xref: /sqlite-3.40.0/src/wal.c (revision e99cb2da)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** WAL mode depends on atomic aligned 32-bit loads and stores in a few
263 ** places.  The following macros try to make this explicit.
264 */
265 #if GCC_VESRION>=5004000
266 # define AtomicLoad(PTR)       __atomic_load_n((PTR),__ATOMIC_RELAXED)
267 # define AtomicStore(PTR,VAL)  __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
268 #else
269 # define AtomicLoad(PTR)       (*(PTR))
270 # define AtomicStore(PTR,VAL)  (*(PTR) = (VAL))
271 #endif
272 
273 /*
274 ** The maximum (and only) versions of the wal and wal-index formats
275 ** that may be interpreted by this version of SQLite.
276 **
277 ** If a client begins recovering a WAL file and finds that (a) the checksum
278 ** values in the wal-header are correct and (b) the version field is not
279 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
280 **
281 ** Similarly, if a client successfully reads a wal-index header (i.e. the
282 ** checksum test is successful) and finds that the version field is not
283 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
284 ** returns SQLITE_CANTOPEN.
285 */
286 #define WAL_MAX_VERSION      3007000
287 #define WALINDEX_MAX_VERSION 3007000
288 
289 /*
290 ** Index numbers for various locking bytes.   WAL_NREADER is the number
291 ** of available reader locks and should be at least 3.  The default
292 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
293 **
294 ** Technically, the various VFSes are free to implement these locks however
295 ** they see fit.  However, compatibility is encouraged so that VFSes can
296 ** interoperate.  The standard implemention used on both unix and windows
297 ** is for the index number to indicate a byte offset into the
298 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
299 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
300 ** should be 120) is the location in the shm file for the first locking
301 ** byte.
302 */
303 #define WAL_WRITE_LOCK         0
304 #define WAL_ALL_BUT_WRITE      1
305 #define WAL_CKPT_LOCK          1
306 #define WAL_RECOVER_LOCK       2
307 #define WAL_READ_LOCK(I)       (3+(I))
308 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
309 
310 
311 /* Object declarations */
312 typedef struct WalIndexHdr WalIndexHdr;
313 typedef struct WalIterator WalIterator;
314 typedef struct WalCkptInfo WalCkptInfo;
315 
316 
317 /*
318 ** The following object holds a copy of the wal-index header content.
319 **
320 ** The actual header in the wal-index consists of two copies of this
321 ** object followed by one instance of the WalCkptInfo object.
322 ** For all versions of SQLite through 3.10.0 and probably beyond,
323 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
324 ** the total header size is 136 bytes.
325 **
326 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
327 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
328 ** added in 3.7.1 when support for 64K pages was added.
329 */
330 struct WalIndexHdr {
331   u32 iVersion;                   /* Wal-index version */
332   u32 unused;                     /* Unused (padding) field */
333   u32 iChange;                    /* Counter incremented each transaction */
334   u8 isInit;                      /* 1 when initialized */
335   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
336   u16 szPage;                     /* Database page size in bytes. 1==64K */
337   u32 mxFrame;                    /* Index of last valid frame in the WAL */
338   u32 nPage;                      /* Size of database in pages */
339   u32 aFrameCksum[2];             /* Checksum of last frame in log */
340   u32 aSalt[2];                   /* Two salt values copied from WAL header */
341   u32 aCksum[2];                  /* Checksum over all prior fields */
342 };
343 
344 /*
345 ** A copy of the following object occurs in the wal-index immediately
346 ** following the second copy of the WalIndexHdr.  This object stores
347 ** information used by checkpoint.
348 **
349 ** nBackfill is the number of frames in the WAL that have been written
350 ** back into the database. (We call the act of moving content from WAL to
351 ** database "backfilling".)  The nBackfill number is never greater than
352 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
353 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
354 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
355 ** mxFrame back to zero when the WAL is reset.
356 **
357 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
358 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
359 ** the nBackfillAttempted is set before any backfilling is done and the
360 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
361 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
362 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
363 **
364 ** The aLock[] field is a set of bytes used for locking.  These bytes should
365 ** never be read or written.
366 **
367 ** There is one entry in aReadMark[] for each reader lock.  If a reader
368 ** holds read-lock K, then the value in aReadMark[K] is no greater than
369 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
370 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
371 ** a special case; its value is never used and it exists as a place-holder
372 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
373 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
374 ** directly from the database.
375 **
376 ** The value of aReadMark[K] may only be changed by a thread that
377 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
378 ** aReadMark[K] cannot changed while there is a reader is using that mark
379 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
380 **
381 ** The checkpointer may only transfer frames from WAL to database where
382 ** the frame numbers are less than or equal to every aReadMark[] that is
383 ** in use (that is, every aReadMark[j] for which there is a corresponding
384 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
385 ** largest value and will increase an unused aReadMark[] to mxFrame if there
386 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
387 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
388 ** in the WAL has been backfilled into the database) then new readers
389 ** will choose aReadMark[0] which has value 0 and hence such reader will
390 ** get all their all content directly from the database file and ignore
391 ** the WAL.
392 **
393 ** Writers normally append new frames to the end of the WAL.  However,
394 ** if nBackfill equals mxFrame (meaning that all WAL content has been
395 ** written back into the database) and if no readers are using the WAL
396 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
397 ** the writer will first "reset" the WAL back to the beginning and start
398 ** writing new content beginning at frame 1.
399 **
400 ** We assume that 32-bit loads are atomic and so no locks are needed in
401 ** order to read from any aReadMark[] entries.
402 */
403 struct WalCkptInfo {
404   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
405   u32 aReadMark[WAL_NREADER];     /* Reader marks */
406   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
407   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
408   u32 notUsed0;                   /* Available for future enhancements */
409 };
410 #define READMARK_NOT_USED  0xffffffff
411 
412 
413 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
414 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
415 ** only support mandatory file-locks, we do not read or write data
416 ** from the region of the file on which locks are applied.
417 */
418 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
419 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
420 
421 /* Size of header before each frame in wal */
422 #define WAL_FRAME_HDRSIZE 24
423 
424 /* Size of write ahead log header, including checksum. */
425 #define WAL_HDRSIZE 32
426 
427 /* WAL magic value. Either this value, or the same value with the least
428 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
429 ** big-endian format in the first 4 bytes of a WAL file.
430 **
431 ** If the LSB is set, then the checksums for each frame within the WAL
432 ** file are calculated by treating all data as an array of 32-bit
433 ** big-endian words. Otherwise, they are calculated by interpreting
434 ** all data as 32-bit little-endian words.
435 */
436 #define WAL_MAGIC 0x377f0682
437 
438 /*
439 ** Return the offset of frame iFrame in the write-ahead log file,
440 ** assuming a database page size of szPage bytes. The offset returned
441 ** is to the start of the write-ahead log frame-header.
442 */
443 #define walFrameOffset(iFrame, szPage) (                               \
444   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
445 )
446 
447 /*
448 ** An open write-ahead log file is represented by an instance of the
449 ** following object.
450 */
451 struct Wal {
452   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
453   sqlite3_file *pDbFd;       /* File handle for the database file */
454   sqlite3_file *pWalFd;      /* File handle for WAL file */
455   u32 iCallback;             /* Value to pass to log callback (or 0) */
456   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
457   int nWiData;               /* Size of array apWiData */
458   int szFirstBlock;          /* Size of first block written to WAL file */
459   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
460   u32 szPage;                /* Database page size */
461   i16 readLock;              /* Which read lock is being held.  -1 for none */
462   u8 syncFlags;              /* Flags to use to sync header writes */
463   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
464   u8 writeLock;              /* True if in a write transaction */
465   u8 ckptLock;               /* True if holding a checkpoint lock */
466   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
467   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
468   u8 syncHeader;             /* Fsync the WAL header if true */
469   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
470   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
471   WalIndexHdr hdr;           /* Wal-index header for current transaction */
472   u32 minFrame;              /* Ignore wal frames before this one */
473   u32 iReCksum;              /* On commit, recalculate checksums from here */
474   const char *zWalName;      /* Name of WAL file */
475   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
476 #ifdef SQLITE_DEBUG
477   u8 lockError;              /* True if a locking error has occurred */
478 #endif
479 #ifdef SQLITE_ENABLE_SNAPSHOT
480   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
481 #endif
482 };
483 
484 /*
485 ** Candidate values for Wal.exclusiveMode.
486 */
487 #define WAL_NORMAL_MODE     0
488 #define WAL_EXCLUSIVE_MODE  1
489 #define WAL_HEAPMEMORY_MODE 2
490 
491 /*
492 ** Possible values for WAL.readOnly
493 */
494 #define WAL_RDWR        0    /* Normal read/write connection */
495 #define WAL_RDONLY      1    /* The WAL file is readonly */
496 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
497 
498 /*
499 ** Each page of the wal-index mapping contains a hash-table made up of
500 ** an array of HASHTABLE_NSLOT elements of the following type.
501 */
502 typedef u16 ht_slot;
503 
504 /*
505 ** This structure is used to implement an iterator that loops through
506 ** all frames in the WAL in database page order. Where two or more frames
507 ** correspond to the same database page, the iterator visits only the
508 ** frame most recently written to the WAL (in other words, the frame with
509 ** the largest index).
510 **
511 ** The internals of this structure are only accessed by:
512 **
513 **   walIteratorInit() - Create a new iterator,
514 **   walIteratorNext() - Step an iterator,
515 **   walIteratorFree() - Free an iterator.
516 **
517 ** This functionality is used by the checkpoint code (see walCheckpoint()).
518 */
519 struct WalIterator {
520   int iPrior;                     /* Last result returned from the iterator */
521   int nSegment;                   /* Number of entries in aSegment[] */
522   struct WalSegment {
523     int iNext;                    /* Next slot in aIndex[] not yet returned */
524     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
525     u32 *aPgno;                   /* Array of page numbers. */
526     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
527     int iZero;                    /* Frame number associated with aPgno[0] */
528   } aSegment[1];                  /* One for every 32KB page in the wal-index */
529 };
530 
531 /*
532 ** Define the parameters of the hash tables in the wal-index file. There
533 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
534 ** wal-index.
535 **
536 ** Changing any of these constants will alter the wal-index format and
537 ** create incompatibilities.
538 */
539 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
540 #define HASHTABLE_HASH_1     383                  /* Should be prime */
541 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
542 
543 /*
544 ** The block of page numbers associated with the first hash-table in a
545 ** wal-index is smaller than usual. This is so that there is a complete
546 ** hash-table on each aligned 32KB page of the wal-index.
547 */
548 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
549 
550 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
551 #define WALINDEX_PGSZ   (                                         \
552     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
553 )
554 
555 /*
556 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
557 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
558 ** numbered from zero.
559 **
560 ** If the wal-index is currently smaller the iPage pages then the size
561 ** of the wal-index might be increased, but only if it is safe to do
562 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
563 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
564 **
565 ** If this call is successful, *ppPage is set to point to the wal-index
566 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
567 ** then an SQLite error code is returned and *ppPage is set to 0.
568 */
569 static SQLITE_NOINLINE int walIndexPageRealloc(
570   Wal *pWal,               /* The WAL context */
571   int iPage,               /* The page we seek */
572   volatile u32 **ppPage    /* Write the page pointer here */
573 ){
574   int rc = SQLITE_OK;
575 
576   /* Enlarge the pWal->apWiData[] array if required */
577   if( pWal->nWiData<=iPage ){
578     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
579     volatile u32 **apNew;
580     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
581     if( !apNew ){
582       *ppPage = 0;
583       return SQLITE_NOMEM_BKPT;
584     }
585     memset((void*)&apNew[pWal->nWiData], 0,
586            sizeof(u32*)*(iPage+1-pWal->nWiData));
587     pWal->apWiData = apNew;
588     pWal->nWiData = iPage+1;
589   }
590 
591   /* Request a pointer to the required page from the VFS */
592   assert( pWal->apWiData[iPage]==0 );
593   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
594     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
595     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
596   }else{
597     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
598         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
599     );
600     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
601     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
602     if( (rc&0xff)==SQLITE_READONLY ){
603       pWal->readOnly |= WAL_SHM_RDONLY;
604       if( rc==SQLITE_READONLY ){
605         rc = SQLITE_OK;
606       }
607     }
608   }
609 
610   *ppPage = pWal->apWiData[iPage];
611   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
612   return rc;
613 }
614 static int walIndexPage(
615   Wal *pWal,               /* The WAL context */
616   int iPage,               /* The page we seek */
617   volatile u32 **ppPage    /* Write the page pointer here */
618 ){
619   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
620     return walIndexPageRealloc(pWal, iPage, ppPage);
621   }
622   return SQLITE_OK;
623 }
624 
625 /*
626 ** Return a pointer to the WalCkptInfo structure in the wal-index.
627 */
628 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
629   assert( pWal->nWiData>0 && pWal->apWiData[0] );
630   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
631 }
632 
633 /*
634 ** Return a pointer to the WalIndexHdr structure in the wal-index.
635 */
636 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
637   assert( pWal->nWiData>0 && pWal->apWiData[0] );
638   return (volatile WalIndexHdr*)pWal->apWiData[0];
639 }
640 
641 /*
642 ** The argument to this macro must be of type u32. On a little-endian
643 ** architecture, it returns the u32 value that results from interpreting
644 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
645 ** returns the value that would be produced by interpreting the 4 bytes
646 ** of the input value as a little-endian integer.
647 */
648 #define BYTESWAP32(x) ( \
649     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
650   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
651 )
652 
653 /*
654 ** Generate or extend an 8 byte checksum based on the data in
655 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
656 ** initial values of 0 and 0 if aIn==NULL).
657 **
658 ** The checksum is written back into aOut[] before returning.
659 **
660 ** nByte must be a positive multiple of 8.
661 */
662 static void walChecksumBytes(
663   int nativeCksum, /* True for native byte-order, false for non-native */
664   u8 *a,           /* Content to be checksummed */
665   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
666   const u32 *aIn,  /* Initial checksum value input */
667   u32 *aOut        /* OUT: Final checksum value output */
668 ){
669   u32 s1, s2;
670   u32 *aData = (u32 *)a;
671   u32 *aEnd = (u32 *)&a[nByte];
672 
673   if( aIn ){
674     s1 = aIn[0];
675     s2 = aIn[1];
676   }else{
677     s1 = s2 = 0;
678   }
679 
680   assert( nByte>=8 );
681   assert( (nByte&0x00000007)==0 );
682   assert( nByte<=65536 );
683 
684   if( nativeCksum ){
685     do {
686       s1 += *aData++ + s2;
687       s2 += *aData++ + s1;
688     }while( aData<aEnd );
689   }else{
690     do {
691       s1 += BYTESWAP32(aData[0]) + s2;
692       s2 += BYTESWAP32(aData[1]) + s1;
693       aData += 2;
694     }while( aData<aEnd );
695   }
696 
697   aOut[0] = s1;
698   aOut[1] = s2;
699 }
700 
701 static void walShmBarrier(Wal *pWal){
702   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703     sqlite3OsShmBarrier(pWal->pDbFd);
704   }
705 }
706 
707 /*
708 ** Write the header information in pWal->hdr into the wal-index.
709 **
710 ** The checksum on pWal->hdr is updated before it is written.
711 */
712 static void walIndexWriteHdr(Wal *pWal){
713   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
714   const int nCksum = offsetof(WalIndexHdr, aCksum);
715 
716   assert( pWal->writeLock );
717   pWal->hdr.isInit = 1;
718   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
719   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
720   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
721   walShmBarrier(pWal);
722   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
723 }
724 
725 /*
726 ** This function encodes a single frame header and writes it to a buffer
727 ** supplied by the caller. A frame-header is made up of a series of
728 ** 4-byte big-endian integers, as follows:
729 **
730 **     0: Page number.
731 **     4: For commit records, the size of the database image in pages
732 **        after the commit. For all other records, zero.
733 **     8: Salt-1 (copied from the wal-header)
734 **    12: Salt-2 (copied from the wal-header)
735 **    16: Checksum-1.
736 **    20: Checksum-2.
737 */
738 static void walEncodeFrame(
739   Wal *pWal,                      /* The write-ahead log */
740   u32 iPage,                      /* Database page number for frame */
741   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
742   u8 *aData,                      /* Pointer to page data */
743   u8 *aFrame                      /* OUT: Write encoded frame here */
744 ){
745   int nativeCksum;                /* True for native byte-order checksums */
746   u32 *aCksum = pWal->hdr.aFrameCksum;
747   assert( WAL_FRAME_HDRSIZE==24 );
748   sqlite3Put4byte(&aFrame[0], iPage);
749   sqlite3Put4byte(&aFrame[4], nTruncate);
750   if( pWal->iReCksum==0 ){
751     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
752 
753     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
754     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
755     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
756 
757     sqlite3Put4byte(&aFrame[16], aCksum[0]);
758     sqlite3Put4byte(&aFrame[20], aCksum[1]);
759   }else{
760     memset(&aFrame[8], 0, 16);
761   }
762 }
763 
764 /*
765 ** Check to see if the frame with header in aFrame[] and content
766 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
767 ** *pnTruncate and return true.  Return if the frame is not valid.
768 */
769 static int walDecodeFrame(
770   Wal *pWal,                      /* The write-ahead log */
771   u32 *piPage,                    /* OUT: Database page number for frame */
772   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
773   u8 *aData,                      /* Pointer to page data (for checksum) */
774   u8 *aFrame                      /* Frame data */
775 ){
776   int nativeCksum;                /* True for native byte-order checksums */
777   u32 *aCksum = pWal->hdr.aFrameCksum;
778   u32 pgno;                       /* Page number of the frame */
779   assert( WAL_FRAME_HDRSIZE==24 );
780 
781   /* A frame is only valid if the salt values in the frame-header
782   ** match the salt values in the wal-header.
783   */
784   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
785     return 0;
786   }
787 
788   /* A frame is only valid if the page number is creater than zero.
789   */
790   pgno = sqlite3Get4byte(&aFrame[0]);
791   if( pgno==0 ){
792     return 0;
793   }
794 
795   /* A frame is only valid if a checksum of the WAL header,
796   ** all prior frams, the first 16 bytes of this frame-header,
797   ** and the frame-data matches the checksum in the last 8
798   ** bytes of this frame-header.
799   */
800   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
801   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
802   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
803   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
804    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
805   ){
806     /* Checksum failed. */
807     return 0;
808   }
809 
810   /* If we reach this point, the frame is valid.  Return the page number
811   ** and the new database size.
812   */
813   *piPage = pgno;
814   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
815   return 1;
816 }
817 
818 
819 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
820 /*
821 ** Names of locks.  This routine is used to provide debugging output and is not
822 ** a part of an ordinary build.
823 */
824 static const char *walLockName(int lockIdx){
825   if( lockIdx==WAL_WRITE_LOCK ){
826     return "WRITE-LOCK";
827   }else if( lockIdx==WAL_CKPT_LOCK ){
828     return "CKPT-LOCK";
829   }else if( lockIdx==WAL_RECOVER_LOCK ){
830     return "RECOVER-LOCK";
831   }else{
832     static char zName[15];
833     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
834                      lockIdx-WAL_READ_LOCK(0));
835     return zName;
836   }
837 }
838 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
839 
840 
841 /*
842 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
843 ** A lock cannot be moved directly between shared and exclusive - it must go
844 ** through the unlocked state first.
845 **
846 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
847 */
848 static int walLockShared(Wal *pWal, int lockIdx){
849   int rc;
850   if( pWal->exclusiveMode ) return SQLITE_OK;
851   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
852                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
853   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
854             walLockName(lockIdx), rc ? "failed" : "ok"));
855   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
856   return rc;
857 }
858 static void walUnlockShared(Wal *pWal, int lockIdx){
859   if( pWal->exclusiveMode ) return;
860   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
861                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
862   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
863 }
864 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
865   int rc;
866   if( pWal->exclusiveMode ) return SQLITE_OK;
867   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
868                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
869   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
870             walLockName(lockIdx), n, rc ? "failed" : "ok"));
871   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
872   return rc;
873 }
874 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
875   if( pWal->exclusiveMode ) return;
876   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
877                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
878   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
879              walLockName(lockIdx), n));
880 }
881 
882 /*
883 ** Compute a hash on a page number.  The resulting hash value must land
884 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
885 ** the hash to the next value in the event of a collision.
886 */
887 static int walHash(u32 iPage){
888   assert( iPage>0 );
889   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
890   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
891 }
892 static int walNextHash(int iPriorHash){
893   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
894 }
895 
896 /*
897 ** An instance of the WalHashLoc object is used to describe the location
898 ** of a page hash table in the wal-index.  This becomes the return value
899 ** from walHashGet().
900 */
901 typedef struct WalHashLoc WalHashLoc;
902 struct WalHashLoc {
903   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
904   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
905   u32 iZero;                /* One less than the frame number of first indexed*/
906 };
907 
908 /*
909 ** Return pointers to the hash table and page number array stored on
910 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
911 ** numbered starting from 0.
912 **
913 ** Set output variable pLoc->aHash to point to the start of the hash table
914 ** in the wal-index file. Set pLoc->iZero to one less than the frame
915 ** number of the first frame indexed by this hash table. If a
916 ** slot in the hash table is set to N, it refers to frame number
917 ** (pLoc->iZero+N) in the log.
918 **
919 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
920 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
921 */
922 static int walHashGet(
923   Wal *pWal,                      /* WAL handle */
924   int iHash,                      /* Find the iHash'th table */
925   WalHashLoc *pLoc                /* OUT: Hash table location */
926 ){
927   int rc;                         /* Return code */
928 
929   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
930   assert( rc==SQLITE_OK || iHash>0 );
931 
932   if( rc==SQLITE_OK ){
933     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
934     if( iHash==0 ){
935       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
936       pLoc->iZero = 0;
937     }else{
938       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
939     }
940     pLoc->aPgno = &pLoc->aPgno[-1];
941   }
942   return rc;
943 }
944 
945 /*
946 ** Return the number of the wal-index page that contains the hash-table
947 ** and page-number array that contain entries corresponding to WAL frame
948 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
949 ** are numbered starting from 0.
950 */
951 static int walFramePage(u32 iFrame){
952   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
953   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
954        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
955        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
956        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
957        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
958   );
959   return iHash;
960 }
961 
962 /*
963 ** Return the page number associated with frame iFrame in this WAL.
964 */
965 static u32 walFramePgno(Wal *pWal, u32 iFrame){
966   int iHash = walFramePage(iFrame);
967   if( iHash==0 ){
968     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
969   }
970   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
971 }
972 
973 /*
974 ** Remove entries from the hash table that point to WAL slots greater
975 ** than pWal->hdr.mxFrame.
976 **
977 ** This function is called whenever pWal->hdr.mxFrame is decreased due
978 ** to a rollback or savepoint.
979 **
980 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
981 ** updated.  Any later hash tables will be automatically cleared when
982 ** pWal->hdr.mxFrame advances to the point where those hash tables are
983 ** actually needed.
984 */
985 static void walCleanupHash(Wal *pWal){
986   WalHashLoc sLoc;                /* Hash table location */
987   int iLimit = 0;                 /* Zero values greater than this */
988   int nByte;                      /* Number of bytes to zero in aPgno[] */
989   int i;                          /* Used to iterate through aHash[] */
990   int rc;                         /* Return code form walHashGet() */
991 
992   assert( pWal->writeLock );
993   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
994   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
995   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
996 
997   if( pWal->hdr.mxFrame==0 ) return;
998 
999   /* Obtain pointers to the hash-table and page-number array containing
1000   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1001   ** that the page said hash-table and array reside on is already mapped.(1)
1002   */
1003   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1004   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1005   rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1006   if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1007 
1008   /* Zero all hash-table entries that correspond to frame numbers greater
1009   ** than pWal->hdr.mxFrame.
1010   */
1011   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1012   assert( iLimit>0 );
1013   for(i=0; i<HASHTABLE_NSLOT; i++){
1014     if( sLoc.aHash[i]>iLimit ){
1015       sLoc.aHash[i] = 0;
1016     }
1017   }
1018 
1019   /* Zero the entries in the aPgno array that correspond to frames with
1020   ** frame numbers greater than pWal->hdr.mxFrame.
1021   */
1022   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1023   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1024 
1025 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1026   /* Verify that the every entry in the mapping region is still reachable
1027   ** via the hash table even after the cleanup.
1028   */
1029   if( iLimit ){
1030     int j;           /* Loop counter */
1031     int iKey;        /* Hash key */
1032     for(j=1; j<=iLimit; j++){
1033       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1034         if( sLoc.aHash[iKey]==j ) break;
1035       }
1036       assert( sLoc.aHash[iKey]==j );
1037     }
1038   }
1039 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1040 }
1041 
1042 
1043 /*
1044 ** Set an entry in the wal-index that will map database page number
1045 ** pPage into WAL frame iFrame.
1046 */
1047 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1048   int rc;                         /* Return code */
1049   WalHashLoc sLoc;                /* Wal-index hash table location */
1050 
1051   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1052 
1053   /* Assuming the wal-index file was successfully mapped, populate the
1054   ** page number array and hash table entry.
1055   */
1056   if( rc==SQLITE_OK ){
1057     int iKey;                     /* Hash table key */
1058     int idx;                      /* Value to write to hash-table slot */
1059     int nCollide;                 /* Number of hash collisions */
1060 
1061     idx = iFrame - sLoc.iZero;
1062     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1063 
1064     /* If this is the first entry to be added to this hash-table, zero the
1065     ** entire hash table and aPgno[] array before proceeding.
1066     */
1067     if( idx==1 ){
1068       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1069                                - (u8 *)&sLoc.aPgno[1]);
1070       memset((void*)&sLoc.aPgno[1], 0, nByte);
1071     }
1072 
1073     /* If the entry in aPgno[] is already set, then the previous writer
1074     ** must have exited unexpectedly in the middle of a transaction (after
1075     ** writing one or more dirty pages to the WAL to free up memory).
1076     ** Remove the remnants of that writers uncommitted transaction from
1077     ** the hash-table before writing any new entries.
1078     */
1079     if( sLoc.aPgno[idx] ){
1080       walCleanupHash(pWal);
1081       assert( !sLoc.aPgno[idx] );
1082     }
1083 
1084     /* Write the aPgno[] array entry and the hash-table slot. */
1085     nCollide = idx;
1086     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1087       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1088     }
1089     sLoc.aPgno[idx] = iPage;
1090     sLoc.aHash[iKey] = (ht_slot)idx;
1091 
1092 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1093     /* Verify that the number of entries in the hash table exactly equals
1094     ** the number of entries in the mapping region.
1095     */
1096     {
1097       int i;           /* Loop counter */
1098       int nEntry = 0;  /* Number of entries in the hash table */
1099       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1100       assert( nEntry==idx );
1101     }
1102 
1103     /* Verify that the every entry in the mapping region is reachable
1104     ** via the hash table.  This turns out to be a really, really expensive
1105     ** thing to check, so only do this occasionally - not on every
1106     ** iteration.
1107     */
1108     if( (idx&0x3ff)==0 ){
1109       int i;           /* Loop counter */
1110       for(i=1; i<=idx; i++){
1111         for(iKey=walHash(sLoc.aPgno[i]);
1112             sLoc.aHash[iKey];
1113             iKey=walNextHash(iKey)){
1114           if( sLoc.aHash[iKey]==i ) break;
1115         }
1116         assert( sLoc.aHash[iKey]==i );
1117       }
1118     }
1119 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1120   }
1121 
1122 
1123   return rc;
1124 }
1125 
1126 
1127 /*
1128 ** Recover the wal-index by reading the write-ahead log file.
1129 **
1130 ** This routine first tries to establish an exclusive lock on the
1131 ** wal-index to prevent other threads/processes from doing anything
1132 ** with the WAL or wal-index while recovery is running.  The
1133 ** WAL_RECOVER_LOCK is also held so that other threads will know
1134 ** that this thread is running recovery.  If unable to establish
1135 ** the necessary locks, this routine returns SQLITE_BUSY.
1136 */
1137 static int walIndexRecover(Wal *pWal){
1138   int rc;                         /* Return Code */
1139   i64 nSize;                      /* Size of log file */
1140   u32 aFrameCksum[2] = {0, 0};
1141   int iLock;                      /* Lock offset to lock for checkpoint */
1142 
1143   /* Obtain an exclusive lock on all byte in the locking range not already
1144   ** locked by the caller. The caller is guaranteed to have locked the
1145   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1146   ** If successful, the same bytes that are locked here are unlocked before
1147   ** this function returns.
1148   */
1149   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1150   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1151   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1152   assert( pWal->writeLock );
1153   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1154   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1155   if( rc==SQLITE_OK ){
1156     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1157     if( rc!=SQLITE_OK ){
1158       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1159     }
1160   }
1161   if( rc ){
1162     return rc;
1163   }
1164 
1165   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1166 
1167   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1168 
1169   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1170   if( rc!=SQLITE_OK ){
1171     goto recovery_error;
1172   }
1173 
1174   if( nSize>WAL_HDRSIZE ){
1175     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1176     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1177     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1178     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1179     int iFrame;                   /* Index of last frame read */
1180     i64 iOffset;                  /* Next offset to read from log file */
1181     int szPage;                   /* Page size according to the log */
1182     u32 magic;                    /* Magic value read from WAL header */
1183     u32 version;                  /* Magic value read from WAL header */
1184     int isValid;                  /* True if this frame is valid */
1185 
1186     /* Read in the WAL header. */
1187     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1188     if( rc!=SQLITE_OK ){
1189       goto recovery_error;
1190     }
1191 
1192     /* If the database page size is not a power of two, or is greater than
1193     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1194     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1195     ** WAL file.
1196     */
1197     magic = sqlite3Get4byte(&aBuf[0]);
1198     szPage = sqlite3Get4byte(&aBuf[8]);
1199     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1200      || szPage&(szPage-1)
1201      || szPage>SQLITE_MAX_PAGE_SIZE
1202      || szPage<512
1203     ){
1204       goto finished;
1205     }
1206     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1207     pWal->szPage = szPage;
1208     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1209     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1210 
1211     /* Verify that the WAL header checksum is correct */
1212     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1213         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1214     );
1215     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1216      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1217     ){
1218       goto finished;
1219     }
1220 
1221     /* Verify that the version number on the WAL format is one that
1222     ** are able to understand */
1223     version = sqlite3Get4byte(&aBuf[4]);
1224     if( version!=WAL_MAX_VERSION ){
1225       rc = SQLITE_CANTOPEN_BKPT;
1226       goto finished;
1227     }
1228 
1229     /* Malloc a buffer to read frames into. */
1230     szFrame = szPage + WAL_FRAME_HDRSIZE;
1231     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1232     if( !aFrame ){
1233       rc = SQLITE_NOMEM_BKPT;
1234       goto recovery_error;
1235     }
1236     aData = &aFrame[WAL_FRAME_HDRSIZE];
1237 
1238     /* Read all frames from the log file. */
1239     iFrame = 0;
1240     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1241       u32 pgno;                   /* Database page number for frame */
1242       u32 nTruncate;              /* dbsize field from frame header */
1243 
1244       /* Read and decode the next log frame. */
1245       iFrame++;
1246       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1247       if( rc!=SQLITE_OK ) break;
1248       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1249       if( !isValid ) break;
1250       rc = walIndexAppend(pWal, iFrame, pgno);
1251       if( rc!=SQLITE_OK ) break;
1252 
1253       /* If nTruncate is non-zero, this is a commit record. */
1254       if( nTruncate ){
1255         pWal->hdr.mxFrame = iFrame;
1256         pWal->hdr.nPage = nTruncate;
1257         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1258         testcase( szPage<=32768 );
1259         testcase( szPage>=65536 );
1260         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1261         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1262       }
1263     }
1264 
1265     sqlite3_free(aFrame);
1266   }
1267 
1268 finished:
1269   if( rc==SQLITE_OK ){
1270     volatile WalCkptInfo *pInfo;
1271     int i;
1272     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1273     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1274     walIndexWriteHdr(pWal);
1275 
1276     /* Reset the checkpoint-header. This is safe because this thread is
1277     ** currently holding locks that exclude all other readers, writers and
1278     ** checkpointers.
1279     */
1280     pInfo = walCkptInfo(pWal);
1281     pInfo->nBackfill = 0;
1282     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1283     pInfo->aReadMark[0] = 0;
1284     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1285     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1286 
1287     /* If more than one frame was recovered from the log file, report an
1288     ** event via sqlite3_log(). This is to help with identifying performance
1289     ** problems caused by applications routinely shutting down without
1290     ** checkpointing the log file.
1291     */
1292     if( pWal->hdr.nPage ){
1293       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1294           "recovered %d frames from WAL file %s",
1295           pWal->hdr.mxFrame, pWal->zWalName
1296       );
1297     }
1298   }
1299 
1300 recovery_error:
1301   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1302   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1303   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1304   return rc;
1305 }
1306 
1307 /*
1308 ** Close an open wal-index.
1309 */
1310 static void walIndexClose(Wal *pWal, int isDelete){
1311   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1312     int i;
1313     for(i=0; i<pWal->nWiData; i++){
1314       sqlite3_free((void *)pWal->apWiData[i]);
1315       pWal->apWiData[i] = 0;
1316     }
1317   }
1318   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1319     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1320   }
1321 }
1322 
1323 /*
1324 ** Open a connection to the WAL file zWalName. The database file must
1325 ** already be opened on connection pDbFd. The buffer that zWalName points
1326 ** to must remain valid for the lifetime of the returned Wal* handle.
1327 **
1328 ** A SHARED lock should be held on the database file when this function
1329 ** is called. The purpose of this SHARED lock is to prevent any other
1330 ** client from unlinking the WAL or wal-index file. If another process
1331 ** were to do this just after this client opened one of these files, the
1332 ** system would be badly broken.
1333 **
1334 ** If the log file is successfully opened, SQLITE_OK is returned and
1335 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1336 ** an SQLite error code is returned and *ppWal is left unmodified.
1337 */
1338 int sqlite3WalOpen(
1339   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1340   sqlite3_file *pDbFd,            /* The open database file */
1341   const char *zWalName,           /* Name of the WAL file */
1342   int bNoShm,                     /* True to run in heap-memory mode */
1343   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1344   Wal **ppWal                     /* OUT: Allocated Wal handle */
1345 ){
1346   int rc;                         /* Return Code */
1347   Wal *pRet;                      /* Object to allocate and return */
1348   int flags;                      /* Flags passed to OsOpen() */
1349 
1350   assert( zWalName && zWalName[0] );
1351   assert( pDbFd );
1352 
1353   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1354   ** this source file.  Verify that the #defines of the locking byte offsets
1355   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1356   ** For that matter, if the lock offset ever changes from its initial design
1357   ** value of 120, we need to know that so there is an assert() to check it.
1358   */
1359   assert( 120==WALINDEX_LOCK_OFFSET );
1360   assert( 136==WALINDEX_HDR_SIZE );
1361 #ifdef WIN_SHM_BASE
1362   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1363 #endif
1364 #ifdef UNIX_SHM_BASE
1365   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1366 #endif
1367 
1368 
1369   /* Allocate an instance of struct Wal to return. */
1370   *ppWal = 0;
1371   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1372   if( !pRet ){
1373     return SQLITE_NOMEM_BKPT;
1374   }
1375 
1376   pRet->pVfs = pVfs;
1377   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1378   pRet->pDbFd = pDbFd;
1379   pRet->readLock = -1;
1380   pRet->mxWalSize = mxWalSize;
1381   pRet->zWalName = zWalName;
1382   pRet->syncHeader = 1;
1383   pRet->padToSectorBoundary = 1;
1384   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1385 
1386   /* Open file handle on the write-ahead log file. */
1387   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1388   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1389   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1390     pRet->readOnly = WAL_RDONLY;
1391   }
1392 
1393   if( rc!=SQLITE_OK ){
1394     walIndexClose(pRet, 0);
1395     sqlite3OsClose(pRet->pWalFd);
1396     sqlite3_free(pRet);
1397   }else{
1398     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1399     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1400     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1401       pRet->padToSectorBoundary = 0;
1402     }
1403     *ppWal = pRet;
1404     WALTRACE(("WAL%d: opened\n", pRet));
1405   }
1406   return rc;
1407 }
1408 
1409 /*
1410 ** Change the size to which the WAL file is trucated on each reset.
1411 */
1412 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1413   if( pWal ) pWal->mxWalSize = iLimit;
1414 }
1415 
1416 /*
1417 ** Find the smallest page number out of all pages held in the WAL that
1418 ** has not been returned by any prior invocation of this method on the
1419 ** same WalIterator object.   Write into *piFrame the frame index where
1420 ** that page was last written into the WAL.  Write into *piPage the page
1421 ** number.
1422 **
1423 ** Return 0 on success.  If there are no pages in the WAL with a page
1424 ** number larger than *piPage, then return 1.
1425 */
1426 static int walIteratorNext(
1427   WalIterator *p,               /* Iterator */
1428   u32 *piPage,                  /* OUT: The page number of the next page */
1429   u32 *piFrame                  /* OUT: Wal frame index of next page */
1430 ){
1431   u32 iMin;                     /* Result pgno must be greater than iMin */
1432   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1433   int i;                        /* For looping through segments */
1434 
1435   iMin = p->iPrior;
1436   assert( iMin<0xffffffff );
1437   for(i=p->nSegment-1; i>=0; i--){
1438     struct WalSegment *pSegment = &p->aSegment[i];
1439     while( pSegment->iNext<pSegment->nEntry ){
1440       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1441       if( iPg>iMin ){
1442         if( iPg<iRet ){
1443           iRet = iPg;
1444           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1445         }
1446         break;
1447       }
1448       pSegment->iNext++;
1449     }
1450   }
1451 
1452   *piPage = p->iPrior = iRet;
1453   return (iRet==0xFFFFFFFF);
1454 }
1455 
1456 /*
1457 ** This function merges two sorted lists into a single sorted list.
1458 **
1459 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1460 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1461 ** is guaranteed for all J<K:
1462 **
1463 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1464 **        aContent[aRight[J]] < aContent[aRight[K]]
1465 **
1466 ** This routine overwrites aRight[] with a new (probably longer) sequence
1467 ** of indices such that the aRight[] contains every index that appears in
1468 ** either aLeft[] or the old aRight[] and such that the second condition
1469 ** above is still met.
1470 **
1471 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1472 ** aContent[aRight[X]] values will be unique too.  But there might be
1473 ** one or more combinations of X and Y such that
1474 **
1475 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1476 **
1477 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1478 */
1479 static void walMerge(
1480   const u32 *aContent,            /* Pages in wal - keys for the sort */
1481   ht_slot *aLeft,                 /* IN: Left hand input list */
1482   int nLeft,                      /* IN: Elements in array *paLeft */
1483   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1484   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1485   ht_slot *aTmp                   /* Temporary buffer */
1486 ){
1487   int iLeft = 0;                  /* Current index in aLeft */
1488   int iRight = 0;                 /* Current index in aRight */
1489   int iOut = 0;                   /* Current index in output buffer */
1490   int nRight = *pnRight;
1491   ht_slot *aRight = *paRight;
1492 
1493   assert( nLeft>0 && nRight>0 );
1494   while( iRight<nRight || iLeft<nLeft ){
1495     ht_slot logpage;
1496     Pgno dbpage;
1497 
1498     if( (iLeft<nLeft)
1499      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1500     ){
1501       logpage = aLeft[iLeft++];
1502     }else{
1503       logpage = aRight[iRight++];
1504     }
1505     dbpage = aContent[logpage];
1506 
1507     aTmp[iOut++] = logpage;
1508     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1509 
1510     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1511     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1512   }
1513 
1514   *paRight = aLeft;
1515   *pnRight = iOut;
1516   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1517 }
1518 
1519 /*
1520 ** Sort the elements in list aList using aContent[] as the sort key.
1521 ** Remove elements with duplicate keys, preferring to keep the
1522 ** larger aList[] values.
1523 **
1524 ** The aList[] entries are indices into aContent[].  The values in
1525 ** aList[] are to be sorted so that for all J<K:
1526 **
1527 **      aContent[aList[J]] < aContent[aList[K]]
1528 **
1529 ** For any X and Y such that
1530 **
1531 **      aContent[aList[X]] == aContent[aList[Y]]
1532 **
1533 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1534 ** the smaller.
1535 */
1536 static void walMergesort(
1537   const u32 *aContent,            /* Pages in wal */
1538   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1539   ht_slot *aList,                 /* IN/OUT: List to sort */
1540   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1541 ){
1542   struct Sublist {
1543     int nList;                    /* Number of elements in aList */
1544     ht_slot *aList;               /* Pointer to sub-list content */
1545   };
1546 
1547   const int nList = *pnList;      /* Size of input list */
1548   int nMerge = 0;                 /* Number of elements in list aMerge */
1549   ht_slot *aMerge = 0;            /* List to be merged */
1550   int iList;                      /* Index into input list */
1551   u32 iSub = 0;                   /* Index into aSub array */
1552   struct Sublist aSub[13];        /* Array of sub-lists */
1553 
1554   memset(aSub, 0, sizeof(aSub));
1555   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1556   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1557 
1558   for(iList=0; iList<nList; iList++){
1559     nMerge = 1;
1560     aMerge = &aList[iList];
1561     for(iSub=0; iList & (1<<iSub); iSub++){
1562       struct Sublist *p;
1563       assert( iSub<ArraySize(aSub) );
1564       p = &aSub[iSub];
1565       assert( p->aList && p->nList<=(1<<iSub) );
1566       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1567       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1568     }
1569     aSub[iSub].aList = aMerge;
1570     aSub[iSub].nList = nMerge;
1571   }
1572 
1573   for(iSub++; iSub<ArraySize(aSub); iSub++){
1574     if( nList & (1<<iSub) ){
1575       struct Sublist *p;
1576       assert( iSub<ArraySize(aSub) );
1577       p = &aSub[iSub];
1578       assert( p->nList<=(1<<iSub) );
1579       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1580       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1581     }
1582   }
1583   assert( aMerge==aList );
1584   *pnList = nMerge;
1585 
1586 #ifdef SQLITE_DEBUG
1587   {
1588     int i;
1589     for(i=1; i<*pnList; i++){
1590       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1591     }
1592   }
1593 #endif
1594 }
1595 
1596 /*
1597 ** Free an iterator allocated by walIteratorInit().
1598 */
1599 static void walIteratorFree(WalIterator *p){
1600   sqlite3_free(p);
1601 }
1602 
1603 /*
1604 ** Construct a WalInterator object that can be used to loop over all
1605 ** pages in the WAL following frame nBackfill in ascending order. Frames
1606 ** nBackfill or earlier may be included - excluding them is an optimization
1607 ** only. The caller must hold the checkpoint lock.
1608 **
1609 ** On success, make *pp point to the newly allocated WalInterator object
1610 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1611 ** returns an error, the value of *pp is undefined.
1612 **
1613 ** The calling routine should invoke walIteratorFree() to destroy the
1614 ** WalIterator object when it has finished with it.
1615 */
1616 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1617   WalIterator *p;                 /* Return value */
1618   int nSegment;                   /* Number of segments to merge */
1619   u32 iLast;                      /* Last frame in log */
1620   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1621   int i;                          /* Iterator variable */
1622   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1623   int rc = SQLITE_OK;             /* Return Code */
1624 
1625   /* This routine only runs while holding the checkpoint lock. And
1626   ** it only runs if there is actually content in the log (mxFrame>0).
1627   */
1628   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1629   iLast = pWal->hdr.mxFrame;
1630 
1631   /* Allocate space for the WalIterator object. */
1632   nSegment = walFramePage(iLast) + 1;
1633   nByte = sizeof(WalIterator)
1634         + (nSegment-1)*sizeof(struct WalSegment)
1635         + iLast*sizeof(ht_slot);
1636   p = (WalIterator *)sqlite3_malloc64(nByte);
1637   if( !p ){
1638     return SQLITE_NOMEM_BKPT;
1639   }
1640   memset(p, 0, nByte);
1641   p->nSegment = nSegment;
1642 
1643   /* Allocate temporary space used by the merge-sort routine. This block
1644   ** of memory will be freed before this function returns.
1645   */
1646   aTmp = (ht_slot *)sqlite3_malloc64(
1647       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1648   );
1649   if( !aTmp ){
1650     rc = SQLITE_NOMEM_BKPT;
1651   }
1652 
1653   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1654     WalHashLoc sLoc;
1655 
1656     rc = walHashGet(pWal, i, &sLoc);
1657     if( rc==SQLITE_OK ){
1658       int j;                      /* Counter variable */
1659       int nEntry;                 /* Number of entries in this segment */
1660       ht_slot *aIndex;            /* Sorted index for this segment */
1661 
1662       sLoc.aPgno++;
1663       if( (i+1)==nSegment ){
1664         nEntry = (int)(iLast - sLoc.iZero);
1665       }else{
1666         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1667       }
1668       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1669       sLoc.iZero++;
1670 
1671       for(j=0; j<nEntry; j++){
1672         aIndex[j] = (ht_slot)j;
1673       }
1674       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1675       p->aSegment[i].iZero = sLoc.iZero;
1676       p->aSegment[i].nEntry = nEntry;
1677       p->aSegment[i].aIndex = aIndex;
1678       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1679     }
1680   }
1681   sqlite3_free(aTmp);
1682 
1683   if( rc!=SQLITE_OK ){
1684     walIteratorFree(p);
1685     p = 0;
1686   }
1687   *pp = p;
1688   return rc;
1689 }
1690 
1691 /*
1692 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1693 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1694 ** busy-handler function. Invoke it and retry the lock until either the
1695 ** lock is successfully obtained or the busy-handler returns 0.
1696 */
1697 static int walBusyLock(
1698   Wal *pWal,                      /* WAL connection */
1699   int (*xBusy)(void*),            /* Function to call when busy */
1700   void *pBusyArg,                 /* Context argument for xBusyHandler */
1701   int lockIdx,                    /* Offset of first byte to lock */
1702   int n                           /* Number of bytes to lock */
1703 ){
1704   int rc;
1705   do {
1706     rc = walLockExclusive(pWal, lockIdx, n);
1707   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1708   return rc;
1709 }
1710 
1711 /*
1712 ** The cache of the wal-index header must be valid to call this function.
1713 ** Return the page-size in bytes used by the database.
1714 */
1715 static int walPagesize(Wal *pWal){
1716   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1717 }
1718 
1719 /*
1720 ** The following is guaranteed when this function is called:
1721 **
1722 **   a) the WRITER lock is held,
1723 **   b) the entire log file has been checkpointed, and
1724 **   c) any existing readers are reading exclusively from the database
1725 **      file - there are no readers that may attempt to read a frame from
1726 **      the log file.
1727 **
1728 ** This function updates the shared-memory structures so that the next
1729 ** client to write to the database (which may be this one) does so by
1730 ** writing frames into the start of the log file.
1731 **
1732 ** The value of parameter salt1 is used as the aSalt[1] value in the
1733 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1734 ** one obtained from sqlite3_randomness()).
1735 */
1736 static void walRestartHdr(Wal *pWal, u32 salt1){
1737   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1738   int i;                          /* Loop counter */
1739   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1740   pWal->nCkpt++;
1741   pWal->hdr.mxFrame = 0;
1742   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1743   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1744   walIndexWriteHdr(pWal);
1745   pInfo->nBackfill = 0;
1746   pInfo->nBackfillAttempted = 0;
1747   pInfo->aReadMark[1] = 0;
1748   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1749   assert( pInfo->aReadMark[0]==0 );
1750 }
1751 
1752 /*
1753 ** Copy as much content as we can from the WAL back into the database file
1754 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1755 **
1756 ** The amount of information copies from WAL to database might be limited
1757 ** by active readers.  This routine will never overwrite a database page
1758 ** that a concurrent reader might be using.
1759 **
1760 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1761 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1762 ** checkpoints are always run by a background thread or background
1763 ** process, foreground threads will never block on a lengthy fsync call.
1764 **
1765 ** Fsync is called on the WAL before writing content out of the WAL and
1766 ** into the database.  This ensures that if the new content is persistent
1767 ** in the WAL and can be recovered following a power-loss or hard reset.
1768 **
1769 ** Fsync is also called on the database file if (and only if) the entire
1770 ** WAL content is copied into the database file.  This second fsync makes
1771 ** it safe to delete the WAL since the new content will persist in the
1772 ** database file.
1773 **
1774 ** This routine uses and updates the nBackfill field of the wal-index header.
1775 ** This is the only routine that will increase the value of nBackfill.
1776 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1777 ** its value.)
1778 **
1779 ** The caller must be holding sufficient locks to ensure that no other
1780 ** checkpoint is running (in any other thread or process) at the same
1781 ** time.
1782 */
1783 static int walCheckpoint(
1784   Wal *pWal,                      /* Wal connection */
1785   sqlite3 *db,                    /* Check for interrupts on this handle */
1786   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1787   int (*xBusy)(void*),            /* Function to call when busy */
1788   void *pBusyArg,                 /* Context argument for xBusyHandler */
1789   int sync_flags,                 /* Flags for OsSync() (or 0) */
1790   u8 *zBuf                        /* Temporary buffer to use */
1791 ){
1792   int rc = SQLITE_OK;             /* Return code */
1793   int szPage;                     /* Database page-size */
1794   WalIterator *pIter = 0;         /* Wal iterator context */
1795   u32 iDbpage = 0;                /* Next database page to write */
1796   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1797   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1798   u32 mxPage;                     /* Max database page to write */
1799   int i;                          /* Loop counter */
1800   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1801 
1802   szPage = walPagesize(pWal);
1803   testcase( szPage<=32768 );
1804   testcase( szPage>=65536 );
1805   pInfo = walCkptInfo(pWal);
1806   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1807 
1808     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1809     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1810     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1811 
1812     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1813     ** safe to write into the database.  Frames beyond mxSafeFrame might
1814     ** overwrite database pages that are in use by active readers and thus
1815     ** cannot be backfilled from the WAL.
1816     */
1817     mxSafeFrame = pWal->hdr.mxFrame;
1818     mxPage = pWal->hdr.nPage;
1819     for(i=1; i<WAL_NREADER; i++){
1820       /* Thread-sanitizer reports that the following is an unsafe read,
1821       ** as some other thread may be in the process of updating the value
1822       ** of the aReadMark[] slot. The assumption here is that if that is
1823       ** happening, the other client may only be increasing the value,
1824       ** not decreasing it. So assuming either that either the "old" or
1825       ** "new" version of the value is read, and not some arbitrary value
1826       ** that would never be written by a real client, things are still
1827       ** safe.
1828       **
1829       ** Astute readers have pointed out that the assumption stated in the
1830       ** last sentence of the previous paragraph is not guaranteed to be
1831       ** true for all conforming systems.  However, the assumption is true
1832       ** for all compilers and architectures in common use today (circa
1833       ** 2019-11-27) and the alternatives are both slow and complex, and
1834       ** so we will continue to go with the current design for now.  If this
1835       ** bothers you, or if you really are running on a system where aligned
1836       ** 32-bit reads and writes are not atomic, then you can simply avoid
1837       ** the use of WAL mode, or only use WAL mode together with
1838       ** PRAGMA locking_mode=EXCLUSIVE and all will be well.
1839       */
1840       u32 y = pInfo->aReadMark[i];
1841       if( mxSafeFrame>y ){
1842         assert( y<=pWal->hdr.mxFrame );
1843         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1844         if( rc==SQLITE_OK ){
1845           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1846           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1847         }else if( rc==SQLITE_BUSY ){
1848           mxSafeFrame = y;
1849           xBusy = 0;
1850         }else{
1851           goto walcheckpoint_out;
1852         }
1853       }
1854     }
1855 
1856     /* Allocate the iterator */
1857     if( pInfo->nBackfill<mxSafeFrame ){
1858       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1859       assert( rc==SQLITE_OK || pIter==0 );
1860     }
1861 
1862     if( pIter
1863      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1864     ){
1865       u32 nBackfill = pInfo->nBackfill;
1866 
1867       pInfo->nBackfillAttempted = mxSafeFrame;
1868 
1869       /* Sync the WAL to disk */
1870       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1871 
1872       /* If the database may grow as a result of this checkpoint, hint
1873       ** about the eventual size of the db file to the VFS layer.
1874       */
1875       if( rc==SQLITE_OK ){
1876         i64 nReq = ((i64)mxPage * szPage);
1877         i64 nSize;                    /* Current size of database file */
1878         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1879         if( rc==SQLITE_OK && nSize<nReq ){
1880           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1881         }
1882       }
1883 
1884 
1885       /* Iterate through the contents of the WAL, copying data to the db file */
1886       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1887         i64 iOffset;
1888         assert( walFramePgno(pWal, iFrame)==iDbpage );
1889         if( db->u1.isInterrupted ){
1890           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1891           break;
1892         }
1893         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1894           continue;
1895         }
1896         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1897         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1898         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1899         if( rc!=SQLITE_OK ) break;
1900         iOffset = (iDbpage-1)*(i64)szPage;
1901         testcase( IS_BIG_INT(iOffset) );
1902         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1903         if( rc!=SQLITE_OK ) break;
1904       }
1905 
1906       /* If work was actually accomplished... */
1907       if( rc==SQLITE_OK ){
1908         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1909           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1910           testcase( IS_BIG_INT(szDb) );
1911           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1912           if( rc==SQLITE_OK ){
1913             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1914           }
1915         }
1916         if( rc==SQLITE_OK ){
1917           pInfo->nBackfill = mxSafeFrame;
1918         }
1919       }
1920 
1921       /* Release the reader lock held while backfilling */
1922       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1923     }
1924 
1925     if( rc==SQLITE_BUSY ){
1926       /* Reset the return code so as not to report a checkpoint failure
1927       ** just because there are active readers.  */
1928       rc = SQLITE_OK;
1929     }
1930   }
1931 
1932   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1933   ** entire wal file has been copied into the database file, then block
1934   ** until all readers have finished using the wal file. This ensures that
1935   ** the next process to write to the database restarts the wal file.
1936   */
1937   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1938     assert( pWal->writeLock );
1939     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1940       rc = SQLITE_BUSY;
1941     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1942       u32 salt1;
1943       sqlite3_randomness(4, &salt1);
1944       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1945       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1946       if( rc==SQLITE_OK ){
1947         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1948           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1949           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1950           ** truncates the log file to zero bytes just prior to a
1951           ** successful return.
1952           **
1953           ** In theory, it might be safe to do this without updating the
1954           ** wal-index header in shared memory, as all subsequent reader or
1955           ** writer clients should see that the entire log file has been
1956           ** checkpointed and behave accordingly. This seems unsafe though,
1957           ** as it would leave the system in a state where the contents of
1958           ** the wal-index header do not match the contents of the
1959           ** file-system. To avoid this, update the wal-index header to
1960           ** indicate that the log file contains zero valid frames.  */
1961           walRestartHdr(pWal, salt1);
1962           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1963         }
1964         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1965       }
1966     }
1967   }
1968 
1969  walcheckpoint_out:
1970   walIteratorFree(pIter);
1971   return rc;
1972 }
1973 
1974 /*
1975 ** If the WAL file is currently larger than nMax bytes in size, truncate
1976 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1977 */
1978 static void walLimitSize(Wal *pWal, i64 nMax){
1979   i64 sz;
1980   int rx;
1981   sqlite3BeginBenignMalloc();
1982   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1983   if( rx==SQLITE_OK && (sz > nMax ) ){
1984     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1985   }
1986   sqlite3EndBenignMalloc();
1987   if( rx ){
1988     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1989   }
1990 }
1991 
1992 /*
1993 ** Close a connection to a log file.
1994 */
1995 int sqlite3WalClose(
1996   Wal *pWal,                      /* Wal to close */
1997   sqlite3 *db,                    /* For interrupt flag */
1998   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1999   int nBuf,
2000   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2001 ){
2002   int rc = SQLITE_OK;
2003   if( pWal ){
2004     int isDelete = 0;             /* True to unlink wal and wal-index files */
2005 
2006     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2007     ** ordinary, rollback-mode locking methods, this guarantees that the
2008     ** connection associated with this log file is the only connection to
2009     ** the database. In this case checkpoint the database and unlink both
2010     ** the wal and wal-index files.
2011     **
2012     ** The EXCLUSIVE lock is not released before returning.
2013     */
2014     if( zBuf!=0
2015      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2016     ){
2017       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2018         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2019       }
2020       rc = sqlite3WalCheckpoint(pWal, db,
2021           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2022       );
2023       if( rc==SQLITE_OK ){
2024         int bPersist = -1;
2025         sqlite3OsFileControlHint(
2026             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2027         );
2028         if( bPersist!=1 ){
2029           /* Try to delete the WAL file if the checkpoint completed and
2030           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2031           ** mode (!bPersist) */
2032           isDelete = 1;
2033         }else if( pWal->mxWalSize>=0 ){
2034           /* Try to truncate the WAL file to zero bytes if the checkpoint
2035           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2036           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2037           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2038           ** to zero bytes as truncating to the journal_size_limit might
2039           ** leave a corrupt WAL file on disk. */
2040           walLimitSize(pWal, 0);
2041         }
2042       }
2043     }
2044 
2045     walIndexClose(pWal, isDelete);
2046     sqlite3OsClose(pWal->pWalFd);
2047     if( isDelete ){
2048       sqlite3BeginBenignMalloc();
2049       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2050       sqlite3EndBenignMalloc();
2051     }
2052     WALTRACE(("WAL%p: closed\n", pWal));
2053     sqlite3_free((void *)pWal->apWiData);
2054     sqlite3_free(pWal);
2055   }
2056   return rc;
2057 }
2058 
2059 /*
2060 ** Try to read the wal-index header.  Return 0 on success and 1 if
2061 ** there is a problem.
2062 **
2063 ** The wal-index is in shared memory.  Another thread or process might
2064 ** be writing the header at the same time this procedure is trying to
2065 ** read it, which might result in inconsistency.  A dirty read is detected
2066 ** by verifying that both copies of the header are the same and also by
2067 ** a checksum on the header.
2068 **
2069 ** If and only if the read is consistent and the header is different from
2070 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2071 ** and *pChanged is set to 1.
2072 **
2073 ** If the checksum cannot be verified return non-zero. If the header
2074 ** is read successfully and the checksum verified, return zero.
2075 */
2076 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2077   u32 aCksum[2];                  /* Checksum on the header content */
2078   WalIndexHdr h1, h2;             /* Two copies of the header content */
2079   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2080 
2081   /* The first page of the wal-index must be mapped at this point. */
2082   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2083 
2084   /* Read the header. This might happen concurrently with a write to the
2085   ** same area of shared memory on a different CPU in a SMP,
2086   ** meaning it is possible that an inconsistent snapshot is read
2087   ** from the file. If this happens, return non-zero.
2088   **
2089   ** There are two copies of the header at the beginning of the wal-index.
2090   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2091   ** Memory barriers are used to prevent the compiler or the hardware from
2092   ** reordering the reads and writes.
2093   */
2094   aHdr = walIndexHdr(pWal);
2095   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2096   walShmBarrier(pWal);
2097   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2098 
2099   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2100     return 1;   /* Dirty read */
2101   }
2102   if( h1.isInit==0 ){
2103     return 1;   /* Malformed header - probably all zeros */
2104   }
2105   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2106   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2107     return 1;   /* Checksum does not match */
2108   }
2109 
2110   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2111     *pChanged = 1;
2112     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2113     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2114     testcase( pWal->szPage<=32768 );
2115     testcase( pWal->szPage>=65536 );
2116   }
2117 
2118   /* The header was successfully read. Return zero. */
2119   return 0;
2120 }
2121 
2122 /*
2123 ** This is the value that walTryBeginRead returns when it needs to
2124 ** be retried.
2125 */
2126 #define WAL_RETRY  (-1)
2127 
2128 /*
2129 ** Read the wal-index header from the wal-index and into pWal->hdr.
2130 ** If the wal-header appears to be corrupt, try to reconstruct the
2131 ** wal-index from the WAL before returning.
2132 **
2133 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2134 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2135 ** to 0.
2136 **
2137 ** If the wal-index header is successfully read, return SQLITE_OK.
2138 ** Otherwise an SQLite error code.
2139 */
2140 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2141   int rc;                         /* Return code */
2142   int badHdr;                     /* True if a header read failed */
2143   volatile u32 *page0;            /* Chunk of wal-index containing header */
2144 
2145   /* Ensure that page 0 of the wal-index (the page that contains the
2146   ** wal-index header) is mapped. Return early if an error occurs here.
2147   */
2148   assert( pChanged );
2149   rc = walIndexPage(pWal, 0, &page0);
2150   if( rc!=SQLITE_OK ){
2151     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2152     if( rc==SQLITE_READONLY_CANTINIT ){
2153       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2154       ** was openable but is not writable, and this thread is unable to
2155       ** confirm that another write-capable connection has the shared-memory
2156       ** open, and hence the content of the shared-memory is unreliable,
2157       ** since the shared-memory might be inconsistent with the WAL file
2158       ** and there is no writer on hand to fix it. */
2159       assert( page0==0 );
2160       assert( pWal->writeLock==0 );
2161       assert( pWal->readOnly & WAL_SHM_RDONLY );
2162       pWal->bShmUnreliable = 1;
2163       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2164       *pChanged = 1;
2165     }else{
2166       return rc; /* Any other non-OK return is just an error */
2167     }
2168   }else{
2169     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2170     ** is zero, which prevents the SHM from growing */
2171     testcase( page0!=0 );
2172   }
2173   assert( page0!=0 || pWal->writeLock==0 );
2174 
2175   /* If the first page of the wal-index has been mapped, try to read the
2176   ** wal-index header immediately, without holding any lock. This usually
2177   ** works, but may fail if the wal-index header is corrupt or currently
2178   ** being modified by another thread or process.
2179   */
2180   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2181 
2182   /* If the first attempt failed, it might have been due to a race
2183   ** with a writer.  So get a WRITE lock and try again.
2184   */
2185   assert( badHdr==0 || pWal->writeLock==0 );
2186   if( badHdr ){
2187     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2188       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2189         walUnlockShared(pWal, WAL_WRITE_LOCK);
2190         rc = SQLITE_READONLY_RECOVERY;
2191       }
2192     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2193       pWal->writeLock = 1;
2194       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2195         badHdr = walIndexTryHdr(pWal, pChanged);
2196         if( badHdr ){
2197           /* If the wal-index header is still malformed even while holding
2198           ** a WRITE lock, it can only mean that the header is corrupted and
2199           ** needs to be reconstructed.  So run recovery to do exactly that.
2200           */
2201           rc = walIndexRecover(pWal);
2202           *pChanged = 1;
2203         }
2204       }
2205       pWal->writeLock = 0;
2206       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2207     }
2208   }
2209 
2210   /* If the header is read successfully, check the version number to make
2211   ** sure the wal-index was not constructed with some future format that
2212   ** this version of SQLite cannot understand.
2213   */
2214   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2215     rc = SQLITE_CANTOPEN_BKPT;
2216   }
2217   if( pWal->bShmUnreliable ){
2218     if( rc!=SQLITE_OK ){
2219       walIndexClose(pWal, 0);
2220       pWal->bShmUnreliable = 0;
2221       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2222       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2223       ** writer truncated the WAL out from under it.  If that happens, it
2224       ** indicates that a writer has fixed the SHM file for us, so retry */
2225       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2226     }
2227     pWal->exclusiveMode = WAL_NORMAL_MODE;
2228   }
2229 
2230   return rc;
2231 }
2232 
2233 /*
2234 ** Open a transaction in a connection where the shared-memory is read-only
2235 ** and where we cannot verify that there is a separate write-capable connection
2236 ** on hand to keep the shared-memory up-to-date with the WAL file.
2237 **
2238 ** This can happen, for example, when the shared-memory is implemented by
2239 ** memory-mapping a *-shm file, where a prior writer has shut down and
2240 ** left the *-shm file on disk, and now the present connection is trying
2241 ** to use that database but lacks write permission on the *-shm file.
2242 ** Other scenarios are also possible, depending on the VFS implementation.
2243 **
2244 ** Precondition:
2245 **
2246 **    The *-wal file has been read and an appropriate wal-index has been
2247 **    constructed in pWal->apWiData[] using heap memory instead of shared
2248 **    memory.
2249 **
2250 ** If this function returns SQLITE_OK, then the read transaction has
2251 ** been successfully opened. In this case output variable (*pChanged)
2252 ** is set to true before returning if the caller should discard the
2253 ** contents of the page cache before proceeding. Or, if it returns
2254 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2255 ** the caller should retry opening the read transaction from the
2256 ** beginning (including attempting to map the *-shm file).
2257 **
2258 ** If an error occurs, an SQLite error code is returned.
2259 */
2260 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2261   i64 szWal;                      /* Size of wal file on disk in bytes */
2262   i64 iOffset;                    /* Current offset when reading wal file */
2263   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2264   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2265   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2266   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2267   volatile void *pDummy;          /* Dummy argument for xShmMap */
2268   int rc;                         /* Return code */
2269   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2270 
2271   assert( pWal->bShmUnreliable );
2272   assert( pWal->readOnly & WAL_SHM_RDONLY );
2273   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2274 
2275   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2276   ** writers from running a checkpoint, but does not stop them
2277   ** from running recovery.  */
2278   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2279   if( rc!=SQLITE_OK ){
2280     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2281     goto begin_unreliable_shm_out;
2282   }
2283   pWal->readLock = 0;
2284 
2285   /* Check to see if a separate writer has attached to the shared-memory area,
2286   ** thus making the shared-memory "reliable" again.  Do this by invoking
2287   ** the xShmMap() routine of the VFS and looking to see if the return
2288   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2289   **
2290   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2291   ** cause the heap-memory WAL-index to be discarded and the actual
2292   ** shared memory to be used in its place.
2293   **
2294   ** This step is important because, even though this connection is holding
2295   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2296   ** have already checkpointed the WAL file and, while the current
2297   ** is active, wrap the WAL and start overwriting frames that this
2298   ** process wants to use.
2299   **
2300   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2301   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2302   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2303   ** even if some external agent does a "chmod" to make the shared-memory
2304   ** writable by us, until sqlite3OsShmUnmap() has been called.
2305   ** This is a requirement on the VFS implementation.
2306    */
2307   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2308   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2309   if( rc!=SQLITE_READONLY_CANTINIT ){
2310     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2311     goto begin_unreliable_shm_out;
2312   }
2313 
2314   /* We reach this point only if the real shared-memory is still unreliable.
2315   ** Assume the in-memory WAL-index substitute is correct and load it
2316   ** into pWal->hdr.
2317   */
2318   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2319 
2320   /* Make sure some writer hasn't come in and changed the WAL file out
2321   ** from under us, then disconnected, while we were not looking.
2322   */
2323   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2324   if( rc!=SQLITE_OK ){
2325     goto begin_unreliable_shm_out;
2326   }
2327   if( szWal<WAL_HDRSIZE ){
2328     /* If the wal file is too small to contain a wal-header and the
2329     ** wal-index header has mxFrame==0, then it must be safe to proceed
2330     ** reading the database file only. However, the page cache cannot
2331     ** be trusted, as a read/write connection may have connected, written
2332     ** the db, run a checkpoint, truncated the wal file and disconnected
2333     ** since this client's last read transaction.  */
2334     *pChanged = 1;
2335     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2336     goto begin_unreliable_shm_out;
2337   }
2338 
2339   /* Check the salt keys at the start of the wal file still match. */
2340   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2341   if( rc!=SQLITE_OK ){
2342     goto begin_unreliable_shm_out;
2343   }
2344   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2345     /* Some writer has wrapped the WAL file while we were not looking.
2346     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2347     ** rebuilt. */
2348     rc = WAL_RETRY;
2349     goto begin_unreliable_shm_out;
2350   }
2351 
2352   /* Allocate a buffer to read frames into */
2353   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2354   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2355   if( aFrame==0 ){
2356     rc = SQLITE_NOMEM_BKPT;
2357     goto begin_unreliable_shm_out;
2358   }
2359   aData = &aFrame[WAL_FRAME_HDRSIZE];
2360 
2361   /* Check to see if a complete transaction has been appended to the
2362   ** wal file since the heap-memory wal-index was created. If so, the
2363   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2364   ** the caller.  */
2365   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2366   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2367   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2368       iOffset+szFrame<=szWal;
2369       iOffset+=szFrame
2370   ){
2371     u32 pgno;                   /* Database page number for frame */
2372     u32 nTruncate;              /* dbsize field from frame header */
2373 
2374     /* Read and decode the next log frame. */
2375     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2376     if( rc!=SQLITE_OK ) break;
2377     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2378 
2379     /* If nTruncate is non-zero, then a complete transaction has been
2380     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2381     ** the loop.  */
2382     if( nTruncate ){
2383       rc = WAL_RETRY;
2384       break;
2385     }
2386   }
2387   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2388   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2389 
2390  begin_unreliable_shm_out:
2391   sqlite3_free(aFrame);
2392   if( rc!=SQLITE_OK ){
2393     int i;
2394     for(i=0; i<pWal->nWiData; i++){
2395       sqlite3_free((void*)pWal->apWiData[i]);
2396       pWal->apWiData[i] = 0;
2397     }
2398     pWal->bShmUnreliable = 0;
2399     sqlite3WalEndReadTransaction(pWal);
2400     *pChanged = 1;
2401   }
2402   return rc;
2403 }
2404 
2405 /*
2406 ** Attempt to start a read transaction.  This might fail due to a race or
2407 ** other transient condition.  When that happens, it returns WAL_RETRY to
2408 ** indicate to the caller that it is safe to retry immediately.
2409 **
2410 ** On success return SQLITE_OK.  On a permanent failure (such an
2411 ** I/O error or an SQLITE_BUSY because another process is running
2412 ** recovery) return a positive error code.
2413 **
2414 ** The useWal parameter is true to force the use of the WAL and disable
2415 ** the case where the WAL is bypassed because it has been completely
2416 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2417 ** to make a copy of the wal-index header into pWal->hdr.  If the
2418 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2419 ** to the caller that the local page cache is obsolete and needs to be
2420 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2421 ** be loaded and the pChanged parameter is unused.
2422 **
2423 ** The caller must set the cnt parameter to the number of prior calls to
2424 ** this routine during the current read attempt that returned WAL_RETRY.
2425 ** This routine will start taking more aggressive measures to clear the
2426 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2427 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2428 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2429 ** and is not honoring the locking protocol.  There is a vanishingly small
2430 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2431 ** bad luck when there is lots of contention for the wal-index, but that
2432 ** possibility is so small that it can be safely neglected, we believe.
2433 **
2434 ** On success, this routine obtains a read lock on
2435 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2436 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2437 ** that means the Wal does not hold any read lock.  The reader must not
2438 ** access any database page that is modified by a WAL frame up to and
2439 ** including frame number aReadMark[pWal->readLock].  The reader will
2440 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2441 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2442 ** completely and get all content directly from the database file.
2443 ** If the useWal parameter is 1 then the WAL will never be ignored and
2444 ** this routine will always set pWal->readLock>0 on success.
2445 ** When the read transaction is completed, the caller must release the
2446 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2447 **
2448 ** This routine uses the nBackfill and aReadMark[] fields of the header
2449 ** to select a particular WAL_READ_LOCK() that strives to let the
2450 ** checkpoint process do as much work as possible.  This routine might
2451 ** update values of the aReadMark[] array in the header, but if it does
2452 ** so it takes care to hold an exclusive lock on the corresponding
2453 ** WAL_READ_LOCK() while changing values.
2454 */
2455 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2456   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2457   u32 mxReadMark;                 /* Largest aReadMark[] value */
2458   int mxI;                        /* Index of largest aReadMark[] value */
2459   int i;                          /* Loop counter */
2460   int rc = SQLITE_OK;             /* Return code  */
2461   u32 mxFrame;                    /* Wal frame to lock to */
2462 
2463   assert( pWal->readLock<0 );     /* Not currently locked */
2464 
2465   /* useWal may only be set for read/write connections */
2466   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2467 
2468   /* Take steps to avoid spinning forever if there is a protocol error.
2469   **
2470   ** Circumstances that cause a RETRY should only last for the briefest
2471   ** instances of time.  No I/O or other system calls are done while the
2472   ** locks are held, so the locks should not be held for very long. But
2473   ** if we are unlucky, another process that is holding a lock might get
2474   ** paged out or take a page-fault that is time-consuming to resolve,
2475   ** during the few nanoseconds that it is holding the lock.  In that case,
2476   ** it might take longer than normal for the lock to free.
2477   **
2478   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2479   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2480   ** is more of a scheduler yield than an actual delay.  But on the 10th
2481   ** an subsequent retries, the delays start becoming longer and longer,
2482   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2483   ** The total delay time before giving up is less than 10 seconds.
2484   */
2485   if( cnt>5 ){
2486     int nDelay = 1;                      /* Pause time in microseconds */
2487     if( cnt>100 ){
2488       VVA_ONLY( pWal->lockError = 1; )
2489       return SQLITE_PROTOCOL;
2490     }
2491     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2492     sqlite3OsSleep(pWal->pVfs, nDelay);
2493   }
2494 
2495   if( !useWal ){
2496     assert( rc==SQLITE_OK );
2497     if( pWal->bShmUnreliable==0 ){
2498       rc = walIndexReadHdr(pWal, pChanged);
2499     }
2500     if( rc==SQLITE_BUSY ){
2501       /* If there is not a recovery running in another thread or process
2502       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2503       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2504       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2505       ** would be technically correct.  But the race is benign since with
2506       ** WAL_RETRY this routine will be called again and will probably be
2507       ** right on the second iteration.
2508       */
2509       if( pWal->apWiData[0]==0 ){
2510         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2511         ** We assume this is a transient condition, so return WAL_RETRY. The
2512         ** xShmMap() implementation used by the default unix and win32 VFS
2513         ** modules may return SQLITE_BUSY due to a race condition in the
2514         ** code that determines whether or not the shared-memory region
2515         ** must be zeroed before the requested page is returned.
2516         */
2517         rc = WAL_RETRY;
2518       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2519         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2520         rc = WAL_RETRY;
2521       }else if( rc==SQLITE_BUSY ){
2522         rc = SQLITE_BUSY_RECOVERY;
2523       }
2524     }
2525     if( rc!=SQLITE_OK ){
2526       return rc;
2527     }
2528     else if( pWal->bShmUnreliable ){
2529       return walBeginShmUnreliable(pWal, pChanged);
2530     }
2531   }
2532 
2533   assert( pWal->nWiData>0 );
2534   assert( pWal->apWiData[0]!=0 );
2535   pInfo = walCkptInfo(pWal);
2536   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2537 #ifdef SQLITE_ENABLE_SNAPSHOT
2538    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2539 #endif
2540   ){
2541     /* The WAL has been completely backfilled (or it is empty).
2542     ** and can be safely ignored.
2543     */
2544     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2545     walShmBarrier(pWal);
2546     if( rc==SQLITE_OK ){
2547       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2548         /* It is not safe to allow the reader to continue here if frames
2549         ** may have been appended to the log before READ_LOCK(0) was obtained.
2550         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2551         ** which implies that the database file contains a trustworthy
2552         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2553         ** happening, this is usually correct.
2554         **
2555         ** However, if frames have been appended to the log (or if the log
2556         ** is wrapped and written for that matter) before the READ_LOCK(0)
2557         ** is obtained, that is not necessarily true. A checkpointer may
2558         ** have started to backfill the appended frames but crashed before
2559         ** it finished. Leaving a corrupt image in the database file.
2560         */
2561         walUnlockShared(pWal, WAL_READ_LOCK(0));
2562         return WAL_RETRY;
2563       }
2564       pWal->readLock = 0;
2565       return SQLITE_OK;
2566     }else if( rc!=SQLITE_BUSY ){
2567       return rc;
2568     }
2569   }
2570 
2571   /* If we get this far, it means that the reader will want to use
2572   ** the WAL to get at content from recent commits.  The job now is
2573   ** to select one of the aReadMark[] entries that is closest to
2574   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2575   */
2576   mxReadMark = 0;
2577   mxI = 0;
2578   mxFrame = pWal->hdr.mxFrame;
2579 #ifdef SQLITE_ENABLE_SNAPSHOT
2580   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2581     mxFrame = pWal->pSnapshot->mxFrame;
2582   }
2583 #endif
2584   for(i=1; i<WAL_NREADER; i++){
2585     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2586     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2587       assert( thisMark!=READMARK_NOT_USED );
2588       mxReadMark = thisMark;
2589       mxI = i;
2590     }
2591   }
2592   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2593    && (mxReadMark<mxFrame || mxI==0)
2594   ){
2595     for(i=1; i<WAL_NREADER; i++){
2596       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2597       if( rc==SQLITE_OK ){
2598         mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
2599         mxI = i;
2600         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2601         break;
2602       }else if( rc!=SQLITE_BUSY ){
2603         return rc;
2604       }
2605     }
2606   }
2607   if( mxI==0 ){
2608     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2609     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2610   }
2611 
2612   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2613   if( rc ){
2614     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2615   }
2616   /* Now that the read-lock has been obtained, check that neither the
2617   ** value in the aReadMark[] array or the contents of the wal-index
2618   ** header have changed.
2619   **
2620   ** It is necessary to check that the wal-index header did not change
2621   ** between the time it was read and when the shared-lock was obtained
2622   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2623   ** that the log file may have been wrapped by a writer, or that frames
2624   ** that occur later in the log than pWal->hdr.mxFrame may have been
2625   ** copied into the database by a checkpointer. If either of these things
2626   ** happened, then reading the database with the current value of
2627   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2628   ** instead.
2629   **
2630   ** Before checking that the live wal-index header has not changed
2631   ** since it was read, set Wal.minFrame to the first frame in the wal
2632   ** file that has not yet been checkpointed. This client will not need
2633   ** to read any frames earlier than minFrame from the wal file - they
2634   ** can be safely read directly from the database file.
2635   **
2636   ** Because a ShmBarrier() call is made between taking the copy of
2637   ** nBackfill and checking that the wal-header in shared-memory still
2638   ** matches the one cached in pWal->hdr, it is guaranteed that the
2639   ** checkpointer that set nBackfill was not working with a wal-index
2640   ** header newer than that cached in pWal->hdr. If it were, that could
2641   ** cause a problem. The checkpointer could omit to checkpoint
2642   ** a version of page X that lies before pWal->minFrame (call that version
2643   ** A) on the basis that there is a newer version (version B) of the same
2644   ** page later in the wal file. But if version B happens to like past
2645   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2646   ** that it can read version A from the database file. However, since
2647   ** we can guarantee that the checkpointer that set nBackfill could not
2648   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2649   */
2650   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2651   walShmBarrier(pWal);
2652   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2653    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2654   ){
2655     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2656     return WAL_RETRY;
2657   }else{
2658     assert( mxReadMark<=pWal->hdr.mxFrame );
2659     pWal->readLock = (i16)mxI;
2660   }
2661   return rc;
2662 }
2663 
2664 #ifdef SQLITE_ENABLE_SNAPSHOT
2665 /*
2666 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2667 ** variable so that older snapshots can be accessed. To do this, loop
2668 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2669 ** comparing their content to the corresponding page with the database
2670 ** file, if any. Set nBackfillAttempted to the frame number of the
2671 ** first frame for which the wal file content matches the db file.
2672 **
2673 ** This is only really safe if the file-system is such that any page
2674 ** writes made by earlier checkpointers were atomic operations, which
2675 ** is not always true. It is also possible that nBackfillAttempted
2676 ** may be left set to a value larger than expected, if a wal frame
2677 ** contains content that duplicate of an earlier version of the same
2678 ** page.
2679 **
2680 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2681 ** error occurs. It is not an error if nBackfillAttempted cannot be
2682 ** decreased at all.
2683 */
2684 int sqlite3WalSnapshotRecover(Wal *pWal){
2685   int rc;
2686 
2687   assert( pWal->readLock>=0 );
2688   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2689   if( rc==SQLITE_OK ){
2690     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2691     int szPage = (int)pWal->szPage;
2692     i64 szDb;                   /* Size of db file in bytes */
2693 
2694     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2695     if( rc==SQLITE_OK ){
2696       void *pBuf1 = sqlite3_malloc(szPage);
2697       void *pBuf2 = sqlite3_malloc(szPage);
2698       if( pBuf1==0 || pBuf2==0 ){
2699         rc = SQLITE_NOMEM;
2700       }else{
2701         u32 i = pInfo->nBackfillAttempted;
2702         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2703           WalHashLoc sLoc;          /* Hash table location */
2704           u32 pgno;                 /* Page number in db file */
2705           i64 iDbOff;               /* Offset of db file entry */
2706           i64 iWalOff;              /* Offset of wal file entry */
2707 
2708           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2709           if( rc!=SQLITE_OK ) break;
2710           pgno = sLoc.aPgno[i-sLoc.iZero];
2711           iDbOff = (i64)(pgno-1) * szPage;
2712 
2713           if( iDbOff+szPage<=szDb ){
2714             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2715             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2716 
2717             if( rc==SQLITE_OK ){
2718               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2719             }
2720 
2721             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2722               break;
2723             }
2724           }
2725 
2726           pInfo->nBackfillAttempted = i-1;
2727         }
2728       }
2729 
2730       sqlite3_free(pBuf1);
2731       sqlite3_free(pBuf2);
2732     }
2733     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2734   }
2735 
2736   return rc;
2737 }
2738 #endif /* SQLITE_ENABLE_SNAPSHOT */
2739 
2740 /*
2741 ** Begin a read transaction on the database.
2742 **
2743 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2744 ** it takes a snapshot of the state of the WAL and wal-index for the current
2745 ** instant in time.  The current thread will continue to use this snapshot.
2746 ** Other threads might append new content to the WAL and wal-index but
2747 ** that extra content is ignored by the current thread.
2748 **
2749 ** If the database contents have changes since the previous read
2750 ** transaction, then *pChanged is set to 1 before returning.  The
2751 ** Pager layer will use this to know that its cache is stale and
2752 ** needs to be flushed.
2753 */
2754 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2755   int rc;                         /* Return code */
2756   int cnt = 0;                    /* Number of TryBeginRead attempts */
2757 
2758 #ifdef SQLITE_ENABLE_SNAPSHOT
2759   int bChanged = 0;
2760   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2761   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2762     bChanged = 1;
2763   }
2764 #endif
2765 
2766   do{
2767     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2768   }while( rc==WAL_RETRY );
2769   testcase( (rc&0xff)==SQLITE_BUSY );
2770   testcase( (rc&0xff)==SQLITE_IOERR );
2771   testcase( rc==SQLITE_PROTOCOL );
2772   testcase( rc==SQLITE_OK );
2773 
2774 #ifdef SQLITE_ENABLE_SNAPSHOT
2775   if( rc==SQLITE_OK ){
2776     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2777       /* At this point the client has a lock on an aReadMark[] slot holding
2778       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2779       ** is populated with the wal-index header corresponding to the head
2780       ** of the wal file. Verify that pSnapshot is still valid before
2781       ** continuing.  Reasons why pSnapshot might no longer be valid:
2782       **
2783       **    (1)  The WAL file has been reset since the snapshot was taken.
2784       **         In this case, the salt will have changed.
2785       **
2786       **    (2)  A checkpoint as been attempted that wrote frames past
2787       **         pSnapshot->mxFrame into the database file.  Note that the
2788       **         checkpoint need not have completed for this to cause problems.
2789       */
2790       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2791 
2792       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2793       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2794 
2795       /* It is possible that there is a checkpointer thread running
2796       ** concurrent with this code. If this is the case, it may be that the
2797       ** checkpointer has already determined that it will checkpoint
2798       ** snapshot X, where X is later in the wal file than pSnapshot, but
2799       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2800       ** its intent. To avoid the race condition this leads to, ensure that
2801       ** there is no checkpointer process by taking a shared CKPT lock
2802       ** before checking pInfo->nBackfillAttempted.
2803       **
2804       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2805       **       this already?
2806       */
2807       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2808 
2809       if( rc==SQLITE_OK ){
2810         /* Check that the wal file has not been wrapped. Assuming that it has
2811         ** not, also check that no checkpointer has attempted to checkpoint any
2812         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2813         ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2814         ** with *pSnapshot and set *pChanged as appropriate for opening the
2815         ** snapshot.  */
2816         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2817          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2818         ){
2819           assert( pWal->readLock>0 );
2820           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2821           *pChanged = bChanged;
2822         }else{
2823           rc = SQLITE_ERROR_SNAPSHOT;
2824         }
2825 
2826         /* Release the shared CKPT lock obtained above. */
2827         walUnlockShared(pWal, WAL_CKPT_LOCK);
2828         pWal->minFrame = 1;
2829       }
2830 
2831 
2832       if( rc!=SQLITE_OK ){
2833         sqlite3WalEndReadTransaction(pWal);
2834       }
2835     }
2836   }
2837 #endif
2838   return rc;
2839 }
2840 
2841 /*
2842 ** Finish with a read transaction.  All this does is release the
2843 ** read-lock.
2844 */
2845 void sqlite3WalEndReadTransaction(Wal *pWal){
2846   sqlite3WalEndWriteTransaction(pWal);
2847   if( pWal->readLock>=0 ){
2848     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2849     pWal->readLock = -1;
2850   }
2851 }
2852 
2853 /*
2854 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2855 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2856 ** to zero.
2857 **
2858 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2859 ** error does occur, the final value of *piRead is undefined.
2860 */
2861 int sqlite3WalFindFrame(
2862   Wal *pWal,                      /* WAL handle */
2863   Pgno pgno,                      /* Database page number to read data for */
2864   u32 *piRead                     /* OUT: Frame number (or zero) */
2865 ){
2866   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2867   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2868   int iHash;                      /* Used to loop through N hash tables */
2869   int iMinHash;
2870 
2871   /* This routine is only be called from within a read transaction. */
2872   assert( pWal->readLock>=0 || pWal->lockError );
2873 
2874   /* If the "last page" field of the wal-index header snapshot is 0, then
2875   ** no data will be read from the wal under any circumstances. Return early
2876   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2877   ** then the WAL is ignored by the reader so return early, as if the
2878   ** WAL were empty.
2879   */
2880   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2881     *piRead = 0;
2882     return SQLITE_OK;
2883   }
2884 
2885   /* Search the hash table or tables for an entry matching page number
2886   ** pgno. Each iteration of the following for() loop searches one
2887   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2888   **
2889   ** This code might run concurrently to the code in walIndexAppend()
2890   ** that adds entries to the wal-index (and possibly to this hash
2891   ** table). This means the value just read from the hash
2892   ** slot (aHash[iKey]) may have been added before or after the
2893   ** current read transaction was opened. Values added after the
2894   ** read transaction was opened may have been written incorrectly -
2895   ** i.e. these slots may contain garbage data. However, we assume
2896   ** that any slots written before the current read transaction was
2897   ** opened remain unmodified.
2898   **
2899   ** For the reasons above, the if(...) condition featured in the inner
2900   ** loop of the following block is more stringent that would be required
2901   ** if we had exclusive access to the hash-table:
2902   **
2903   **   (aPgno[iFrame]==pgno):
2904   **     This condition filters out normal hash-table collisions.
2905   **
2906   **   (iFrame<=iLast):
2907   **     This condition filters out entries that were added to the hash
2908   **     table after the current read-transaction had started.
2909   */
2910   iMinHash = walFramePage(pWal->minFrame);
2911   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2912     WalHashLoc sLoc;              /* Hash table location */
2913     int iKey;                     /* Hash slot index */
2914     int nCollide;                 /* Number of hash collisions remaining */
2915     int rc;                       /* Error code */
2916 
2917     rc = walHashGet(pWal, iHash, &sLoc);
2918     if( rc!=SQLITE_OK ){
2919       return rc;
2920     }
2921     nCollide = HASHTABLE_NSLOT;
2922     for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
2923       u32 iH = sLoc.aHash[iKey];
2924       u32 iFrame = iH + sLoc.iZero;
2925       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
2926         assert( iFrame>iRead || CORRUPT_DB );
2927         iRead = iFrame;
2928       }
2929       if( (nCollide--)==0 ){
2930         return SQLITE_CORRUPT_BKPT;
2931       }
2932     }
2933     if( iRead ) break;
2934   }
2935 
2936 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2937   /* If expensive assert() statements are available, do a linear search
2938   ** of the wal-index file content. Make sure the results agree with the
2939   ** result obtained using the hash indexes above.  */
2940   {
2941     u32 iRead2 = 0;
2942     u32 iTest;
2943     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2944     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2945       if( walFramePgno(pWal, iTest)==pgno ){
2946         iRead2 = iTest;
2947         break;
2948       }
2949     }
2950     assert( iRead==iRead2 );
2951   }
2952 #endif
2953 
2954   *piRead = iRead;
2955   return SQLITE_OK;
2956 }
2957 
2958 /*
2959 ** Read the contents of frame iRead from the wal file into buffer pOut
2960 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2961 ** error code otherwise.
2962 */
2963 int sqlite3WalReadFrame(
2964   Wal *pWal,                      /* WAL handle */
2965   u32 iRead,                      /* Frame to read */
2966   int nOut,                       /* Size of buffer pOut in bytes */
2967   u8 *pOut                        /* Buffer to write page data to */
2968 ){
2969   int sz;
2970   i64 iOffset;
2971   sz = pWal->hdr.szPage;
2972   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2973   testcase( sz<=32768 );
2974   testcase( sz>=65536 );
2975   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2976   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2977   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2978 }
2979 
2980 /*
2981 ** Return the size of the database in pages (or zero, if unknown).
2982 */
2983 Pgno sqlite3WalDbsize(Wal *pWal){
2984   if( pWal && ALWAYS(pWal->readLock>=0) ){
2985     return pWal->hdr.nPage;
2986   }
2987   return 0;
2988 }
2989 
2990 
2991 /*
2992 ** This function starts a write transaction on the WAL.
2993 **
2994 ** A read transaction must have already been started by a prior call
2995 ** to sqlite3WalBeginReadTransaction().
2996 **
2997 ** If another thread or process has written into the database since
2998 ** the read transaction was started, then it is not possible for this
2999 ** thread to write as doing so would cause a fork.  So this routine
3000 ** returns SQLITE_BUSY in that case and no write transaction is started.
3001 **
3002 ** There can only be a single writer active at a time.
3003 */
3004 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3005   int rc;
3006 
3007   /* Cannot start a write transaction without first holding a read
3008   ** transaction. */
3009   assert( pWal->readLock>=0 );
3010   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3011 
3012   if( pWal->readOnly ){
3013     return SQLITE_READONLY;
3014   }
3015 
3016   /* Only one writer allowed at a time.  Get the write lock.  Return
3017   ** SQLITE_BUSY if unable.
3018   */
3019   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3020   if( rc ){
3021     return rc;
3022   }
3023   pWal->writeLock = 1;
3024 
3025   /* If another connection has written to the database file since the
3026   ** time the read transaction on this connection was started, then
3027   ** the write is disallowed.
3028   */
3029   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3030     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3031     pWal->writeLock = 0;
3032     rc = SQLITE_BUSY_SNAPSHOT;
3033   }
3034 
3035   return rc;
3036 }
3037 
3038 /*
3039 ** End a write transaction.  The commit has already been done.  This
3040 ** routine merely releases the lock.
3041 */
3042 int sqlite3WalEndWriteTransaction(Wal *pWal){
3043   if( pWal->writeLock ){
3044     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3045     pWal->writeLock = 0;
3046     pWal->iReCksum = 0;
3047     pWal->truncateOnCommit = 0;
3048   }
3049   return SQLITE_OK;
3050 }
3051 
3052 /*
3053 ** If any data has been written (but not committed) to the log file, this
3054 ** function moves the write-pointer back to the start of the transaction.
3055 **
3056 ** Additionally, the callback function is invoked for each frame written
3057 ** to the WAL since the start of the transaction. If the callback returns
3058 ** other than SQLITE_OK, it is not invoked again and the error code is
3059 ** returned to the caller.
3060 **
3061 ** Otherwise, if the callback function does not return an error, this
3062 ** function returns SQLITE_OK.
3063 */
3064 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3065   int rc = SQLITE_OK;
3066   if( ALWAYS(pWal->writeLock) ){
3067     Pgno iMax = pWal->hdr.mxFrame;
3068     Pgno iFrame;
3069 
3070     /* Restore the clients cache of the wal-index header to the state it
3071     ** was in before the client began writing to the database.
3072     */
3073     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3074 
3075     for(iFrame=pWal->hdr.mxFrame+1;
3076         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3077         iFrame++
3078     ){
3079       /* This call cannot fail. Unless the page for which the page number
3080       ** is passed as the second argument is (a) in the cache and
3081       ** (b) has an outstanding reference, then xUndo is either a no-op
3082       ** (if (a) is false) or simply expels the page from the cache (if (b)
3083       ** is false).
3084       **
3085       ** If the upper layer is doing a rollback, it is guaranteed that there
3086       ** are no outstanding references to any page other than page 1. And
3087       ** page 1 is never written to the log until the transaction is
3088       ** committed. As a result, the call to xUndo may not fail.
3089       */
3090       assert( walFramePgno(pWal, iFrame)!=1 );
3091       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3092     }
3093     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3094   }
3095   return rc;
3096 }
3097 
3098 /*
3099 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3100 ** values. This function populates the array with values required to
3101 ** "rollback" the write position of the WAL handle back to the current
3102 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3103 */
3104 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3105   assert( pWal->writeLock );
3106   aWalData[0] = pWal->hdr.mxFrame;
3107   aWalData[1] = pWal->hdr.aFrameCksum[0];
3108   aWalData[2] = pWal->hdr.aFrameCksum[1];
3109   aWalData[3] = pWal->nCkpt;
3110 }
3111 
3112 /*
3113 ** Move the write position of the WAL back to the point identified by
3114 ** the values in the aWalData[] array. aWalData must point to an array
3115 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3116 ** by a call to WalSavepoint().
3117 */
3118 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3119   int rc = SQLITE_OK;
3120 
3121   assert( pWal->writeLock );
3122   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3123 
3124   if( aWalData[3]!=pWal->nCkpt ){
3125     /* This savepoint was opened immediately after the write-transaction
3126     ** was started. Right after that, the writer decided to wrap around
3127     ** to the start of the log. Update the savepoint values to match.
3128     */
3129     aWalData[0] = 0;
3130     aWalData[3] = pWal->nCkpt;
3131   }
3132 
3133   if( aWalData[0]<pWal->hdr.mxFrame ){
3134     pWal->hdr.mxFrame = aWalData[0];
3135     pWal->hdr.aFrameCksum[0] = aWalData[1];
3136     pWal->hdr.aFrameCksum[1] = aWalData[2];
3137     walCleanupHash(pWal);
3138   }
3139 
3140   return rc;
3141 }
3142 
3143 /*
3144 ** This function is called just before writing a set of frames to the log
3145 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3146 ** to the current log file, it is possible to overwrite the start of the
3147 ** existing log file with the new frames (i.e. "reset" the log). If so,
3148 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3149 ** unchanged.
3150 **
3151 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3152 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3153 ** if an error occurs.
3154 */
3155 static int walRestartLog(Wal *pWal){
3156   int rc = SQLITE_OK;
3157   int cnt;
3158 
3159   if( pWal->readLock==0 ){
3160     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3161     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3162     if( pInfo->nBackfill>0 ){
3163       u32 salt1;
3164       sqlite3_randomness(4, &salt1);
3165       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3166       if( rc==SQLITE_OK ){
3167         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3168         ** readers are currently using the WAL), then the transactions
3169         ** frames will overwrite the start of the existing log. Update the
3170         ** wal-index header to reflect this.
3171         **
3172         ** In theory it would be Ok to update the cache of the header only
3173         ** at this point. But updating the actual wal-index header is also
3174         ** safe and means there is no special case for sqlite3WalUndo()
3175         ** to handle if this transaction is rolled back.  */
3176         walRestartHdr(pWal, salt1);
3177         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3178       }else if( rc!=SQLITE_BUSY ){
3179         return rc;
3180       }
3181     }
3182     walUnlockShared(pWal, WAL_READ_LOCK(0));
3183     pWal->readLock = -1;
3184     cnt = 0;
3185     do{
3186       int notUsed;
3187       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3188     }while( rc==WAL_RETRY );
3189     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3190     testcase( (rc&0xff)==SQLITE_IOERR );
3191     testcase( rc==SQLITE_PROTOCOL );
3192     testcase( rc==SQLITE_OK );
3193   }
3194   return rc;
3195 }
3196 
3197 /*
3198 ** Information about the current state of the WAL file and where
3199 ** the next fsync should occur - passed from sqlite3WalFrames() into
3200 ** walWriteToLog().
3201 */
3202 typedef struct WalWriter {
3203   Wal *pWal;                   /* The complete WAL information */
3204   sqlite3_file *pFd;           /* The WAL file to which we write */
3205   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3206   int syncFlags;               /* Flags for the fsync */
3207   int szPage;                  /* Size of one page */
3208 } WalWriter;
3209 
3210 /*
3211 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3212 ** Do a sync when crossing the p->iSyncPoint boundary.
3213 **
3214 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3215 ** first write the part before iSyncPoint, then sync, then write the
3216 ** rest.
3217 */
3218 static int walWriteToLog(
3219   WalWriter *p,              /* WAL to write to */
3220   void *pContent,            /* Content to be written */
3221   int iAmt,                  /* Number of bytes to write */
3222   sqlite3_int64 iOffset      /* Start writing at this offset */
3223 ){
3224   int rc;
3225   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3226     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3227     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3228     if( rc ) return rc;
3229     iOffset += iFirstAmt;
3230     iAmt -= iFirstAmt;
3231     pContent = (void*)(iFirstAmt + (char*)pContent);
3232     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3233     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3234     if( iAmt==0 || rc ) return rc;
3235   }
3236   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3237   return rc;
3238 }
3239 
3240 /*
3241 ** Write out a single frame of the WAL
3242 */
3243 static int walWriteOneFrame(
3244   WalWriter *p,               /* Where to write the frame */
3245   PgHdr *pPage,               /* The page of the frame to be written */
3246   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3247   sqlite3_int64 iOffset       /* Byte offset at which to write */
3248 ){
3249   int rc;                         /* Result code from subfunctions */
3250   void *pData;                    /* Data actually written */
3251   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3252 #if defined(SQLITE_HAS_CODEC)
3253   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3254 #else
3255   pData = pPage->pData;
3256 #endif
3257   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3258   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3259   if( rc ) return rc;
3260   /* Write the page data */
3261   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3262   return rc;
3263 }
3264 
3265 /*
3266 ** This function is called as part of committing a transaction within which
3267 ** one or more frames have been overwritten. It updates the checksums for
3268 ** all frames written to the wal file by the current transaction starting
3269 ** with the earliest to have been overwritten.
3270 **
3271 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3272 */
3273 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3274   const int szPage = pWal->szPage;/* Database page size */
3275   int rc = SQLITE_OK;             /* Return code */
3276   u8 *aBuf;                       /* Buffer to load data from wal file into */
3277   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3278   u32 iRead;                      /* Next frame to read from wal file */
3279   i64 iCksumOff;
3280 
3281   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3282   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3283 
3284   /* Find the checksum values to use as input for the recalculating the
3285   ** first checksum. If the first frame is frame 1 (implying that the current
3286   ** transaction restarted the wal file), these values must be read from the
3287   ** wal-file header. Otherwise, read them from the frame header of the
3288   ** previous frame.  */
3289   assert( pWal->iReCksum>0 );
3290   if( pWal->iReCksum==1 ){
3291     iCksumOff = 24;
3292   }else{
3293     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3294   }
3295   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3296   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3297   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3298 
3299   iRead = pWal->iReCksum;
3300   pWal->iReCksum = 0;
3301   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3302     i64 iOff = walFrameOffset(iRead, szPage);
3303     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3304     if( rc==SQLITE_OK ){
3305       u32 iPgno, nDbSize;
3306       iPgno = sqlite3Get4byte(aBuf);
3307       nDbSize = sqlite3Get4byte(&aBuf[4]);
3308 
3309       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3310       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3311     }
3312   }
3313 
3314   sqlite3_free(aBuf);
3315   return rc;
3316 }
3317 
3318 /*
3319 ** Write a set of frames to the log. The caller must hold the write-lock
3320 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3321 */
3322 int sqlite3WalFrames(
3323   Wal *pWal,                      /* Wal handle to write to */
3324   int szPage,                     /* Database page-size in bytes */
3325   PgHdr *pList,                   /* List of dirty pages to write */
3326   Pgno nTruncate,                 /* Database size after this commit */
3327   int isCommit,                   /* True if this is a commit */
3328   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3329 ){
3330   int rc;                         /* Used to catch return codes */
3331   u32 iFrame;                     /* Next frame address */
3332   PgHdr *p;                       /* Iterator to run through pList with. */
3333   PgHdr *pLast = 0;               /* Last frame in list */
3334   int nExtra = 0;                 /* Number of extra copies of last page */
3335   int szFrame;                    /* The size of a single frame */
3336   i64 iOffset;                    /* Next byte to write in WAL file */
3337   WalWriter w;                    /* The writer */
3338   u32 iFirst = 0;                 /* First frame that may be overwritten */
3339   WalIndexHdr *pLive;             /* Pointer to shared header */
3340 
3341   assert( pList );
3342   assert( pWal->writeLock );
3343 
3344   /* If this frame set completes a transaction, then nTruncate>0.  If
3345   ** nTruncate==0 then this frame set does not complete the transaction. */
3346   assert( (isCommit!=0)==(nTruncate!=0) );
3347 
3348 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3349   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3350     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3351               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3352   }
3353 #endif
3354 
3355   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3356   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3357     iFirst = pLive->mxFrame+1;
3358   }
3359 
3360   /* See if it is possible to write these frames into the start of the
3361   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3362   */
3363   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3364     return rc;
3365   }
3366 
3367   /* If this is the first frame written into the log, write the WAL
3368   ** header to the start of the WAL file. See comments at the top of
3369   ** this source file for a description of the WAL header format.
3370   */
3371   iFrame = pWal->hdr.mxFrame;
3372   if( iFrame==0 ){
3373     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3374     u32 aCksum[2];                /* Checksum for wal-header */
3375 
3376     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3377     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3378     sqlite3Put4byte(&aWalHdr[8], szPage);
3379     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3380     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3381     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3382     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3383     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3384     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3385 
3386     pWal->szPage = szPage;
3387     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3388     pWal->hdr.aFrameCksum[0] = aCksum[0];
3389     pWal->hdr.aFrameCksum[1] = aCksum[1];
3390     pWal->truncateOnCommit = 1;
3391 
3392     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3393     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3394     if( rc!=SQLITE_OK ){
3395       return rc;
3396     }
3397 
3398     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3399     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3400     ** an out-of-order write following a WAL restart could result in
3401     ** database corruption.  See the ticket:
3402     **
3403     **     https://sqlite.org/src/info/ff5be73dee
3404     */
3405     if( pWal->syncHeader ){
3406       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3407       if( rc ) return rc;
3408     }
3409   }
3410   assert( (int)pWal->szPage==szPage );
3411 
3412   /* Setup information needed to write frames into the WAL */
3413   w.pWal = pWal;
3414   w.pFd = pWal->pWalFd;
3415   w.iSyncPoint = 0;
3416   w.syncFlags = sync_flags;
3417   w.szPage = szPage;
3418   iOffset = walFrameOffset(iFrame+1, szPage);
3419   szFrame = szPage + WAL_FRAME_HDRSIZE;
3420 
3421   /* Write all frames into the log file exactly once */
3422   for(p=pList; p; p=p->pDirty){
3423     int nDbSize;   /* 0 normally.  Positive == commit flag */
3424 
3425     /* Check if this page has already been written into the wal file by
3426     ** the current transaction. If so, overwrite the existing frame and
3427     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3428     ** checksums must be recomputed when the transaction is committed.  */
3429     if( iFirst && (p->pDirty || isCommit==0) ){
3430       u32 iWrite = 0;
3431       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3432       assert( rc==SQLITE_OK || iWrite==0 );
3433       if( iWrite>=iFirst ){
3434         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3435         void *pData;
3436         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3437           pWal->iReCksum = iWrite;
3438         }
3439 #if defined(SQLITE_HAS_CODEC)
3440         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3441 #else
3442         pData = p->pData;
3443 #endif
3444         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3445         if( rc ) return rc;
3446         p->flags &= ~PGHDR_WAL_APPEND;
3447         continue;
3448       }
3449     }
3450 
3451     iFrame++;
3452     assert( iOffset==walFrameOffset(iFrame, szPage) );
3453     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3454     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3455     if( rc ) return rc;
3456     pLast = p;
3457     iOffset += szFrame;
3458     p->flags |= PGHDR_WAL_APPEND;
3459   }
3460 
3461   /* Recalculate checksums within the wal file if required. */
3462   if( isCommit && pWal->iReCksum ){
3463     rc = walRewriteChecksums(pWal, iFrame);
3464     if( rc ) return rc;
3465   }
3466 
3467   /* If this is the end of a transaction, then we might need to pad
3468   ** the transaction and/or sync the WAL file.
3469   **
3470   ** Padding and syncing only occur if this set of frames complete a
3471   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3472   ** or synchronous==OFF, then no padding or syncing are needed.
3473   **
3474   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3475   ** needed and only the sync is done.  If padding is needed, then the
3476   ** final frame is repeated (with its commit mark) until the next sector
3477   ** boundary is crossed.  Only the part of the WAL prior to the last
3478   ** sector boundary is synced; the part of the last frame that extends
3479   ** past the sector boundary is written after the sync.
3480   */
3481   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3482     int bSync = 1;
3483     if( pWal->padToSectorBoundary ){
3484       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3485       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3486       bSync = (w.iSyncPoint==iOffset);
3487       testcase( bSync );
3488       while( iOffset<w.iSyncPoint ){
3489         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3490         if( rc ) return rc;
3491         iOffset += szFrame;
3492         nExtra++;
3493         assert( pLast!=0 );
3494       }
3495     }
3496     if( bSync ){
3497       assert( rc==SQLITE_OK );
3498       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3499     }
3500   }
3501 
3502   /* If this frame set completes the first transaction in the WAL and
3503   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3504   ** journal size limit, if possible.
3505   */
3506   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3507     i64 sz = pWal->mxWalSize;
3508     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3509       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3510     }
3511     walLimitSize(pWal, sz);
3512     pWal->truncateOnCommit = 0;
3513   }
3514 
3515   /* Append data to the wal-index. It is not necessary to lock the
3516   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3517   ** guarantees that there are no other writers, and no data that may
3518   ** be in use by existing readers is being overwritten.
3519   */
3520   iFrame = pWal->hdr.mxFrame;
3521   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3522     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3523     iFrame++;
3524     rc = walIndexAppend(pWal, iFrame, p->pgno);
3525   }
3526   assert( pLast!=0 || nExtra==0 );
3527   while( rc==SQLITE_OK && nExtra>0 ){
3528     iFrame++;
3529     nExtra--;
3530     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3531   }
3532 
3533   if( rc==SQLITE_OK ){
3534     /* Update the private copy of the header. */
3535     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3536     testcase( szPage<=32768 );
3537     testcase( szPage>=65536 );
3538     pWal->hdr.mxFrame = iFrame;
3539     if( isCommit ){
3540       pWal->hdr.iChange++;
3541       pWal->hdr.nPage = nTruncate;
3542     }
3543     /* If this is a commit, update the wal-index header too. */
3544     if( isCommit ){
3545       walIndexWriteHdr(pWal);
3546       pWal->iCallback = iFrame;
3547     }
3548   }
3549 
3550   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3551   return rc;
3552 }
3553 
3554 /*
3555 ** This routine is called to implement sqlite3_wal_checkpoint() and
3556 ** related interfaces.
3557 **
3558 ** Obtain a CHECKPOINT lock and then backfill as much information as
3559 ** we can from WAL into the database.
3560 **
3561 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3562 ** callback. In this case this function runs a blocking checkpoint.
3563 */
3564 int sqlite3WalCheckpoint(
3565   Wal *pWal,                      /* Wal connection */
3566   sqlite3 *db,                    /* Check this handle's interrupt flag */
3567   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3568   int (*xBusy)(void*),            /* Function to call when busy */
3569   void *pBusyArg,                 /* Context argument for xBusyHandler */
3570   int sync_flags,                 /* Flags to sync db file with (or 0) */
3571   int nBuf,                       /* Size of temporary buffer */
3572   u8 *zBuf,                       /* Temporary buffer to use */
3573   int *pnLog,                     /* OUT: Number of frames in WAL */
3574   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3575 ){
3576   int rc;                         /* Return code */
3577   int isChanged = 0;              /* True if a new wal-index header is loaded */
3578   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3579   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3580 
3581   assert( pWal->ckptLock==0 );
3582   assert( pWal->writeLock==0 );
3583 
3584   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3585   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3586   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3587 
3588   if( pWal->readOnly ) return SQLITE_READONLY;
3589   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3590 
3591   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3592   ** "checkpoint" lock on the database file. */
3593   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3594   if( rc ){
3595     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3596     ** checkpoint operation at the same time, the lock cannot be obtained and
3597     ** SQLITE_BUSY is returned.
3598     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3599     ** it will not be invoked in this case.
3600     */
3601     testcase( rc==SQLITE_BUSY );
3602     testcase( xBusy!=0 );
3603     return rc;
3604   }
3605   pWal->ckptLock = 1;
3606 
3607   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3608   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3609   ** file.
3610   **
3611   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3612   ** immediately, and a busy-handler is configured, it is invoked and the
3613   ** writer lock retried until either the busy-handler returns 0 or the
3614   ** lock is successfully obtained.
3615   */
3616   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3617     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3618     if( rc==SQLITE_OK ){
3619       pWal->writeLock = 1;
3620     }else if( rc==SQLITE_BUSY ){
3621       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3622       xBusy2 = 0;
3623       rc = SQLITE_OK;
3624     }
3625   }
3626 
3627   /* Read the wal-index header. */
3628   if( rc==SQLITE_OK ){
3629     rc = walIndexReadHdr(pWal, &isChanged);
3630     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3631       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3632     }
3633   }
3634 
3635   /* Copy data from the log to the database file. */
3636   if( rc==SQLITE_OK ){
3637 
3638     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3639       rc = SQLITE_CORRUPT_BKPT;
3640     }else{
3641       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3642     }
3643 
3644     /* If no error occurred, set the output variables. */
3645     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3646       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3647       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3648     }
3649   }
3650 
3651   if( isChanged ){
3652     /* If a new wal-index header was loaded before the checkpoint was
3653     ** performed, then the pager-cache associated with pWal is now
3654     ** out of date. So zero the cached wal-index header to ensure that
3655     ** next time the pager opens a snapshot on this database it knows that
3656     ** the cache needs to be reset.
3657     */
3658     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3659   }
3660 
3661   /* Release the locks. */
3662   sqlite3WalEndWriteTransaction(pWal);
3663   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3664   pWal->ckptLock = 0;
3665   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3666   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3667 }
3668 
3669 /* Return the value to pass to a sqlite3_wal_hook callback, the
3670 ** number of frames in the WAL at the point of the last commit since
3671 ** sqlite3WalCallback() was called.  If no commits have occurred since
3672 ** the last call, then return 0.
3673 */
3674 int sqlite3WalCallback(Wal *pWal){
3675   u32 ret = 0;
3676   if( pWal ){
3677     ret = pWal->iCallback;
3678     pWal->iCallback = 0;
3679   }
3680   return (int)ret;
3681 }
3682 
3683 /*
3684 ** This function is called to change the WAL subsystem into or out
3685 ** of locking_mode=EXCLUSIVE.
3686 **
3687 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3688 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3689 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3690 ** or if the acquisition of the lock fails, then return 0.  If the
3691 ** transition out of exclusive-mode is successful, return 1.  This
3692 ** operation must occur while the pager is still holding the exclusive
3693 ** lock on the main database file.
3694 **
3695 ** If op is one, then change from locking_mode=NORMAL into
3696 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3697 ** be released.  Return 1 if the transition is made and 0 if the
3698 ** WAL is already in exclusive-locking mode - meaning that this
3699 ** routine is a no-op.  The pager must already hold the exclusive lock
3700 ** on the main database file before invoking this operation.
3701 **
3702 ** If op is negative, then do a dry-run of the op==1 case but do
3703 ** not actually change anything. The pager uses this to see if it
3704 ** should acquire the database exclusive lock prior to invoking
3705 ** the op==1 case.
3706 */
3707 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3708   int rc;
3709   assert( pWal->writeLock==0 );
3710   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3711 
3712   /* pWal->readLock is usually set, but might be -1 if there was a
3713   ** prior error while attempting to acquire are read-lock. This cannot
3714   ** happen if the connection is actually in exclusive mode (as no xShmLock
3715   ** locks are taken in this case). Nor should the pager attempt to
3716   ** upgrade to exclusive-mode following such an error.
3717   */
3718   assert( pWal->readLock>=0 || pWal->lockError );
3719   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3720 
3721   if( op==0 ){
3722     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3723       pWal->exclusiveMode = WAL_NORMAL_MODE;
3724       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3725         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3726       }
3727       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3728     }else{
3729       /* Already in locking_mode=NORMAL */
3730       rc = 0;
3731     }
3732   }else if( op>0 ){
3733     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3734     assert( pWal->readLock>=0 );
3735     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3736     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3737     rc = 1;
3738   }else{
3739     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3740   }
3741   return rc;
3742 }
3743 
3744 /*
3745 ** Return true if the argument is non-NULL and the WAL module is using
3746 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3747 ** WAL module is using shared-memory, return false.
3748 */
3749 int sqlite3WalHeapMemory(Wal *pWal){
3750   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3751 }
3752 
3753 #ifdef SQLITE_ENABLE_SNAPSHOT
3754 /* Create a snapshot object.  The content of a snapshot is opaque to
3755 ** every other subsystem, so the WAL module can put whatever it needs
3756 ** in the object.
3757 */
3758 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3759   int rc = SQLITE_OK;
3760   WalIndexHdr *pRet;
3761   static const u32 aZero[4] = { 0, 0, 0, 0 };
3762 
3763   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3764 
3765   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3766     *ppSnapshot = 0;
3767     return SQLITE_ERROR;
3768   }
3769   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3770   if( pRet==0 ){
3771     rc = SQLITE_NOMEM_BKPT;
3772   }else{
3773     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3774     *ppSnapshot = (sqlite3_snapshot*)pRet;
3775   }
3776 
3777   return rc;
3778 }
3779 
3780 /* Try to open on pSnapshot when the next read-transaction starts
3781 */
3782 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3783   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3784 }
3785 
3786 /*
3787 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3788 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3789 */
3790 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3791   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3792   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3793 
3794   /* aSalt[0] is a copy of the value stored in the wal file header. It
3795   ** is incremented each time the wal file is restarted.  */
3796   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3797   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3798   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3799   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3800   return 0;
3801 }
3802 
3803 /*
3804 ** The caller currently has a read transaction open on the database.
3805 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3806 ** checks if the snapshot passed as the second argument is still
3807 ** available. If so, SQLITE_OK is returned.
3808 **
3809 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3810 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3811 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3812 ** lock is released before returning.
3813 */
3814 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3815   int rc;
3816   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3817   if( rc==SQLITE_OK ){
3818     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3819     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3820      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3821     ){
3822       rc = SQLITE_ERROR_SNAPSHOT;
3823       walUnlockShared(pWal, WAL_CKPT_LOCK);
3824     }
3825   }
3826   return rc;
3827 }
3828 
3829 /*
3830 ** Release a lock obtained by an earlier successful call to
3831 ** sqlite3WalSnapshotCheck().
3832 */
3833 void sqlite3WalSnapshotUnlock(Wal *pWal){
3834   assert( pWal );
3835   walUnlockShared(pWal, WAL_CKPT_LOCK);
3836 }
3837 
3838 
3839 #endif /* SQLITE_ENABLE_SNAPSHOT */
3840 
3841 #ifdef SQLITE_ENABLE_ZIPVFS
3842 /*
3843 ** If the argument is not NULL, it points to a Wal object that holds a
3844 ** read-lock. This function returns the database page-size if it is known,
3845 ** or zero if it is not (or if pWal is NULL).
3846 */
3847 int sqlite3WalFramesize(Wal *pWal){
3848   assert( pWal==0 || pWal->readLock>=0 );
3849   return (pWal ? pWal->szPage : 0);
3850 }
3851 #endif
3852 
3853 /* Return the sqlite3_file object for the WAL file
3854 */
3855 sqlite3_file *sqlite3WalFile(Wal *pWal){
3856   return pWal->pWalFd;
3857 }
3858 
3859 #endif /* #ifndef SQLITE_OMIT_WAL */
3860