 1232 1233 /* Malloc a buffer to read frames into. */ 1234 szFrame = szPage + WAL_FRAME_HDRSIZE; 1235 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1236 if( !aFrame ){ 1237 rc = SQLITE_NOMEM_BKPT; 1238 goto recovery_error; 1239 } 1240 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1241 aPrivate = (u32*)&aData[szPage]; 1242 1243 /* Read all frames from the log file. */ 1244 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1245 for(iPg=0; iPg<=walFramePage(iLastFrame); iPg++){ 1246 u32 *aShare; 1247 int iFrame; /* Index of last frame read */ 1248 int iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1249 int iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1250 int nHdr, nHdr32; 1251 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1252 if( rc ) break; 1253 pWal->apWiData[iPg] = aPrivate; 1254 1255 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1256 i64 iOffset = walFrameOffset(iFrame, szPage); 1257 u32 pgno; /* Database page number for frame */ 1258 u32 nTruncate; /* dbsize field from frame header */ 1259 1260 /* Read and decode the next log frame. */ 1261 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1262 if( rc!=SQLITE_OK ) break; 1263 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1264 if( !isValid ) break; 1265 rc = walIndexAppend(pWal, iFrame, pgno); 1266 if( NEVER(rc!=SQLITE_OK) ) break; 1267 1268 /* If nTruncate is non-zero, this is a commit record. */ 1269 if( nTruncate ){ 1270 pWal->hdr.mxFrame = iFrame; 1271 pWal->hdr.nPage = nTruncate; 1272 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1273 testcase( szPage<=32768 ); 1274 testcase( szPage>=65536 ); 1275 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1276 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1277 } 1278 } 1279 pWal->apWiData[iPg] = aShare; 1280 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1281 nHdr32 = nHdr / sizeof(u32); 1282 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1283 if( iFrame<=iLast ) break; 1284 } 1285 1286 sqlite3_free(aFrame); 1287 } 1288 1289 finished: 1290 if( rc==SQLITE_OK ){ 1291 volatile WalCkptInfo *pInfo; 1292 int i; 1293 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1294 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1295 walIndexWriteHdr(pWal); 1296 1297 /* Reset the checkpoint-header. This is safe because this thread is 1298 ** currently holding locks that exclude all other writers and 1299 ** checkpointers. Then set the values of read-mark slots 1 through N. 1300 */ 1301 pInfo = walCkptInfo(pWal); 1302 pInfo->nBackfill = 0; 1303 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1304 pInfo->aReadMark[0] = 0; 1305 for(i=1; i<WAL_NREADER; i++){ 1306 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1307 if( rc==SQLITE_OK ){ 1308 if( i==1 && pWal->hdr.mxFrame ){ 1309 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1310 }else{ 1311 pInfo->aReadMark[i] = READMARK_NOT_USED; 1312 } 1313 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1314 }else if( rc!=SQLITE_BUSY ){ 1315 goto recovery_error; 1316 } 1317 } 1318 1319 /* If more than one frame was recovered from the log file, report an 1320 ** event via sqlite3_log(). This is to help with identifying performance 1321 ** problems caused by applications routinely shutting down without 1322 ** checkpointing the log file. 1323 */ 1324 if( pWal->hdr.nPage ){ 1325 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1326 "recovered %d frames from WAL file %s", 1327 pWal->hdr.mxFrame, pWal->zWalName 1328 ); 1329 } 1330 } 1331 1332 recovery_error: 1333 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1334 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1335 return rc; 1336 } 1337 1338 /* 1339 ** Close an open wal-index. 1340 */ 1341 static void walIndexClose(Wal *pWal, int isDelete){ 1342 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1343 int i; 1344 for(i=0; i<pWal->nWiData; i++){ 1345 sqlite3_free((void *)pWal->apWiData[i]); 1346 pWal->apWiData[i] = 0; 1347 } 1348 } 1349 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1350 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1351 } 1352 } 1353 1354 /* 1355 ** Open a connection to the WAL file zWalName. The database file must 1356 ** already be opened on connection pDbFd. The buffer that zWalName points 1357 ** to must remain valid for the lifetime of the returned Wal* handle. 1358 ** 1359 ** A SHARED lock should be held on the database file when this function 1360 ** is called. The purpose of this SHARED lock is to prevent any other 1361 ** client from unlinking the WAL or wal-index file. If another process 1362 ** were to do this just after this client opened one of these files, the 1363 ** system would be badly broken. 1364 ** 1365 ** If the log file is successfully opened, SQLITE_OK is returned and 1366 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1367 ** an SQLite error code is returned and *ppWal is left unmodified. 1368 */ 1369 int sqlite3WalOpen( 1370 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1371 sqlite3_file *pDbFd, /* The open database file */ 1372 const char *zWalName, /* Name of the WAL file */ 1373 int bNoShm, /* True to run in heap-memory mode */ 1374 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1375 Wal **ppWal /* OUT: Allocated Wal handle */ 1376 ){ 1377 int rc; /* Return Code */ 1378 Wal *pRet; /* Object to allocate and return */ 1379 int flags; /* Flags passed to OsOpen() */ 1380 1381 assert( zWalName && zWalName[0] ); 1382 assert( pDbFd ); 1383 1384 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1385 ** this source file. Verify that the #defines of the locking byte offsets 1386 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1387 ** For that matter, if the lock offset ever changes from its initial design 1388 ** value of 120, we need to know that so there is an assert() to check it. 1389 */ 1390 assert( 120==WALINDEX_LOCK_OFFSET ); 1391 assert( 136==WALINDEX_HDR_SIZE ); 1392 #ifdef WIN_SHM_BASE 1393 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1394 #endif 1395 #ifdef UNIX_SHM_BASE 1396 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1397 #endif 1398 1399 1400 /* Allocate an instance of struct Wal to return. */ 1401 *ppWal = 0; 1402 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1403 if( !pRet ){ 1404 return SQLITE_NOMEM_BKPT; 1405 } 1406 1407 pRet->pVfs = pVfs; 1408 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1409 pRet->pDbFd = pDbFd; 1410 pRet->readLock = -1; 1411 pRet->mxWalSize = mxWalSize; 1412 pRet->zWalName = zWalName; 1413 pRet->syncHeader = 1; 1414 pRet->padToSectorBoundary = 1; 1415 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1416 1417 /* Open file handle on the write-ahead log file. */ 1418 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1419 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1420 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1421 pRet->readOnly = WAL_RDONLY; 1422 } 1423 1424 if( rc!=SQLITE_OK ){ 1425 walIndexClose(pRet, 0); 1426 sqlite3OsClose(pRet->pWalFd); 1427 sqlite3_free(pRet); 1428 }else{ 1429 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1430 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1431 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1432 pRet->padToSectorBoundary = 0; 1433 } 1434 *ppWal = pRet; 1435 WALTRACE(("WAL%d: opened\n", pRet)); 1436 } 1437 return rc; 1438 } 1439 1440 /* 1441 ** Change the size to which the WAL file is trucated on each reset. 1442 */ 1443 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1444 if( pWal ) pWal->mxWalSize = iLimit; 1445 } 1446 1447 /* 1448 ** Find the smallest page number out of all pages held in the WAL that 1449 ** has not been returned by any prior invocation of this method on the 1450 ** same WalIterator object. Write into *piFrame the frame index where 1451 ** that page was last written into the WAL. Write into *piPage the page 1452 ** number. 1453 ** 1454 ** Return 0 on success. If there are no pages in the WAL with a page 1455 ** number larger than *piPage, then return 1. 1456 */ 1457 static int walIteratorNext( 1458 WalIterator *p, /* Iterator */ 1459 u32 *piPage, /* OUT: The page number of the next page */ 1460 u32 *piFrame /* OUT: Wal frame index of next page */ 1461 ){ 1462 u32 iMin; /* Result pgno must be greater than iMin */ 1463 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1464 int i; /* For looping through segments */ 1465 1466 iMin = p->iPrior; 1467 assert( iMin<0xffffffff ); 1468 for(i=p->nSegment-1; i>=0; i--){ 1469 struct WalSegment *pSegment = &p->aSegment[i]; 1470 while( pSegment->iNext<pSegment->nEntry ){ 1471 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1472 if( iPg>iMin ){ 1473 if( iPg<iRet ){ 1474 iRet = iPg; 1475 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1476 } 1477 break; 1478 } 1479 pSegment->iNext++; 1480 } 1481 } 1482 1483 *piPage = p->iPrior = iRet; 1484 return (iRet==0xFFFFFFFF); 1485 } 1486 1487 /* 1488 ** This function merges two sorted lists into a single sorted list. 1489 ** 1490 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1491 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1492 ** is guaranteed for all J<K: 1493 ** 1494 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1495 ** aContent[aRight[J]] < aContent[aRight[K]] 1496 ** 1497 ** This routine overwrites aRight[] with a new (probably longer) sequence 1498 ** of indices such that the aRight[] contains every index that appears in 1499 ** either aLeft[] or the old aRight[] and such that the second condition 1500 ** above is still met. 1501 ** 1502 ** The aContent[aLeft[X]] values will be unique for all X. And the 1503 ** aContent[aRight[X]] values will be unique too. But there might be 1504 ** one or more combinations of X and Y such that 1505 ** 1506 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1507 ** 1508 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1509 */ 1510 static void walMerge( 1511 const u32 *aContent, /* Pages in wal - keys for the sort */ 1512 ht_slot *aLeft, /* IN: Left hand input list */ 1513 int nLeft, /* IN: Elements in array *paLeft */ 1514 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1515 int *pnRight, /* IN/OUT: Elements in *paRight */ 1516 ht_slot *aTmp /* Temporary buffer */ 1517 ){ 1518 int iLeft = 0; /* Current index in aLeft */ 1519 int iRight = 0; /* Current index in aRight */ 1520 int iOut = 0; /* Current index in output buffer */ 1521 int nRight = *pnRight; 1522 ht_slot *aRight = *paRight; 1523 1524 assert( nLeft>0 && nRight>0 ); 1525 while( iRight<nRight || iLeft<nLeft ){ 1526 ht_slot logpage; 1527 Pgno dbpage; 1528 1529 if( (iLeft<nLeft) 1530 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1531 ){ 1532 logpage = aLeft[iLeft++]; 1533 }else{ 1534 logpage = aRight[iRight++]; 1535 } 1536 dbpage = aContent[logpage]; 1537 1538 aTmp[iOut++] = logpage; 1539 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1540 1541 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1542 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1543 } 1544 1545 *paRight = aLeft; 1546 *pnRight = iOut; 1547 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1548 } 1549 1550 /* 1551 ** Sort the elements in list aList using aContent[] as the sort key. 1552 ** Remove elements with duplicate keys, preferring to keep the 1553 ** larger aList[] values. 1554 ** 1555 ** The aList[] entries are indices into aContent[]. The values in 1556 ** aList[] are to be sorted so that for all J<K: 1557 ** 1558 ** aContent[aList[J]] < aContent[aList[K]] 1559 ** 1560 ** For any X and Y such that 1561 ** 1562 ** aContent[aList[X]] == aContent[aList[Y]] 1563 ** 1564 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1565 ** the smaller. 1566 */ 1567 static void walMergesort( 1568 const u32 *aContent, /* Pages in wal */ 1569 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1570 ht_slot *aList, /* IN/OUT: List to sort */ 1571 int *pnList /* IN/OUT: Number of elements in aList[] */ 1572 ){ 1573 struct Sublist { 1574 int nList; /* Number of elements in aList */ 1575 ht_slot *aList; /* Pointer to sub-list content */ 1576 }; 1577 1578 const int nList = *pnList; /* Size of input list */ 1579 int nMerge = 0; /* Number of elements in list aMerge */ 1580 ht_slot *aMerge = 0; /* List to be merged */ 1581 int iList; /* Index into input list */ 1582 u32 iSub = 0; /* Index into aSub array */ 1583 struct Sublist aSub[13]; /* Array of sub-lists */ 1584 1585 memset(aSub, 0, sizeof(aSub)); 1586 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1587 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1588 1589 for(iList=0; iList<nList; iList++){ 1590 nMerge = 1; 1591 aMerge = &aList[iList]; 1592 for(iSub=0; iList & (1<<iSub); iSub++){ 1593 struct Sublist *p; 1594 assert( iSub<ArraySize(aSub) ); 1595 p = &aSub[iSub]; 1596 assert( p->aList && p->nList<=(1<<iSub) ); 1597 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1598 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1599 } 1600 aSub[iSub].aList = aMerge; 1601 aSub[iSub].nList = nMerge; 1602 } 1603 1604 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1605 if( nList & (1<<iSub) ){ 1606 struct Sublist *p; 1607 assert( iSub<ArraySize(aSub) ); 1608 p = &aSub[iSub]; 1609 assert( p->nList<=(1<<iSub) ); 1610 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1611 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1612 } 1613 } 1614 assert( aMerge==aList ); 1615 *pnList = nMerge; 1616 1617 #ifdef SQLITE_DEBUG 1618 { 1619 int i; 1620 for(i=1; i<*pnList; i++){ 1621 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1622 } 1623 } 1624 #endif 1625 } 1626 1627 /* 1628 ** Free an iterator allocated by walIteratorInit(). 1629 */ 1630 static void walIteratorFree(WalIterator *p){ 1631 sqlite3_free(p); 1632 } 1633 1634 /* 1635 ** Construct a WalInterator object that can be used to loop over all 1636 ** pages in the WAL following frame nBackfill in ascending order. Frames 1637 ** nBackfill or earlier may be included - excluding them is an optimization 1638 ** only. The caller must hold the checkpoint lock. 1639 ** 1640 ** On success, make *pp point to the newly allocated WalInterator object 1641 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1642 ** returns an error, the value of *pp is undefined. 1643 ** 1644 ** The calling routine should invoke walIteratorFree() to destroy the 1645 ** WalIterator object when it has finished with it. 1646 */ 1647 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1648 WalIterator *p; /* Return value */ 1649 int nSegment; /* Number of segments to merge */ 1650 u32 iLast; /* Last frame in log */ 1651 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1652 int i; /* Iterator variable */ 1653 ht_slot *aTmp; /* Temp space used by merge-sort */ 1654 int rc = SQLITE_OK; /* Return Code */ 1655 1656 /* This routine only runs while holding the checkpoint lock. And 1657 ** it only runs if there is actually content in the log (mxFrame>0). 1658 */ 1659 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1660 iLast = pWal->hdr.mxFrame; 1661 1662 /* Allocate space for the WalIterator object. */ 1663 nSegment = walFramePage(iLast) + 1; 1664 nByte = sizeof(WalIterator) 1665 + (nSegment-1)*sizeof(struct WalSegment) 1666 + iLast*sizeof(ht_slot); 1667 p = (WalIterator *)sqlite3_malloc64(nByte); 1668 if( !p ){ 1669 return SQLITE_NOMEM_BKPT; 1670 } 1671 memset(p, 0, nByte); 1672 p->nSegment = nSegment; 1673 1674 /* Allocate temporary space used by the merge-sort routine. This block 1675 ** of memory will be freed before this function returns. 1676 */ 1677 aTmp = (ht_slot *)sqlite3_malloc64( 1678 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1679 ); 1680 if( !aTmp ){ 1681 rc = SQLITE_NOMEM_BKPT; 1682 } 1683 1684 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1685 WalHashLoc sLoc; 1686 1687 rc = walHashGet(pWal, i, &sLoc); 1688 if( rc==SQLITE_OK ){ 1689 int j; /* Counter variable */ 1690 int nEntry; /* Number of entries in this segment */ 1691 ht_slot *aIndex; /* Sorted index for this segment */ 1692 1693 sLoc.aPgno++; 1694 if( (i+1)==nSegment ){ 1695 nEntry = (int)(iLast - sLoc.iZero); 1696 }else{ 1697 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1698 } 1699 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1700 sLoc.iZero++; 1701 1702 for(j=0; j<nEntry; j++){ 1703 aIndex[j] = (ht_slot)j; 1704 } 1705 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1706 p->aSegment[i].iZero = sLoc.iZero; 1707 p->aSegment[i].nEntry = nEntry; 1708 p->aSegment[i].aIndex = aIndex; 1709 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1710 } 1711 } 1712 sqlite3_free(aTmp); 1713 1714 if( rc!=SQLITE_OK ){ 1715 walIteratorFree(p); 1716 p = 0; 1717 } 1718 *pp = p; 1719 return rc; 1720 } 1721 1722 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1723 /* 1724 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1725 ** they are supported by the VFS, and (b) the database handle is configured 1726 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1727 ** or 0 otherwise. 1728 */ 1729 static int walEnableBlocking(Wal *pWal){ 1730 int res = 0; 1731 if( pWal->db ){ 1732 int tmout = pWal->db->busyTimeout; 1733 if( tmout ){ 1734 int rc; 1735 rc = sqlite3OsFileControl( 1736 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1737 ); 1738 res = (rc==SQLITE_OK); 1739 } 1740 } 1741 return res; 1742 } 1743 1744 /* 1745 ** Disable blocking locks. 1746 */ 1747 static void walDisableBlocking(Wal *pWal){ 1748 int tmout = 0; 1749 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1750 } 1751 1752 /* 1753 ** If parameter bLock is true, attempt to enable blocking locks, take 1754 ** the WRITER lock, and then disable blocking locks. If blocking locks 1755 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1756 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1757 ** an error if blocking locks can not be enabled. 1758 ** 1759 ** If the bLock parameter is false and the WRITER lock is held, release it. 1760 */ 1761 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1762 int rc = SQLITE_OK; 1763 assert( pWal->readLock<0 || bLock==0 ); 1764 if( bLock ){ 1765 assert( pWal->db ); 1766 if( walEnableBlocking(pWal) ){ 1767 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1768 if( rc==SQLITE_OK ){ 1769 pWal->writeLock = 1; 1770 } 1771 walDisableBlocking(pWal); 1772 } 1773 }else if( pWal->writeLock ){ 1774 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1775 pWal->writeLock = 0; 1776 } 1777 return rc; 1778 } 1779 1780 /* 1781 ** Set the database handle used to determine if blocking locks are required. 1782 */ 1783 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1784 pWal->db = db; 1785 } 1786 1787 /* 1788 ** Take an exclusive WRITE lock. Blocking if so configured. 1789 */ 1790 static int walLockWriter(Wal *pWal){ 1791 int rc; 1792 walEnableBlocking(pWal); 1793 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1794 walDisableBlocking(pWal); 1795 return rc; 1796 } 1797 #else 1798 # define walEnableBlocking(x) 0 1799 # define walDisableBlocking(x) 1800 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1801 # define sqlite3WalDb(pWal, db) 1802 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1803 1804 1805 /* 1806 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1807 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1808 ** busy-handler function. Invoke it and retry the lock until either the 1809 ** lock is successfully obtained or the busy-handler returns 0. 1810 */ 1811 static int walBusyLock( 1812 Wal *pWal, /* WAL connection */ 1813 int (*xBusy)(void*), /* Function to call when busy */ 1814 void *pBusyArg, /* Context argument for xBusyHandler */ 1815 int lockIdx, /* Offset of first byte to lock */ 1816 int n /* Number of bytes to lock */ 1817 ){ 1818 int rc; 1819 do { 1820 rc = walLockExclusive(pWal, lockIdx, n); 1821 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1822 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1823 if( rc==SQLITE_BUSY_TIMEOUT ){ 1824 walDisableBlocking(pWal); 1825 rc = SQLITE_BUSY; 1826 } 1827 #endif 1828 return rc; 1829 } 1830 1831 /* 1832 ** The cache of the wal-index header must be valid to call this function. 1833 ** Return the page-size in bytes used by the database. 1834 */ 1835 static int walPagesize(Wal *pWal){ 1836 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1837 } 1838 1839 /* 1840 ** The following is guaranteed when this function is called: 1841 ** 1842 ** a) the WRITER lock is held, 1843 ** b) the entire log file has been checkpointed, and 1844 ** c) any existing readers are reading exclusively from the database 1845 ** file - there are no readers that may attempt to read a frame from 1846 ** the log file. 1847 ** 1848 ** This function updates the shared-memory structures so that the next 1849 ** client to write to the database (which may be this one) does so by 1850 ** writing frames into the start of the log file. 1851 ** 1852 ** The value of parameter salt1 is used as the aSalt[1] value in the 1853 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1854 ** one obtained from sqlite3_randomness()). 1855 */ 1856 static void walRestartHdr(Wal *pWal, u32 salt1){ 1857 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1858 int i; /* Loop counter */ 1859 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1860 pWal->nCkpt++; 1861 pWal->hdr.mxFrame = 0; 1862 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1863 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1864 walIndexWriteHdr(pWal); 1865 AtomicStore(&pInfo->nBackfill, 0); 1866 pInfo->nBackfillAttempted = 0; 1867 pInfo->aReadMark[1] = 0; 1868 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1869 assert( pInfo->aReadMark[0]==0 ); 1870 } 1871 1872 /* 1873 ** Copy as much content as we can from the WAL back into the database file 1874 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1875 ** 1876 ** The amount of information copies from WAL to database might be limited 1877 ** by active readers. This routine will never overwrite a database page 1878 ** that a concurrent reader might be using. 1879 ** 1880 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1881 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1882 ** checkpoints are always run by a background thread or background 1883 ** process, foreground threads will never block on a lengthy fsync call. 1884 ** 1885 ** Fsync is called on the WAL before writing content out of the WAL and 1886 ** into the database. This ensures that if the new content is persistent 1887 ** in the WAL and can be recovered following a power-loss or hard reset. 1888 ** 1889 ** Fsync is also called on the database file if (and only if) the entire 1890 ** WAL content is copied into the database file. This second fsync makes 1891 ** it safe to delete the WAL since the new content will persist in the 1892 ** database file. 1893 ** 1894 ** This routine uses and updates the nBackfill field of the wal-index header. 1895 ** This is the only routine that will increase the value of nBackfill. 1896 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1897 ** its value.) 1898 ** 1899 ** The caller must be holding sufficient locks to ensure that no other 1900 ** checkpoint is running (in any other thread or process) at the same 1901 ** time. 1902 */ 1903 static int walCheckpoint( 1904 Wal *pWal, /* Wal connection */ 1905 sqlite3 *db, /* Check for interrupts on this handle */ 1906 int eMode, /* One of PASSIVE, FULL or RESTART */ 1907 int (*xBusy)(void*), /* Function to call when busy */ 1908 void *pBusyArg, /* Context argument for xBusyHandler */ 1909 int sync_flags, /* Flags for OsSync() (or 0) */ 1910 u8 *zBuf /* Temporary buffer to use */ 1911 ){ 1912 int rc = SQLITE_OK; /* Return code */ 1913 int szPage; /* Database page-size */ 1914 WalIterator *pIter = 0; /* Wal iterator context */ 1915 u32 iDbpage = 0; /* Next database page to write */ 1916 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1917 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1918 u32 mxPage; /* Max database page to write */ 1919 int i; /* Loop counter */ 1920 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1921 1922 szPage = walPagesize(pWal); 1923 testcase( szPage<=32768 ); 1924 testcase( szPage>=65536 ); 1925 pInfo = walCkptInfo(pWal); 1926 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1927 1928 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1929 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1930 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1931 1932 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1933 ** safe to write into the database. Frames beyond mxSafeFrame might 1934 ** overwrite database pages that are in use by active readers and thus 1935 ** cannot be backfilled from the WAL. 1936 */ 1937 mxSafeFrame = pWal->hdr.mxFrame; 1938 mxPage = pWal->hdr.nPage; 1939 for(i=1; i<WAL_NREADER; i++){ 1940 u32 y = AtomicLoad(pInfo->aReadMark+i); 1941 if( mxSafeFrame>y ){ 1942 assert( y<=pWal->hdr.mxFrame ); 1943 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1944 if( rc==SQLITE_OK ){ 1945 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1946 AtomicStore(pInfo->aReadMark+i, iMark); 1947 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1948 }else if( rc==SQLITE_BUSY ){ 1949 mxSafeFrame = y; 1950 xBusy = 0; 1951 }else{ 1952 goto walcheckpoint_out; 1953 } 1954 } 1955 } 1956 1957 /* Allocate the iterator */ 1958 if( pInfo->nBackfill<mxSafeFrame ){ 1959 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1960 assert( rc==SQLITE_OK || pIter==0 ); 1961 } 1962 1963 if( pIter 1964 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 1965 ){ 1966 u32 nBackfill = pInfo->nBackfill; 1967 1968 pInfo->nBackfillAttempted = mxSafeFrame; 1969 1970 /* Sync the WAL to disk */ 1971 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1972 1973 /* If the database may grow as a result of this checkpoint, hint 1974 ** about the eventual size of the db file to the VFS layer. 1975 */ 1976 if( rc==SQLITE_OK ){ 1977 i64 nReq = ((i64)mxPage * szPage); 1978 i64 nSize; /* Current size of database file */ 1979 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 1980 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1981 if( rc==SQLITE_OK && nSize<nReq ){ 1982 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1983 } 1984 } 1985 1986 1987 /* Iterate through the contents of the WAL, copying data to the db file */ 1988 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1989 i64 iOffset; 1990 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1991 if( AtomicLoad(&db->u1.isInterrupted) ){ 1992 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1993 break; 1994 } 1995 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1996 continue; 1997 } 1998 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1999 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2000 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2001 if( rc!=SQLITE_OK ) break; 2002 iOffset = (iDbpage-1)*(i64)szPage; 2003 testcase( IS_BIG_INT(iOffset) ); 2004 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2005 if( rc!=SQLITE_OK ) break; 2006 } 2007 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2008 2009 /* If work was actually accomplished... */ 2010 if( rc==SQLITE_OK ){ 2011 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2012 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2013 testcase( IS_BIG_INT(szDb) ); 2014 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2015 if( rc==SQLITE_OK ){ 2016 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2017 } 2018 } 2019 if( rc==SQLITE_OK ){ 2020 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2021 } 2022 } 2023 2024 /* Release the reader lock held while backfilling */ 2025 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2026 } 2027 2028 if( rc==SQLITE_BUSY ){ 2029 /* Reset the return code so as not to report a checkpoint failure 2030 ** just because there are active readers. */ 2031 rc = SQLITE_OK; 2032 } 2033 } 2034 2035 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2036 ** entire wal file has been copied into the database file, then block 2037 ** until all readers have finished using the wal file. This ensures that 2038 ** the next process to write to the database restarts the wal file. 2039 */ 2040 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2041 assert( pWal->writeLock ); 2042 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2043 rc = SQLITE_BUSY; 2044 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2045 u32 salt1; 2046 sqlite3_randomness(4, &salt1); 2047 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2048 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2049 if( rc==SQLITE_OK ){ 2050 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2051 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2052 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2053 ** truncates the log file to zero bytes just prior to a 2054 ** successful return. 2055 ** 2056 ** In theory, it might be safe to do this without updating the 2057 ** wal-index header in shared memory, as all subsequent reader or 2058 ** writer clients should see that the entire log file has been 2059 ** checkpointed and behave accordingly. This seems unsafe though, 2060 ** as it would leave the system in a state where the contents of 2061 ** the wal-index header do not match the contents of the 2062 ** file-system. To avoid this, update the wal-index header to 2063 ** indicate that the log file contains zero valid frames. */ 2064 walRestartHdr(pWal, salt1); 2065 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2066 } 2067 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2068 } 2069 } 2070 } 2071 2072 walcheckpoint_out: 2073 walIteratorFree(pIter); 2074 return rc; 2075 } 2076 2077 /* 2078 ** If the WAL file is currently larger than nMax bytes in size, truncate 2079 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2080 */ 2081 static void walLimitSize(Wal *pWal, i64 nMax){ 2082 i64 sz; 2083 int rx; 2084 sqlite3BeginBenignMalloc(); 2085 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2086 if( rx==SQLITE_OK && (sz > nMax ) ){ 2087 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2088 } 2089 sqlite3EndBenignMalloc(); 2090 if( rx ){ 2091 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2092 } 2093 } 2094 2095 /* 2096 ** Close a connection to a log file. 2097 */ 2098 int sqlite3WalClose( 2099 Wal *pWal, /* Wal to close */ 2100 sqlite3 *db, /* For interrupt flag */ 2101 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2102 int nBuf, 2103 u8 *zBuf /* Buffer of at least nBuf bytes */ 2104 ){ 2105 int rc = SQLITE_OK; 2106 if( pWal ){ 2107 int isDelete = 0; /* True to unlink wal and wal-index files */ 2108 2109 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2110 ** ordinary, rollback-mode locking methods, this guarantees that the 2111 ** connection associated with this log file is the only connection to 2112 ** the database. In this case checkpoint the database and unlink both 2113 ** the wal and wal-index files. 2114 ** 2115 ** The EXCLUSIVE lock is not released before returning. 2116 */ 2117 if( zBuf!=0 2118 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2119 ){ 2120 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2121 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2122 } 2123 rc = sqlite3WalCheckpoint(pWal, db, 2124 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2125 ); 2126 if( rc==SQLITE_OK ){ 2127 int bPersist = -1; 2128 sqlite3OsFileControlHint( 2129 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2130 ); 2131 if( bPersist!=1 ){ 2132 /* Try to delete the WAL file if the checkpoint completed and 2133 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2134 ** mode (!bPersist) */ 2135 isDelete = 1; 2136 }else if( pWal->mxWalSize>=0 ){ 2137 /* Try to truncate the WAL file to zero bytes if the checkpoint 2138 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2139 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2140 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2141 ** to zero bytes as truncating to the journal_size_limit might 2142 ** leave a corrupt WAL file on disk. */ 2143 walLimitSize(pWal, 0); 2144 } 2145 } 2146 } 2147 2148 walIndexClose(pWal, isDelete); 2149 sqlite3OsClose(pWal->pWalFd); 2150 if( isDelete ){ 2151 sqlite3BeginBenignMalloc(); 2152 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2153 sqlite3EndBenignMalloc(); 2154 } 2155 WALTRACE(("WAL%p: closed\n", pWal)); 2156 sqlite3_free((void *)pWal->apWiData); 2157 sqlite3_free(pWal); 2158 } 2159 return rc; 2160 } 2161 2162 /* 2163 ** Try to read the wal-index header. Return 0 on success and 1 if 2164 ** there is a problem. 2165 ** 2166 ** The wal-index is in shared memory. Another thread or process might 2167 ** be writing the header at the same time this procedure is trying to 2168 ** read it, which might result in inconsistency. A dirty read is detected 2169 ** by verifying that both copies of the header are the same and also by 2170 ** a checksum on the header. 2171 ** 2172 ** If and only if the read is consistent and the header is different from 2173 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2174 ** and *pChanged is set to 1. 2175 ** 2176 ** If the checksum cannot be verified return non-zero. If the header 2177 ** is read successfully and the checksum verified, return zero. 2178 */ 2179 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2180 u32 aCksum[2]; /* Checksum on the header content */ 2181 WalIndexHdr h1, h2; /* Two copies of the header content */ 2182 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2183 2184 /* The first page of the wal-index must be mapped at this point. */ 2185 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2186 2187 /* Read the header. This might happen concurrently with a write to the 2188 ** same area of shared memory on a different CPU in a SMP, 2189 ** meaning it is possible that an inconsistent snapshot is read 2190 ** from the file. If this happens, return non-zero. 2191 ** 2192 ** tag-20200519-1: 2193 ** There are two copies of the header at the beginning of the wal-index. 2194 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2195 ** Memory barriers are used to prevent the compiler or the hardware from 2196 ** reordering the reads and writes. TSAN and similar tools can sometimes 2197 ** give false-positive warnings about these accesses because the tools do not 2198 ** account for the double-read and the memory barrier. The use of mutexes 2199 ** here would be problematic as the memory being accessed is potentially 2200 ** shared among multiple processes and not all mutex implementions work 2201 ** reliably in that environment. 2202 */ 2203 aHdr = walIndexHdr(pWal); 2204 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2205 walShmBarrier(pWal); 2206 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2207 2208 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2209 return 1; /* Dirty read */ 2210 } 2211 if( h1.isInit==0 ){ 2212 return 1; /* Malformed header - probably all zeros */ 2213 } 2214 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2215 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2216 return 1; /* Checksum does not match */ 2217 } 2218 2219 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2220 *pChanged = 1; 2221 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2222 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2223 testcase( pWal->szPage<=32768 ); 2224 testcase( pWal->szPage>=65536 ); 2225 } 2226 2227 /* The header was successfully read. Return zero. */ 2228 return 0; 2229 } 2230 2231 /* 2232 ** This is the value that walTryBeginRead returns when it needs to 2233 ** be retried. 2234 */ 2235 #define WAL_RETRY (-1) 2236 2237 /* 2238 ** Read the wal-index header from the wal-index and into pWal->hdr. 2239 ** If the wal-header appears to be corrupt, try to reconstruct the 2240 ** wal-index from the WAL before returning. 2241 ** 2242 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2243 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2244 ** to 0. 2245 ** 2246 ** If the wal-index header is successfully read, return SQLITE_OK. 2247 ** Otherwise an SQLite error code. 2248 */ 2249 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2250 int rc; /* Return code */ 2251 int badHdr; /* True if a header read failed */ 2252 volatile u32 *page0; /* Chunk of wal-index containing header */ 2253 2254 /* Ensure that page 0 of the wal-index (the page that contains the 2255 ** wal-index header) is mapped. Return early if an error occurs here. 2256 */ 2257 assert( pChanged ); 2258 rc = walIndexPage(pWal, 0, &page0); 2259 if( rc!=SQLITE_OK ){ 2260 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2261 if( rc==SQLITE_READONLY_CANTINIT ){ 2262 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2263 ** was openable but is not writable, and this thread is unable to 2264 ** confirm that another write-capable connection has the shared-memory 2265 ** open, and hence the content of the shared-memory is unreliable, 2266 ** since the shared-memory might be inconsistent with the WAL file 2267 ** and there is no writer on hand to fix it. */ 2268 assert( page0==0 ); 2269 assert( pWal->writeLock==0 ); 2270 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2271 pWal->bShmUnreliable = 1; 2272 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2273 *pChanged = 1; 2274 }else{ 2275 return rc; /* Any other non-OK return is just an error */ 2276 } 2277 }else{ 2278 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2279 ** is zero, which prevents the SHM from growing */ 2280 testcase( page0!=0 ); 2281 } 2282 assert( page0!=0 || pWal->writeLock==0 ); 2283 2284 /* If the first page of the wal-index has been mapped, try to read the 2285 ** wal-index header immediately, without holding any lock. This usually 2286 ** works, but may fail if the wal-index header is corrupt or currently 2287 ** being modified by another thread or process. 2288 */ 2289 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2290 2291 /* If the first attempt failed, it might have been due to a race 2292 ** with a writer. So get a WRITE lock and try again. 2293 */ 2294 if( badHdr ){ 2295 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2296 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2297 walUnlockShared(pWal, WAL_WRITE_LOCK); 2298 rc = SQLITE_READONLY_RECOVERY; 2299 } 2300 }else{ 2301 int bWriteLock = pWal->writeLock; 2302 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2303 pWal->writeLock = 1; 2304 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2305 badHdr = walIndexTryHdr(pWal, pChanged); 2306 if( badHdr ){ 2307 /* If the wal-index header is still malformed even while holding 2308 ** a WRITE lock, it can only mean that the header is corrupted and 2309 ** needs to be reconstructed. So run recovery to do exactly that. 2310 */ 2311 rc = walIndexRecover(pWal); 2312 *pChanged = 1; 2313 } 2314 } 2315 if( bWriteLock==0 ){ 2316 pWal->writeLock = 0; 2317 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2318 } 2319 } 2320 } 2321 } 2322 2323 /* If the header is read successfully, check the version number to make 2324 ** sure the wal-index was not constructed with some future format that 2325 ** this version of SQLite cannot understand. 2326 */ 2327 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2328 rc = SQLITE_CANTOPEN_BKPT; 2329 } 2330 if( pWal->bShmUnreliable ){ 2331 if( rc!=SQLITE_OK ){ 2332 walIndexClose(pWal, 0); 2333 pWal->bShmUnreliable = 0; 2334 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2335 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2336 ** writer truncated the WAL out from under it. If that happens, it 2337 ** indicates that a writer has fixed the SHM file for us, so retry */ 2338 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2339 } 2340 pWal->exclusiveMode = WAL_NORMAL_MODE; 2341 } 2342 2343 return rc; 2344 } 2345 2346 /* 2347 ** Open a transaction in a connection where the shared-memory is read-only 2348 ** and where we cannot verify that there is a separate write-capable connection 2349 ** on hand to keep the shared-memory up-to-date with the WAL file. 2350 ** 2351 ** This can happen, for example, when the shared-memory is implemented by 2352 ** memory-mapping a *-shm file, where a prior writer has shut down and 2353 ** left the *-shm file on disk, and now the present connection is trying 2354 ** to use that database but lacks write permission on the *-shm file. 2355 ** Other scenarios are also possible, depending on the VFS implementation. 2356 ** 2357 ** Precondition: 2358 ** 2359 ** The *-wal file has been read and an appropriate wal-index has been 2360 ** constructed in pWal->apWiData[] using heap memory instead of shared 2361 ** memory. 2362 ** 2363 ** If this function returns SQLITE_OK, then the read transaction has 2364 ** been successfully opened. In this case output variable (*pChanged) 2365 ** is set to true before returning if the caller should discard the 2366 ** contents of the page cache before proceeding. Or, if it returns 2367 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2368 ** the caller should retry opening the read transaction from the 2369 ** beginning (including attempting to map the *-shm file). 2370 ** 2371 ** If an error occurs, an SQLite error code is returned. 2372 */ 2373 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2374 i64 szWal; /* Size of wal file on disk in bytes */ 2375 i64 iOffset; /* Current offset when reading wal file */ 2376 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2377 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2378 int szFrame; /* Number of bytes in buffer aFrame[] */ 2379 u8 *aData; /* Pointer to data part of aFrame buffer */ 2380 volatile void *pDummy; /* Dummy argument for xShmMap */ 2381 int rc; /* Return code */ 2382 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2383 2384 assert( pWal->bShmUnreliable ); 2385 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2386 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2387 2388 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2389 ** writers from running a checkpoint, but does not stop them 2390 ** from running recovery. */ 2391 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2392 if( rc!=SQLITE_OK ){ 2393 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2394 goto begin_unreliable_shm_out; 2395 } 2396 pWal->readLock = 0; 2397 2398 /* Check to see if a separate writer has attached to the shared-memory area, 2399 ** thus making the shared-memory "reliable" again. Do this by invoking 2400 ** the xShmMap() routine of the VFS and looking to see if the return 2401 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2402 ** 2403 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2404 ** cause the heap-memory WAL-index to be discarded and the actual 2405 ** shared memory to be used in its place. 2406 ** 2407 ** This step is important because, even though this connection is holding 2408 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2409 ** have already checkpointed the WAL file and, while the current 2410 ** is active, wrap the WAL and start overwriting frames that this 2411 ** process wants to use. 2412 ** 2413 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2414 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2415 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2416 ** even if some external agent does a "chmod" to make the shared-memory 2417 ** writable by us, until sqlite3OsShmUnmap() has been called. 2418 ** This is a requirement on the VFS implementation. 2419 */ 2420 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2421 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2422 if( rc!=SQLITE_READONLY_CANTINIT ){ 2423 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2424 goto begin_unreliable_shm_out; 2425 } 2426 2427 /* We reach this point only if the real shared-memory is still unreliable. 2428 ** Assume the in-memory WAL-index substitute is correct and load it 2429 ** into pWal->hdr. 2430 */ 2431 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2432 2433 /* Make sure some writer hasn't come in and changed the WAL file out 2434 ** from under us, then disconnected, while we were not looking. 2435 */ 2436 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2437 if( rc!=SQLITE_OK ){ 2438 goto begin_unreliable_shm_out; 2439 } 2440 if( szWal<WAL_HDRSIZE ){ 2441 /* If the wal file is too small to contain a wal-header and the 2442 ** wal-index header has mxFrame==0, then it must be safe to proceed 2443 ** reading the database file only. However, the page cache cannot 2444 ** be trusted, as a read/write connection may have connected, written 2445 ** the db, run a checkpoint, truncated the wal file and disconnected 2446 ** since this client's last read transaction. */ 2447 *pChanged = 1; 2448 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2449 goto begin_unreliable_shm_out; 2450 } 2451 2452 /* Check the salt keys at the start of the wal file still match. */ 2453 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2454 if( rc!=SQLITE_OK ){ 2455 goto begin_unreliable_shm_out; 2456 } 2457 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2458 /* Some writer has wrapped the WAL file while we were not looking. 2459 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2460 ** rebuilt. */ 2461 rc = WAL_RETRY; 2462 goto begin_unreliable_shm_out; 2463 } 2464 2465 /* Allocate a buffer to read frames into */ 2466 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2467 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2468 if( aFrame==0 ){ 2469 rc = SQLITE_NOMEM_BKPT; 2470 goto begin_unreliable_shm_out; 2471 } 2472 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2473 2474 /* Check to see if a complete transaction has been appended to the 2475 ** wal file since the heap-memory wal-index was created. If so, the 2476 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2477 ** the caller. */ 2478 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2479 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2480 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2481 iOffset+szFrame<=szWal; 2482 iOffset+=szFrame 2483 ){ 2484 u32 pgno; /* Database page number for frame */ 2485 u32 nTruncate; /* dbsize field from frame header */ 2486 2487 /* Read and decode the next log frame. */ 2488 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2489 if( rc!=SQLITE_OK ) break; 2490 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2491 2492 /* If nTruncate is non-zero, then a complete transaction has been 2493 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2494 ** the loop. */ 2495 if( nTruncate ){ 2496 rc = WAL_RETRY; 2497 break; 2498 } 2499 } 2500 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2501 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2502 2503 begin_unreliable_shm_out: 2504 sqlite3_free(aFrame); 2505 if( rc!=SQLITE_OK ){ 2506 int i; 2507 for(i=0; i<pWal->nWiData; i++){ 2508 sqlite3_free((void*)pWal->apWiData[i]); 2509 pWal->apWiData[i] = 0; 2510 } 2511 pWal->bShmUnreliable = 0; 2512 sqlite3WalEndReadTransaction(pWal); 2513 *pChanged = 1; 2514 } 2515 return rc; 2516 } 2517 2518 /* 2519 ** Attempt to start a read transaction. This might fail due to a race or 2520 ** other transient condition. When that happens, it returns WAL_RETRY to 2521 ** indicate to the caller that it is safe to retry immediately. 2522 ** 2523 ** On success return SQLITE_OK. On a permanent failure (such an 2524 ** I/O error or an SQLITE_BUSY because another process is running 2525 ** recovery) return a positive error code. 2526 ** 2527 ** The useWal parameter is true to force the use of the WAL and disable 2528 ** the case where the WAL is bypassed because it has been completely 2529 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2530 ** to make a copy of the wal-index header into pWal->hdr. If the 2531 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2532 ** to the caller that the local page cache is obsolete and needs to be 2533 ** flushed.) When useWal==1, the wal-index header is assumed to already 2534 ** be loaded and the pChanged parameter is unused. 2535 ** 2536 ** The caller must set the cnt parameter to the number of prior calls to 2537 ** this routine during the current read attempt that returned WAL_RETRY. 2538 ** This routine will start taking more aggressive measures to clear the 2539 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2540 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2541 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2542 ** and is not honoring the locking protocol. There is a vanishingly small 2543 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2544 ** bad luck when there is lots of contention for the wal-index, but that 2545 ** possibility is so small that it can be safely neglected, we believe. 2546 ** 2547 ** On success, this routine obtains a read lock on 2548 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2549 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2550 ** that means the Wal does not hold any read lock. The reader must not 2551 ** access any database page that is modified by a WAL frame up to and 2552 ** including frame number aReadMark[pWal->readLock]. The reader will 2553 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2554 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2555 ** completely and get all content directly from the database file. 2556 ** If the useWal parameter is 1 then the WAL will never be ignored and 2557 ** this routine will always set pWal->readLock>0 on success. 2558 ** When the read transaction is completed, the caller must release the 2559 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2560 ** 2561 ** This routine uses the nBackfill and aReadMark[] fields of the header 2562 ** to select a particular WAL_READ_LOCK() that strives to let the 2563 ** checkpoint process do as much work as possible. This routine might 2564 ** update values of the aReadMark[] array in the header, but if it does 2565 ** so it takes care to hold an exclusive lock on the corresponding 2566 ** WAL_READ_LOCK() while changing values. 2567 */ 2568 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2569 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2570 u32 mxReadMark; /* Largest aReadMark[] value */ 2571 int mxI; /* Index of largest aReadMark[] value */ 2572 int i; /* Loop counter */ 2573 int rc = SQLITE_OK; /* Return code */ 2574 u32 mxFrame; /* Wal frame to lock to */ 2575 2576 assert( pWal->readLock<0 ); /* Not currently locked */ 2577 2578 /* useWal may only be set for read/write connections */ 2579 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2580 2581 /* Take steps to avoid spinning forever if there is a protocol error. 2582 ** 2583 ** Circumstances that cause a RETRY should only last for the briefest 2584 ** instances of time. No I/O or other system calls are done while the 2585 ** locks are held, so the locks should not be held for very long. But 2586 ** if we are unlucky, another process that is holding a lock might get 2587 ** paged out or take a page-fault that is time-consuming to resolve, 2588 ** during the few nanoseconds that it is holding the lock. In that case, 2589 ** it might take longer than normal for the lock to free. 2590 ** 2591 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2592 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2593 ** is more of a scheduler yield than an actual delay. But on the 10th 2594 ** an subsequent retries, the delays start becoming longer and longer, 2595 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2596 ** The total delay time before giving up is less than 10 seconds. 2597 */ 2598 if( cnt>5 ){ 2599 int nDelay = 1; /* Pause time in microseconds */ 2600 if( cnt>100 ){ 2601 VVA_ONLY( pWal->lockError = 1; ) 2602 return SQLITE_PROTOCOL; 2603 } 2604 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2605 sqlite3OsSleep(pWal->pVfs, nDelay); 2606 } 2607 2608 if( !useWal ){ 2609 assert( rc==SQLITE_OK ); 2610 if( pWal->bShmUnreliable==0 ){ 2611 rc = walIndexReadHdr(pWal, pChanged); 2612 } 2613 if( rc==SQLITE_BUSY ){ 2614 /* If there is not a recovery running in another thread or process 2615 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2616 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2617 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2618 ** would be technically correct. But the race is benign since with 2619 ** WAL_RETRY this routine will be called again and will probably be 2620 ** right on the second iteration. 2621 */ 2622 if( pWal->apWiData[0]==0 ){ 2623 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2624 ** We assume this is a transient condition, so return WAL_RETRY. The 2625 ** xShmMap() implementation used by the default unix and win32 VFS 2626 ** modules may return SQLITE_BUSY due to a race condition in the 2627 ** code that determines whether or not the shared-memory region 2628 ** must be zeroed before the requested page is returned. 2629 */ 2630 rc = WAL_RETRY; 2631 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2632 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2633 rc = WAL_RETRY; 2634 }else if( rc==SQLITE_BUSY ){ 2635 rc = SQLITE_BUSY_RECOVERY; 2636 } 2637 } 2638 if( rc!=SQLITE_OK ){ 2639 return rc; 2640 } 2641 else if( pWal->bShmUnreliable ){ 2642 return walBeginShmUnreliable(pWal, pChanged); 2643 } 2644 } 2645 2646 assert( pWal->nWiData>0 ); 2647 assert( pWal->apWiData[0]!=0 ); 2648 pInfo = walCkptInfo(pWal); 2649 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2650 #ifdef SQLITE_ENABLE_SNAPSHOT 2651 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2652 #endif 2653 ){ 2654 /* The WAL has been completely backfilled (or it is empty). 2655 ** and can be safely ignored. 2656 */ 2657 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2658 walShmBarrier(pWal); 2659 if( rc==SQLITE_OK ){ 2660 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2661 /* It is not safe to allow the reader to continue here if frames 2662 ** may have been appended to the log before READ_LOCK(0) was obtained. 2663 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2664 ** which implies that the database file contains a trustworthy 2665 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2666 ** happening, this is usually correct. 2667 ** 2668 ** However, if frames have been appended to the log (or if the log 2669 ** is wrapped and written for that matter) before the READ_LOCK(0) 2670 ** is obtained, that is not necessarily true. A checkpointer may 2671 ** have started to backfill the appended frames but crashed before 2672 ** it finished. Leaving a corrupt image in the database file. 2673 */ 2674 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2675 return WAL_RETRY; 2676 } 2677 pWal->readLock = 0; 2678 return SQLITE_OK; 2679 }else if( rc!=SQLITE_BUSY ){ 2680 return rc; 2681 } 2682 } 2683 2684 /* If we get this far, it means that the reader will want to use 2685 ** the WAL to get at content from recent commits. The job now is 2686 ** to select one of the aReadMark[] entries that is closest to 2687 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2688 */ 2689 mxReadMark = 0; 2690 mxI = 0; 2691 mxFrame = pWal->hdr.mxFrame; 2692 #ifdef SQLITE_ENABLE_SNAPSHOT 2693 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2694 mxFrame = pWal->pSnapshot->mxFrame; 2695 } 2696 #endif 2697 for(i=1; i<WAL_NREADER; i++){ 2698 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2699 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2700 assert( thisMark!=READMARK_NOT_USED ); 2701 mxReadMark = thisMark; 2702 mxI = i; 2703 } 2704 } 2705 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2706 && (mxReadMark<mxFrame || mxI==0) 2707 ){ 2708 for(i=1; i<WAL_NREADER; i++){ 2709 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2710 if( rc==SQLITE_OK ){ 2711 AtomicStore(pInfo->aReadMark+i,mxFrame); 2712 mxReadMark = mxFrame; 2713 mxI = i; 2714 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2715 break; 2716 }else if( rc!=SQLITE_BUSY ){ 2717 return rc; 2718 } 2719 } 2720 } 2721 if( mxI==0 ){ 2722 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2723 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2724 } 2725 2726 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2727 if( rc ){ 2728 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2729 } 2730 /* Now that the read-lock has been obtained, check that neither the 2731 ** value in the aReadMark[] array or the contents of the wal-index 2732 ** header have changed. 2733 ** 2734 ** It is necessary to check that the wal-index header did not change 2735 ** between the time it was read and when the shared-lock was obtained 2736 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2737 ** that the log file may have been wrapped by a writer, or that frames 2738 ** that occur later in the log than pWal->hdr.mxFrame may have been 2739 ** copied into the database by a checkpointer. If either of these things 2740 ** happened, then reading the database with the current value of 2741 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2742 ** instead. 2743 ** 2744 ** Before checking that the live wal-index header has not changed 2745 ** since it was read, set Wal.minFrame to the first frame in the wal 2746 ** file that has not yet been checkpointed. This client will not need 2747 ** to read any frames earlier than minFrame from the wal file - they 2748 ** can be safely read directly from the database file. 2749 ** 2750 ** Because a ShmBarrier() call is made between taking the copy of 2751 ** nBackfill and checking that the wal-header in shared-memory still 2752 ** matches the one cached in pWal->hdr, it is guaranteed that the 2753 ** checkpointer that set nBackfill was not working with a wal-index 2754 ** header newer than that cached in pWal->hdr. If it were, that could 2755 ** cause a problem. The checkpointer could omit to checkpoint 2756 ** a version of page X that lies before pWal->minFrame (call that version 2757 ** A) on the basis that there is a newer version (version B) of the same 2758 ** page later in the wal file. But if version B happens to like past 2759 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2760 ** that it can read version A from the database file. However, since 2761 ** we can guarantee that the checkpointer that set nBackfill could not 2762 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2763 */ 2764 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2765 walShmBarrier(pWal); 2766 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2767 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2768 ){ 2769 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2770 return WAL_RETRY; 2771 }else{ 2772 assert( mxReadMark<=pWal->hdr.mxFrame ); 2773 pWal->readLock = (i16)mxI; 2774 } 2775 return rc; 2776 } 2777 2778 #ifdef SQLITE_ENABLE_SNAPSHOT 2779 /* 2780 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2781 ** variable so that older snapshots can be accessed. To do this, loop 2782 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2783 ** comparing their content to the corresponding page with the database 2784 ** file, if any. Set nBackfillAttempted to the frame number of the 2785 ** first frame for which the wal file content matches the db file. 2786 ** 2787 ** This is only really safe if the file-system is such that any page 2788 ** writes made by earlier checkpointers were atomic operations, which 2789 ** is not always true. It is also possible that nBackfillAttempted 2790 ** may be left set to a value larger than expected, if a wal frame 2791 ** contains content that duplicate of an earlier version of the same 2792 ** page. 2793 ** 2794 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2795 ** error occurs. It is not an error if nBackfillAttempted cannot be 2796 ** decreased at all. 2797 */ 2798 int sqlite3WalSnapshotRecover(Wal *pWal){ 2799 int rc; 2800 2801 assert( pWal->readLock>=0 ); 2802 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2803 if( rc==SQLITE_OK ){ 2804 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2805 int szPage = (int)pWal->szPage; 2806 i64 szDb; /* Size of db file in bytes */ 2807 2808 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2809 if( rc==SQLITE_OK ){ 2810 void *pBuf1 = sqlite3_malloc(szPage); 2811 void *pBuf2 = sqlite3_malloc(szPage); 2812 if( pBuf1==0 || pBuf2==0 ){ 2813 rc = SQLITE_NOMEM; 2814 }else{ 2815 u32 i = pInfo->nBackfillAttempted; 2816 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2817 WalHashLoc sLoc; /* Hash table location */ 2818 u32 pgno; /* Page number in db file */ 2819 i64 iDbOff; /* Offset of db file entry */ 2820 i64 iWalOff; /* Offset of wal file entry */ 2821 2822 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2823 if( rc!=SQLITE_OK ) break; 2824 pgno = sLoc.aPgno[i-sLoc.iZero]; 2825 iDbOff = (i64)(pgno-1) * szPage; 2826 2827 if( iDbOff+szPage<=szDb ){ 2828 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2829 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2830 2831 if( rc==SQLITE_OK ){ 2832 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2833 } 2834 2835 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2836 break; 2837 } 2838 } 2839 2840 pInfo->nBackfillAttempted = i-1; 2841 } 2842 } 2843 2844 sqlite3_free(pBuf1); 2845 sqlite3_free(pBuf2); 2846 } 2847 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2848 } 2849 2850 return rc; 2851 } 2852 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2853 2854 /* 2855 ** Begin a read transaction on the database. 2856 ** 2857 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2858 ** it takes a snapshot of the state of the WAL and wal-index for the current 2859 ** instant in time. The current thread will continue to use this snapshot. 2860 ** Other threads might append new content to the WAL and wal-index but 2861 ** that extra content is ignored by the current thread. 2862 ** 2863 ** If the database contents have changes since the previous read 2864 ** transaction, then *pChanged is set to 1 before returning. The 2865 ** Pager layer will use this to know that its cache is stale and 2866 ** needs to be flushed. 2867 */ 2868 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2869 int rc; /* Return code */ 2870 int cnt = 0; /* Number of TryBeginRead attempts */ 2871 #ifdef SQLITE_ENABLE_SNAPSHOT 2872 int bChanged = 0; 2873 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2874 #endif 2875 2876 assert( pWal->ckptLock==0 ); 2877 2878 #ifdef SQLITE_ENABLE_SNAPSHOT 2879 if( pSnapshot ){ 2880 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2881 bChanged = 1; 2882 } 2883 2884 /* It is possible that there is a checkpointer thread running 2885 ** concurrent with this code. If this is the case, it may be that the 2886 ** checkpointer has already determined that it will checkpoint 2887 ** snapshot X, where X is later in the wal file than pSnapshot, but 2888 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2889 ** its intent. To avoid the race condition this leads to, ensure that 2890 ** there is no checkpointer process by taking a shared CKPT lock 2891 ** before checking pInfo->nBackfillAttempted. */ 2892 (void)walEnableBlocking(pWal); 2893 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2894 walDisableBlocking(pWal); 2895 2896 if( rc!=SQLITE_OK ){ 2897 return rc; 2898 } 2899 pWal->ckptLock = 1; 2900 } 2901 #endif 2902 2903 do{ 2904 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2905 }while( rc==WAL_RETRY ); 2906 testcase( (rc&0xff)==SQLITE_BUSY ); 2907 testcase( (rc&0xff)==SQLITE_IOERR ); 2908 testcase( rc==SQLITE_PROTOCOL ); 2909 testcase( rc==SQLITE_OK ); 2910 2911 #ifdef SQLITE_ENABLE_SNAPSHOT 2912 if( rc==SQLITE_OK ){ 2913 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2914 /* At this point the client has a lock on an aReadMark[] slot holding 2915 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2916 ** is populated with the wal-index header corresponding to the head 2917 ** of the wal file. Verify that pSnapshot is still valid before 2918 ** continuing. Reasons why pSnapshot might no longer be valid: 2919 ** 2920 ** (1) The WAL file has been reset since the snapshot was taken. 2921 ** In this case, the salt will have changed. 2922 ** 2923 ** (2) A checkpoint as been attempted that wrote frames past 2924 ** pSnapshot->mxFrame into the database file. Note that the 2925 ** checkpoint need not have completed for this to cause problems. 2926 */ 2927 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2928 2929 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2930 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2931 2932 /* Check that the wal file has not been wrapped. Assuming that it has 2933 ** not, also check that no checkpointer has attempted to checkpoint any 2934 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2935 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2936 ** with *pSnapshot and set *pChanged as appropriate for opening the 2937 ** snapshot. */ 2938 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2939 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2940 ){ 2941 assert( pWal->readLock>0 ); 2942 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2943 *pChanged = bChanged; 2944 }else{ 2945 rc = SQLITE_ERROR_SNAPSHOT; 2946 } 2947 2948 /* A client using a non-current snapshot may not ignore any frames 2949 ** from the start of the wal file. This is because, for a system 2950 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 2951 ** have omitted to checkpoint a frame earlier than minFrame in 2952 ** the file because there exists a frame after iSnapshot that 2953 ** is the same database page. */ 2954 pWal->minFrame = 1; 2955 2956 if( rc!=SQLITE_OK ){ 2957 sqlite3WalEndReadTransaction(pWal); 2958 } 2959 } 2960 } 2961 2962 /* Release the shared CKPT lock obtained above. */ 2963 if( pWal->ckptLock ){ 2964 assert( pSnapshot ); 2965 walUnlockShared(pWal, WAL_CKPT_LOCK); 2966 pWal->ckptLock = 0; 2967 } 2968 #endif 2969 return rc; 2970 } 2971 2972 /* 2973 ** Finish with a read transaction. All this does is release the 2974 ** read-lock. 2975 */ 2976 void sqlite3WalEndReadTransaction(Wal *pWal){ 2977 sqlite3WalEndWriteTransaction(pWal); 2978 if( pWal->readLock>=0 ){ 2979 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2980 pWal->readLock = -1; 2981 } 2982 } 2983 2984 /* 2985 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2986 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2987 ** to zero. 2988 ** 2989 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2990 ** error does occur, the final value of *piRead is undefined. 2991 */ 2992 int sqlite3WalFindFrame( 2993 Wal *pWal, /* WAL handle */ 2994 Pgno pgno, /* Database page number to read data for */ 2995 u32 *piRead /* OUT: Frame number (or zero) */ 2996 ){ 2997 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2998 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2999 int iHash; /* Used to loop through N hash tables */ 3000 int iMinHash; 3001 3002 /* This routine is only be called from within a read transaction. */ 3003 assert( pWal->readLock>=0 || pWal->lockError ); 3004 3005 /* If the "last page" field of the wal-index header snapshot is 0, then 3006 ** no data will be read from the wal under any circumstances. Return early 3007 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3008 ** then the WAL is ignored by the reader so return early, as if the 3009 ** WAL were empty. 3010 */ 3011 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3012 *piRead = 0; 3013 return SQLITE_OK; 3014 } 3015 3016 /* Search the hash table or tables for an entry matching page number 3017 ** pgno. Each iteration of the following for() loop searches one 3018 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3019 ** 3020 ** This code might run concurrently to the code in walIndexAppend() 3021 ** that adds entries to the wal-index (and possibly to this hash 3022 ** table). This means the value just read from the hash 3023 ** slot (aHash[iKey]) may have been added before or after the 3024 ** current read transaction was opened. Values added after the 3025 ** read transaction was opened may have been written incorrectly - 3026 ** i.e. these slots may contain garbage data. However, we assume 3027 ** that any slots written before the current read transaction was 3028 ** opened remain unmodified. 3029 ** 3030 ** For the reasons above, the if(...) condition featured in the inner 3031 ** loop of the following block is more stringent that would be required 3032 ** if we had exclusive access to the hash-table: 3033 ** 3034 ** (aPgno[iFrame]==pgno): 3035 ** This condition filters out normal hash-table collisions. 3036 ** 3037 ** (iFrame<=iLast): 3038 ** This condition filters out entries that were added to the hash 3039 ** table after the current read-transaction had started. 3040 */ 3041 iMinHash = walFramePage(pWal->minFrame); 3042 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3043 WalHashLoc sLoc; /* Hash table location */ 3044 int iKey; /* Hash slot index */ 3045 int nCollide; /* Number of hash collisions remaining */ 3046 int rc; /* Error code */ 3047 u32 iH; 3048 3049 rc = walHashGet(pWal, iHash, &sLoc); 3050 if( rc!=SQLITE_OK ){ 3051 return rc; 3052 } 3053 nCollide = HASHTABLE_NSLOT; 3054 iKey = walHash(pgno); 3055 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3056 u32 iFrame = iH + sLoc.iZero; 3057 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3058 assert( iFrame>iRead || CORRUPT_DB ); 3059 iRead = iFrame; 3060 } 3061 if( (nCollide--)==0 ){ 3062 return SQLITE_CORRUPT_BKPT; 3063 } 3064 iKey = walNextHash(iKey); 3065 } 3066 if( iRead ) break; 3067 } 3068 3069 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3070 /* If expensive assert() statements are available, do a linear search 3071 ** of the wal-index file content. Make sure the results agree with the 3072 ** result obtained using the hash indexes above. */ 3073 { 3074 u32 iRead2 = 0; 3075 u32 iTest; 3076 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3077 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3078 if( walFramePgno(pWal, iTest)==pgno ){ 3079 iRead2 = iTest; 3080 break; 3081 } 3082 } 3083 assert( iRead==iRead2 ); 3084 } 3085 #endif 3086 3087 *piRead = iRead; 3088 return SQLITE_OK; 3089 } 3090 3091 /* 3092 ** Read the contents of frame iRead from the wal file into buffer pOut 3093 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3094 ** error code otherwise. 3095 */ 3096 int sqlite3WalReadFrame( 3097 Wal *pWal, /* WAL handle */ 3098 u32 iRead, /* Frame to read */ 3099 int nOut, /* Size of buffer pOut in bytes */ 3100 u8 *pOut /* Buffer to write page data to */ 3101 ){ 3102 int sz; 3103 i64 iOffset; 3104 sz = pWal->hdr.szPage; 3105 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3106 testcase( sz<=32768 ); 3107 testcase( sz>=65536 ); 3108 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3109 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3110 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3111 } 3112 3113 /* 3114 ** Return the size of the database in pages (or zero, if unknown). 3115 */ 3116 Pgno sqlite3WalDbsize(Wal *pWal){ 3117 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3118 return pWal->hdr.nPage; 3119 } 3120 return 0; 3121 } 3122 3123 3124 /* 3125 ** This function starts a write transaction on the WAL. 3126 ** 3127 ** A read transaction must have already been started by a prior call 3128 ** to sqlite3WalBeginReadTransaction(). 3129 ** 3130 ** If another thread or process has written into the database since 3131 ** the read transaction was started, then it is not possible for this 3132 ** thread to write as doing so would cause a fork. So this routine 3133 ** returns SQLITE_BUSY in that case and no write transaction is started. 3134 ** 3135 ** There can only be a single writer active at a time. 3136 */ 3137 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3138 int rc; 3139 3140 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3141 /* If the write-lock is already held, then it was obtained before the 3142 ** read-transaction was even opened, making this call a no-op. 3143 ** Return early. */ 3144 if( pWal->writeLock ){ 3145 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3146 return SQLITE_OK; 3147 } 3148 #endif 3149 3150 /* Cannot start a write transaction without first holding a read 3151 ** transaction. */ 3152 assert( pWal->readLock>=0 ); 3153 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3154 3155 if( pWal->readOnly ){ 3156 return SQLITE_READONLY; 3157 } 3158 3159 /* Only one writer allowed at a time. Get the write lock. Return 3160 ** SQLITE_BUSY if unable. 3161 */ 3162 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3163 if( rc ){ 3164 return rc; 3165 } 3166 pWal->writeLock = 1; 3167 3168 /* If another connection has written to the database file since the 3169 ** time the read transaction on this connection was started, then 3170 ** the write is disallowed. 3171 */ 3172 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3173 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3174 pWal->writeLock = 0; 3175 rc = SQLITE_BUSY_SNAPSHOT; 3176 } 3177 3178 return rc; 3179 } 3180 3181 /* 3182 ** End a write transaction. The commit has already been done. This 3183 ** routine merely releases the lock. 3184 */ 3185 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3186 if( pWal->writeLock ){ 3187 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3188 pWal->writeLock = 0; 3189 pWal->iReCksum = 0; 3190 pWal->truncateOnCommit = 0; 3191 } 3192 return SQLITE_OK; 3193 } 3194 3195 /* 3196 ** If any data has been written (but not committed) to the log file, this 3197 ** function moves the write-pointer back to the start of the transaction. 3198 ** 3199 ** Additionally, the callback function is invoked for each frame written 3200 ** to the WAL since the start of the transaction. If the callback returns 3201 ** other than SQLITE_OK, it is not invoked again and the error code is 3202 ** returned to the caller. 3203 ** 3204 ** Otherwise, if the callback function does not return an error, this 3205 ** function returns SQLITE_OK. 3206 */ 3207 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3208 int rc = SQLITE_OK; 3209 if( ALWAYS(pWal->writeLock) ){ 3210 Pgno iMax = pWal->hdr.mxFrame; 3211 Pgno iFrame; 3212 3213 /* Restore the clients cache of the wal-index header to the state it 3214 ** was in before the client began writing to the database. 3215 */ 3216 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3217 3218 for(iFrame=pWal->hdr.mxFrame+1; 3219 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3220 iFrame++ 3221 ){ 3222 /* This call cannot fail. Unless the page for which the page number 3223 ** is passed as the second argument is (a) in the cache and 3224 ** (b) has an outstanding reference, then xUndo is either a no-op 3225 ** (if (a) is false) or simply expels the page from the cache (if (b) 3226 ** is false). 3227 ** 3228 ** If the upper layer is doing a rollback, it is guaranteed that there 3229 ** are no outstanding references to any page other than page 1. And 3230 ** page 1 is never written to the log until the transaction is 3231 ** committed. As a result, the call to xUndo may not fail. 3232 */ 3233 assert( walFramePgno(pWal, iFrame)!=1 ); 3234 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3235 } 3236 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3237 } 3238 return rc; 3239 } 3240 3241 /* 3242 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3243 ** values. This function populates the array with values required to 3244 ** "rollback" the write position of the WAL handle back to the current 3245 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3246 */ 3247 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3248 assert( pWal->writeLock ); 3249 aWalData[0] = pWal->hdr.mxFrame; 3250 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3251 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3252 aWalData[3] = pWal->nCkpt; 3253 } 3254 3255 /* 3256 ** Move the write position of the WAL back to the point identified by 3257 ** the values in the aWalData[] array. aWalData must point to an array 3258 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3259 ** by a call to WalSavepoint(). 3260 */ 3261 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3262 int rc = SQLITE_OK; 3263 3264 assert( pWal->writeLock ); 3265 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3266 3267 if( aWalData[3]!=pWal->nCkpt ){ 3268 /* This savepoint was opened immediately after the write-transaction 3269 ** was started. Right after that, the writer decided to wrap around 3270 ** to the start of the log. Update the savepoint values to match. 3271 */ 3272 aWalData[0] = 0; 3273 aWalData[3] = pWal->nCkpt; 3274 } 3275 3276 if( aWalData[0]<pWal->hdr.mxFrame ){ 3277 pWal->hdr.mxFrame = aWalData[0]; 3278 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3279 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3280 walCleanupHash(pWal); 3281 } 3282 3283 return rc; 3284 } 3285 3286 /* 3287 ** This function is called just before writing a set of frames to the log 3288 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3289 ** to the current log file, it is possible to overwrite the start of the 3290 ** existing log file with the new frames (i.e. "reset" the log). If so, 3291 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3292 ** unchanged. 3293 ** 3294 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3295 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3296 ** if an error occurs. 3297 */ 3298 static int walRestartLog(Wal *pWal){ 3299 int rc = SQLITE_OK; 3300 int cnt; 3301 3302 if( pWal->readLock==0 ){ 3303 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3304 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3305 if( pInfo->nBackfill>0 ){ 3306 u32 salt1; 3307 sqlite3_randomness(4, &salt1); 3308 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3309 if( rc==SQLITE_OK ){ 3310 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3311 ** readers are currently using the WAL), then the transactions 3312 ** frames will overwrite the start of the existing log. Update the 3313 ** wal-index header to reflect this. 3314 ** 3315 ** In theory it would be Ok to update the cache of the header only 3316 ** at this point. But updating the actual wal-index header is also 3317 ** safe and means there is no special case for sqlite3WalUndo() 3318 ** to handle if this transaction is rolled back. */ 3319 walRestartHdr(pWal, salt1); 3320 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3321 }else if( rc!=SQLITE_BUSY ){ 3322 return rc; 3323 } 3324 } 3325 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3326 pWal->readLock = -1; 3327 cnt = 0; 3328 do{ 3329 int notUsed; 3330 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3331 }while( rc==WAL_RETRY ); 3332 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3333 testcase( (rc&0xff)==SQLITE_IOERR ); 3334 testcase( rc==SQLITE_PROTOCOL ); 3335 testcase( rc==SQLITE_OK ); 3336 } 3337 return rc; 3338 } 3339 3340 /* 3341 ** Information about the current state of the WAL file and where 3342 ** the next fsync should occur - passed from sqlite3WalFrames() into 3343 ** walWriteToLog(). 3344 */ 3345 typedef struct WalWriter { 3346 Wal *pWal; /* The complete WAL information */ 3347 sqlite3_file *pFd; /* The WAL file to which we write */ 3348 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3349 int syncFlags; /* Flags for the fsync */ 3350 int szPage; /* Size of one page */ 3351 } WalWriter; 3352 3353 /* 3354 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3355 ** Do a sync when crossing the p->iSyncPoint boundary. 3356 ** 3357 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3358 ** first write the part before iSyncPoint, then sync, then write the 3359 ** rest. 3360 */ 3361 static int walWriteToLog( 3362 WalWriter *p, /* WAL to write to */ 3363 void *pContent, /* Content to be written */ 3364 int iAmt, /* Number of bytes to write */ 3365 sqlite3_int64 iOffset /* Start writing at this offset */ 3366 ){ 3367 int rc; 3368 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3369 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3370 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3371 if( rc ) return rc; 3372 iOffset += iFirstAmt; 3373 iAmt -= iFirstAmt; 3374 pContent = (void*)(iFirstAmt + (char*)pContent); 3375 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3376 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3377 if( iAmt==0 || rc ) return rc; 3378 } 3379 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3380 return rc; 3381 } 3382 3383 /* 3384 ** Write out a single frame of the WAL 3385 */ 3386 static int walWriteOneFrame( 3387 WalWriter *p, /* Where to write the frame */ 3388 PgHdr *pPage, /* The page of the frame to be written */ 3389 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3390 sqlite3_int64 iOffset /* Byte offset at which to write */ 3391 ){ 3392 int rc; /* Result code from subfunctions */ 3393 void *pData; /* Data actually written */ 3394 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3395 pData = pPage->pData; 3396 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3397 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3398 if( rc ) return rc; 3399 /* Write the page data */ 3400 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3401 return rc; 3402 } 3403 3404 /* 3405 ** This function is called as part of committing a transaction within which 3406 ** one or more frames have been overwritten. It updates the checksums for 3407 ** all frames written to the wal file by the current transaction starting 3408 ** with the earliest to have been overwritten. 3409 ** 3410 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3411 */ 3412 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3413 const int szPage = pWal->szPage;/* Database page size */ 3414 int rc = SQLITE_OK; /* Return code */ 3415 u8 *aBuf; /* Buffer to load data from wal file into */ 3416 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3417 u32 iRead; /* Next frame to read from wal file */ 3418 i64 iCksumOff; 3419 3420 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3421 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3422 3423 /* Find the checksum values to use as input for the recalculating the 3424 ** first checksum. If the first frame is frame 1 (implying that the current 3425 ** transaction restarted the wal file), these values must be read from the 3426 ** wal-file header. Otherwise, read them from the frame header of the 3427 ** previous frame. */ 3428 assert( pWal->iReCksum>0 ); 3429 if( pWal->iReCksum==1 ){ 3430 iCksumOff = 24; 3431 }else{ 3432 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3433 } 3434 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3435 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3436 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3437 3438 iRead = pWal->iReCksum; 3439 pWal->iReCksum = 0; 3440 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3441 i64 iOff = walFrameOffset(iRead, szPage); 3442 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3443 if( rc==SQLITE_OK ){ 3444 u32 iPgno, nDbSize; 3445 iPgno = sqlite3Get4byte(aBuf); 3446 nDbSize = sqlite3Get4byte(&aBuf[4]); 3447 3448 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3449 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3450 } 3451 } 3452 3453 sqlite3_free(aBuf); 3454 return rc; 3455 } 3456 3457 /* 3458 ** Write a set of frames to the log. The caller must hold the write-lock 3459 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3460 */ 3461 int sqlite3WalFrames( 3462 Wal *pWal, /* Wal handle to write to */ 3463 int szPage, /* Database page-size in bytes */ 3464 PgHdr *pList, /* List of dirty pages to write */ 3465 Pgno nTruncate, /* Database size after this commit */ 3466 int isCommit, /* True if this is a commit */ 3467 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3468 ){ 3469 int rc; /* Used to catch return codes */ 3470 u32 iFrame; /* Next frame address */ 3471 PgHdr *p; /* Iterator to run through pList with. */ 3472 PgHdr *pLast = 0; /* Last frame in list */ 3473 int nExtra = 0; /* Number of extra copies of last page */ 3474 int szFrame; /* The size of a single frame */ 3475 i64 iOffset; /* Next byte to write in WAL file */ 3476 WalWriter w; /* The writer */ 3477 u32 iFirst = 0; /* First frame that may be overwritten */ 3478 WalIndexHdr *pLive; /* Pointer to shared header */ 3479 3480 assert( pList ); 3481 assert( pWal->writeLock ); 3482 3483 /* If this frame set completes a transaction, then nTruncate>0. If 3484 ** nTruncate==0 then this frame set does not complete the transaction. */ 3485 assert( (isCommit!=0)==(nTruncate!=0) ); 3486 3487 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3488 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3489 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3490 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3491 } 3492 #endif 3493 3494 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3495 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3496 iFirst = pLive->mxFrame+1; 3497 } 3498 3499 /* See if it is possible to write these frames into the start of the 3500 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3501 */ 3502 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3503 return rc; 3504 } 3505 3506 /* If this is the first frame written into the log, write the WAL 3507 ** header to the start of the WAL file. See comments at the top of 3508 ** this source file for a description of the WAL header format. 3509 */ 3510 iFrame = pWal->hdr.mxFrame; 3511 if( iFrame==0 ){ 3512 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3513 u32 aCksum[2]; /* Checksum for wal-header */ 3514 3515 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3516 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3517 sqlite3Put4byte(&aWalHdr[8], szPage); 3518 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3519 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3520 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3521 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3522 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3523 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3524 3525 pWal->szPage = szPage; 3526 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3527 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3528 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3529 pWal->truncateOnCommit = 1; 3530 3531 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3532 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3533 if( rc!=SQLITE_OK ){ 3534 return rc; 3535 } 3536 3537 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3538 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3539 ** an out-of-order write following a WAL restart could result in 3540 ** database corruption. See the ticket: 3541 ** 3542 ** https://sqlite.org/src/info/ff5be73dee 3543 */ 3544 if( pWal->syncHeader ){ 3545 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3546 if( rc ) return rc; 3547 } 3548 } 3549 assert( (int)pWal->szPage==szPage ); 3550 3551 /* Setup information needed to write frames into the WAL */ 3552 w.pWal = pWal; 3553 w.pFd = pWal->pWalFd; 3554 w.iSyncPoint = 0; 3555 w.syncFlags = sync_flags; 3556 w.szPage = szPage; 3557 iOffset = walFrameOffset(iFrame+1, szPage); 3558 szFrame = szPage + WAL_FRAME_HDRSIZE; 3559 3560 /* Write all frames into the log file exactly once */ 3561 for(p=pList; p; p=p->pDirty){ 3562 int nDbSize; /* 0 normally. Positive == commit flag */ 3563 3564 /* Check if this page has already been written into the wal file by 3565 ** the current transaction. If so, overwrite the existing frame and 3566 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3567 ** checksums must be recomputed when the transaction is committed. */ 3568 if( iFirst && (p->pDirty || isCommit==0) ){ 3569 u32 iWrite = 0; 3570 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3571 assert( rc==SQLITE_OK || iWrite==0 ); 3572 if( iWrite>=iFirst ){ 3573 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3574 void *pData; 3575 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3576 pWal->iReCksum = iWrite; 3577 } 3578 pData = p->pData; 3579 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3580 if( rc ) return rc; 3581 p->flags &= ~PGHDR_WAL_APPEND; 3582 continue; 3583 } 3584 } 3585 3586 iFrame++; 3587 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3588 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3589 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3590 if( rc ) return rc; 3591 pLast = p; 3592 iOffset += szFrame; 3593 p->flags |= PGHDR_WAL_APPEND; 3594 } 3595 3596 /* Recalculate checksums within the wal file if required. */ 3597 if( isCommit && pWal->iReCksum ){ 3598 rc = walRewriteChecksums(pWal, iFrame); 3599 if( rc ) return rc; 3600 } 3601 3602 /* If this is the end of a transaction, then we might need to pad 3603 ** the transaction and/or sync the WAL file. 3604 ** 3605 ** Padding and syncing only occur if this set of frames complete a 3606 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3607 ** or synchronous==OFF, then no padding or syncing are needed. 3608 ** 3609 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3610 ** needed and only the sync is done. If padding is needed, then the 3611 ** final frame is repeated (with its commit mark) until the next sector 3612 ** boundary is crossed. Only the part of the WAL prior to the last 3613 ** sector boundary is synced; the part of the last frame that extends 3614 ** past the sector boundary is written after the sync. 3615 */ 3616 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3617 int bSync = 1; 3618 if( pWal->padToSectorBoundary ){ 3619 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3620 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3621 bSync = (w.iSyncPoint==iOffset); 3622 testcase( bSync ); 3623 while( iOffset<w.iSyncPoint ){ 3624 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3625 if( rc ) return rc; 3626 iOffset += szFrame; 3627 nExtra++; 3628 assert( pLast!=0 ); 3629 } 3630 } 3631 if( bSync ){ 3632 assert( rc==SQLITE_OK ); 3633 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3634 } 3635 } 3636 3637 /* If this frame set completes the first transaction in the WAL and 3638 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3639 ** journal size limit, if possible. 3640 */ 3641 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3642 i64 sz = pWal->mxWalSize; 3643 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3644 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3645 } 3646 walLimitSize(pWal, sz); 3647 pWal->truncateOnCommit = 0; 3648 } 3649 3650 /* Append data to the wal-index. It is not necessary to lock the 3651 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3652 ** guarantees that there are no other writers, and no data that may 3653 ** be in use by existing readers is being overwritten. 3654 */ 3655 iFrame = pWal->hdr.mxFrame; 3656 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3657 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3658 iFrame++; 3659 rc = walIndexAppend(pWal, iFrame, p->pgno); 3660 } 3661 assert( pLast!=0 || nExtra==0 ); 3662 while( rc==SQLITE_OK && nExtra>0 ){ 3663 iFrame++; 3664 nExtra--; 3665 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3666 } 3667 3668 if( rc==SQLITE_OK ){ 3669 /* Update the private copy of the header. */ 3670 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3671 testcase( szPage<=32768 ); 3672 testcase( szPage>=65536 ); 3673 pWal->hdr.mxFrame = iFrame; 3674 if( isCommit ){ 3675 pWal->hdr.iChange++; 3676 pWal->hdr.nPage = nTruncate; 3677 } 3678 /* If this is a commit, update the wal-index header too. */ 3679 if( isCommit ){ 3680 walIndexWriteHdr(pWal); 3681 pWal->iCallback = iFrame; 3682 } 3683 } 3684 3685 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3686 return rc; 3687 } 3688 3689 /* 3690 ** This routine is called to implement sqlite3_wal_checkpoint() and 3691 ** related interfaces. 3692 ** 3693 ** Obtain a CHECKPOINT lock and then backfill as much information as 3694 ** we can from WAL into the database. 3695 ** 3696 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3697 ** callback. In this case this function runs a blocking checkpoint. 3698 */ 3699 int sqlite3WalCheckpoint( 3700 Wal *pWal, /* Wal connection */ 3701 sqlite3 *db, /* Check this handle's interrupt flag */ 3702 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3703 int (*xBusy)(void*), /* Function to call when busy */ 3704 void *pBusyArg, /* Context argument for xBusyHandler */ 3705 int sync_flags, /* Flags to sync db file with (or 0) */ 3706 int nBuf, /* Size of temporary buffer */ 3707 u8 *zBuf, /* Temporary buffer to use */ 3708 int *pnLog, /* OUT: Number of frames in WAL */ 3709 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3710 ){ 3711 int rc; /* Return code */ 3712 int isChanged = 0; /* True if a new wal-index header is loaded */ 3713 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3714 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3715 3716 assert( pWal->ckptLock==0 ); 3717 assert( pWal->writeLock==0 ); 3718 3719 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3720 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3721 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3722 3723 if( pWal->readOnly ) return SQLITE_READONLY; 3724 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3725 3726 /* Enable blocking locks, if possible. If blocking locks are successfully 3727 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3728 sqlite3WalDb(pWal, db); 3729 (void)walEnableBlocking(pWal); 3730 3731 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3732 ** "checkpoint" lock on the database file. 3733 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3734 ** checkpoint operation at the same time, the lock cannot be obtained and 3735 ** SQLITE_BUSY is returned. 3736 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3737 ** it will not be invoked in this case. 3738 */ 3739 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3740 testcase( rc==SQLITE_BUSY ); 3741 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3742 if( rc==SQLITE_OK ){ 3743 pWal->ckptLock = 1; 3744 3745 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3746 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3747 ** file. 3748 ** 3749 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3750 ** immediately, and a busy-handler is configured, it is invoked and the 3751 ** writer lock retried until either the busy-handler returns 0 or the 3752 ** lock is successfully obtained. 3753 */ 3754 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3755 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3756 if( rc==SQLITE_OK ){ 3757 pWal->writeLock = 1; 3758 }else if( rc==SQLITE_BUSY ){ 3759 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3760 xBusy2 = 0; 3761 rc = SQLITE_OK; 3762 } 3763 } 3764 } 3765 3766 3767 /* Read the wal-index header. */ 3768 if( rc==SQLITE_OK ){ 3769 walDisableBlocking(pWal); 3770 rc = walIndexReadHdr(pWal, &isChanged); 3771 (void)walEnableBlocking(pWal); 3772 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3773 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3774 } 3775 } 3776 3777 /* Copy data from the log to the database file. */ 3778 if( rc==SQLITE_OK ){ 3779 3780 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3781 rc = SQLITE_CORRUPT_BKPT; 3782 }else{ 3783 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3784 } 3785 3786 /* If no error occurred, set the output variables. */ 3787 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3788 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3789 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3790 } 3791 } 3792 3793 if( isChanged ){ 3794 /* If a new wal-index header was loaded before the checkpoint was 3795 ** performed, then the pager-cache associated with pWal is now 3796 ** out of date. So zero the cached wal-index header to ensure that 3797 ** next time the pager opens a snapshot on this database it knows that 3798 ** the cache needs to be reset. 3799 */ 3800 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3801 } 3802 3803 walDisableBlocking(pWal); 3804 sqlite3WalDb(pWal, 0); 3805 3806 /* Release the locks. */ 3807 sqlite3WalEndWriteTransaction(pWal); 3808 if( pWal->ckptLock ){ 3809 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3810 pWal->ckptLock = 0; 3811 } 3812 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3813 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3814 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3815 #endif 3816 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3817 } 3818 3819 /* Return the value to pass to a sqlite3_wal_hook callback, the 3820 ** number of frames in the WAL at the point of the last commit since 3821 ** sqlite3WalCallback() was called. If no commits have occurred since 3822 ** the last call, then return 0. 3823 */ 3824 int sqlite3WalCallback(Wal *pWal){ 3825 u32 ret = 0; 3826 if( pWal ){ 3827 ret = pWal->iCallback; 3828 pWal->iCallback = 0; 3829 } 3830 return (int)ret; 3831 } 3832 3833 /* 3834 ** This function is called to change the WAL subsystem into or out 3835 ** of locking_mode=EXCLUSIVE. 3836 ** 3837 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3838 ** into locking_mode=NORMAL. This means that we must acquire a lock 3839 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3840 ** or if the acquisition of the lock fails, then return 0. If the 3841 ** transition out of exclusive-mode is successful, return 1. This 3842 ** operation must occur while the pager is still holding the exclusive 3843 ** lock on the main database file. 3844 ** 3845 ** If op is one, then change from locking_mode=NORMAL into 3846 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3847 ** be released. Return 1 if the transition is made and 0 if the 3848 ** WAL is already in exclusive-locking mode - meaning that this 3849 ** routine is a no-op. The pager must already hold the exclusive lock 3850 ** on the main database file before invoking this operation. 3851 ** 3852 ** If op is negative, then do a dry-run of the op==1 case but do 3853 ** not actually change anything. The pager uses this to see if it 3854 ** should acquire the database exclusive lock prior to invoking 3855 ** the op==1 case. 3856 */ 3857 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3858 int rc; 3859 assert( pWal->writeLock==0 ); 3860 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3861 3862 /* pWal->readLock is usually set, but might be -1 if there was a 3863 ** prior error while attempting to acquire are read-lock. This cannot 3864 ** happen if the connection is actually in exclusive mode (as no xShmLock 3865 ** locks are taken in this case). Nor should the pager attempt to 3866 ** upgrade to exclusive-mode following such an error. 3867 */ 3868 assert( pWal->readLock>=0 || pWal->lockError ); 3869 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3870 3871 if( op==0 ){ 3872 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3873 pWal->exclusiveMode = WAL_NORMAL_MODE; 3874 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3875 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3876 } 3877 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3878 }else{ 3879 /* Already in locking_mode=NORMAL */ 3880 rc = 0; 3881 } 3882 }else if( op>0 ){ 3883 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3884 assert( pWal->readLock>=0 ); 3885 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3886 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3887 rc = 1; 3888 }else{ 3889 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3890 } 3891 return rc; 3892 } 3893 3894 /* 3895 ** Return true if the argument is non-NULL and the WAL module is using 3896 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3897 ** WAL module is using shared-memory, return false. 3898 */ 3899 int sqlite3WalHeapMemory(Wal *pWal){ 3900 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3901 } 3902 3903 #ifdef SQLITE_ENABLE_SNAPSHOT 3904 /* Create a snapshot object. The content of a snapshot is opaque to 3905 ** every other subsystem, so the WAL module can put whatever it needs 3906 ** in the object. 3907 */ 3908 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3909 int rc = SQLITE_OK; 3910 WalIndexHdr *pRet; 3911 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3912 3913 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3914 3915 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3916 *ppSnapshot = 0; 3917 return SQLITE_ERROR; 3918 } 3919 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3920 if( pRet==0 ){ 3921 rc = SQLITE_NOMEM_BKPT; 3922 }else{ 3923 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3924 *ppSnapshot = (sqlite3_snapshot*)pRet; 3925 } 3926 3927 return rc; 3928 } 3929 3930 /* Try to open on pSnapshot when the next read-transaction starts 3931 */ 3932 void sqlite3WalSnapshotOpen( 3933 Wal *pWal, 3934 sqlite3_snapshot *pSnapshot 3935 ){ 3936 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3937 } 3938 3939 /* 3940 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3941 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3942 */ 3943 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3944 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3945 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3946 3947 /* aSalt[0] is a copy of the value stored in the wal file header. It 3948 ** is incremented each time the wal file is restarted. */ 3949 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3950 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3951 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3952 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3953 return 0; 3954 } 3955 3956 /* 3957 ** The caller currently has a read transaction open on the database. 3958 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3959 ** checks if the snapshot passed as the second argument is still 3960 ** available. If so, SQLITE_OK is returned. 3961 ** 3962 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3963 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3964 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3965 ** lock is released before returning. 3966 */ 3967 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3968 int rc; 3969 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3970 if( rc==SQLITE_OK ){ 3971 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3972 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3973 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3974 ){ 3975 rc = SQLITE_ERROR_SNAPSHOT; 3976 walUnlockShared(pWal, WAL_CKPT_LOCK); 3977 } 3978 } 3979 return rc; 3980 } 3981 3982 /* 3983 ** Release a lock obtained by an earlier successful call to 3984 ** sqlite3WalSnapshotCheck(). 3985 */ 3986 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3987 assert( pWal ); 3988 walUnlockShared(pWal, WAL_CKPT_LOCK); 3989 } 3990 3991 3992 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3993 3994 #ifdef SQLITE_ENABLE_ZIPVFS 3995 /* 3996 ** If the argument is not NULL, it points to a Wal object that holds a 3997 ** read-lock. This function returns the database page-size if it is known, 3998 ** or zero if it is not (or if pWal is NULL). 3999 */ 4000 int sqlite3WalFramesize(Wal *pWal){ 4001 assert( pWal==0 || pWal->readLock>=0 ); 4002 return (pWal ? pWal->szPage : 0); 4003 } 4004 #endif 4005 4006 /* Return the sqlite3_file object for the WAL file 4007 */ 4008 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4009 return pWal->pWalFd; 4010 } 4011 4012 #endif /* #ifndef SQLITE_OMIT_WAL */ 4013