xref: /sqlite-3.40.0/src/wal.c (revision e89feee5)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** WAL mode depends on atomic aligned 32-bit loads and stores in a few
263 ** places.  The following macros try to make this explicit.
264 */
265 #if GCC_VESRION>=5004000
266 # define AtomicLoad(PTR)       __atomic_load_n((PTR),__ATOMIC_RELAXED)
267 # define AtomicStore(PTR,VAL)  __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
268 #else
269 # define AtomicLoad(PTR)       (*(PTR))
270 # define AtomicStore(PTR,VAL)  (*(PTR) = (VAL))
271 #endif
272 
273 /*
274 ** The maximum (and only) versions of the wal and wal-index formats
275 ** that may be interpreted by this version of SQLite.
276 **
277 ** If a client begins recovering a WAL file and finds that (a) the checksum
278 ** values in the wal-header are correct and (b) the version field is not
279 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
280 **
281 ** Similarly, if a client successfully reads a wal-index header (i.e. the
282 ** checksum test is successful) and finds that the version field is not
283 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
284 ** returns SQLITE_CANTOPEN.
285 */
286 #define WAL_MAX_VERSION      3007000
287 #define WALINDEX_MAX_VERSION 3007000
288 
289 /*
290 ** Index numbers for various locking bytes.   WAL_NREADER is the number
291 ** of available reader locks and should be at least 3.  The default
292 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
293 **
294 ** Technically, the various VFSes are free to implement these locks however
295 ** they see fit.  However, compatibility is encouraged so that VFSes can
296 ** interoperate.  The standard implemention used on both unix and windows
297 ** is for the index number to indicate a byte offset into the
298 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
299 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
300 ** should be 120) is the location in the shm file for the first locking
301 ** byte.
302 */
303 #define WAL_WRITE_LOCK         0
304 #define WAL_ALL_BUT_WRITE      1
305 #define WAL_CKPT_LOCK          1
306 #define WAL_RECOVER_LOCK       2
307 #define WAL_READ_LOCK(I)       (3+(I))
308 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
309 
310 
311 /* Object declarations */
312 typedef struct WalIndexHdr WalIndexHdr;
313 typedef struct WalIterator WalIterator;
314 typedef struct WalCkptInfo WalCkptInfo;
315 
316 
317 /*
318 ** The following object holds a copy of the wal-index header content.
319 **
320 ** The actual header in the wal-index consists of two copies of this
321 ** object followed by one instance of the WalCkptInfo object.
322 ** For all versions of SQLite through 3.10.0 and probably beyond,
323 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
324 ** the total header size is 136 bytes.
325 **
326 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
327 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
328 ** added in 3.7.1 when support for 64K pages was added.
329 */
330 struct WalIndexHdr {
331   u32 iVersion;                   /* Wal-index version */
332   u32 unused;                     /* Unused (padding) field */
333   u32 iChange;                    /* Counter incremented each transaction */
334   u8 isInit;                      /* 1 when initialized */
335   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
336   u16 szPage;                     /* Database page size in bytes. 1==64K */
337   u32 mxFrame;                    /* Index of last valid frame in the WAL */
338   u32 nPage;                      /* Size of database in pages */
339   u32 aFrameCksum[2];             /* Checksum of last frame in log */
340   u32 aSalt[2];                   /* Two salt values copied from WAL header */
341   u32 aCksum[2];                  /* Checksum over all prior fields */
342 };
343 
344 /*
345 ** A copy of the following object occurs in the wal-index immediately
346 ** following the second copy of the WalIndexHdr.  This object stores
347 ** information used by checkpoint.
348 **
349 ** nBackfill is the number of frames in the WAL that have been written
350 ** back into the database. (We call the act of moving content from WAL to
351 ** database "backfilling".)  The nBackfill number is never greater than
352 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
353 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
354 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
355 ** mxFrame back to zero when the WAL is reset.
356 **
357 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
358 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
359 ** the nBackfillAttempted is set before any backfilling is done and the
360 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
361 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
362 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
363 **
364 ** The aLock[] field is a set of bytes used for locking.  These bytes should
365 ** never be read or written.
366 **
367 ** There is one entry in aReadMark[] for each reader lock.  If a reader
368 ** holds read-lock K, then the value in aReadMark[K] is no greater than
369 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
370 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
371 ** a special case; its value is never used and it exists as a place-holder
372 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
373 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
374 ** directly from the database.
375 **
376 ** The value of aReadMark[K] may only be changed by a thread that
377 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
378 ** aReadMark[K] cannot changed while there is a reader is using that mark
379 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
380 **
381 ** The checkpointer may only transfer frames from WAL to database where
382 ** the frame numbers are less than or equal to every aReadMark[] that is
383 ** in use (that is, every aReadMark[j] for which there is a corresponding
384 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
385 ** largest value and will increase an unused aReadMark[] to mxFrame if there
386 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
387 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
388 ** in the WAL has been backfilled into the database) then new readers
389 ** will choose aReadMark[0] which has value 0 and hence such reader will
390 ** get all their all content directly from the database file and ignore
391 ** the WAL.
392 **
393 ** Writers normally append new frames to the end of the WAL.  However,
394 ** if nBackfill equals mxFrame (meaning that all WAL content has been
395 ** written back into the database) and if no readers are using the WAL
396 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
397 ** the writer will first "reset" the WAL back to the beginning and start
398 ** writing new content beginning at frame 1.
399 **
400 ** We assume that 32-bit loads are atomic and so no locks are needed in
401 ** order to read from any aReadMark[] entries.
402 */
403 struct WalCkptInfo {
404   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
405   u32 aReadMark[WAL_NREADER];     /* Reader marks */
406   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
407   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
408   u32 notUsed0;                   /* Available for future enhancements */
409 };
410 #define READMARK_NOT_USED  0xffffffff
411 
412 
413 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
414 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
415 ** only support mandatory file-locks, we do not read or write data
416 ** from the region of the file on which locks are applied.
417 */
418 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
419 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
420 
421 /* Size of header before each frame in wal */
422 #define WAL_FRAME_HDRSIZE 24
423 
424 /* Size of write ahead log header, including checksum. */
425 #define WAL_HDRSIZE 32
426 
427 /* WAL magic value. Either this value, or the same value with the least
428 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
429 ** big-endian format in the first 4 bytes of a WAL file.
430 **
431 ** If the LSB is set, then the checksums for each frame within the WAL
432 ** file are calculated by treating all data as an array of 32-bit
433 ** big-endian words. Otherwise, they are calculated by interpreting
434 ** all data as 32-bit little-endian words.
435 */
436 #define WAL_MAGIC 0x377f0682
437 
438 /*
439 ** Return the offset of frame iFrame in the write-ahead log file,
440 ** assuming a database page size of szPage bytes. The offset returned
441 ** is to the start of the write-ahead log frame-header.
442 */
443 #define walFrameOffset(iFrame, szPage) (                               \
444   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
445 )
446 
447 /*
448 ** An open write-ahead log file is represented by an instance of the
449 ** following object.
450 */
451 struct Wal {
452   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
453   sqlite3_file *pDbFd;       /* File handle for the database file */
454   sqlite3_file *pWalFd;      /* File handle for WAL file */
455   u32 iCallback;             /* Value to pass to log callback (or 0) */
456   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
457   int nWiData;               /* Size of array apWiData */
458   int szFirstBlock;          /* Size of first block written to WAL file */
459   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
460   u32 szPage;                /* Database page size */
461   i16 readLock;              /* Which read lock is being held.  -1 for none */
462   u8 syncFlags;              /* Flags to use to sync header writes */
463   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
464   u8 writeLock;              /* True if in a write transaction */
465   u8 ckptLock;               /* True if holding a checkpoint lock */
466   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
467   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
468   u8 syncHeader;             /* Fsync the WAL header if true */
469   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
470   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
471   WalIndexHdr hdr;           /* Wal-index header for current transaction */
472   u32 minFrame;              /* Ignore wal frames before this one */
473   u32 iReCksum;              /* On commit, recalculate checksums from here */
474   const char *zWalName;      /* Name of WAL file */
475   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
476 #ifdef SQLITE_DEBUG
477   u8 lockError;              /* True if a locking error has occurred */
478 #endif
479 #ifdef SQLITE_ENABLE_SNAPSHOT
480   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
481 #endif
482 };
483 
484 /*
485 ** Candidate values for Wal.exclusiveMode.
486 */
487 #define WAL_NORMAL_MODE     0
488 #define WAL_EXCLUSIVE_MODE  1
489 #define WAL_HEAPMEMORY_MODE 2
490 
491 /*
492 ** Possible values for WAL.readOnly
493 */
494 #define WAL_RDWR        0    /* Normal read/write connection */
495 #define WAL_RDONLY      1    /* The WAL file is readonly */
496 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
497 
498 /*
499 ** Each page of the wal-index mapping contains a hash-table made up of
500 ** an array of HASHTABLE_NSLOT elements of the following type.
501 */
502 typedef u16 ht_slot;
503 
504 /*
505 ** This structure is used to implement an iterator that loops through
506 ** all frames in the WAL in database page order. Where two or more frames
507 ** correspond to the same database page, the iterator visits only the
508 ** frame most recently written to the WAL (in other words, the frame with
509 ** the largest index).
510 **
511 ** The internals of this structure are only accessed by:
512 **
513 **   walIteratorInit() - Create a new iterator,
514 **   walIteratorNext() - Step an iterator,
515 **   walIteratorFree() - Free an iterator.
516 **
517 ** This functionality is used by the checkpoint code (see walCheckpoint()).
518 */
519 struct WalIterator {
520   int iPrior;                     /* Last result returned from the iterator */
521   int nSegment;                   /* Number of entries in aSegment[] */
522   struct WalSegment {
523     int iNext;                    /* Next slot in aIndex[] not yet returned */
524     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
525     u32 *aPgno;                   /* Array of page numbers. */
526     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
527     int iZero;                    /* Frame number associated with aPgno[0] */
528   } aSegment[1];                  /* One for every 32KB page in the wal-index */
529 };
530 
531 /*
532 ** Define the parameters of the hash tables in the wal-index file. There
533 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
534 ** wal-index.
535 **
536 ** Changing any of these constants will alter the wal-index format and
537 ** create incompatibilities.
538 */
539 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
540 #define HASHTABLE_HASH_1     383                  /* Should be prime */
541 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
542 
543 /*
544 ** The block of page numbers associated with the first hash-table in a
545 ** wal-index is smaller than usual. This is so that there is a complete
546 ** hash-table on each aligned 32KB page of the wal-index.
547 */
548 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
549 
550 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
551 #define WALINDEX_PGSZ   (                                         \
552     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
553 )
554 
555 /*
556 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
557 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
558 ** numbered from zero.
559 **
560 ** If the wal-index is currently smaller the iPage pages then the size
561 ** of the wal-index might be increased, but only if it is safe to do
562 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
563 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
564 **
565 ** If this call is successful, *ppPage is set to point to the wal-index
566 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
567 ** then an SQLite error code is returned and *ppPage is set to 0.
568 */
569 static SQLITE_NOINLINE int walIndexPageRealloc(
570   Wal *pWal,               /* The WAL context */
571   int iPage,               /* The page we seek */
572   volatile u32 **ppPage    /* Write the page pointer here */
573 ){
574   int rc = SQLITE_OK;
575 
576   /* Enlarge the pWal->apWiData[] array if required */
577   if( pWal->nWiData<=iPage ){
578     int nByte = sizeof(u32*)*(iPage+1);
579     volatile u32 **apNew;
580     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
581     if( !apNew ){
582       *ppPage = 0;
583       return SQLITE_NOMEM_BKPT;
584     }
585     memset((void*)&apNew[pWal->nWiData], 0,
586            sizeof(u32*)*(iPage+1-pWal->nWiData));
587     pWal->apWiData = apNew;
588     pWal->nWiData = iPage+1;
589   }
590 
591   /* Request a pointer to the required page from the VFS */
592   assert( pWal->apWiData[iPage]==0 );
593   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
594     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
595     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
596   }else{
597     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
598         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
599     );
600     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
601     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
602     if( (rc&0xff)==SQLITE_READONLY ){
603       pWal->readOnly |= WAL_SHM_RDONLY;
604       if( rc==SQLITE_READONLY ){
605         rc = SQLITE_OK;
606       }
607     }
608   }
609 
610   *ppPage = pWal->apWiData[iPage];
611   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
612   return rc;
613 }
614 static int walIndexPage(
615   Wal *pWal,               /* The WAL context */
616   int iPage,               /* The page we seek */
617   volatile u32 **ppPage    /* Write the page pointer here */
618 ){
619   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
620     return walIndexPageRealloc(pWal, iPage, ppPage);
621   }
622   return SQLITE_OK;
623 }
624 
625 /*
626 ** Return a pointer to the WalCkptInfo structure in the wal-index.
627 */
628 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
629   assert( pWal->nWiData>0 && pWal->apWiData[0] );
630   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
631 }
632 
633 /*
634 ** Return a pointer to the WalIndexHdr structure in the wal-index.
635 */
636 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
637   assert( pWal->nWiData>0 && pWal->apWiData[0] );
638   return (volatile WalIndexHdr*)pWal->apWiData[0];
639 }
640 
641 /*
642 ** The argument to this macro must be of type u32. On a little-endian
643 ** architecture, it returns the u32 value that results from interpreting
644 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
645 ** returns the value that would be produced by interpreting the 4 bytes
646 ** of the input value as a little-endian integer.
647 */
648 #define BYTESWAP32(x) ( \
649     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
650   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
651 )
652 
653 /*
654 ** Generate or extend an 8 byte checksum based on the data in
655 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
656 ** initial values of 0 and 0 if aIn==NULL).
657 **
658 ** The checksum is written back into aOut[] before returning.
659 **
660 ** nByte must be a positive multiple of 8.
661 */
662 static void walChecksumBytes(
663   int nativeCksum, /* True for native byte-order, false for non-native */
664   u8 *a,           /* Content to be checksummed */
665   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
666   const u32 *aIn,  /* Initial checksum value input */
667   u32 *aOut        /* OUT: Final checksum value output */
668 ){
669   u32 s1, s2;
670   u32 *aData = (u32 *)a;
671   u32 *aEnd = (u32 *)&a[nByte];
672 
673   if( aIn ){
674     s1 = aIn[0];
675     s2 = aIn[1];
676   }else{
677     s1 = s2 = 0;
678   }
679 
680   assert( nByte>=8 );
681   assert( (nByte&0x00000007)==0 );
682 
683   if( nativeCksum ){
684     do {
685       s1 += *aData++ + s2;
686       s2 += *aData++ + s1;
687     }while( aData<aEnd );
688   }else{
689     do {
690       s1 += BYTESWAP32(aData[0]) + s2;
691       s2 += BYTESWAP32(aData[1]) + s1;
692       aData += 2;
693     }while( aData<aEnd );
694   }
695 
696   aOut[0] = s1;
697   aOut[1] = s2;
698 }
699 
700 static void walShmBarrier(Wal *pWal){
701   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
702     sqlite3OsShmBarrier(pWal->pDbFd);
703   }
704 }
705 
706 /*
707 ** Write the header information in pWal->hdr into the wal-index.
708 **
709 ** The checksum on pWal->hdr is updated before it is written.
710 */
711 static void walIndexWriteHdr(Wal *pWal){
712   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
713   const int nCksum = offsetof(WalIndexHdr, aCksum);
714 
715   assert( pWal->writeLock );
716   pWal->hdr.isInit = 1;
717   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
718   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
719   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
720   walShmBarrier(pWal);
721   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
722 }
723 
724 /*
725 ** This function encodes a single frame header and writes it to a buffer
726 ** supplied by the caller. A frame-header is made up of a series of
727 ** 4-byte big-endian integers, as follows:
728 **
729 **     0: Page number.
730 **     4: For commit records, the size of the database image in pages
731 **        after the commit. For all other records, zero.
732 **     8: Salt-1 (copied from the wal-header)
733 **    12: Salt-2 (copied from the wal-header)
734 **    16: Checksum-1.
735 **    20: Checksum-2.
736 */
737 static void walEncodeFrame(
738   Wal *pWal,                      /* The write-ahead log */
739   u32 iPage,                      /* Database page number for frame */
740   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
741   u8 *aData,                      /* Pointer to page data */
742   u8 *aFrame                      /* OUT: Write encoded frame here */
743 ){
744   int nativeCksum;                /* True for native byte-order checksums */
745   u32 *aCksum = pWal->hdr.aFrameCksum;
746   assert( WAL_FRAME_HDRSIZE==24 );
747   sqlite3Put4byte(&aFrame[0], iPage);
748   sqlite3Put4byte(&aFrame[4], nTruncate);
749   if( pWal->iReCksum==0 ){
750     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
751 
752     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
753     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
754     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
755 
756     sqlite3Put4byte(&aFrame[16], aCksum[0]);
757     sqlite3Put4byte(&aFrame[20], aCksum[1]);
758   }else{
759     memset(&aFrame[8], 0, 16);
760   }
761 }
762 
763 /*
764 ** Check to see if the frame with header in aFrame[] and content
765 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
766 ** *pnTruncate and return true.  Return if the frame is not valid.
767 */
768 static int walDecodeFrame(
769   Wal *pWal,                      /* The write-ahead log */
770   u32 *piPage,                    /* OUT: Database page number for frame */
771   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
772   u8 *aData,                      /* Pointer to page data (for checksum) */
773   u8 *aFrame                      /* Frame data */
774 ){
775   int nativeCksum;                /* True for native byte-order checksums */
776   u32 *aCksum = pWal->hdr.aFrameCksum;
777   u32 pgno;                       /* Page number of the frame */
778   assert( WAL_FRAME_HDRSIZE==24 );
779 
780   /* A frame is only valid if the salt values in the frame-header
781   ** match the salt values in the wal-header.
782   */
783   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
784     return 0;
785   }
786 
787   /* A frame is only valid if the page number is creater than zero.
788   */
789   pgno = sqlite3Get4byte(&aFrame[0]);
790   if( pgno==0 ){
791     return 0;
792   }
793 
794   /* A frame is only valid if a checksum of the WAL header,
795   ** all prior frams, the first 16 bytes of this frame-header,
796   ** and the frame-data matches the checksum in the last 8
797   ** bytes of this frame-header.
798   */
799   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
800   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
801   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
802   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
803    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
804   ){
805     /* Checksum failed. */
806     return 0;
807   }
808 
809   /* If we reach this point, the frame is valid.  Return the page number
810   ** and the new database size.
811   */
812   *piPage = pgno;
813   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
814   return 1;
815 }
816 
817 
818 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
819 /*
820 ** Names of locks.  This routine is used to provide debugging output and is not
821 ** a part of an ordinary build.
822 */
823 static const char *walLockName(int lockIdx){
824   if( lockIdx==WAL_WRITE_LOCK ){
825     return "WRITE-LOCK";
826   }else if( lockIdx==WAL_CKPT_LOCK ){
827     return "CKPT-LOCK";
828   }else if( lockIdx==WAL_RECOVER_LOCK ){
829     return "RECOVER-LOCK";
830   }else{
831     static char zName[15];
832     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
833                      lockIdx-WAL_READ_LOCK(0));
834     return zName;
835   }
836 }
837 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
838 
839 
840 /*
841 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
842 ** A lock cannot be moved directly between shared and exclusive - it must go
843 ** through the unlocked state first.
844 **
845 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
846 */
847 static int walLockShared(Wal *pWal, int lockIdx){
848   int rc;
849   if( pWal->exclusiveMode ) return SQLITE_OK;
850   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
851                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
852   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
853             walLockName(lockIdx), rc ? "failed" : "ok"));
854   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
855   return rc;
856 }
857 static void walUnlockShared(Wal *pWal, int lockIdx){
858   if( pWal->exclusiveMode ) return;
859   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
860                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
861   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
862 }
863 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
864   int rc;
865   if( pWal->exclusiveMode ) return SQLITE_OK;
866   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
867                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
868   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
869             walLockName(lockIdx), n, rc ? "failed" : "ok"));
870   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
871   return rc;
872 }
873 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
874   if( pWal->exclusiveMode ) return;
875   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
876                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
877   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
878              walLockName(lockIdx), n));
879 }
880 
881 /*
882 ** Compute a hash on a page number.  The resulting hash value must land
883 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
884 ** the hash to the next value in the event of a collision.
885 */
886 static int walHash(u32 iPage){
887   assert( iPage>0 );
888   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
889   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
890 }
891 static int walNextHash(int iPriorHash){
892   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
893 }
894 
895 /*
896 ** An instance of the WalHashLoc object is used to describe the location
897 ** of a page hash table in the wal-index.  This becomes the return value
898 ** from walHashGet().
899 */
900 typedef struct WalHashLoc WalHashLoc;
901 struct WalHashLoc {
902   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
903   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
904   u32 iZero;                /* One less than the frame number of first indexed*/
905 };
906 
907 /*
908 ** Return pointers to the hash table and page number array stored on
909 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
910 ** numbered starting from 0.
911 **
912 ** Set output variable pLoc->aHash to point to the start of the hash table
913 ** in the wal-index file. Set pLoc->iZero to one less than the frame
914 ** number of the first frame indexed by this hash table. If a
915 ** slot in the hash table is set to N, it refers to frame number
916 ** (pLoc->iZero+N) in the log.
917 **
918 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
919 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
920 */
921 static int walHashGet(
922   Wal *pWal,                      /* WAL handle */
923   int iHash,                      /* Find the iHash'th table */
924   WalHashLoc *pLoc                /* OUT: Hash table location */
925 ){
926   int rc;                         /* Return code */
927 
928   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
929   assert( rc==SQLITE_OK || iHash>0 );
930 
931   if( rc==SQLITE_OK ){
932     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
933     if( iHash==0 ){
934       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
935       pLoc->iZero = 0;
936     }else{
937       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
938     }
939     pLoc->aPgno = &pLoc->aPgno[-1];
940   }
941   return rc;
942 }
943 
944 /*
945 ** Return the number of the wal-index page that contains the hash-table
946 ** and page-number array that contain entries corresponding to WAL frame
947 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
948 ** are numbered starting from 0.
949 */
950 static int walFramePage(u32 iFrame){
951   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
952   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
953        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
954        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
955        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
956        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
957   );
958   return iHash;
959 }
960 
961 /*
962 ** Return the page number associated with frame iFrame in this WAL.
963 */
964 static u32 walFramePgno(Wal *pWal, u32 iFrame){
965   int iHash = walFramePage(iFrame);
966   if( iHash==0 ){
967     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
968   }
969   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
970 }
971 
972 /*
973 ** Remove entries from the hash table that point to WAL slots greater
974 ** than pWal->hdr.mxFrame.
975 **
976 ** This function is called whenever pWal->hdr.mxFrame is decreased due
977 ** to a rollback or savepoint.
978 **
979 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
980 ** updated.  Any later hash tables will be automatically cleared when
981 ** pWal->hdr.mxFrame advances to the point where those hash tables are
982 ** actually needed.
983 */
984 static void walCleanupHash(Wal *pWal){
985   WalHashLoc sLoc;                /* Hash table location */
986   int iLimit = 0;                 /* Zero values greater than this */
987   int nByte;                      /* Number of bytes to zero in aPgno[] */
988   int i;                          /* Used to iterate through aHash[] */
989 
990   assert( pWal->writeLock );
991   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
992   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
993   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
994 
995   if( pWal->hdr.mxFrame==0 ) return;
996 
997   /* Obtain pointers to the hash-table and page-number array containing
998   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
999   ** that the page said hash-table and array reside on is already mapped.
1000   */
1001   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1002   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1003   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1004 
1005   /* Zero all hash-table entries that correspond to frame numbers greater
1006   ** than pWal->hdr.mxFrame.
1007   */
1008   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1009   assert( iLimit>0 );
1010   for(i=0; i<HASHTABLE_NSLOT; i++){
1011     if( sLoc.aHash[i]>iLimit ){
1012       sLoc.aHash[i] = 0;
1013     }
1014   }
1015 
1016   /* Zero the entries in the aPgno array that correspond to frames with
1017   ** frame numbers greater than pWal->hdr.mxFrame.
1018   */
1019   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1020   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1021 
1022 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1023   /* Verify that the every entry in the mapping region is still reachable
1024   ** via the hash table even after the cleanup.
1025   */
1026   if( iLimit ){
1027     int j;           /* Loop counter */
1028     int iKey;        /* Hash key */
1029     for(j=1; j<=iLimit; j++){
1030       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1031         if( sLoc.aHash[iKey]==j ) break;
1032       }
1033       assert( sLoc.aHash[iKey]==j );
1034     }
1035   }
1036 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1037 }
1038 
1039 
1040 /*
1041 ** Set an entry in the wal-index that will map database page number
1042 ** pPage into WAL frame iFrame.
1043 */
1044 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1045   int rc;                         /* Return code */
1046   WalHashLoc sLoc;                /* Wal-index hash table location */
1047 
1048   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1049 
1050   /* Assuming the wal-index file was successfully mapped, populate the
1051   ** page number array and hash table entry.
1052   */
1053   if( rc==SQLITE_OK ){
1054     int iKey;                     /* Hash table key */
1055     int idx;                      /* Value to write to hash-table slot */
1056     int nCollide;                 /* Number of hash collisions */
1057 
1058     idx = iFrame - sLoc.iZero;
1059     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1060 
1061     /* If this is the first entry to be added to this hash-table, zero the
1062     ** entire hash table and aPgno[] array before proceeding.
1063     */
1064     if( idx==1 ){
1065       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1066                                - (u8 *)&sLoc.aPgno[1]);
1067       memset((void*)&sLoc.aPgno[1], 0, nByte);
1068     }
1069 
1070     /* If the entry in aPgno[] is already set, then the previous writer
1071     ** must have exited unexpectedly in the middle of a transaction (after
1072     ** writing one or more dirty pages to the WAL to free up memory).
1073     ** Remove the remnants of that writers uncommitted transaction from
1074     ** the hash-table before writing any new entries.
1075     */
1076     if( sLoc.aPgno[idx] ){
1077       walCleanupHash(pWal);
1078       assert( !sLoc.aPgno[idx] );
1079     }
1080 
1081     /* Write the aPgno[] array entry and the hash-table slot. */
1082     nCollide = idx;
1083     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1084       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1085     }
1086     sLoc.aPgno[idx] = iPage;
1087     sLoc.aHash[iKey] = (ht_slot)idx;
1088 
1089 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1090     /* Verify that the number of entries in the hash table exactly equals
1091     ** the number of entries in the mapping region.
1092     */
1093     {
1094       int i;           /* Loop counter */
1095       int nEntry = 0;  /* Number of entries in the hash table */
1096       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1097       assert( nEntry==idx );
1098     }
1099 
1100     /* Verify that the every entry in the mapping region is reachable
1101     ** via the hash table.  This turns out to be a really, really expensive
1102     ** thing to check, so only do this occasionally - not on every
1103     ** iteration.
1104     */
1105     if( (idx&0x3ff)==0 ){
1106       int i;           /* Loop counter */
1107       for(i=1; i<=idx; i++){
1108         for(iKey=walHash(sLoc.aPgno[i]);
1109             sLoc.aHash[iKey];
1110             iKey=walNextHash(iKey)){
1111           if( sLoc.aHash[iKey]==i ) break;
1112         }
1113         assert( sLoc.aHash[iKey]==i );
1114       }
1115     }
1116 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1117   }
1118 
1119 
1120   return rc;
1121 }
1122 
1123 
1124 /*
1125 ** Recover the wal-index by reading the write-ahead log file.
1126 **
1127 ** This routine first tries to establish an exclusive lock on the
1128 ** wal-index to prevent other threads/processes from doing anything
1129 ** with the WAL or wal-index while recovery is running.  The
1130 ** WAL_RECOVER_LOCK is also held so that other threads will know
1131 ** that this thread is running recovery.  If unable to establish
1132 ** the necessary locks, this routine returns SQLITE_BUSY.
1133 */
1134 static int walIndexRecover(Wal *pWal){
1135   int rc;                         /* Return Code */
1136   i64 nSize;                      /* Size of log file */
1137   u32 aFrameCksum[2] = {0, 0};
1138   int iLock;                      /* Lock offset to lock for checkpoint */
1139 
1140   /* Obtain an exclusive lock on all byte in the locking range not already
1141   ** locked by the caller. The caller is guaranteed to have locked the
1142   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1143   ** If successful, the same bytes that are locked here are unlocked before
1144   ** this function returns.
1145   */
1146   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1147   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1148   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1149   assert( pWal->writeLock );
1150   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1151   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1152   if( rc==SQLITE_OK ){
1153     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1154     if( rc!=SQLITE_OK ){
1155       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1156     }
1157   }
1158   if( rc ){
1159     return rc;
1160   }
1161 
1162   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1163 
1164   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1165 
1166   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1167   if( rc!=SQLITE_OK ){
1168     goto recovery_error;
1169   }
1170 
1171   if( nSize>WAL_HDRSIZE ){
1172     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1173     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1174     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1175     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1176     int iFrame;                   /* Index of last frame read */
1177     i64 iOffset;                  /* Next offset to read from log file */
1178     int szPage;                   /* Page size according to the log */
1179     u32 magic;                    /* Magic value read from WAL header */
1180     u32 version;                  /* Magic value read from WAL header */
1181     int isValid;                  /* True if this frame is valid */
1182 
1183     /* Read in the WAL header. */
1184     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1185     if( rc!=SQLITE_OK ){
1186       goto recovery_error;
1187     }
1188 
1189     /* If the database page size is not a power of two, or is greater than
1190     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1191     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1192     ** WAL file.
1193     */
1194     magic = sqlite3Get4byte(&aBuf[0]);
1195     szPage = sqlite3Get4byte(&aBuf[8]);
1196     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1197      || szPage&(szPage-1)
1198      || szPage>SQLITE_MAX_PAGE_SIZE
1199      || szPage<512
1200     ){
1201       goto finished;
1202     }
1203     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1204     pWal->szPage = szPage;
1205     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1206     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1207 
1208     /* Verify that the WAL header checksum is correct */
1209     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1210         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1211     );
1212     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1213      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1214     ){
1215       goto finished;
1216     }
1217 
1218     /* Verify that the version number on the WAL format is one that
1219     ** are able to understand */
1220     version = sqlite3Get4byte(&aBuf[4]);
1221     if( version!=WAL_MAX_VERSION ){
1222       rc = SQLITE_CANTOPEN_BKPT;
1223       goto finished;
1224     }
1225 
1226     /* Malloc a buffer to read frames into. */
1227     szFrame = szPage + WAL_FRAME_HDRSIZE;
1228     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1229     if( !aFrame ){
1230       rc = SQLITE_NOMEM_BKPT;
1231       goto recovery_error;
1232     }
1233     aData = &aFrame[WAL_FRAME_HDRSIZE];
1234 
1235     /* Read all frames from the log file. */
1236     iFrame = 0;
1237     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1238       u32 pgno;                   /* Database page number for frame */
1239       u32 nTruncate;              /* dbsize field from frame header */
1240 
1241       /* Read and decode the next log frame. */
1242       iFrame++;
1243       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1244       if( rc!=SQLITE_OK ) break;
1245       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1246       if( !isValid ) break;
1247       rc = walIndexAppend(pWal, iFrame, pgno);
1248       if( rc!=SQLITE_OK ) break;
1249 
1250       /* If nTruncate is non-zero, this is a commit record. */
1251       if( nTruncate ){
1252         pWal->hdr.mxFrame = iFrame;
1253         pWal->hdr.nPage = nTruncate;
1254         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1255         testcase( szPage<=32768 );
1256         testcase( szPage>=65536 );
1257         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1258         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1259       }
1260     }
1261 
1262     sqlite3_free(aFrame);
1263   }
1264 
1265 finished:
1266   if( rc==SQLITE_OK ){
1267     volatile WalCkptInfo *pInfo;
1268     int i;
1269     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1270     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1271     walIndexWriteHdr(pWal);
1272 
1273     /* Reset the checkpoint-header. This is safe because this thread is
1274     ** currently holding locks that exclude all other readers, writers and
1275     ** checkpointers.
1276     */
1277     pInfo = walCkptInfo(pWal);
1278     pInfo->nBackfill = 0;
1279     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1280     pInfo->aReadMark[0] = 0;
1281     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1282     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1283 
1284     /* If more than one frame was recovered from the log file, report an
1285     ** event via sqlite3_log(). This is to help with identifying performance
1286     ** problems caused by applications routinely shutting down without
1287     ** checkpointing the log file.
1288     */
1289     if( pWal->hdr.nPage ){
1290       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1291           "recovered %d frames from WAL file %s",
1292           pWal->hdr.mxFrame, pWal->zWalName
1293       );
1294     }
1295   }
1296 
1297 recovery_error:
1298   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1299   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1300   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1301   return rc;
1302 }
1303 
1304 /*
1305 ** Close an open wal-index.
1306 */
1307 static void walIndexClose(Wal *pWal, int isDelete){
1308   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1309     int i;
1310     for(i=0; i<pWal->nWiData; i++){
1311       sqlite3_free((void *)pWal->apWiData[i]);
1312       pWal->apWiData[i] = 0;
1313     }
1314   }
1315   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1316     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1317   }
1318 }
1319 
1320 /*
1321 ** Open a connection to the WAL file zWalName. The database file must
1322 ** already be opened on connection pDbFd. The buffer that zWalName points
1323 ** to must remain valid for the lifetime of the returned Wal* handle.
1324 **
1325 ** A SHARED lock should be held on the database file when this function
1326 ** is called. The purpose of this SHARED lock is to prevent any other
1327 ** client from unlinking the WAL or wal-index file. If another process
1328 ** were to do this just after this client opened one of these files, the
1329 ** system would be badly broken.
1330 **
1331 ** If the log file is successfully opened, SQLITE_OK is returned and
1332 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1333 ** an SQLite error code is returned and *ppWal is left unmodified.
1334 */
1335 int sqlite3WalOpen(
1336   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1337   sqlite3_file *pDbFd,            /* The open database file */
1338   const char *zWalName,           /* Name of the WAL file */
1339   int bNoShm,                     /* True to run in heap-memory mode */
1340   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1341   Wal **ppWal                     /* OUT: Allocated Wal handle */
1342 ){
1343   int rc;                         /* Return Code */
1344   Wal *pRet;                      /* Object to allocate and return */
1345   int flags;                      /* Flags passed to OsOpen() */
1346 
1347   assert( zWalName && zWalName[0] );
1348   assert( pDbFd );
1349 
1350   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1351   ** this source file.  Verify that the #defines of the locking byte offsets
1352   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1353   ** For that matter, if the lock offset ever changes from its initial design
1354   ** value of 120, we need to know that so there is an assert() to check it.
1355   */
1356   assert( 120==WALINDEX_LOCK_OFFSET );
1357   assert( 136==WALINDEX_HDR_SIZE );
1358 #ifdef WIN_SHM_BASE
1359   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1360 #endif
1361 #ifdef UNIX_SHM_BASE
1362   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1363 #endif
1364 
1365 
1366   /* Allocate an instance of struct Wal to return. */
1367   *ppWal = 0;
1368   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1369   if( !pRet ){
1370     return SQLITE_NOMEM_BKPT;
1371   }
1372 
1373   pRet->pVfs = pVfs;
1374   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1375   pRet->pDbFd = pDbFd;
1376   pRet->readLock = -1;
1377   pRet->mxWalSize = mxWalSize;
1378   pRet->zWalName = zWalName;
1379   pRet->syncHeader = 1;
1380   pRet->padToSectorBoundary = 1;
1381   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1382 
1383   /* Open file handle on the write-ahead log file. */
1384   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1385   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1386   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1387     pRet->readOnly = WAL_RDONLY;
1388   }
1389 
1390   if( rc!=SQLITE_OK ){
1391     walIndexClose(pRet, 0);
1392     sqlite3OsClose(pRet->pWalFd);
1393     sqlite3_free(pRet);
1394   }else{
1395     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1396     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1397     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1398       pRet->padToSectorBoundary = 0;
1399     }
1400     *ppWal = pRet;
1401     WALTRACE(("WAL%d: opened\n", pRet));
1402   }
1403   return rc;
1404 }
1405 
1406 /*
1407 ** Change the size to which the WAL file is trucated on each reset.
1408 */
1409 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1410   if( pWal ) pWal->mxWalSize = iLimit;
1411 }
1412 
1413 /*
1414 ** Find the smallest page number out of all pages held in the WAL that
1415 ** has not been returned by any prior invocation of this method on the
1416 ** same WalIterator object.   Write into *piFrame the frame index where
1417 ** that page was last written into the WAL.  Write into *piPage the page
1418 ** number.
1419 **
1420 ** Return 0 on success.  If there are no pages in the WAL with a page
1421 ** number larger than *piPage, then return 1.
1422 */
1423 static int walIteratorNext(
1424   WalIterator *p,               /* Iterator */
1425   u32 *piPage,                  /* OUT: The page number of the next page */
1426   u32 *piFrame                  /* OUT: Wal frame index of next page */
1427 ){
1428   u32 iMin;                     /* Result pgno must be greater than iMin */
1429   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1430   int i;                        /* For looping through segments */
1431 
1432   iMin = p->iPrior;
1433   assert( iMin<0xffffffff );
1434   for(i=p->nSegment-1; i>=0; i--){
1435     struct WalSegment *pSegment = &p->aSegment[i];
1436     while( pSegment->iNext<pSegment->nEntry ){
1437       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1438       if( iPg>iMin ){
1439         if( iPg<iRet ){
1440           iRet = iPg;
1441           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1442         }
1443         break;
1444       }
1445       pSegment->iNext++;
1446     }
1447   }
1448 
1449   *piPage = p->iPrior = iRet;
1450   return (iRet==0xFFFFFFFF);
1451 }
1452 
1453 /*
1454 ** This function merges two sorted lists into a single sorted list.
1455 **
1456 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1457 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1458 ** is guaranteed for all J<K:
1459 **
1460 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1461 **        aContent[aRight[J]] < aContent[aRight[K]]
1462 **
1463 ** This routine overwrites aRight[] with a new (probably longer) sequence
1464 ** of indices such that the aRight[] contains every index that appears in
1465 ** either aLeft[] or the old aRight[] and such that the second condition
1466 ** above is still met.
1467 **
1468 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1469 ** aContent[aRight[X]] values will be unique too.  But there might be
1470 ** one or more combinations of X and Y such that
1471 **
1472 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1473 **
1474 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1475 */
1476 static void walMerge(
1477   const u32 *aContent,            /* Pages in wal - keys for the sort */
1478   ht_slot *aLeft,                 /* IN: Left hand input list */
1479   int nLeft,                      /* IN: Elements in array *paLeft */
1480   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1481   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1482   ht_slot *aTmp                   /* Temporary buffer */
1483 ){
1484   int iLeft = 0;                  /* Current index in aLeft */
1485   int iRight = 0;                 /* Current index in aRight */
1486   int iOut = 0;                   /* Current index in output buffer */
1487   int nRight = *pnRight;
1488   ht_slot *aRight = *paRight;
1489 
1490   assert( nLeft>0 && nRight>0 );
1491   while( iRight<nRight || iLeft<nLeft ){
1492     ht_slot logpage;
1493     Pgno dbpage;
1494 
1495     if( (iLeft<nLeft)
1496      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1497     ){
1498       logpage = aLeft[iLeft++];
1499     }else{
1500       logpage = aRight[iRight++];
1501     }
1502     dbpage = aContent[logpage];
1503 
1504     aTmp[iOut++] = logpage;
1505     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1506 
1507     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1508     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1509   }
1510 
1511   *paRight = aLeft;
1512   *pnRight = iOut;
1513   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1514 }
1515 
1516 /*
1517 ** Sort the elements in list aList using aContent[] as the sort key.
1518 ** Remove elements with duplicate keys, preferring to keep the
1519 ** larger aList[] values.
1520 **
1521 ** The aList[] entries are indices into aContent[].  The values in
1522 ** aList[] are to be sorted so that for all J<K:
1523 **
1524 **      aContent[aList[J]] < aContent[aList[K]]
1525 **
1526 ** For any X and Y such that
1527 **
1528 **      aContent[aList[X]] == aContent[aList[Y]]
1529 **
1530 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1531 ** the smaller.
1532 */
1533 static void walMergesort(
1534   const u32 *aContent,            /* Pages in wal */
1535   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1536   ht_slot *aList,                 /* IN/OUT: List to sort */
1537   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1538 ){
1539   struct Sublist {
1540     int nList;                    /* Number of elements in aList */
1541     ht_slot *aList;               /* Pointer to sub-list content */
1542   };
1543 
1544   const int nList = *pnList;      /* Size of input list */
1545   int nMerge = 0;                 /* Number of elements in list aMerge */
1546   ht_slot *aMerge = 0;            /* List to be merged */
1547   int iList;                      /* Index into input list */
1548   u32 iSub = 0;                   /* Index into aSub array */
1549   struct Sublist aSub[13];        /* Array of sub-lists */
1550 
1551   memset(aSub, 0, sizeof(aSub));
1552   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1553   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1554 
1555   for(iList=0; iList<nList; iList++){
1556     nMerge = 1;
1557     aMerge = &aList[iList];
1558     for(iSub=0; iList & (1<<iSub); iSub++){
1559       struct Sublist *p;
1560       assert( iSub<ArraySize(aSub) );
1561       p = &aSub[iSub];
1562       assert( p->aList && p->nList<=(1<<iSub) );
1563       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1564       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1565     }
1566     aSub[iSub].aList = aMerge;
1567     aSub[iSub].nList = nMerge;
1568   }
1569 
1570   for(iSub++; iSub<ArraySize(aSub); iSub++){
1571     if( nList & (1<<iSub) ){
1572       struct Sublist *p;
1573       assert( iSub<ArraySize(aSub) );
1574       p = &aSub[iSub];
1575       assert( p->nList<=(1<<iSub) );
1576       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1577       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1578     }
1579   }
1580   assert( aMerge==aList );
1581   *pnList = nMerge;
1582 
1583 #ifdef SQLITE_DEBUG
1584   {
1585     int i;
1586     for(i=1; i<*pnList; i++){
1587       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1588     }
1589   }
1590 #endif
1591 }
1592 
1593 /*
1594 ** Free an iterator allocated by walIteratorInit().
1595 */
1596 static void walIteratorFree(WalIterator *p){
1597   sqlite3_free(p);
1598 }
1599 
1600 /*
1601 ** Construct a WalInterator object that can be used to loop over all
1602 ** pages in the WAL following frame nBackfill in ascending order. Frames
1603 ** nBackfill or earlier may be included - excluding them is an optimization
1604 ** only. The caller must hold the checkpoint lock.
1605 **
1606 ** On success, make *pp point to the newly allocated WalInterator object
1607 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1608 ** returns an error, the value of *pp is undefined.
1609 **
1610 ** The calling routine should invoke walIteratorFree() to destroy the
1611 ** WalIterator object when it has finished with it.
1612 */
1613 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1614   WalIterator *p;                 /* Return value */
1615   int nSegment;                   /* Number of segments to merge */
1616   u32 iLast;                      /* Last frame in log */
1617   int nByte;                      /* Number of bytes to allocate */
1618   int i;                          /* Iterator variable */
1619   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1620   int rc = SQLITE_OK;             /* Return Code */
1621 
1622   /* This routine only runs while holding the checkpoint lock. And
1623   ** it only runs if there is actually content in the log (mxFrame>0).
1624   */
1625   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1626   iLast = pWal->hdr.mxFrame;
1627 
1628   /* Allocate space for the WalIterator object. */
1629   nSegment = walFramePage(iLast) + 1;
1630   nByte = sizeof(WalIterator)
1631         + (nSegment-1)*sizeof(struct WalSegment)
1632         + iLast*sizeof(ht_slot);
1633   p = (WalIterator *)sqlite3_malloc64(nByte);
1634   if( !p ){
1635     return SQLITE_NOMEM_BKPT;
1636   }
1637   memset(p, 0, nByte);
1638   p->nSegment = nSegment;
1639 
1640   /* Allocate temporary space used by the merge-sort routine. This block
1641   ** of memory will be freed before this function returns.
1642   */
1643   aTmp = (ht_slot *)sqlite3_malloc64(
1644       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1645   );
1646   if( !aTmp ){
1647     rc = SQLITE_NOMEM_BKPT;
1648   }
1649 
1650   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1651     WalHashLoc sLoc;
1652 
1653     rc = walHashGet(pWal, i, &sLoc);
1654     if( rc==SQLITE_OK ){
1655       int j;                      /* Counter variable */
1656       int nEntry;                 /* Number of entries in this segment */
1657       ht_slot *aIndex;            /* Sorted index for this segment */
1658 
1659       sLoc.aPgno++;
1660       if( (i+1)==nSegment ){
1661         nEntry = (int)(iLast - sLoc.iZero);
1662       }else{
1663         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1664       }
1665       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1666       sLoc.iZero++;
1667 
1668       for(j=0; j<nEntry; j++){
1669         aIndex[j] = (ht_slot)j;
1670       }
1671       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1672       p->aSegment[i].iZero = sLoc.iZero;
1673       p->aSegment[i].nEntry = nEntry;
1674       p->aSegment[i].aIndex = aIndex;
1675       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1676     }
1677   }
1678   sqlite3_free(aTmp);
1679 
1680   if( rc!=SQLITE_OK ){
1681     walIteratorFree(p);
1682     p = 0;
1683   }
1684   *pp = p;
1685   return rc;
1686 }
1687 
1688 /*
1689 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1690 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1691 ** busy-handler function. Invoke it and retry the lock until either the
1692 ** lock is successfully obtained or the busy-handler returns 0.
1693 */
1694 static int walBusyLock(
1695   Wal *pWal,                      /* WAL connection */
1696   int (*xBusy)(void*),            /* Function to call when busy */
1697   void *pBusyArg,                 /* Context argument for xBusyHandler */
1698   int lockIdx,                    /* Offset of first byte to lock */
1699   int n                           /* Number of bytes to lock */
1700 ){
1701   int rc;
1702   do {
1703     rc = walLockExclusive(pWal, lockIdx, n);
1704   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1705   return rc;
1706 }
1707 
1708 /*
1709 ** The cache of the wal-index header must be valid to call this function.
1710 ** Return the page-size in bytes used by the database.
1711 */
1712 static int walPagesize(Wal *pWal){
1713   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1714 }
1715 
1716 /*
1717 ** The following is guaranteed when this function is called:
1718 **
1719 **   a) the WRITER lock is held,
1720 **   b) the entire log file has been checkpointed, and
1721 **   c) any existing readers are reading exclusively from the database
1722 **      file - there are no readers that may attempt to read a frame from
1723 **      the log file.
1724 **
1725 ** This function updates the shared-memory structures so that the next
1726 ** client to write to the database (which may be this one) does so by
1727 ** writing frames into the start of the log file.
1728 **
1729 ** The value of parameter salt1 is used as the aSalt[1] value in the
1730 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1731 ** one obtained from sqlite3_randomness()).
1732 */
1733 static void walRestartHdr(Wal *pWal, u32 salt1){
1734   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1735   int i;                          /* Loop counter */
1736   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1737   pWal->nCkpt++;
1738   pWal->hdr.mxFrame = 0;
1739   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1740   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1741   walIndexWriteHdr(pWal);
1742   pInfo->nBackfill = 0;
1743   pInfo->nBackfillAttempted = 0;
1744   pInfo->aReadMark[1] = 0;
1745   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1746   assert( pInfo->aReadMark[0]==0 );
1747 }
1748 
1749 /*
1750 ** Copy as much content as we can from the WAL back into the database file
1751 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1752 **
1753 ** The amount of information copies from WAL to database might be limited
1754 ** by active readers.  This routine will never overwrite a database page
1755 ** that a concurrent reader might be using.
1756 **
1757 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1758 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1759 ** checkpoints are always run by a background thread or background
1760 ** process, foreground threads will never block on a lengthy fsync call.
1761 **
1762 ** Fsync is called on the WAL before writing content out of the WAL and
1763 ** into the database.  This ensures that if the new content is persistent
1764 ** in the WAL and can be recovered following a power-loss or hard reset.
1765 **
1766 ** Fsync is also called on the database file if (and only if) the entire
1767 ** WAL content is copied into the database file.  This second fsync makes
1768 ** it safe to delete the WAL since the new content will persist in the
1769 ** database file.
1770 **
1771 ** This routine uses and updates the nBackfill field of the wal-index header.
1772 ** This is the only routine that will increase the value of nBackfill.
1773 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1774 ** its value.)
1775 **
1776 ** The caller must be holding sufficient locks to ensure that no other
1777 ** checkpoint is running (in any other thread or process) at the same
1778 ** time.
1779 */
1780 static int walCheckpoint(
1781   Wal *pWal,                      /* Wal connection */
1782   sqlite3 *db,                    /* Check for interrupts on this handle */
1783   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1784   int (*xBusy)(void*),            /* Function to call when busy */
1785   void *pBusyArg,                 /* Context argument for xBusyHandler */
1786   int sync_flags,                 /* Flags for OsSync() (or 0) */
1787   u8 *zBuf                        /* Temporary buffer to use */
1788 ){
1789   int rc = SQLITE_OK;             /* Return code */
1790   int szPage;                     /* Database page-size */
1791   WalIterator *pIter = 0;         /* Wal iterator context */
1792   u32 iDbpage = 0;                /* Next database page to write */
1793   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1794   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1795   u32 mxPage;                     /* Max database page to write */
1796   int i;                          /* Loop counter */
1797   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1798 
1799   szPage = walPagesize(pWal);
1800   testcase( szPage<=32768 );
1801   testcase( szPage>=65536 );
1802   pInfo = walCkptInfo(pWal);
1803   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1804 
1805     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1806     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1807     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1808 
1809     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1810     ** safe to write into the database.  Frames beyond mxSafeFrame might
1811     ** overwrite database pages that are in use by active readers and thus
1812     ** cannot be backfilled from the WAL.
1813     */
1814     mxSafeFrame = pWal->hdr.mxFrame;
1815     mxPage = pWal->hdr.nPage;
1816     for(i=1; i<WAL_NREADER; i++){
1817       /* Thread-sanitizer reports that the following is an unsafe read,
1818       ** as some other thread may be in the process of updating the value
1819       ** of the aReadMark[] slot. The assumption here is that if that is
1820       ** happening, the other client may only be increasing the value,
1821       ** not decreasing it. So assuming either that either the "old" or
1822       ** "new" version of the value is read, and not some arbitrary value
1823       ** that would never be written by a real client, things are still
1824       ** safe.  */
1825       u32 y = pInfo->aReadMark[i];
1826       if( mxSafeFrame>y ){
1827         assert( y<=pWal->hdr.mxFrame );
1828         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1829         if( rc==SQLITE_OK ){
1830           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1831           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1832         }else if( rc==SQLITE_BUSY ){
1833           mxSafeFrame = y;
1834           xBusy = 0;
1835         }else{
1836           goto walcheckpoint_out;
1837         }
1838       }
1839     }
1840 
1841     /* Allocate the iterator */
1842     if( pInfo->nBackfill<mxSafeFrame ){
1843       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1844       assert( rc==SQLITE_OK || pIter==0 );
1845     }
1846 
1847     if( pIter
1848      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1849     ){
1850       u32 nBackfill = pInfo->nBackfill;
1851 
1852       pInfo->nBackfillAttempted = mxSafeFrame;
1853 
1854       /* Sync the WAL to disk */
1855       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1856 
1857       /* If the database may grow as a result of this checkpoint, hint
1858       ** about the eventual size of the db file to the VFS layer.
1859       */
1860       if( rc==SQLITE_OK ){
1861         i64 nReq = ((i64)mxPage * szPage);
1862         i64 nSize;                    /* Current size of database file */
1863         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1864         if( rc==SQLITE_OK && nSize<nReq ){
1865           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1866         }
1867       }
1868 
1869 
1870       /* Iterate through the contents of the WAL, copying data to the db file */
1871       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1872         i64 iOffset;
1873         assert( walFramePgno(pWal, iFrame)==iDbpage );
1874         if( db->u1.isInterrupted ){
1875           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1876           break;
1877         }
1878         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1879           continue;
1880         }
1881         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1882         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1883         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1884         if( rc!=SQLITE_OK ) break;
1885         iOffset = (iDbpage-1)*(i64)szPage;
1886         testcase( IS_BIG_INT(iOffset) );
1887         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1888         if( rc!=SQLITE_OK ) break;
1889       }
1890 
1891       /* If work was actually accomplished... */
1892       if( rc==SQLITE_OK ){
1893         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1894           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1895           testcase( IS_BIG_INT(szDb) );
1896           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1897           if( rc==SQLITE_OK ){
1898             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1899           }
1900         }
1901         if( rc==SQLITE_OK ){
1902           pInfo->nBackfill = mxSafeFrame;
1903         }
1904       }
1905 
1906       /* Release the reader lock held while backfilling */
1907       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1908     }
1909 
1910     if( rc==SQLITE_BUSY ){
1911       /* Reset the return code so as not to report a checkpoint failure
1912       ** just because there are active readers.  */
1913       rc = SQLITE_OK;
1914     }
1915   }
1916 
1917   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1918   ** entire wal file has been copied into the database file, then block
1919   ** until all readers have finished using the wal file. This ensures that
1920   ** the next process to write to the database restarts the wal file.
1921   */
1922   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1923     assert( pWal->writeLock );
1924     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1925       rc = SQLITE_BUSY;
1926     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1927       u32 salt1;
1928       sqlite3_randomness(4, &salt1);
1929       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1930       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1931       if( rc==SQLITE_OK ){
1932         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1933           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1934           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1935           ** truncates the log file to zero bytes just prior to a
1936           ** successful return.
1937           **
1938           ** In theory, it might be safe to do this without updating the
1939           ** wal-index header in shared memory, as all subsequent reader or
1940           ** writer clients should see that the entire log file has been
1941           ** checkpointed and behave accordingly. This seems unsafe though,
1942           ** as it would leave the system in a state where the contents of
1943           ** the wal-index header do not match the contents of the
1944           ** file-system. To avoid this, update the wal-index header to
1945           ** indicate that the log file contains zero valid frames.  */
1946           walRestartHdr(pWal, salt1);
1947           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1948         }
1949         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1950       }
1951     }
1952   }
1953 
1954  walcheckpoint_out:
1955   walIteratorFree(pIter);
1956   return rc;
1957 }
1958 
1959 /*
1960 ** If the WAL file is currently larger than nMax bytes in size, truncate
1961 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1962 */
1963 static void walLimitSize(Wal *pWal, i64 nMax){
1964   i64 sz;
1965   int rx;
1966   sqlite3BeginBenignMalloc();
1967   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1968   if( rx==SQLITE_OK && (sz > nMax ) ){
1969     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1970   }
1971   sqlite3EndBenignMalloc();
1972   if( rx ){
1973     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1974   }
1975 }
1976 
1977 /*
1978 ** Close a connection to a log file.
1979 */
1980 int sqlite3WalClose(
1981   Wal *pWal,                      /* Wal to close */
1982   sqlite3 *db,                    /* For interrupt flag */
1983   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1984   int nBuf,
1985   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1986 ){
1987   int rc = SQLITE_OK;
1988   if( pWal ){
1989     int isDelete = 0;             /* True to unlink wal and wal-index files */
1990 
1991     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1992     ** ordinary, rollback-mode locking methods, this guarantees that the
1993     ** connection associated with this log file is the only connection to
1994     ** the database. In this case checkpoint the database and unlink both
1995     ** the wal and wal-index files.
1996     **
1997     ** The EXCLUSIVE lock is not released before returning.
1998     */
1999     if( zBuf!=0
2000      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2001     ){
2002       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2003         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2004       }
2005       rc = sqlite3WalCheckpoint(pWal, db,
2006           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2007       );
2008       if( rc==SQLITE_OK ){
2009         int bPersist = -1;
2010         sqlite3OsFileControlHint(
2011             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2012         );
2013         if( bPersist!=1 ){
2014           /* Try to delete the WAL file if the checkpoint completed and
2015           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2016           ** mode (!bPersist) */
2017           isDelete = 1;
2018         }else if( pWal->mxWalSize>=0 ){
2019           /* Try to truncate the WAL file to zero bytes if the checkpoint
2020           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2021           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2022           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2023           ** to zero bytes as truncating to the journal_size_limit might
2024           ** leave a corrupt WAL file on disk. */
2025           walLimitSize(pWal, 0);
2026         }
2027       }
2028     }
2029 
2030     walIndexClose(pWal, isDelete);
2031     sqlite3OsClose(pWal->pWalFd);
2032     if( isDelete ){
2033       sqlite3BeginBenignMalloc();
2034       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2035       sqlite3EndBenignMalloc();
2036     }
2037     WALTRACE(("WAL%p: closed\n", pWal));
2038     sqlite3_free((void *)pWal->apWiData);
2039     sqlite3_free(pWal);
2040   }
2041   return rc;
2042 }
2043 
2044 /*
2045 ** Try to read the wal-index header.  Return 0 on success and 1 if
2046 ** there is a problem.
2047 **
2048 ** The wal-index is in shared memory.  Another thread or process might
2049 ** be writing the header at the same time this procedure is trying to
2050 ** read it, which might result in inconsistency.  A dirty read is detected
2051 ** by verifying that both copies of the header are the same and also by
2052 ** a checksum on the header.
2053 **
2054 ** If and only if the read is consistent and the header is different from
2055 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2056 ** and *pChanged is set to 1.
2057 **
2058 ** If the checksum cannot be verified return non-zero. If the header
2059 ** is read successfully and the checksum verified, return zero.
2060 */
2061 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2062   u32 aCksum[2];                  /* Checksum on the header content */
2063   WalIndexHdr h1, h2;             /* Two copies of the header content */
2064   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2065 
2066   /* The first page of the wal-index must be mapped at this point. */
2067   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2068 
2069   /* Read the header. This might happen concurrently with a write to the
2070   ** same area of shared memory on a different CPU in a SMP,
2071   ** meaning it is possible that an inconsistent snapshot is read
2072   ** from the file. If this happens, return non-zero.
2073   **
2074   ** There are two copies of the header at the beginning of the wal-index.
2075   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2076   ** Memory barriers are used to prevent the compiler or the hardware from
2077   ** reordering the reads and writes.
2078   */
2079   aHdr = walIndexHdr(pWal);
2080   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2081   walShmBarrier(pWal);
2082   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2083 
2084   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2085     return 1;   /* Dirty read */
2086   }
2087   if( h1.isInit==0 ){
2088     return 1;   /* Malformed header - probably all zeros */
2089   }
2090   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2091   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2092     return 1;   /* Checksum does not match */
2093   }
2094 
2095   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2096     *pChanged = 1;
2097     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2098     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2099     testcase( pWal->szPage<=32768 );
2100     testcase( pWal->szPage>=65536 );
2101   }
2102 
2103   /* The header was successfully read. Return zero. */
2104   return 0;
2105 }
2106 
2107 /*
2108 ** This is the value that walTryBeginRead returns when it needs to
2109 ** be retried.
2110 */
2111 #define WAL_RETRY  (-1)
2112 
2113 /*
2114 ** Read the wal-index header from the wal-index and into pWal->hdr.
2115 ** If the wal-header appears to be corrupt, try to reconstruct the
2116 ** wal-index from the WAL before returning.
2117 **
2118 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2119 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2120 ** to 0.
2121 **
2122 ** If the wal-index header is successfully read, return SQLITE_OK.
2123 ** Otherwise an SQLite error code.
2124 */
2125 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2126   int rc;                         /* Return code */
2127   int badHdr;                     /* True if a header read failed */
2128   volatile u32 *page0;            /* Chunk of wal-index containing header */
2129 
2130   /* Ensure that page 0 of the wal-index (the page that contains the
2131   ** wal-index header) is mapped. Return early if an error occurs here.
2132   */
2133   assert( pChanged );
2134   rc = walIndexPage(pWal, 0, &page0);
2135   if( rc!=SQLITE_OK ){
2136     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2137     if( rc==SQLITE_READONLY_CANTINIT ){
2138       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2139       ** was openable but is not writable, and this thread is unable to
2140       ** confirm that another write-capable connection has the shared-memory
2141       ** open, and hence the content of the shared-memory is unreliable,
2142       ** since the shared-memory might be inconsistent with the WAL file
2143       ** and there is no writer on hand to fix it. */
2144       assert( page0==0 );
2145       assert( pWal->writeLock==0 );
2146       assert( pWal->readOnly & WAL_SHM_RDONLY );
2147       pWal->bShmUnreliable = 1;
2148       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2149       *pChanged = 1;
2150     }else{
2151       return rc; /* Any other non-OK return is just an error */
2152     }
2153   }else{
2154     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2155     ** is zero, which prevents the SHM from growing */
2156     testcase( page0!=0 );
2157   }
2158   assert( page0!=0 || pWal->writeLock==0 );
2159 
2160   /* If the first page of the wal-index has been mapped, try to read the
2161   ** wal-index header immediately, without holding any lock. This usually
2162   ** works, but may fail if the wal-index header is corrupt or currently
2163   ** being modified by another thread or process.
2164   */
2165   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2166 
2167   /* If the first attempt failed, it might have been due to a race
2168   ** with a writer.  So get a WRITE lock and try again.
2169   */
2170   assert( badHdr==0 || pWal->writeLock==0 );
2171   if( badHdr ){
2172     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2173       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2174         walUnlockShared(pWal, WAL_WRITE_LOCK);
2175         rc = SQLITE_READONLY_RECOVERY;
2176       }
2177     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2178       pWal->writeLock = 1;
2179       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2180         badHdr = walIndexTryHdr(pWal, pChanged);
2181         if( badHdr ){
2182           /* If the wal-index header is still malformed even while holding
2183           ** a WRITE lock, it can only mean that the header is corrupted and
2184           ** needs to be reconstructed.  So run recovery to do exactly that.
2185           */
2186           rc = walIndexRecover(pWal);
2187           *pChanged = 1;
2188         }
2189       }
2190       pWal->writeLock = 0;
2191       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2192     }
2193   }
2194 
2195   /* If the header is read successfully, check the version number to make
2196   ** sure the wal-index was not constructed with some future format that
2197   ** this version of SQLite cannot understand.
2198   */
2199   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2200     rc = SQLITE_CANTOPEN_BKPT;
2201   }
2202   if( pWal->bShmUnreliable ){
2203     if( rc!=SQLITE_OK ){
2204       walIndexClose(pWal, 0);
2205       pWal->bShmUnreliable = 0;
2206       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2207       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2208       ** writer truncated the WAL out from under it.  If that happens, it
2209       ** indicates that a writer has fixed the SHM file for us, so retry */
2210       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2211     }
2212     pWal->exclusiveMode = WAL_NORMAL_MODE;
2213   }
2214 
2215   return rc;
2216 }
2217 
2218 /*
2219 ** Open a transaction in a connection where the shared-memory is read-only
2220 ** and where we cannot verify that there is a separate write-capable connection
2221 ** on hand to keep the shared-memory up-to-date with the WAL file.
2222 **
2223 ** This can happen, for example, when the shared-memory is implemented by
2224 ** memory-mapping a *-shm file, where a prior writer has shut down and
2225 ** left the *-shm file on disk, and now the present connection is trying
2226 ** to use that database but lacks write permission on the *-shm file.
2227 ** Other scenarios are also possible, depending on the VFS implementation.
2228 **
2229 ** Precondition:
2230 **
2231 **    The *-wal file has been read and an appropriate wal-index has been
2232 **    constructed in pWal->apWiData[] using heap memory instead of shared
2233 **    memory.
2234 **
2235 ** If this function returns SQLITE_OK, then the read transaction has
2236 ** been successfully opened. In this case output variable (*pChanged)
2237 ** is set to true before returning if the caller should discard the
2238 ** contents of the page cache before proceeding. Or, if it returns
2239 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2240 ** the caller should retry opening the read transaction from the
2241 ** beginning (including attempting to map the *-shm file).
2242 **
2243 ** If an error occurs, an SQLite error code is returned.
2244 */
2245 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2246   i64 szWal;                      /* Size of wal file on disk in bytes */
2247   i64 iOffset;                    /* Current offset when reading wal file */
2248   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2249   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2250   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2251   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2252   volatile void *pDummy;          /* Dummy argument for xShmMap */
2253   int rc;                         /* Return code */
2254   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2255 
2256   assert( pWal->bShmUnreliable );
2257   assert( pWal->readOnly & WAL_SHM_RDONLY );
2258   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2259 
2260   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2261   ** writers from running a checkpoint, but does not stop them
2262   ** from running recovery.  */
2263   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2264   if( rc!=SQLITE_OK ){
2265     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2266     goto begin_unreliable_shm_out;
2267   }
2268   pWal->readLock = 0;
2269 
2270   /* Check to see if a separate writer has attached to the shared-memory area,
2271   ** thus making the shared-memory "reliable" again.  Do this by invoking
2272   ** the xShmMap() routine of the VFS and looking to see if the return
2273   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2274   **
2275   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2276   ** cause the heap-memory WAL-index to be discarded and the actual
2277   ** shared memory to be used in its place.
2278   **
2279   ** This step is important because, even though this connection is holding
2280   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2281   ** have already checkpointed the WAL file and, while the current
2282   ** is active, wrap the WAL and start overwriting frames that this
2283   ** process wants to use.
2284   **
2285   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2286   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2287   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2288   ** even if some external agent does a "chmod" to make the shared-memory
2289   ** writable by us, until sqlite3OsShmUnmap() has been called.
2290   ** This is a requirement on the VFS implementation.
2291    */
2292   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2293   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2294   if( rc!=SQLITE_READONLY_CANTINIT ){
2295     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2296     goto begin_unreliable_shm_out;
2297   }
2298 
2299   /* We reach this point only if the real shared-memory is still unreliable.
2300   ** Assume the in-memory WAL-index substitute is correct and load it
2301   ** into pWal->hdr.
2302   */
2303   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2304 
2305   /* Make sure some writer hasn't come in and changed the WAL file out
2306   ** from under us, then disconnected, while we were not looking.
2307   */
2308   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2309   if( rc!=SQLITE_OK ){
2310     goto begin_unreliable_shm_out;
2311   }
2312   if( szWal<WAL_HDRSIZE ){
2313     /* If the wal file is too small to contain a wal-header and the
2314     ** wal-index header has mxFrame==0, then it must be safe to proceed
2315     ** reading the database file only. However, the page cache cannot
2316     ** be trusted, as a read/write connection may have connected, written
2317     ** the db, run a checkpoint, truncated the wal file and disconnected
2318     ** since this client's last read transaction.  */
2319     *pChanged = 1;
2320     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2321     goto begin_unreliable_shm_out;
2322   }
2323 
2324   /* Check the salt keys at the start of the wal file still match. */
2325   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2326   if( rc!=SQLITE_OK ){
2327     goto begin_unreliable_shm_out;
2328   }
2329   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2330     /* Some writer has wrapped the WAL file while we were not looking.
2331     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2332     ** rebuilt. */
2333     rc = WAL_RETRY;
2334     goto begin_unreliable_shm_out;
2335   }
2336 
2337   /* Allocate a buffer to read frames into */
2338   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2339   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2340   if( aFrame==0 ){
2341     rc = SQLITE_NOMEM_BKPT;
2342     goto begin_unreliable_shm_out;
2343   }
2344   aData = &aFrame[WAL_FRAME_HDRSIZE];
2345 
2346   /* Check to see if a complete transaction has been appended to the
2347   ** wal file since the heap-memory wal-index was created. If so, the
2348   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2349   ** the caller.  */
2350   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2351   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2352   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2353       iOffset+szFrame<=szWal;
2354       iOffset+=szFrame
2355   ){
2356     u32 pgno;                   /* Database page number for frame */
2357     u32 nTruncate;              /* dbsize field from frame header */
2358 
2359     /* Read and decode the next log frame. */
2360     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2361     if( rc!=SQLITE_OK ) break;
2362     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2363 
2364     /* If nTruncate is non-zero, then a complete transaction has been
2365     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2366     ** the loop.  */
2367     if( nTruncate ){
2368       rc = WAL_RETRY;
2369       break;
2370     }
2371   }
2372   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2373   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2374 
2375  begin_unreliable_shm_out:
2376   sqlite3_free(aFrame);
2377   if( rc!=SQLITE_OK ){
2378     int i;
2379     for(i=0; i<pWal->nWiData; i++){
2380       sqlite3_free((void*)pWal->apWiData[i]);
2381       pWal->apWiData[i] = 0;
2382     }
2383     pWal->bShmUnreliable = 0;
2384     sqlite3WalEndReadTransaction(pWal);
2385     *pChanged = 1;
2386   }
2387   return rc;
2388 }
2389 
2390 /*
2391 ** Attempt to start a read transaction.  This might fail due to a race or
2392 ** other transient condition.  When that happens, it returns WAL_RETRY to
2393 ** indicate to the caller that it is safe to retry immediately.
2394 **
2395 ** On success return SQLITE_OK.  On a permanent failure (such an
2396 ** I/O error or an SQLITE_BUSY because another process is running
2397 ** recovery) return a positive error code.
2398 **
2399 ** The useWal parameter is true to force the use of the WAL and disable
2400 ** the case where the WAL is bypassed because it has been completely
2401 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2402 ** to make a copy of the wal-index header into pWal->hdr.  If the
2403 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2404 ** to the caller that the local page cache is obsolete and needs to be
2405 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2406 ** be loaded and the pChanged parameter is unused.
2407 **
2408 ** The caller must set the cnt parameter to the number of prior calls to
2409 ** this routine during the current read attempt that returned WAL_RETRY.
2410 ** This routine will start taking more aggressive measures to clear the
2411 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2412 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2413 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2414 ** and is not honoring the locking protocol.  There is a vanishingly small
2415 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2416 ** bad luck when there is lots of contention for the wal-index, but that
2417 ** possibility is so small that it can be safely neglected, we believe.
2418 **
2419 ** On success, this routine obtains a read lock on
2420 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2421 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2422 ** that means the Wal does not hold any read lock.  The reader must not
2423 ** access any database page that is modified by a WAL frame up to and
2424 ** including frame number aReadMark[pWal->readLock].  The reader will
2425 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2426 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2427 ** completely and get all content directly from the database file.
2428 ** If the useWal parameter is 1 then the WAL will never be ignored and
2429 ** this routine will always set pWal->readLock>0 on success.
2430 ** When the read transaction is completed, the caller must release the
2431 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2432 **
2433 ** This routine uses the nBackfill and aReadMark[] fields of the header
2434 ** to select a particular WAL_READ_LOCK() that strives to let the
2435 ** checkpoint process do as much work as possible.  This routine might
2436 ** update values of the aReadMark[] array in the header, but if it does
2437 ** so it takes care to hold an exclusive lock on the corresponding
2438 ** WAL_READ_LOCK() while changing values.
2439 */
2440 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2441   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2442   u32 mxReadMark;                 /* Largest aReadMark[] value */
2443   int mxI;                        /* Index of largest aReadMark[] value */
2444   int i;                          /* Loop counter */
2445   int rc = SQLITE_OK;             /* Return code  */
2446   u32 mxFrame;                    /* Wal frame to lock to */
2447 
2448   assert( pWal->readLock<0 );     /* Not currently locked */
2449 
2450   /* useWal may only be set for read/write connections */
2451   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2452 
2453   /* Take steps to avoid spinning forever if there is a protocol error.
2454   **
2455   ** Circumstances that cause a RETRY should only last for the briefest
2456   ** instances of time.  No I/O or other system calls are done while the
2457   ** locks are held, so the locks should not be held for very long. But
2458   ** if we are unlucky, another process that is holding a lock might get
2459   ** paged out or take a page-fault that is time-consuming to resolve,
2460   ** during the few nanoseconds that it is holding the lock.  In that case,
2461   ** it might take longer than normal for the lock to free.
2462   **
2463   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2464   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2465   ** is more of a scheduler yield than an actual delay.  But on the 10th
2466   ** an subsequent retries, the delays start becoming longer and longer,
2467   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2468   ** The total delay time before giving up is less than 10 seconds.
2469   */
2470   if( cnt>5 ){
2471     int nDelay = 1;                      /* Pause time in microseconds */
2472     if( cnt>100 ){
2473       VVA_ONLY( pWal->lockError = 1; )
2474       return SQLITE_PROTOCOL;
2475     }
2476     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2477     sqlite3OsSleep(pWal->pVfs, nDelay);
2478   }
2479 
2480   if( !useWal ){
2481     assert( rc==SQLITE_OK );
2482     if( pWal->bShmUnreliable==0 ){
2483       rc = walIndexReadHdr(pWal, pChanged);
2484     }
2485     if( rc==SQLITE_BUSY ){
2486       /* If there is not a recovery running in another thread or process
2487       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2488       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2489       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2490       ** would be technically correct.  But the race is benign since with
2491       ** WAL_RETRY this routine will be called again and will probably be
2492       ** right on the second iteration.
2493       */
2494       if( pWal->apWiData[0]==0 ){
2495         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2496         ** We assume this is a transient condition, so return WAL_RETRY. The
2497         ** xShmMap() implementation used by the default unix and win32 VFS
2498         ** modules may return SQLITE_BUSY due to a race condition in the
2499         ** code that determines whether or not the shared-memory region
2500         ** must be zeroed before the requested page is returned.
2501         */
2502         rc = WAL_RETRY;
2503       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2504         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2505         rc = WAL_RETRY;
2506       }else if( rc==SQLITE_BUSY ){
2507         rc = SQLITE_BUSY_RECOVERY;
2508       }
2509     }
2510     if( rc!=SQLITE_OK ){
2511       return rc;
2512     }
2513     else if( pWal->bShmUnreliable ){
2514       return walBeginShmUnreliable(pWal, pChanged);
2515     }
2516   }
2517 
2518   assert( pWal->nWiData>0 );
2519   assert( pWal->apWiData[0]!=0 );
2520   pInfo = walCkptInfo(pWal);
2521   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2522 #ifdef SQLITE_ENABLE_SNAPSHOT
2523    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2524 #endif
2525   ){
2526     /* The WAL has been completely backfilled (or it is empty).
2527     ** and can be safely ignored.
2528     */
2529     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2530     walShmBarrier(pWal);
2531     if( rc==SQLITE_OK ){
2532       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2533         /* It is not safe to allow the reader to continue here if frames
2534         ** may have been appended to the log before READ_LOCK(0) was obtained.
2535         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2536         ** which implies that the database file contains a trustworthy
2537         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2538         ** happening, this is usually correct.
2539         **
2540         ** However, if frames have been appended to the log (or if the log
2541         ** is wrapped and written for that matter) before the READ_LOCK(0)
2542         ** is obtained, that is not necessarily true. A checkpointer may
2543         ** have started to backfill the appended frames but crashed before
2544         ** it finished. Leaving a corrupt image in the database file.
2545         */
2546         walUnlockShared(pWal, WAL_READ_LOCK(0));
2547         return WAL_RETRY;
2548       }
2549       pWal->readLock = 0;
2550       return SQLITE_OK;
2551     }else if( rc!=SQLITE_BUSY ){
2552       return rc;
2553     }
2554   }
2555 
2556   /* If we get this far, it means that the reader will want to use
2557   ** the WAL to get at content from recent commits.  The job now is
2558   ** to select one of the aReadMark[] entries that is closest to
2559   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2560   */
2561   mxReadMark = 0;
2562   mxI = 0;
2563   mxFrame = pWal->hdr.mxFrame;
2564 #ifdef SQLITE_ENABLE_SNAPSHOT
2565   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2566     mxFrame = pWal->pSnapshot->mxFrame;
2567   }
2568 #endif
2569   for(i=1; i<WAL_NREADER; i++){
2570     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2571     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2572       assert( thisMark!=READMARK_NOT_USED );
2573       mxReadMark = thisMark;
2574       mxI = i;
2575     }
2576   }
2577   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2578    && (mxReadMark<mxFrame || mxI==0)
2579   ){
2580     for(i=1; i<WAL_NREADER; i++){
2581       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2582       if( rc==SQLITE_OK ){
2583         mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
2584         mxI = i;
2585         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2586         break;
2587       }else if( rc!=SQLITE_BUSY ){
2588         return rc;
2589       }
2590     }
2591   }
2592   if( mxI==0 ){
2593     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2594     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2595   }
2596 
2597   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2598   if( rc ){
2599     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2600   }
2601   /* Now that the read-lock has been obtained, check that neither the
2602   ** value in the aReadMark[] array or the contents of the wal-index
2603   ** header have changed.
2604   **
2605   ** It is necessary to check that the wal-index header did not change
2606   ** between the time it was read and when the shared-lock was obtained
2607   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2608   ** that the log file may have been wrapped by a writer, or that frames
2609   ** that occur later in the log than pWal->hdr.mxFrame may have been
2610   ** copied into the database by a checkpointer. If either of these things
2611   ** happened, then reading the database with the current value of
2612   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2613   ** instead.
2614   **
2615   ** Before checking that the live wal-index header has not changed
2616   ** since it was read, set Wal.minFrame to the first frame in the wal
2617   ** file that has not yet been checkpointed. This client will not need
2618   ** to read any frames earlier than minFrame from the wal file - they
2619   ** can be safely read directly from the database file.
2620   **
2621   ** Because a ShmBarrier() call is made between taking the copy of
2622   ** nBackfill and checking that the wal-header in shared-memory still
2623   ** matches the one cached in pWal->hdr, it is guaranteed that the
2624   ** checkpointer that set nBackfill was not working with a wal-index
2625   ** header newer than that cached in pWal->hdr. If it were, that could
2626   ** cause a problem. The checkpointer could omit to checkpoint
2627   ** a version of page X that lies before pWal->minFrame (call that version
2628   ** A) on the basis that there is a newer version (version B) of the same
2629   ** page later in the wal file. But if version B happens to like past
2630   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2631   ** that it can read version A from the database file. However, since
2632   ** we can guarantee that the checkpointer that set nBackfill could not
2633   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2634   */
2635   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2636   walShmBarrier(pWal);
2637   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2638    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2639   ){
2640     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2641     return WAL_RETRY;
2642   }else{
2643     assert( mxReadMark<=pWal->hdr.mxFrame );
2644     pWal->readLock = (i16)mxI;
2645   }
2646   return rc;
2647 }
2648 
2649 #ifdef SQLITE_ENABLE_SNAPSHOT
2650 /*
2651 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2652 ** variable so that older snapshots can be accessed. To do this, loop
2653 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2654 ** comparing their content to the corresponding page with the database
2655 ** file, if any. Set nBackfillAttempted to the frame number of the
2656 ** first frame for which the wal file content matches the db file.
2657 **
2658 ** This is only really safe if the file-system is such that any page
2659 ** writes made by earlier checkpointers were atomic operations, which
2660 ** is not always true. It is also possible that nBackfillAttempted
2661 ** may be left set to a value larger than expected, if a wal frame
2662 ** contains content that duplicate of an earlier version of the same
2663 ** page.
2664 **
2665 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2666 ** error occurs. It is not an error if nBackfillAttempted cannot be
2667 ** decreased at all.
2668 */
2669 int sqlite3WalSnapshotRecover(Wal *pWal){
2670   int rc;
2671 
2672   assert( pWal->readLock>=0 );
2673   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2674   if( rc==SQLITE_OK ){
2675     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2676     int szPage = (int)pWal->szPage;
2677     i64 szDb;                   /* Size of db file in bytes */
2678 
2679     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2680     if( rc==SQLITE_OK ){
2681       void *pBuf1 = sqlite3_malloc(szPage);
2682       void *pBuf2 = sqlite3_malloc(szPage);
2683       if( pBuf1==0 || pBuf2==0 ){
2684         rc = SQLITE_NOMEM;
2685       }else{
2686         u32 i = pInfo->nBackfillAttempted;
2687         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2688           WalHashLoc sLoc;          /* Hash table location */
2689           u32 pgno;                 /* Page number in db file */
2690           i64 iDbOff;               /* Offset of db file entry */
2691           i64 iWalOff;              /* Offset of wal file entry */
2692 
2693           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2694           if( rc!=SQLITE_OK ) break;
2695           pgno = sLoc.aPgno[i-sLoc.iZero];
2696           iDbOff = (i64)(pgno-1) * szPage;
2697 
2698           if( iDbOff+szPage<=szDb ){
2699             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2700             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2701 
2702             if( rc==SQLITE_OK ){
2703               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2704             }
2705 
2706             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2707               break;
2708             }
2709           }
2710 
2711           pInfo->nBackfillAttempted = i-1;
2712         }
2713       }
2714 
2715       sqlite3_free(pBuf1);
2716       sqlite3_free(pBuf2);
2717     }
2718     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2719   }
2720 
2721   return rc;
2722 }
2723 #endif /* SQLITE_ENABLE_SNAPSHOT */
2724 
2725 /*
2726 ** Begin a read transaction on the database.
2727 **
2728 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2729 ** it takes a snapshot of the state of the WAL and wal-index for the current
2730 ** instant in time.  The current thread will continue to use this snapshot.
2731 ** Other threads might append new content to the WAL and wal-index but
2732 ** that extra content is ignored by the current thread.
2733 **
2734 ** If the database contents have changes since the previous read
2735 ** transaction, then *pChanged is set to 1 before returning.  The
2736 ** Pager layer will use this to know that its cache is stale and
2737 ** needs to be flushed.
2738 */
2739 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2740   int rc;                         /* Return code */
2741   int cnt = 0;                    /* Number of TryBeginRead attempts */
2742 
2743 #ifdef SQLITE_ENABLE_SNAPSHOT
2744   int bChanged = 0;
2745   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2746   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2747     bChanged = 1;
2748   }
2749 #endif
2750 
2751   do{
2752     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2753   }while( rc==WAL_RETRY );
2754   testcase( (rc&0xff)==SQLITE_BUSY );
2755   testcase( (rc&0xff)==SQLITE_IOERR );
2756   testcase( rc==SQLITE_PROTOCOL );
2757   testcase( rc==SQLITE_OK );
2758 
2759 #ifdef SQLITE_ENABLE_SNAPSHOT
2760   if( rc==SQLITE_OK ){
2761     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2762       /* At this point the client has a lock on an aReadMark[] slot holding
2763       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2764       ** is populated with the wal-index header corresponding to the head
2765       ** of the wal file. Verify that pSnapshot is still valid before
2766       ** continuing.  Reasons why pSnapshot might no longer be valid:
2767       **
2768       **    (1)  The WAL file has been reset since the snapshot was taken.
2769       **         In this case, the salt will have changed.
2770       **
2771       **    (2)  A checkpoint as been attempted that wrote frames past
2772       **         pSnapshot->mxFrame into the database file.  Note that the
2773       **         checkpoint need not have completed for this to cause problems.
2774       */
2775       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2776 
2777       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2778       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2779 
2780       /* It is possible that there is a checkpointer thread running
2781       ** concurrent with this code. If this is the case, it may be that the
2782       ** checkpointer has already determined that it will checkpoint
2783       ** snapshot X, where X is later in the wal file than pSnapshot, but
2784       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2785       ** its intent. To avoid the race condition this leads to, ensure that
2786       ** there is no checkpointer process by taking a shared CKPT lock
2787       ** before checking pInfo->nBackfillAttempted.
2788       **
2789       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2790       **       this already?
2791       */
2792       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2793 
2794       if( rc==SQLITE_OK ){
2795         /* Check that the wal file has not been wrapped. Assuming that it has
2796         ** not, also check that no checkpointer has attempted to checkpoint any
2797         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2798         ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2799         ** with *pSnapshot and set *pChanged as appropriate for opening the
2800         ** snapshot.  */
2801         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2802          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2803         ){
2804           assert( pWal->readLock>0 );
2805           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2806           *pChanged = bChanged;
2807         }else{
2808           rc = SQLITE_ERROR_SNAPSHOT;
2809         }
2810 
2811         /* Release the shared CKPT lock obtained above. */
2812         walUnlockShared(pWal, WAL_CKPT_LOCK);
2813         pWal->minFrame = 1;
2814       }
2815 
2816 
2817       if( rc!=SQLITE_OK ){
2818         sqlite3WalEndReadTransaction(pWal);
2819       }
2820     }
2821   }
2822 #endif
2823   return rc;
2824 }
2825 
2826 /*
2827 ** Finish with a read transaction.  All this does is release the
2828 ** read-lock.
2829 */
2830 void sqlite3WalEndReadTransaction(Wal *pWal){
2831   sqlite3WalEndWriteTransaction(pWal);
2832   if( pWal->readLock>=0 ){
2833     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2834     pWal->readLock = -1;
2835   }
2836 }
2837 
2838 /*
2839 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2840 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2841 ** to zero.
2842 **
2843 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2844 ** error does occur, the final value of *piRead is undefined.
2845 */
2846 int sqlite3WalFindFrame(
2847   Wal *pWal,                      /* WAL handle */
2848   Pgno pgno,                      /* Database page number to read data for */
2849   u32 *piRead                     /* OUT: Frame number (or zero) */
2850 ){
2851   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2852   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2853   int iHash;                      /* Used to loop through N hash tables */
2854   int iMinHash;
2855 
2856   /* This routine is only be called from within a read transaction. */
2857   assert( pWal->readLock>=0 || pWal->lockError );
2858 
2859   /* If the "last page" field of the wal-index header snapshot is 0, then
2860   ** no data will be read from the wal under any circumstances. Return early
2861   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2862   ** then the WAL is ignored by the reader so return early, as if the
2863   ** WAL were empty.
2864   */
2865   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2866     *piRead = 0;
2867     return SQLITE_OK;
2868   }
2869 
2870   /* Search the hash table or tables for an entry matching page number
2871   ** pgno. Each iteration of the following for() loop searches one
2872   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2873   **
2874   ** This code might run concurrently to the code in walIndexAppend()
2875   ** that adds entries to the wal-index (and possibly to this hash
2876   ** table). This means the value just read from the hash
2877   ** slot (aHash[iKey]) may have been added before or after the
2878   ** current read transaction was opened. Values added after the
2879   ** read transaction was opened may have been written incorrectly -
2880   ** i.e. these slots may contain garbage data. However, we assume
2881   ** that any slots written before the current read transaction was
2882   ** opened remain unmodified.
2883   **
2884   ** For the reasons above, the if(...) condition featured in the inner
2885   ** loop of the following block is more stringent that would be required
2886   ** if we had exclusive access to the hash-table:
2887   **
2888   **   (aPgno[iFrame]==pgno):
2889   **     This condition filters out normal hash-table collisions.
2890   **
2891   **   (iFrame<=iLast):
2892   **     This condition filters out entries that were added to the hash
2893   **     table after the current read-transaction had started.
2894   */
2895   iMinHash = walFramePage(pWal->minFrame);
2896   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2897     WalHashLoc sLoc;              /* Hash table location */
2898     int iKey;                     /* Hash slot index */
2899     int nCollide;                 /* Number of hash collisions remaining */
2900     int rc;                       /* Error code */
2901 
2902     rc = walHashGet(pWal, iHash, &sLoc);
2903     if( rc!=SQLITE_OK ){
2904       return rc;
2905     }
2906     nCollide = HASHTABLE_NSLOT;
2907     for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
2908       u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero;
2909       if( iFrame<=iLast && iFrame>=pWal->minFrame
2910        && sLoc.aPgno[sLoc.aHash[iKey]]==pgno ){
2911         assert( iFrame>iRead || CORRUPT_DB );
2912         iRead = iFrame;
2913       }
2914       if( (nCollide--)==0 ){
2915         return SQLITE_CORRUPT_BKPT;
2916       }
2917     }
2918     if( iRead ) break;
2919   }
2920 
2921 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2922   /* If expensive assert() statements are available, do a linear search
2923   ** of the wal-index file content. Make sure the results agree with the
2924   ** result obtained using the hash indexes above.  */
2925   {
2926     u32 iRead2 = 0;
2927     u32 iTest;
2928     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2929     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2930       if( walFramePgno(pWal, iTest)==pgno ){
2931         iRead2 = iTest;
2932         break;
2933       }
2934     }
2935     assert( iRead==iRead2 );
2936   }
2937 #endif
2938 
2939   *piRead = iRead;
2940   return SQLITE_OK;
2941 }
2942 
2943 /*
2944 ** Read the contents of frame iRead from the wal file into buffer pOut
2945 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2946 ** error code otherwise.
2947 */
2948 int sqlite3WalReadFrame(
2949   Wal *pWal,                      /* WAL handle */
2950   u32 iRead,                      /* Frame to read */
2951   int nOut,                       /* Size of buffer pOut in bytes */
2952   u8 *pOut                        /* Buffer to write page data to */
2953 ){
2954   int sz;
2955   i64 iOffset;
2956   sz = pWal->hdr.szPage;
2957   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2958   testcase( sz<=32768 );
2959   testcase( sz>=65536 );
2960   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2961   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2962   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2963 }
2964 
2965 /*
2966 ** Return the size of the database in pages (or zero, if unknown).
2967 */
2968 Pgno sqlite3WalDbsize(Wal *pWal){
2969   if( pWal && ALWAYS(pWal->readLock>=0) ){
2970     return pWal->hdr.nPage;
2971   }
2972   return 0;
2973 }
2974 
2975 
2976 /*
2977 ** This function starts a write transaction on the WAL.
2978 **
2979 ** A read transaction must have already been started by a prior call
2980 ** to sqlite3WalBeginReadTransaction().
2981 **
2982 ** If another thread or process has written into the database since
2983 ** the read transaction was started, then it is not possible for this
2984 ** thread to write as doing so would cause a fork.  So this routine
2985 ** returns SQLITE_BUSY in that case and no write transaction is started.
2986 **
2987 ** There can only be a single writer active at a time.
2988 */
2989 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2990   int rc;
2991 
2992   /* Cannot start a write transaction without first holding a read
2993   ** transaction. */
2994   assert( pWal->readLock>=0 );
2995   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2996 
2997   if( pWal->readOnly ){
2998     return SQLITE_READONLY;
2999   }
3000 
3001   /* Only one writer allowed at a time.  Get the write lock.  Return
3002   ** SQLITE_BUSY if unable.
3003   */
3004   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3005   if( rc ){
3006     return rc;
3007   }
3008   pWal->writeLock = 1;
3009 
3010   /* If another connection has written to the database file since the
3011   ** time the read transaction on this connection was started, then
3012   ** the write is disallowed.
3013   */
3014   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3015     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3016     pWal->writeLock = 0;
3017     rc = SQLITE_BUSY_SNAPSHOT;
3018   }
3019 
3020   return rc;
3021 }
3022 
3023 /*
3024 ** End a write transaction.  The commit has already been done.  This
3025 ** routine merely releases the lock.
3026 */
3027 int sqlite3WalEndWriteTransaction(Wal *pWal){
3028   if( pWal->writeLock ){
3029     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3030     pWal->writeLock = 0;
3031     pWal->iReCksum = 0;
3032     pWal->truncateOnCommit = 0;
3033   }
3034   return SQLITE_OK;
3035 }
3036 
3037 /*
3038 ** If any data has been written (but not committed) to the log file, this
3039 ** function moves the write-pointer back to the start of the transaction.
3040 **
3041 ** Additionally, the callback function is invoked for each frame written
3042 ** to the WAL since the start of the transaction. If the callback returns
3043 ** other than SQLITE_OK, it is not invoked again and the error code is
3044 ** returned to the caller.
3045 **
3046 ** Otherwise, if the callback function does not return an error, this
3047 ** function returns SQLITE_OK.
3048 */
3049 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3050   int rc = SQLITE_OK;
3051   if( ALWAYS(pWal->writeLock) ){
3052     Pgno iMax = pWal->hdr.mxFrame;
3053     Pgno iFrame;
3054 
3055     /* Restore the clients cache of the wal-index header to the state it
3056     ** was in before the client began writing to the database.
3057     */
3058     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3059 
3060     for(iFrame=pWal->hdr.mxFrame+1;
3061         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3062         iFrame++
3063     ){
3064       /* This call cannot fail. Unless the page for which the page number
3065       ** is passed as the second argument is (a) in the cache and
3066       ** (b) has an outstanding reference, then xUndo is either a no-op
3067       ** (if (a) is false) or simply expels the page from the cache (if (b)
3068       ** is false).
3069       **
3070       ** If the upper layer is doing a rollback, it is guaranteed that there
3071       ** are no outstanding references to any page other than page 1. And
3072       ** page 1 is never written to the log until the transaction is
3073       ** committed. As a result, the call to xUndo may not fail.
3074       */
3075       assert( walFramePgno(pWal, iFrame)!=1 );
3076       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3077     }
3078     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3079   }
3080   return rc;
3081 }
3082 
3083 /*
3084 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3085 ** values. This function populates the array with values required to
3086 ** "rollback" the write position of the WAL handle back to the current
3087 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3088 */
3089 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3090   assert( pWal->writeLock );
3091   aWalData[0] = pWal->hdr.mxFrame;
3092   aWalData[1] = pWal->hdr.aFrameCksum[0];
3093   aWalData[2] = pWal->hdr.aFrameCksum[1];
3094   aWalData[3] = pWal->nCkpt;
3095 }
3096 
3097 /*
3098 ** Move the write position of the WAL back to the point identified by
3099 ** the values in the aWalData[] array. aWalData must point to an array
3100 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3101 ** by a call to WalSavepoint().
3102 */
3103 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3104   int rc = SQLITE_OK;
3105 
3106   assert( pWal->writeLock );
3107   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3108 
3109   if( aWalData[3]!=pWal->nCkpt ){
3110     /* This savepoint was opened immediately after the write-transaction
3111     ** was started. Right after that, the writer decided to wrap around
3112     ** to the start of the log. Update the savepoint values to match.
3113     */
3114     aWalData[0] = 0;
3115     aWalData[3] = pWal->nCkpt;
3116   }
3117 
3118   if( aWalData[0]<pWal->hdr.mxFrame ){
3119     pWal->hdr.mxFrame = aWalData[0];
3120     pWal->hdr.aFrameCksum[0] = aWalData[1];
3121     pWal->hdr.aFrameCksum[1] = aWalData[2];
3122     walCleanupHash(pWal);
3123   }
3124 
3125   return rc;
3126 }
3127 
3128 /*
3129 ** This function is called just before writing a set of frames to the log
3130 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3131 ** to the current log file, it is possible to overwrite the start of the
3132 ** existing log file with the new frames (i.e. "reset" the log). If so,
3133 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3134 ** unchanged.
3135 **
3136 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3137 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3138 ** if an error occurs.
3139 */
3140 static int walRestartLog(Wal *pWal){
3141   int rc = SQLITE_OK;
3142   int cnt;
3143 
3144   if( pWal->readLock==0 ){
3145     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3146     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3147     if( pInfo->nBackfill>0 ){
3148       u32 salt1;
3149       sqlite3_randomness(4, &salt1);
3150       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3151       if( rc==SQLITE_OK ){
3152         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3153         ** readers are currently using the WAL), then the transactions
3154         ** frames will overwrite the start of the existing log. Update the
3155         ** wal-index header to reflect this.
3156         **
3157         ** In theory it would be Ok to update the cache of the header only
3158         ** at this point. But updating the actual wal-index header is also
3159         ** safe and means there is no special case for sqlite3WalUndo()
3160         ** to handle if this transaction is rolled back.  */
3161         walRestartHdr(pWal, salt1);
3162         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3163       }else if( rc!=SQLITE_BUSY ){
3164         return rc;
3165       }
3166     }
3167     walUnlockShared(pWal, WAL_READ_LOCK(0));
3168     pWal->readLock = -1;
3169     cnt = 0;
3170     do{
3171       int notUsed;
3172       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3173     }while( rc==WAL_RETRY );
3174     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3175     testcase( (rc&0xff)==SQLITE_IOERR );
3176     testcase( rc==SQLITE_PROTOCOL );
3177     testcase( rc==SQLITE_OK );
3178   }
3179   return rc;
3180 }
3181 
3182 /*
3183 ** Information about the current state of the WAL file and where
3184 ** the next fsync should occur - passed from sqlite3WalFrames() into
3185 ** walWriteToLog().
3186 */
3187 typedef struct WalWriter {
3188   Wal *pWal;                   /* The complete WAL information */
3189   sqlite3_file *pFd;           /* The WAL file to which we write */
3190   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3191   int syncFlags;               /* Flags for the fsync */
3192   int szPage;                  /* Size of one page */
3193 } WalWriter;
3194 
3195 /*
3196 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3197 ** Do a sync when crossing the p->iSyncPoint boundary.
3198 **
3199 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3200 ** first write the part before iSyncPoint, then sync, then write the
3201 ** rest.
3202 */
3203 static int walWriteToLog(
3204   WalWriter *p,              /* WAL to write to */
3205   void *pContent,            /* Content to be written */
3206   int iAmt,                  /* Number of bytes to write */
3207   sqlite3_int64 iOffset      /* Start writing at this offset */
3208 ){
3209   int rc;
3210   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3211     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3212     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3213     if( rc ) return rc;
3214     iOffset += iFirstAmt;
3215     iAmt -= iFirstAmt;
3216     pContent = (void*)(iFirstAmt + (char*)pContent);
3217     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3218     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3219     if( iAmt==0 || rc ) return rc;
3220   }
3221   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3222   return rc;
3223 }
3224 
3225 /*
3226 ** Write out a single frame of the WAL
3227 */
3228 static int walWriteOneFrame(
3229   WalWriter *p,               /* Where to write the frame */
3230   PgHdr *pPage,               /* The page of the frame to be written */
3231   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3232   sqlite3_int64 iOffset       /* Byte offset at which to write */
3233 ){
3234   int rc;                         /* Result code from subfunctions */
3235   void *pData;                    /* Data actually written */
3236   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3237 #if defined(SQLITE_HAS_CODEC)
3238   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3239 #else
3240   pData = pPage->pData;
3241 #endif
3242   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3243   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3244   if( rc ) return rc;
3245   /* Write the page data */
3246   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3247   return rc;
3248 }
3249 
3250 /*
3251 ** This function is called as part of committing a transaction within which
3252 ** one or more frames have been overwritten. It updates the checksums for
3253 ** all frames written to the wal file by the current transaction starting
3254 ** with the earliest to have been overwritten.
3255 **
3256 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3257 */
3258 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3259   const int szPage = pWal->szPage;/* Database page size */
3260   int rc = SQLITE_OK;             /* Return code */
3261   u8 *aBuf;                       /* Buffer to load data from wal file into */
3262   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3263   u32 iRead;                      /* Next frame to read from wal file */
3264   i64 iCksumOff;
3265 
3266   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3267   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3268 
3269   /* Find the checksum values to use as input for the recalculating the
3270   ** first checksum. If the first frame is frame 1 (implying that the current
3271   ** transaction restarted the wal file), these values must be read from the
3272   ** wal-file header. Otherwise, read them from the frame header of the
3273   ** previous frame.  */
3274   assert( pWal->iReCksum>0 );
3275   if( pWal->iReCksum==1 ){
3276     iCksumOff = 24;
3277   }else{
3278     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3279   }
3280   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3281   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3282   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3283 
3284   iRead = pWal->iReCksum;
3285   pWal->iReCksum = 0;
3286   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3287     i64 iOff = walFrameOffset(iRead, szPage);
3288     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3289     if( rc==SQLITE_OK ){
3290       u32 iPgno, nDbSize;
3291       iPgno = sqlite3Get4byte(aBuf);
3292       nDbSize = sqlite3Get4byte(&aBuf[4]);
3293 
3294       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3295       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3296     }
3297   }
3298 
3299   sqlite3_free(aBuf);
3300   return rc;
3301 }
3302 
3303 /*
3304 ** Write a set of frames to the log. The caller must hold the write-lock
3305 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3306 */
3307 int sqlite3WalFrames(
3308   Wal *pWal,                      /* Wal handle to write to */
3309   int szPage,                     /* Database page-size in bytes */
3310   PgHdr *pList,                   /* List of dirty pages to write */
3311   Pgno nTruncate,                 /* Database size after this commit */
3312   int isCommit,                   /* True if this is a commit */
3313   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3314 ){
3315   int rc;                         /* Used to catch return codes */
3316   u32 iFrame;                     /* Next frame address */
3317   PgHdr *p;                       /* Iterator to run through pList with. */
3318   PgHdr *pLast = 0;               /* Last frame in list */
3319   int nExtra = 0;                 /* Number of extra copies of last page */
3320   int szFrame;                    /* The size of a single frame */
3321   i64 iOffset;                    /* Next byte to write in WAL file */
3322   WalWriter w;                    /* The writer */
3323   u32 iFirst = 0;                 /* First frame that may be overwritten */
3324   WalIndexHdr *pLive;             /* Pointer to shared header */
3325 
3326   assert( pList );
3327   assert( pWal->writeLock );
3328 
3329   /* If this frame set completes a transaction, then nTruncate>0.  If
3330   ** nTruncate==0 then this frame set does not complete the transaction. */
3331   assert( (isCommit!=0)==(nTruncate!=0) );
3332 
3333 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3334   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3335     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3336               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3337   }
3338 #endif
3339 
3340   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3341   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3342     iFirst = pLive->mxFrame+1;
3343   }
3344 
3345   /* See if it is possible to write these frames into the start of the
3346   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3347   */
3348   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3349     return rc;
3350   }
3351 
3352   /* If this is the first frame written into the log, write the WAL
3353   ** header to the start of the WAL file. See comments at the top of
3354   ** this source file for a description of the WAL header format.
3355   */
3356   iFrame = pWal->hdr.mxFrame;
3357   if( iFrame==0 ){
3358     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3359     u32 aCksum[2];                /* Checksum for wal-header */
3360 
3361     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3362     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3363     sqlite3Put4byte(&aWalHdr[8], szPage);
3364     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3365     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3366     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3367     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3368     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3369     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3370 
3371     pWal->szPage = szPage;
3372     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3373     pWal->hdr.aFrameCksum[0] = aCksum[0];
3374     pWal->hdr.aFrameCksum[1] = aCksum[1];
3375     pWal->truncateOnCommit = 1;
3376 
3377     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3378     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3379     if( rc!=SQLITE_OK ){
3380       return rc;
3381     }
3382 
3383     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3384     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3385     ** an out-of-order write following a WAL restart could result in
3386     ** database corruption.  See the ticket:
3387     **
3388     **     https://sqlite.org/src/info/ff5be73dee
3389     */
3390     if( pWal->syncHeader ){
3391       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3392       if( rc ) return rc;
3393     }
3394   }
3395   assert( (int)pWal->szPage==szPage );
3396 
3397   /* Setup information needed to write frames into the WAL */
3398   w.pWal = pWal;
3399   w.pFd = pWal->pWalFd;
3400   w.iSyncPoint = 0;
3401   w.syncFlags = sync_flags;
3402   w.szPage = szPage;
3403   iOffset = walFrameOffset(iFrame+1, szPage);
3404   szFrame = szPage + WAL_FRAME_HDRSIZE;
3405 
3406   /* Write all frames into the log file exactly once */
3407   for(p=pList; p; p=p->pDirty){
3408     int nDbSize;   /* 0 normally.  Positive == commit flag */
3409 
3410     /* Check if this page has already been written into the wal file by
3411     ** the current transaction. If so, overwrite the existing frame and
3412     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3413     ** checksums must be recomputed when the transaction is committed.  */
3414     if( iFirst && (p->pDirty || isCommit==0) ){
3415       u32 iWrite = 0;
3416       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3417       assert( rc==SQLITE_OK || iWrite==0 );
3418       if( iWrite>=iFirst ){
3419         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3420         void *pData;
3421         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3422           pWal->iReCksum = iWrite;
3423         }
3424 #if defined(SQLITE_HAS_CODEC)
3425         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3426 #else
3427         pData = p->pData;
3428 #endif
3429         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3430         if( rc ) return rc;
3431         p->flags &= ~PGHDR_WAL_APPEND;
3432         continue;
3433       }
3434     }
3435 
3436     iFrame++;
3437     assert( iOffset==walFrameOffset(iFrame, szPage) );
3438     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3439     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3440     if( rc ) return rc;
3441     pLast = p;
3442     iOffset += szFrame;
3443     p->flags |= PGHDR_WAL_APPEND;
3444   }
3445 
3446   /* Recalculate checksums within the wal file if required. */
3447   if( isCommit && pWal->iReCksum ){
3448     rc = walRewriteChecksums(pWal, iFrame);
3449     if( rc ) return rc;
3450   }
3451 
3452   /* If this is the end of a transaction, then we might need to pad
3453   ** the transaction and/or sync the WAL file.
3454   **
3455   ** Padding and syncing only occur if this set of frames complete a
3456   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3457   ** or synchronous==OFF, then no padding or syncing are needed.
3458   **
3459   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3460   ** needed and only the sync is done.  If padding is needed, then the
3461   ** final frame is repeated (with its commit mark) until the next sector
3462   ** boundary is crossed.  Only the part of the WAL prior to the last
3463   ** sector boundary is synced; the part of the last frame that extends
3464   ** past the sector boundary is written after the sync.
3465   */
3466   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3467     int bSync = 1;
3468     if( pWal->padToSectorBoundary ){
3469       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3470       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3471       bSync = (w.iSyncPoint==iOffset);
3472       testcase( bSync );
3473       while( iOffset<w.iSyncPoint ){
3474         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3475         if( rc ) return rc;
3476         iOffset += szFrame;
3477         nExtra++;
3478       }
3479     }
3480     if( bSync ){
3481       assert( rc==SQLITE_OK );
3482       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3483     }
3484   }
3485 
3486   /* If this frame set completes the first transaction in the WAL and
3487   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3488   ** journal size limit, if possible.
3489   */
3490   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3491     i64 sz = pWal->mxWalSize;
3492     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3493       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3494     }
3495     walLimitSize(pWal, sz);
3496     pWal->truncateOnCommit = 0;
3497   }
3498 
3499   /* Append data to the wal-index. It is not necessary to lock the
3500   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3501   ** guarantees that there are no other writers, and no data that may
3502   ** be in use by existing readers is being overwritten.
3503   */
3504   iFrame = pWal->hdr.mxFrame;
3505   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3506     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3507     iFrame++;
3508     rc = walIndexAppend(pWal, iFrame, p->pgno);
3509   }
3510   while( rc==SQLITE_OK && nExtra>0 ){
3511     iFrame++;
3512     nExtra--;
3513     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3514   }
3515 
3516   if( rc==SQLITE_OK ){
3517     /* Update the private copy of the header. */
3518     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3519     testcase( szPage<=32768 );
3520     testcase( szPage>=65536 );
3521     pWal->hdr.mxFrame = iFrame;
3522     if( isCommit ){
3523       pWal->hdr.iChange++;
3524       pWal->hdr.nPage = nTruncate;
3525     }
3526     /* If this is a commit, update the wal-index header too. */
3527     if( isCommit ){
3528       walIndexWriteHdr(pWal);
3529       pWal->iCallback = iFrame;
3530     }
3531   }
3532 
3533   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3534   return rc;
3535 }
3536 
3537 /*
3538 ** This routine is called to implement sqlite3_wal_checkpoint() and
3539 ** related interfaces.
3540 **
3541 ** Obtain a CHECKPOINT lock and then backfill as much information as
3542 ** we can from WAL into the database.
3543 **
3544 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3545 ** callback. In this case this function runs a blocking checkpoint.
3546 */
3547 int sqlite3WalCheckpoint(
3548   Wal *pWal,                      /* Wal connection */
3549   sqlite3 *db,                    /* Check this handle's interrupt flag */
3550   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3551   int (*xBusy)(void*),            /* Function to call when busy */
3552   void *pBusyArg,                 /* Context argument for xBusyHandler */
3553   int sync_flags,                 /* Flags to sync db file with (or 0) */
3554   int nBuf,                       /* Size of temporary buffer */
3555   u8 *zBuf,                       /* Temporary buffer to use */
3556   int *pnLog,                     /* OUT: Number of frames in WAL */
3557   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3558 ){
3559   int rc;                         /* Return code */
3560   int isChanged = 0;              /* True if a new wal-index header is loaded */
3561   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3562   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3563 
3564   assert( pWal->ckptLock==0 );
3565   assert( pWal->writeLock==0 );
3566 
3567   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3568   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3569   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3570 
3571   if( pWal->readOnly ) return SQLITE_READONLY;
3572   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3573 
3574   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3575   ** "checkpoint" lock on the database file. */
3576   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3577   if( rc ){
3578     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3579     ** checkpoint operation at the same time, the lock cannot be obtained and
3580     ** SQLITE_BUSY is returned.
3581     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3582     ** it will not be invoked in this case.
3583     */
3584     testcase( rc==SQLITE_BUSY );
3585     testcase( xBusy!=0 );
3586     return rc;
3587   }
3588   pWal->ckptLock = 1;
3589 
3590   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3591   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3592   ** file.
3593   **
3594   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3595   ** immediately, and a busy-handler is configured, it is invoked and the
3596   ** writer lock retried until either the busy-handler returns 0 or the
3597   ** lock is successfully obtained.
3598   */
3599   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3600     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3601     if( rc==SQLITE_OK ){
3602       pWal->writeLock = 1;
3603     }else if( rc==SQLITE_BUSY ){
3604       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3605       xBusy2 = 0;
3606       rc = SQLITE_OK;
3607     }
3608   }
3609 
3610   /* Read the wal-index header. */
3611   if( rc==SQLITE_OK ){
3612     rc = walIndexReadHdr(pWal, &isChanged);
3613     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3614       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3615     }
3616   }
3617 
3618   /* Copy data from the log to the database file. */
3619   if( rc==SQLITE_OK ){
3620 
3621     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3622       rc = SQLITE_CORRUPT_BKPT;
3623     }else{
3624       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3625     }
3626 
3627     /* If no error occurred, set the output variables. */
3628     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3629       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3630       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3631     }
3632   }
3633 
3634   if( isChanged ){
3635     /* If a new wal-index header was loaded before the checkpoint was
3636     ** performed, then the pager-cache associated with pWal is now
3637     ** out of date. So zero the cached wal-index header to ensure that
3638     ** next time the pager opens a snapshot on this database it knows that
3639     ** the cache needs to be reset.
3640     */
3641     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3642   }
3643 
3644   /* Release the locks. */
3645   sqlite3WalEndWriteTransaction(pWal);
3646   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3647   pWal->ckptLock = 0;
3648   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3649   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3650 }
3651 
3652 /* Return the value to pass to a sqlite3_wal_hook callback, the
3653 ** number of frames in the WAL at the point of the last commit since
3654 ** sqlite3WalCallback() was called.  If no commits have occurred since
3655 ** the last call, then return 0.
3656 */
3657 int sqlite3WalCallback(Wal *pWal){
3658   u32 ret = 0;
3659   if( pWal ){
3660     ret = pWal->iCallback;
3661     pWal->iCallback = 0;
3662   }
3663   return (int)ret;
3664 }
3665 
3666 /*
3667 ** This function is called to change the WAL subsystem into or out
3668 ** of locking_mode=EXCLUSIVE.
3669 **
3670 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3671 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3672 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3673 ** or if the acquisition of the lock fails, then return 0.  If the
3674 ** transition out of exclusive-mode is successful, return 1.  This
3675 ** operation must occur while the pager is still holding the exclusive
3676 ** lock on the main database file.
3677 **
3678 ** If op is one, then change from locking_mode=NORMAL into
3679 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3680 ** be released.  Return 1 if the transition is made and 0 if the
3681 ** WAL is already in exclusive-locking mode - meaning that this
3682 ** routine is a no-op.  The pager must already hold the exclusive lock
3683 ** on the main database file before invoking this operation.
3684 **
3685 ** If op is negative, then do a dry-run of the op==1 case but do
3686 ** not actually change anything. The pager uses this to see if it
3687 ** should acquire the database exclusive lock prior to invoking
3688 ** the op==1 case.
3689 */
3690 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3691   int rc;
3692   assert( pWal->writeLock==0 );
3693   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3694 
3695   /* pWal->readLock is usually set, but might be -1 if there was a
3696   ** prior error while attempting to acquire are read-lock. This cannot
3697   ** happen if the connection is actually in exclusive mode (as no xShmLock
3698   ** locks are taken in this case). Nor should the pager attempt to
3699   ** upgrade to exclusive-mode following such an error.
3700   */
3701   assert( pWal->readLock>=0 || pWal->lockError );
3702   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3703 
3704   if( op==0 ){
3705     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3706       pWal->exclusiveMode = WAL_NORMAL_MODE;
3707       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3708         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3709       }
3710       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3711     }else{
3712       /* Already in locking_mode=NORMAL */
3713       rc = 0;
3714     }
3715   }else if( op>0 ){
3716     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3717     assert( pWal->readLock>=0 );
3718     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3719     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3720     rc = 1;
3721   }else{
3722     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3723   }
3724   return rc;
3725 }
3726 
3727 /*
3728 ** Return true if the argument is non-NULL and the WAL module is using
3729 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3730 ** WAL module is using shared-memory, return false.
3731 */
3732 int sqlite3WalHeapMemory(Wal *pWal){
3733   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3734 }
3735 
3736 #ifdef SQLITE_ENABLE_SNAPSHOT
3737 /* Create a snapshot object.  The content of a snapshot is opaque to
3738 ** every other subsystem, so the WAL module can put whatever it needs
3739 ** in the object.
3740 */
3741 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3742   int rc = SQLITE_OK;
3743   WalIndexHdr *pRet;
3744   static const u32 aZero[4] = { 0, 0, 0, 0 };
3745 
3746   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3747 
3748   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3749     *ppSnapshot = 0;
3750     return SQLITE_ERROR;
3751   }
3752   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3753   if( pRet==0 ){
3754     rc = SQLITE_NOMEM_BKPT;
3755   }else{
3756     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3757     *ppSnapshot = (sqlite3_snapshot*)pRet;
3758   }
3759 
3760   return rc;
3761 }
3762 
3763 /* Try to open on pSnapshot when the next read-transaction starts
3764 */
3765 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3766   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3767 }
3768 
3769 /*
3770 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3771 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3772 */
3773 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3774   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3775   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3776 
3777   /* aSalt[0] is a copy of the value stored in the wal file header. It
3778   ** is incremented each time the wal file is restarted.  */
3779   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3780   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3781   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3782   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3783   return 0;
3784 }
3785 
3786 /*
3787 ** The caller currently has a read transaction open on the database.
3788 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3789 ** checks if the snapshot passed as the second argument is still
3790 ** available. If so, SQLITE_OK is returned.
3791 **
3792 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3793 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3794 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3795 ** lock is released before returning.
3796 */
3797 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3798   int rc;
3799   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3800   if( rc==SQLITE_OK ){
3801     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3802     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3803      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3804     ){
3805       rc = SQLITE_ERROR_SNAPSHOT;
3806       walUnlockShared(pWal, WAL_CKPT_LOCK);
3807     }
3808   }
3809   return rc;
3810 }
3811 
3812 /*
3813 ** Release a lock obtained by an earlier successful call to
3814 ** sqlite3WalSnapshotCheck().
3815 */
3816 void sqlite3WalSnapshotUnlock(Wal *pWal){
3817   assert( pWal );
3818   walUnlockShared(pWal, WAL_CKPT_LOCK);
3819 }
3820 
3821 
3822 #endif /* SQLITE_ENABLE_SNAPSHOT */
3823 
3824 #ifdef SQLITE_ENABLE_ZIPVFS
3825 /*
3826 ** If the argument is not NULL, it points to a Wal object that holds a
3827 ** read-lock. This function returns the database page-size if it is known,
3828 ** or zero if it is not (or if pWal is NULL).
3829 */
3830 int sqlite3WalFramesize(Wal *pWal){
3831   assert( pWal==0 || pWal->readLock>=0 );
3832   return (pWal ? pWal->szPage : 0);
3833 }
3834 #endif
3835 
3836 /* Return the sqlite3_file object for the WAL file
3837 */
3838 sqlite3_file *sqlite3WalFile(Wal *pWal){
3839   return pWal->pWalFd;
3840 }
3841 
3842 #endif /* #ifndef SQLITE_OMIT_WAL */
3843