1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P, return the index of the last frame for page P in the WAL, 146 ** or return NULL if there are no frames for page P in the WAL. 147 ** 148 ** The wal-index consists of a header region, followed by an one or 149 ** more index blocks. 150 ** 151 ** The wal-index header contains the total number of frames within the WAL 152 ** in the the mxFrame field. 153 ** 154 ** Each index block except for the first contains information on 155 ** HASHTABLE_NPAGE frames. The first index block contains information on 156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 158 ** first index block are the same size as all other index blocks in the 159 ** wal-index. 160 ** 161 ** Each index block contains two sections, a page-mapping that contains the 162 ** database page number associated with each wal frame, and a hash-table 163 ** that allows readers to query an index block for a specific page number. 164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 165 ** for the first index block) 32-bit page numbers. The first entry in the 166 ** first index-block contains the database page number corresponding to the 167 ** first frame in the WAL file. The first entry in the second index block 168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 169 ** the log, and so on. 170 ** 171 ** The last index block in a wal-index usually contains less than the full 172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 173 ** depending on the contents of the WAL file. This does not change the 174 ** allocated size of the page-mapping array - the page-mapping array merely 175 ** contains unused entries. 176 ** 177 ** Even without using the hash table, the last frame for page P 178 ** can be found by scanning the page-mapping sections of each index block 179 ** starting with the last index block and moving toward the first, and 180 ** within each index block, starting at the end and moving toward the 181 ** beginning. The first entry that equals P corresponds to the frame 182 ** holding the content for that page. 183 ** 184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 186 ** hash table for each page number in the mapping section, so the hash 187 ** table is never more than half full. The expected number of collisions 188 ** prior to finding a match is 1. Each entry of the hash table is an 189 ** 1-based index of an entry in the mapping section of the same 190 ** index block. Let K be the 1-based index of the largest entry in 191 ** the mapping section. (For index blocks other than the last, K will 192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 193 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 194 ** contain a value of 0. 195 ** 196 ** To look for page P in the hash table, first compute a hash iKey on 197 ** P as follows: 198 ** 199 ** iKey = (P * 383) % HASHTABLE_NSLOT 200 ** 201 ** Then start scanning entries of the hash table, starting with iKey 202 ** (wrapping around to the beginning when the end of the hash table is 203 ** reached) until an unused hash slot is found. Let the first unused slot 204 ** be at index iUnused. (iUnused might be less than iKey if there was 205 ** wrap-around.) Because the hash table is never more than half full, 206 ** the search is guaranteed to eventually hit an unused entry. Let 207 ** iMax be the value between iKey and iUnused, closest to iUnused, 208 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 209 ** no hash slot such that aHash[i]==p) then page P is not in the 210 ** current index block. Otherwise the iMax-th mapping entry of the 211 ** current index block corresponds to the last entry that references 212 ** page P. 213 ** 214 ** A hash search begins with the last index block and moves toward the 215 ** first index block, looking for entries corresponding to page P. On 216 ** average, only two or three slots in each index block need to be 217 ** examined in order to either find the last entry for page P, or to 218 ** establish that no such entry exists in the block. Each index block 219 ** holds over 4000 entries. So two or three index blocks are sufficient 220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 221 ** comparisons (on average) suffice to either locate a frame in the 222 ** WAL or to establish that the frame does not exist in the WAL. This 223 ** is much faster than scanning the entire 10MB WAL. 224 ** 225 ** Note that entries are added in order of increasing K. Hence, one 226 ** reader might be using some value K0 and a second reader that started 227 ** at a later time (after additional transactions were added to the WAL 228 ** and to the wal-index) might be using a different value K1, where K1>K0. 229 ** Both readers can use the same hash table and mapping section to get 230 ** the correct result. There may be entries in the hash table with 231 ** K>K0 but to the first reader, those entries will appear to be unused 232 ** slots in the hash table and so the first reader will get an answer as 233 ** if no values greater than K0 had ever been inserted into the hash table 234 ** in the first place - which is what reader one wants. Meanwhile, the 235 ** second reader using K1 will see additional values that were inserted 236 ** later, which is exactly what reader two wants. 237 ** 238 ** When a rollback occurs, the value of K is decreased. Hash table entries 239 ** that correspond to frames greater than the new K value are removed 240 ** from the hash table at this point. 241 */ 242 #ifndef SQLITE_OMIT_WAL 243 244 #include "wal.h" 245 246 /* 247 ** Trace output macros 248 */ 249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 250 int sqlite3WalTrace = 0; 251 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 252 #else 253 # define WALTRACE(X) 254 #endif 255 256 /* 257 ** The maximum (and only) versions of the wal and wal-index formats 258 ** that may be interpreted by this version of SQLite. 259 ** 260 ** If a client begins recovering a WAL file and finds that (a) the checksum 261 ** values in the wal-header are correct and (b) the version field is not 262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 263 ** 264 ** Similarly, if a client successfully reads a wal-index header (i.e. the 265 ** checksum test is successful) and finds that the version field is not 266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 267 ** returns SQLITE_CANTOPEN. 268 */ 269 #define WAL_MAX_VERSION 3007000 270 #define WALINDEX_MAX_VERSION 3007000 271 272 /* 273 ** Indices of various locking bytes. WAL_NREADER is the number 274 ** of available reader locks and should be at least 3. 275 */ 276 #define WAL_WRITE_LOCK 0 277 #define WAL_ALL_BUT_WRITE 1 278 #define WAL_CKPT_LOCK 1 279 #define WAL_RECOVER_LOCK 2 280 #define WAL_READ_LOCK(I) (3+(I)) 281 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 282 283 284 /* Object declarations */ 285 typedef struct WalIndexHdr WalIndexHdr; 286 typedef struct WalIterator WalIterator; 287 typedef struct WalCkptInfo WalCkptInfo; 288 289 290 /* 291 ** The following object holds a copy of the wal-index header content. 292 ** 293 ** The actual header in the wal-index consists of two copies of this 294 ** object. 295 ** 296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 297 ** Or it can be 1 to represent a 65536-byte page. The latter case was 298 ** added in 3.7.1 when support for 64K pages was added. 299 */ 300 struct WalIndexHdr { 301 u32 iVersion; /* Wal-index version */ 302 u32 unused; /* Unused (padding) field */ 303 u32 iChange; /* Counter incremented each transaction */ 304 u8 isInit; /* 1 when initialized */ 305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 306 u16 szPage; /* Database page size in bytes. 1==64K */ 307 u32 mxFrame; /* Index of last valid frame in the WAL */ 308 u32 nPage; /* Size of database in pages */ 309 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 310 u32 aSalt[2]; /* Two salt values copied from WAL header */ 311 u32 aCksum[2]; /* Checksum over all prior fields */ 312 }; 313 314 /* 315 ** A copy of the following object occurs in the wal-index immediately 316 ** following the second copy of the WalIndexHdr. This object stores 317 ** information used by checkpoint. 318 ** 319 ** nBackfill is the number of frames in the WAL that have been written 320 ** back into the database. (We call the act of moving content from WAL to 321 ** database "backfilling".) The nBackfill number is never greater than 322 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 325 ** mxFrame back to zero when the WAL is reset. 326 ** 327 ** There is one entry in aReadMark[] for each reader lock. If a reader 328 ** holds read-lock K, then the value in aReadMark[K] is no greater than 329 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 330 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 331 ** a special case; its value is never used and it exists as a place-holder 332 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 334 ** directly from the database. 335 ** 336 ** The value of aReadMark[K] may only be changed by a thread that 337 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 338 ** aReadMark[K] cannot changed while there is a reader is using that mark 339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 340 ** 341 ** The checkpointer may only transfer frames from WAL to database where 342 ** the frame numbers are less than or equal to every aReadMark[] that is 343 ** in use (that is, every aReadMark[j] for which there is a corresponding 344 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 345 ** largest value and will increase an unused aReadMark[] to mxFrame if there 346 ** is not already an aReadMark[] equal to mxFrame. The exception to the 347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 348 ** in the WAL has been backfilled into the database) then new readers 349 ** will choose aReadMark[0] which has value 0 and hence such reader will 350 ** get all their all content directly from the database file and ignore 351 ** the WAL. 352 ** 353 ** Writers normally append new frames to the end of the WAL. However, 354 ** if nBackfill equals mxFrame (meaning that all WAL content has been 355 ** written back into the database) and if no readers are using the WAL 356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 357 ** the writer will first "reset" the WAL back to the beginning and start 358 ** writing new content beginning at frame 1. 359 ** 360 ** We assume that 32-bit loads are atomic and so no locks are needed in 361 ** order to read from any aReadMark[] entries. 362 */ 363 struct WalCkptInfo { 364 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 365 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 366 }; 367 #define READMARK_NOT_USED 0xffffffff 368 369 370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 372 ** only support mandatory file-locks, we do not read or write data 373 ** from the region of the file on which locks are applied. 374 */ 375 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) 376 #define WALINDEX_LOCK_RESERVED 16 377 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) 378 379 /* Size of header before each frame in wal */ 380 #define WAL_FRAME_HDRSIZE 24 381 382 /* Size of write ahead log header, including checksum. */ 383 /* #define WAL_HDRSIZE 24 */ 384 #define WAL_HDRSIZE 32 385 386 /* WAL magic value. Either this value, or the same value with the least 387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 388 ** big-endian format in the first 4 bytes of a WAL file. 389 ** 390 ** If the LSB is set, then the checksums for each frame within the WAL 391 ** file are calculated by treating all data as an array of 32-bit 392 ** big-endian words. Otherwise, they are calculated by interpreting 393 ** all data as 32-bit little-endian words. 394 */ 395 #define WAL_MAGIC 0x377f0682 396 397 /* 398 ** Return the offset of frame iFrame in the write-ahead log file, 399 ** assuming a database page size of szPage bytes. The offset returned 400 ** is to the start of the write-ahead log frame-header. 401 */ 402 #define walFrameOffset(iFrame, szPage) ( \ 403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 404 ) 405 406 /* 407 ** An open write-ahead log file is represented by an instance of the 408 ** following object. 409 */ 410 struct Wal { 411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 412 sqlite3_file *pDbFd; /* File handle for the database file */ 413 sqlite3_file *pWalFd; /* File handle for WAL file */ 414 u32 iCallback; /* Value to pass to log callback (or 0) */ 415 int nWiData; /* Size of array apWiData */ 416 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 417 u32 szPage; /* Database page size */ 418 i16 readLock; /* Which read lock is being held. -1 for none */ 419 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 420 u8 writeLock; /* True if in a write transaction */ 421 u8 ckptLock; /* True if holding a checkpoint lock */ 422 u8 readOnly; /* True if the WAL file is open read-only */ 423 WalIndexHdr hdr; /* Wal-index header for current transaction */ 424 const char *zWalName; /* Name of WAL file */ 425 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 426 #ifdef SQLITE_DEBUG 427 u8 lockError; /* True if a locking error has occurred */ 428 #endif 429 }; 430 431 /* 432 ** Each page of the wal-index mapping contains a hash-table made up of 433 ** an array of HASHTABLE_NSLOT elements of the following type. 434 */ 435 typedef u16 ht_slot; 436 437 /* 438 ** This structure is used to implement an iterator that loops through 439 ** all frames in the WAL in database page order. Where two or more frames 440 ** correspond to the same database page, the iterator visits only the 441 ** frame most recently written to the WAL (in other words, the frame with 442 ** the largest index). 443 ** 444 ** The internals of this structure are only accessed by: 445 ** 446 ** walIteratorInit() - Create a new iterator, 447 ** walIteratorNext() - Step an iterator, 448 ** walIteratorFree() - Free an iterator. 449 ** 450 ** This functionality is used by the checkpoint code (see walCheckpoint()). 451 */ 452 struct WalIterator { 453 int iPrior; /* Last result returned from the iterator */ 454 int nSegment; /* Size of the aSegment[] array */ 455 struct WalSegment { 456 int iNext; /* Next slot in aIndex[] not yet returned */ 457 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 458 u32 *aPgno; /* Array of page numbers. */ 459 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */ 460 int iZero; /* Frame number associated with aPgno[0] */ 461 } aSegment[1]; /* One for every 32KB page in the WAL */ 462 }; 463 464 /* 465 ** Define the parameters of the hash tables in the wal-index file. There 466 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 467 ** wal-index. 468 ** 469 ** Changing any of these constants will alter the wal-index format and 470 ** create incompatibilities. 471 */ 472 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 473 #define HASHTABLE_HASH_1 383 /* Should be prime */ 474 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 475 476 /* 477 ** The block of page numbers associated with the first hash-table in a 478 ** wal-index is smaller than usual. This is so that there is a complete 479 ** hash-table on each aligned 32KB page of the wal-index. 480 */ 481 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 482 483 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 484 #define WALINDEX_PGSZ ( \ 485 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 486 ) 487 488 /* 489 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 490 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 491 ** numbered from zero. 492 ** 493 ** If this call is successful, *ppPage is set to point to the wal-index 494 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 495 ** then an SQLite error code is returned and *ppPage is set to 0. 496 */ 497 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 498 int rc = SQLITE_OK; 499 500 /* Enlarge the pWal->apWiData[] array if required */ 501 if( pWal->nWiData<=iPage ){ 502 int nByte = sizeof(u32*)*(iPage+1); 503 volatile u32 **apNew; 504 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte); 505 if( !apNew ){ 506 *ppPage = 0; 507 return SQLITE_NOMEM; 508 } 509 memset((void*)&apNew[pWal->nWiData], 0, 510 sizeof(u32*)*(iPage+1-pWal->nWiData)); 511 pWal->apWiData = apNew; 512 pWal->nWiData = iPage+1; 513 } 514 515 /* Request a pointer to the required page from the VFS */ 516 if( pWal->apWiData[iPage]==0 ){ 517 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 518 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 519 ); 520 } 521 522 *ppPage = pWal->apWiData[iPage]; 523 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 524 return rc; 525 } 526 527 /* 528 ** Return a pointer to the WalCkptInfo structure in the wal-index. 529 */ 530 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 531 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 532 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 533 } 534 535 /* 536 ** Return a pointer to the WalIndexHdr structure in the wal-index. 537 */ 538 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 539 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 540 return (volatile WalIndexHdr*)pWal->apWiData[0]; 541 } 542 543 /* 544 ** The argument to this macro must be of type u32. On a little-endian 545 ** architecture, it returns the u32 value that results from interpreting 546 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 547 ** returns the value that would be produced by intepreting the 4 bytes 548 ** of the input value as a little-endian integer. 549 */ 550 #define BYTESWAP32(x) ( \ 551 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 552 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 553 ) 554 555 /* 556 ** Generate or extend an 8 byte checksum based on the data in 557 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 558 ** initial values of 0 and 0 if aIn==NULL). 559 ** 560 ** The checksum is written back into aOut[] before returning. 561 ** 562 ** nByte must be a positive multiple of 8. 563 */ 564 static void walChecksumBytes( 565 int nativeCksum, /* True for native byte-order, false for non-native */ 566 u8 *a, /* Content to be checksummed */ 567 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 568 const u32 *aIn, /* Initial checksum value input */ 569 u32 *aOut /* OUT: Final checksum value output */ 570 ){ 571 u32 s1, s2; 572 u32 *aData = (u32 *)a; 573 u32 *aEnd = (u32 *)&a[nByte]; 574 575 if( aIn ){ 576 s1 = aIn[0]; 577 s2 = aIn[1]; 578 }else{ 579 s1 = s2 = 0; 580 } 581 582 assert( nByte>=8 ); 583 assert( (nByte&0x00000007)==0 ); 584 585 if( nativeCksum ){ 586 do { 587 s1 += *aData++ + s2; 588 s2 += *aData++ + s1; 589 }while( aData<aEnd ); 590 }else{ 591 do { 592 s1 += BYTESWAP32(aData[0]) + s2; 593 s2 += BYTESWAP32(aData[1]) + s1; 594 aData += 2; 595 }while( aData<aEnd ); 596 } 597 598 aOut[0] = s1; 599 aOut[1] = s2; 600 } 601 602 /* 603 ** Write the header information in pWal->hdr into the wal-index. 604 ** 605 ** The checksum on pWal->hdr is updated before it is written. 606 */ 607 static void walIndexWriteHdr(Wal *pWal){ 608 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 609 const int nCksum = offsetof(WalIndexHdr, aCksum); 610 611 assert( pWal->writeLock ); 612 pWal->hdr.isInit = 1; 613 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 614 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 615 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); 616 sqlite3OsShmBarrier(pWal->pDbFd); 617 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); 618 } 619 620 /* 621 ** This function encodes a single frame header and writes it to a buffer 622 ** supplied by the caller. A frame-header is made up of a series of 623 ** 4-byte big-endian integers, as follows: 624 ** 625 ** 0: Page number. 626 ** 4: For commit records, the size of the database image in pages 627 ** after the commit. For all other records, zero. 628 ** 8: Salt-1 (copied from the wal-header) 629 ** 12: Salt-2 (copied from the wal-header) 630 ** 16: Checksum-1. 631 ** 20: Checksum-2. 632 */ 633 static void walEncodeFrame( 634 Wal *pWal, /* The write-ahead log */ 635 u32 iPage, /* Database page number for frame */ 636 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 637 u8 *aData, /* Pointer to page data */ 638 u8 *aFrame /* OUT: Write encoded frame here */ 639 ){ 640 int nativeCksum; /* True for native byte-order checksums */ 641 u32 *aCksum = pWal->hdr.aFrameCksum; 642 assert( WAL_FRAME_HDRSIZE==24 ); 643 sqlite3Put4byte(&aFrame[0], iPage); 644 sqlite3Put4byte(&aFrame[4], nTruncate); 645 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 646 647 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 648 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 649 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 650 651 sqlite3Put4byte(&aFrame[16], aCksum[0]); 652 sqlite3Put4byte(&aFrame[20], aCksum[1]); 653 } 654 655 /* 656 ** Check to see if the frame with header in aFrame[] and content 657 ** in aData[] is valid. If it is a valid frame, fill *piPage and 658 ** *pnTruncate and return true. Return if the frame is not valid. 659 */ 660 static int walDecodeFrame( 661 Wal *pWal, /* The write-ahead log */ 662 u32 *piPage, /* OUT: Database page number for frame */ 663 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 664 u8 *aData, /* Pointer to page data (for checksum) */ 665 u8 *aFrame /* Frame data */ 666 ){ 667 int nativeCksum; /* True for native byte-order checksums */ 668 u32 *aCksum = pWal->hdr.aFrameCksum; 669 u32 pgno; /* Page number of the frame */ 670 assert( WAL_FRAME_HDRSIZE==24 ); 671 672 /* A frame is only valid if the salt values in the frame-header 673 ** match the salt values in the wal-header. 674 */ 675 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 676 return 0; 677 } 678 679 /* A frame is only valid if the page number is creater than zero. 680 */ 681 pgno = sqlite3Get4byte(&aFrame[0]); 682 if( pgno==0 ){ 683 return 0; 684 } 685 686 /* A frame is only valid if a checksum of the WAL header, 687 ** all prior frams, the first 16 bytes of this frame-header, 688 ** and the frame-data matches the checksum in the last 8 689 ** bytes of this frame-header. 690 */ 691 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 692 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 693 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 694 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 695 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 696 ){ 697 /* Checksum failed. */ 698 return 0; 699 } 700 701 /* If we reach this point, the frame is valid. Return the page number 702 ** and the new database size. 703 */ 704 *piPage = pgno; 705 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 706 return 1; 707 } 708 709 710 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 711 /* 712 ** Names of locks. This routine is used to provide debugging output and is not 713 ** a part of an ordinary build. 714 */ 715 static const char *walLockName(int lockIdx){ 716 if( lockIdx==WAL_WRITE_LOCK ){ 717 return "WRITE-LOCK"; 718 }else if( lockIdx==WAL_CKPT_LOCK ){ 719 return "CKPT-LOCK"; 720 }else if( lockIdx==WAL_RECOVER_LOCK ){ 721 return "RECOVER-LOCK"; 722 }else{ 723 static char zName[15]; 724 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 725 lockIdx-WAL_READ_LOCK(0)); 726 return zName; 727 } 728 } 729 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 730 731 732 /* 733 ** Set or release locks on the WAL. Locks are either shared or exclusive. 734 ** A lock cannot be moved directly between shared and exclusive - it must go 735 ** through the unlocked state first. 736 ** 737 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 738 */ 739 static int walLockShared(Wal *pWal, int lockIdx){ 740 int rc; 741 if( pWal->exclusiveMode ) return SQLITE_OK; 742 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 743 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 744 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 745 walLockName(lockIdx), rc ? "failed" : "ok")); 746 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 747 return rc; 748 } 749 static void walUnlockShared(Wal *pWal, int lockIdx){ 750 if( pWal->exclusiveMode ) return; 751 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 752 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 753 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 754 } 755 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 756 int rc; 757 if( pWal->exclusiveMode ) return SQLITE_OK; 758 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 759 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 760 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 761 walLockName(lockIdx), n, rc ? "failed" : "ok")); 762 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 763 return rc; 764 } 765 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 766 if( pWal->exclusiveMode ) return; 767 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 768 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 769 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 770 walLockName(lockIdx), n)); 771 } 772 773 /* 774 ** Compute a hash on a page number. The resulting hash value must land 775 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 776 ** the hash to the next value in the event of a collision. 777 */ 778 static int walHash(u32 iPage){ 779 assert( iPage>0 ); 780 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 781 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 782 } 783 static int walNextHash(int iPriorHash){ 784 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 785 } 786 787 /* 788 ** Return pointers to the hash table and page number array stored on 789 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 790 ** numbered starting from 0. 791 ** 792 ** Set output variable *paHash to point to the start of the hash table 793 ** in the wal-index file. Set *piZero to one less than the frame 794 ** number of the first frame indexed by this hash table. If a 795 ** slot in the hash table is set to N, it refers to frame number 796 ** (*piZero+N) in the log. 797 ** 798 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 799 ** first frame indexed by the hash table, frame (*piZero+1). 800 */ 801 static int walHashGet( 802 Wal *pWal, /* WAL handle */ 803 int iHash, /* Find the iHash'th table */ 804 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 805 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 806 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 807 ){ 808 int rc; /* Return code */ 809 volatile u32 *aPgno; 810 811 rc = walIndexPage(pWal, iHash, &aPgno); 812 assert( rc==SQLITE_OK || iHash>0 ); 813 814 if( rc==SQLITE_OK ){ 815 u32 iZero; 816 volatile ht_slot *aHash; 817 818 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 819 if( iHash==0 ){ 820 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 821 iZero = 0; 822 }else{ 823 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 824 } 825 826 *paPgno = &aPgno[-1]; 827 *paHash = aHash; 828 *piZero = iZero; 829 } 830 return rc; 831 } 832 833 /* 834 ** Return the number of the wal-index page that contains the hash-table 835 ** and page-number array that contain entries corresponding to WAL frame 836 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 837 ** are numbered starting from 0. 838 */ 839 static int walFramePage(u32 iFrame){ 840 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 841 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 842 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 843 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 844 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 845 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 846 ); 847 return iHash; 848 } 849 850 /* 851 ** Return the page number associated with frame iFrame in this WAL. 852 */ 853 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 854 int iHash = walFramePage(iFrame); 855 if( iHash==0 ){ 856 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 857 } 858 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 859 } 860 861 /* 862 ** Remove entries from the hash table that point to WAL slots greater 863 ** than pWal->hdr.mxFrame. 864 ** 865 ** This function is called whenever pWal->hdr.mxFrame is decreased due 866 ** to a rollback or savepoint. 867 ** 868 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 869 ** updated. Any later hash tables will be automatically cleared when 870 ** pWal->hdr.mxFrame advances to the point where those hash tables are 871 ** actually needed. 872 */ 873 static void walCleanupHash(Wal *pWal){ 874 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 875 volatile u32 *aPgno = 0; /* Page number array for hash table */ 876 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 877 int iLimit = 0; /* Zero values greater than this */ 878 int nByte; /* Number of bytes to zero in aPgno[] */ 879 int i; /* Used to iterate through aHash[] */ 880 881 assert( pWal->writeLock ); 882 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 883 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 884 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 885 886 if( pWal->hdr.mxFrame==0 ) return; 887 888 /* Obtain pointers to the hash-table and page-number array containing 889 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 890 ** that the page said hash-table and array reside on is already mapped. 891 */ 892 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 893 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 894 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 895 896 /* Zero all hash-table entries that correspond to frame numbers greater 897 ** than pWal->hdr.mxFrame. 898 */ 899 iLimit = pWal->hdr.mxFrame - iZero; 900 assert( iLimit>0 ); 901 for(i=0; i<HASHTABLE_NSLOT; i++){ 902 if( aHash[i]>iLimit ){ 903 aHash[i] = 0; 904 } 905 } 906 907 /* Zero the entries in the aPgno array that correspond to frames with 908 ** frame numbers greater than pWal->hdr.mxFrame. 909 */ 910 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 911 memset((void *)&aPgno[iLimit+1], 0, nByte); 912 913 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 914 /* Verify that the every entry in the mapping region is still reachable 915 ** via the hash table even after the cleanup. 916 */ 917 if( iLimit ){ 918 int i; /* Loop counter */ 919 int iKey; /* Hash key */ 920 for(i=1; i<=iLimit; i++){ 921 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 922 if( aHash[iKey]==i ) break; 923 } 924 assert( aHash[iKey]==i ); 925 } 926 } 927 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 928 } 929 930 931 /* 932 ** Set an entry in the wal-index that will map database page number 933 ** pPage into WAL frame iFrame. 934 */ 935 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 936 int rc; /* Return code */ 937 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 938 volatile u32 *aPgno = 0; /* Page number array */ 939 volatile ht_slot *aHash = 0; /* Hash table */ 940 941 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 942 943 /* Assuming the wal-index file was successfully mapped, populate the 944 ** page number array and hash table entry. 945 */ 946 if( rc==SQLITE_OK ){ 947 int iKey; /* Hash table key */ 948 int idx; /* Value to write to hash-table slot */ 949 int nCollide; /* Number of hash collisions */ 950 951 idx = iFrame - iZero; 952 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 953 954 /* If this is the first entry to be added to this hash-table, zero the 955 ** entire hash table and aPgno[] array before proceding. 956 */ 957 if( idx==1 ){ 958 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 959 memset((void*)&aPgno[1], 0, nByte); 960 } 961 962 /* If the entry in aPgno[] is already set, then the previous writer 963 ** must have exited unexpectedly in the middle of a transaction (after 964 ** writing one or more dirty pages to the WAL to free up memory). 965 ** Remove the remnants of that writers uncommitted transaction from 966 ** the hash-table before writing any new entries. 967 */ 968 if( aPgno[idx] ){ 969 walCleanupHash(pWal); 970 assert( !aPgno[idx] ); 971 } 972 973 /* Write the aPgno[] array entry and the hash-table slot. */ 974 nCollide = idx; 975 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 976 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 977 } 978 aPgno[idx] = iPage; 979 aHash[iKey] = (ht_slot)idx; 980 981 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 982 /* Verify that the number of entries in the hash table exactly equals 983 ** the number of entries in the mapping region. 984 */ 985 { 986 int i; /* Loop counter */ 987 int nEntry = 0; /* Number of entries in the hash table */ 988 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 989 assert( nEntry==idx ); 990 } 991 992 /* Verify that the every entry in the mapping region is reachable 993 ** via the hash table. This turns out to be a really, really expensive 994 ** thing to check, so only do this occasionally - not on every 995 ** iteration. 996 */ 997 if( (idx&0x3ff)==0 ){ 998 int i; /* Loop counter */ 999 for(i=1; i<=idx; i++){ 1000 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1001 if( aHash[iKey]==i ) break; 1002 } 1003 assert( aHash[iKey]==i ); 1004 } 1005 } 1006 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1007 } 1008 1009 1010 return rc; 1011 } 1012 1013 1014 /* 1015 ** Recover the wal-index by reading the write-ahead log file. 1016 ** 1017 ** This routine first tries to establish an exclusive lock on the 1018 ** wal-index to prevent other threads/processes from doing anything 1019 ** with the WAL or wal-index while recovery is running. The 1020 ** WAL_RECOVER_LOCK is also held so that other threads will know 1021 ** that this thread is running recovery. If unable to establish 1022 ** the necessary locks, this routine returns SQLITE_BUSY. 1023 */ 1024 static int walIndexRecover(Wal *pWal){ 1025 int rc; /* Return Code */ 1026 i64 nSize; /* Size of log file */ 1027 u32 aFrameCksum[2] = {0, 0}; 1028 int iLock; /* Lock offset to lock for checkpoint */ 1029 int nLock; /* Number of locks to hold */ 1030 1031 /* Obtain an exclusive lock on all byte in the locking range not already 1032 ** locked by the caller. The caller is guaranteed to have locked the 1033 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1034 ** If successful, the same bytes that are locked here are unlocked before 1035 ** this function returns. 1036 */ 1037 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1038 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1039 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1040 assert( pWal->writeLock ); 1041 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1042 nLock = SQLITE_SHM_NLOCK - iLock; 1043 rc = walLockExclusive(pWal, iLock, nLock); 1044 if( rc ){ 1045 return rc; 1046 } 1047 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1048 1049 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1050 1051 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1052 if( rc!=SQLITE_OK ){ 1053 goto recovery_error; 1054 } 1055 1056 if( nSize>WAL_HDRSIZE ){ 1057 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1058 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1059 int szFrame; /* Number of bytes in buffer aFrame[] */ 1060 u8 *aData; /* Pointer to data part of aFrame buffer */ 1061 int iFrame; /* Index of last frame read */ 1062 i64 iOffset; /* Next offset to read from log file */ 1063 int szPage; /* Page size according to the log */ 1064 u32 magic; /* Magic value read from WAL header */ 1065 u32 version; /* Magic value read from WAL header */ 1066 1067 /* Read in the WAL header. */ 1068 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1069 if( rc!=SQLITE_OK ){ 1070 goto recovery_error; 1071 } 1072 1073 /* If the database page size is not a power of two, or is greater than 1074 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1075 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1076 ** WAL file. 1077 */ 1078 magic = sqlite3Get4byte(&aBuf[0]); 1079 szPage = sqlite3Get4byte(&aBuf[8]); 1080 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1081 || szPage&(szPage-1) 1082 || szPage>SQLITE_MAX_PAGE_SIZE 1083 || szPage<512 1084 ){ 1085 goto finished; 1086 } 1087 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1088 pWal->szPage = szPage; 1089 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1090 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1091 1092 /* Verify that the WAL header checksum is correct */ 1093 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1094 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1095 ); 1096 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1097 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1098 ){ 1099 goto finished; 1100 } 1101 1102 /* Verify that the version number on the WAL format is one that 1103 ** are able to understand */ 1104 version = sqlite3Get4byte(&aBuf[4]); 1105 if( version!=WAL_MAX_VERSION ){ 1106 rc = SQLITE_CANTOPEN_BKPT; 1107 goto finished; 1108 } 1109 1110 /* Malloc a buffer to read frames into. */ 1111 szFrame = szPage + WAL_FRAME_HDRSIZE; 1112 aFrame = (u8 *)sqlite3_malloc(szFrame); 1113 if( !aFrame ){ 1114 rc = SQLITE_NOMEM; 1115 goto recovery_error; 1116 } 1117 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1118 1119 /* Read all frames from the log file. */ 1120 iFrame = 0; 1121 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1122 u32 pgno; /* Database page number for frame */ 1123 u32 nTruncate; /* dbsize field from frame header */ 1124 int isValid; /* True if this frame is valid */ 1125 1126 /* Read and decode the next log frame. */ 1127 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1128 if( rc!=SQLITE_OK ) break; 1129 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1130 if( !isValid ) break; 1131 rc = walIndexAppend(pWal, ++iFrame, pgno); 1132 if( rc!=SQLITE_OK ) break; 1133 1134 /* If nTruncate is non-zero, this is a commit record. */ 1135 if( nTruncate ){ 1136 pWal->hdr.mxFrame = iFrame; 1137 pWal->hdr.nPage = nTruncate; 1138 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1139 testcase( szPage<=32768 ); 1140 testcase( szPage>=65536 ); 1141 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1142 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1143 } 1144 } 1145 1146 sqlite3_free(aFrame); 1147 } 1148 1149 finished: 1150 if( rc==SQLITE_OK ){ 1151 volatile WalCkptInfo *pInfo; 1152 int i; 1153 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1154 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1155 walIndexWriteHdr(pWal); 1156 1157 /* Reset the checkpoint-header. This is safe because this thread is 1158 ** currently holding locks that exclude all other readers, writers and 1159 ** checkpointers. 1160 */ 1161 pInfo = walCkptInfo(pWal); 1162 pInfo->nBackfill = 0; 1163 pInfo->aReadMark[0] = 0; 1164 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1165 1166 /* If more than one frame was recovered from the log file, report an 1167 ** event via sqlite3_log(). This is to help with identifying performance 1168 ** problems caused by applications routinely shutting down without 1169 ** checkpointing the log file. 1170 */ 1171 if( pWal->hdr.nPage ){ 1172 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s", 1173 pWal->hdr.nPage, pWal->zWalName 1174 ); 1175 } 1176 } 1177 1178 recovery_error: 1179 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1180 walUnlockExclusive(pWal, iLock, nLock); 1181 return rc; 1182 } 1183 1184 /* 1185 ** Close an open wal-index. 1186 */ 1187 static void walIndexClose(Wal *pWal, int isDelete){ 1188 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1189 } 1190 1191 /* 1192 ** Open a connection to the WAL file zWalName. The database file must 1193 ** already be opened on connection pDbFd. The buffer that zWalName points 1194 ** to must remain valid for the lifetime of the returned Wal* handle. 1195 ** 1196 ** A SHARED lock should be held on the database file when this function 1197 ** is called. The purpose of this SHARED lock is to prevent any other 1198 ** client from unlinking the WAL or wal-index file. If another process 1199 ** were to do this just after this client opened one of these files, the 1200 ** system would be badly broken. 1201 ** 1202 ** If the log file is successfully opened, SQLITE_OK is returned and 1203 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1204 ** an SQLite error code is returned and *ppWal is left unmodified. 1205 */ 1206 int sqlite3WalOpen( 1207 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1208 sqlite3_file *pDbFd, /* The open database file */ 1209 const char *zWalName, /* Name of the WAL file */ 1210 Wal **ppWal /* OUT: Allocated Wal handle */ 1211 ){ 1212 int rc; /* Return Code */ 1213 Wal *pRet; /* Object to allocate and return */ 1214 int flags; /* Flags passed to OsOpen() */ 1215 1216 assert( zWalName && zWalName[0] ); 1217 assert( pDbFd ); 1218 1219 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1220 ** this source file. Verify that the #defines of the locking byte offsets 1221 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1222 */ 1223 #ifdef WIN_SHM_BASE 1224 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1225 #endif 1226 #ifdef UNIX_SHM_BASE 1227 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1228 #endif 1229 1230 1231 /* Allocate an instance of struct Wal to return. */ 1232 *ppWal = 0; 1233 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1234 if( !pRet ){ 1235 return SQLITE_NOMEM; 1236 } 1237 1238 pRet->pVfs = pVfs; 1239 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1240 pRet->pDbFd = pDbFd; 1241 pRet->readLock = -1; 1242 pRet->zWalName = zWalName; 1243 1244 /* Open file handle on the write-ahead log file. */ 1245 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1246 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1247 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1248 pRet->readOnly = 1; 1249 } 1250 1251 if( rc!=SQLITE_OK ){ 1252 walIndexClose(pRet, 0); 1253 sqlite3OsClose(pRet->pWalFd); 1254 sqlite3_free(pRet); 1255 }else{ 1256 *ppWal = pRet; 1257 WALTRACE(("WAL%d: opened\n", pRet)); 1258 } 1259 return rc; 1260 } 1261 1262 /* 1263 ** Find the smallest page number out of all pages held in the WAL that 1264 ** has not been returned by any prior invocation of this method on the 1265 ** same WalIterator object. Write into *piFrame the frame index where 1266 ** that page was last written into the WAL. Write into *piPage the page 1267 ** number. 1268 ** 1269 ** Return 0 on success. If there are no pages in the WAL with a page 1270 ** number larger than *piPage, then return 1. 1271 */ 1272 static int walIteratorNext( 1273 WalIterator *p, /* Iterator */ 1274 u32 *piPage, /* OUT: The page number of the next page */ 1275 u32 *piFrame /* OUT: Wal frame index of next page */ 1276 ){ 1277 u32 iMin; /* Result pgno must be greater than iMin */ 1278 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1279 int i; /* For looping through segments */ 1280 1281 iMin = p->iPrior; 1282 assert( iMin<0xffffffff ); 1283 for(i=p->nSegment-1; i>=0; i--){ 1284 struct WalSegment *pSegment = &p->aSegment[i]; 1285 while( pSegment->iNext<pSegment->nEntry ){ 1286 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1287 if( iPg>iMin ){ 1288 if( iPg<iRet ){ 1289 iRet = iPg; 1290 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1291 } 1292 break; 1293 } 1294 pSegment->iNext++; 1295 } 1296 } 1297 1298 *piPage = p->iPrior = iRet; 1299 return (iRet==0xFFFFFFFF); 1300 } 1301 1302 /* 1303 ** This function merges two sorted lists into a single sorted list. 1304 */ 1305 static void walMerge( 1306 u32 *aContent, /* Pages in wal */ 1307 ht_slot *aLeft, /* IN: Left hand input list */ 1308 int nLeft, /* IN: Elements in array *paLeft */ 1309 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1310 int *pnRight, /* IN/OUT: Elements in *paRight */ 1311 ht_slot *aTmp /* Temporary buffer */ 1312 ){ 1313 int iLeft = 0; /* Current index in aLeft */ 1314 int iRight = 0; /* Current index in aRight */ 1315 int iOut = 0; /* Current index in output buffer */ 1316 int nRight = *pnRight; 1317 ht_slot *aRight = *paRight; 1318 1319 assert( nLeft>0 && nRight>0 ); 1320 while( iRight<nRight || iLeft<nLeft ){ 1321 ht_slot logpage; 1322 Pgno dbpage; 1323 1324 if( (iLeft<nLeft) 1325 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1326 ){ 1327 logpage = aLeft[iLeft++]; 1328 }else{ 1329 logpage = aRight[iRight++]; 1330 } 1331 dbpage = aContent[logpage]; 1332 1333 aTmp[iOut++] = logpage; 1334 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1335 1336 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1337 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1338 } 1339 1340 *paRight = aLeft; 1341 *pnRight = iOut; 1342 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1343 } 1344 1345 /* 1346 ** Sort the elements in list aList, removing any duplicates. 1347 */ 1348 static void walMergesort( 1349 u32 *aContent, /* Pages in wal */ 1350 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1351 ht_slot *aList, /* IN/OUT: List to sort */ 1352 int *pnList /* IN/OUT: Number of elements in aList[] */ 1353 ){ 1354 struct Sublist { 1355 int nList; /* Number of elements in aList */ 1356 ht_slot *aList; /* Pointer to sub-list content */ 1357 }; 1358 1359 const int nList = *pnList; /* Size of input list */ 1360 int nMerge = 0; /* Number of elements in list aMerge */ 1361 ht_slot *aMerge = 0; /* List to be merged */ 1362 int iList; /* Index into input list */ 1363 int iSub = 0; /* Index into aSub array */ 1364 struct Sublist aSub[13]; /* Array of sub-lists */ 1365 1366 memset(aSub, 0, sizeof(aSub)); 1367 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1368 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1369 1370 for(iList=0; iList<nList; iList++){ 1371 nMerge = 1; 1372 aMerge = &aList[iList]; 1373 for(iSub=0; iList & (1<<iSub); iSub++){ 1374 struct Sublist *p = &aSub[iSub]; 1375 assert( p->aList && p->nList<=(1<<iSub) ); 1376 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1377 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1378 } 1379 aSub[iSub].aList = aMerge; 1380 aSub[iSub].nList = nMerge; 1381 } 1382 1383 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1384 if( nList & (1<<iSub) ){ 1385 struct Sublist *p = &aSub[iSub]; 1386 assert( p->nList<=(1<<iSub) ); 1387 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1388 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1389 } 1390 } 1391 assert( aMerge==aList ); 1392 *pnList = nMerge; 1393 1394 #ifdef SQLITE_DEBUG 1395 { 1396 int i; 1397 for(i=1; i<*pnList; i++){ 1398 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1399 } 1400 } 1401 #endif 1402 } 1403 1404 /* 1405 ** Free an iterator allocated by walIteratorInit(). 1406 */ 1407 static void walIteratorFree(WalIterator *p){ 1408 sqlite3ScratchFree(p); 1409 } 1410 1411 /* 1412 ** Construct a WalInterator object that can be used to loop over all 1413 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1414 ** 1415 ** On success, make *pp point to the newly allocated WalInterator object 1416 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1417 ** returns an error, the value of *pp is undefined. 1418 ** 1419 ** The calling routine should invoke walIteratorFree() to destroy the 1420 ** WalIterator object when it has finished with it. 1421 */ 1422 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1423 WalIterator *p; /* Return value */ 1424 int nSegment; /* Number of segments to merge */ 1425 u32 iLast; /* Last frame in log */ 1426 int nByte; /* Number of bytes to allocate */ 1427 int i; /* Iterator variable */ 1428 ht_slot *aTmp; /* Temp space used by merge-sort */ 1429 int rc = SQLITE_OK; /* Return Code */ 1430 1431 /* This routine only runs while holding the checkpoint lock. And 1432 ** it only runs if there is actually content in the log (mxFrame>0). 1433 */ 1434 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1435 iLast = pWal->hdr.mxFrame; 1436 1437 /* Allocate space for the WalIterator object. */ 1438 nSegment = walFramePage(iLast) + 1; 1439 nByte = sizeof(WalIterator) 1440 + (nSegment-1)*sizeof(struct WalSegment) 1441 + iLast*sizeof(ht_slot); 1442 p = (WalIterator *)sqlite3ScratchMalloc(nByte); 1443 if( !p ){ 1444 return SQLITE_NOMEM; 1445 } 1446 memset(p, 0, nByte); 1447 p->nSegment = nSegment; 1448 1449 /* Allocate temporary space used by the merge-sort routine. This block 1450 ** of memory will be freed before this function returns. 1451 */ 1452 aTmp = (ht_slot *)sqlite3ScratchMalloc( 1453 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1454 ); 1455 if( !aTmp ){ 1456 rc = SQLITE_NOMEM; 1457 } 1458 1459 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1460 volatile ht_slot *aHash; 1461 u32 iZero; 1462 volatile u32 *aPgno; 1463 1464 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1465 if( rc==SQLITE_OK ){ 1466 int j; /* Counter variable */ 1467 int nEntry; /* Number of entries in this segment */ 1468 ht_slot *aIndex; /* Sorted index for this segment */ 1469 1470 aPgno++; 1471 if( (i+1)==nSegment ){ 1472 nEntry = (int)(iLast - iZero); 1473 }else{ 1474 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1475 } 1476 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1477 iZero++; 1478 1479 for(j=0; j<nEntry; j++){ 1480 aIndex[j] = (ht_slot)j; 1481 } 1482 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1483 p->aSegment[i].iZero = iZero; 1484 p->aSegment[i].nEntry = nEntry; 1485 p->aSegment[i].aIndex = aIndex; 1486 p->aSegment[i].aPgno = (u32 *)aPgno; 1487 } 1488 } 1489 sqlite3ScratchFree(aTmp); 1490 1491 if( rc!=SQLITE_OK ){ 1492 walIteratorFree(p); 1493 } 1494 *pp = p; 1495 return rc; 1496 } 1497 1498 /* 1499 ** Copy as much content as we can from the WAL back into the database file 1500 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1501 ** 1502 ** The amount of information copies from WAL to database might be limited 1503 ** by active readers. This routine will never overwrite a database page 1504 ** that a concurrent reader might be using. 1505 ** 1506 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1507 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1508 ** checkpoints are always run by a background thread or background 1509 ** process, foreground threads will never block on a lengthy fsync call. 1510 ** 1511 ** Fsync is called on the WAL before writing content out of the WAL and 1512 ** into the database. This ensures that if the new content is persistent 1513 ** in the WAL and can be recovered following a power-loss or hard reset. 1514 ** 1515 ** Fsync is also called on the database file if (and only if) the entire 1516 ** WAL content is copied into the database file. This second fsync makes 1517 ** it safe to delete the WAL since the new content will persist in the 1518 ** database file. 1519 ** 1520 ** This routine uses and updates the nBackfill field of the wal-index header. 1521 ** This is the only routine tha will increase the value of nBackfill. 1522 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1523 ** its value.) 1524 ** 1525 ** The caller must be holding sufficient locks to ensure that no other 1526 ** checkpoint is running (in any other thread or process) at the same 1527 ** time. 1528 */ 1529 static int walCheckpoint( 1530 Wal *pWal, /* Wal connection */ 1531 int sync_flags, /* Flags for OsSync() (or 0) */ 1532 int nBuf, /* Size of zBuf in bytes */ 1533 u8 *zBuf /* Temporary buffer to use */ 1534 ){ 1535 int rc; /* Return code */ 1536 int szPage; /* Database page-size */ 1537 WalIterator *pIter = 0; /* Wal iterator context */ 1538 u32 iDbpage = 0; /* Next database page to write */ 1539 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1540 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1541 u32 mxPage; /* Max database page to write */ 1542 int i; /* Loop counter */ 1543 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1544 1545 szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1546 testcase( szPage<=32768 ); 1547 testcase( szPage>=65536 ); 1548 if( pWal->hdr.mxFrame==0 ) return SQLITE_OK; 1549 1550 /* Allocate the iterator */ 1551 rc = walIteratorInit(pWal, &pIter); 1552 if( rc!=SQLITE_OK ){ 1553 return rc; 1554 } 1555 assert( pIter ); 1556 1557 /*** TODO: Move this test out to the caller. Make it an assert() here ***/ 1558 if( szPage!=nBuf ){ 1559 rc = SQLITE_CORRUPT_BKPT; 1560 goto walcheckpoint_out; 1561 } 1562 1563 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1564 ** safe to write into the database. Frames beyond mxSafeFrame might 1565 ** overwrite database pages that are in use by active readers and thus 1566 ** cannot be backfilled from the WAL. 1567 */ 1568 mxSafeFrame = pWal->hdr.mxFrame; 1569 mxPage = pWal->hdr.nPage; 1570 pInfo = walCkptInfo(pWal); 1571 for(i=1; i<WAL_NREADER; i++){ 1572 u32 y = pInfo->aReadMark[i]; 1573 if( mxSafeFrame>=y ){ 1574 assert( y<=pWal->hdr.mxFrame ); 1575 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1576 if( rc==SQLITE_OK ){ 1577 pInfo->aReadMark[i] = READMARK_NOT_USED; 1578 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1579 }else if( rc==SQLITE_BUSY ){ 1580 mxSafeFrame = y; 1581 }else{ 1582 goto walcheckpoint_out; 1583 } 1584 } 1585 } 1586 1587 if( pInfo->nBackfill<mxSafeFrame 1588 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK 1589 ){ 1590 i64 nSize; /* Current size of database file */ 1591 u32 nBackfill = pInfo->nBackfill; 1592 1593 /* Sync the WAL to disk */ 1594 if( sync_flags ){ 1595 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1596 } 1597 1598 /* If the database file may grow as a result of this checkpoint, hint 1599 ** about the eventual size of the db file to the VFS layer. 1600 */ 1601 if( rc==SQLITE_OK ){ 1602 i64 nReq = ((i64)mxPage * szPage); 1603 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1604 if( rc==SQLITE_OK && nSize<nReq ){ 1605 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1606 } 1607 } 1608 1609 /* Iterate through the contents of the WAL, copying data to the db file. */ 1610 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1611 i64 iOffset; 1612 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1613 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; 1614 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1615 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1616 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1617 if( rc!=SQLITE_OK ) break; 1618 iOffset = (iDbpage-1)*(i64)szPage; 1619 testcase( IS_BIG_INT(iOffset) ); 1620 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1621 if( rc!=SQLITE_OK ) break; 1622 } 1623 1624 /* If work was actually accomplished... */ 1625 if( rc==SQLITE_OK ){ 1626 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1627 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1628 testcase( IS_BIG_INT(szDb) ); 1629 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1630 if( rc==SQLITE_OK && sync_flags ){ 1631 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1632 } 1633 } 1634 if( rc==SQLITE_OK ){ 1635 pInfo->nBackfill = mxSafeFrame; 1636 } 1637 } 1638 1639 /* Release the reader lock held while backfilling */ 1640 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1641 }else if( rc==SQLITE_BUSY ){ 1642 /* Reset the return code so as not to report a checkpoint failure 1643 ** just because active readers prevent any backfill. 1644 */ 1645 rc = SQLITE_OK; 1646 } 1647 1648 walcheckpoint_out: 1649 walIteratorFree(pIter); 1650 return rc; 1651 } 1652 1653 /* 1654 ** Close a connection to a log file. 1655 */ 1656 int sqlite3WalClose( 1657 Wal *pWal, /* Wal to close */ 1658 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1659 int nBuf, 1660 u8 *zBuf /* Buffer of at least nBuf bytes */ 1661 ){ 1662 int rc = SQLITE_OK; 1663 if( pWal ){ 1664 int isDelete = 0; /* True to unlink wal and wal-index files */ 1665 1666 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1667 ** ordinary, rollback-mode locking methods, this guarantees that the 1668 ** connection associated with this log file is the only connection to 1669 ** the database. In this case checkpoint the database and unlink both 1670 ** the wal and wal-index files. 1671 ** 1672 ** The EXCLUSIVE lock is not released before returning. 1673 */ 1674 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1675 if( rc==SQLITE_OK ){ 1676 pWal->exclusiveMode = 1; 1677 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf); 1678 if( rc==SQLITE_OK ){ 1679 isDelete = 1; 1680 } 1681 } 1682 1683 walIndexClose(pWal, isDelete); 1684 sqlite3OsClose(pWal->pWalFd); 1685 if( isDelete ){ 1686 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1687 } 1688 WALTRACE(("WAL%p: closed\n", pWal)); 1689 sqlite3_free((void *)pWal->apWiData); 1690 sqlite3_free(pWal); 1691 } 1692 return rc; 1693 } 1694 1695 /* 1696 ** Try to read the wal-index header. Return 0 on success and 1 if 1697 ** there is a problem. 1698 ** 1699 ** The wal-index is in shared memory. Another thread or process might 1700 ** be writing the header at the same time this procedure is trying to 1701 ** read it, which might result in inconsistency. A dirty read is detected 1702 ** by verifying that both copies of the header are the same and also by 1703 ** a checksum on the header. 1704 ** 1705 ** If and only if the read is consistent and the header is different from 1706 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1707 ** and *pChanged is set to 1. 1708 ** 1709 ** If the checksum cannot be verified return non-zero. If the header 1710 ** is read successfully and the checksum verified, return zero. 1711 */ 1712 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 1713 u32 aCksum[2]; /* Checksum on the header content */ 1714 WalIndexHdr h1, h2; /* Two copies of the header content */ 1715 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 1716 1717 /* The first page of the wal-index must be mapped at this point. */ 1718 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 1719 1720 /* Read the header. This might happen concurrently with a write to the 1721 ** same area of shared memory on a different CPU in a SMP, 1722 ** meaning it is possible that an inconsistent snapshot is read 1723 ** from the file. If this happens, return non-zero. 1724 ** 1725 ** There are two copies of the header at the beginning of the wal-index. 1726 ** When reading, read [0] first then [1]. Writes are in the reverse order. 1727 ** Memory barriers are used to prevent the compiler or the hardware from 1728 ** reordering the reads and writes. 1729 */ 1730 aHdr = walIndexHdr(pWal); 1731 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 1732 sqlite3OsShmBarrier(pWal->pDbFd); 1733 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 1734 1735 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 1736 return 1; /* Dirty read */ 1737 } 1738 if( h1.isInit==0 ){ 1739 return 1; /* Malformed header - probably all zeros */ 1740 } 1741 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 1742 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 1743 return 1; /* Checksum does not match */ 1744 } 1745 1746 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 1747 *pChanged = 1; 1748 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 1749 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1750 testcase( pWal->szPage<=32768 ); 1751 testcase( pWal->szPage>=65536 ); 1752 } 1753 1754 /* The header was successfully read. Return zero. */ 1755 return 0; 1756 } 1757 1758 /* 1759 ** Read the wal-index header from the wal-index and into pWal->hdr. 1760 ** If the wal-header appears to be corrupt, try to reconstruct the 1761 ** wal-index from the WAL before returning. 1762 ** 1763 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 1764 ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged 1765 ** to 0. 1766 ** 1767 ** If the wal-index header is successfully read, return SQLITE_OK. 1768 ** Otherwise an SQLite error code. 1769 */ 1770 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 1771 int rc; /* Return code */ 1772 int badHdr; /* True if a header read failed */ 1773 volatile u32 *page0; /* Chunk of wal-index containing header */ 1774 1775 /* Ensure that page 0 of the wal-index (the page that contains the 1776 ** wal-index header) is mapped. Return early if an error occurs here. 1777 */ 1778 assert( pChanged ); 1779 rc = walIndexPage(pWal, 0, &page0); 1780 if( rc!=SQLITE_OK ){ 1781 return rc; 1782 }; 1783 assert( page0 || pWal->writeLock==0 ); 1784 1785 /* If the first page of the wal-index has been mapped, try to read the 1786 ** wal-index header immediately, without holding any lock. This usually 1787 ** works, but may fail if the wal-index header is corrupt or currently 1788 ** being modified by another thread or process. 1789 */ 1790 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 1791 1792 /* If the first attempt failed, it might have been due to a race 1793 ** with a writer. So get a WRITE lock and try again. 1794 */ 1795 assert( badHdr==0 || pWal->writeLock==0 ); 1796 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 1797 pWal->writeLock = 1; 1798 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 1799 badHdr = walIndexTryHdr(pWal, pChanged); 1800 if( badHdr ){ 1801 /* If the wal-index header is still malformed even while holding 1802 ** a WRITE lock, it can only mean that the header is corrupted and 1803 ** needs to be reconstructed. So run recovery to do exactly that. 1804 */ 1805 rc = walIndexRecover(pWal); 1806 *pChanged = 1; 1807 } 1808 } 1809 pWal->writeLock = 0; 1810 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1811 } 1812 1813 /* If the header is read successfully, check the version number to make 1814 ** sure the wal-index was not constructed with some future format that 1815 ** this version of SQLite cannot understand. 1816 */ 1817 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 1818 rc = SQLITE_CANTOPEN_BKPT; 1819 } 1820 1821 return rc; 1822 } 1823 1824 /* 1825 ** This is the value that walTryBeginRead returns when it needs to 1826 ** be retried. 1827 */ 1828 #define WAL_RETRY (-1) 1829 1830 /* 1831 ** Attempt to start a read transaction. This might fail due to a race or 1832 ** other transient condition. When that happens, it returns WAL_RETRY to 1833 ** indicate to the caller that it is safe to retry immediately. 1834 ** 1835 ** On success return SQLITE_OK. On a permanent failure (such an 1836 ** I/O error or an SQLITE_BUSY because another process is running 1837 ** recovery) return a positive error code. 1838 ** 1839 ** The useWal parameter is true to force the use of the WAL and disable 1840 ** the case where the WAL is bypassed because it has been completely 1841 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 1842 ** to make a copy of the wal-index header into pWal->hdr. If the 1843 ** wal-index header has changed, *pChanged is set to 1 (as an indication 1844 ** to the caller that the local paget cache is obsolete and needs to be 1845 ** flushed.) When useWal==1, the wal-index header is assumed to already 1846 ** be loaded and the pChanged parameter is unused. 1847 ** 1848 ** The caller must set the cnt parameter to the number of prior calls to 1849 ** this routine during the current read attempt that returned WAL_RETRY. 1850 ** This routine will start taking more aggressive measures to clear the 1851 ** race conditions after multiple WAL_RETRY returns, and after an excessive 1852 ** number of errors will ultimately return SQLITE_PROTOCOL. The 1853 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 1854 ** and is not honoring the locking protocol. There is a vanishingly small 1855 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 1856 ** bad luck when there is lots of contention for the wal-index, but that 1857 ** possibility is so small that it can be safely neglected, we believe. 1858 ** 1859 ** On success, this routine obtains a read lock on 1860 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 1861 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 1862 ** that means the Wal does not hold any read lock. The reader must not 1863 ** access any database page that is modified by a WAL frame up to and 1864 ** including frame number aReadMark[pWal->readLock]. The reader will 1865 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 1866 ** Or if pWal->readLock==0, then the reader will ignore the WAL 1867 ** completely and get all content directly from the database file. 1868 ** If the useWal parameter is 1 then the WAL will never be ignored and 1869 ** this routine will always set pWal->readLock>0 on success. 1870 ** When the read transaction is completed, the caller must release the 1871 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 1872 ** 1873 ** This routine uses the nBackfill and aReadMark[] fields of the header 1874 ** to select a particular WAL_READ_LOCK() that strives to let the 1875 ** checkpoint process do as much work as possible. This routine might 1876 ** update values of the aReadMark[] array in the header, but if it does 1877 ** so it takes care to hold an exclusive lock on the corresponding 1878 ** WAL_READ_LOCK() while changing values. 1879 */ 1880 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 1881 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 1882 u32 mxReadMark; /* Largest aReadMark[] value */ 1883 int mxI; /* Index of largest aReadMark[] value */ 1884 int i; /* Loop counter */ 1885 int rc = SQLITE_OK; /* Return code */ 1886 1887 assert( pWal->readLock<0 ); /* Not currently locked */ 1888 1889 /* Take steps to avoid spinning forever if there is a protocol error. */ 1890 if( cnt>5 ){ 1891 if( cnt>100 ) return SQLITE_PROTOCOL; 1892 sqlite3OsSleep(pWal->pVfs, 1); 1893 } 1894 1895 if( !useWal ){ 1896 rc = walIndexReadHdr(pWal, pChanged); 1897 if( rc==SQLITE_BUSY ){ 1898 /* If there is not a recovery running in another thread or process 1899 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 1900 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 1901 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 1902 ** would be technically correct. But the race is benign since with 1903 ** WAL_RETRY this routine will be called again and will probably be 1904 ** right on the second iteration. 1905 */ 1906 if( pWal->apWiData[0]==0 ){ 1907 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 1908 ** We assume this is a transient condition, so return WAL_RETRY. The 1909 ** xShmMap() implementation used by the default unix and win32 VFS 1910 ** modules may return SQLITE_BUSY due to a race condition in the 1911 ** code that determines whether or not the shared-memory region 1912 ** must be zeroed before the requested page is returned. 1913 */ 1914 rc = WAL_RETRY; 1915 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 1916 walUnlockShared(pWal, WAL_RECOVER_LOCK); 1917 rc = WAL_RETRY; 1918 }else if( rc==SQLITE_BUSY ){ 1919 rc = SQLITE_BUSY_RECOVERY; 1920 } 1921 } 1922 if( rc!=SQLITE_OK ){ 1923 return rc; 1924 } 1925 } 1926 1927 pInfo = walCkptInfo(pWal); 1928 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ 1929 /* The WAL has been completely backfilled (or it is empty). 1930 ** and can be safely ignored. 1931 */ 1932 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 1933 sqlite3OsShmBarrier(pWal->pDbFd); 1934 if( rc==SQLITE_OK ){ 1935 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 1936 /* It is not safe to allow the reader to continue here if frames 1937 ** may have been appended to the log before READ_LOCK(0) was obtained. 1938 ** When holding READ_LOCK(0), the reader ignores the entire log file, 1939 ** which implies that the database file contains a trustworthy 1940 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from 1941 ** happening, this is usually correct. 1942 ** 1943 ** However, if frames have been appended to the log (or if the log 1944 ** is wrapped and written for that matter) before the READ_LOCK(0) 1945 ** is obtained, that is not necessarily true. A checkpointer may 1946 ** have started to backfill the appended frames but crashed before 1947 ** it finished. Leaving a corrupt image in the database file. 1948 */ 1949 walUnlockShared(pWal, WAL_READ_LOCK(0)); 1950 return WAL_RETRY; 1951 } 1952 pWal->readLock = 0; 1953 return SQLITE_OK; 1954 }else if( rc!=SQLITE_BUSY ){ 1955 return rc; 1956 } 1957 } 1958 1959 /* If we get this far, it means that the reader will want to use 1960 ** the WAL to get at content from recent commits. The job now is 1961 ** to select one of the aReadMark[] entries that is closest to 1962 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 1963 */ 1964 mxReadMark = 0; 1965 mxI = 0; 1966 for(i=1; i<WAL_NREADER; i++){ 1967 u32 thisMark = pInfo->aReadMark[i]; 1968 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ 1969 assert( thisMark!=READMARK_NOT_USED ); 1970 mxReadMark = thisMark; 1971 mxI = i; 1972 } 1973 } 1974 if( mxI==0 ){ 1975 /* If we get here, it means that all of the aReadMark[] entries between 1976 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to 1977 ** be mxFrame, then retry. 1978 */ 1979 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1); 1980 if( rc==SQLITE_OK ){ 1981 pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1982 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1); 1983 rc = WAL_RETRY; 1984 }else if( rc==SQLITE_BUSY ){ 1985 rc = WAL_RETRY; 1986 } 1987 return rc; 1988 }else{ 1989 if( mxReadMark < pWal->hdr.mxFrame ){ 1990 for(i=1; i<WAL_NREADER; i++){ 1991 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1992 if( rc==SQLITE_OK ){ 1993 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1994 mxI = i; 1995 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1996 break; 1997 }else if( rc!=SQLITE_BUSY ){ 1998 return rc; 1999 } 2000 } 2001 } 2002 2003 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2004 if( rc ){ 2005 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2006 } 2007 /* Now that the read-lock has been obtained, check that neither the 2008 ** value in the aReadMark[] array or the contents of the wal-index 2009 ** header have changed. 2010 ** 2011 ** It is necessary to check that the wal-index header did not change 2012 ** between the time it was read and when the shared-lock was obtained 2013 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2014 ** that the log file may have been wrapped by a writer, or that frames 2015 ** that occur later in the log than pWal->hdr.mxFrame may have been 2016 ** copied into the database by a checkpointer. If either of these things 2017 ** happened, then reading the database with the current value of 2018 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2019 ** instead. 2020 ** 2021 ** This does not guarantee that the copy of the wal-index header is up to 2022 ** date before proceeding. That would not be possible without somehow 2023 ** blocking writers. It only guarantees that a dangerous checkpoint or 2024 ** log-wrap (either of which would require an exclusive lock on 2025 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. 2026 */ 2027 sqlite3OsShmBarrier(pWal->pDbFd); 2028 if( pInfo->aReadMark[mxI]!=mxReadMark 2029 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2030 ){ 2031 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2032 return WAL_RETRY; 2033 }else{ 2034 assert( mxReadMark<=pWal->hdr.mxFrame ); 2035 pWal->readLock = (i16)mxI; 2036 } 2037 } 2038 return rc; 2039 } 2040 2041 /* 2042 ** Begin a read transaction on the database. 2043 ** 2044 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2045 ** it takes a snapshot of the state of the WAL and wal-index for the current 2046 ** instant in time. The current thread will continue to use this snapshot. 2047 ** Other threads might append new content to the WAL and wal-index but 2048 ** that extra content is ignored by the current thread. 2049 ** 2050 ** If the database contents have changes since the previous read 2051 ** transaction, then *pChanged is set to 1 before returning. The 2052 ** Pager layer will use this to know that is cache is stale and 2053 ** needs to be flushed. 2054 */ 2055 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2056 int rc; /* Return code */ 2057 int cnt = 0; /* Number of TryBeginRead attempts */ 2058 2059 do{ 2060 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2061 }while( rc==WAL_RETRY ); 2062 return rc; 2063 } 2064 2065 /* 2066 ** Finish with a read transaction. All this does is release the 2067 ** read-lock. 2068 */ 2069 void sqlite3WalEndReadTransaction(Wal *pWal){ 2070 sqlite3WalEndWriteTransaction(pWal); 2071 if( pWal->readLock>=0 ){ 2072 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2073 pWal->readLock = -1; 2074 } 2075 } 2076 2077 /* 2078 ** Read a page from the WAL, if it is present in the WAL and if the 2079 ** current read transaction is configured to use the WAL. 2080 ** 2081 ** The *pInWal is set to 1 if the requested page is in the WAL and 2082 ** has been loaded. Or *pInWal is set to 0 if the page was not in 2083 ** the WAL and needs to be read out of the database. 2084 */ 2085 int sqlite3WalRead( 2086 Wal *pWal, /* WAL handle */ 2087 Pgno pgno, /* Database page number to read data for */ 2088 int *pInWal, /* OUT: True if data is read from WAL */ 2089 int nOut, /* Size of buffer pOut in bytes */ 2090 u8 *pOut /* Buffer to write page data to */ 2091 ){ 2092 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2093 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2094 int iHash; /* Used to loop through N hash tables */ 2095 2096 /* This routine is only be called from within a read transaction. */ 2097 assert( pWal->readLock>=0 || pWal->lockError ); 2098 2099 /* If the "last page" field of the wal-index header snapshot is 0, then 2100 ** no data will be read from the wal under any circumstances. Return early 2101 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2102 ** then the WAL is ignored by the reader so return early, as if the 2103 ** WAL were empty. 2104 */ 2105 if( iLast==0 || pWal->readLock==0 ){ 2106 *pInWal = 0; 2107 return SQLITE_OK; 2108 } 2109 2110 /* Search the hash table or tables for an entry matching page number 2111 ** pgno. Each iteration of the following for() loop searches one 2112 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2113 ** 2114 ** This code might run concurrently to the code in walIndexAppend() 2115 ** that adds entries to the wal-index (and possibly to this hash 2116 ** table). This means the value just read from the hash 2117 ** slot (aHash[iKey]) may have been added before or after the 2118 ** current read transaction was opened. Values added after the 2119 ** read transaction was opened may have been written incorrectly - 2120 ** i.e. these slots may contain garbage data. However, we assume 2121 ** that any slots written before the current read transaction was 2122 ** opened remain unmodified. 2123 ** 2124 ** For the reasons above, the if(...) condition featured in the inner 2125 ** loop of the following block is more stringent that would be required 2126 ** if we had exclusive access to the hash-table: 2127 ** 2128 ** (aPgno[iFrame]==pgno): 2129 ** This condition filters out normal hash-table collisions. 2130 ** 2131 ** (iFrame<=iLast): 2132 ** This condition filters out entries that were added to the hash 2133 ** table after the current read-transaction had started. 2134 */ 2135 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ 2136 volatile ht_slot *aHash; /* Pointer to hash table */ 2137 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2138 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2139 int iKey; /* Hash slot index */ 2140 int nCollide; /* Number of hash collisions remaining */ 2141 int rc; /* Error code */ 2142 2143 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2144 if( rc!=SQLITE_OK ){ 2145 return rc; 2146 } 2147 nCollide = HASHTABLE_NSLOT; 2148 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2149 u32 iFrame = aHash[iKey] + iZero; 2150 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ 2151 assert( iFrame>iRead ); 2152 iRead = iFrame; 2153 } 2154 if( (nCollide--)==0 ){ 2155 return SQLITE_CORRUPT_BKPT; 2156 } 2157 } 2158 } 2159 2160 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2161 /* If expensive assert() statements are available, do a linear search 2162 ** of the wal-index file content. Make sure the results agree with the 2163 ** result obtained using the hash indexes above. */ 2164 { 2165 u32 iRead2 = 0; 2166 u32 iTest; 2167 for(iTest=iLast; iTest>0; iTest--){ 2168 if( walFramePgno(pWal, iTest)==pgno ){ 2169 iRead2 = iTest; 2170 break; 2171 } 2172 } 2173 assert( iRead==iRead2 ); 2174 } 2175 #endif 2176 2177 /* If iRead is non-zero, then it is the log frame number that contains the 2178 ** required page. Read and return data from the log file. 2179 */ 2180 if( iRead ){ 2181 int sz; 2182 i64 iOffset; 2183 sz = pWal->hdr.szPage; 2184 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2185 testcase( sz<=32768 ); 2186 testcase( sz>=65536 ); 2187 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2188 *pInWal = 1; 2189 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2190 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset); 2191 } 2192 2193 *pInWal = 0; 2194 return SQLITE_OK; 2195 } 2196 2197 2198 /* 2199 ** Return the size of the database in pages (or zero, if unknown). 2200 */ 2201 Pgno sqlite3WalDbsize(Wal *pWal){ 2202 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2203 return pWal->hdr.nPage; 2204 } 2205 return 0; 2206 } 2207 2208 2209 /* 2210 ** This function starts a write transaction on the WAL. 2211 ** 2212 ** A read transaction must have already been started by a prior call 2213 ** to sqlite3WalBeginReadTransaction(). 2214 ** 2215 ** If another thread or process has written into the database since 2216 ** the read transaction was started, then it is not possible for this 2217 ** thread to write as doing so would cause a fork. So this routine 2218 ** returns SQLITE_BUSY in that case and no write transaction is started. 2219 ** 2220 ** There can only be a single writer active at a time. 2221 */ 2222 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2223 int rc; 2224 2225 /* Cannot start a write transaction without first holding a read 2226 ** transaction. */ 2227 assert( pWal->readLock>=0 ); 2228 2229 if( pWal->readOnly ){ 2230 return SQLITE_READONLY; 2231 } 2232 2233 /* Only one writer allowed at a time. Get the write lock. Return 2234 ** SQLITE_BUSY if unable. 2235 */ 2236 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2237 if( rc ){ 2238 return rc; 2239 } 2240 pWal->writeLock = 1; 2241 2242 /* If another connection has written to the database file since the 2243 ** time the read transaction on this connection was started, then 2244 ** the write is disallowed. 2245 */ 2246 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2247 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2248 pWal->writeLock = 0; 2249 rc = SQLITE_BUSY; 2250 } 2251 2252 return rc; 2253 } 2254 2255 /* 2256 ** End a write transaction. The commit has already been done. This 2257 ** routine merely releases the lock. 2258 */ 2259 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2260 if( pWal->writeLock ){ 2261 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2262 pWal->writeLock = 0; 2263 } 2264 return SQLITE_OK; 2265 } 2266 2267 /* 2268 ** If any data has been written (but not committed) to the log file, this 2269 ** function moves the write-pointer back to the start of the transaction. 2270 ** 2271 ** Additionally, the callback function is invoked for each frame written 2272 ** to the WAL since the start of the transaction. If the callback returns 2273 ** other than SQLITE_OK, it is not invoked again and the error code is 2274 ** returned to the caller. 2275 ** 2276 ** Otherwise, if the callback function does not return an error, this 2277 ** function returns SQLITE_OK. 2278 */ 2279 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2280 int rc = SQLITE_OK; 2281 if( ALWAYS(pWal->writeLock) ){ 2282 Pgno iMax = pWal->hdr.mxFrame; 2283 Pgno iFrame; 2284 2285 /* Restore the clients cache of the wal-index header to the state it 2286 ** was in before the client began writing to the database. 2287 */ 2288 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2289 2290 for(iFrame=pWal->hdr.mxFrame+1; 2291 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2292 iFrame++ 2293 ){ 2294 /* This call cannot fail. Unless the page for which the page number 2295 ** is passed as the second argument is (a) in the cache and 2296 ** (b) has an outstanding reference, then xUndo is either a no-op 2297 ** (if (a) is false) or simply expels the page from the cache (if (b) 2298 ** is false). 2299 ** 2300 ** If the upper layer is doing a rollback, it is guaranteed that there 2301 ** are no outstanding references to any page other than page 1. And 2302 ** page 1 is never written to the log until the transaction is 2303 ** committed. As a result, the call to xUndo may not fail. 2304 */ 2305 assert( walFramePgno(pWal, iFrame)!=1 ); 2306 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2307 } 2308 walCleanupHash(pWal); 2309 } 2310 assert( rc==SQLITE_OK ); 2311 return rc; 2312 } 2313 2314 /* 2315 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2316 ** values. This function populates the array with values required to 2317 ** "rollback" the write position of the WAL handle back to the current 2318 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2319 */ 2320 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2321 assert( pWal->writeLock ); 2322 aWalData[0] = pWal->hdr.mxFrame; 2323 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2324 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2325 aWalData[3] = pWal->nCkpt; 2326 } 2327 2328 /* 2329 ** Move the write position of the WAL back to the point identified by 2330 ** the values in the aWalData[] array. aWalData must point to an array 2331 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2332 ** by a call to WalSavepoint(). 2333 */ 2334 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2335 int rc = SQLITE_OK; 2336 2337 assert( pWal->writeLock ); 2338 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2339 2340 if( aWalData[3]!=pWal->nCkpt ){ 2341 /* This savepoint was opened immediately after the write-transaction 2342 ** was started. Right after that, the writer decided to wrap around 2343 ** to the start of the log. Update the savepoint values to match. 2344 */ 2345 aWalData[0] = 0; 2346 aWalData[3] = pWal->nCkpt; 2347 } 2348 2349 if( aWalData[0]<pWal->hdr.mxFrame ){ 2350 pWal->hdr.mxFrame = aWalData[0]; 2351 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2352 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2353 walCleanupHash(pWal); 2354 } 2355 2356 return rc; 2357 } 2358 2359 /* 2360 ** This function is called just before writing a set of frames to the log 2361 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2362 ** to the current log file, it is possible to overwrite the start of the 2363 ** existing log file with the new frames (i.e. "reset" the log). If so, 2364 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2365 ** unchanged. 2366 ** 2367 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2368 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2369 ** if some error 2370 */ 2371 static int walRestartLog(Wal *pWal){ 2372 int rc = SQLITE_OK; 2373 int cnt; 2374 2375 if( pWal->readLock==0 ){ 2376 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2377 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2378 if( pInfo->nBackfill>0 ){ 2379 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2380 if( rc==SQLITE_OK ){ 2381 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2382 ** readers are currently using the WAL), then the transactions 2383 ** frames will overwrite the start of the existing log. Update the 2384 ** wal-index header to reflect this. 2385 ** 2386 ** In theory it would be Ok to update the cache of the header only 2387 ** at this point. But updating the actual wal-index header is also 2388 ** safe and means there is no special case for sqlite3WalUndo() 2389 ** to handle if this transaction is rolled back. 2390 */ 2391 int i; /* Loop counter */ 2392 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 2393 pWal->nCkpt++; 2394 pWal->hdr.mxFrame = 0; 2395 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 2396 sqlite3_randomness(4, &aSalt[1]); 2397 walIndexWriteHdr(pWal); 2398 pInfo->nBackfill = 0; 2399 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 2400 assert( pInfo->aReadMark[0]==0 ); 2401 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2402 } 2403 } 2404 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2405 pWal->readLock = -1; 2406 cnt = 0; 2407 do{ 2408 int notUsed; 2409 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2410 }while( rc==WAL_RETRY ); 2411 } 2412 return rc; 2413 } 2414 2415 /* 2416 ** Write a set of frames to the log. The caller must hold the write-lock 2417 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2418 */ 2419 int sqlite3WalFrames( 2420 Wal *pWal, /* Wal handle to write to */ 2421 int szPage, /* Database page-size in bytes */ 2422 PgHdr *pList, /* List of dirty pages to write */ 2423 Pgno nTruncate, /* Database size after this commit */ 2424 int isCommit, /* True if this is a commit */ 2425 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2426 ){ 2427 int rc; /* Used to catch return codes */ 2428 u32 iFrame; /* Next frame address */ 2429 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2430 PgHdr *p; /* Iterator to run through pList with. */ 2431 PgHdr *pLast = 0; /* Last frame in list */ 2432 int nLast = 0; /* Number of extra copies of last page */ 2433 2434 assert( pList ); 2435 assert( pWal->writeLock ); 2436 2437 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2438 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2439 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2440 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2441 } 2442 #endif 2443 2444 /* See if it is possible to write these frames into the start of the 2445 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2446 */ 2447 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2448 return rc; 2449 } 2450 2451 /* If this is the first frame written into the log, write the WAL 2452 ** header to the start of the WAL file. See comments at the top of 2453 ** this source file for a description of the WAL header format. 2454 */ 2455 iFrame = pWal->hdr.mxFrame; 2456 if( iFrame==0 ){ 2457 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 2458 u32 aCksum[2]; /* Checksum for wal-header */ 2459 2460 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 2461 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 2462 sqlite3Put4byte(&aWalHdr[8], szPage); 2463 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 2464 sqlite3_randomness(8, pWal->hdr.aSalt); 2465 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 2466 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 2467 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 2468 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 2469 2470 pWal->szPage = szPage; 2471 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 2472 pWal->hdr.aFrameCksum[0] = aCksum[0]; 2473 pWal->hdr.aFrameCksum[1] = aCksum[1]; 2474 2475 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 2476 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 2477 if( rc!=SQLITE_OK ){ 2478 return rc; 2479 } 2480 } 2481 assert( (int)pWal->szPage==szPage ); 2482 2483 /* Write the log file. */ 2484 for(p=pList; p; p=p->pDirty){ 2485 u32 nDbsize; /* Db-size field for frame header */ 2486 i64 iOffset; /* Write offset in log file */ 2487 void *pData; 2488 2489 iOffset = walFrameOffset(++iFrame, szPage); 2490 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2491 2492 /* Populate and write the frame header */ 2493 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; 2494 #if defined(SQLITE_HAS_CODEC) 2495 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 2496 #else 2497 pData = p->pData; 2498 #endif 2499 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame); 2500 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); 2501 if( rc!=SQLITE_OK ){ 2502 return rc; 2503 } 2504 2505 /* Write the page data */ 2506 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame)); 2507 if( rc!=SQLITE_OK ){ 2508 return rc; 2509 } 2510 pLast = p; 2511 } 2512 2513 /* Sync the log file if the 'isSync' flag was specified. */ 2514 if( sync_flags ){ 2515 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd); 2516 i64 iOffset = walFrameOffset(iFrame+1, szPage); 2517 2518 assert( isCommit ); 2519 assert( iSegment>0 ); 2520 2521 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); 2522 while( iOffset<iSegment ){ 2523 void *pData; 2524 #if defined(SQLITE_HAS_CODEC) 2525 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM; 2526 #else 2527 pData = pLast->pData; 2528 #endif 2529 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame); 2530 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2531 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); 2532 if( rc!=SQLITE_OK ){ 2533 return rc; 2534 } 2535 iOffset += WAL_FRAME_HDRSIZE; 2536 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset); 2537 if( rc!=SQLITE_OK ){ 2538 return rc; 2539 } 2540 nLast++; 2541 iOffset += szPage; 2542 } 2543 2544 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 2545 } 2546 2547 /* Append data to the wal-index. It is not necessary to lock the 2548 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 2549 ** guarantees that there are no other writers, and no data that may 2550 ** be in use by existing readers is being overwritten. 2551 */ 2552 iFrame = pWal->hdr.mxFrame; 2553 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 2554 iFrame++; 2555 rc = walIndexAppend(pWal, iFrame, p->pgno); 2556 } 2557 while( nLast>0 && rc==SQLITE_OK ){ 2558 iFrame++; 2559 nLast--; 2560 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 2561 } 2562 2563 if( rc==SQLITE_OK ){ 2564 /* Update the private copy of the header. */ 2565 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 2566 testcase( szPage<=32768 ); 2567 testcase( szPage>=65536 ); 2568 pWal->hdr.mxFrame = iFrame; 2569 if( isCommit ){ 2570 pWal->hdr.iChange++; 2571 pWal->hdr.nPage = nTruncate; 2572 } 2573 /* If this is a commit, update the wal-index header too. */ 2574 if( isCommit ){ 2575 walIndexWriteHdr(pWal); 2576 pWal->iCallback = iFrame; 2577 } 2578 } 2579 2580 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 2581 return rc; 2582 } 2583 2584 /* 2585 ** This routine is called to implement sqlite3_wal_checkpoint() and 2586 ** related interfaces. 2587 ** 2588 ** Obtain a CHECKPOINT lock and then backfill as much information as 2589 ** we can from WAL into the database. 2590 */ 2591 int sqlite3WalCheckpoint( 2592 Wal *pWal, /* Wal connection */ 2593 int sync_flags, /* Flags to sync db file with (or 0) */ 2594 int nBuf, /* Size of temporary buffer */ 2595 u8 *zBuf /* Temporary buffer to use */ 2596 ){ 2597 int rc; /* Return code */ 2598 int isChanged = 0; /* True if a new wal-index header is loaded */ 2599 2600 assert( pWal->ckptLock==0 ); 2601 2602 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 2603 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2604 if( rc ){ 2605 /* Usually this is SQLITE_BUSY meaning that another thread or process 2606 ** is already running a checkpoint, or maybe a recovery. But it might 2607 ** also be SQLITE_IOERR. */ 2608 return rc; 2609 } 2610 pWal->ckptLock = 1; 2611 2612 /* Copy data from the log to the database file. */ 2613 rc = walIndexReadHdr(pWal, &isChanged); 2614 if( rc==SQLITE_OK ){ 2615 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf); 2616 } 2617 if( isChanged ){ 2618 /* If a new wal-index header was loaded before the checkpoint was 2619 ** performed, then the pager-cache associated with pWal is now 2620 ** out of date. So zero the cached wal-index header to ensure that 2621 ** next time the pager opens a snapshot on this database it knows that 2622 ** the cache needs to be reset. 2623 */ 2624 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 2625 } 2626 2627 /* Release the locks. */ 2628 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2629 pWal->ckptLock = 0; 2630 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 2631 return rc; 2632 } 2633 2634 /* Return the value to pass to a sqlite3_wal_hook callback, the 2635 ** number of frames in the WAL at the point of the last commit since 2636 ** sqlite3WalCallback() was called. If no commits have occurred since 2637 ** the last call, then return 0. 2638 */ 2639 int sqlite3WalCallback(Wal *pWal){ 2640 u32 ret = 0; 2641 if( pWal ){ 2642 ret = pWal->iCallback; 2643 pWal->iCallback = 0; 2644 } 2645 return (int)ret; 2646 } 2647 2648 /* 2649 ** This function is called to change the WAL subsystem into or out 2650 ** of locking_mode=EXCLUSIVE. 2651 ** 2652 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 2653 ** into locking_mode=NORMAL. This means that we must acquire a lock 2654 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 2655 ** or if the acquisition of the lock fails, then return 0. If the 2656 ** transition out of exclusive-mode is successful, return 1. This 2657 ** operation must occur while the pager is still holding the exclusive 2658 ** lock on the main database file. 2659 ** 2660 ** If op is one, then change from locking_mode=NORMAL into 2661 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 2662 ** be released. Return 1 if the transition is made and 0 if the 2663 ** WAL is already in exclusive-locking mode - meaning that this 2664 ** routine is a no-op. The pager must already hold the exclusive lock 2665 ** on the main database file before invoking this operation. 2666 ** 2667 ** If op is negative, then do a dry-run of the op==1 case but do 2668 ** not actually change anything. The pager uses this to see if it 2669 ** should acquire the database exclusive lock prior to invoking 2670 ** the op==1 case. 2671 */ 2672 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 2673 int rc; 2674 assert( pWal->writeLock==0 ); 2675 2676 /* pWal->readLock is usually set, but might be -1 if there was a 2677 ** prior error while attempting to acquire are read-lock. This cannot 2678 ** happen if the connection is actually in exclusive mode (as no xShmLock 2679 ** locks are taken in this case). Nor should the pager attempt to 2680 ** upgrade to exclusive-mode following such an error. 2681 */ 2682 assert( pWal->readLock>=0 || pWal->lockError ); 2683 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 2684 2685 if( op==0 ){ 2686 if( pWal->exclusiveMode ){ 2687 pWal->exclusiveMode = 0; 2688 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 2689 pWal->exclusiveMode = 1; 2690 } 2691 rc = pWal->exclusiveMode==0; 2692 }else{ 2693 /* Already in locking_mode=NORMAL */ 2694 rc = 0; 2695 } 2696 }else if( op>0 ){ 2697 assert( pWal->exclusiveMode==0 ); 2698 assert( pWal->readLock>=0 ); 2699 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2700 pWal->exclusiveMode = 1; 2701 rc = 1; 2702 }else{ 2703 rc = pWal->exclusiveMode==0; 2704 } 2705 return rc; 2706 } 2707 2708 #endif /* #ifndef SQLITE_OMIT_WAL */ 2709