1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** WAL mode depends on atomic aligned 32-bit loads and stores in a few 263 ** places. The following macros try to make this explicit. 264 */ 265 #if GCC_VESRION>=5004000 266 # define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED) 267 # define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED) 268 #else 269 # define AtomicLoad(PTR) (*(PTR)) 270 # define AtomicStore(PTR,VAL) (*(PTR) = (VAL)) 271 #endif 272 273 /* 274 ** The maximum (and only) versions of the wal and wal-index formats 275 ** that may be interpreted by this version of SQLite. 276 ** 277 ** If a client begins recovering a WAL file and finds that (a) the checksum 278 ** values in the wal-header are correct and (b) the version field is not 279 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 280 ** 281 ** Similarly, if a client successfully reads a wal-index header (i.e. the 282 ** checksum test is successful) and finds that the version field is not 283 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 284 ** returns SQLITE_CANTOPEN. 285 */ 286 #define WAL_MAX_VERSION 3007000 287 #define WALINDEX_MAX_VERSION 3007000 288 289 /* 290 ** Index numbers for various locking bytes. WAL_NREADER is the number 291 ** of available reader locks and should be at least 3. The default 292 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 293 ** 294 ** Technically, the various VFSes are free to implement these locks however 295 ** they see fit. However, compatibility is encouraged so that VFSes can 296 ** interoperate. The standard implemention used on both unix and windows 297 ** is for the index number to indicate a byte offset into the 298 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 299 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 300 ** should be 120) is the location in the shm file for the first locking 301 ** byte. 302 */ 303 #define WAL_WRITE_LOCK 0 304 #define WAL_ALL_BUT_WRITE 1 305 #define WAL_CKPT_LOCK 1 306 #define WAL_RECOVER_LOCK 2 307 #define WAL_READ_LOCK(I) (3+(I)) 308 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 309 310 311 /* Object declarations */ 312 typedef struct WalIndexHdr WalIndexHdr; 313 typedef struct WalIterator WalIterator; 314 typedef struct WalCkptInfo WalCkptInfo; 315 316 317 /* 318 ** The following object holds a copy of the wal-index header content. 319 ** 320 ** The actual header in the wal-index consists of two copies of this 321 ** object followed by one instance of the WalCkptInfo object. 322 ** For all versions of SQLite through 3.10.0 and probably beyond, 323 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 324 ** the total header size is 136 bytes. 325 ** 326 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 327 ** Or it can be 1 to represent a 65536-byte page. The latter case was 328 ** added in 3.7.1 when support for 64K pages was added. 329 */ 330 struct WalIndexHdr { 331 u32 iVersion; /* Wal-index version */ 332 u32 unused; /* Unused (padding) field */ 333 u32 iChange; /* Counter incremented each transaction */ 334 u8 isInit; /* 1 when initialized */ 335 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 336 u16 szPage; /* Database page size in bytes. 1==64K */ 337 u32 mxFrame; /* Index of last valid frame in the WAL */ 338 u32 nPage; /* Size of database in pages */ 339 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 340 u32 aSalt[2]; /* Two salt values copied from WAL header */ 341 u32 aCksum[2]; /* Checksum over all prior fields */ 342 }; 343 344 /* 345 ** A copy of the following object occurs in the wal-index immediately 346 ** following the second copy of the WalIndexHdr. This object stores 347 ** information used by checkpoint. 348 ** 349 ** nBackfill is the number of frames in the WAL that have been written 350 ** back into the database. (We call the act of moving content from WAL to 351 ** database "backfilling".) The nBackfill number is never greater than 352 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 353 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 354 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 355 ** mxFrame back to zero when the WAL is reset. 356 ** 357 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 358 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 359 ** the nBackfillAttempted is set before any backfilling is done and the 360 ** nBackfill is only set after all backfilling completes. So if a checkpoint 361 ** crashes, nBackfillAttempted might be larger than nBackfill. The 362 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 363 ** 364 ** The aLock[] field is a set of bytes used for locking. These bytes should 365 ** never be read or written. 366 ** 367 ** There is one entry in aReadMark[] for each reader lock. If a reader 368 ** holds read-lock K, then the value in aReadMark[K] is no greater than 369 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 370 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 371 ** a special case; its value is never used and it exists as a place-holder 372 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 373 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 374 ** directly from the database. 375 ** 376 ** The value of aReadMark[K] may only be changed by a thread that 377 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 378 ** aReadMark[K] cannot changed while there is a reader is using that mark 379 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 380 ** 381 ** The checkpointer may only transfer frames from WAL to database where 382 ** the frame numbers are less than or equal to every aReadMark[] that is 383 ** in use (that is, every aReadMark[j] for which there is a corresponding 384 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 385 ** largest value and will increase an unused aReadMark[] to mxFrame if there 386 ** is not already an aReadMark[] equal to mxFrame. The exception to the 387 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 388 ** in the WAL has been backfilled into the database) then new readers 389 ** will choose aReadMark[0] which has value 0 and hence such reader will 390 ** get all their all content directly from the database file and ignore 391 ** the WAL. 392 ** 393 ** Writers normally append new frames to the end of the WAL. However, 394 ** if nBackfill equals mxFrame (meaning that all WAL content has been 395 ** written back into the database) and if no readers are using the WAL 396 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 397 ** the writer will first "reset" the WAL back to the beginning and start 398 ** writing new content beginning at frame 1. 399 ** 400 ** We assume that 32-bit loads are atomic and so no locks are needed in 401 ** order to read from any aReadMark[] entries. 402 */ 403 struct WalCkptInfo { 404 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 405 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 406 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 407 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 408 u32 notUsed0; /* Available for future enhancements */ 409 }; 410 #define READMARK_NOT_USED 0xffffffff 411 412 413 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 414 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 415 ** only support mandatory file-locks, we do not read or write data 416 ** from the region of the file on which locks are applied. 417 */ 418 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 419 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 420 421 /* Size of header before each frame in wal */ 422 #define WAL_FRAME_HDRSIZE 24 423 424 /* Size of write ahead log header, including checksum. */ 425 #define WAL_HDRSIZE 32 426 427 /* WAL magic value. Either this value, or the same value with the least 428 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 429 ** big-endian format in the first 4 bytes of a WAL file. 430 ** 431 ** If the LSB is set, then the checksums for each frame within the WAL 432 ** file are calculated by treating all data as an array of 32-bit 433 ** big-endian words. Otherwise, they are calculated by interpreting 434 ** all data as 32-bit little-endian words. 435 */ 436 #define WAL_MAGIC 0x377f0682 437 438 /* 439 ** Return the offset of frame iFrame in the write-ahead log file, 440 ** assuming a database page size of szPage bytes. The offset returned 441 ** is to the start of the write-ahead log frame-header. 442 */ 443 #define walFrameOffset(iFrame, szPage) ( \ 444 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 445 ) 446 447 /* 448 ** An open write-ahead log file is represented by an instance of the 449 ** following object. 450 */ 451 struct Wal { 452 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 453 sqlite3_file *pDbFd; /* File handle for the database file */ 454 sqlite3_file *pWalFd; /* File handle for WAL file */ 455 u32 iCallback; /* Value to pass to log callback (or 0) */ 456 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 457 int nWiData; /* Size of array apWiData */ 458 int szFirstBlock; /* Size of first block written to WAL file */ 459 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 460 u32 szPage; /* Database page size */ 461 i16 readLock; /* Which read lock is being held. -1 for none */ 462 u8 syncFlags; /* Flags to use to sync header writes */ 463 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 464 u8 writeLock; /* True if in a write transaction */ 465 u8 ckptLock; /* True if holding a checkpoint lock */ 466 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 467 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 468 u8 syncHeader; /* Fsync the WAL header if true */ 469 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 470 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 471 WalIndexHdr hdr; /* Wal-index header for current transaction */ 472 u32 minFrame; /* Ignore wal frames before this one */ 473 u32 iReCksum; /* On commit, recalculate checksums from here */ 474 const char *zWalName; /* Name of WAL file */ 475 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 476 #ifdef SQLITE_DEBUG 477 u8 lockError; /* True if a locking error has occurred */ 478 #endif 479 #ifdef SQLITE_ENABLE_SNAPSHOT 480 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 481 #endif 482 }; 483 484 /* 485 ** Candidate values for Wal.exclusiveMode. 486 */ 487 #define WAL_NORMAL_MODE 0 488 #define WAL_EXCLUSIVE_MODE 1 489 #define WAL_HEAPMEMORY_MODE 2 490 491 /* 492 ** Possible values for WAL.readOnly 493 */ 494 #define WAL_RDWR 0 /* Normal read/write connection */ 495 #define WAL_RDONLY 1 /* The WAL file is readonly */ 496 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 497 498 /* 499 ** Each page of the wal-index mapping contains a hash-table made up of 500 ** an array of HASHTABLE_NSLOT elements of the following type. 501 */ 502 typedef u16 ht_slot; 503 504 /* 505 ** This structure is used to implement an iterator that loops through 506 ** all frames in the WAL in database page order. Where two or more frames 507 ** correspond to the same database page, the iterator visits only the 508 ** frame most recently written to the WAL (in other words, the frame with 509 ** the largest index). 510 ** 511 ** The internals of this structure are only accessed by: 512 ** 513 ** walIteratorInit() - Create a new iterator, 514 ** walIteratorNext() - Step an iterator, 515 ** walIteratorFree() - Free an iterator. 516 ** 517 ** This functionality is used by the checkpoint code (see walCheckpoint()). 518 */ 519 struct WalIterator { 520 int iPrior; /* Last result returned from the iterator */ 521 int nSegment; /* Number of entries in aSegment[] */ 522 struct WalSegment { 523 int iNext; /* Next slot in aIndex[] not yet returned */ 524 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 525 u32 *aPgno; /* Array of page numbers. */ 526 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 527 int iZero; /* Frame number associated with aPgno[0] */ 528 } aSegment[1]; /* One for every 32KB page in the wal-index */ 529 }; 530 531 /* 532 ** Define the parameters of the hash tables in the wal-index file. There 533 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 534 ** wal-index. 535 ** 536 ** Changing any of these constants will alter the wal-index format and 537 ** create incompatibilities. 538 */ 539 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 540 #define HASHTABLE_HASH_1 383 /* Should be prime */ 541 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 542 543 /* 544 ** The block of page numbers associated with the first hash-table in a 545 ** wal-index is smaller than usual. This is so that there is a complete 546 ** hash-table on each aligned 32KB page of the wal-index. 547 */ 548 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 549 550 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 551 #define WALINDEX_PGSZ ( \ 552 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 553 ) 554 555 /* 556 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 557 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 558 ** numbered from zero. 559 ** 560 ** If the wal-index is currently smaller the iPage pages then the size 561 ** of the wal-index might be increased, but only if it is safe to do 562 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 563 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 564 ** 565 ** If this call is successful, *ppPage is set to point to the wal-index 566 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 567 ** then an SQLite error code is returned and *ppPage is set to 0. 568 */ 569 static SQLITE_NOINLINE int walIndexPageRealloc( 570 Wal *pWal, /* The WAL context */ 571 int iPage, /* The page we seek */ 572 volatile u32 **ppPage /* Write the page pointer here */ 573 ){ 574 int rc = SQLITE_OK; 575 576 /* Enlarge the pWal->apWiData[] array if required */ 577 if( pWal->nWiData<=iPage ){ 578 int nByte = sizeof(u32*)*(iPage+1); 579 volatile u32 **apNew; 580 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 581 if( !apNew ){ 582 *ppPage = 0; 583 return SQLITE_NOMEM_BKPT; 584 } 585 memset((void*)&apNew[pWal->nWiData], 0, 586 sizeof(u32*)*(iPage+1-pWal->nWiData)); 587 pWal->apWiData = apNew; 588 pWal->nWiData = iPage+1; 589 } 590 591 /* Request a pointer to the required page from the VFS */ 592 assert( pWal->apWiData[iPage]==0 ); 593 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 594 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 595 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 596 }else{ 597 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 598 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 599 ); 600 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 601 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 602 if( (rc&0xff)==SQLITE_READONLY ){ 603 pWal->readOnly |= WAL_SHM_RDONLY; 604 if( rc==SQLITE_READONLY ){ 605 rc = SQLITE_OK; 606 } 607 } 608 } 609 610 *ppPage = pWal->apWiData[iPage]; 611 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 612 return rc; 613 } 614 static int walIndexPage( 615 Wal *pWal, /* The WAL context */ 616 int iPage, /* The page we seek */ 617 volatile u32 **ppPage /* Write the page pointer here */ 618 ){ 619 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 620 return walIndexPageRealloc(pWal, iPage, ppPage); 621 } 622 return SQLITE_OK; 623 } 624 625 /* 626 ** Return a pointer to the WalCkptInfo structure in the wal-index. 627 */ 628 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 629 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 630 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 631 } 632 633 /* 634 ** Return a pointer to the WalIndexHdr structure in the wal-index. 635 */ 636 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 637 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 638 return (volatile WalIndexHdr*)pWal->apWiData[0]; 639 } 640 641 /* 642 ** The argument to this macro must be of type u32. On a little-endian 643 ** architecture, it returns the u32 value that results from interpreting 644 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 645 ** returns the value that would be produced by interpreting the 4 bytes 646 ** of the input value as a little-endian integer. 647 */ 648 #define BYTESWAP32(x) ( \ 649 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 650 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 651 ) 652 653 /* 654 ** Generate or extend an 8 byte checksum based on the data in 655 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 656 ** initial values of 0 and 0 if aIn==NULL). 657 ** 658 ** The checksum is written back into aOut[] before returning. 659 ** 660 ** nByte must be a positive multiple of 8. 661 */ 662 static void walChecksumBytes( 663 int nativeCksum, /* True for native byte-order, false for non-native */ 664 u8 *a, /* Content to be checksummed */ 665 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 666 const u32 *aIn, /* Initial checksum value input */ 667 u32 *aOut /* OUT: Final checksum value output */ 668 ){ 669 u32 s1, s2; 670 u32 *aData = (u32 *)a; 671 u32 *aEnd = (u32 *)&a[nByte]; 672 673 if( aIn ){ 674 s1 = aIn[0]; 675 s2 = aIn[1]; 676 }else{ 677 s1 = s2 = 0; 678 } 679 680 assert( nByte>=8 ); 681 assert( (nByte&0x00000007)==0 ); 682 683 if( nativeCksum ){ 684 do { 685 s1 += *aData++ + s2; 686 s2 += *aData++ + s1; 687 }while( aData<aEnd ); 688 }else{ 689 do { 690 s1 += BYTESWAP32(aData[0]) + s2; 691 s2 += BYTESWAP32(aData[1]) + s1; 692 aData += 2; 693 }while( aData<aEnd ); 694 } 695 696 aOut[0] = s1; 697 aOut[1] = s2; 698 } 699 700 static void walShmBarrier(Wal *pWal){ 701 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 702 sqlite3OsShmBarrier(pWal->pDbFd); 703 } 704 } 705 706 /* 707 ** Write the header information in pWal->hdr into the wal-index. 708 ** 709 ** The checksum on pWal->hdr is updated before it is written. 710 */ 711 static void walIndexWriteHdr(Wal *pWal){ 712 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 713 const int nCksum = offsetof(WalIndexHdr, aCksum); 714 715 assert( pWal->writeLock ); 716 pWal->hdr.isInit = 1; 717 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 718 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 719 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 720 walShmBarrier(pWal); 721 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 722 } 723 724 /* 725 ** This function encodes a single frame header and writes it to a buffer 726 ** supplied by the caller. A frame-header is made up of a series of 727 ** 4-byte big-endian integers, as follows: 728 ** 729 ** 0: Page number. 730 ** 4: For commit records, the size of the database image in pages 731 ** after the commit. For all other records, zero. 732 ** 8: Salt-1 (copied from the wal-header) 733 ** 12: Salt-2 (copied from the wal-header) 734 ** 16: Checksum-1. 735 ** 20: Checksum-2. 736 */ 737 static void walEncodeFrame( 738 Wal *pWal, /* The write-ahead log */ 739 u32 iPage, /* Database page number for frame */ 740 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 741 u8 *aData, /* Pointer to page data */ 742 u8 *aFrame /* OUT: Write encoded frame here */ 743 ){ 744 int nativeCksum; /* True for native byte-order checksums */ 745 u32 *aCksum = pWal->hdr.aFrameCksum; 746 assert( WAL_FRAME_HDRSIZE==24 ); 747 sqlite3Put4byte(&aFrame[0], iPage); 748 sqlite3Put4byte(&aFrame[4], nTruncate); 749 if( pWal->iReCksum==0 ){ 750 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 751 752 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 753 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 754 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 755 756 sqlite3Put4byte(&aFrame[16], aCksum[0]); 757 sqlite3Put4byte(&aFrame[20], aCksum[1]); 758 }else{ 759 memset(&aFrame[8], 0, 16); 760 } 761 } 762 763 /* 764 ** Check to see if the frame with header in aFrame[] and content 765 ** in aData[] is valid. If it is a valid frame, fill *piPage and 766 ** *pnTruncate and return true. Return if the frame is not valid. 767 */ 768 static int walDecodeFrame( 769 Wal *pWal, /* The write-ahead log */ 770 u32 *piPage, /* OUT: Database page number for frame */ 771 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 772 u8 *aData, /* Pointer to page data (for checksum) */ 773 u8 *aFrame /* Frame data */ 774 ){ 775 int nativeCksum; /* True for native byte-order checksums */ 776 u32 *aCksum = pWal->hdr.aFrameCksum; 777 u32 pgno; /* Page number of the frame */ 778 assert( WAL_FRAME_HDRSIZE==24 ); 779 780 /* A frame is only valid if the salt values in the frame-header 781 ** match the salt values in the wal-header. 782 */ 783 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 784 return 0; 785 } 786 787 /* A frame is only valid if the page number is creater than zero. 788 */ 789 pgno = sqlite3Get4byte(&aFrame[0]); 790 if( pgno==0 ){ 791 return 0; 792 } 793 794 /* A frame is only valid if a checksum of the WAL header, 795 ** all prior frams, the first 16 bytes of this frame-header, 796 ** and the frame-data matches the checksum in the last 8 797 ** bytes of this frame-header. 798 */ 799 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 800 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 801 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 802 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 803 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 804 ){ 805 /* Checksum failed. */ 806 return 0; 807 } 808 809 /* If we reach this point, the frame is valid. Return the page number 810 ** and the new database size. 811 */ 812 *piPage = pgno; 813 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 814 return 1; 815 } 816 817 818 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 819 /* 820 ** Names of locks. This routine is used to provide debugging output and is not 821 ** a part of an ordinary build. 822 */ 823 static const char *walLockName(int lockIdx){ 824 if( lockIdx==WAL_WRITE_LOCK ){ 825 return "WRITE-LOCK"; 826 }else if( lockIdx==WAL_CKPT_LOCK ){ 827 return "CKPT-LOCK"; 828 }else if( lockIdx==WAL_RECOVER_LOCK ){ 829 return "RECOVER-LOCK"; 830 }else{ 831 static char zName[15]; 832 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 833 lockIdx-WAL_READ_LOCK(0)); 834 return zName; 835 } 836 } 837 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 838 839 840 /* 841 ** Set or release locks on the WAL. Locks are either shared or exclusive. 842 ** A lock cannot be moved directly between shared and exclusive - it must go 843 ** through the unlocked state first. 844 ** 845 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 846 */ 847 static int walLockShared(Wal *pWal, int lockIdx){ 848 int rc; 849 if( pWal->exclusiveMode ) return SQLITE_OK; 850 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 851 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 852 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 853 walLockName(lockIdx), rc ? "failed" : "ok")); 854 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 855 return rc; 856 } 857 static void walUnlockShared(Wal *pWal, int lockIdx){ 858 if( pWal->exclusiveMode ) return; 859 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 860 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 861 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 862 } 863 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 864 int rc; 865 if( pWal->exclusiveMode ) return SQLITE_OK; 866 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 867 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 868 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 869 walLockName(lockIdx), n, rc ? "failed" : "ok")); 870 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 871 return rc; 872 } 873 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 874 if( pWal->exclusiveMode ) return; 875 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 876 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 877 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 878 walLockName(lockIdx), n)); 879 } 880 881 /* 882 ** Compute a hash on a page number. The resulting hash value must land 883 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 884 ** the hash to the next value in the event of a collision. 885 */ 886 static int walHash(u32 iPage){ 887 assert( iPage>0 ); 888 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 889 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 890 } 891 static int walNextHash(int iPriorHash){ 892 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 893 } 894 895 /* 896 ** An instance of the WalHashLoc object is used to describe the location 897 ** of a page hash table in the wal-index. This becomes the return value 898 ** from walHashGet(). 899 */ 900 typedef struct WalHashLoc WalHashLoc; 901 struct WalHashLoc { 902 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 903 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 904 u32 iZero; /* One less than the frame number of first indexed*/ 905 }; 906 907 /* 908 ** Return pointers to the hash table and page number array stored on 909 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 910 ** numbered starting from 0. 911 ** 912 ** Set output variable pLoc->aHash to point to the start of the hash table 913 ** in the wal-index file. Set pLoc->iZero to one less than the frame 914 ** number of the first frame indexed by this hash table. If a 915 ** slot in the hash table is set to N, it refers to frame number 916 ** (pLoc->iZero+N) in the log. 917 ** 918 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 919 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 920 */ 921 static int walHashGet( 922 Wal *pWal, /* WAL handle */ 923 int iHash, /* Find the iHash'th table */ 924 WalHashLoc *pLoc /* OUT: Hash table location */ 925 ){ 926 int rc; /* Return code */ 927 928 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 929 assert( rc==SQLITE_OK || iHash>0 ); 930 931 if( rc==SQLITE_OK ){ 932 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 933 if( iHash==0 ){ 934 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 935 pLoc->iZero = 0; 936 }else{ 937 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 938 } 939 pLoc->aPgno = &pLoc->aPgno[-1]; 940 } 941 return rc; 942 } 943 944 /* 945 ** Return the number of the wal-index page that contains the hash-table 946 ** and page-number array that contain entries corresponding to WAL frame 947 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 948 ** are numbered starting from 0. 949 */ 950 static int walFramePage(u32 iFrame){ 951 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 952 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 953 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 954 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 955 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 956 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 957 ); 958 return iHash; 959 } 960 961 /* 962 ** Return the page number associated with frame iFrame in this WAL. 963 */ 964 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 965 int iHash = walFramePage(iFrame); 966 if( iHash==0 ){ 967 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 968 } 969 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 970 } 971 972 /* 973 ** Remove entries from the hash table that point to WAL slots greater 974 ** than pWal->hdr.mxFrame. 975 ** 976 ** This function is called whenever pWal->hdr.mxFrame is decreased due 977 ** to a rollback or savepoint. 978 ** 979 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 980 ** updated. Any later hash tables will be automatically cleared when 981 ** pWal->hdr.mxFrame advances to the point where those hash tables are 982 ** actually needed. 983 */ 984 static void walCleanupHash(Wal *pWal){ 985 WalHashLoc sLoc; /* Hash table location */ 986 int iLimit = 0; /* Zero values greater than this */ 987 int nByte; /* Number of bytes to zero in aPgno[] */ 988 int i; /* Used to iterate through aHash[] */ 989 990 assert( pWal->writeLock ); 991 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 992 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 993 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 994 995 if( pWal->hdr.mxFrame==0 ) return; 996 997 /* Obtain pointers to the hash-table and page-number array containing 998 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 999 ** that the page said hash-table and array reside on is already mapped. 1000 */ 1001 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1002 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1003 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1004 1005 /* Zero all hash-table entries that correspond to frame numbers greater 1006 ** than pWal->hdr.mxFrame. 1007 */ 1008 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1009 assert( iLimit>0 ); 1010 for(i=0; i<HASHTABLE_NSLOT; i++){ 1011 if( sLoc.aHash[i]>iLimit ){ 1012 sLoc.aHash[i] = 0; 1013 } 1014 } 1015 1016 /* Zero the entries in the aPgno array that correspond to frames with 1017 ** frame numbers greater than pWal->hdr.mxFrame. 1018 */ 1019 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1020 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1021 1022 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1023 /* Verify that the every entry in the mapping region is still reachable 1024 ** via the hash table even after the cleanup. 1025 */ 1026 if( iLimit ){ 1027 int j; /* Loop counter */ 1028 int iKey; /* Hash key */ 1029 for(j=1; j<=iLimit; j++){ 1030 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1031 if( sLoc.aHash[iKey]==j ) break; 1032 } 1033 assert( sLoc.aHash[iKey]==j ); 1034 } 1035 } 1036 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1037 } 1038 1039 1040 /* 1041 ** Set an entry in the wal-index that will map database page number 1042 ** pPage into WAL frame iFrame. 1043 */ 1044 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1045 int rc; /* Return code */ 1046 WalHashLoc sLoc; /* Wal-index hash table location */ 1047 1048 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1049 1050 /* Assuming the wal-index file was successfully mapped, populate the 1051 ** page number array and hash table entry. 1052 */ 1053 if( rc==SQLITE_OK ){ 1054 int iKey; /* Hash table key */ 1055 int idx; /* Value to write to hash-table slot */ 1056 int nCollide; /* Number of hash collisions */ 1057 1058 idx = iFrame - sLoc.iZero; 1059 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1060 1061 /* If this is the first entry to be added to this hash-table, zero the 1062 ** entire hash table and aPgno[] array before proceeding. 1063 */ 1064 if( idx==1 ){ 1065 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1066 - (u8 *)&sLoc.aPgno[1]); 1067 memset((void*)&sLoc.aPgno[1], 0, nByte); 1068 } 1069 1070 /* If the entry in aPgno[] is already set, then the previous writer 1071 ** must have exited unexpectedly in the middle of a transaction (after 1072 ** writing one or more dirty pages to the WAL to free up memory). 1073 ** Remove the remnants of that writers uncommitted transaction from 1074 ** the hash-table before writing any new entries. 1075 */ 1076 if( sLoc.aPgno[idx] ){ 1077 walCleanupHash(pWal); 1078 assert( !sLoc.aPgno[idx] ); 1079 } 1080 1081 /* Write the aPgno[] array entry and the hash-table slot. */ 1082 nCollide = idx; 1083 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1084 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1085 } 1086 sLoc.aPgno[idx] = iPage; 1087 sLoc.aHash[iKey] = (ht_slot)idx; 1088 1089 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1090 /* Verify that the number of entries in the hash table exactly equals 1091 ** the number of entries in the mapping region. 1092 */ 1093 { 1094 int i; /* Loop counter */ 1095 int nEntry = 0; /* Number of entries in the hash table */ 1096 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1097 assert( nEntry==idx ); 1098 } 1099 1100 /* Verify that the every entry in the mapping region is reachable 1101 ** via the hash table. This turns out to be a really, really expensive 1102 ** thing to check, so only do this occasionally - not on every 1103 ** iteration. 1104 */ 1105 if( (idx&0x3ff)==0 ){ 1106 int i; /* Loop counter */ 1107 for(i=1; i<=idx; i++){ 1108 for(iKey=walHash(sLoc.aPgno[i]); 1109 sLoc.aHash[iKey]; 1110 iKey=walNextHash(iKey)){ 1111 if( sLoc.aHash[iKey]==i ) break; 1112 } 1113 assert( sLoc.aHash[iKey]==i ); 1114 } 1115 } 1116 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1117 } 1118 1119 1120 return rc; 1121 } 1122 1123 1124 /* 1125 ** Recover the wal-index by reading the write-ahead log file. 1126 ** 1127 ** This routine first tries to establish an exclusive lock on the 1128 ** wal-index to prevent other threads/processes from doing anything 1129 ** with the WAL or wal-index while recovery is running. The 1130 ** WAL_RECOVER_LOCK is also held so that other threads will know 1131 ** that this thread is running recovery. If unable to establish 1132 ** the necessary locks, this routine returns SQLITE_BUSY. 1133 */ 1134 static int walIndexRecover(Wal *pWal){ 1135 int rc; /* Return Code */ 1136 i64 nSize; /* Size of log file */ 1137 u32 aFrameCksum[2] = {0, 0}; 1138 int iLock; /* Lock offset to lock for checkpoint */ 1139 1140 /* Obtain an exclusive lock on all byte in the locking range not already 1141 ** locked by the caller. The caller is guaranteed to have locked the 1142 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1143 ** If successful, the same bytes that are locked here are unlocked before 1144 ** this function returns. 1145 */ 1146 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1147 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1148 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1149 assert( pWal->writeLock ); 1150 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1151 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1152 if( rc==SQLITE_OK ){ 1153 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1154 if( rc!=SQLITE_OK ){ 1155 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1156 } 1157 } 1158 if( rc ){ 1159 return rc; 1160 } 1161 1162 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1163 1164 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1165 1166 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1167 if( rc!=SQLITE_OK ){ 1168 goto recovery_error; 1169 } 1170 1171 if( nSize>WAL_HDRSIZE ){ 1172 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1173 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1174 int szFrame; /* Number of bytes in buffer aFrame[] */ 1175 u8 *aData; /* Pointer to data part of aFrame buffer */ 1176 int iFrame; /* Index of last frame read */ 1177 i64 iOffset; /* Next offset to read from log file */ 1178 int szPage; /* Page size according to the log */ 1179 u32 magic; /* Magic value read from WAL header */ 1180 u32 version; /* Magic value read from WAL header */ 1181 int isValid; /* True if this frame is valid */ 1182 1183 /* Read in the WAL header. */ 1184 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1185 if( rc!=SQLITE_OK ){ 1186 goto recovery_error; 1187 } 1188 1189 /* If the database page size is not a power of two, or is greater than 1190 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1191 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1192 ** WAL file. 1193 */ 1194 magic = sqlite3Get4byte(&aBuf[0]); 1195 szPage = sqlite3Get4byte(&aBuf[8]); 1196 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1197 || szPage&(szPage-1) 1198 || szPage>SQLITE_MAX_PAGE_SIZE 1199 || szPage<512 1200 ){ 1201 goto finished; 1202 } 1203 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1204 pWal->szPage = szPage; 1205 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1206 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1207 1208 /* Verify that the WAL header checksum is correct */ 1209 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1210 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1211 ); 1212 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1213 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1214 ){ 1215 goto finished; 1216 } 1217 1218 /* Verify that the version number on the WAL format is one that 1219 ** are able to understand */ 1220 version = sqlite3Get4byte(&aBuf[4]); 1221 if( version!=WAL_MAX_VERSION ){ 1222 rc = SQLITE_CANTOPEN_BKPT; 1223 goto finished; 1224 } 1225 1226 /* Malloc a buffer to read frames into. */ 1227 szFrame = szPage + WAL_FRAME_HDRSIZE; 1228 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1229 if( !aFrame ){ 1230 rc = SQLITE_NOMEM_BKPT; 1231 goto recovery_error; 1232 } 1233 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1234 1235 /* Read all frames from the log file. */ 1236 iFrame = 0; 1237 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1238 u32 pgno; /* Database page number for frame */ 1239 u32 nTruncate; /* dbsize field from frame header */ 1240 1241 /* Read and decode the next log frame. */ 1242 iFrame++; 1243 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1244 if( rc!=SQLITE_OK ) break; 1245 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1246 if( !isValid ) break; 1247 rc = walIndexAppend(pWal, iFrame, pgno); 1248 if( rc!=SQLITE_OK ) break; 1249 1250 /* If nTruncate is non-zero, this is a commit record. */ 1251 if( nTruncate ){ 1252 pWal->hdr.mxFrame = iFrame; 1253 pWal->hdr.nPage = nTruncate; 1254 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1255 testcase( szPage<=32768 ); 1256 testcase( szPage>=65536 ); 1257 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1258 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1259 } 1260 } 1261 1262 sqlite3_free(aFrame); 1263 } 1264 1265 finished: 1266 if( rc==SQLITE_OK ){ 1267 volatile WalCkptInfo *pInfo; 1268 int i; 1269 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1270 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1271 walIndexWriteHdr(pWal); 1272 1273 /* Reset the checkpoint-header. This is safe because this thread is 1274 ** currently holding locks that exclude all other readers, writers and 1275 ** checkpointers. 1276 */ 1277 pInfo = walCkptInfo(pWal); 1278 pInfo->nBackfill = 0; 1279 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1280 pInfo->aReadMark[0] = 0; 1281 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1282 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1283 1284 /* If more than one frame was recovered from the log file, report an 1285 ** event via sqlite3_log(). This is to help with identifying performance 1286 ** problems caused by applications routinely shutting down without 1287 ** checkpointing the log file. 1288 */ 1289 if( pWal->hdr.nPage ){ 1290 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1291 "recovered %d frames from WAL file %s", 1292 pWal->hdr.mxFrame, pWal->zWalName 1293 ); 1294 } 1295 } 1296 1297 recovery_error: 1298 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1299 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1300 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1301 return rc; 1302 } 1303 1304 /* 1305 ** Close an open wal-index. 1306 */ 1307 static void walIndexClose(Wal *pWal, int isDelete){ 1308 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1309 int i; 1310 for(i=0; i<pWal->nWiData; i++){ 1311 sqlite3_free((void *)pWal->apWiData[i]); 1312 pWal->apWiData[i] = 0; 1313 } 1314 } 1315 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1316 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1317 } 1318 } 1319 1320 /* 1321 ** Open a connection to the WAL file zWalName. The database file must 1322 ** already be opened on connection pDbFd. The buffer that zWalName points 1323 ** to must remain valid for the lifetime of the returned Wal* handle. 1324 ** 1325 ** A SHARED lock should be held on the database file when this function 1326 ** is called. The purpose of this SHARED lock is to prevent any other 1327 ** client from unlinking the WAL or wal-index file. If another process 1328 ** were to do this just after this client opened one of these files, the 1329 ** system would be badly broken. 1330 ** 1331 ** If the log file is successfully opened, SQLITE_OK is returned and 1332 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1333 ** an SQLite error code is returned and *ppWal is left unmodified. 1334 */ 1335 int sqlite3WalOpen( 1336 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1337 sqlite3_file *pDbFd, /* The open database file */ 1338 const char *zWalName, /* Name of the WAL file */ 1339 int bNoShm, /* True to run in heap-memory mode */ 1340 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1341 Wal **ppWal /* OUT: Allocated Wal handle */ 1342 ){ 1343 int rc; /* Return Code */ 1344 Wal *pRet; /* Object to allocate and return */ 1345 int flags; /* Flags passed to OsOpen() */ 1346 1347 assert( zWalName && zWalName[0] ); 1348 assert( pDbFd ); 1349 1350 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1351 ** this source file. Verify that the #defines of the locking byte offsets 1352 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1353 ** For that matter, if the lock offset ever changes from its initial design 1354 ** value of 120, we need to know that so there is an assert() to check it. 1355 */ 1356 assert( 120==WALINDEX_LOCK_OFFSET ); 1357 assert( 136==WALINDEX_HDR_SIZE ); 1358 #ifdef WIN_SHM_BASE 1359 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1360 #endif 1361 #ifdef UNIX_SHM_BASE 1362 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1363 #endif 1364 1365 1366 /* Allocate an instance of struct Wal to return. */ 1367 *ppWal = 0; 1368 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1369 if( !pRet ){ 1370 return SQLITE_NOMEM_BKPT; 1371 } 1372 1373 pRet->pVfs = pVfs; 1374 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1375 pRet->pDbFd = pDbFd; 1376 pRet->readLock = -1; 1377 pRet->mxWalSize = mxWalSize; 1378 pRet->zWalName = zWalName; 1379 pRet->syncHeader = 1; 1380 pRet->padToSectorBoundary = 1; 1381 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1382 1383 /* Open file handle on the write-ahead log file. */ 1384 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1385 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1386 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1387 pRet->readOnly = WAL_RDONLY; 1388 } 1389 1390 if( rc!=SQLITE_OK ){ 1391 walIndexClose(pRet, 0); 1392 sqlite3OsClose(pRet->pWalFd); 1393 sqlite3_free(pRet); 1394 }else{ 1395 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1396 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1397 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1398 pRet->padToSectorBoundary = 0; 1399 } 1400 *ppWal = pRet; 1401 WALTRACE(("WAL%d: opened\n", pRet)); 1402 } 1403 return rc; 1404 } 1405 1406 /* 1407 ** Change the size to which the WAL file is trucated on each reset. 1408 */ 1409 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1410 if( pWal ) pWal->mxWalSize = iLimit; 1411 } 1412 1413 /* 1414 ** Find the smallest page number out of all pages held in the WAL that 1415 ** has not been returned by any prior invocation of this method on the 1416 ** same WalIterator object. Write into *piFrame the frame index where 1417 ** that page was last written into the WAL. Write into *piPage the page 1418 ** number. 1419 ** 1420 ** Return 0 on success. If there are no pages in the WAL with a page 1421 ** number larger than *piPage, then return 1. 1422 */ 1423 static int walIteratorNext( 1424 WalIterator *p, /* Iterator */ 1425 u32 *piPage, /* OUT: The page number of the next page */ 1426 u32 *piFrame /* OUT: Wal frame index of next page */ 1427 ){ 1428 u32 iMin; /* Result pgno must be greater than iMin */ 1429 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1430 int i; /* For looping through segments */ 1431 1432 iMin = p->iPrior; 1433 assert( iMin<0xffffffff ); 1434 for(i=p->nSegment-1; i>=0; i--){ 1435 struct WalSegment *pSegment = &p->aSegment[i]; 1436 while( pSegment->iNext<pSegment->nEntry ){ 1437 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1438 if( iPg>iMin ){ 1439 if( iPg<iRet ){ 1440 iRet = iPg; 1441 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1442 } 1443 break; 1444 } 1445 pSegment->iNext++; 1446 } 1447 } 1448 1449 *piPage = p->iPrior = iRet; 1450 return (iRet==0xFFFFFFFF); 1451 } 1452 1453 /* 1454 ** This function merges two sorted lists into a single sorted list. 1455 ** 1456 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1457 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1458 ** is guaranteed for all J<K: 1459 ** 1460 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1461 ** aContent[aRight[J]] < aContent[aRight[K]] 1462 ** 1463 ** This routine overwrites aRight[] with a new (probably longer) sequence 1464 ** of indices such that the aRight[] contains every index that appears in 1465 ** either aLeft[] or the old aRight[] and such that the second condition 1466 ** above is still met. 1467 ** 1468 ** The aContent[aLeft[X]] values will be unique for all X. And the 1469 ** aContent[aRight[X]] values will be unique too. But there might be 1470 ** one or more combinations of X and Y such that 1471 ** 1472 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1473 ** 1474 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1475 */ 1476 static void walMerge( 1477 const u32 *aContent, /* Pages in wal - keys for the sort */ 1478 ht_slot *aLeft, /* IN: Left hand input list */ 1479 int nLeft, /* IN: Elements in array *paLeft */ 1480 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1481 int *pnRight, /* IN/OUT: Elements in *paRight */ 1482 ht_slot *aTmp /* Temporary buffer */ 1483 ){ 1484 int iLeft = 0; /* Current index in aLeft */ 1485 int iRight = 0; /* Current index in aRight */ 1486 int iOut = 0; /* Current index in output buffer */ 1487 int nRight = *pnRight; 1488 ht_slot *aRight = *paRight; 1489 1490 assert( nLeft>0 && nRight>0 ); 1491 while( iRight<nRight || iLeft<nLeft ){ 1492 ht_slot logpage; 1493 Pgno dbpage; 1494 1495 if( (iLeft<nLeft) 1496 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1497 ){ 1498 logpage = aLeft[iLeft++]; 1499 }else{ 1500 logpage = aRight[iRight++]; 1501 } 1502 dbpage = aContent[logpage]; 1503 1504 aTmp[iOut++] = logpage; 1505 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1506 1507 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1508 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1509 } 1510 1511 *paRight = aLeft; 1512 *pnRight = iOut; 1513 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1514 } 1515 1516 /* 1517 ** Sort the elements in list aList using aContent[] as the sort key. 1518 ** Remove elements with duplicate keys, preferring to keep the 1519 ** larger aList[] values. 1520 ** 1521 ** The aList[] entries are indices into aContent[]. The values in 1522 ** aList[] are to be sorted so that for all J<K: 1523 ** 1524 ** aContent[aList[J]] < aContent[aList[K]] 1525 ** 1526 ** For any X and Y such that 1527 ** 1528 ** aContent[aList[X]] == aContent[aList[Y]] 1529 ** 1530 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1531 ** the smaller. 1532 */ 1533 static void walMergesort( 1534 const u32 *aContent, /* Pages in wal */ 1535 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1536 ht_slot *aList, /* IN/OUT: List to sort */ 1537 int *pnList /* IN/OUT: Number of elements in aList[] */ 1538 ){ 1539 struct Sublist { 1540 int nList; /* Number of elements in aList */ 1541 ht_slot *aList; /* Pointer to sub-list content */ 1542 }; 1543 1544 const int nList = *pnList; /* Size of input list */ 1545 int nMerge = 0; /* Number of elements in list aMerge */ 1546 ht_slot *aMerge = 0; /* List to be merged */ 1547 int iList; /* Index into input list */ 1548 u32 iSub = 0; /* Index into aSub array */ 1549 struct Sublist aSub[13]; /* Array of sub-lists */ 1550 1551 memset(aSub, 0, sizeof(aSub)); 1552 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1553 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1554 1555 for(iList=0; iList<nList; iList++){ 1556 nMerge = 1; 1557 aMerge = &aList[iList]; 1558 for(iSub=0; iList & (1<<iSub); iSub++){ 1559 struct Sublist *p; 1560 assert( iSub<ArraySize(aSub) ); 1561 p = &aSub[iSub]; 1562 assert( p->aList && p->nList<=(1<<iSub) ); 1563 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1564 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1565 } 1566 aSub[iSub].aList = aMerge; 1567 aSub[iSub].nList = nMerge; 1568 } 1569 1570 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1571 if( nList & (1<<iSub) ){ 1572 struct Sublist *p; 1573 assert( iSub<ArraySize(aSub) ); 1574 p = &aSub[iSub]; 1575 assert( p->nList<=(1<<iSub) ); 1576 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1577 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1578 } 1579 } 1580 assert( aMerge==aList ); 1581 *pnList = nMerge; 1582 1583 #ifdef SQLITE_DEBUG 1584 { 1585 int i; 1586 for(i=1; i<*pnList; i++){ 1587 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1588 } 1589 } 1590 #endif 1591 } 1592 1593 /* 1594 ** Free an iterator allocated by walIteratorInit(). 1595 */ 1596 static void walIteratorFree(WalIterator *p){ 1597 sqlite3_free(p); 1598 } 1599 1600 /* 1601 ** Construct a WalInterator object that can be used to loop over all 1602 ** pages in the WAL following frame nBackfill in ascending order. Frames 1603 ** nBackfill or earlier may be included - excluding them is an optimization 1604 ** only. The caller must hold the checkpoint lock. 1605 ** 1606 ** On success, make *pp point to the newly allocated WalInterator object 1607 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1608 ** returns an error, the value of *pp is undefined. 1609 ** 1610 ** The calling routine should invoke walIteratorFree() to destroy the 1611 ** WalIterator object when it has finished with it. 1612 */ 1613 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1614 WalIterator *p; /* Return value */ 1615 int nSegment; /* Number of segments to merge */ 1616 u32 iLast; /* Last frame in log */ 1617 int nByte; /* Number of bytes to allocate */ 1618 int i; /* Iterator variable */ 1619 ht_slot *aTmp; /* Temp space used by merge-sort */ 1620 int rc = SQLITE_OK; /* Return Code */ 1621 1622 /* This routine only runs while holding the checkpoint lock. And 1623 ** it only runs if there is actually content in the log (mxFrame>0). 1624 */ 1625 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1626 iLast = pWal->hdr.mxFrame; 1627 1628 /* Allocate space for the WalIterator object. */ 1629 nSegment = walFramePage(iLast) + 1; 1630 nByte = sizeof(WalIterator) 1631 + (nSegment-1)*sizeof(struct WalSegment) 1632 + iLast*sizeof(ht_slot); 1633 p = (WalIterator *)sqlite3_malloc64(nByte); 1634 if( !p ){ 1635 return SQLITE_NOMEM_BKPT; 1636 } 1637 memset(p, 0, nByte); 1638 p->nSegment = nSegment; 1639 1640 /* Allocate temporary space used by the merge-sort routine. This block 1641 ** of memory will be freed before this function returns. 1642 */ 1643 aTmp = (ht_slot *)sqlite3_malloc64( 1644 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1645 ); 1646 if( !aTmp ){ 1647 rc = SQLITE_NOMEM_BKPT; 1648 } 1649 1650 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1651 WalHashLoc sLoc; 1652 1653 rc = walHashGet(pWal, i, &sLoc); 1654 if( rc==SQLITE_OK ){ 1655 int j; /* Counter variable */ 1656 int nEntry; /* Number of entries in this segment */ 1657 ht_slot *aIndex; /* Sorted index for this segment */ 1658 1659 sLoc.aPgno++; 1660 if( (i+1)==nSegment ){ 1661 nEntry = (int)(iLast - sLoc.iZero); 1662 }else{ 1663 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1664 } 1665 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1666 sLoc.iZero++; 1667 1668 for(j=0; j<nEntry; j++){ 1669 aIndex[j] = (ht_slot)j; 1670 } 1671 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1672 p->aSegment[i].iZero = sLoc.iZero; 1673 p->aSegment[i].nEntry = nEntry; 1674 p->aSegment[i].aIndex = aIndex; 1675 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1676 } 1677 } 1678 sqlite3_free(aTmp); 1679 1680 if( rc!=SQLITE_OK ){ 1681 walIteratorFree(p); 1682 p = 0; 1683 } 1684 *pp = p; 1685 return rc; 1686 } 1687 1688 /* 1689 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1690 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1691 ** busy-handler function. Invoke it and retry the lock until either the 1692 ** lock is successfully obtained or the busy-handler returns 0. 1693 */ 1694 static int walBusyLock( 1695 Wal *pWal, /* WAL connection */ 1696 int (*xBusy)(void*), /* Function to call when busy */ 1697 void *pBusyArg, /* Context argument for xBusyHandler */ 1698 int lockIdx, /* Offset of first byte to lock */ 1699 int n /* Number of bytes to lock */ 1700 ){ 1701 int rc; 1702 do { 1703 rc = walLockExclusive(pWal, lockIdx, n); 1704 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1705 return rc; 1706 } 1707 1708 /* 1709 ** The cache of the wal-index header must be valid to call this function. 1710 ** Return the page-size in bytes used by the database. 1711 */ 1712 static int walPagesize(Wal *pWal){ 1713 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1714 } 1715 1716 /* 1717 ** The following is guaranteed when this function is called: 1718 ** 1719 ** a) the WRITER lock is held, 1720 ** b) the entire log file has been checkpointed, and 1721 ** c) any existing readers are reading exclusively from the database 1722 ** file - there are no readers that may attempt to read a frame from 1723 ** the log file. 1724 ** 1725 ** This function updates the shared-memory structures so that the next 1726 ** client to write to the database (which may be this one) does so by 1727 ** writing frames into the start of the log file. 1728 ** 1729 ** The value of parameter salt1 is used as the aSalt[1] value in the 1730 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1731 ** one obtained from sqlite3_randomness()). 1732 */ 1733 static void walRestartHdr(Wal *pWal, u32 salt1){ 1734 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1735 int i; /* Loop counter */ 1736 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1737 pWal->nCkpt++; 1738 pWal->hdr.mxFrame = 0; 1739 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1740 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1741 walIndexWriteHdr(pWal); 1742 pInfo->nBackfill = 0; 1743 pInfo->nBackfillAttempted = 0; 1744 pInfo->aReadMark[1] = 0; 1745 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1746 assert( pInfo->aReadMark[0]==0 ); 1747 } 1748 1749 /* 1750 ** Copy as much content as we can from the WAL back into the database file 1751 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1752 ** 1753 ** The amount of information copies from WAL to database might be limited 1754 ** by active readers. This routine will never overwrite a database page 1755 ** that a concurrent reader might be using. 1756 ** 1757 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1758 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1759 ** checkpoints are always run by a background thread or background 1760 ** process, foreground threads will never block on a lengthy fsync call. 1761 ** 1762 ** Fsync is called on the WAL before writing content out of the WAL and 1763 ** into the database. This ensures that if the new content is persistent 1764 ** in the WAL and can be recovered following a power-loss or hard reset. 1765 ** 1766 ** Fsync is also called on the database file if (and only if) the entire 1767 ** WAL content is copied into the database file. This second fsync makes 1768 ** it safe to delete the WAL since the new content will persist in the 1769 ** database file. 1770 ** 1771 ** This routine uses and updates the nBackfill field of the wal-index header. 1772 ** This is the only routine that will increase the value of nBackfill. 1773 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1774 ** its value.) 1775 ** 1776 ** The caller must be holding sufficient locks to ensure that no other 1777 ** checkpoint is running (in any other thread or process) at the same 1778 ** time. 1779 */ 1780 static int walCheckpoint( 1781 Wal *pWal, /* Wal connection */ 1782 sqlite3 *db, /* Check for interrupts on this handle */ 1783 int eMode, /* One of PASSIVE, FULL or RESTART */ 1784 int (*xBusy)(void*), /* Function to call when busy */ 1785 void *pBusyArg, /* Context argument for xBusyHandler */ 1786 int sync_flags, /* Flags for OsSync() (or 0) */ 1787 u8 *zBuf /* Temporary buffer to use */ 1788 ){ 1789 int rc = SQLITE_OK; /* Return code */ 1790 int szPage; /* Database page-size */ 1791 WalIterator *pIter = 0; /* Wal iterator context */ 1792 u32 iDbpage = 0; /* Next database page to write */ 1793 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1794 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1795 u32 mxPage; /* Max database page to write */ 1796 int i; /* Loop counter */ 1797 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1798 1799 szPage = walPagesize(pWal); 1800 testcase( szPage<=32768 ); 1801 testcase( szPage>=65536 ); 1802 pInfo = walCkptInfo(pWal); 1803 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1804 1805 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1806 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1807 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1808 1809 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1810 ** safe to write into the database. Frames beyond mxSafeFrame might 1811 ** overwrite database pages that are in use by active readers and thus 1812 ** cannot be backfilled from the WAL. 1813 */ 1814 mxSafeFrame = pWal->hdr.mxFrame; 1815 mxPage = pWal->hdr.nPage; 1816 for(i=1; i<WAL_NREADER; i++){ 1817 /* Thread-sanitizer reports that the following is an unsafe read, 1818 ** as some other thread may be in the process of updating the value 1819 ** of the aReadMark[] slot. The assumption here is that if that is 1820 ** happening, the other client may only be increasing the value, 1821 ** not decreasing it. So assuming either that either the "old" or 1822 ** "new" version of the value is read, and not some arbitrary value 1823 ** that would never be written by a real client, things are still 1824 ** safe. */ 1825 u32 y = pInfo->aReadMark[i]; 1826 if( mxSafeFrame>y ){ 1827 assert( y<=pWal->hdr.mxFrame ); 1828 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1829 if( rc==SQLITE_OK ){ 1830 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1831 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1832 }else if( rc==SQLITE_BUSY ){ 1833 mxSafeFrame = y; 1834 xBusy = 0; 1835 }else{ 1836 goto walcheckpoint_out; 1837 } 1838 } 1839 } 1840 1841 /* Allocate the iterator */ 1842 if( pInfo->nBackfill<mxSafeFrame ){ 1843 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1844 assert( rc==SQLITE_OK || pIter==0 ); 1845 } 1846 1847 if( pIter 1848 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1849 ){ 1850 u32 nBackfill = pInfo->nBackfill; 1851 1852 pInfo->nBackfillAttempted = mxSafeFrame; 1853 1854 /* Sync the WAL to disk */ 1855 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1856 1857 /* If the database may grow as a result of this checkpoint, hint 1858 ** about the eventual size of the db file to the VFS layer. 1859 */ 1860 if( rc==SQLITE_OK ){ 1861 i64 nReq = ((i64)mxPage * szPage); 1862 i64 nSize; /* Current size of database file */ 1863 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1864 if( rc==SQLITE_OK && nSize<nReq ){ 1865 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1866 } 1867 } 1868 1869 1870 /* Iterate through the contents of the WAL, copying data to the db file */ 1871 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1872 i64 iOffset; 1873 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1874 if( db->u1.isInterrupted ){ 1875 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1876 break; 1877 } 1878 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1879 continue; 1880 } 1881 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1882 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1883 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1884 if( rc!=SQLITE_OK ) break; 1885 iOffset = (iDbpage-1)*(i64)szPage; 1886 testcase( IS_BIG_INT(iOffset) ); 1887 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1888 if( rc!=SQLITE_OK ) break; 1889 } 1890 1891 /* If work was actually accomplished... */ 1892 if( rc==SQLITE_OK ){ 1893 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1894 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1895 testcase( IS_BIG_INT(szDb) ); 1896 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1897 if( rc==SQLITE_OK ){ 1898 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1899 } 1900 } 1901 if( rc==SQLITE_OK ){ 1902 pInfo->nBackfill = mxSafeFrame; 1903 } 1904 } 1905 1906 /* Release the reader lock held while backfilling */ 1907 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1908 } 1909 1910 if( rc==SQLITE_BUSY ){ 1911 /* Reset the return code so as not to report a checkpoint failure 1912 ** just because there are active readers. */ 1913 rc = SQLITE_OK; 1914 } 1915 } 1916 1917 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1918 ** entire wal file has been copied into the database file, then block 1919 ** until all readers have finished using the wal file. This ensures that 1920 ** the next process to write to the database restarts the wal file. 1921 */ 1922 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1923 assert( pWal->writeLock ); 1924 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1925 rc = SQLITE_BUSY; 1926 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1927 u32 salt1; 1928 sqlite3_randomness(4, &salt1); 1929 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1930 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1931 if( rc==SQLITE_OK ){ 1932 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1933 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1934 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1935 ** truncates the log file to zero bytes just prior to a 1936 ** successful return. 1937 ** 1938 ** In theory, it might be safe to do this without updating the 1939 ** wal-index header in shared memory, as all subsequent reader or 1940 ** writer clients should see that the entire log file has been 1941 ** checkpointed and behave accordingly. This seems unsafe though, 1942 ** as it would leave the system in a state where the contents of 1943 ** the wal-index header do not match the contents of the 1944 ** file-system. To avoid this, update the wal-index header to 1945 ** indicate that the log file contains zero valid frames. */ 1946 walRestartHdr(pWal, salt1); 1947 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1948 } 1949 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1950 } 1951 } 1952 } 1953 1954 walcheckpoint_out: 1955 walIteratorFree(pIter); 1956 return rc; 1957 } 1958 1959 /* 1960 ** If the WAL file is currently larger than nMax bytes in size, truncate 1961 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1962 */ 1963 static void walLimitSize(Wal *pWal, i64 nMax){ 1964 i64 sz; 1965 int rx; 1966 sqlite3BeginBenignMalloc(); 1967 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1968 if( rx==SQLITE_OK && (sz > nMax ) ){ 1969 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1970 } 1971 sqlite3EndBenignMalloc(); 1972 if( rx ){ 1973 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1974 } 1975 } 1976 1977 /* 1978 ** Close a connection to a log file. 1979 */ 1980 int sqlite3WalClose( 1981 Wal *pWal, /* Wal to close */ 1982 sqlite3 *db, /* For interrupt flag */ 1983 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1984 int nBuf, 1985 u8 *zBuf /* Buffer of at least nBuf bytes */ 1986 ){ 1987 int rc = SQLITE_OK; 1988 if( pWal ){ 1989 int isDelete = 0; /* True to unlink wal and wal-index files */ 1990 1991 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1992 ** ordinary, rollback-mode locking methods, this guarantees that the 1993 ** connection associated with this log file is the only connection to 1994 ** the database. In this case checkpoint the database and unlink both 1995 ** the wal and wal-index files. 1996 ** 1997 ** The EXCLUSIVE lock is not released before returning. 1998 */ 1999 if( zBuf!=0 2000 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2001 ){ 2002 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2003 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2004 } 2005 rc = sqlite3WalCheckpoint(pWal, db, 2006 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2007 ); 2008 if( rc==SQLITE_OK ){ 2009 int bPersist = -1; 2010 sqlite3OsFileControlHint( 2011 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2012 ); 2013 if( bPersist!=1 ){ 2014 /* Try to delete the WAL file if the checkpoint completed and 2015 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2016 ** mode (!bPersist) */ 2017 isDelete = 1; 2018 }else if( pWal->mxWalSize>=0 ){ 2019 /* Try to truncate the WAL file to zero bytes if the checkpoint 2020 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2021 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2022 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2023 ** to zero bytes as truncating to the journal_size_limit might 2024 ** leave a corrupt WAL file on disk. */ 2025 walLimitSize(pWal, 0); 2026 } 2027 } 2028 } 2029 2030 walIndexClose(pWal, isDelete); 2031 sqlite3OsClose(pWal->pWalFd); 2032 if( isDelete ){ 2033 sqlite3BeginBenignMalloc(); 2034 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2035 sqlite3EndBenignMalloc(); 2036 } 2037 WALTRACE(("WAL%p: closed\n", pWal)); 2038 sqlite3_free((void *)pWal->apWiData); 2039 sqlite3_free(pWal); 2040 } 2041 return rc; 2042 } 2043 2044 /* 2045 ** Try to read the wal-index header. Return 0 on success and 1 if 2046 ** there is a problem. 2047 ** 2048 ** The wal-index is in shared memory. Another thread or process might 2049 ** be writing the header at the same time this procedure is trying to 2050 ** read it, which might result in inconsistency. A dirty read is detected 2051 ** by verifying that both copies of the header are the same and also by 2052 ** a checksum on the header. 2053 ** 2054 ** If and only if the read is consistent and the header is different from 2055 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2056 ** and *pChanged is set to 1. 2057 ** 2058 ** If the checksum cannot be verified return non-zero. If the header 2059 ** is read successfully and the checksum verified, return zero. 2060 */ 2061 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2062 u32 aCksum[2]; /* Checksum on the header content */ 2063 WalIndexHdr h1, h2; /* Two copies of the header content */ 2064 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2065 2066 /* The first page of the wal-index must be mapped at this point. */ 2067 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2068 2069 /* Read the header. This might happen concurrently with a write to the 2070 ** same area of shared memory on a different CPU in a SMP, 2071 ** meaning it is possible that an inconsistent snapshot is read 2072 ** from the file. If this happens, return non-zero. 2073 ** 2074 ** There are two copies of the header at the beginning of the wal-index. 2075 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2076 ** Memory barriers are used to prevent the compiler or the hardware from 2077 ** reordering the reads and writes. 2078 */ 2079 aHdr = walIndexHdr(pWal); 2080 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2081 walShmBarrier(pWal); 2082 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2083 2084 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2085 return 1; /* Dirty read */ 2086 } 2087 if( h1.isInit==0 ){ 2088 return 1; /* Malformed header - probably all zeros */ 2089 } 2090 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2091 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2092 return 1; /* Checksum does not match */ 2093 } 2094 2095 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2096 *pChanged = 1; 2097 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2098 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2099 testcase( pWal->szPage<=32768 ); 2100 testcase( pWal->szPage>=65536 ); 2101 } 2102 2103 /* The header was successfully read. Return zero. */ 2104 return 0; 2105 } 2106 2107 /* 2108 ** This is the value that walTryBeginRead returns when it needs to 2109 ** be retried. 2110 */ 2111 #define WAL_RETRY (-1) 2112 2113 /* 2114 ** Read the wal-index header from the wal-index and into pWal->hdr. 2115 ** If the wal-header appears to be corrupt, try to reconstruct the 2116 ** wal-index from the WAL before returning. 2117 ** 2118 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2119 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2120 ** to 0. 2121 ** 2122 ** If the wal-index header is successfully read, return SQLITE_OK. 2123 ** Otherwise an SQLite error code. 2124 */ 2125 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2126 int rc; /* Return code */ 2127 int badHdr; /* True if a header read failed */ 2128 volatile u32 *page0; /* Chunk of wal-index containing header */ 2129 2130 /* Ensure that page 0 of the wal-index (the page that contains the 2131 ** wal-index header) is mapped. Return early if an error occurs here. 2132 */ 2133 assert( pChanged ); 2134 rc = walIndexPage(pWal, 0, &page0); 2135 if( rc!=SQLITE_OK ){ 2136 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2137 if( rc==SQLITE_READONLY_CANTINIT ){ 2138 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2139 ** was openable but is not writable, and this thread is unable to 2140 ** confirm that another write-capable connection has the shared-memory 2141 ** open, and hence the content of the shared-memory is unreliable, 2142 ** since the shared-memory might be inconsistent with the WAL file 2143 ** and there is no writer on hand to fix it. */ 2144 assert( page0==0 ); 2145 assert( pWal->writeLock==0 ); 2146 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2147 pWal->bShmUnreliable = 1; 2148 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2149 *pChanged = 1; 2150 }else{ 2151 return rc; /* Any other non-OK return is just an error */ 2152 } 2153 }else{ 2154 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2155 ** is zero, which prevents the SHM from growing */ 2156 testcase( page0!=0 ); 2157 } 2158 assert( page0!=0 || pWal->writeLock==0 ); 2159 2160 /* If the first page of the wal-index has been mapped, try to read the 2161 ** wal-index header immediately, without holding any lock. This usually 2162 ** works, but may fail if the wal-index header is corrupt or currently 2163 ** being modified by another thread or process. 2164 */ 2165 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2166 2167 /* If the first attempt failed, it might have been due to a race 2168 ** with a writer. So get a WRITE lock and try again. 2169 */ 2170 assert( badHdr==0 || pWal->writeLock==0 ); 2171 if( badHdr ){ 2172 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2173 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2174 walUnlockShared(pWal, WAL_WRITE_LOCK); 2175 rc = SQLITE_READONLY_RECOVERY; 2176 } 2177 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2178 pWal->writeLock = 1; 2179 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2180 badHdr = walIndexTryHdr(pWal, pChanged); 2181 if( badHdr ){ 2182 /* If the wal-index header is still malformed even while holding 2183 ** a WRITE lock, it can only mean that the header is corrupted and 2184 ** needs to be reconstructed. So run recovery to do exactly that. 2185 */ 2186 rc = walIndexRecover(pWal); 2187 *pChanged = 1; 2188 } 2189 } 2190 pWal->writeLock = 0; 2191 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2192 } 2193 } 2194 2195 /* If the header is read successfully, check the version number to make 2196 ** sure the wal-index was not constructed with some future format that 2197 ** this version of SQLite cannot understand. 2198 */ 2199 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2200 rc = SQLITE_CANTOPEN_BKPT; 2201 } 2202 if( pWal->bShmUnreliable ){ 2203 if( rc!=SQLITE_OK ){ 2204 walIndexClose(pWal, 0); 2205 pWal->bShmUnreliable = 0; 2206 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2207 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2208 ** writer truncated the WAL out from under it. If that happens, it 2209 ** indicates that a writer has fixed the SHM file for us, so retry */ 2210 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2211 } 2212 pWal->exclusiveMode = WAL_NORMAL_MODE; 2213 } 2214 2215 return rc; 2216 } 2217 2218 /* 2219 ** Open a transaction in a connection where the shared-memory is read-only 2220 ** and where we cannot verify that there is a separate write-capable connection 2221 ** on hand to keep the shared-memory up-to-date with the WAL file. 2222 ** 2223 ** This can happen, for example, when the shared-memory is implemented by 2224 ** memory-mapping a *-shm file, where a prior writer has shut down and 2225 ** left the *-shm file on disk, and now the present connection is trying 2226 ** to use that database but lacks write permission on the *-shm file. 2227 ** Other scenarios are also possible, depending on the VFS implementation. 2228 ** 2229 ** Precondition: 2230 ** 2231 ** The *-wal file has been read and an appropriate wal-index has been 2232 ** constructed in pWal->apWiData[] using heap memory instead of shared 2233 ** memory. 2234 ** 2235 ** If this function returns SQLITE_OK, then the read transaction has 2236 ** been successfully opened. In this case output variable (*pChanged) 2237 ** is set to true before returning if the caller should discard the 2238 ** contents of the page cache before proceeding. Or, if it returns 2239 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2240 ** the caller should retry opening the read transaction from the 2241 ** beginning (including attempting to map the *-shm file). 2242 ** 2243 ** If an error occurs, an SQLite error code is returned. 2244 */ 2245 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2246 i64 szWal; /* Size of wal file on disk in bytes */ 2247 i64 iOffset; /* Current offset when reading wal file */ 2248 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2249 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2250 int szFrame; /* Number of bytes in buffer aFrame[] */ 2251 u8 *aData; /* Pointer to data part of aFrame buffer */ 2252 volatile void *pDummy; /* Dummy argument for xShmMap */ 2253 int rc; /* Return code */ 2254 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2255 2256 assert( pWal->bShmUnreliable ); 2257 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2258 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2259 2260 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2261 ** writers from running a checkpoint, but does not stop them 2262 ** from running recovery. */ 2263 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2264 if( rc!=SQLITE_OK ){ 2265 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2266 goto begin_unreliable_shm_out; 2267 } 2268 pWal->readLock = 0; 2269 2270 /* Check to see if a separate writer has attached to the shared-memory area, 2271 ** thus making the shared-memory "reliable" again. Do this by invoking 2272 ** the xShmMap() routine of the VFS and looking to see if the return 2273 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2274 ** 2275 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2276 ** cause the heap-memory WAL-index to be discarded and the actual 2277 ** shared memory to be used in its place. 2278 ** 2279 ** This step is important because, even though this connection is holding 2280 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2281 ** have already checkpointed the WAL file and, while the current 2282 ** is active, wrap the WAL and start overwriting frames that this 2283 ** process wants to use. 2284 ** 2285 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2286 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2287 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2288 ** even if some external agent does a "chmod" to make the shared-memory 2289 ** writable by us, until sqlite3OsShmUnmap() has been called. 2290 ** This is a requirement on the VFS implementation. 2291 */ 2292 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2293 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2294 if( rc!=SQLITE_READONLY_CANTINIT ){ 2295 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2296 goto begin_unreliable_shm_out; 2297 } 2298 2299 /* We reach this point only if the real shared-memory is still unreliable. 2300 ** Assume the in-memory WAL-index substitute is correct and load it 2301 ** into pWal->hdr. 2302 */ 2303 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2304 2305 /* Make sure some writer hasn't come in and changed the WAL file out 2306 ** from under us, then disconnected, while we were not looking. 2307 */ 2308 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2309 if( rc!=SQLITE_OK ){ 2310 goto begin_unreliable_shm_out; 2311 } 2312 if( szWal<WAL_HDRSIZE ){ 2313 /* If the wal file is too small to contain a wal-header and the 2314 ** wal-index header has mxFrame==0, then it must be safe to proceed 2315 ** reading the database file only. However, the page cache cannot 2316 ** be trusted, as a read/write connection may have connected, written 2317 ** the db, run a checkpoint, truncated the wal file and disconnected 2318 ** since this client's last read transaction. */ 2319 *pChanged = 1; 2320 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2321 goto begin_unreliable_shm_out; 2322 } 2323 2324 /* Check the salt keys at the start of the wal file still match. */ 2325 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2326 if( rc!=SQLITE_OK ){ 2327 goto begin_unreliable_shm_out; 2328 } 2329 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2330 /* Some writer has wrapped the WAL file while we were not looking. 2331 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2332 ** rebuilt. */ 2333 rc = WAL_RETRY; 2334 goto begin_unreliable_shm_out; 2335 } 2336 2337 /* Allocate a buffer to read frames into */ 2338 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2339 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2340 if( aFrame==0 ){ 2341 rc = SQLITE_NOMEM_BKPT; 2342 goto begin_unreliable_shm_out; 2343 } 2344 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2345 2346 /* Check to see if a complete transaction has been appended to the 2347 ** wal file since the heap-memory wal-index was created. If so, the 2348 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2349 ** the caller. */ 2350 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2351 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2352 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2353 iOffset+szFrame<=szWal; 2354 iOffset+=szFrame 2355 ){ 2356 u32 pgno; /* Database page number for frame */ 2357 u32 nTruncate; /* dbsize field from frame header */ 2358 2359 /* Read and decode the next log frame. */ 2360 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2361 if( rc!=SQLITE_OK ) break; 2362 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2363 2364 /* If nTruncate is non-zero, then a complete transaction has been 2365 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2366 ** the loop. */ 2367 if( nTruncate ){ 2368 rc = WAL_RETRY; 2369 break; 2370 } 2371 } 2372 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2373 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2374 2375 begin_unreliable_shm_out: 2376 sqlite3_free(aFrame); 2377 if( rc!=SQLITE_OK ){ 2378 int i; 2379 for(i=0; i<pWal->nWiData; i++){ 2380 sqlite3_free((void*)pWal->apWiData[i]); 2381 pWal->apWiData[i] = 0; 2382 } 2383 pWal->bShmUnreliable = 0; 2384 sqlite3WalEndReadTransaction(pWal); 2385 *pChanged = 1; 2386 } 2387 return rc; 2388 } 2389 2390 /* 2391 ** Attempt to start a read transaction. This might fail due to a race or 2392 ** other transient condition. When that happens, it returns WAL_RETRY to 2393 ** indicate to the caller that it is safe to retry immediately. 2394 ** 2395 ** On success return SQLITE_OK. On a permanent failure (such an 2396 ** I/O error or an SQLITE_BUSY because another process is running 2397 ** recovery) return a positive error code. 2398 ** 2399 ** The useWal parameter is true to force the use of the WAL and disable 2400 ** the case where the WAL is bypassed because it has been completely 2401 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2402 ** to make a copy of the wal-index header into pWal->hdr. If the 2403 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2404 ** to the caller that the local page cache is obsolete and needs to be 2405 ** flushed.) When useWal==1, the wal-index header is assumed to already 2406 ** be loaded and the pChanged parameter is unused. 2407 ** 2408 ** The caller must set the cnt parameter to the number of prior calls to 2409 ** this routine during the current read attempt that returned WAL_RETRY. 2410 ** This routine will start taking more aggressive measures to clear the 2411 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2412 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2413 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2414 ** and is not honoring the locking protocol. There is a vanishingly small 2415 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2416 ** bad luck when there is lots of contention for the wal-index, but that 2417 ** possibility is so small that it can be safely neglected, we believe. 2418 ** 2419 ** On success, this routine obtains a read lock on 2420 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2421 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2422 ** that means the Wal does not hold any read lock. The reader must not 2423 ** access any database page that is modified by a WAL frame up to and 2424 ** including frame number aReadMark[pWal->readLock]. The reader will 2425 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2426 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2427 ** completely and get all content directly from the database file. 2428 ** If the useWal parameter is 1 then the WAL will never be ignored and 2429 ** this routine will always set pWal->readLock>0 on success. 2430 ** When the read transaction is completed, the caller must release the 2431 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2432 ** 2433 ** This routine uses the nBackfill and aReadMark[] fields of the header 2434 ** to select a particular WAL_READ_LOCK() that strives to let the 2435 ** checkpoint process do as much work as possible. This routine might 2436 ** update values of the aReadMark[] array in the header, but if it does 2437 ** so it takes care to hold an exclusive lock on the corresponding 2438 ** WAL_READ_LOCK() while changing values. 2439 */ 2440 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2441 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2442 u32 mxReadMark; /* Largest aReadMark[] value */ 2443 int mxI; /* Index of largest aReadMark[] value */ 2444 int i; /* Loop counter */ 2445 int rc = SQLITE_OK; /* Return code */ 2446 u32 mxFrame; /* Wal frame to lock to */ 2447 2448 assert( pWal->readLock<0 ); /* Not currently locked */ 2449 2450 /* useWal may only be set for read/write connections */ 2451 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2452 2453 /* Take steps to avoid spinning forever if there is a protocol error. 2454 ** 2455 ** Circumstances that cause a RETRY should only last for the briefest 2456 ** instances of time. No I/O or other system calls are done while the 2457 ** locks are held, so the locks should not be held for very long. But 2458 ** if we are unlucky, another process that is holding a lock might get 2459 ** paged out or take a page-fault that is time-consuming to resolve, 2460 ** during the few nanoseconds that it is holding the lock. In that case, 2461 ** it might take longer than normal for the lock to free. 2462 ** 2463 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2464 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2465 ** is more of a scheduler yield than an actual delay. But on the 10th 2466 ** an subsequent retries, the delays start becoming longer and longer, 2467 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2468 ** The total delay time before giving up is less than 10 seconds. 2469 */ 2470 if( cnt>5 ){ 2471 int nDelay = 1; /* Pause time in microseconds */ 2472 if( cnt>100 ){ 2473 VVA_ONLY( pWal->lockError = 1; ) 2474 return SQLITE_PROTOCOL; 2475 } 2476 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2477 sqlite3OsSleep(pWal->pVfs, nDelay); 2478 } 2479 2480 if( !useWal ){ 2481 assert( rc==SQLITE_OK ); 2482 if( pWal->bShmUnreliable==0 ){ 2483 rc = walIndexReadHdr(pWal, pChanged); 2484 } 2485 if( rc==SQLITE_BUSY ){ 2486 /* If there is not a recovery running in another thread or process 2487 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2488 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2489 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2490 ** would be technically correct. But the race is benign since with 2491 ** WAL_RETRY this routine will be called again and will probably be 2492 ** right on the second iteration. 2493 */ 2494 if( pWal->apWiData[0]==0 ){ 2495 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2496 ** We assume this is a transient condition, so return WAL_RETRY. The 2497 ** xShmMap() implementation used by the default unix and win32 VFS 2498 ** modules may return SQLITE_BUSY due to a race condition in the 2499 ** code that determines whether or not the shared-memory region 2500 ** must be zeroed before the requested page is returned. 2501 */ 2502 rc = WAL_RETRY; 2503 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2504 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2505 rc = WAL_RETRY; 2506 }else if( rc==SQLITE_BUSY ){ 2507 rc = SQLITE_BUSY_RECOVERY; 2508 } 2509 } 2510 if( rc!=SQLITE_OK ){ 2511 return rc; 2512 } 2513 else if( pWal->bShmUnreliable ){ 2514 return walBeginShmUnreliable(pWal, pChanged); 2515 } 2516 } 2517 2518 assert( pWal->nWiData>0 ); 2519 assert( pWal->apWiData[0]!=0 ); 2520 pInfo = walCkptInfo(pWal); 2521 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2522 #ifdef SQLITE_ENABLE_SNAPSHOT 2523 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2524 #endif 2525 ){ 2526 /* The WAL has been completely backfilled (or it is empty). 2527 ** and can be safely ignored. 2528 */ 2529 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2530 walShmBarrier(pWal); 2531 if( rc==SQLITE_OK ){ 2532 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2533 /* It is not safe to allow the reader to continue here if frames 2534 ** may have been appended to the log before READ_LOCK(0) was obtained. 2535 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2536 ** which implies that the database file contains a trustworthy 2537 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2538 ** happening, this is usually correct. 2539 ** 2540 ** However, if frames have been appended to the log (or if the log 2541 ** is wrapped and written for that matter) before the READ_LOCK(0) 2542 ** is obtained, that is not necessarily true. A checkpointer may 2543 ** have started to backfill the appended frames but crashed before 2544 ** it finished. Leaving a corrupt image in the database file. 2545 */ 2546 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2547 return WAL_RETRY; 2548 } 2549 pWal->readLock = 0; 2550 return SQLITE_OK; 2551 }else if( rc!=SQLITE_BUSY ){ 2552 return rc; 2553 } 2554 } 2555 2556 /* If we get this far, it means that the reader will want to use 2557 ** the WAL to get at content from recent commits. The job now is 2558 ** to select one of the aReadMark[] entries that is closest to 2559 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2560 */ 2561 mxReadMark = 0; 2562 mxI = 0; 2563 mxFrame = pWal->hdr.mxFrame; 2564 #ifdef SQLITE_ENABLE_SNAPSHOT 2565 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2566 mxFrame = pWal->pSnapshot->mxFrame; 2567 } 2568 #endif 2569 for(i=1; i<WAL_NREADER; i++){ 2570 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2571 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2572 assert( thisMark!=READMARK_NOT_USED ); 2573 mxReadMark = thisMark; 2574 mxI = i; 2575 } 2576 } 2577 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2578 && (mxReadMark<mxFrame || mxI==0) 2579 ){ 2580 for(i=1; i<WAL_NREADER; i++){ 2581 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2582 if( rc==SQLITE_OK ){ 2583 mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame); 2584 mxI = i; 2585 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2586 break; 2587 }else if( rc!=SQLITE_BUSY ){ 2588 return rc; 2589 } 2590 } 2591 } 2592 if( mxI==0 ){ 2593 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2594 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2595 } 2596 2597 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2598 if( rc ){ 2599 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2600 } 2601 /* Now that the read-lock has been obtained, check that neither the 2602 ** value in the aReadMark[] array or the contents of the wal-index 2603 ** header have changed. 2604 ** 2605 ** It is necessary to check that the wal-index header did not change 2606 ** between the time it was read and when the shared-lock was obtained 2607 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2608 ** that the log file may have been wrapped by a writer, or that frames 2609 ** that occur later in the log than pWal->hdr.mxFrame may have been 2610 ** copied into the database by a checkpointer. If either of these things 2611 ** happened, then reading the database with the current value of 2612 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2613 ** instead. 2614 ** 2615 ** Before checking that the live wal-index header has not changed 2616 ** since it was read, set Wal.minFrame to the first frame in the wal 2617 ** file that has not yet been checkpointed. This client will not need 2618 ** to read any frames earlier than minFrame from the wal file - they 2619 ** can be safely read directly from the database file. 2620 ** 2621 ** Because a ShmBarrier() call is made between taking the copy of 2622 ** nBackfill and checking that the wal-header in shared-memory still 2623 ** matches the one cached in pWal->hdr, it is guaranteed that the 2624 ** checkpointer that set nBackfill was not working with a wal-index 2625 ** header newer than that cached in pWal->hdr. If it were, that could 2626 ** cause a problem. The checkpointer could omit to checkpoint 2627 ** a version of page X that lies before pWal->minFrame (call that version 2628 ** A) on the basis that there is a newer version (version B) of the same 2629 ** page later in the wal file. But if version B happens to like past 2630 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2631 ** that it can read version A from the database file. However, since 2632 ** we can guarantee that the checkpointer that set nBackfill could not 2633 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2634 */ 2635 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2636 walShmBarrier(pWal); 2637 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2638 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2639 ){ 2640 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2641 return WAL_RETRY; 2642 }else{ 2643 assert( mxReadMark<=pWal->hdr.mxFrame ); 2644 pWal->readLock = (i16)mxI; 2645 } 2646 return rc; 2647 } 2648 2649 #ifdef SQLITE_ENABLE_SNAPSHOT 2650 /* 2651 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2652 ** variable so that older snapshots can be accessed. To do this, loop 2653 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2654 ** comparing their content to the corresponding page with the database 2655 ** file, if any. Set nBackfillAttempted to the frame number of the 2656 ** first frame for which the wal file content matches the db file. 2657 ** 2658 ** This is only really safe if the file-system is such that any page 2659 ** writes made by earlier checkpointers were atomic operations, which 2660 ** is not always true. It is also possible that nBackfillAttempted 2661 ** may be left set to a value larger than expected, if a wal frame 2662 ** contains content that duplicate of an earlier version of the same 2663 ** page. 2664 ** 2665 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2666 ** error occurs. It is not an error if nBackfillAttempted cannot be 2667 ** decreased at all. 2668 */ 2669 int sqlite3WalSnapshotRecover(Wal *pWal){ 2670 int rc; 2671 2672 assert( pWal->readLock>=0 ); 2673 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2674 if( rc==SQLITE_OK ){ 2675 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2676 int szPage = (int)pWal->szPage; 2677 i64 szDb; /* Size of db file in bytes */ 2678 2679 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2680 if( rc==SQLITE_OK ){ 2681 void *pBuf1 = sqlite3_malloc(szPage); 2682 void *pBuf2 = sqlite3_malloc(szPage); 2683 if( pBuf1==0 || pBuf2==0 ){ 2684 rc = SQLITE_NOMEM; 2685 }else{ 2686 u32 i = pInfo->nBackfillAttempted; 2687 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ 2688 WalHashLoc sLoc; /* Hash table location */ 2689 u32 pgno; /* Page number in db file */ 2690 i64 iDbOff; /* Offset of db file entry */ 2691 i64 iWalOff; /* Offset of wal file entry */ 2692 2693 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2694 if( rc!=SQLITE_OK ) break; 2695 pgno = sLoc.aPgno[i-sLoc.iZero]; 2696 iDbOff = (i64)(pgno-1) * szPage; 2697 2698 if( iDbOff+szPage<=szDb ){ 2699 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2700 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2701 2702 if( rc==SQLITE_OK ){ 2703 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2704 } 2705 2706 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2707 break; 2708 } 2709 } 2710 2711 pInfo->nBackfillAttempted = i-1; 2712 } 2713 } 2714 2715 sqlite3_free(pBuf1); 2716 sqlite3_free(pBuf2); 2717 } 2718 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2719 } 2720 2721 return rc; 2722 } 2723 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2724 2725 /* 2726 ** Begin a read transaction on the database. 2727 ** 2728 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2729 ** it takes a snapshot of the state of the WAL and wal-index for the current 2730 ** instant in time. The current thread will continue to use this snapshot. 2731 ** Other threads might append new content to the WAL and wal-index but 2732 ** that extra content is ignored by the current thread. 2733 ** 2734 ** If the database contents have changes since the previous read 2735 ** transaction, then *pChanged is set to 1 before returning. The 2736 ** Pager layer will use this to know that its cache is stale and 2737 ** needs to be flushed. 2738 */ 2739 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2740 int rc; /* Return code */ 2741 int cnt = 0; /* Number of TryBeginRead attempts */ 2742 2743 #ifdef SQLITE_ENABLE_SNAPSHOT 2744 int bChanged = 0; 2745 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2746 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2747 bChanged = 1; 2748 } 2749 #endif 2750 2751 do{ 2752 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2753 }while( rc==WAL_RETRY ); 2754 testcase( (rc&0xff)==SQLITE_BUSY ); 2755 testcase( (rc&0xff)==SQLITE_IOERR ); 2756 testcase( rc==SQLITE_PROTOCOL ); 2757 testcase( rc==SQLITE_OK ); 2758 2759 #ifdef SQLITE_ENABLE_SNAPSHOT 2760 if( rc==SQLITE_OK ){ 2761 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2762 /* At this point the client has a lock on an aReadMark[] slot holding 2763 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2764 ** is populated with the wal-index header corresponding to the head 2765 ** of the wal file. Verify that pSnapshot is still valid before 2766 ** continuing. Reasons why pSnapshot might no longer be valid: 2767 ** 2768 ** (1) The WAL file has been reset since the snapshot was taken. 2769 ** In this case, the salt will have changed. 2770 ** 2771 ** (2) A checkpoint as been attempted that wrote frames past 2772 ** pSnapshot->mxFrame into the database file. Note that the 2773 ** checkpoint need not have completed for this to cause problems. 2774 */ 2775 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2776 2777 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2778 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2779 2780 /* It is possible that there is a checkpointer thread running 2781 ** concurrent with this code. If this is the case, it may be that the 2782 ** checkpointer has already determined that it will checkpoint 2783 ** snapshot X, where X is later in the wal file than pSnapshot, but 2784 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2785 ** its intent. To avoid the race condition this leads to, ensure that 2786 ** there is no checkpointer process by taking a shared CKPT lock 2787 ** before checking pInfo->nBackfillAttempted. 2788 ** 2789 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing 2790 ** this already? 2791 */ 2792 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2793 2794 if( rc==SQLITE_OK ){ 2795 /* Check that the wal file has not been wrapped. Assuming that it has 2796 ** not, also check that no checkpointer has attempted to checkpoint any 2797 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2798 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2799 ** with *pSnapshot and set *pChanged as appropriate for opening the 2800 ** snapshot. */ 2801 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2802 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2803 ){ 2804 assert( pWal->readLock>0 ); 2805 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2806 *pChanged = bChanged; 2807 }else{ 2808 rc = SQLITE_ERROR_SNAPSHOT; 2809 } 2810 2811 /* Release the shared CKPT lock obtained above. */ 2812 walUnlockShared(pWal, WAL_CKPT_LOCK); 2813 pWal->minFrame = 1; 2814 } 2815 2816 2817 if( rc!=SQLITE_OK ){ 2818 sqlite3WalEndReadTransaction(pWal); 2819 } 2820 } 2821 } 2822 #endif 2823 return rc; 2824 } 2825 2826 /* 2827 ** Finish with a read transaction. All this does is release the 2828 ** read-lock. 2829 */ 2830 void sqlite3WalEndReadTransaction(Wal *pWal){ 2831 sqlite3WalEndWriteTransaction(pWal); 2832 if( pWal->readLock>=0 ){ 2833 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2834 pWal->readLock = -1; 2835 } 2836 } 2837 2838 /* 2839 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2840 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2841 ** to zero. 2842 ** 2843 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2844 ** error does occur, the final value of *piRead is undefined. 2845 */ 2846 int sqlite3WalFindFrame( 2847 Wal *pWal, /* WAL handle */ 2848 Pgno pgno, /* Database page number to read data for */ 2849 u32 *piRead /* OUT: Frame number (or zero) */ 2850 ){ 2851 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2852 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2853 int iHash; /* Used to loop through N hash tables */ 2854 int iMinHash; 2855 2856 /* This routine is only be called from within a read transaction. */ 2857 assert( pWal->readLock>=0 || pWal->lockError ); 2858 2859 /* If the "last page" field of the wal-index header snapshot is 0, then 2860 ** no data will be read from the wal under any circumstances. Return early 2861 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2862 ** then the WAL is ignored by the reader so return early, as if the 2863 ** WAL were empty. 2864 */ 2865 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2866 *piRead = 0; 2867 return SQLITE_OK; 2868 } 2869 2870 /* Search the hash table or tables for an entry matching page number 2871 ** pgno. Each iteration of the following for() loop searches one 2872 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2873 ** 2874 ** This code might run concurrently to the code in walIndexAppend() 2875 ** that adds entries to the wal-index (and possibly to this hash 2876 ** table). This means the value just read from the hash 2877 ** slot (aHash[iKey]) may have been added before or after the 2878 ** current read transaction was opened. Values added after the 2879 ** read transaction was opened may have been written incorrectly - 2880 ** i.e. these slots may contain garbage data. However, we assume 2881 ** that any slots written before the current read transaction was 2882 ** opened remain unmodified. 2883 ** 2884 ** For the reasons above, the if(...) condition featured in the inner 2885 ** loop of the following block is more stringent that would be required 2886 ** if we had exclusive access to the hash-table: 2887 ** 2888 ** (aPgno[iFrame]==pgno): 2889 ** This condition filters out normal hash-table collisions. 2890 ** 2891 ** (iFrame<=iLast): 2892 ** This condition filters out entries that were added to the hash 2893 ** table after the current read-transaction had started. 2894 */ 2895 iMinHash = walFramePage(pWal->minFrame); 2896 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 2897 WalHashLoc sLoc; /* Hash table location */ 2898 int iKey; /* Hash slot index */ 2899 int nCollide; /* Number of hash collisions remaining */ 2900 int rc; /* Error code */ 2901 2902 rc = walHashGet(pWal, iHash, &sLoc); 2903 if( rc!=SQLITE_OK ){ 2904 return rc; 2905 } 2906 nCollide = HASHTABLE_NSLOT; 2907 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 2908 u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero; 2909 if( iFrame<=iLast && iFrame>=pWal->minFrame 2910 && sLoc.aPgno[sLoc.aHash[iKey]]==pgno ){ 2911 assert( iFrame>iRead || CORRUPT_DB ); 2912 iRead = iFrame; 2913 } 2914 if( (nCollide--)==0 ){ 2915 return SQLITE_CORRUPT_BKPT; 2916 } 2917 } 2918 if( iRead ) break; 2919 } 2920 2921 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2922 /* If expensive assert() statements are available, do a linear search 2923 ** of the wal-index file content. Make sure the results agree with the 2924 ** result obtained using the hash indexes above. */ 2925 { 2926 u32 iRead2 = 0; 2927 u32 iTest; 2928 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 2929 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 2930 if( walFramePgno(pWal, iTest)==pgno ){ 2931 iRead2 = iTest; 2932 break; 2933 } 2934 } 2935 assert( iRead==iRead2 ); 2936 } 2937 #endif 2938 2939 *piRead = iRead; 2940 return SQLITE_OK; 2941 } 2942 2943 /* 2944 ** Read the contents of frame iRead from the wal file into buffer pOut 2945 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2946 ** error code otherwise. 2947 */ 2948 int sqlite3WalReadFrame( 2949 Wal *pWal, /* WAL handle */ 2950 u32 iRead, /* Frame to read */ 2951 int nOut, /* Size of buffer pOut in bytes */ 2952 u8 *pOut /* Buffer to write page data to */ 2953 ){ 2954 int sz; 2955 i64 iOffset; 2956 sz = pWal->hdr.szPage; 2957 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2958 testcase( sz<=32768 ); 2959 testcase( sz>=65536 ); 2960 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2961 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2962 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2963 } 2964 2965 /* 2966 ** Return the size of the database in pages (or zero, if unknown). 2967 */ 2968 Pgno sqlite3WalDbsize(Wal *pWal){ 2969 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2970 return pWal->hdr.nPage; 2971 } 2972 return 0; 2973 } 2974 2975 2976 /* 2977 ** This function starts a write transaction on the WAL. 2978 ** 2979 ** A read transaction must have already been started by a prior call 2980 ** to sqlite3WalBeginReadTransaction(). 2981 ** 2982 ** If another thread or process has written into the database since 2983 ** the read transaction was started, then it is not possible for this 2984 ** thread to write as doing so would cause a fork. So this routine 2985 ** returns SQLITE_BUSY in that case and no write transaction is started. 2986 ** 2987 ** There can only be a single writer active at a time. 2988 */ 2989 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2990 int rc; 2991 2992 /* Cannot start a write transaction without first holding a read 2993 ** transaction. */ 2994 assert( pWal->readLock>=0 ); 2995 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 2996 2997 if( pWal->readOnly ){ 2998 return SQLITE_READONLY; 2999 } 3000 3001 /* Only one writer allowed at a time. Get the write lock. Return 3002 ** SQLITE_BUSY if unable. 3003 */ 3004 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3005 if( rc ){ 3006 return rc; 3007 } 3008 pWal->writeLock = 1; 3009 3010 /* If another connection has written to the database file since the 3011 ** time the read transaction on this connection was started, then 3012 ** the write is disallowed. 3013 */ 3014 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3015 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3016 pWal->writeLock = 0; 3017 rc = SQLITE_BUSY_SNAPSHOT; 3018 } 3019 3020 return rc; 3021 } 3022 3023 /* 3024 ** End a write transaction. The commit has already been done. This 3025 ** routine merely releases the lock. 3026 */ 3027 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3028 if( pWal->writeLock ){ 3029 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3030 pWal->writeLock = 0; 3031 pWal->iReCksum = 0; 3032 pWal->truncateOnCommit = 0; 3033 } 3034 return SQLITE_OK; 3035 } 3036 3037 /* 3038 ** If any data has been written (but not committed) to the log file, this 3039 ** function moves the write-pointer back to the start of the transaction. 3040 ** 3041 ** Additionally, the callback function is invoked for each frame written 3042 ** to the WAL since the start of the transaction. If the callback returns 3043 ** other than SQLITE_OK, it is not invoked again and the error code is 3044 ** returned to the caller. 3045 ** 3046 ** Otherwise, if the callback function does not return an error, this 3047 ** function returns SQLITE_OK. 3048 */ 3049 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3050 int rc = SQLITE_OK; 3051 if( ALWAYS(pWal->writeLock) ){ 3052 Pgno iMax = pWal->hdr.mxFrame; 3053 Pgno iFrame; 3054 3055 /* Restore the clients cache of the wal-index header to the state it 3056 ** was in before the client began writing to the database. 3057 */ 3058 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3059 3060 for(iFrame=pWal->hdr.mxFrame+1; 3061 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3062 iFrame++ 3063 ){ 3064 /* This call cannot fail. Unless the page for which the page number 3065 ** is passed as the second argument is (a) in the cache and 3066 ** (b) has an outstanding reference, then xUndo is either a no-op 3067 ** (if (a) is false) or simply expels the page from the cache (if (b) 3068 ** is false). 3069 ** 3070 ** If the upper layer is doing a rollback, it is guaranteed that there 3071 ** are no outstanding references to any page other than page 1. And 3072 ** page 1 is never written to the log until the transaction is 3073 ** committed. As a result, the call to xUndo may not fail. 3074 */ 3075 assert( walFramePgno(pWal, iFrame)!=1 ); 3076 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3077 } 3078 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3079 } 3080 return rc; 3081 } 3082 3083 /* 3084 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3085 ** values. This function populates the array with values required to 3086 ** "rollback" the write position of the WAL handle back to the current 3087 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3088 */ 3089 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3090 assert( pWal->writeLock ); 3091 aWalData[0] = pWal->hdr.mxFrame; 3092 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3093 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3094 aWalData[3] = pWal->nCkpt; 3095 } 3096 3097 /* 3098 ** Move the write position of the WAL back to the point identified by 3099 ** the values in the aWalData[] array. aWalData must point to an array 3100 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3101 ** by a call to WalSavepoint(). 3102 */ 3103 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3104 int rc = SQLITE_OK; 3105 3106 assert( pWal->writeLock ); 3107 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3108 3109 if( aWalData[3]!=pWal->nCkpt ){ 3110 /* This savepoint was opened immediately after the write-transaction 3111 ** was started. Right after that, the writer decided to wrap around 3112 ** to the start of the log. Update the savepoint values to match. 3113 */ 3114 aWalData[0] = 0; 3115 aWalData[3] = pWal->nCkpt; 3116 } 3117 3118 if( aWalData[0]<pWal->hdr.mxFrame ){ 3119 pWal->hdr.mxFrame = aWalData[0]; 3120 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3121 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3122 walCleanupHash(pWal); 3123 } 3124 3125 return rc; 3126 } 3127 3128 /* 3129 ** This function is called just before writing a set of frames to the log 3130 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3131 ** to the current log file, it is possible to overwrite the start of the 3132 ** existing log file with the new frames (i.e. "reset" the log). If so, 3133 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3134 ** unchanged. 3135 ** 3136 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3137 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3138 ** if an error occurs. 3139 */ 3140 static int walRestartLog(Wal *pWal){ 3141 int rc = SQLITE_OK; 3142 int cnt; 3143 3144 if( pWal->readLock==0 ){ 3145 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3146 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3147 if( pInfo->nBackfill>0 ){ 3148 u32 salt1; 3149 sqlite3_randomness(4, &salt1); 3150 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3151 if( rc==SQLITE_OK ){ 3152 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3153 ** readers are currently using the WAL), then the transactions 3154 ** frames will overwrite the start of the existing log. Update the 3155 ** wal-index header to reflect this. 3156 ** 3157 ** In theory it would be Ok to update the cache of the header only 3158 ** at this point. But updating the actual wal-index header is also 3159 ** safe and means there is no special case for sqlite3WalUndo() 3160 ** to handle if this transaction is rolled back. */ 3161 walRestartHdr(pWal, salt1); 3162 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3163 }else if( rc!=SQLITE_BUSY ){ 3164 return rc; 3165 } 3166 } 3167 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3168 pWal->readLock = -1; 3169 cnt = 0; 3170 do{ 3171 int notUsed; 3172 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3173 }while( rc==WAL_RETRY ); 3174 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3175 testcase( (rc&0xff)==SQLITE_IOERR ); 3176 testcase( rc==SQLITE_PROTOCOL ); 3177 testcase( rc==SQLITE_OK ); 3178 } 3179 return rc; 3180 } 3181 3182 /* 3183 ** Information about the current state of the WAL file and where 3184 ** the next fsync should occur - passed from sqlite3WalFrames() into 3185 ** walWriteToLog(). 3186 */ 3187 typedef struct WalWriter { 3188 Wal *pWal; /* The complete WAL information */ 3189 sqlite3_file *pFd; /* The WAL file to which we write */ 3190 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3191 int syncFlags; /* Flags for the fsync */ 3192 int szPage; /* Size of one page */ 3193 } WalWriter; 3194 3195 /* 3196 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3197 ** Do a sync when crossing the p->iSyncPoint boundary. 3198 ** 3199 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3200 ** first write the part before iSyncPoint, then sync, then write the 3201 ** rest. 3202 */ 3203 static int walWriteToLog( 3204 WalWriter *p, /* WAL to write to */ 3205 void *pContent, /* Content to be written */ 3206 int iAmt, /* Number of bytes to write */ 3207 sqlite3_int64 iOffset /* Start writing at this offset */ 3208 ){ 3209 int rc; 3210 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3211 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3212 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3213 if( rc ) return rc; 3214 iOffset += iFirstAmt; 3215 iAmt -= iFirstAmt; 3216 pContent = (void*)(iFirstAmt + (char*)pContent); 3217 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3218 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3219 if( iAmt==0 || rc ) return rc; 3220 } 3221 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3222 return rc; 3223 } 3224 3225 /* 3226 ** Write out a single frame of the WAL 3227 */ 3228 static int walWriteOneFrame( 3229 WalWriter *p, /* Where to write the frame */ 3230 PgHdr *pPage, /* The page of the frame to be written */ 3231 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3232 sqlite3_int64 iOffset /* Byte offset at which to write */ 3233 ){ 3234 int rc; /* Result code from subfunctions */ 3235 void *pData; /* Data actually written */ 3236 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3237 #if defined(SQLITE_HAS_CODEC) 3238 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; 3239 #else 3240 pData = pPage->pData; 3241 #endif 3242 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3243 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3244 if( rc ) return rc; 3245 /* Write the page data */ 3246 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3247 return rc; 3248 } 3249 3250 /* 3251 ** This function is called as part of committing a transaction within which 3252 ** one or more frames have been overwritten. It updates the checksums for 3253 ** all frames written to the wal file by the current transaction starting 3254 ** with the earliest to have been overwritten. 3255 ** 3256 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3257 */ 3258 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3259 const int szPage = pWal->szPage;/* Database page size */ 3260 int rc = SQLITE_OK; /* Return code */ 3261 u8 *aBuf; /* Buffer to load data from wal file into */ 3262 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3263 u32 iRead; /* Next frame to read from wal file */ 3264 i64 iCksumOff; 3265 3266 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3267 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3268 3269 /* Find the checksum values to use as input for the recalculating the 3270 ** first checksum. If the first frame is frame 1 (implying that the current 3271 ** transaction restarted the wal file), these values must be read from the 3272 ** wal-file header. Otherwise, read them from the frame header of the 3273 ** previous frame. */ 3274 assert( pWal->iReCksum>0 ); 3275 if( pWal->iReCksum==1 ){ 3276 iCksumOff = 24; 3277 }else{ 3278 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3279 } 3280 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3281 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3282 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3283 3284 iRead = pWal->iReCksum; 3285 pWal->iReCksum = 0; 3286 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3287 i64 iOff = walFrameOffset(iRead, szPage); 3288 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3289 if( rc==SQLITE_OK ){ 3290 u32 iPgno, nDbSize; 3291 iPgno = sqlite3Get4byte(aBuf); 3292 nDbSize = sqlite3Get4byte(&aBuf[4]); 3293 3294 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3295 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3296 } 3297 } 3298 3299 sqlite3_free(aBuf); 3300 return rc; 3301 } 3302 3303 /* 3304 ** Write a set of frames to the log. The caller must hold the write-lock 3305 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3306 */ 3307 int sqlite3WalFrames( 3308 Wal *pWal, /* Wal handle to write to */ 3309 int szPage, /* Database page-size in bytes */ 3310 PgHdr *pList, /* List of dirty pages to write */ 3311 Pgno nTruncate, /* Database size after this commit */ 3312 int isCommit, /* True if this is a commit */ 3313 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3314 ){ 3315 int rc; /* Used to catch return codes */ 3316 u32 iFrame; /* Next frame address */ 3317 PgHdr *p; /* Iterator to run through pList with. */ 3318 PgHdr *pLast = 0; /* Last frame in list */ 3319 int nExtra = 0; /* Number of extra copies of last page */ 3320 int szFrame; /* The size of a single frame */ 3321 i64 iOffset; /* Next byte to write in WAL file */ 3322 WalWriter w; /* The writer */ 3323 u32 iFirst = 0; /* First frame that may be overwritten */ 3324 WalIndexHdr *pLive; /* Pointer to shared header */ 3325 3326 assert( pList ); 3327 assert( pWal->writeLock ); 3328 3329 /* If this frame set completes a transaction, then nTruncate>0. If 3330 ** nTruncate==0 then this frame set does not complete the transaction. */ 3331 assert( (isCommit!=0)==(nTruncate!=0) ); 3332 3333 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3334 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3335 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3336 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3337 } 3338 #endif 3339 3340 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3341 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3342 iFirst = pLive->mxFrame+1; 3343 } 3344 3345 /* See if it is possible to write these frames into the start of the 3346 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3347 */ 3348 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3349 return rc; 3350 } 3351 3352 /* If this is the first frame written into the log, write the WAL 3353 ** header to the start of the WAL file. See comments at the top of 3354 ** this source file for a description of the WAL header format. 3355 */ 3356 iFrame = pWal->hdr.mxFrame; 3357 if( iFrame==0 ){ 3358 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3359 u32 aCksum[2]; /* Checksum for wal-header */ 3360 3361 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3362 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3363 sqlite3Put4byte(&aWalHdr[8], szPage); 3364 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3365 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3366 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3367 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3368 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3369 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3370 3371 pWal->szPage = szPage; 3372 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3373 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3374 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3375 pWal->truncateOnCommit = 1; 3376 3377 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3378 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3379 if( rc!=SQLITE_OK ){ 3380 return rc; 3381 } 3382 3383 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3384 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3385 ** an out-of-order write following a WAL restart could result in 3386 ** database corruption. See the ticket: 3387 ** 3388 ** https://sqlite.org/src/info/ff5be73dee 3389 */ 3390 if( pWal->syncHeader ){ 3391 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3392 if( rc ) return rc; 3393 } 3394 } 3395 assert( (int)pWal->szPage==szPage ); 3396 3397 /* Setup information needed to write frames into the WAL */ 3398 w.pWal = pWal; 3399 w.pFd = pWal->pWalFd; 3400 w.iSyncPoint = 0; 3401 w.syncFlags = sync_flags; 3402 w.szPage = szPage; 3403 iOffset = walFrameOffset(iFrame+1, szPage); 3404 szFrame = szPage + WAL_FRAME_HDRSIZE; 3405 3406 /* Write all frames into the log file exactly once */ 3407 for(p=pList; p; p=p->pDirty){ 3408 int nDbSize; /* 0 normally. Positive == commit flag */ 3409 3410 /* Check if this page has already been written into the wal file by 3411 ** the current transaction. If so, overwrite the existing frame and 3412 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3413 ** checksums must be recomputed when the transaction is committed. */ 3414 if( iFirst && (p->pDirty || isCommit==0) ){ 3415 u32 iWrite = 0; 3416 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3417 assert( rc==SQLITE_OK || iWrite==0 ); 3418 if( iWrite>=iFirst ){ 3419 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3420 void *pData; 3421 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3422 pWal->iReCksum = iWrite; 3423 } 3424 #if defined(SQLITE_HAS_CODEC) 3425 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 3426 #else 3427 pData = p->pData; 3428 #endif 3429 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3430 if( rc ) return rc; 3431 p->flags &= ~PGHDR_WAL_APPEND; 3432 continue; 3433 } 3434 } 3435 3436 iFrame++; 3437 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3438 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3439 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3440 if( rc ) return rc; 3441 pLast = p; 3442 iOffset += szFrame; 3443 p->flags |= PGHDR_WAL_APPEND; 3444 } 3445 3446 /* Recalculate checksums within the wal file if required. */ 3447 if( isCommit && pWal->iReCksum ){ 3448 rc = walRewriteChecksums(pWal, iFrame); 3449 if( rc ) return rc; 3450 } 3451 3452 /* If this is the end of a transaction, then we might need to pad 3453 ** the transaction and/or sync the WAL file. 3454 ** 3455 ** Padding and syncing only occur if this set of frames complete a 3456 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3457 ** or synchronous==OFF, then no padding or syncing are needed. 3458 ** 3459 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3460 ** needed and only the sync is done. If padding is needed, then the 3461 ** final frame is repeated (with its commit mark) until the next sector 3462 ** boundary is crossed. Only the part of the WAL prior to the last 3463 ** sector boundary is synced; the part of the last frame that extends 3464 ** past the sector boundary is written after the sync. 3465 */ 3466 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3467 int bSync = 1; 3468 if( pWal->padToSectorBoundary ){ 3469 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3470 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3471 bSync = (w.iSyncPoint==iOffset); 3472 testcase( bSync ); 3473 while( iOffset<w.iSyncPoint ){ 3474 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3475 if( rc ) return rc; 3476 iOffset += szFrame; 3477 nExtra++; 3478 } 3479 } 3480 if( bSync ){ 3481 assert( rc==SQLITE_OK ); 3482 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3483 } 3484 } 3485 3486 /* If this frame set completes the first transaction in the WAL and 3487 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3488 ** journal size limit, if possible. 3489 */ 3490 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3491 i64 sz = pWal->mxWalSize; 3492 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3493 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3494 } 3495 walLimitSize(pWal, sz); 3496 pWal->truncateOnCommit = 0; 3497 } 3498 3499 /* Append data to the wal-index. It is not necessary to lock the 3500 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3501 ** guarantees that there are no other writers, and no data that may 3502 ** be in use by existing readers is being overwritten. 3503 */ 3504 iFrame = pWal->hdr.mxFrame; 3505 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3506 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3507 iFrame++; 3508 rc = walIndexAppend(pWal, iFrame, p->pgno); 3509 } 3510 while( rc==SQLITE_OK && nExtra>0 ){ 3511 iFrame++; 3512 nExtra--; 3513 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3514 } 3515 3516 if( rc==SQLITE_OK ){ 3517 /* Update the private copy of the header. */ 3518 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3519 testcase( szPage<=32768 ); 3520 testcase( szPage>=65536 ); 3521 pWal->hdr.mxFrame = iFrame; 3522 if( isCommit ){ 3523 pWal->hdr.iChange++; 3524 pWal->hdr.nPage = nTruncate; 3525 } 3526 /* If this is a commit, update the wal-index header too. */ 3527 if( isCommit ){ 3528 walIndexWriteHdr(pWal); 3529 pWal->iCallback = iFrame; 3530 } 3531 } 3532 3533 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3534 return rc; 3535 } 3536 3537 /* 3538 ** This routine is called to implement sqlite3_wal_checkpoint() and 3539 ** related interfaces. 3540 ** 3541 ** Obtain a CHECKPOINT lock and then backfill as much information as 3542 ** we can from WAL into the database. 3543 ** 3544 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3545 ** callback. In this case this function runs a blocking checkpoint. 3546 */ 3547 int sqlite3WalCheckpoint( 3548 Wal *pWal, /* Wal connection */ 3549 sqlite3 *db, /* Check this handle's interrupt flag */ 3550 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3551 int (*xBusy)(void*), /* Function to call when busy */ 3552 void *pBusyArg, /* Context argument for xBusyHandler */ 3553 int sync_flags, /* Flags to sync db file with (or 0) */ 3554 int nBuf, /* Size of temporary buffer */ 3555 u8 *zBuf, /* Temporary buffer to use */ 3556 int *pnLog, /* OUT: Number of frames in WAL */ 3557 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3558 ){ 3559 int rc; /* Return code */ 3560 int isChanged = 0; /* True if a new wal-index header is loaded */ 3561 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3562 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3563 3564 assert( pWal->ckptLock==0 ); 3565 assert( pWal->writeLock==0 ); 3566 3567 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3568 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3569 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3570 3571 if( pWal->readOnly ) return SQLITE_READONLY; 3572 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3573 3574 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3575 ** "checkpoint" lock on the database file. */ 3576 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3577 if( rc ){ 3578 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3579 ** checkpoint operation at the same time, the lock cannot be obtained and 3580 ** SQLITE_BUSY is returned. 3581 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3582 ** it will not be invoked in this case. 3583 */ 3584 testcase( rc==SQLITE_BUSY ); 3585 testcase( xBusy!=0 ); 3586 return rc; 3587 } 3588 pWal->ckptLock = 1; 3589 3590 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3591 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3592 ** file. 3593 ** 3594 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3595 ** immediately, and a busy-handler is configured, it is invoked and the 3596 ** writer lock retried until either the busy-handler returns 0 or the 3597 ** lock is successfully obtained. 3598 */ 3599 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3600 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3601 if( rc==SQLITE_OK ){ 3602 pWal->writeLock = 1; 3603 }else if( rc==SQLITE_BUSY ){ 3604 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3605 xBusy2 = 0; 3606 rc = SQLITE_OK; 3607 } 3608 } 3609 3610 /* Read the wal-index header. */ 3611 if( rc==SQLITE_OK ){ 3612 rc = walIndexReadHdr(pWal, &isChanged); 3613 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3614 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3615 } 3616 } 3617 3618 /* Copy data from the log to the database file. */ 3619 if( rc==SQLITE_OK ){ 3620 3621 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3622 rc = SQLITE_CORRUPT_BKPT; 3623 }else{ 3624 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3625 } 3626 3627 /* If no error occurred, set the output variables. */ 3628 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3629 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3630 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3631 } 3632 } 3633 3634 if( isChanged ){ 3635 /* If a new wal-index header was loaded before the checkpoint was 3636 ** performed, then the pager-cache associated with pWal is now 3637 ** out of date. So zero the cached wal-index header to ensure that 3638 ** next time the pager opens a snapshot on this database it knows that 3639 ** the cache needs to be reset. 3640 */ 3641 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3642 } 3643 3644 /* Release the locks. */ 3645 sqlite3WalEndWriteTransaction(pWal); 3646 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3647 pWal->ckptLock = 0; 3648 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3649 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3650 } 3651 3652 /* Return the value to pass to a sqlite3_wal_hook callback, the 3653 ** number of frames in the WAL at the point of the last commit since 3654 ** sqlite3WalCallback() was called. If no commits have occurred since 3655 ** the last call, then return 0. 3656 */ 3657 int sqlite3WalCallback(Wal *pWal){ 3658 u32 ret = 0; 3659 if( pWal ){ 3660 ret = pWal->iCallback; 3661 pWal->iCallback = 0; 3662 } 3663 return (int)ret; 3664 } 3665 3666 /* 3667 ** This function is called to change the WAL subsystem into or out 3668 ** of locking_mode=EXCLUSIVE. 3669 ** 3670 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3671 ** into locking_mode=NORMAL. This means that we must acquire a lock 3672 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3673 ** or if the acquisition of the lock fails, then return 0. If the 3674 ** transition out of exclusive-mode is successful, return 1. This 3675 ** operation must occur while the pager is still holding the exclusive 3676 ** lock on the main database file. 3677 ** 3678 ** If op is one, then change from locking_mode=NORMAL into 3679 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3680 ** be released. Return 1 if the transition is made and 0 if the 3681 ** WAL is already in exclusive-locking mode - meaning that this 3682 ** routine is a no-op. The pager must already hold the exclusive lock 3683 ** on the main database file before invoking this operation. 3684 ** 3685 ** If op is negative, then do a dry-run of the op==1 case but do 3686 ** not actually change anything. The pager uses this to see if it 3687 ** should acquire the database exclusive lock prior to invoking 3688 ** the op==1 case. 3689 */ 3690 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3691 int rc; 3692 assert( pWal->writeLock==0 ); 3693 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3694 3695 /* pWal->readLock is usually set, but might be -1 if there was a 3696 ** prior error while attempting to acquire are read-lock. This cannot 3697 ** happen if the connection is actually in exclusive mode (as no xShmLock 3698 ** locks are taken in this case). Nor should the pager attempt to 3699 ** upgrade to exclusive-mode following such an error. 3700 */ 3701 assert( pWal->readLock>=0 || pWal->lockError ); 3702 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3703 3704 if( op==0 ){ 3705 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3706 pWal->exclusiveMode = WAL_NORMAL_MODE; 3707 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3708 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3709 } 3710 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3711 }else{ 3712 /* Already in locking_mode=NORMAL */ 3713 rc = 0; 3714 } 3715 }else if( op>0 ){ 3716 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3717 assert( pWal->readLock>=0 ); 3718 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3719 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3720 rc = 1; 3721 }else{ 3722 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3723 } 3724 return rc; 3725 } 3726 3727 /* 3728 ** Return true if the argument is non-NULL and the WAL module is using 3729 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3730 ** WAL module is using shared-memory, return false. 3731 */ 3732 int sqlite3WalHeapMemory(Wal *pWal){ 3733 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3734 } 3735 3736 #ifdef SQLITE_ENABLE_SNAPSHOT 3737 /* Create a snapshot object. The content of a snapshot is opaque to 3738 ** every other subsystem, so the WAL module can put whatever it needs 3739 ** in the object. 3740 */ 3741 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3742 int rc = SQLITE_OK; 3743 WalIndexHdr *pRet; 3744 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3745 3746 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3747 3748 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3749 *ppSnapshot = 0; 3750 return SQLITE_ERROR; 3751 } 3752 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3753 if( pRet==0 ){ 3754 rc = SQLITE_NOMEM_BKPT; 3755 }else{ 3756 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3757 *ppSnapshot = (sqlite3_snapshot*)pRet; 3758 } 3759 3760 return rc; 3761 } 3762 3763 /* Try to open on pSnapshot when the next read-transaction starts 3764 */ 3765 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3766 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3767 } 3768 3769 /* 3770 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3771 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3772 */ 3773 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3774 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3775 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3776 3777 /* aSalt[0] is a copy of the value stored in the wal file header. It 3778 ** is incremented each time the wal file is restarted. */ 3779 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3780 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3781 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3782 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3783 return 0; 3784 } 3785 3786 /* 3787 ** The caller currently has a read transaction open on the database. 3788 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3789 ** checks if the snapshot passed as the second argument is still 3790 ** available. If so, SQLITE_OK is returned. 3791 ** 3792 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3793 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3794 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3795 ** lock is released before returning. 3796 */ 3797 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3798 int rc; 3799 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3800 if( rc==SQLITE_OK ){ 3801 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3802 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3803 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3804 ){ 3805 rc = SQLITE_ERROR_SNAPSHOT; 3806 walUnlockShared(pWal, WAL_CKPT_LOCK); 3807 } 3808 } 3809 return rc; 3810 } 3811 3812 /* 3813 ** Release a lock obtained by an earlier successful call to 3814 ** sqlite3WalSnapshotCheck(). 3815 */ 3816 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3817 assert( pWal ); 3818 walUnlockShared(pWal, WAL_CKPT_LOCK); 3819 } 3820 3821 3822 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3823 3824 #ifdef SQLITE_ENABLE_ZIPVFS 3825 /* 3826 ** If the argument is not NULL, it points to a Wal object that holds a 3827 ** read-lock. This function returns the database page-size if it is known, 3828 ** or zero if it is not (or if pWal is NULL). 3829 */ 3830 int sqlite3WalFramesize(Wal *pWal){ 3831 assert( pWal==0 || pWal->readLock>=0 ); 3832 return (pWal ? pWal->szPage : 0); 3833 } 3834 #endif 3835 3836 /* Return the sqlite3_file object for the WAL file 3837 */ 3838 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3839 return pWal->pWalFd; 3840 } 3841 3842 #endif /* #ifndef SQLITE_OMIT_WAL */ 3843