xref: /sqlite-3.40.0/src/wal.c (revision e7f3edcd)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471   sqlite3 *db;
472 #endif
473 };
474 
475 /*
476 ** Candidate values for Wal.exclusiveMode.
477 */
478 #define WAL_NORMAL_MODE     0
479 #define WAL_EXCLUSIVE_MODE  1
480 #define WAL_HEAPMEMORY_MODE 2
481 
482 /*
483 ** Possible values for WAL.readOnly
484 */
485 #define WAL_RDWR        0    /* Normal read/write connection */
486 #define WAL_RDONLY      1    /* The WAL file is readonly */
487 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
488 
489 /*
490 ** Each page of the wal-index mapping contains a hash-table made up of
491 ** an array of HASHTABLE_NSLOT elements of the following type.
492 */
493 typedef u16 ht_slot;
494 
495 /*
496 ** This structure is used to implement an iterator that loops through
497 ** all frames in the WAL in database page order. Where two or more frames
498 ** correspond to the same database page, the iterator visits only the
499 ** frame most recently written to the WAL (in other words, the frame with
500 ** the largest index).
501 **
502 ** The internals of this structure are only accessed by:
503 **
504 **   walIteratorInit() - Create a new iterator,
505 **   walIteratorNext() - Step an iterator,
506 **   walIteratorFree() - Free an iterator.
507 **
508 ** This functionality is used by the checkpoint code (see walCheckpoint()).
509 */
510 struct WalIterator {
511   int iPrior;                     /* Last result returned from the iterator */
512   int nSegment;                   /* Number of entries in aSegment[] */
513   struct WalSegment {
514     int iNext;                    /* Next slot in aIndex[] not yet returned */
515     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
516     u32 *aPgno;                   /* Array of page numbers. */
517     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
518     int iZero;                    /* Frame number associated with aPgno[0] */
519   } aSegment[1];                  /* One for every 32KB page in the wal-index */
520 };
521 
522 /*
523 ** Define the parameters of the hash tables in the wal-index file. There
524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525 ** wal-index.
526 **
527 ** Changing any of these constants will alter the wal-index format and
528 ** create incompatibilities.
529 */
530 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
531 #define HASHTABLE_HASH_1     383                  /* Should be prime */
532 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
533 
534 /*
535 ** The block of page numbers associated with the first hash-table in a
536 ** wal-index is smaller than usual. This is so that there is a complete
537 ** hash-table on each aligned 32KB page of the wal-index.
538 */
539 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
540 
541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542 #define WALINDEX_PGSZ   (                                         \
543     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544 )
545 
546 /*
547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
549 ** numbered from zero.
550 **
551 ** If the wal-index is currently smaller the iPage pages then the size
552 ** of the wal-index might be increased, but only if it is safe to do
553 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555 **
556 ** If this call is successful, *ppPage is set to point to the wal-index
557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558 ** then an SQLite error code is returned and *ppPage is set to 0.
559 */
560 static SQLITE_NOINLINE int walIndexPageRealloc(
561   Wal *pWal,               /* The WAL context */
562   int iPage,               /* The page we seek */
563   volatile u32 **ppPage    /* Write the page pointer here */
564 ){
565   int rc = SQLITE_OK;
566 
567   /* Enlarge the pWal->apWiData[] array if required */
568   if( pWal->nWiData<=iPage ){
569     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
570     volatile u32 **apNew;
571     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
572     if( !apNew ){
573       *ppPage = 0;
574       return SQLITE_NOMEM_BKPT;
575     }
576     memset((void*)&apNew[pWal->nWiData], 0,
577            sizeof(u32*)*(iPage+1-pWal->nWiData));
578     pWal->apWiData = apNew;
579     pWal->nWiData = iPage+1;
580   }
581 
582   /* Request a pointer to the required page from the VFS */
583   assert( pWal->apWiData[iPage]==0 );
584   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587   }else{
588     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590     );
591     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
593     if( rc==SQLITE_OK ){
594       if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
595     }else if( (rc&0xff)==SQLITE_READONLY ){
596       pWal->readOnly |= WAL_SHM_RDONLY;
597       if( rc==SQLITE_READONLY ){
598         rc = SQLITE_OK;
599       }
600     }
601   }
602 
603   *ppPage = pWal->apWiData[iPage];
604   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
605   return rc;
606 }
607 static int walIndexPage(
608   Wal *pWal,               /* The WAL context */
609   int iPage,               /* The page we seek */
610   volatile u32 **ppPage    /* Write the page pointer here */
611 ){
612   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
613     return walIndexPageRealloc(pWal, iPage, ppPage);
614   }
615   return SQLITE_OK;
616 }
617 
618 /*
619 ** Return a pointer to the WalCkptInfo structure in the wal-index.
620 */
621 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
622   assert( pWal->nWiData>0 && pWal->apWiData[0] );
623   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
624 }
625 
626 /*
627 ** Return a pointer to the WalIndexHdr structure in the wal-index.
628 */
629 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
630   assert( pWal->nWiData>0 && pWal->apWiData[0] );
631   return (volatile WalIndexHdr*)pWal->apWiData[0];
632 }
633 
634 /*
635 ** The argument to this macro must be of type u32. On a little-endian
636 ** architecture, it returns the u32 value that results from interpreting
637 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
638 ** returns the value that would be produced by interpreting the 4 bytes
639 ** of the input value as a little-endian integer.
640 */
641 #define BYTESWAP32(x) ( \
642     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
643   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
644 )
645 
646 /*
647 ** Generate or extend an 8 byte checksum based on the data in
648 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
649 ** initial values of 0 and 0 if aIn==NULL).
650 **
651 ** The checksum is written back into aOut[] before returning.
652 **
653 ** nByte must be a positive multiple of 8.
654 */
655 static void walChecksumBytes(
656   int nativeCksum, /* True for native byte-order, false for non-native */
657   u8 *a,           /* Content to be checksummed */
658   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
659   const u32 *aIn,  /* Initial checksum value input */
660   u32 *aOut        /* OUT: Final checksum value output */
661 ){
662   u32 s1, s2;
663   u32 *aData = (u32 *)a;
664   u32 *aEnd = (u32 *)&a[nByte];
665 
666   if( aIn ){
667     s1 = aIn[0];
668     s2 = aIn[1];
669   }else{
670     s1 = s2 = 0;
671   }
672 
673   assert( nByte>=8 );
674   assert( (nByte&0x00000007)==0 );
675   assert( nByte<=65536 );
676 
677   if( nativeCksum ){
678     do {
679       s1 += *aData++ + s2;
680       s2 += *aData++ + s1;
681     }while( aData<aEnd );
682   }else{
683     do {
684       s1 += BYTESWAP32(aData[0]) + s2;
685       s2 += BYTESWAP32(aData[1]) + s1;
686       aData += 2;
687     }while( aData<aEnd );
688   }
689 
690   aOut[0] = s1;
691   aOut[1] = s2;
692 }
693 
694 /*
695 ** If there is the possibility of concurrent access to the SHM file
696 ** from multiple threads and/or processes, then do a memory barrier.
697 */
698 static void walShmBarrier(Wal *pWal){
699   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
700     sqlite3OsShmBarrier(pWal->pDbFd);
701   }
702 }
703 
704 /*
705 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
706 ** definition as a hint that the function contains constructs that
707 ** might give false-positive TSAN warnings.
708 **
709 ** See tag-20200519-1.
710 */
711 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
712 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
713 #else
714 # define SQLITE_NO_TSAN
715 #endif
716 
717 /*
718 ** Write the header information in pWal->hdr into the wal-index.
719 **
720 ** The checksum on pWal->hdr is updated before it is written.
721 */
722 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
723   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
724   const int nCksum = offsetof(WalIndexHdr, aCksum);
725 
726   assert( pWal->writeLock );
727   pWal->hdr.isInit = 1;
728   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
729   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
730   /* Possible TSAN false-positive.  See tag-20200519-1 */
731   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
732   walShmBarrier(pWal);
733   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
734 }
735 
736 /*
737 ** This function encodes a single frame header and writes it to a buffer
738 ** supplied by the caller. A frame-header is made up of a series of
739 ** 4-byte big-endian integers, as follows:
740 **
741 **     0: Page number.
742 **     4: For commit records, the size of the database image in pages
743 **        after the commit. For all other records, zero.
744 **     8: Salt-1 (copied from the wal-header)
745 **    12: Salt-2 (copied from the wal-header)
746 **    16: Checksum-1.
747 **    20: Checksum-2.
748 */
749 static void walEncodeFrame(
750   Wal *pWal,                      /* The write-ahead log */
751   u32 iPage,                      /* Database page number for frame */
752   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
753   u8 *aData,                      /* Pointer to page data */
754   u8 *aFrame                      /* OUT: Write encoded frame here */
755 ){
756   int nativeCksum;                /* True for native byte-order checksums */
757   u32 *aCksum = pWal->hdr.aFrameCksum;
758   assert( WAL_FRAME_HDRSIZE==24 );
759   sqlite3Put4byte(&aFrame[0], iPage);
760   sqlite3Put4byte(&aFrame[4], nTruncate);
761   if( pWal->iReCksum==0 ){
762     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
763 
764     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
767 
768     sqlite3Put4byte(&aFrame[16], aCksum[0]);
769     sqlite3Put4byte(&aFrame[20], aCksum[1]);
770   }else{
771     memset(&aFrame[8], 0, 16);
772   }
773 }
774 
775 /*
776 ** Check to see if the frame with header in aFrame[] and content
777 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
778 ** *pnTruncate and return true.  Return if the frame is not valid.
779 */
780 static int walDecodeFrame(
781   Wal *pWal,                      /* The write-ahead log */
782   u32 *piPage,                    /* OUT: Database page number for frame */
783   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
784   u8 *aData,                      /* Pointer to page data (for checksum) */
785   u8 *aFrame                      /* Frame data */
786 ){
787   int nativeCksum;                /* True for native byte-order checksums */
788   u32 *aCksum = pWal->hdr.aFrameCksum;
789   u32 pgno;                       /* Page number of the frame */
790   assert( WAL_FRAME_HDRSIZE==24 );
791 
792   /* A frame is only valid if the salt values in the frame-header
793   ** match the salt values in the wal-header.
794   */
795   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
796     return 0;
797   }
798 
799   /* A frame is only valid if the page number is creater than zero.
800   */
801   pgno = sqlite3Get4byte(&aFrame[0]);
802   if( pgno==0 ){
803     return 0;
804   }
805 
806   /* A frame is only valid if a checksum of the WAL header,
807   ** all prior frams, the first 16 bytes of this frame-header,
808   ** and the frame-data matches the checksum in the last 8
809   ** bytes of this frame-header.
810   */
811   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
812   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
813   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
814   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
815    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
816   ){
817     /* Checksum failed. */
818     return 0;
819   }
820 
821   /* If we reach this point, the frame is valid.  Return the page number
822   ** and the new database size.
823   */
824   *piPage = pgno;
825   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
826   return 1;
827 }
828 
829 
830 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
831 /*
832 ** Names of locks.  This routine is used to provide debugging output and is not
833 ** a part of an ordinary build.
834 */
835 static const char *walLockName(int lockIdx){
836   if( lockIdx==WAL_WRITE_LOCK ){
837     return "WRITE-LOCK";
838   }else if( lockIdx==WAL_CKPT_LOCK ){
839     return "CKPT-LOCK";
840   }else if( lockIdx==WAL_RECOVER_LOCK ){
841     return "RECOVER-LOCK";
842   }else{
843     static char zName[15];
844     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
845                      lockIdx-WAL_READ_LOCK(0));
846     return zName;
847   }
848 }
849 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
850 
851 
852 /*
853 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
854 ** A lock cannot be moved directly between shared and exclusive - it must go
855 ** through the unlocked state first.
856 **
857 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
858 */
859 static int walLockShared(Wal *pWal, int lockIdx){
860   int rc;
861   if( pWal->exclusiveMode ) return SQLITE_OK;
862   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
863                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
864   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
865             walLockName(lockIdx), rc ? "failed" : "ok"));
866   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
867   return rc;
868 }
869 static void walUnlockShared(Wal *pWal, int lockIdx){
870   if( pWal->exclusiveMode ) return;
871   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
872                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
873   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
874 }
875 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
876   int rc;
877   if( pWal->exclusiveMode ) return SQLITE_OK;
878   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
879                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
880   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
881             walLockName(lockIdx), n, rc ? "failed" : "ok"));
882   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
883   return rc;
884 }
885 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
886   if( pWal->exclusiveMode ) return;
887   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
888                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
889   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
890              walLockName(lockIdx), n));
891 }
892 
893 /*
894 ** Compute a hash on a page number.  The resulting hash value must land
895 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
896 ** the hash to the next value in the event of a collision.
897 */
898 static int walHash(u32 iPage){
899   assert( iPage>0 );
900   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
901   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
902 }
903 static int walNextHash(int iPriorHash){
904   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
905 }
906 
907 /*
908 ** An instance of the WalHashLoc object is used to describe the location
909 ** of a page hash table in the wal-index.  This becomes the return value
910 ** from walHashGet().
911 */
912 typedef struct WalHashLoc WalHashLoc;
913 struct WalHashLoc {
914   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
915   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
916   u32 iZero;                /* One less than the frame number of first indexed*/
917 };
918 
919 /*
920 ** Return pointers to the hash table and page number array stored on
921 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
922 ** numbered starting from 0.
923 **
924 ** Set output variable pLoc->aHash to point to the start of the hash table
925 ** in the wal-index file. Set pLoc->iZero to one less than the frame
926 ** number of the first frame indexed by this hash table. If a
927 ** slot in the hash table is set to N, it refers to frame number
928 ** (pLoc->iZero+N) in the log.
929 **
930 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
931 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
932 */
933 static int walHashGet(
934   Wal *pWal,                      /* WAL handle */
935   int iHash,                      /* Find the iHash'th table */
936   WalHashLoc *pLoc                /* OUT: Hash table location */
937 ){
938   int rc;                         /* Return code */
939 
940   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
941   assert( rc==SQLITE_OK || iHash>0 );
942 
943   if( rc==SQLITE_OK ){
944     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
945     if( iHash==0 ){
946       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
947       pLoc->iZero = 0;
948     }else{
949       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
950     }
951     pLoc->aPgno = &pLoc->aPgno[-1];
952   }
953   return rc;
954 }
955 
956 /*
957 ** Return the number of the wal-index page that contains the hash-table
958 ** and page-number array that contain entries corresponding to WAL frame
959 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
960 ** are numbered starting from 0.
961 */
962 static int walFramePage(u32 iFrame){
963   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
964   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
965        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
966        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
967        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
968        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
969   );
970   return iHash;
971 }
972 
973 /*
974 ** Return the page number associated with frame iFrame in this WAL.
975 */
976 static u32 walFramePgno(Wal *pWal, u32 iFrame){
977   int iHash = walFramePage(iFrame);
978   if( iHash==0 ){
979     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
980   }
981   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
982 }
983 
984 /*
985 ** Remove entries from the hash table that point to WAL slots greater
986 ** than pWal->hdr.mxFrame.
987 **
988 ** This function is called whenever pWal->hdr.mxFrame is decreased due
989 ** to a rollback or savepoint.
990 **
991 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
992 ** updated.  Any later hash tables will be automatically cleared when
993 ** pWal->hdr.mxFrame advances to the point where those hash tables are
994 ** actually needed.
995 */
996 static void walCleanupHash(Wal *pWal){
997   WalHashLoc sLoc;                /* Hash table location */
998   int iLimit = 0;                 /* Zero values greater than this */
999   int nByte;                      /* Number of bytes to zero in aPgno[] */
1000   int i;                          /* Used to iterate through aHash[] */
1001   int rc;                         /* Return code form walHashGet() */
1002 
1003   assert( pWal->writeLock );
1004   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1005   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1006   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1007 
1008   if( pWal->hdr.mxFrame==0 ) return;
1009 
1010   /* Obtain pointers to the hash-table and page-number array containing
1011   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1012   ** that the page said hash-table and array reside on is already mapped.(1)
1013   */
1014   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1015   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1016   rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1017   if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1018 
1019   /* Zero all hash-table entries that correspond to frame numbers greater
1020   ** than pWal->hdr.mxFrame.
1021   */
1022   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1023   assert( iLimit>0 );
1024   for(i=0; i<HASHTABLE_NSLOT; i++){
1025     if( sLoc.aHash[i]>iLimit ){
1026       sLoc.aHash[i] = 0;
1027     }
1028   }
1029 
1030   /* Zero the entries in the aPgno array that correspond to frames with
1031   ** frame numbers greater than pWal->hdr.mxFrame.
1032   */
1033   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1034   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1035 
1036 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1037   /* Verify that the every entry in the mapping region is still reachable
1038   ** via the hash table even after the cleanup.
1039   */
1040   if( iLimit ){
1041     int j;           /* Loop counter */
1042     int iKey;        /* Hash key */
1043     for(j=1; j<=iLimit; j++){
1044       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1045         if( sLoc.aHash[iKey]==j ) break;
1046       }
1047       assert( sLoc.aHash[iKey]==j );
1048     }
1049   }
1050 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1051 }
1052 
1053 
1054 /*
1055 ** Set an entry in the wal-index that will map database page number
1056 ** pPage into WAL frame iFrame.
1057 */
1058 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1059   int rc;                         /* Return code */
1060   WalHashLoc sLoc;                /* Wal-index hash table location */
1061 
1062   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1063 
1064   /* Assuming the wal-index file was successfully mapped, populate the
1065   ** page number array and hash table entry.
1066   */
1067   if( rc==SQLITE_OK ){
1068     int iKey;                     /* Hash table key */
1069     int idx;                      /* Value to write to hash-table slot */
1070     int nCollide;                 /* Number of hash collisions */
1071 
1072     idx = iFrame - sLoc.iZero;
1073     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1074 
1075     /* If this is the first entry to be added to this hash-table, zero the
1076     ** entire hash table and aPgno[] array before proceeding.
1077     */
1078     if( idx==1 ){
1079       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1080                                - (u8 *)&sLoc.aPgno[1]);
1081       memset((void*)&sLoc.aPgno[1], 0, nByte);
1082     }
1083 
1084     /* If the entry in aPgno[] is already set, then the previous writer
1085     ** must have exited unexpectedly in the middle of a transaction (after
1086     ** writing one or more dirty pages to the WAL to free up memory).
1087     ** Remove the remnants of that writers uncommitted transaction from
1088     ** the hash-table before writing any new entries.
1089     */
1090     if( sLoc.aPgno[idx] ){
1091       walCleanupHash(pWal);
1092       assert( !sLoc.aPgno[idx] );
1093     }
1094 
1095     /* Write the aPgno[] array entry and the hash-table slot. */
1096     nCollide = idx;
1097     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1098       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1099     }
1100     sLoc.aPgno[idx] = iPage;
1101     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1102 
1103 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1104     /* Verify that the number of entries in the hash table exactly equals
1105     ** the number of entries in the mapping region.
1106     */
1107     {
1108       int i;           /* Loop counter */
1109       int nEntry = 0;  /* Number of entries in the hash table */
1110       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1111       assert( nEntry==idx );
1112     }
1113 
1114     /* Verify that the every entry in the mapping region is reachable
1115     ** via the hash table.  This turns out to be a really, really expensive
1116     ** thing to check, so only do this occasionally - not on every
1117     ** iteration.
1118     */
1119     if( (idx&0x3ff)==0 ){
1120       int i;           /* Loop counter */
1121       for(i=1; i<=idx; i++){
1122         for(iKey=walHash(sLoc.aPgno[i]);
1123             sLoc.aHash[iKey];
1124             iKey=walNextHash(iKey)){
1125           if( sLoc.aHash[iKey]==i ) break;
1126         }
1127         assert( sLoc.aHash[iKey]==i );
1128       }
1129     }
1130 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1131   }
1132 
1133 
1134   return rc;
1135 }
1136 
1137 
1138 /*
1139 ** Recover the wal-index by reading the write-ahead log file.
1140 **
1141 ** This routine first tries to establish an exclusive lock on the
1142 ** wal-index to prevent other threads/processes from doing anything
1143 ** with the WAL or wal-index while recovery is running.  The
1144 ** WAL_RECOVER_LOCK is also held so that other threads will know
1145 ** that this thread is running recovery.  If unable to establish
1146 ** the necessary locks, this routine returns SQLITE_BUSY.
1147 */
1148 static int walIndexRecover(Wal *pWal){
1149   int rc;                         /* Return Code */
1150   i64 nSize;                      /* Size of log file */
1151   u32 aFrameCksum[2] = {0, 0};
1152   int iLock;                      /* Lock offset to lock for checkpoint */
1153 
1154   /* Obtain an exclusive lock on all byte in the locking range not already
1155   ** locked by the caller. The caller is guaranteed to have locked the
1156   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1157   ** If successful, the same bytes that are locked here are unlocked before
1158   ** this function returns.
1159   */
1160   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1161   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1162   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1163   assert( pWal->writeLock );
1164   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1165   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1166   if( rc ){
1167     return rc;
1168   }
1169 
1170   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1171 
1172   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1173 
1174   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1175   if( rc!=SQLITE_OK ){
1176     goto recovery_error;
1177   }
1178 
1179   if( nSize>WAL_HDRSIZE ){
1180     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1181     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1182     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1183     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1184     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1185     int szPage;                   /* Page size according to the log */
1186     u32 magic;                    /* Magic value read from WAL header */
1187     u32 version;                  /* Magic value read from WAL header */
1188     int isValid;                  /* True if this frame is valid */
1189     int iPg;                      /* Current 32KB wal-index page */
1190     int iLastFrame;               /* Last frame in wal, based on nSize alone */
1191 
1192     /* Read in the WAL header. */
1193     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1194     if( rc!=SQLITE_OK ){
1195       goto recovery_error;
1196     }
1197 
1198     /* If the database page size is not a power of two, or is greater than
1199     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1200     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1201     ** WAL file.
1202     */
1203     magic = sqlite3Get4byte(&aBuf[0]);
1204     szPage = sqlite3Get4byte(&aBuf[8]);
1205     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1206      || szPage&(szPage-1)
1207      || szPage>SQLITE_MAX_PAGE_SIZE
1208      || szPage<512
1209     ){
1210       goto finished;
1211     }
1212     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1213     pWal->szPage = szPage;
1214     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1215     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1216 
1217     /* Verify that the WAL header checksum is correct */
1218     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1219         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1220     );
1221     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1222      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1223     ){
1224       goto finished;
1225     }
1226 
1227     /* Verify that the version number on the WAL format is one that
1228     ** are able to understand */
1229     version = sqlite3Get4byte(&aBuf[4]);
1230     if( version!=WAL_MAX_VERSION ){
1231       rc = SQLITE_CANTOPEN_BKPT;
1232       goto finished;
1233     }
1234 
1235     /* Malloc a buffer to read frames into. */
1236     szFrame = szPage + WAL_FRAME_HDRSIZE;
1237     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1238     if( !aFrame ){
1239       rc = SQLITE_NOMEM_BKPT;
1240       goto recovery_error;
1241     }
1242     aData = &aFrame[WAL_FRAME_HDRSIZE];
1243     aPrivate = (u32*)&aData[szPage];
1244 
1245     /* Read all frames from the log file. */
1246     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1247     for(iPg=0; iPg<=walFramePage(iLastFrame); iPg++){
1248       u32 *aShare;
1249       int iFrame;                 /* Index of last frame read */
1250       int iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1251       int iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1252       int nHdr, nHdr32;
1253       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1254       if( rc ) break;
1255       pWal->apWiData[iPg] = aPrivate;
1256 
1257       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1258         i64 iOffset = walFrameOffset(iFrame, szPage);
1259         u32 pgno;                 /* Database page number for frame */
1260         u32 nTruncate;            /* dbsize field from frame header */
1261 
1262         /* Read and decode the next log frame. */
1263         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1264         if( rc!=SQLITE_OK ) break;
1265         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1266         if( !isValid ) break;
1267         rc = walIndexAppend(pWal, iFrame, pgno);
1268         if( NEVER(rc!=SQLITE_OK) ) break;
1269 
1270         /* If nTruncate is non-zero, this is a commit record. */
1271         if( nTruncate ){
1272           pWal->hdr.mxFrame = iFrame;
1273           pWal->hdr.nPage = nTruncate;
1274           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1275           testcase( szPage<=32768 );
1276           testcase( szPage>=65536 );
1277           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1278           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1279         }
1280       }
1281       pWal->apWiData[iPg] = aShare;
1282       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1283       nHdr32 = nHdr / sizeof(u32);
1284       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1285       if( iFrame<=iLast ) break;
1286     }
1287 
1288     sqlite3_free(aFrame);
1289   }
1290 
1291 finished:
1292   if( rc==SQLITE_OK ){
1293     volatile WalCkptInfo *pInfo;
1294     int i;
1295     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1296     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1297     walIndexWriteHdr(pWal);
1298 
1299     /* Reset the checkpoint-header. This is safe because this thread is
1300     ** currently holding locks that exclude all other writers and
1301     ** checkpointers. Then set the values of read-mark slots 1 through N.
1302     */
1303     pInfo = walCkptInfo(pWal);
1304     pInfo->nBackfill = 0;
1305     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1306     pInfo->aReadMark[0] = 0;
1307     for(i=1; i<WAL_NREADER; i++){
1308       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1309       if( rc==SQLITE_OK ){
1310         if( i==1 && pWal->hdr.mxFrame ){
1311           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1312         }else{
1313           pInfo->aReadMark[i] = READMARK_NOT_USED;
1314         }
1315         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1316       }else if( rc!=SQLITE_BUSY ){
1317         goto recovery_error;
1318       }
1319     }
1320 
1321     /* If more than one frame was recovered from the log file, report an
1322     ** event via sqlite3_log(). This is to help with identifying performance
1323     ** problems caused by applications routinely shutting down without
1324     ** checkpointing the log file.
1325     */
1326     if( pWal->hdr.nPage ){
1327       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1328           "recovered %d frames from WAL file %s",
1329           pWal->hdr.mxFrame, pWal->zWalName
1330       );
1331     }
1332   }
1333 
1334 recovery_error:
1335   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1336   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1337   return rc;
1338 }
1339 
1340 /*
1341 ** Close an open wal-index.
1342 */
1343 static void walIndexClose(Wal *pWal, int isDelete){
1344   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1345     int i;
1346     for(i=0; i<pWal->nWiData; i++){
1347       sqlite3_free((void *)pWal->apWiData[i]);
1348       pWal->apWiData[i] = 0;
1349     }
1350   }
1351   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1352     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1353   }
1354 }
1355 
1356 /*
1357 ** Open a connection to the WAL file zWalName. The database file must
1358 ** already be opened on connection pDbFd. The buffer that zWalName points
1359 ** to must remain valid for the lifetime of the returned Wal* handle.
1360 **
1361 ** A SHARED lock should be held on the database file when this function
1362 ** is called. The purpose of this SHARED lock is to prevent any other
1363 ** client from unlinking the WAL or wal-index file. If another process
1364 ** were to do this just after this client opened one of these files, the
1365 ** system would be badly broken.
1366 **
1367 ** If the log file is successfully opened, SQLITE_OK is returned and
1368 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1369 ** an SQLite error code is returned and *ppWal is left unmodified.
1370 */
1371 int sqlite3WalOpen(
1372   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1373   sqlite3_file *pDbFd,            /* The open database file */
1374   const char *zWalName,           /* Name of the WAL file */
1375   int bNoShm,                     /* True to run in heap-memory mode */
1376   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1377   Wal **ppWal                     /* OUT: Allocated Wal handle */
1378 ){
1379   int rc;                         /* Return Code */
1380   Wal *pRet;                      /* Object to allocate and return */
1381   int flags;                      /* Flags passed to OsOpen() */
1382 
1383   assert( zWalName && zWalName[0] );
1384   assert( pDbFd );
1385 
1386   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1387   ** this source file.  Verify that the #defines of the locking byte offsets
1388   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1389   ** For that matter, if the lock offset ever changes from its initial design
1390   ** value of 120, we need to know that so there is an assert() to check it.
1391   */
1392   assert( 120==WALINDEX_LOCK_OFFSET );
1393   assert( 136==WALINDEX_HDR_SIZE );
1394 #ifdef WIN_SHM_BASE
1395   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1396 #endif
1397 #ifdef UNIX_SHM_BASE
1398   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1399 #endif
1400 
1401 
1402   /* Allocate an instance of struct Wal to return. */
1403   *ppWal = 0;
1404   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1405   if( !pRet ){
1406     return SQLITE_NOMEM_BKPT;
1407   }
1408 
1409   pRet->pVfs = pVfs;
1410   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1411   pRet->pDbFd = pDbFd;
1412   pRet->readLock = -1;
1413   pRet->mxWalSize = mxWalSize;
1414   pRet->zWalName = zWalName;
1415   pRet->syncHeader = 1;
1416   pRet->padToSectorBoundary = 1;
1417   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1418 
1419   /* Open file handle on the write-ahead log file. */
1420   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1421   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1422   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1423     pRet->readOnly = WAL_RDONLY;
1424   }
1425 
1426   if( rc!=SQLITE_OK ){
1427     walIndexClose(pRet, 0);
1428     sqlite3OsClose(pRet->pWalFd);
1429     sqlite3_free(pRet);
1430   }else{
1431     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1432     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1433     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1434       pRet->padToSectorBoundary = 0;
1435     }
1436     *ppWal = pRet;
1437     WALTRACE(("WAL%d: opened\n", pRet));
1438   }
1439   return rc;
1440 }
1441 
1442 /*
1443 ** Change the size to which the WAL file is trucated on each reset.
1444 */
1445 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1446   if( pWal ) pWal->mxWalSize = iLimit;
1447 }
1448 
1449 /*
1450 ** Find the smallest page number out of all pages held in the WAL that
1451 ** has not been returned by any prior invocation of this method on the
1452 ** same WalIterator object.   Write into *piFrame the frame index where
1453 ** that page was last written into the WAL.  Write into *piPage the page
1454 ** number.
1455 **
1456 ** Return 0 on success.  If there are no pages in the WAL with a page
1457 ** number larger than *piPage, then return 1.
1458 */
1459 static int walIteratorNext(
1460   WalIterator *p,               /* Iterator */
1461   u32 *piPage,                  /* OUT: The page number of the next page */
1462   u32 *piFrame                  /* OUT: Wal frame index of next page */
1463 ){
1464   u32 iMin;                     /* Result pgno must be greater than iMin */
1465   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1466   int i;                        /* For looping through segments */
1467 
1468   iMin = p->iPrior;
1469   assert( iMin<0xffffffff );
1470   for(i=p->nSegment-1; i>=0; i--){
1471     struct WalSegment *pSegment = &p->aSegment[i];
1472     while( pSegment->iNext<pSegment->nEntry ){
1473       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1474       if( iPg>iMin ){
1475         if( iPg<iRet ){
1476           iRet = iPg;
1477           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1478         }
1479         break;
1480       }
1481       pSegment->iNext++;
1482     }
1483   }
1484 
1485   *piPage = p->iPrior = iRet;
1486   return (iRet==0xFFFFFFFF);
1487 }
1488 
1489 /*
1490 ** This function merges two sorted lists into a single sorted list.
1491 **
1492 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1493 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1494 ** is guaranteed for all J<K:
1495 **
1496 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1497 **        aContent[aRight[J]] < aContent[aRight[K]]
1498 **
1499 ** This routine overwrites aRight[] with a new (probably longer) sequence
1500 ** of indices such that the aRight[] contains every index that appears in
1501 ** either aLeft[] or the old aRight[] and such that the second condition
1502 ** above is still met.
1503 **
1504 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1505 ** aContent[aRight[X]] values will be unique too.  But there might be
1506 ** one or more combinations of X and Y such that
1507 **
1508 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1509 **
1510 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1511 */
1512 static void walMerge(
1513   const u32 *aContent,            /* Pages in wal - keys for the sort */
1514   ht_slot *aLeft,                 /* IN: Left hand input list */
1515   int nLeft,                      /* IN: Elements in array *paLeft */
1516   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1517   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1518   ht_slot *aTmp                   /* Temporary buffer */
1519 ){
1520   int iLeft = 0;                  /* Current index in aLeft */
1521   int iRight = 0;                 /* Current index in aRight */
1522   int iOut = 0;                   /* Current index in output buffer */
1523   int nRight = *pnRight;
1524   ht_slot *aRight = *paRight;
1525 
1526   assert( nLeft>0 && nRight>0 );
1527   while( iRight<nRight || iLeft<nLeft ){
1528     ht_slot logpage;
1529     Pgno dbpage;
1530 
1531     if( (iLeft<nLeft)
1532      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1533     ){
1534       logpage = aLeft[iLeft++];
1535     }else{
1536       logpage = aRight[iRight++];
1537     }
1538     dbpage = aContent[logpage];
1539 
1540     aTmp[iOut++] = logpage;
1541     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1542 
1543     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1544     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1545   }
1546 
1547   *paRight = aLeft;
1548   *pnRight = iOut;
1549   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1550 }
1551 
1552 /*
1553 ** Sort the elements in list aList using aContent[] as the sort key.
1554 ** Remove elements with duplicate keys, preferring to keep the
1555 ** larger aList[] values.
1556 **
1557 ** The aList[] entries are indices into aContent[].  The values in
1558 ** aList[] are to be sorted so that for all J<K:
1559 **
1560 **      aContent[aList[J]] < aContent[aList[K]]
1561 **
1562 ** For any X and Y such that
1563 **
1564 **      aContent[aList[X]] == aContent[aList[Y]]
1565 **
1566 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1567 ** the smaller.
1568 */
1569 static void walMergesort(
1570   const u32 *aContent,            /* Pages in wal */
1571   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1572   ht_slot *aList,                 /* IN/OUT: List to sort */
1573   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1574 ){
1575   struct Sublist {
1576     int nList;                    /* Number of elements in aList */
1577     ht_slot *aList;               /* Pointer to sub-list content */
1578   };
1579 
1580   const int nList = *pnList;      /* Size of input list */
1581   int nMerge = 0;                 /* Number of elements in list aMerge */
1582   ht_slot *aMerge = 0;            /* List to be merged */
1583   int iList;                      /* Index into input list */
1584   u32 iSub = 0;                   /* Index into aSub array */
1585   struct Sublist aSub[13];        /* Array of sub-lists */
1586 
1587   memset(aSub, 0, sizeof(aSub));
1588   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1589   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1590 
1591   for(iList=0; iList<nList; iList++){
1592     nMerge = 1;
1593     aMerge = &aList[iList];
1594     for(iSub=0; iList & (1<<iSub); iSub++){
1595       struct Sublist *p;
1596       assert( iSub<ArraySize(aSub) );
1597       p = &aSub[iSub];
1598       assert( p->aList && p->nList<=(1<<iSub) );
1599       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1600       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1601     }
1602     aSub[iSub].aList = aMerge;
1603     aSub[iSub].nList = nMerge;
1604   }
1605 
1606   for(iSub++; iSub<ArraySize(aSub); iSub++){
1607     if( nList & (1<<iSub) ){
1608       struct Sublist *p;
1609       assert( iSub<ArraySize(aSub) );
1610       p = &aSub[iSub];
1611       assert( p->nList<=(1<<iSub) );
1612       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1613       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1614     }
1615   }
1616   assert( aMerge==aList );
1617   *pnList = nMerge;
1618 
1619 #ifdef SQLITE_DEBUG
1620   {
1621     int i;
1622     for(i=1; i<*pnList; i++){
1623       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1624     }
1625   }
1626 #endif
1627 }
1628 
1629 /*
1630 ** Free an iterator allocated by walIteratorInit().
1631 */
1632 static void walIteratorFree(WalIterator *p){
1633   sqlite3_free(p);
1634 }
1635 
1636 /*
1637 ** Construct a WalInterator object that can be used to loop over all
1638 ** pages in the WAL following frame nBackfill in ascending order. Frames
1639 ** nBackfill or earlier may be included - excluding them is an optimization
1640 ** only. The caller must hold the checkpoint lock.
1641 **
1642 ** On success, make *pp point to the newly allocated WalInterator object
1643 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1644 ** returns an error, the value of *pp is undefined.
1645 **
1646 ** The calling routine should invoke walIteratorFree() to destroy the
1647 ** WalIterator object when it has finished with it.
1648 */
1649 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1650   WalIterator *p;                 /* Return value */
1651   int nSegment;                   /* Number of segments to merge */
1652   u32 iLast;                      /* Last frame in log */
1653   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1654   int i;                          /* Iterator variable */
1655   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1656   int rc = SQLITE_OK;             /* Return Code */
1657 
1658   /* This routine only runs while holding the checkpoint lock. And
1659   ** it only runs if there is actually content in the log (mxFrame>0).
1660   */
1661   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1662   iLast = pWal->hdr.mxFrame;
1663 
1664   /* Allocate space for the WalIterator object. */
1665   nSegment = walFramePage(iLast) + 1;
1666   nByte = sizeof(WalIterator)
1667         + (nSegment-1)*sizeof(struct WalSegment)
1668         + iLast*sizeof(ht_slot);
1669   p = (WalIterator *)sqlite3_malloc64(nByte);
1670   if( !p ){
1671     return SQLITE_NOMEM_BKPT;
1672   }
1673   memset(p, 0, nByte);
1674   p->nSegment = nSegment;
1675 
1676   /* Allocate temporary space used by the merge-sort routine. This block
1677   ** of memory will be freed before this function returns.
1678   */
1679   aTmp = (ht_slot *)sqlite3_malloc64(
1680       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1681   );
1682   if( !aTmp ){
1683     rc = SQLITE_NOMEM_BKPT;
1684   }
1685 
1686   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1687     WalHashLoc sLoc;
1688 
1689     rc = walHashGet(pWal, i, &sLoc);
1690     if( rc==SQLITE_OK ){
1691       int j;                      /* Counter variable */
1692       int nEntry;                 /* Number of entries in this segment */
1693       ht_slot *aIndex;            /* Sorted index for this segment */
1694 
1695       sLoc.aPgno++;
1696       if( (i+1)==nSegment ){
1697         nEntry = (int)(iLast - sLoc.iZero);
1698       }else{
1699         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1700       }
1701       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1702       sLoc.iZero++;
1703 
1704       for(j=0; j<nEntry; j++){
1705         aIndex[j] = (ht_slot)j;
1706       }
1707       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1708       p->aSegment[i].iZero = sLoc.iZero;
1709       p->aSegment[i].nEntry = nEntry;
1710       p->aSegment[i].aIndex = aIndex;
1711       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1712     }
1713   }
1714   sqlite3_free(aTmp);
1715 
1716   if( rc!=SQLITE_OK ){
1717     walIteratorFree(p);
1718     p = 0;
1719   }
1720   *pp = p;
1721   return rc;
1722 }
1723 
1724 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1725 /*
1726 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1727 ** they are supported by the VFS, and (b) the database handle is configured
1728 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1729 ** or 0 otherwise.
1730 */
1731 static int walEnableBlocking(Wal *pWal){
1732   int res = 0;
1733   if( pWal->db ){
1734     int tmout = pWal->db->busyTimeout;
1735     if( tmout ){
1736       int rc;
1737       rc = sqlite3OsFileControl(
1738           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1739       );
1740       res = (rc==SQLITE_OK);
1741     }
1742   }
1743   return res;
1744 }
1745 
1746 /*
1747 ** Disable blocking locks.
1748 */
1749 static void walDisableBlocking(Wal *pWal){
1750   int tmout = 0;
1751   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1752 }
1753 
1754 /*
1755 ** If parameter bLock is true, attempt to enable blocking locks, take
1756 ** the WRITER lock, and then disable blocking locks. If blocking locks
1757 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1758 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1759 ** an error if blocking locks can not be enabled.
1760 **
1761 ** If the bLock parameter is false and the WRITER lock is held, release it.
1762 */
1763 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1764   int rc = SQLITE_OK;
1765   assert( pWal->readLock<0 || bLock==0 );
1766   if( bLock ){
1767     assert( pWal->db );
1768     if( walEnableBlocking(pWal) ){
1769       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1770       if( rc==SQLITE_OK ){
1771         pWal->writeLock = 1;
1772       }
1773       walDisableBlocking(pWal);
1774     }
1775   }else if( pWal->writeLock ){
1776     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1777     pWal->writeLock = 0;
1778   }
1779   return rc;
1780 }
1781 
1782 /*
1783 ** Set the database handle used to determine if blocking locks are required.
1784 */
1785 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1786   pWal->db = db;
1787 }
1788 
1789 /*
1790 ** Take an exclusive WRITE lock. Blocking if so configured.
1791 */
1792 static int walLockWriter(Wal *pWal){
1793   int rc;
1794   walEnableBlocking(pWal);
1795   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1796   walDisableBlocking(pWal);
1797   return rc;
1798 }
1799 #else
1800 # define walEnableBlocking(x) 0
1801 # define walDisableBlocking(x)
1802 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1803 # define sqlite3WalDb(pWal, db)
1804 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1805 
1806 
1807 /*
1808 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1809 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1810 ** busy-handler function. Invoke it and retry the lock until either the
1811 ** lock is successfully obtained or the busy-handler returns 0.
1812 */
1813 static int walBusyLock(
1814   Wal *pWal,                      /* WAL connection */
1815   int (*xBusy)(void*),            /* Function to call when busy */
1816   void *pBusyArg,                 /* Context argument for xBusyHandler */
1817   int lockIdx,                    /* Offset of first byte to lock */
1818   int n                           /* Number of bytes to lock */
1819 ){
1820   int rc;
1821   do {
1822     rc = walLockExclusive(pWal, lockIdx, n);
1823   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1824 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1825   if( rc==SQLITE_BUSY_TIMEOUT ){
1826     walDisableBlocking(pWal);
1827     rc = SQLITE_BUSY;
1828   }
1829 #endif
1830   return rc;
1831 }
1832 
1833 /*
1834 ** The cache of the wal-index header must be valid to call this function.
1835 ** Return the page-size in bytes used by the database.
1836 */
1837 static int walPagesize(Wal *pWal){
1838   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1839 }
1840 
1841 /*
1842 ** The following is guaranteed when this function is called:
1843 **
1844 **   a) the WRITER lock is held,
1845 **   b) the entire log file has been checkpointed, and
1846 **   c) any existing readers are reading exclusively from the database
1847 **      file - there are no readers that may attempt to read a frame from
1848 **      the log file.
1849 **
1850 ** This function updates the shared-memory structures so that the next
1851 ** client to write to the database (which may be this one) does so by
1852 ** writing frames into the start of the log file.
1853 **
1854 ** The value of parameter salt1 is used as the aSalt[1] value in the
1855 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1856 ** one obtained from sqlite3_randomness()).
1857 */
1858 static void walRestartHdr(Wal *pWal, u32 salt1){
1859   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1860   int i;                          /* Loop counter */
1861   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1862   pWal->nCkpt++;
1863   pWal->hdr.mxFrame = 0;
1864   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1865   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1866   walIndexWriteHdr(pWal);
1867   AtomicStore(&pInfo->nBackfill, 0);
1868   pInfo->nBackfillAttempted = 0;
1869   pInfo->aReadMark[1] = 0;
1870   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1871   assert( pInfo->aReadMark[0]==0 );
1872 }
1873 
1874 /*
1875 ** Copy as much content as we can from the WAL back into the database file
1876 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1877 **
1878 ** The amount of information copies from WAL to database might be limited
1879 ** by active readers.  This routine will never overwrite a database page
1880 ** that a concurrent reader might be using.
1881 **
1882 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1883 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1884 ** checkpoints are always run by a background thread or background
1885 ** process, foreground threads will never block on a lengthy fsync call.
1886 **
1887 ** Fsync is called on the WAL before writing content out of the WAL and
1888 ** into the database.  This ensures that if the new content is persistent
1889 ** in the WAL and can be recovered following a power-loss or hard reset.
1890 **
1891 ** Fsync is also called on the database file if (and only if) the entire
1892 ** WAL content is copied into the database file.  This second fsync makes
1893 ** it safe to delete the WAL since the new content will persist in the
1894 ** database file.
1895 **
1896 ** This routine uses and updates the nBackfill field of the wal-index header.
1897 ** This is the only routine that will increase the value of nBackfill.
1898 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1899 ** its value.)
1900 **
1901 ** The caller must be holding sufficient locks to ensure that no other
1902 ** checkpoint is running (in any other thread or process) at the same
1903 ** time.
1904 */
1905 static int walCheckpoint(
1906   Wal *pWal,                      /* Wal connection */
1907   sqlite3 *db,                    /* Check for interrupts on this handle */
1908   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1909   int (*xBusy)(void*),            /* Function to call when busy */
1910   void *pBusyArg,                 /* Context argument for xBusyHandler */
1911   int sync_flags,                 /* Flags for OsSync() (or 0) */
1912   u8 *zBuf                        /* Temporary buffer to use */
1913 ){
1914   int rc = SQLITE_OK;             /* Return code */
1915   int szPage;                     /* Database page-size */
1916   WalIterator *pIter = 0;         /* Wal iterator context */
1917   u32 iDbpage = 0;                /* Next database page to write */
1918   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1919   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1920   u32 mxPage;                     /* Max database page to write */
1921   int i;                          /* Loop counter */
1922   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1923 
1924   szPage = walPagesize(pWal);
1925   testcase( szPage<=32768 );
1926   testcase( szPage>=65536 );
1927   pInfo = walCkptInfo(pWal);
1928   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1929 
1930     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1931     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1932     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1933 
1934     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1935     ** safe to write into the database.  Frames beyond mxSafeFrame might
1936     ** overwrite database pages that are in use by active readers and thus
1937     ** cannot be backfilled from the WAL.
1938     */
1939     mxSafeFrame = pWal->hdr.mxFrame;
1940     mxPage = pWal->hdr.nPage;
1941     for(i=1; i<WAL_NREADER; i++){
1942       u32 y = AtomicLoad(pInfo->aReadMark+i);
1943       if( mxSafeFrame>y ){
1944         assert( y<=pWal->hdr.mxFrame );
1945         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1946         if( rc==SQLITE_OK ){
1947           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1948           AtomicStore(pInfo->aReadMark+i, iMark);
1949           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1950         }else if( rc==SQLITE_BUSY ){
1951           mxSafeFrame = y;
1952           xBusy = 0;
1953         }else{
1954           goto walcheckpoint_out;
1955         }
1956       }
1957     }
1958 
1959     /* Allocate the iterator */
1960     if( pInfo->nBackfill<mxSafeFrame ){
1961       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1962       assert( rc==SQLITE_OK || pIter==0 );
1963     }
1964 
1965     if( pIter
1966      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
1967     ){
1968       u32 nBackfill = pInfo->nBackfill;
1969 
1970       pInfo->nBackfillAttempted = mxSafeFrame;
1971 
1972       /* Sync the WAL to disk */
1973       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1974 
1975       /* If the database may grow as a result of this checkpoint, hint
1976       ** about the eventual size of the db file to the VFS layer.
1977       */
1978       if( rc==SQLITE_OK ){
1979         i64 nReq = ((i64)mxPage * szPage);
1980         i64 nSize;                    /* Current size of database file */
1981         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
1982         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1983         if( rc==SQLITE_OK && nSize<nReq ){
1984           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1985         }
1986       }
1987 
1988 
1989       /* Iterate through the contents of the WAL, copying data to the db file */
1990       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1991         i64 iOffset;
1992         assert( walFramePgno(pWal, iFrame)==iDbpage );
1993         if( AtomicLoad(&db->u1.isInterrupted) ){
1994           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1995           break;
1996         }
1997         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1998           continue;
1999         }
2000         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2001         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2002         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2003         if( rc!=SQLITE_OK ) break;
2004         iOffset = (iDbpage-1)*(i64)szPage;
2005         testcase( IS_BIG_INT(iOffset) );
2006         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2007         if( rc!=SQLITE_OK ) break;
2008       }
2009       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2010 
2011       /* If work was actually accomplished... */
2012       if( rc==SQLITE_OK ){
2013         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2014           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2015           testcase( IS_BIG_INT(szDb) );
2016           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2017           if( rc==SQLITE_OK ){
2018             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2019           }
2020         }
2021         if( rc==SQLITE_OK ){
2022           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2023         }
2024       }
2025 
2026       /* Release the reader lock held while backfilling */
2027       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2028     }
2029 
2030     if( rc==SQLITE_BUSY ){
2031       /* Reset the return code so as not to report a checkpoint failure
2032       ** just because there are active readers.  */
2033       rc = SQLITE_OK;
2034     }
2035   }
2036 
2037   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2038   ** entire wal file has been copied into the database file, then block
2039   ** until all readers have finished using the wal file. This ensures that
2040   ** the next process to write to the database restarts the wal file.
2041   */
2042   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2043     assert( pWal->writeLock );
2044     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2045       rc = SQLITE_BUSY;
2046     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2047       u32 salt1;
2048       sqlite3_randomness(4, &salt1);
2049       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2050       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2051       if( rc==SQLITE_OK ){
2052         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2053           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2054           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2055           ** truncates the log file to zero bytes just prior to a
2056           ** successful return.
2057           **
2058           ** In theory, it might be safe to do this without updating the
2059           ** wal-index header in shared memory, as all subsequent reader or
2060           ** writer clients should see that the entire log file has been
2061           ** checkpointed and behave accordingly. This seems unsafe though,
2062           ** as it would leave the system in a state where the contents of
2063           ** the wal-index header do not match the contents of the
2064           ** file-system. To avoid this, update the wal-index header to
2065           ** indicate that the log file contains zero valid frames.  */
2066           walRestartHdr(pWal, salt1);
2067           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2068         }
2069         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2070       }
2071     }
2072   }
2073 
2074  walcheckpoint_out:
2075   walIteratorFree(pIter);
2076   return rc;
2077 }
2078 
2079 /*
2080 ** If the WAL file is currently larger than nMax bytes in size, truncate
2081 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2082 */
2083 static void walLimitSize(Wal *pWal, i64 nMax){
2084   i64 sz;
2085   int rx;
2086   sqlite3BeginBenignMalloc();
2087   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2088   if( rx==SQLITE_OK && (sz > nMax ) ){
2089     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2090   }
2091   sqlite3EndBenignMalloc();
2092   if( rx ){
2093     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2094   }
2095 }
2096 
2097 /*
2098 ** Close a connection to a log file.
2099 */
2100 int sqlite3WalClose(
2101   Wal *pWal,                      /* Wal to close */
2102   sqlite3 *db,                    /* For interrupt flag */
2103   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2104   int nBuf,
2105   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2106 ){
2107   int rc = SQLITE_OK;
2108   if( pWal ){
2109     int isDelete = 0;             /* True to unlink wal and wal-index files */
2110 
2111     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2112     ** ordinary, rollback-mode locking methods, this guarantees that the
2113     ** connection associated with this log file is the only connection to
2114     ** the database. In this case checkpoint the database and unlink both
2115     ** the wal and wal-index files.
2116     **
2117     ** The EXCLUSIVE lock is not released before returning.
2118     */
2119     if( zBuf!=0
2120      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2121     ){
2122       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2123         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2124       }
2125       rc = sqlite3WalCheckpoint(pWal, db,
2126           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2127       );
2128       if( rc==SQLITE_OK ){
2129         int bPersist = -1;
2130         sqlite3OsFileControlHint(
2131             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2132         );
2133         if( bPersist!=1 ){
2134           /* Try to delete the WAL file if the checkpoint completed and
2135           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2136           ** mode (!bPersist) */
2137           isDelete = 1;
2138         }else if( pWal->mxWalSize>=0 ){
2139           /* Try to truncate the WAL file to zero bytes if the checkpoint
2140           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2141           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2142           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2143           ** to zero bytes as truncating to the journal_size_limit might
2144           ** leave a corrupt WAL file on disk. */
2145           walLimitSize(pWal, 0);
2146         }
2147       }
2148     }
2149 
2150     walIndexClose(pWal, isDelete);
2151     sqlite3OsClose(pWal->pWalFd);
2152     if( isDelete ){
2153       sqlite3BeginBenignMalloc();
2154       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2155       sqlite3EndBenignMalloc();
2156     }
2157     WALTRACE(("WAL%p: closed\n", pWal));
2158     sqlite3_free((void *)pWal->apWiData);
2159     sqlite3_free(pWal);
2160   }
2161   return rc;
2162 }
2163 
2164 /*
2165 ** Try to read the wal-index header.  Return 0 on success and 1 if
2166 ** there is a problem.
2167 **
2168 ** The wal-index is in shared memory.  Another thread or process might
2169 ** be writing the header at the same time this procedure is trying to
2170 ** read it, which might result in inconsistency.  A dirty read is detected
2171 ** by verifying that both copies of the header are the same and also by
2172 ** a checksum on the header.
2173 **
2174 ** If and only if the read is consistent and the header is different from
2175 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2176 ** and *pChanged is set to 1.
2177 **
2178 ** If the checksum cannot be verified return non-zero. If the header
2179 ** is read successfully and the checksum verified, return zero.
2180 */
2181 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2182   u32 aCksum[2];                  /* Checksum on the header content */
2183   WalIndexHdr h1, h2;             /* Two copies of the header content */
2184   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2185 
2186   /* The first page of the wal-index must be mapped at this point. */
2187   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2188 
2189   /* Read the header. This might happen concurrently with a write to the
2190   ** same area of shared memory on a different CPU in a SMP,
2191   ** meaning it is possible that an inconsistent snapshot is read
2192   ** from the file. If this happens, return non-zero.
2193   **
2194   ** tag-20200519-1:
2195   ** There are two copies of the header at the beginning of the wal-index.
2196   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2197   ** Memory barriers are used to prevent the compiler or the hardware from
2198   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2199   ** give false-positive warnings about these accesses because the tools do not
2200   ** account for the double-read and the memory barrier. The use of mutexes
2201   ** here would be problematic as the memory being accessed is potentially
2202   ** shared among multiple processes and not all mutex implementions work
2203   ** reliably in that environment.
2204   */
2205   aHdr = walIndexHdr(pWal);
2206   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2207   walShmBarrier(pWal);
2208   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2209 
2210   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2211     return 1;   /* Dirty read */
2212   }
2213   if( h1.isInit==0 ){
2214     return 1;   /* Malformed header - probably all zeros */
2215   }
2216   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2217   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2218     return 1;   /* Checksum does not match */
2219   }
2220 
2221   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2222     *pChanged = 1;
2223     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2224     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2225     testcase( pWal->szPage<=32768 );
2226     testcase( pWal->szPage>=65536 );
2227   }
2228 
2229   /* The header was successfully read. Return zero. */
2230   return 0;
2231 }
2232 
2233 /*
2234 ** This is the value that walTryBeginRead returns when it needs to
2235 ** be retried.
2236 */
2237 #define WAL_RETRY  (-1)
2238 
2239 /*
2240 ** Read the wal-index header from the wal-index and into pWal->hdr.
2241 ** If the wal-header appears to be corrupt, try to reconstruct the
2242 ** wal-index from the WAL before returning.
2243 **
2244 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2245 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2246 ** to 0.
2247 **
2248 ** If the wal-index header is successfully read, return SQLITE_OK.
2249 ** Otherwise an SQLite error code.
2250 */
2251 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2252   int rc;                         /* Return code */
2253   int badHdr;                     /* True if a header read failed */
2254   volatile u32 *page0;            /* Chunk of wal-index containing header */
2255 
2256   /* Ensure that page 0 of the wal-index (the page that contains the
2257   ** wal-index header) is mapped. Return early if an error occurs here.
2258   */
2259   assert( pChanged );
2260   rc = walIndexPage(pWal, 0, &page0);
2261   if( rc!=SQLITE_OK ){
2262     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2263     if( rc==SQLITE_READONLY_CANTINIT ){
2264       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2265       ** was openable but is not writable, and this thread is unable to
2266       ** confirm that another write-capable connection has the shared-memory
2267       ** open, and hence the content of the shared-memory is unreliable,
2268       ** since the shared-memory might be inconsistent with the WAL file
2269       ** and there is no writer on hand to fix it. */
2270       assert( page0==0 );
2271       assert( pWal->writeLock==0 );
2272       assert( pWal->readOnly & WAL_SHM_RDONLY );
2273       pWal->bShmUnreliable = 1;
2274       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2275       *pChanged = 1;
2276     }else{
2277       return rc; /* Any other non-OK return is just an error */
2278     }
2279   }else{
2280     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2281     ** is zero, which prevents the SHM from growing */
2282     testcase( page0!=0 );
2283   }
2284   assert( page0!=0 || pWal->writeLock==0 );
2285 
2286   /* If the first page of the wal-index has been mapped, try to read the
2287   ** wal-index header immediately, without holding any lock. This usually
2288   ** works, but may fail if the wal-index header is corrupt or currently
2289   ** being modified by another thread or process.
2290   */
2291   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2292 
2293   /* If the first attempt failed, it might have been due to a race
2294   ** with a writer.  So get a WRITE lock and try again.
2295   */
2296   if( badHdr ){
2297     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2298       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2299         walUnlockShared(pWal, WAL_WRITE_LOCK);
2300         rc = SQLITE_READONLY_RECOVERY;
2301       }
2302     }else{
2303       int bWriteLock = pWal->writeLock;
2304       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2305         pWal->writeLock = 1;
2306         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2307           badHdr = walIndexTryHdr(pWal, pChanged);
2308           if( badHdr ){
2309             /* If the wal-index header is still malformed even while holding
2310             ** a WRITE lock, it can only mean that the header is corrupted and
2311             ** needs to be reconstructed.  So run recovery to do exactly that.
2312             */
2313             rc = walIndexRecover(pWal);
2314             *pChanged = 1;
2315           }
2316         }
2317         if( bWriteLock==0 ){
2318           pWal->writeLock = 0;
2319           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2320         }
2321       }
2322     }
2323   }
2324 
2325   /* If the header is read successfully, check the version number to make
2326   ** sure the wal-index was not constructed with some future format that
2327   ** this version of SQLite cannot understand.
2328   */
2329   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2330     rc = SQLITE_CANTOPEN_BKPT;
2331   }
2332   if( pWal->bShmUnreliable ){
2333     if( rc!=SQLITE_OK ){
2334       walIndexClose(pWal, 0);
2335       pWal->bShmUnreliable = 0;
2336       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2337       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2338       ** writer truncated the WAL out from under it.  If that happens, it
2339       ** indicates that a writer has fixed the SHM file for us, so retry */
2340       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2341     }
2342     pWal->exclusiveMode = WAL_NORMAL_MODE;
2343   }
2344 
2345   return rc;
2346 }
2347 
2348 /*
2349 ** Open a transaction in a connection where the shared-memory is read-only
2350 ** and where we cannot verify that there is a separate write-capable connection
2351 ** on hand to keep the shared-memory up-to-date with the WAL file.
2352 **
2353 ** This can happen, for example, when the shared-memory is implemented by
2354 ** memory-mapping a *-shm file, where a prior writer has shut down and
2355 ** left the *-shm file on disk, and now the present connection is trying
2356 ** to use that database but lacks write permission on the *-shm file.
2357 ** Other scenarios are also possible, depending on the VFS implementation.
2358 **
2359 ** Precondition:
2360 **
2361 **    The *-wal file has been read and an appropriate wal-index has been
2362 **    constructed in pWal->apWiData[] using heap memory instead of shared
2363 **    memory.
2364 **
2365 ** If this function returns SQLITE_OK, then the read transaction has
2366 ** been successfully opened. In this case output variable (*pChanged)
2367 ** is set to true before returning if the caller should discard the
2368 ** contents of the page cache before proceeding. Or, if it returns
2369 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2370 ** the caller should retry opening the read transaction from the
2371 ** beginning (including attempting to map the *-shm file).
2372 **
2373 ** If an error occurs, an SQLite error code is returned.
2374 */
2375 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2376   i64 szWal;                      /* Size of wal file on disk in bytes */
2377   i64 iOffset;                    /* Current offset when reading wal file */
2378   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2379   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2380   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2381   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2382   volatile void *pDummy;          /* Dummy argument for xShmMap */
2383   int rc;                         /* Return code */
2384   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2385 
2386   assert( pWal->bShmUnreliable );
2387   assert( pWal->readOnly & WAL_SHM_RDONLY );
2388   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2389 
2390   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2391   ** writers from running a checkpoint, but does not stop them
2392   ** from running recovery.  */
2393   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2394   if( rc!=SQLITE_OK ){
2395     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2396     goto begin_unreliable_shm_out;
2397   }
2398   pWal->readLock = 0;
2399 
2400   /* Check to see if a separate writer has attached to the shared-memory area,
2401   ** thus making the shared-memory "reliable" again.  Do this by invoking
2402   ** the xShmMap() routine of the VFS and looking to see if the return
2403   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2404   **
2405   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2406   ** cause the heap-memory WAL-index to be discarded and the actual
2407   ** shared memory to be used in its place.
2408   **
2409   ** This step is important because, even though this connection is holding
2410   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2411   ** have already checkpointed the WAL file and, while the current
2412   ** is active, wrap the WAL and start overwriting frames that this
2413   ** process wants to use.
2414   **
2415   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2416   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2417   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2418   ** even if some external agent does a "chmod" to make the shared-memory
2419   ** writable by us, until sqlite3OsShmUnmap() has been called.
2420   ** This is a requirement on the VFS implementation.
2421    */
2422   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2423   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2424   if( rc!=SQLITE_READONLY_CANTINIT ){
2425     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2426     goto begin_unreliable_shm_out;
2427   }
2428 
2429   /* We reach this point only if the real shared-memory is still unreliable.
2430   ** Assume the in-memory WAL-index substitute is correct and load it
2431   ** into pWal->hdr.
2432   */
2433   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2434 
2435   /* Make sure some writer hasn't come in and changed the WAL file out
2436   ** from under us, then disconnected, while we were not looking.
2437   */
2438   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2439   if( rc!=SQLITE_OK ){
2440     goto begin_unreliable_shm_out;
2441   }
2442   if( szWal<WAL_HDRSIZE ){
2443     /* If the wal file is too small to contain a wal-header and the
2444     ** wal-index header has mxFrame==0, then it must be safe to proceed
2445     ** reading the database file only. However, the page cache cannot
2446     ** be trusted, as a read/write connection may have connected, written
2447     ** the db, run a checkpoint, truncated the wal file and disconnected
2448     ** since this client's last read transaction.  */
2449     *pChanged = 1;
2450     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2451     goto begin_unreliable_shm_out;
2452   }
2453 
2454   /* Check the salt keys at the start of the wal file still match. */
2455   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2456   if( rc!=SQLITE_OK ){
2457     goto begin_unreliable_shm_out;
2458   }
2459   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2460     /* Some writer has wrapped the WAL file while we were not looking.
2461     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2462     ** rebuilt. */
2463     rc = WAL_RETRY;
2464     goto begin_unreliable_shm_out;
2465   }
2466 
2467   /* Allocate a buffer to read frames into */
2468   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2469   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2470   if( aFrame==0 ){
2471     rc = SQLITE_NOMEM_BKPT;
2472     goto begin_unreliable_shm_out;
2473   }
2474   aData = &aFrame[WAL_FRAME_HDRSIZE];
2475 
2476   /* Check to see if a complete transaction has been appended to the
2477   ** wal file since the heap-memory wal-index was created. If so, the
2478   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2479   ** the caller.  */
2480   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2481   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2482   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2483       iOffset+szFrame<=szWal;
2484       iOffset+=szFrame
2485   ){
2486     u32 pgno;                   /* Database page number for frame */
2487     u32 nTruncate;              /* dbsize field from frame header */
2488 
2489     /* Read and decode the next log frame. */
2490     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2491     if( rc!=SQLITE_OK ) break;
2492     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2493 
2494     /* If nTruncate is non-zero, then a complete transaction has been
2495     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2496     ** the loop.  */
2497     if( nTruncate ){
2498       rc = WAL_RETRY;
2499       break;
2500     }
2501   }
2502   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2503   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2504 
2505  begin_unreliable_shm_out:
2506   sqlite3_free(aFrame);
2507   if( rc!=SQLITE_OK ){
2508     int i;
2509     for(i=0; i<pWal->nWiData; i++){
2510       sqlite3_free((void*)pWal->apWiData[i]);
2511       pWal->apWiData[i] = 0;
2512     }
2513     pWal->bShmUnreliable = 0;
2514     sqlite3WalEndReadTransaction(pWal);
2515     *pChanged = 1;
2516   }
2517   return rc;
2518 }
2519 
2520 /*
2521 ** Attempt to start a read transaction.  This might fail due to a race or
2522 ** other transient condition.  When that happens, it returns WAL_RETRY to
2523 ** indicate to the caller that it is safe to retry immediately.
2524 **
2525 ** On success return SQLITE_OK.  On a permanent failure (such an
2526 ** I/O error or an SQLITE_BUSY because another process is running
2527 ** recovery) return a positive error code.
2528 **
2529 ** The useWal parameter is true to force the use of the WAL and disable
2530 ** the case where the WAL is bypassed because it has been completely
2531 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2532 ** to make a copy of the wal-index header into pWal->hdr.  If the
2533 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2534 ** to the caller that the local page cache is obsolete and needs to be
2535 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2536 ** be loaded and the pChanged parameter is unused.
2537 **
2538 ** The caller must set the cnt parameter to the number of prior calls to
2539 ** this routine during the current read attempt that returned WAL_RETRY.
2540 ** This routine will start taking more aggressive measures to clear the
2541 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2542 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2543 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2544 ** and is not honoring the locking protocol.  There is a vanishingly small
2545 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2546 ** bad luck when there is lots of contention for the wal-index, but that
2547 ** possibility is so small that it can be safely neglected, we believe.
2548 **
2549 ** On success, this routine obtains a read lock on
2550 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2551 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2552 ** that means the Wal does not hold any read lock.  The reader must not
2553 ** access any database page that is modified by a WAL frame up to and
2554 ** including frame number aReadMark[pWal->readLock].  The reader will
2555 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2556 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2557 ** completely and get all content directly from the database file.
2558 ** If the useWal parameter is 1 then the WAL will never be ignored and
2559 ** this routine will always set pWal->readLock>0 on success.
2560 ** When the read transaction is completed, the caller must release the
2561 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2562 **
2563 ** This routine uses the nBackfill and aReadMark[] fields of the header
2564 ** to select a particular WAL_READ_LOCK() that strives to let the
2565 ** checkpoint process do as much work as possible.  This routine might
2566 ** update values of the aReadMark[] array in the header, but if it does
2567 ** so it takes care to hold an exclusive lock on the corresponding
2568 ** WAL_READ_LOCK() while changing values.
2569 */
2570 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2571   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2572   u32 mxReadMark;                 /* Largest aReadMark[] value */
2573   int mxI;                        /* Index of largest aReadMark[] value */
2574   int i;                          /* Loop counter */
2575   int rc = SQLITE_OK;             /* Return code  */
2576   u32 mxFrame;                    /* Wal frame to lock to */
2577 
2578   assert( pWal->readLock<0 );     /* Not currently locked */
2579 
2580   /* useWal may only be set for read/write connections */
2581   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2582 
2583   /* Take steps to avoid spinning forever if there is a protocol error.
2584   **
2585   ** Circumstances that cause a RETRY should only last for the briefest
2586   ** instances of time.  No I/O or other system calls are done while the
2587   ** locks are held, so the locks should not be held for very long. But
2588   ** if we are unlucky, another process that is holding a lock might get
2589   ** paged out or take a page-fault that is time-consuming to resolve,
2590   ** during the few nanoseconds that it is holding the lock.  In that case,
2591   ** it might take longer than normal for the lock to free.
2592   **
2593   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2594   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2595   ** is more of a scheduler yield than an actual delay.  But on the 10th
2596   ** an subsequent retries, the delays start becoming longer and longer,
2597   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2598   ** The total delay time before giving up is less than 10 seconds.
2599   */
2600   if( cnt>5 ){
2601     int nDelay = 1;                      /* Pause time in microseconds */
2602     if( cnt>100 ){
2603       VVA_ONLY( pWal->lockError = 1; )
2604       return SQLITE_PROTOCOL;
2605     }
2606     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2607     sqlite3OsSleep(pWal->pVfs, nDelay);
2608   }
2609 
2610   if( !useWal ){
2611     assert( rc==SQLITE_OK );
2612     if( pWal->bShmUnreliable==0 ){
2613       rc = walIndexReadHdr(pWal, pChanged);
2614     }
2615     if( rc==SQLITE_BUSY ){
2616       /* If there is not a recovery running in another thread or process
2617       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2618       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2619       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2620       ** would be technically correct.  But the race is benign since with
2621       ** WAL_RETRY this routine will be called again and will probably be
2622       ** right on the second iteration.
2623       */
2624       if( pWal->apWiData[0]==0 ){
2625         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2626         ** We assume this is a transient condition, so return WAL_RETRY. The
2627         ** xShmMap() implementation used by the default unix and win32 VFS
2628         ** modules may return SQLITE_BUSY due to a race condition in the
2629         ** code that determines whether or not the shared-memory region
2630         ** must be zeroed before the requested page is returned.
2631         */
2632         rc = WAL_RETRY;
2633       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2634         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2635         rc = WAL_RETRY;
2636       }else if( rc==SQLITE_BUSY ){
2637         rc = SQLITE_BUSY_RECOVERY;
2638       }
2639     }
2640     if( rc!=SQLITE_OK ){
2641       return rc;
2642     }
2643     else if( pWal->bShmUnreliable ){
2644       return walBeginShmUnreliable(pWal, pChanged);
2645     }
2646   }
2647 
2648   assert( pWal->nWiData>0 );
2649   assert( pWal->apWiData[0]!=0 );
2650   pInfo = walCkptInfo(pWal);
2651   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2652 #ifdef SQLITE_ENABLE_SNAPSHOT
2653    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2654 #endif
2655   ){
2656     /* The WAL has been completely backfilled (or it is empty).
2657     ** and can be safely ignored.
2658     */
2659     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2660     walShmBarrier(pWal);
2661     if( rc==SQLITE_OK ){
2662       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2663         /* It is not safe to allow the reader to continue here if frames
2664         ** may have been appended to the log before READ_LOCK(0) was obtained.
2665         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2666         ** which implies that the database file contains a trustworthy
2667         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2668         ** happening, this is usually correct.
2669         **
2670         ** However, if frames have been appended to the log (or if the log
2671         ** is wrapped and written for that matter) before the READ_LOCK(0)
2672         ** is obtained, that is not necessarily true. A checkpointer may
2673         ** have started to backfill the appended frames but crashed before
2674         ** it finished. Leaving a corrupt image in the database file.
2675         */
2676         walUnlockShared(pWal, WAL_READ_LOCK(0));
2677         return WAL_RETRY;
2678       }
2679       pWal->readLock = 0;
2680       return SQLITE_OK;
2681     }else if( rc!=SQLITE_BUSY ){
2682       return rc;
2683     }
2684   }
2685 
2686   /* If we get this far, it means that the reader will want to use
2687   ** the WAL to get at content from recent commits.  The job now is
2688   ** to select one of the aReadMark[] entries that is closest to
2689   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2690   */
2691   mxReadMark = 0;
2692   mxI = 0;
2693   mxFrame = pWal->hdr.mxFrame;
2694 #ifdef SQLITE_ENABLE_SNAPSHOT
2695   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2696     mxFrame = pWal->pSnapshot->mxFrame;
2697   }
2698 #endif
2699   for(i=1; i<WAL_NREADER; i++){
2700     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2701     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2702       assert( thisMark!=READMARK_NOT_USED );
2703       mxReadMark = thisMark;
2704       mxI = i;
2705     }
2706   }
2707   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2708    && (mxReadMark<mxFrame || mxI==0)
2709   ){
2710     for(i=1; i<WAL_NREADER; i++){
2711       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2712       if( rc==SQLITE_OK ){
2713         AtomicStore(pInfo->aReadMark+i,mxFrame);
2714         mxReadMark = mxFrame;
2715         mxI = i;
2716         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2717         break;
2718       }else if( rc!=SQLITE_BUSY ){
2719         return rc;
2720       }
2721     }
2722   }
2723   if( mxI==0 ){
2724     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2725     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2726   }
2727 
2728   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2729   if( rc ){
2730     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2731   }
2732   /* Now that the read-lock has been obtained, check that neither the
2733   ** value in the aReadMark[] array or the contents of the wal-index
2734   ** header have changed.
2735   **
2736   ** It is necessary to check that the wal-index header did not change
2737   ** between the time it was read and when the shared-lock was obtained
2738   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2739   ** that the log file may have been wrapped by a writer, or that frames
2740   ** that occur later in the log than pWal->hdr.mxFrame may have been
2741   ** copied into the database by a checkpointer. If either of these things
2742   ** happened, then reading the database with the current value of
2743   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2744   ** instead.
2745   **
2746   ** Before checking that the live wal-index header has not changed
2747   ** since it was read, set Wal.minFrame to the first frame in the wal
2748   ** file that has not yet been checkpointed. This client will not need
2749   ** to read any frames earlier than minFrame from the wal file - they
2750   ** can be safely read directly from the database file.
2751   **
2752   ** Because a ShmBarrier() call is made between taking the copy of
2753   ** nBackfill and checking that the wal-header in shared-memory still
2754   ** matches the one cached in pWal->hdr, it is guaranteed that the
2755   ** checkpointer that set nBackfill was not working with a wal-index
2756   ** header newer than that cached in pWal->hdr. If it were, that could
2757   ** cause a problem. The checkpointer could omit to checkpoint
2758   ** a version of page X that lies before pWal->minFrame (call that version
2759   ** A) on the basis that there is a newer version (version B) of the same
2760   ** page later in the wal file. But if version B happens to like past
2761   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2762   ** that it can read version A from the database file. However, since
2763   ** we can guarantee that the checkpointer that set nBackfill could not
2764   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2765   */
2766   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2767   walShmBarrier(pWal);
2768   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2769    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2770   ){
2771     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2772     return WAL_RETRY;
2773   }else{
2774     assert( mxReadMark<=pWal->hdr.mxFrame );
2775     pWal->readLock = (i16)mxI;
2776   }
2777   return rc;
2778 }
2779 
2780 #ifdef SQLITE_ENABLE_SNAPSHOT
2781 /*
2782 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2783 ** variable so that older snapshots can be accessed. To do this, loop
2784 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2785 ** comparing their content to the corresponding page with the database
2786 ** file, if any. Set nBackfillAttempted to the frame number of the
2787 ** first frame for which the wal file content matches the db file.
2788 **
2789 ** This is only really safe if the file-system is such that any page
2790 ** writes made by earlier checkpointers were atomic operations, which
2791 ** is not always true. It is also possible that nBackfillAttempted
2792 ** may be left set to a value larger than expected, if a wal frame
2793 ** contains content that duplicate of an earlier version of the same
2794 ** page.
2795 **
2796 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2797 ** error occurs. It is not an error if nBackfillAttempted cannot be
2798 ** decreased at all.
2799 */
2800 int sqlite3WalSnapshotRecover(Wal *pWal){
2801   int rc;
2802 
2803   assert( pWal->readLock>=0 );
2804   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2805   if( rc==SQLITE_OK ){
2806     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2807     int szPage = (int)pWal->szPage;
2808     i64 szDb;                   /* Size of db file in bytes */
2809 
2810     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2811     if( rc==SQLITE_OK ){
2812       void *pBuf1 = sqlite3_malloc(szPage);
2813       void *pBuf2 = sqlite3_malloc(szPage);
2814       if( pBuf1==0 || pBuf2==0 ){
2815         rc = SQLITE_NOMEM;
2816       }else{
2817         u32 i = pInfo->nBackfillAttempted;
2818         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2819           WalHashLoc sLoc;          /* Hash table location */
2820           u32 pgno;                 /* Page number in db file */
2821           i64 iDbOff;               /* Offset of db file entry */
2822           i64 iWalOff;              /* Offset of wal file entry */
2823 
2824           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2825           if( rc!=SQLITE_OK ) break;
2826           pgno = sLoc.aPgno[i-sLoc.iZero];
2827           iDbOff = (i64)(pgno-1) * szPage;
2828 
2829           if( iDbOff+szPage<=szDb ){
2830             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2831             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2832 
2833             if( rc==SQLITE_OK ){
2834               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2835             }
2836 
2837             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2838               break;
2839             }
2840           }
2841 
2842           pInfo->nBackfillAttempted = i-1;
2843         }
2844       }
2845 
2846       sqlite3_free(pBuf1);
2847       sqlite3_free(pBuf2);
2848     }
2849     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2850   }
2851 
2852   return rc;
2853 }
2854 #endif /* SQLITE_ENABLE_SNAPSHOT */
2855 
2856 /*
2857 ** Begin a read transaction on the database.
2858 **
2859 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2860 ** it takes a snapshot of the state of the WAL and wal-index for the current
2861 ** instant in time.  The current thread will continue to use this snapshot.
2862 ** Other threads might append new content to the WAL and wal-index but
2863 ** that extra content is ignored by the current thread.
2864 **
2865 ** If the database contents have changes since the previous read
2866 ** transaction, then *pChanged is set to 1 before returning.  The
2867 ** Pager layer will use this to know that its cache is stale and
2868 ** needs to be flushed.
2869 */
2870 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2871   int rc;                         /* Return code */
2872   int cnt = 0;                    /* Number of TryBeginRead attempts */
2873 #ifdef SQLITE_ENABLE_SNAPSHOT
2874   int bChanged = 0;
2875   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2876 #endif
2877 
2878   assert( pWal->ckptLock==0 );
2879 
2880 #ifdef SQLITE_ENABLE_SNAPSHOT
2881   if( pSnapshot ){
2882     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2883       bChanged = 1;
2884     }
2885 
2886     /* It is possible that there is a checkpointer thread running
2887     ** concurrent with this code. If this is the case, it may be that the
2888     ** checkpointer has already determined that it will checkpoint
2889     ** snapshot X, where X is later in the wal file than pSnapshot, but
2890     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2891     ** its intent. To avoid the race condition this leads to, ensure that
2892     ** there is no checkpointer process by taking a shared CKPT lock
2893     ** before checking pInfo->nBackfillAttempted.  */
2894     (void)walEnableBlocking(pWal);
2895     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2896     walDisableBlocking(pWal);
2897 
2898     if( rc!=SQLITE_OK ){
2899       return rc;
2900     }
2901     pWal->ckptLock = 1;
2902   }
2903 #endif
2904 
2905   do{
2906     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2907   }while( rc==WAL_RETRY );
2908   testcase( (rc&0xff)==SQLITE_BUSY );
2909   testcase( (rc&0xff)==SQLITE_IOERR );
2910   testcase( rc==SQLITE_PROTOCOL );
2911   testcase( rc==SQLITE_OK );
2912 
2913 #ifdef SQLITE_ENABLE_SNAPSHOT
2914   if( rc==SQLITE_OK ){
2915     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2916       /* At this point the client has a lock on an aReadMark[] slot holding
2917       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2918       ** is populated with the wal-index header corresponding to the head
2919       ** of the wal file. Verify that pSnapshot is still valid before
2920       ** continuing.  Reasons why pSnapshot might no longer be valid:
2921       **
2922       **    (1)  The WAL file has been reset since the snapshot was taken.
2923       **         In this case, the salt will have changed.
2924       **
2925       **    (2)  A checkpoint as been attempted that wrote frames past
2926       **         pSnapshot->mxFrame into the database file.  Note that the
2927       **         checkpoint need not have completed for this to cause problems.
2928       */
2929       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2930 
2931       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2932       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2933 
2934       /* Check that the wal file has not been wrapped. Assuming that it has
2935       ** not, also check that no checkpointer has attempted to checkpoint any
2936       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2937       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2938       ** with *pSnapshot and set *pChanged as appropriate for opening the
2939       ** snapshot.  */
2940       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2941        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2942       ){
2943         assert( pWal->readLock>0 );
2944         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2945         *pChanged = bChanged;
2946       }else{
2947         rc = SQLITE_ERROR_SNAPSHOT;
2948       }
2949 
2950       /* A client using a non-current snapshot may not ignore any frames
2951       ** from the start of the wal file. This is because, for a system
2952       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2953       ** have omitted to checkpoint a frame earlier than minFrame in
2954       ** the file because there exists a frame after iSnapshot that
2955       ** is the same database page.  */
2956       pWal->minFrame = 1;
2957 
2958       if( rc!=SQLITE_OK ){
2959         sqlite3WalEndReadTransaction(pWal);
2960       }
2961     }
2962   }
2963 
2964   /* Release the shared CKPT lock obtained above. */
2965   if( pWal->ckptLock ){
2966     assert( pSnapshot );
2967     walUnlockShared(pWal, WAL_CKPT_LOCK);
2968     pWal->ckptLock = 0;
2969   }
2970 #endif
2971   return rc;
2972 }
2973 
2974 /*
2975 ** Finish with a read transaction.  All this does is release the
2976 ** read-lock.
2977 */
2978 void sqlite3WalEndReadTransaction(Wal *pWal){
2979   sqlite3WalEndWriteTransaction(pWal);
2980   if( pWal->readLock>=0 ){
2981     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2982     pWal->readLock = -1;
2983   }
2984 }
2985 
2986 /*
2987 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2988 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2989 ** to zero.
2990 **
2991 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2992 ** error does occur, the final value of *piRead is undefined.
2993 */
2994 int sqlite3WalFindFrame(
2995   Wal *pWal,                      /* WAL handle */
2996   Pgno pgno,                      /* Database page number to read data for */
2997   u32 *piRead                     /* OUT: Frame number (or zero) */
2998 ){
2999   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
3000   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
3001   int iHash;                      /* Used to loop through N hash tables */
3002   int iMinHash;
3003 
3004   /* This routine is only be called from within a read transaction. */
3005   assert( pWal->readLock>=0 || pWal->lockError );
3006 
3007   /* If the "last page" field of the wal-index header snapshot is 0, then
3008   ** no data will be read from the wal under any circumstances. Return early
3009   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3010   ** then the WAL is ignored by the reader so return early, as if the
3011   ** WAL were empty.
3012   */
3013   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3014     *piRead = 0;
3015     return SQLITE_OK;
3016   }
3017 
3018   /* Search the hash table or tables for an entry matching page number
3019   ** pgno. Each iteration of the following for() loop searches one
3020   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3021   **
3022   ** This code might run concurrently to the code in walIndexAppend()
3023   ** that adds entries to the wal-index (and possibly to this hash
3024   ** table). This means the value just read from the hash
3025   ** slot (aHash[iKey]) may have been added before or after the
3026   ** current read transaction was opened. Values added after the
3027   ** read transaction was opened may have been written incorrectly -
3028   ** i.e. these slots may contain garbage data. However, we assume
3029   ** that any slots written before the current read transaction was
3030   ** opened remain unmodified.
3031   **
3032   ** For the reasons above, the if(...) condition featured in the inner
3033   ** loop of the following block is more stringent that would be required
3034   ** if we had exclusive access to the hash-table:
3035   **
3036   **   (aPgno[iFrame]==pgno):
3037   **     This condition filters out normal hash-table collisions.
3038   **
3039   **   (iFrame<=iLast):
3040   **     This condition filters out entries that were added to the hash
3041   **     table after the current read-transaction had started.
3042   */
3043   iMinHash = walFramePage(pWal->minFrame);
3044   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3045     WalHashLoc sLoc;              /* Hash table location */
3046     int iKey;                     /* Hash slot index */
3047     int nCollide;                 /* Number of hash collisions remaining */
3048     int rc;                       /* Error code */
3049     u32 iH;
3050 
3051     rc = walHashGet(pWal, iHash, &sLoc);
3052     if( rc!=SQLITE_OK ){
3053       return rc;
3054     }
3055     nCollide = HASHTABLE_NSLOT;
3056     iKey = walHash(pgno);
3057     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3058       u32 iFrame = iH + sLoc.iZero;
3059       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3060         assert( iFrame>iRead || CORRUPT_DB );
3061         iRead = iFrame;
3062       }
3063       if( (nCollide--)==0 ){
3064         return SQLITE_CORRUPT_BKPT;
3065       }
3066       iKey = walNextHash(iKey);
3067     }
3068     if( iRead ) break;
3069   }
3070 
3071 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3072   /* If expensive assert() statements are available, do a linear search
3073   ** of the wal-index file content. Make sure the results agree with the
3074   ** result obtained using the hash indexes above.  */
3075   {
3076     u32 iRead2 = 0;
3077     u32 iTest;
3078     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3079     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3080       if( walFramePgno(pWal, iTest)==pgno ){
3081         iRead2 = iTest;
3082         break;
3083       }
3084     }
3085     assert( iRead==iRead2 );
3086   }
3087 #endif
3088 
3089   *piRead = iRead;
3090   return SQLITE_OK;
3091 }
3092 
3093 /*
3094 ** Read the contents of frame iRead from the wal file into buffer pOut
3095 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3096 ** error code otherwise.
3097 */
3098 int sqlite3WalReadFrame(
3099   Wal *pWal,                      /* WAL handle */
3100   u32 iRead,                      /* Frame to read */
3101   int nOut,                       /* Size of buffer pOut in bytes */
3102   u8 *pOut                        /* Buffer to write page data to */
3103 ){
3104   int sz;
3105   i64 iOffset;
3106   sz = pWal->hdr.szPage;
3107   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3108   testcase( sz<=32768 );
3109   testcase( sz>=65536 );
3110   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3111   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3112   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3113 }
3114 
3115 /*
3116 ** Return the size of the database in pages (or zero, if unknown).
3117 */
3118 Pgno sqlite3WalDbsize(Wal *pWal){
3119   if( pWal && ALWAYS(pWal->readLock>=0) ){
3120     return pWal->hdr.nPage;
3121   }
3122   return 0;
3123 }
3124 
3125 
3126 /*
3127 ** This function starts a write transaction on the WAL.
3128 **
3129 ** A read transaction must have already been started by a prior call
3130 ** to sqlite3WalBeginReadTransaction().
3131 **
3132 ** If another thread or process has written into the database since
3133 ** the read transaction was started, then it is not possible for this
3134 ** thread to write as doing so would cause a fork.  So this routine
3135 ** returns SQLITE_BUSY in that case and no write transaction is started.
3136 **
3137 ** There can only be a single writer active at a time.
3138 */
3139 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3140   int rc;
3141 
3142 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3143   /* If the write-lock is already held, then it was obtained before the
3144   ** read-transaction was even opened, making this call a no-op.
3145   ** Return early. */
3146   if( pWal->writeLock ){
3147     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3148     return SQLITE_OK;
3149   }
3150 #endif
3151 
3152   /* Cannot start a write transaction without first holding a read
3153   ** transaction. */
3154   assert( pWal->readLock>=0 );
3155   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3156 
3157   if( pWal->readOnly ){
3158     return SQLITE_READONLY;
3159   }
3160 
3161   /* Only one writer allowed at a time.  Get the write lock.  Return
3162   ** SQLITE_BUSY if unable.
3163   */
3164   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3165   if( rc ){
3166     return rc;
3167   }
3168   pWal->writeLock = 1;
3169 
3170   /* If another connection has written to the database file since the
3171   ** time the read transaction on this connection was started, then
3172   ** the write is disallowed.
3173   */
3174   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3175     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3176     pWal->writeLock = 0;
3177     rc = SQLITE_BUSY_SNAPSHOT;
3178   }
3179 
3180   return rc;
3181 }
3182 
3183 /*
3184 ** End a write transaction.  The commit has already been done.  This
3185 ** routine merely releases the lock.
3186 */
3187 int sqlite3WalEndWriteTransaction(Wal *pWal){
3188   if( pWal->writeLock ){
3189     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3190     pWal->writeLock = 0;
3191     pWal->iReCksum = 0;
3192     pWal->truncateOnCommit = 0;
3193   }
3194   return SQLITE_OK;
3195 }
3196 
3197 /*
3198 ** If any data has been written (but not committed) to the log file, this
3199 ** function moves the write-pointer back to the start of the transaction.
3200 **
3201 ** Additionally, the callback function is invoked for each frame written
3202 ** to the WAL since the start of the transaction. If the callback returns
3203 ** other than SQLITE_OK, it is not invoked again and the error code is
3204 ** returned to the caller.
3205 **
3206 ** Otherwise, if the callback function does not return an error, this
3207 ** function returns SQLITE_OK.
3208 */
3209 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3210   int rc = SQLITE_OK;
3211   if( ALWAYS(pWal->writeLock) ){
3212     Pgno iMax = pWal->hdr.mxFrame;
3213     Pgno iFrame;
3214 
3215     /* Restore the clients cache of the wal-index header to the state it
3216     ** was in before the client began writing to the database.
3217     */
3218     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3219 
3220     for(iFrame=pWal->hdr.mxFrame+1;
3221         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3222         iFrame++
3223     ){
3224       /* This call cannot fail. Unless the page for which the page number
3225       ** is passed as the second argument is (a) in the cache and
3226       ** (b) has an outstanding reference, then xUndo is either a no-op
3227       ** (if (a) is false) or simply expels the page from the cache (if (b)
3228       ** is false).
3229       **
3230       ** If the upper layer is doing a rollback, it is guaranteed that there
3231       ** are no outstanding references to any page other than page 1. And
3232       ** page 1 is never written to the log until the transaction is
3233       ** committed. As a result, the call to xUndo may not fail.
3234       */
3235       assert( walFramePgno(pWal, iFrame)!=1 );
3236       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3237     }
3238     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3239   }
3240   return rc;
3241 }
3242 
3243 /*
3244 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3245 ** values. This function populates the array with values required to
3246 ** "rollback" the write position of the WAL handle back to the current
3247 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3248 */
3249 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3250   assert( pWal->writeLock );
3251   aWalData[0] = pWal->hdr.mxFrame;
3252   aWalData[1] = pWal->hdr.aFrameCksum[0];
3253   aWalData[2] = pWal->hdr.aFrameCksum[1];
3254   aWalData[3] = pWal->nCkpt;
3255 }
3256 
3257 /*
3258 ** Move the write position of the WAL back to the point identified by
3259 ** the values in the aWalData[] array. aWalData must point to an array
3260 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3261 ** by a call to WalSavepoint().
3262 */
3263 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3264   int rc = SQLITE_OK;
3265 
3266   assert( pWal->writeLock );
3267   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3268 
3269   if( aWalData[3]!=pWal->nCkpt ){
3270     /* This savepoint was opened immediately after the write-transaction
3271     ** was started. Right after that, the writer decided to wrap around
3272     ** to the start of the log. Update the savepoint values to match.
3273     */
3274     aWalData[0] = 0;
3275     aWalData[3] = pWal->nCkpt;
3276   }
3277 
3278   if( aWalData[0]<pWal->hdr.mxFrame ){
3279     pWal->hdr.mxFrame = aWalData[0];
3280     pWal->hdr.aFrameCksum[0] = aWalData[1];
3281     pWal->hdr.aFrameCksum[1] = aWalData[2];
3282     walCleanupHash(pWal);
3283   }
3284 
3285   return rc;
3286 }
3287 
3288 /*
3289 ** This function is called just before writing a set of frames to the log
3290 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3291 ** to the current log file, it is possible to overwrite the start of the
3292 ** existing log file with the new frames (i.e. "reset" the log). If so,
3293 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3294 ** unchanged.
3295 **
3296 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3297 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3298 ** if an error occurs.
3299 */
3300 static int walRestartLog(Wal *pWal){
3301   int rc = SQLITE_OK;
3302   int cnt;
3303 
3304   if( pWal->readLock==0 ){
3305     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3306     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3307     if( pInfo->nBackfill>0 ){
3308       u32 salt1;
3309       sqlite3_randomness(4, &salt1);
3310       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3311       if( rc==SQLITE_OK ){
3312         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3313         ** readers are currently using the WAL), then the transactions
3314         ** frames will overwrite the start of the existing log. Update the
3315         ** wal-index header to reflect this.
3316         **
3317         ** In theory it would be Ok to update the cache of the header only
3318         ** at this point. But updating the actual wal-index header is also
3319         ** safe and means there is no special case for sqlite3WalUndo()
3320         ** to handle if this transaction is rolled back.  */
3321         walRestartHdr(pWal, salt1);
3322         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3323       }else if( rc!=SQLITE_BUSY ){
3324         return rc;
3325       }
3326     }
3327     walUnlockShared(pWal, WAL_READ_LOCK(0));
3328     pWal->readLock = -1;
3329     cnt = 0;
3330     do{
3331       int notUsed;
3332       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3333     }while( rc==WAL_RETRY );
3334     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3335     testcase( (rc&0xff)==SQLITE_IOERR );
3336     testcase( rc==SQLITE_PROTOCOL );
3337     testcase( rc==SQLITE_OK );
3338   }
3339   return rc;
3340 }
3341 
3342 /*
3343 ** Information about the current state of the WAL file and where
3344 ** the next fsync should occur - passed from sqlite3WalFrames() into
3345 ** walWriteToLog().
3346 */
3347 typedef struct WalWriter {
3348   Wal *pWal;                   /* The complete WAL information */
3349   sqlite3_file *pFd;           /* The WAL file to which we write */
3350   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3351   int syncFlags;               /* Flags for the fsync */
3352   int szPage;                  /* Size of one page */
3353 } WalWriter;
3354 
3355 /*
3356 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3357 ** Do a sync when crossing the p->iSyncPoint boundary.
3358 **
3359 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3360 ** first write the part before iSyncPoint, then sync, then write the
3361 ** rest.
3362 */
3363 static int walWriteToLog(
3364   WalWriter *p,              /* WAL to write to */
3365   void *pContent,            /* Content to be written */
3366   int iAmt,                  /* Number of bytes to write */
3367   sqlite3_int64 iOffset      /* Start writing at this offset */
3368 ){
3369   int rc;
3370   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3371     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3372     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3373     if( rc ) return rc;
3374     iOffset += iFirstAmt;
3375     iAmt -= iFirstAmt;
3376     pContent = (void*)(iFirstAmt + (char*)pContent);
3377     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3378     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3379     if( iAmt==0 || rc ) return rc;
3380   }
3381   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3382   return rc;
3383 }
3384 
3385 /*
3386 ** Write out a single frame of the WAL
3387 */
3388 static int walWriteOneFrame(
3389   WalWriter *p,               /* Where to write the frame */
3390   PgHdr *pPage,               /* The page of the frame to be written */
3391   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3392   sqlite3_int64 iOffset       /* Byte offset at which to write */
3393 ){
3394   int rc;                         /* Result code from subfunctions */
3395   void *pData;                    /* Data actually written */
3396   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3397   pData = pPage->pData;
3398   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3399   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3400   if( rc ) return rc;
3401   /* Write the page data */
3402   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3403   return rc;
3404 }
3405 
3406 /*
3407 ** This function is called as part of committing a transaction within which
3408 ** one or more frames have been overwritten. It updates the checksums for
3409 ** all frames written to the wal file by the current transaction starting
3410 ** with the earliest to have been overwritten.
3411 **
3412 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3413 */
3414 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3415   const int szPage = pWal->szPage;/* Database page size */
3416   int rc = SQLITE_OK;             /* Return code */
3417   u8 *aBuf;                       /* Buffer to load data from wal file into */
3418   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3419   u32 iRead;                      /* Next frame to read from wal file */
3420   i64 iCksumOff;
3421 
3422   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3423   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3424 
3425   /* Find the checksum values to use as input for the recalculating the
3426   ** first checksum. If the first frame is frame 1 (implying that the current
3427   ** transaction restarted the wal file), these values must be read from the
3428   ** wal-file header. Otherwise, read them from the frame header of the
3429   ** previous frame.  */
3430   assert( pWal->iReCksum>0 );
3431   if( pWal->iReCksum==1 ){
3432     iCksumOff = 24;
3433   }else{
3434     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3435   }
3436   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3437   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3438   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3439 
3440   iRead = pWal->iReCksum;
3441   pWal->iReCksum = 0;
3442   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3443     i64 iOff = walFrameOffset(iRead, szPage);
3444     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3445     if( rc==SQLITE_OK ){
3446       u32 iPgno, nDbSize;
3447       iPgno = sqlite3Get4byte(aBuf);
3448       nDbSize = sqlite3Get4byte(&aBuf[4]);
3449 
3450       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3451       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3452     }
3453   }
3454 
3455   sqlite3_free(aBuf);
3456   return rc;
3457 }
3458 
3459 /*
3460 ** Write a set of frames to the log. The caller must hold the write-lock
3461 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3462 */
3463 int sqlite3WalFrames(
3464   Wal *pWal,                      /* Wal handle to write to */
3465   int szPage,                     /* Database page-size in bytes */
3466   PgHdr *pList,                   /* List of dirty pages to write */
3467   Pgno nTruncate,                 /* Database size after this commit */
3468   int isCommit,                   /* True if this is a commit */
3469   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3470 ){
3471   int rc;                         /* Used to catch return codes */
3472   u32 iFrame;                     /* Next frame address */
3473   PgHdr *p;                       /* Iterator to run through pList with. */
3474   PgHdr *pLast = 0;               /* Last frame in list */
3475   int nExtra = 0;                 /* Number of extra copies of last page */
3476   int szFrame;                    /* The size of a single frame */
3477   i64 iOffset;                    /* Next byte to write in WAL file */
3478   WalWriter w;                    /* The writer */
3479   u32 iFirst = 0;                 /* First frame that may be overwritten */
3480   WalIndexHdr *pLive;             /* Pointer to shared header */
3481 
3482   assert( pList );
3483   assert( pWal->writeLock );
3484 
3485   /* If this frame set completes a transaction, then nTruncate>0.  If
3486   ** nTruncate==0 then this frame set does not complete the transaction. */
3487   assert( (isCommit!=0)==(nTruncate!=0) );
3488 
3489 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3490   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3491     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3492               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3493   }
3494 #endif
3495 
3496   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3497   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3498     iFirst = pLive->mxFrame+1;
3499   }
3500 
3501   /* See if it is possible to write these frames into the start of the
3502   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3503   */
3504   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3505     return rc;
3506   }
3507 
3508   /* If this is the first frame written into the log, write the WAL
3509   ** header to the start of the WAL file. See comments at the top of
3510   ** this source file for a description of the WAL header format.
3511   */
3512   iFrame = pWal->hdr.mxFrame;
3513   if( iFrame==0 ){
3514     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3515     u32 aCksum[2];                /* Checksum for wal-header */
3516 
3517     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3518     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3519     sqlite3Put4byte(&aWalHdr[8], szPage);
3520     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3521     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3522     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3523     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3524     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3525     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3526 
3527     pWal->szPage = szPage;
3528     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3529     pWal->hdr.aFrameCksum[0] = aCksum[0];
3530     pWal->hdr.aFrameCksum[1] = aCksum[1];
3531     pWal->truncateOnCommit = 1;
3532 
3533     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3534     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3535     if( rc!=SQLITE_OK ){
3536       return rc;
3537     }
3538 
3539     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3540     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3541     ** an out-of-order write following a WAL restart could result in
3542     ** database corruption.  See the ticket:
3543     **
3544     **     https://sqlite.org/src/info/ff5be73dee
3545     */
3546     if( pWal->syncHeader ){
3547       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3548       if( rc ) return rc;
3549     }
3550   }
3551   assert( (int)pWal->szPage==szPage );
3552 
3553   /* Setup information needed to write frames into the WAL */
3554   w.pWal = pWal;
3555   w.pFd = pWal->pWalFd;
3556   w.iSyncPoint = 0;
3557   w.syncFlags = sync_flags;
3558   w.szPage = szPage;
3559   iOffset = walFrameOffset(iFrame+1, szPage);
3560   szFrame = szPage + WAL_FRAME_HDRSIZE;
3561 
3562   /* Write all frames into the log file exactly once */
3563   for(p=pList; p; p=p->pDirty){
3564     int nDbSize;   /* 0 normally.  Positive == commit flag */
3565 
3566     /* Check if this page has already been written into the wal file by
3567     ** the current transaction. If so, overwrite the existing frame and
3568     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3569     ** checksums must be recomputed when the transaction is committed.  */
3570     if( iFirst && (p->pDirty || isCommit==0) ){
3571       u32 iWrite = 0;
3572       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3573       assert( rc==SQLITE_OK || iWrite==0 );
3574       if( iWrite>=iFirst ){
3575         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3576         void *pData;
3577         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3578           pWal->iReCksum = iWrite;
3579         }
3580         pData = p->pData;
3581         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3582         if( rc ) return rc;
3583         p->flags &= ~PGHDR_WAL_APPEND;
3584         continue;
3585       }
3586     }
3587 
3588     iFrame++;
3589     assert( iOffset==walFrameOffset(iFrame, szPage) );
3590     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3591     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3592     if( rc ) return rc;
3593     pLast = p;
3594     iOffset += szFrame;
3595     p->flags |= PGHDR_WAL_APPEND;
3596   }
3597 
3598   /* Recalculate checksums within the wal file if required. */
3599   if( isCommit && pWal->iReCksum ){
3600     rc = walRewriteChecksums(pWal, iFrame);
3601     if( rc ) return rc;
3602   }
3603 
3604   /* If this is the end of a transaction, then we might need to pad
3605   ** the transaction and/or sync the WAL file.
3606   **
3607   ** Padding and syncing only occur if this set of frames complete a
3608   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3609   ** or synchronous==OFF, then no padding or syncing are needed.
3610   **
3611   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3612   ** needed and only the sync is done.  If padding is needed, then the
3613   ** final frame is repeated (with its commit mark) until the next sector
3614   ** boundary is crossed.  Only the part of the WAL prior to the last
3615   ** sector boundary is synced; the part of the last frame that extends
3616   ** past the sector boundary is written after the sync.
3617   */
3618   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3619     int bSync = 1;
3620     if( pWal->padToSectorBoundary ){
3621       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3622       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3623       bSync = (w.iSyncPoint==iOffset);
3624       testcase( bSync );
3625       while( iOffset<w.iSyncPoint ){
3626         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3627         if( rc ) return rc;
3628         iOffset += szFrame;
3629         nExtra++;
3630         assert( pLast!=0 );
3631       }
3632     }
3633     if( bSync ){
3634       assert( rc==SQLITE_OK );
3635       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3636     }
3637   }
3638 
3639   /* If this frame set completes the first transaction in the WAL and
3640   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3641   ** journal size limit, if possible.
3642   */
3643   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3644     i64 sz = pWal->mxWalSize;
3645     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3646       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3647     }
3648     walLimitSize(pWal, sz);
3649     pWal->truncateOnCommit = 0;
3650   }
3651 
3652   /* Append data to the wal-index. It is not necessary to lock the
3653   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3654   ** guarantees that there are no other writers, and no data that may
3655   ** be in use by existing readers is being overwritten.
3656   */
3657   iFrame = pWal->hdr.mxFrame;
3658   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3659     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3660     iFrame++;
3661     rc = walIndexAppend(pWal, iFrame, p->pgno);
3662   }
3663   assert( pLast!=0 || nExtra==0 );
3664   while( rc==SQLITE_OK && nExtra>0 ){
3665     iFrame++;
3666     nExtra--;
3667     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3668   }
3669 
3670   if( rc==SQLITE_OK ){
3671     /* Update the private copy of the header. */
3672     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3673     testcase( szPage<=32768 );
3674     testcase( szPage>=65536 );
3675     pWal->hdr.mxFrame = iFrame;
3676     if( isCommit ){
3677       pWal->hdr.iChange++;
3678       pWal->hdr.nPage = nTruncate;
3679     }
3680     /* If this is a commit, update the wal-index header too. */
3681     if( isCommit ){
3682       walIndexWriteHdr(pWal);
3683       pWal->iCallback = iFrame;
3684     }
3685   }
3686 
3687   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3688   return rc;
3689 }
3690 
3691 /*
3692 ** This routine is called to implement sqlite3_wal_checkpoint() and
3693 ** related interfaces.
3694 **
3695 ** Obtain a CHECKPOINT lock and then backfill as much information as
3696 ** we can from WAL into the database.
3697 **
3698 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3699 ** callback. In this case this function runs a blocking checkpoint.
3700 */
3701 int sqlite3WalCheckpoint(
3702   Wal *pWal,                      /* Wal connection */
3703   sqlite3 *db,                    /* Check this handle's interrupt flag */
3704   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3705   int (*xBusy)(void*),            /* Function to call when busy */
3706   void *pBusyArg,                 /* Context argument for xBusyHandler */
3707   int sync_flags,                 /* Flags to sync db file with (or 0) */
3708   int nBuf,                       /* Size of temporary buffer */
3709   u8 *zBuf,                       /* Temporary buffer to use */
3710   int *pnLog,                     /* OUT: Number of frames in WAL */
3711   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3712 ){
3713   int rc;                         /* Return code */
3714   int isChanged = 0;              /* True if a new wal-index header is loaded */
3715   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3716   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3717 
3718   assert( pWal->ckptLock==0 );
3719   assert( pWal->writeLock==0 );
3720 
3721   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3722   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3723   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3724 
3725   if( pWal->readOnly ) return SQLITE_READONLY;
3726   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3727 
3728   /* Enable blocking locks, if possible. If blocking locks are successfully
3729   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3730   sqlite3WalDb(pWal, db);
3731   (void)walEnableBlocking(pWal);
3732 
3733   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3734   ** "checkpoint" lock on the database file.
3735   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3736   ** checkpoint operation at the same time, the lock cannot be obtained and
3737   ** SQLITE_BUSY is returned.
3738   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3739   ** it will not be invoked in this case.
3740   */
3741   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3742   testcase( rc==SQLITE_BUSY );
3743   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3744   if( rc==SQLITE_OK ){
3745     pWal->ckptLock = 1;
3746 
3747     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3748     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3749     ** file.
3750     **
3751     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3752     ** immediately, and a busy-handler is configured, it is invoked and the
3753     ** writer lock retried until either the busy-handler returns 0 or the
3754     ** lock is successfully obtained.
3755     */
3756     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3757       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3758       if( rc==SQLITE_OK ){
3759         pWal->writeLock = 1;
3760       }else if( rc==SQLITE_BUSY ){
3761         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3762         xBusy2 = 0;
3763         rc = SQLITE_OK;
3764       }
3765     }
3766   }
3767 
3768 
3769   /* Read the wal-index header. */
3770   if( rc==SQLITE_OK ){
3771     walDisableBlocking(pWal);
3772     rc = walIndexReadHdr(pWal, &isChanged);
3773     (void)walEnableBlocking(pWal);
3774     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3775       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3776     }
3777   }
3778 
3779   /* Copy data from the log to the database file. */
3780   if( rc==SQLITE_OK ){
3781 
3782     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3783       rc = SQLITE_CORRUPT_BKPT;
3784     }else{
3785       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3786     }
3787 
3788     /* If no error occurred, set the output variables. */
3789     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3790       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3791       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3792     }
3793   }
3794 
3795   if( isChanged ){
3796     /* If a new wal-index header was loaded before the checkpoint was
3797     ** performed, then the pager-cache associated with pWal is now
3798     ** out of date. So zero the cached wal-index header to ensure that
3799     ** next time the pager opens a snapshot on this database it knows that
3800     ** the cache needs to be reset.
3801     */
3802     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3803   }
3804 
3805   walDisableBlocking(pWal);
3806   sqlite3WalDb(pWal, 0);
3807 
3808   /* Release the locks. */
3809   sqlite3WalEndWriteTransaction(pWal);
3810   if( pWal->ckptLock ){
3811     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3812     pWal->ckptLock = 0;
3813   }
3814   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3815 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3816   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3817 #endif
3818   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3819 }
3820 
3821 /* Return the value to pass to a sqlite3_wal_hook callback, the
3822 ** number of frames in the WAL at the point of the last commit since
3823 ** sqlite3WalCallback() was called.  If no commits have occurred since
3824 ** the last call, then return 0.
3825 */
3826 int sqlite3WalCallback(Wal *pWal){
3827   u32 ret = 0;
3828   if( pWal ){
3829     ret = pWal->iCallback;
3830     pWal->iCallback = 0;
3831   }
3832   return (int)ret;
3833 }
3834 
3835 /*
3836 ** This function is called to change the WAL subsystem into or out
3837 ** of locking_mode=EXCLUSIVE.
3838 **
3839 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3840 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3841 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3842 ** or if the acquisition of the lock fails, then return 0.  If the
3843 ** transition out of exclusive-mode is successful, return 1.  This
3844 ** operation must occur while the pager is still holding the exclusive
3845 ** lock on the main database file.
3846 **
3847 ** If op is one, then change from locking_mode=NORMAL into
3848 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3849 ** be released.  Return 1 if the transition is made and 0 if the
3850 ** WAL is already in exclusive-locking mode - meaning that this
3851 ** routine is a no-op.  The pager must already hold the exclusive lock
3852 ** on the main database file before invoking this operation.
3853 **
3854 ** If op is negative, then do a dry-run of the op==1 case but do
3855 ** not actually change anything. The pager uses this to see if it
3856 ** should acquire the database exclusive lock prior to invoking
3857 ** the op==1 case.
3858 */
3859 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3860   int rc;
3861   assert( pWal->writeLock==0 );
3862   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3863 
3864   /* pWal->readLock is usually set, but might be -1 if there was a
3865   ** prior error while attempting to acquire are read-lock. This cannot
3866   ** happen if the connection is actually in exclusive mode (as no xShmLock
3867   ** locks are taken in this case). Nor should the pager attempt to
3868   ** upgrade to exclusive-mode following such an error.
3869   */
3870   assert( pWal->readLock>=0 || pWal->lockError );
3871   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3872 
3873   if( op==0 ){
3874     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3875       pWal->exclusiveMode = WAL_NORMAL_MODE;
3876       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3877         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3878       }
3879       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3880     }else{
3881       /* Already in locking_mode=NORMAL */
3882       rc = 0;
3883     }
3884   }else if( op>0 ){
3885     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3886     assert( pWal->readLock>=0 );
3887     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3888     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3889     rc = 1;
3890   }else{
3891     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3892   }
3893   return rc;
3894 }
3895 
3896 /*
3897 ** Return true if the argument is non-NULL and the WAL module is using
3898 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3899 ** WAL module is using shared-memory, return false.
3900 */
3901 int sqlite3WalHeapMemory(Wal *pWal){
3902   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3903 }
3904 
3905 #ifdef SQLITE_ENABLE_SNAPSHOT
3906 /* Create a snapshot object.  The content of a snapshot is opaque to
3907 ** every other subsystem, so the WAL module can put whatever it needs
3908 ** in the object.
3909 */
3910 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3911   int rc = SQLITE_OK;
3912   WalIndexHdr *pRet;
3913   static const u32 aZero[4] = { 0, 0, 0, 0 };
3914 
3915   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3916 
3917   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3918     *ppSnapshot = 0;
3919     return SQLITE_ERROR;
3920   }
3921   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3922   if( pRet==0 ){
3923     rc = SQLITE_NOMEM_BKPT;
3924   }else{
3925     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3926     *ppSnapshot = (sqlite3_snapshot*)pRet;
3927   }
3928 
3929   return rc;
3930 }
3931 
3932 /* Try to open on pSnapshot when the next read-transaction starts
3933 */
3934 void sqlite3WalSnapshotOpen(
3935   Wal *pWal,
3936   sqlite3_snapshot *pSnapshot
3937 ){
3938   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3939 }
3940 
3941 /*
3942 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3943 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3944 */
3945 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3946   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3947   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3948 
3949   /* aSalt[0] is a copy of the value stored in the wal file header. It
3950   ** is incremented each time the wal file is restarted.  */
3951   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3952   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3953   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3954   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3955   return 0;
3956 }
3957 
3958 /*
3959 ** The caller currently has a read transaction open on the database.
3960 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3961 ** checks if the snapshot passed as the second argument is still
3962 ** available. If so, SQLITE_OK is returned.
3963 **
3964 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3965 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3966 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3967 ** lock is released before returning.
3968 */
3969 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3970   int rc;
3971   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3972   if( rc==SQLITE_OK ){
3973     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3974     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3975      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3976     ){
3977       rc = SQLITE_ERROR_SNAPSHOT;
3978       walUnlockShared(pWal, WAL_CKPT_LOCK);
3979     }
3980   }
3981   return rc;
3982 }
3983 
3984 /*
3985 ** Release a lock obtained by an earlier successful call to
3986 ** sqlite3WalSnapshotCheck().
3987 */
3988 void sqlite3WalSnapshotUnlock(Wal *pWal){
3989   assert( pWal );
3990   walUnlockShared(pWal, WAL_CKPT_LOCK);
3991 }
3992 
3993 
3994 #endif /* SQLITE_ENABLE_SNAPSHOT */
3995 
3996 #ifdef SQLITE_ENABLE_ZIPVFS
3997 /*
3998 ** If the argument is not NULL, it points to a Wal object that holds a
3999 ** read-lock. This function returns the database page-size if it is known,
4000 ** or zero if it is not (or if pWal is NULL).
4001 */
4002 int sqlite3WalFramesize(Wal *pWal){
4003   assert( pWal==0 || pWal->readLock>=0 );
4004   return (pWal ? pWal->szPage : 0);
4005 }
4006 #endif
4007 
4008 /* Return the sqlite3_file object for the WAL file
4009 */
4010 sqlite3_file *sqlite3WalFile(Wal *pWal){
4011   return pWal->pWalFd;
4012 }
4013 
4014 #endif /* #ifndef SQLITE_OMIT_WAL */
4015