1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 471 sqlite3 *db; 472 #endif 473 }; 474 475 /* 476 ** Candidate values for Wal.exclusiveMode. 477 */ 478 #define WAL_NORMAL_MODE 0 479 #define WAL_EXCLUSIVE_MODE 1 480 #define WAL_HEAPMEMORY_MODE 2 481 482 /* 483 ** Possible values for WAL.readOnly 484 */ 485 #define WAL_RDWR 0 /* Normal read/write connection */ 486 #define WAL_RDONLY 1 /* The WAL file is readonly */ 487 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 488 489 /* 490 ** Each page of the wal-index mapping contains a hash-table made up of 491 ** an array of HASHTABLE_NSLOT elements of the following type. 492 */ 493 typedef u16 ht_slot; 494 495 /* 496 ** This structure is used to implement an iterator that loops through 497 ** all frames in the WAL in database page order. Where two or more frames 498 ** correspond to the same database page, the iterator visits only the 499 ** frame most recently written to the WAL (in other words, the frame with 500 ** the largest index). 501 ** 502 ** The internals of this structure are only accessed by: 503 ** 504 ** walIteratorInit() - Create a new iterator, 505 ** walIteratorNext() - Step an iterator, 506 ** walIteratorFree() - Free an iterator. 507 ** 508 ** This functionality is used by the checkpoint code (see walCheckpoint()). 509 */ 510 struct WalIterator { 511 int iPrior; /* Last result returned from the iterator */ 512 int nSegment; /* Number of entries in aSegment[] */ 513 struct WalSegment { 514 int iNext; /* Next slot in aIndex[] not yet returned */ 515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 516 u32 *aPgno; /* Array of page numbers. */ 517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 518 int iZero; /* Frame number associated with aPgno[0] */ 519 } aSegment[1]; /* One for every 32KB page in the wal-index */ 520 }; 521 522 /* 523 ** Define the parameters of the hash tables in the wal-index file. There 524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 525 ** wal-index. 526 ** 527 ** Changing any of these constants will alter the wal-index format and 528 ** create incompatibilities. 529 */ 530 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 531 #define HASHTABLE_HASH_1 383 /* Should be prime */ 532 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 533 534 /* 535 ** The block of page numbers associated with the first hash-table in a 536 ** wal-index is smaller than usual. This is so that there is a complete 537 ** hash-table on each aligned 32KB page of the wal-index. 538 */ 539 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 540 541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 542 #define WALINDEX_PGSZ ( \ 543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 544 ) 545 546 /* 547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 549 ** numbered from zero. 550 ** 551 ** If the wal-index is currently smaller the iPage pages then the size 552 ** of the wal-index might be increased, but only if it is safe to do 553 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 555 ** 556 ** If this call is successful, *ppPage is set to point to the wal-index 557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 558 ** then an SQLite error code is returned and *ppPage is set to 0. 559 */ 560 static SQLITE_NOINLINE int walIndexPageRealloc( 561 Wal *pWal, /* The WAL context */ 562 int iPage, /* The page we seek */ 563 volatile u32 **ppPage /* Write the page pointer here */ 564 ){ 565 int rc = SQLITE_OK; 566 567 /* Enlarge the pWal->apWiData[] array if required */ 568 if( pWal->nWiData<=iPage ){ 569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 570 volatile u32 **apNew; 571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 572 if( !apNew ){ 573 *ppPage = 0; 574 return SQLITE_NOMEM_BKPT; 575 } 576 memset((void*)&apNew[pWal->nWiData], 0, 577 sizeof(u32*)*(iPage+1-pWal->nWiData)); 578 pWal->apWiData = apNew; 579 pWal->nWiData = iPage+1; 580 } 581 582 /* Request a pointer to the required page from the VFS */ 583 assert( pWal->apWiData[iPage]==0 ); 584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 587 }else{ 588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 590 ); 591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 593 if( rc==SQLITE_OK ){ 594 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 595 }else if( (rc&0xff)==SQLITE_READONLY ){ 596 pWal->readOnly |= WAL_SHM_RDONLY; 597 if( rc==SQLITE_READONLY ){ 598 rc = SQLITE_OK; 599 } 600 } 601 } 602 603 *ppPage = pWal->apWiData[iPage]; 604 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 605 return rc; 606 } 607 static int walIndexPage( 608 Wal *pWal, /* The WAL context */ 609 int iPage, /* The page we seek */ 610 volatile u32 **ppPage /* Write the page pointer here */ 611 ){ 612 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 613 return walIndexPageRealloc(pWal, iPage, ppPage); 614 } 615 return SQLITE_OK; 616 } 617 618 /* 619 ** Return a pointer to the WalCkptInfo structure in the wal-index. 620 */ 621 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 622 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 623 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 624 } 625 626 /* 627 ** Return a pointer to the WalIndexHdr structure in the wal-index. 628 */ 629 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 630 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 631 return (volatile WalIndexHdr*)pWal->apWiData[0]; 632 } 633 634 /* 635 ** The argument to this macro must be of type u32. On a little-endian 636 ** architecture, it returns the u32 value that results from interpreting 637 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 638 ** returns the value that would be produced by interpreting the 4 bytes 639 ** of the input value as a little-endian integer. 640 */ 641 #define BYTESWAP32(x) ( \ 642 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 643 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 644 ) 645 646 /* 647 ** Generate or extend an 8 byte checksum based on the data in 648 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 649 ** initial values of 0 and 0 if aIn==NULL). 650 ** 651 ** The checksum is written back into aOut[] before returning. 652 ** 653 ** nByte must be a positive multiple of 8. 654 */ 655 static void walChecksumBytes( 656 int nativeCksum, /* True for native byte-order, false for non-native */ 657 u8 *a, /* Content to be checksummed */ 658 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 659 const u32 *aIn, /* Initial checksum value input */ 660 u32 *aOut /* OUT: Final checksum value output */ 661 ){ 662 u32 s1, s2; 663 u32 *aData = (u32 *)a; 664 u32 *aEnd = (u32 *)&a[nByte]; 665 666 if( aIn ){ 667 s1 = aIn[0]; 668 s2 = aIn[1]; 669 }else{ 670 s1 = s2 = 0; 671 } 672 673 assert( nByte>=8 ); 674 assert( (nByte&0x00000007)==0 ); 675 assert( nByte<=65536 ); 676 677 if( nativeCksum ){ 678 do { 679 s1 += *aData++ + s2; 680 s2 += *aData++ + s1; 681 }while( aData<aEnd ); 682 }else{ 683 do { 684 s1 += BYTESWAP32(aData[0]) + s2; 685 s2 += BYTESWAP32(aData[1]) + s1; 686 aData += 2; 687 }while( aData<aEnd ); 688 } 689 690 aOut[0] = s1; 691 aOut[1] = s2; 692 } 693 694 /* 695 ** If there is the possibility of concurrent access to the SHM file 696 ** from multiple threads and/or processes, then do a memory barrier. 697 */ 698 static void walShmBarrier(Wal *pWal){ 699 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 700 sqlite3OsShmBarrier(pWal->pDbFd); 701 } 702 } 703 704 /* 705 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 706 ** definition as a hint that the function contains constructs that 707 ** might give false-positive TSAN warnings. 708 ** 709 ** See tag-20200519-1. 710 */ 711 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 712 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 713 #else 714 # define SQLITE_NO_TSAN 715 #endif 716 717 /* 718 ** Write the header information in pWal->hdr into the wal-index. 719 ** 720 ** The checksum on pWal->hdr is updated before it is written. 721 */ 722 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 723 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 724 const int nCksum = offsetof(WalIndexHdr, aCksum); 725 726 assert( pWal->writeLock ); 727 pWal->hdr.isInit = 1; 728 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 729 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 730 /* Possible TSAN false-positive. See tag-20200519-1 */ 731 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 732 walShmBarrier(pWal); 733 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 734 } 735 736 /* 737 ** This function encodes a single frame header and writes it to a buffer 738 ** supplied by the caller. A frame-header is made up of a series of 739 ** 4-byte big-endian integers, as follows: 740 ** 741 ** 0: Page number. 742 ** 4: For commit records, the size of the database image in pages 743 ** after the commit. For all other records, zero. 744 ** 8: Salt-1 (copied from the wal-header) 745 ** 12: Salt-2 (copied from the wal-header) 746 ** 16: Checksum-1. 747 ** 20: Checksum-2. 748 */ 749 static void walEncodeFrame( 750 Wal *pWal, /* The write-ahead log */ 751 u32 iPage, /* Database page number for frame */ 752 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 753 u8 *aData, /* Pointer to page data */ 754 u8 *aFrame /* OUT: Write encoded frame here */ 755 ){ 756 int nativeCksum; /* True for native byte-order checksums */ 757 u32 *aCksum = pWal->hdr.aFrameCksum; 758 assert( WAL_FRAME_HDRSIZE==24 ); 759 sqlite3Put4byte(&aFrame[0], iPage); 760 sqlite3Put4byte(&aFrame[4], nTruncate); 761 if( pWal->iReCksum==0 ){ 762 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 763 764 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 765 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 766 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 767 768 sqlite3Put4byte(&aFrame[16], aCksum[0]); 769 sqlite3Put4byte(&aFrame[20], aCksum[1]); 770 }else{ 771 memset(&aFrame[8], 0, 16); 772 } 773 } 774 775 /* 776 ** Check to see if the frame with header in aFrame[] and content 777 ** in aData[] is valid. If it is a valid frame, fill *piPage and 778 ** *pnTruncate and return true. Return if the frame is not valid. 779 */ 780 static int walDecodeFrame( 781 Wal *pWal, /* The write-ahead log */ 782 u32 *piPage, /* OUT: Database page number for frame */ 783 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 784 u8 *aData, /* Pointer to page data (for checksum) */ 785 u8 *aFrame /* Frame data */ 786 ){ 787 int nativeCksum; /* True for native byte-order checksums */ 788 u32 *aCksum = pWal->hdr.aFrameCksum; 789 u32 pgno; /* Page number of the frame */ 790 assert( WAL_FRAME_HDRSIZE==24 ); 791 792 /* A frame is only valid if the salt values in the frame-header 793 ** match the salt values in the wal-header. 794 */ 795 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 796 return 0; 797 } 798 799 /* A frame is only valid if the page number is creater than zero. 800 */ 801 pgno = sqlite3Get4byte(&aFrame[0]); 802 if( pgno==0 ){ 803 return 0; 804 } 805 806 /* A frame is only valid if a checksum of the WAL header, 807 ** all prior frams, the first 16 bytes of this frame-header, 808 ** and the frame-data matches the checksum in the last 8 809 ** bytes of this frame-header. 810 */ 811 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 812 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 813 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 814 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 815 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 816 ){ 817 /* Checksum failed. */ 818 return 0; 819 } 820 821 /* If we reach this point, the frame is valid. Return the page number 822 ** and the new database size. 823 */ 824 *piPage = pgno; 825 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 826 return 1; 827 } 828 829 830 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 831 /* 832 ** Names of locks. This routine is used to provide debugging output and is not 833 ** a part of an ordinary build. 834 */ 835 static const char *walLockName(int lockIdx){ 836 if( lockIdx==WAL_WRITE_LOCK ){ 837 return "WRITE-LOCK"; 838 }else if( lockIdx==WAL_CKPT_LOCK ){ 839 return "CKPT-LOCK"; 840 }else if( lockIdx==WAL_RECOVER_LOCK ){ 841 return "RECOVER-LOCK"; 842 }else{ 843 static char zName[15]; 844 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 845 lockIdx-WAL_READ_LOCK(0)); 846 return zName; 847 } 848 } 849 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 850 851 852 /* 853 ** Set or release locks on the WAL. Locks are either shared or exclusive. 854 ** A lock cannot be moved directly between shared and exclusive - it must go 855 ** through the unlocked state first. 856 ** 857 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 858 */ 859 static int walLockShared(Wal *pWal, int lockIdx){ 860 int rc; 861 if( pWal->exclusiveMode ) return SQLITE_OK; 862 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 863 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 864 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 865 walLockName(lockIdx), rc ? "failed" : "ok")); 866 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 867 return rc; 868 } 869 static void walUnlockShared(Wal *pWal, int lockIdx){ 870 if( pWal->exclusiveMode ) return; 871 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 872 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 873 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 874 } 875 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 876 int rc; 877 if( pWal->exclusiveMode ) return SQLITE_OK; 878 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 879 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 880 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 881 walLockName(lockIdx), n, rc ? "failed" : "ok")); 882 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 883 return rc; 884 } 885 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 886 if( pWal->exclusiveMode ) return; 887 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 888 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 889 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 890 walLockName(lockIdx), n)); 891 } 892 893 /* 894 ** Compute a hash on a page number. The resulting hash value must land 895 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 896 ** the hash to the next value in the event of a collision. 897 */ 898 static int walHash(u32 iPage){ 899 assert( iPage>0 ); 900 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 901 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 902 } 903 static int walNextHash(int iPriorHash){ 904 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 905 } 906 907 /* 908 ** An instance of the WalHashLoc object is used to describe the location 909 ** of a page hash table in the wal-index. This becomes the return value 910 ** from walHashGet(). 911 */ 912 typedef struct WalHashLoc WalHashLoc; 913 struct WalHashLoc { 914 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 915 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 916 u32 iZero; /* One less than the frame number of first indexed*/ 917 }; 918 919 /* 920 ** Return pointers to the hash table and page number array stored on 921 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 922 ** numbered starting from 0. 923 ** 924 ** Set output variable pLoc->aHash to point to the start of the hash table 925 ** in the wal-index file. Set pLoc->iZero to one less than the frame 926 ** number of the first frame indexed by this hash table. If a 927 ** slot in the hash table is set to N, it refers to frame number 928 ** (pLoc->iZero+N) in the log. 929 ** 930 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 931 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 932 */ 933 static int walHashGet( 934 Wal *pWal, /* WAL handle */ 935 int iHash, /* Find the iHash'th table */ 936 WalHashLoc *pLoc /* OUT: Hash table location */ 937 ){ 938 int rc; /* Return code */ 939 940 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 941 assert( rc==SQLITE_OK || iHash>0 ); 942 943 if( rc==SQLITE_OK ){ 944 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 945 if( iHash==0 ){ 946 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 947 pLoc->iZero = 0; 948 }else{ 949 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 950 } 951 pLoc->aPgno = &pLoc->aPgno[-1]; 952 } 953 return rc; 954 } 955 956 /* 957 ** Return the number of the wal-index page that contains the hash-table 958 ** and page-number array that contain entries corresponding to WAL frame 959 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 960 ** are numbered starting from 0. 961 */ 962 static int walFramePage(u32 iFrame){ 963 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 964 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 965 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 966 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 967 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 968 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 969 ); 970 return iHash; 971 } 972 973 /* 974 ** Return the page number associated with frame iFrame in this WAL. 975 */ 976 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 977 int iHash = walFramePage(iFrame); 978 if( iHash==0 ){ 979 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 980 } 981 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 982 } 983 984 /* 985 ** Remove entries from the hash table that point to WAL slots greater 986 ** than pWal->hdr.mxFrame. 987 ** 988 ** This function is called whenever pWal->hdr.mxFrame is decreased due 989 ** to a rollback or savepoint. 990 ** 991 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 992 ** updated. Any later hash tables will be automatically cleared when 993 ** pWal->hdr.mxFrame advances to the point where those hash tables are 994 ** actually needed. 995 */ 996 static void walCleanupHash(Wal *pWal){ 997 WalHashLoc sLoc; /* Hash table location */ 998 int iLimit = 0; /* Zero values greater than this */ 999 int nByte; /* Number of bytes to zero in aPgno[] */ 1000 int i; /* Used to iterate through aHash[] */ 1001 int rc; /* Return code form walHashGet() */ 1002 1003 assert( pWal->writeLock ); 1004 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1005 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1006 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1007 1008 if( pWal->hdr.mxFrame==0 ) return; 1009 1010 /* Obtain pointers to the hash-table and page-number array containing 1011 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1012 ** that the page said hash-table and array reside on is already mapped.(1) 1013 */ 1014 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1015 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1016 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1017 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1018 1019 /* Zero all hash-table entries that correspond to frame numbers greater 1020 ** than pWal->hdr.mxFrame. 1021 */ 1022 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1023 assert( iLimit>0 ); 1024 for(i=0; i<HASHTABLE_NSLOT; i++){ 1025 if( sLoc.aHash[i]>iLimit ){ 1026 sLoc.aHash[i] = 0; 1027 } 1028 } 1029 1030 /* Zero the entries in the aPgno array that correspond to frames with 1031 ** frame numbers greater than pWal->hdr.mxFrame. 1032 */ 1033 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1034 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1035 1036 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1037 /* Verify that the every entry in the mapping region is still reachable 1038 ** via the hash table even after the cleanup. 1039 */ 1040 if( iLimit ){ 1041 int j; /* Loop counter */ 1042 int iKey; /* Hash key */ 1043 for(j=1; j<=iLimit; j++){ 1044 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1045 if( sLoc.aHash[iKey]==j ) break; 1046 } 1047 assert( sLoc.aHash[iKey]==j ); 1048 } 1049 } 1050 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1051 } 1052 1053 1054 /* 1055 ** Set an entry in the wal-index that will map database page number 1056 ** pPage into WAL frame iFrame. 1057 */ 1058 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1059 int rc; /* Return code */ 1060 WalHashLoc sLoc; /* Wal-index hash table location */ 1061 1062 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1063 1064 /* Assuming the wal-index file was successfully mapped, populate the 1065 ** page number array and hash table entry. 1066 */ 1067 if( rc==SQLITE_OK ){ 1068 int iKey; /* Hash table key */ 1069 int idx; /* Value to write to hash-table slot */ 1070 int nCollide; /* Number of hash collisions */ 1071 1072 idx = iFrame - sLoc.iZero; 1073 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1074 1075 /* If this is the first entry to be added to this hash-table, zero the 1076 ** entire hash table and aPgno[] array before proceeding. 1077 */ 1078 if( idx==1 ){ 1079 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1080 - (u8 *)&sLoc.aPgno[1]); 1081 memset((void*)&sLoc.aPgno[1], 0, nByte); 1082 } 1083 1084 /* If the entry in aPgno[] is already set, then the previous writer 1085 ** must have exited unexpectedly in the middle of a transaction (after 1086 ** writing one or more dirty pages to the WAL to free up memory). 1087 ** Remove the remnants of that writers uncommitted transaction from 1088 ** the hash-table before writing any new entries. 1089 */ 1090 if( sLoc.aPgno[idx] ){ 1091 walCleanupHash(pWal); 1092 assert( !sLoc.aPgno[idx] ); 1093 } 1094 1095 /* Write the aPgno[] array entry and the hash-table slot. */ 1096 nCollide = idx; 1097 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1098 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1099 } 1100 sLoc.aPgno[idx] = iPage; 1101 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1102 1103 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1104 /* Verify that the number of entries in the hash table exactly equals 1105 ** the number of entries in the mapping region. 1106 */ 1107 { 1108 int i; /* Loop counter */ 1109 int nEntry = 0; /* Number of entries in the hash table */ 1110 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1111 assert( nEntry==idx ); 1112 } 1113 1114 /* Verify that the every entry in the mapping region is reachable 1115 ** via the hash table. This turns out to be a really, really expensive 1116 ** thing to check, so only do this occasionally - not on every 1117 ** iteration. 1118 */ 1119 if( (idx&0x3ff)==0 ){ 1120 int i; /* Loop counter */ 1121 for(i=1; i<=idx; i++){ 1122 for(iKey=walHash(sLoc.aPgno[i]); 1123 sLoc.aHash[iKey]; 1124 iKey=walNextHash(iKey)){ 1125 if( sLoc.aHash[iKey]==i ) break; 1126 } 1127 assert( sLoc.aHash[iKey]==i ); 1128 } 1129 } 1130 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1131 } 1132 1133 1134 return rc; 1135 } 1136 1137 1138 /* 1139 ** Recover the wal-index by reading the write-ahead log file. 1140 ** 1141 ** This routine first tries to establish an exclusive lock on the 1142 ** wal-index to prevent other threads/processes from doing anything 1143 ** with the WAL or wal-index while recovery is running. The 1144 ** WAL_RECOVER_LOCK is also held so that other threads will know 1145 ** that this thread is running recovery. If unable to establish 1146 ** the necessary locks, this routine returns SQLITE_BUSY. 1147 */ 1148 static int walIndexRecover(Wal *pWal){ 1149 int rc; /* Return Code */ 1150 i64 nSize; /* Size of log file */ 1151 u32 aFrameCksum[2] = {0, 0}; 1152 int iLock; /* Lock offset to lock for checkpoint */ 1153 1154 /* Obtain an exclusive lock on all byte in the locking range not already 1155 ** locked by the caller. The caller is guaranteed to have locked the 1156 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1157 ** If successful, the same bytes that are locked here are unlocked before 1158 ** this function returns. 1159 */ 1160 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1161 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1162 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1163 assert( pWal->writeLock ); 1164 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1165 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1166 if( rc ){ 1167 return rc; 1168 } 1169 1170 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1171 1172 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1173 1174 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1175 if( rc!=SQLITE_OK ){ 1176 goto recovery_error; 1177 } 1178 1179 if( nSize>WAL_HDRSIZE ){ 1180 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1181 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1182 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1183 int szFrame; /* Number of bytes in buffer aFrame[] */ 1184 u8 *aData; /* Pointer to data part of aFrame buffer */ 1185 int szPage; /* Page size according to the log */ 1186 u32 magic; /* Magic value read from WAL header */ 1187 u32 version; /* Magic value read from WAL header */ 1188 int isValid; /* True if this frame is valid */ 1189 int iPg; /* Current 32KB wal-index page */ 1190 int iLastFrame; /* Last frame in wal, based on nSize alone */ 1191 1192 /* Read in the WAL header. */ 1193 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1194 if( rc!=SQLITE_OK ){ 1195 goto recovery_error; 1196 } 1197 1198 /* If the database page size is not a power of two, or is greater than 1199 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1200 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1201 ** WAL file. 1202 */ 1203 magic = sqlite3Get4byte(&aBuf[0]); 1204 szPage = sqlite3Get4byte(&aBuf[8]); 1205 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1206 || szPage&(szPage-1) 1207 || szPage>SQLITE_MAX_PAGE_SIZE 1208 || szPage<512 1209 ){ 1210 goto finished; 1211 } 1212 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1213 pWal->szPage = szPage; 1214 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1215 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1216 1217 /* Verify that the WAL header checksum is correct */ 1218 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1219 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1220 ); 1221 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1222 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1223 ){ 1224 goto finished; 1225 } 1226 1227 /* Verify that the version number on the WAL format is one that 1228 ** are able to understand */ 1229 version = sqlite3Get4byte(&aBuf[4]); 1230 if( version!=WAL_MAX_VERSION ){ 1231 rc = SQLITE_CANTOPEN_BKPT; 1232 goto finished; 1233 } 1234 1235 /* Malloc a buffer to read frames into. */ 1236 szFrame = szPage + WAL_FRAME_HDRSIZE; 1237 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1238 if( !aFrame ){ 1239 rc = SQLITE_NOMEM_BKPT; 1240 goto recovery_error; 1241 } 1242 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1243 aPrivate = (u32*)&aData[szPage]; 1244 1245 /* Read all frames from the log file. */ 1246 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1247 for(iPg=0; iPg<=walFramePage(iLastFrame); iPg++){ 1248 u32 *aShare; 1249 int iFrame; /* Index of last frame read */ 1250 int iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1251 int iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1252 int nHdr, nHdr32; 1253 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1254 if( rc ) break; 1255 pWal->apWiData[iPg] = aPrivate; 1256 1257 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1258 i64 iOffset = walFrameOffset(iFrame, szPage); 1259 u32 pgno; /* Database page number for frame */ 1260 u32 nTruncate; /* dbsize field from frame header */ 1261 1262 /* Read and decode the next log frame. */ 1263 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1264 if( rc!=SQLITE_OK ) break; 1265 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1266 if( !isValid ) break; 1267 rc = walIndexAppend(pWal, iFrame, pgno); 1268 if( NEVER(rc!=SQLITE_OK) ) break; 1269 1270 /* If nTruncate is non-zero, this is a commit record. */ 1271 if( nTruncate ){ 1272 pWal->hdr.mxFrame = iFrame; 1273 pWal->hdr.nPage = nTruncate; 1274 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1275 testcase( szPage<=32768 ); 1276 testcase( szPage>=65536 ); 1277 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1278 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1279 } 1280 } 1281 pWal->apWiData[iPg] = aShare; 1282 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1283 nHdr32 = nHdr / sizeof(u32); 1284 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1285 if( iFrame<=iLast ) break; 1286 } 1287 1288 sqlite3_free(aFrame); 1289 } 1290 1291 finished: 1292 if( rc==SQLITE_OK ){ 1293 volatile WalCkptInfo *pInfo; 1294 int i; 1295 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1296 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1297 walIndexWriteHdr(pWal); 1298 1299 /* Reset the checkpoint-header. This is safe because this thread is 1300 ** currently holding locks that exclude all other writers and 1301 ** checkpointers. Then set the values of read-mark slots 1 through N. 1302 */ 1303 pInfo = walCkptInfo(pWal); 1304 pInfo->nBackfill = 0; 1305 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1306 pInfo->aReadMark[0] = 0; 1307 for(i=1; i<WAL_NREADER; i++){ 1308 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1309 if( rc==SQLITE_OK ){ 1310 if( i==1 && pWal->hdr.mxFrame ){ 1311 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1312 }else{ 1313 pInfo->aReadMark[i] = READMARK_NOT_USED; 1314 } 1315 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1316 }else if( rc!=SQLITE_BUSY ){ 1317 goto recovery_error; 1318 } 1319 } 1320 1321 /* If more than one frame was recovered from the log file, report an 1322 ** event via sqlite3_log(). This is to help with identifying performance 1323 ** problems caused by applications routinely shutting down without 1324 ** checkpointing the log file. 1325 */ 1326 if( pWal->hdr.nPage ){ 1327 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1328 "recovered %d frames from WAL file %s", 1329 pWal->hdr.mxFrame, pWal->zWalName 1330 ); 1331 } 1332 } 1333 1334 recovery_error: 1335 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1336 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1337 return rc; 1338 } 1339 1340 /* 1341 ** Close an open wal-index. 1342 */ 1343 static void walIndexClose(Wal *pWal, int isDelete){ 1344 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1345 int i; 1346 for(i=0; i<pWal->nWiData; i++){ 1347 sqlite3_free((void *)pWal->apWiData[i]); 1348 pWal->apWiData[i] = 0; 1349 } 1350 } 1351 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1352 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1353 } 1354 } 1355 1356 /* 1357 ** Open a connection to the WAL file zWalName. The database file must 1358 ** already be opened on connection pDbFd. The buffer that zWalName points 1359 ** to must remain valid for the lifetime of the returned Wal* handle. 1360 ** 1361 ** A SHARED lock should be held on the database file when this function 1362 ** is called. The purpose of this SHARED lock is to prevent any other 1363 ** client from unlinking the WAL or wal-index file. If another process 1364 ** were to do this just after this client opened one of these files, the 1365 ** system would be badly broken. 1366 ** 1367 ** If the log file is successfully opened, SQLITE_OK is returned and 1368 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1369 ** an SQLite error code is returned and *ppWal is left unmodified. 1370 */ 1371 int sqlite3WalOpen( 1372 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1373 sqlite3_file *pDbFd, /* The open database file */ 1374 const char *zWalName, /* Name of the WAL file */ 1375 int bNoShm, /* True to run in heap-memory mode */ 1376 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1377 Wal **ppWal /* OUT: Allocated Wal handle */ 1378 ){ 1379 int rc; /* Return Code */ 1380 Wal *pRet; /* Object to allocate and return */ 1381 int flags; /* Flags passed to OsOpen() */ 1382 1383 assert( zWalName && zWalName[0] ); 1384 assert( pDbFd ); 1385 1386 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1387 ** this source file. Verify that the #defines of the locking byte offsets 1388 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1389 ** For that matter, if the lock offset ever changes from its initial design 1390 ** value of 120, we need to know that so there is an assert() to check it. 1391 */ 1392 assert( 120==WALINDEX_LOCK_OFFSET ); 1393 assert( 136==WALINDEX_HDR_SIZE ); 1394 #ifdef WIN_SHM_BASE 1395 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1396 #endif 1397 #ifdef UNIX_SHM_BASE 1398 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1399 #endif 1400 1401 1402 /* Allocate an instance of struct Wal to return. */ 1403 *ppWal = 0; 1404 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1405 if( !pRet ){ 1406 return SQLITE_NOMEM_BKPT; 1407 } 1408 1409 pRet->pVfs = pVfs; 1410 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1411 pRet->pDbFd = pDbFd; 1412 pRet->readLock = -1; 1413 pRet->mxWalSize = mxWalSize; 1414 pRet->zWalName = zWalName; 1415 pRet->syncHeader = 1; 1416 pRet->padToSectorBoundary = 1; 1417 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1418 1419 /* Open file handle on the write-ahead log file. */ 1420 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1421 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1422 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1423 pRet->readOnly = WAL_RDONLY; 1424 } 1425 1426 if( rc!=SQLITE_OK ){ 1427 walIndexClose(pRet, 0); 1428 sqlite3OsClose(pRet->pWalFd); 1429 sqlite3_free(pRet); 1430 }else{ 1431 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1432 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1433 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1434 pRet->padToSectorBoundary = 0; 1435 } 1436 *ppWal = pRet; 1437 WALTRACE(("WAL%d: opened\n", pRet)); 1438 } 1439 return rc; 1440 } 1441 1442 /* 1443 ** Change the size to which the WAL file is trucated on each reset. 1444 */ 1445 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1446 if( pWal ) pWal->mxWalSize = iLimit; 1447 } 1448 1449 /* 1450 ** Find the smallest page number out of all pages held in the WAL that 1451 ** has not been returned by any prior invocation of this method on the 1452 ** same WalIterator object. Write into *piFrame the frame index where 1453 ** that page was last written into the WAL. Write into *piPage the page 1454 ** number. 1455 ** 1456 ** Return 0 on success. If there are no pages in the WAL with a page 1457 ** number larger than *piPage, then return 1. 1458 */ 1459 static int walIteratorNext( 1460 WalIterator *p, /* Iterator */ 1461 u32 *piPage, /* OUT: The page number of the next page */ 1462 u32 *piFrame /* OUT: Wal frame index of next page */ 1463 ){ 1464 u32 iMin; /* Result pgno must be greater than iMin */ 1465 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1466 int i; /* For looping through segments */ 1467 1468 iMin = p->iPrior; 1469 assert( iMin<0xffffffff ); 1470 for(i=p->nSegment-1; i>=0; i--){ 1471 struct WalSegment *pSegment = &p->aSegment[i]; 1472 while( pSegment->iNext<pSegment->nEntry ){ 1473 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1474 if( iPg>iMin ){ 1475 if( iPg<iRet ){ 1476 iRet = iPg; 1477 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1478 } 1479 break; 1480 } 1481 pSegment->iNext++; 1482 } 1483 } 1484 1485 *piPage = p->iPrior = iRet; 1486 return (iRet==0xFFFFFFFF); 1487 } 1488 1489 /* 1490 ** This function merges two sorted lists into a single sorted list. 1491 ** 1492 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1493 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1494 ** is guaranteed for all J<K: 1495 ** 1496 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1497 ** aContent[aRight[J]] < aContent[aRight[K]] 1498 ** 1499 ** This routine overwrites aRight[] with a new (probably longer) sequence 1500 ** of indices such that the aRight[] contains every index that appears in 1501 ** either aLeft[] or the old aRight[] and such that the second condition 1502 ** above is still met. 1503 ** 1504 ** The aContent[aLeft[X]] values will be unique for all X. And the 1505 ** aContent[aRight[X]] values will be unique too. But there might be 1506 ** one or more combinations of X and Y such that 1507 ** 1508 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1509 ** 1510 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1511 */ 1512 static void walMerge( 1513 const u32 *aContent, /* Pages in wal - keys for the sort */ 1514 ht_slot *aLeft, /* IN: Left hand input list */ 1515 int nLeft, /* IN: Elements in array *paLeft */ 1516 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1517 int *pnRight, /* IN/OUT: Elements in *paRight */ 1518 ht_slot *aTmp /* Temporary buffer */ 1519 ){ 1520 int iLeft = 0; /* Current index in aLeft */ 1521 int iRight = 0; /* Current index in aRight */ 1522 int iOut = 0; /* Current index in output buffer */ 1523 int nRight = *pnRight; 1524 ht_slot *aRight = *paRight; 1525 1526 assert( nLeft>0 && nRight>0 ); 1527 while( iRight<nRight || iLeft<nLeft ){ 1528 ht_slot logpage; 1529 Pgno dbpage; 1530 1531 if( (iLeft<nLeft) 1532 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1533 ){ 1534 logpage = aLeft[iLeft++]; 1535 }else{ 1536 logpage = aRight[iRight++]; 1537 } 1538 dbpage = aContent[logpage]; 1539 1540 aTmp[iOut++] = logpage; 1541 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1542 1543 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1544 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1545 } 1546 1547 *paRight = aLeft; 1548 *pnRight = iOut; 1549 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1550 } 1551 1552 /* 1553 ** Sort the elements in list aList using aContent[] as the sort key. 1554 ** Remove elements with duplicate keys, preferring to keep the 1555 ** larger aList[] values. 1556 ** 1557 ** The aList[] entries are indices into aContent[]. The values in 1558 ** aList[] are to be sorted so that for all J<K: 1559 ** 1560 ** aContent[aList[J]] < aContent[aList[K]] 1561 ** 1562 ** For any X and Y such that 1563 ** 1564 ** aContent[aList[X]] == aContent[aList[Y]] 1565 ** 1566 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1567 ** the smaller. 1568 */ 1569 static void walMergesort( 1570 const u32 *aContent, /* Pages in wal */ 1571 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1572 ht_slot *aList, /* IN/OUT: List to sort */ 1573 int *pnList /* IN/OUT: Number of elements in aList[] */ 1574 ){ 1575 struct Sublist { 1576 int nList; /* Number of elements in aList */ 1577 ht_slot *aList; /* Pointer to sub-list content */ 1578 }; 1579 1580 const int nList = *pnList; /* Size of input list */ 1581 int nMerge = 0; /* Number of elements in list aMerge */ 1582 ht_slot *aMerge = 0; /* List to be merged */ 1583 int iList; /* Index into input list */ 1584 u32 iSub = 0; /* Index into aSub array */ 1585 struct Sublist aSub[13]; /* Array of sub-lists */ 1586 1587 memset(aSub, 0, sizeof(aSub)); 1588 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1589 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1590 1591 for(iList=0; iList<nList; iList++){ 1592 nMerge = 1; 1593 aMerge = &aList[iList]; 1594 for(iSub=0; iList & (1<<iSub); iSub++){ 1595 struct Sublist *p; 1596 assert( iSub<ArraySize(aSub) ); 1597 p = &aSub[iSub]; 1598 assert( p->aList && p->nList<=(1<<iSub) ); 1599 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1600 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1601 } 1602 aSub[iSub].aList = aMerge; 1603 aSub[iSub].nList = nMerge; 1604 } 1605 1606 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1607 if( nList & (1<<iSub) ){ 1608 struct Sublist *p; 1609 assert( iSub<ArraySize(aSub) ); 1610 p = &aSub[iSub]; 1611 assert( p->nList<=(1<<iSub) ); 1612 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1613 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1614 } 1615 } 1616 assert( aMerge==aList ); 1617 *pnList = nMerge; 1618 1619 #ifdef SQLITE_DEBUG 1620 { 1621 int i; 1622 for(i=1; i<*pnList; i++){ 1623 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1624 } 1625 } 1626 #endif 1627 } 1628 1629 /* 1630 ** Free an iterator allocated by walIteratorInit(). 1631 */ 1632 static void walIteratorFree(WalIterator *p){ 1633 sqlite3_free(p); 1634 } 1635 1636 /* 1637 ** Construct a WalInterator object that can be used to loop over all 1638 ** pages in the WAL following frame nBackfill in ascending order. Frames 1639 ** nBackfill or earlier may be included - excluding them is an optimization 1640 ** only. The caller must hold the checkpoint lock. 1641 ** 1642 ** On success, make *pp point to the newly allocated WalInterator object 1643 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1644 ** returns an error, the value of *pp is undefined. 1645 ** 1646 ** The calling routine should invoke walIteratorFree() to destroy the 1647 ** WalIterator object when it has finished with it. 1648 */ 1649 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1650 WalIterator *p; /* Return value */ 1651 int nSegment; /* Number of segments to merge */ 1652 u32 iLast; /* Last frame in log */ 1653 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1654 int i; /* Iterator variable */ 1655 ht_slot *aTmp; /* Temp space used by merge-sort */ 1656 int rc = SQLITE_OK; /* Return Code */ 1657 1658 /* This routine only runs while holding the checkpoint lock. And 1659 ** it only runs if there is actually content in the log (mxFrame>0). 1660 */ 1661 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1662 iLast = pWal->hdr.mxFrame; 1663 1664 /* Allocate space for the WalIterator object. */ 1665 nSegment = walFramePage(iLast) + 1; 1666 nByte = sizeof(WalIterator) 1667 + (nSegment-1)*sizeof(struct WalSegment) 1668 + iLast*sizeof(ht_slot); 1669 p = (WalIterator *)sqlite3_malloc64(nByte); 1670 if( !p ){ 1671 return SQLITE_NOMEM_BKPT; 1672 } 1673 memset(p, 0, nByte); 1674 p->nSegment = nSegment; 1675 1676 /* Allocate temporary space used by the merge-sort routine. This block 1677 ** of memory will be freed before this function returns. 1678 */ 1679 aTmp = (ht_slot *)sqlite3_malloc64( 1680 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1681 ); 1682 if( !aTmp ){ 1683 rc = SQLITE_NOMEM_BKPT; 1684 } 1685 1686 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1687 WalHashLoc sLoc; 1688 1689 rc = walHashGet(pWal, i, &sLoc); 1690 if( rc==SQLITE_OK ){ 1691 int j; /* Counter variable */ 1692 int nEntry; /* Number of entries in this segment */ 1693 ht_slot *aIndex; /* Sorted index for this segment */ 1694 1695 sLoc.aPgno++; 1696 if( (i+1)==nSegment ){ 1697 nEntry = (int)(iLast - sLoc.iZero); 1698 }else{ 1699 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1700 } 1701 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1702 sLoc.iZero++; 1703 1704 for(j=0; j<nEntry; j++){ 1705 aIndex[j] = (ht_slot)j; 1706 } 1707 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1708 p->aSegment[i].iZero = sLoc.iZero; 1709 p->aSegment[i].nEntry = nEntry; 1710 p->aSegment[i].aIndex = aIndex; 1711 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1712 } 1713 } 1714 sqlite3_free(aTmp); 1715 1716 if( rc!=SQLITE_OK ){ 1717 walIteratorFree(p); 1718 p = 0; 1719 } 1720 *pp = p; 1721 return rc; 1722 } 1723 1724 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1725 /* 1726 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1727 ** they are supported by the VFS, and (b) the database handle is configured 1728 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1729 ** or 0 otherwise. 1730 */ 1731 static int walEnableBlocking(Wal *pWal){ 1732 int res = 0; 1733 if( pWal->db ){ 1734 int tmout = pWal->db->busyTimeout; 1735 if( tmout ){ 1736 int rc; 1737 rc = sqlite3OsFileControl( 1738 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1739 ); 1740 res = (rc==SQLITE_OK); 1741 } 1742 } 1743 return res; 1744 } 1745 1746 /* 1747 ** Disable blocking locks. 1748 */ 1749 static void walDisableBlocking(Wal *pWal){ 1750 int tmout = 0; 1751 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1752 } 1753 1754 /* 1755 ** If parameter bLock is true, attempt to enable blocking locks, take 1756 ** the WRITER lock, and then disable blocking locks. If blocking locks 1757 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1758 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1759 ** an error if blocking locks can not be enabled. 1760 ** 1761 ** If the bLock parameter is false and the WRITER lock is held, release it. 1762 */ 1763 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1764 int rc = SQLITE_OK; 1765 assert( pWal->readLock<0 || bLock==0 ); 1766 if( bLock ){ 1767 assert( pWal->db ); 1768 if( walEnableBlocking(pWal) ){ 1769 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1770 if( rc==SQLITE_OK ){ 1771 pWal->writeLock = 1; 1772 } 1773 walDisableBlocking(pWal); 1774 } 1775 }else if( pWal->writeLock ){ 1776 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1777 pWal->writeLock = 0; 1778 } 1779 return rc; 1780 } 1781 1782 /* 1783 ** Set the database handle used to determine if blocking locks are required. 1784 */ 1785 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1786 pWal->db = db; 1787 } 1788 1789 /* 1790 ** Take an exclusive WRITE lock. Blocking if so configured. 1791 */ 1792 static int walLockWriter(Wal *pWal){ 1793 int rc; 1794 walEnableBlocking(pWal); 1795 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1796 walDisableBlocking(pWal); 1797 return rc; 1798 } 1799 #else 1800 # define walEnableBlocking(x) 0 1801 # define walDisableBlocking(x) 1802 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1803 # define sqlite3WalDb(pWal, db) 1804 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1805 1806 1807 /* 1808 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1809 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1810 ** busy-handler function. Invoke it and retry the lock until either the 1811 ** lock is successfully obtained or the busy-handler returns 0. 1812 */ 1813 static int walBusyLock( 1814 Wal *pWal, /* WAL connection */ 1815 int (*xBusy)(void*), /* Function to call when busy */ 1816 void *pBusyArg, /* Context argument for xBusyHandler */ 1817 int lockIdx, /* Offset of first byte to lock */ 1818 int n /* Number of bytes to lock */ 1819 ){ 1820 int rc; 1821 do { 1822 rc = walLockExclusive(pWal, lockIdx, n); 1823 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1824 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1825 if( rc==SQLITE_BUSY_TIMEOUT ){ 1826 walDisableBlocking(pWal); 1827 rc = SQLITE_BUSY; 1828 } 1829 #endif 1830 return rc; 1831 } 1832 1833 /* 1834 ** The cache of the wal-index header must be valid to call this function. 1835 ** Return the page-size in bytes used by the database. 1836 */ 1837 static int walPagesize(Wal *pWal){ 1838 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1839 } 1840 1841 /* 1842 ** The following is guaranteed when this function is called: 1843 ** 1844 ** a) the WRITER lock is held, 1845 ** b) the entire log file has been checkpointed, and 1846 ** c) any existing readers are reading exclusively from the database 1847 ** file - there are no readers that may attempt to read a frame from 1848 ** the log file. 1849 ** 1850 ** This function updates the shared-memory structures so that the next 1851 ** client to write to the database (which may be this one) does so by 1852 ** writing frames into the start of the log file. 1853 ** 1854 ** The value of parameter salt1 is used as the aSalt[1] value in the 1855 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1856 ** one obtained from sqlite3_randomness()). 1857 */ 1858 static void walRestartHdr(Wal *pWal, u32 salt1){ 1859 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1860 int i; /* Loop counter */ 1861 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1862 pWal->nCkpt++; 1863 pWal->hdr.mxFrame = 0; 1864 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1865 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1866 walIndexWriteHdr(pWal); 1867 AtomicStore(&pInfo->nBackfill, 0); 1868 pInfo->nBackfillAttempted = 0; 1869 pInfo->aReadMark[1] = 0; 1870 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1871 assert( pInfo->aReadMark[0]==0 ); 1872 } 1873 1874 /* 1875 ** Copy as much content as we can from the WAL back into the database file 1876 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1877 ** 1878 ** The amount of information copies from WAL to database might be limited 1879 ** by active readers. This routine will never overwrite a database page 1880 ** that a concurrent reader might be using. 1881 ** 1882 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1883 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1884 ** checkpoints are always run by a background thread or background 1885 ** process, foreground threads will never block on a lengthy fsync call. 1886 ** 1887 ** Fsync is called on the WAL before writing content out of the WAL and 1888 ** into the database. This ensures that if the new content is persistent 1889 ** in the WAL and can be recovered following a power-loss or hard reset. 1890 ** 1891 ** Fsync is also called on the database file if (and only if) the entire 1892 ** WAL content is copied into the database file. This second fsync makes 1893 ** it safe to delete the WAL since the new content will persist in the 1894 ** database file. 1895 ** 1896 ** This routine uses and updates the nBackfill field of the wal-index header. 1897 ** This is the only routine that will increase the value of nBackfill. 1898 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1899 ** its value.) 1900 ** 1901 ** The caller must be holding sufficient locks to ensure that no other 1902 ** checkpoint is running (in any other thread or process) at the same 1903 ** time. 1904 */ 1905 static int walCheckpoint( 1906 Wal *pWal, /* Wal connection */ 1907 sqlite3 *db, /* Check for interrupts on this handle */ 1908 int eMode, /* One of PASSIVE, FULL or RESTART */ 1909 int (*xBusy)(void*), /* Function to call when busy */ 1910 void *pBusyArg, /* Context argument for xBusyHandler */ 1911 int sync_flags, /* Flags for OsSync() (or 0) */ 1912 u8 *zBuf /* Temporary buffer to use */ 1913 ){ 1914 int rc = SQLITE_OK; /* Return code */ 1915 int szPage; /* Database page-size */ 1916 WalIterator *pIter = 0; /* Wal iterator context */ 1917 u32 iDbpage = 0; /* Next database page to write */ 1918 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1919 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1920 u32 mxPage; /* Max database page to write */ 1921 int i; /* Loop counter */ 1922 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1923 1924 szPage = walPagesize(pWal); 1925 testcase( szPage<=32768 ); 1926 testcase( szPage>=65536 ); 1927 pInfo = walCkptInfo(pWal); 1928 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1929 1930 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1931 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1932 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1933 1934 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1935 ** safe to write into the database. Frames beyond mxSafeFrame might 1936 ** overwrite database pages that are in use by active readers and thus 1937 ** cannot be backfilled from the WAL. 1938 */ 1939 mxSafeFrame = pWal->hdr.mxFrame; 1940 mxPage = pWal->hdr.nPage; 1941 for(i=1; i<WAL_NREADER; i++){ 1942 u32 y = AtomicLoad(pInfo->aReadMark+i); 1943 if( mxSafeFrame>y ){ 1944 assert( y<=pWal->hdr.mxFrame ); 1945 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1946 if( rc==SQLITE_OK ){ 1947 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1948 AtomicStore(pInfo->aReadMark+i, iMark); 1949 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1950 }else if( rc==SQLITE_BUSY ){ 1951 mxSafeFrame = y; 1952 xBusy = 0; 1953 }else{ 1954 goto walcheckpoint_out; 1955 } 1956 } 1957 } 1958 1959 /* Allocate the iterator */ 1960 if( pInfo->nBackfill<mxSafeFrame ){ 1961 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1962 assert( rc==SQLITE_OK || pIter==0 ); 1963 } 1964 1965 if( pIter 1966 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 1967 ){ 1968 u32 nBackfill = pInfo->nBackfill; 1969 1970 pInfo->nBackfillAttempted = mxSafeFrame; 1971 1972 /* Sync the WAL to disk */ 1973 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1974 1975 /* If the database may grow as a result of this checkpoint, hint 1976 ** about the eventual size of the db file to the VFS layer. 1977 */ 1978 if( rc==SQLITE_OK ){ 1979 i64 nReq = ((i64)mxPage * szPage); 1980 i64 nSize; /* Current size of database file */ 1981 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 1982 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1983 if( rc==SQLITE_OK && nSize<nReq ){ 1984 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1985 } 1986 } 1987 1988 1989 /* Iterate through the contents of the WAL, copying data to the db file */ 1990 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1991 i64 iOffset; 1992 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1993 if( AtomicLoad(&db->u1.isInterrupted) ){ 1994 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1995 break; 1996 } 1997 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1998 continue; 1999 } 2000 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 2001 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2002 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2003 if( rc!=SQLITE_OK ) break; 2004 iOffset = (iDbpage-1)*(i64)szPage; 2005 testcase( IS_BIG_INT(iOffset) ); 2006 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2007 if( rc!=SQLITE_OK ) break; 2008 } 2009 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2010 2011 /* If work was actually accomplished... */ 2012 if( rc==SQLITE_OK ){ 2013 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2014 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2015 testcase( IS_BIG_INT(szDb) ); 2016 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2017 if( rc==SQLITE_OK ){ 2018 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2019 } 2020 } 2021 if( rc==SQLITE_OK ){ 2022 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2023 } 2024 } 2025 2026 /* Release the reader lock held while backfilling */ 2027 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2028 } 2029 2030 if( rc==SQLITE_BUSY ){ 2031 /* Reset the return code so as not to report a checkpoint failure 2032 ** just because there are active readers. */ 2033 rc = SQLITE_OK; 2034 } 2035 } 2036 2037 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2038 ** entire wal file has been copied into the database file, then block 2039 ** until all readers have finished using the wal file. This ensures that 2040 ** the next process to write to the database restarts the wal file. 2041 */ 2042 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2043 assert( pWal->writeLock ); 2044 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2045 rc = SQLITE_BUSY; 2046 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2047 u32 salt1; 2048 sqlite3_randomness(4, &salt1); 2049 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2050 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2051 if( rc==SQLITE_OK ){ 2052 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2053 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2054 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2055 ** truncates the log file to zero bytes just prior to a 2056 ** successful return. 2057 ** 2058 ** In theory, it might be safe to do this without updating the 2059 ** wal-index header in shared memory, as all subsequent reader or 2060 ** writer clients should see that the entire log file has been 2061 ** checkpointed and behave accordingly. This seems unsafe though, 2062 ** as it would leave the system in a state where the contents of 2063 ** the wal-index header do not match the contents of the 2064 ** file-system. To avoid this, update the wal-index header to 2065 ** indicate that the log file contains zero valid frames. */ 2066 walRestartHdr(pWal, salt1); 2067 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2068 } 2069 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2070 } 2071 } 2072 } 2073 2074 walcheckpoint_out: 2075 walIteratorFree(pIter); 2076 return rc; 2077 } 2078 2079 /* 2080 ** If the WAL file is currently larger than nMax bytes in size, truncate 2081 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2082 */ 2083 static void walLimitSize(Wal *pWal, i64 nMax){ 2084 i64 sz; 2085 int rx; 2086 sqlite3BeginBenignMalloc(); 2087 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2088 if( rx==SQLITE_OK && (sz > nMax ) ){ 2089 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2090 } 2091 sqlite3EndBenignMalloc(); 2092 if( rx ){ 2093 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2094 } 2095 } 2096 2097 /* 2098 ** Close a connection to a log file. 2099 */ 2100 int sqlite3WalClose( 2101 Wal *pWal, /* Wal to close */ 2102 sqlite3 *db, /* For interrupt flag */ 2103 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2104 int nBuf, 2105 u8 *zBuf /* Buffer of at least nBuf bytes */ 2106 ){ 2107 int rc = SQLITE_OK; 2108 if( pWal ){ 2109 int isDelete = 0; /* True to unlink wal and wal-index files */ 2110 2111 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2112 ** ordinary, rollback-mode locking methods, this guarantees that the 2113 ** connection associated with this log file is the only connection to 2114 ** the database. In this case checkpoint the database and unlink both 2115 ** the wal and wal-index files. 2116 ** 2117 ** The EXCLUSIVE lock is not released before returning. 2118 */ 2119 if( zBuf!=0 2120 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2121 ){ 2122 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2123 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2124 } 2125 rc = sqlite3WalCheckpoint(pWal, db, 2126 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2127 ); 2128 if( rc==SQLITE_OK ){ 2129 int bPersist = -1; 2130 sqlite3OsFileControlHint( 2131 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2132 ); 2133 if( bPersist!=1 ){ 2134 /* Try to delete the WAL file if the checkpoint completed and 2135 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2136 ** mode (!bPersist) */ 2137 isDelete = 1; 2138 }else if( pWal->mxWalSize>=0 ){ 2139 /* Try to truncate the WAL file to zero bytes if the checkpoint 2140 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2141 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2142 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2143 ** to zero bytes as truncating to the journal_size_limit might 2144 ** leave a corrupt WAL file on disk. */ 2145 walLimitSize(pWal, 0); 2146 } 2147 } 2148 } 2149 2150 walIndexClose(pWal, isDelete); 2151 sqlite3OsClose(pWal->pWalFd); 2152 if( isDelete ){ 2153 sqlite3BeginBenignMalloc(); 2154 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2155 sqlite3EndBenignMalloc(); 2156 } 2157 WALTRACE(("WAL%p: closed\n", pWal)); 2158 sqlite3_free((void *)pWal->apWiData); 2159 sqlite3_free(pWal); 2160 } 2161 return rc; 2162 } 2163 2164 /* 2165 ** Try to read the wal-index header. Return 0 on success and 1 if 2166 ** there is a problem. 2167 ** 2168 ** The wal-index is in shared memory. Another thread or process might 2169 ** be writing the header at the same time this procedure is trying to 2170 ** read it, which might result in inconsistency. A dirty read is detected 2171 ** by verifying that both copies of the header are the same and also by 2172 ** a checksum on the header. 2173 ** 2174 ** If and only if the read is consistent and the header is different from 2175 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2176 ** and *pChanged is set to 1. 2177 ** 2178 ** If the checksum cannot be verified return non-zero. If the header 2179 ** is read successfully and the checksum verified, return zero. 2180 */ 2181 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2182 u32 aCksum[2]; /* Checksum on the header content */ 2183 WalIndexHdr h1, h2; /* Two copies of the header content */ 2184 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2185 2186 /* The first page of the wal-index must be mapped at this point. */ 2187 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2188 2189 /* Read the header. This might happen concurrently with a write to the 2190 ** same area of shared memory on a different CPU in a SMP, 2191 ** meaning it is possible that an inconsistent snapshot is read 2192 ** from the file. If this happens, return non-zero. 2193 ** 2194 ** tag-20200519-1: 2195 ** There are two copies of the header at the beginning of the wal-index. 2196 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2197 ** Memory barriers are used to prevent the compiler or the hardware from 2198 ** reordering the reads and writes. TSAN and similar tools can sometimes 2199 ** give false-positive warnings about these accesses because the tools do not 2200 ** account for the double-read and the memory barrier. The use of mutexes 2201 ** here would be problematic as the memory being accessed is potentially 2202 ** shared among multiple processes and not all mutex implementions work 2203 ** reliably in that environment. 2204 */ 2205 aHdr = walIndexHdr(pWal); 2206 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2207 walShmBarrier(pWal); 2208 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2209 2210 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2211 return 1; /* Dirty read */ 2212 } 2213 if( h1.isInit==0 ){ 2214 return 1; /* Malformed header - probably all zeros */ 2215 } 2216 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2217 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2218 return 1; /* Checksum does not match */ 2219 } 2220 2221 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2222 *pChanged = 1; 2223 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2224 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2225 testcase( pWal->szPage<=32768 ); 2226 testcase( pWal->szPage>=65536 ); 2227 } 2228 2229 /* The header was successfully read. Return zero. */ 2230 return 0; 2231 } 2232 2233 /* 2234 ** This is the value that walTryBeginRead returns when it needs to 2235 ** be retried. 2236 */ 2237 #define WAL_RETRY (-1) 2238 2239 /* 2240 ** Read the wal-index header from the wal-index and into pWal->hdr. 2241 ** If the wal-header appears to be corrupt, try to reconstruct the 2242 ** wal-index from the WAL before returning. 2243 ** 2244 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2245 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2246 ** to 0. 2247 ** 2248 ** If the wal-index header is successfully read, return SQLITE_OK. 2249 ** Otherwise an SQLite error code. 2250 */ 2251 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2252 int rc; /* Return code */ 2253 int badHdr; /* True if a header read failed */ 2254 volatile u32 *page0; /* Chunk of wal-index containing header */ 2255 2256 /* Ensure that page 0 of the wal-index (the page that contains the 2257 ** wal-index header) is mapped. Return early if an error occurs here. 2258 */ 2259 assert( pChanged ); 2260 rc = walIndexPage(pWal, 0, &page0); 2261 if( rc!=SQLITE_OK ){ 2262 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2263 if( rc==SQLITE_READONLY_CANTINIT ){ 2264 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2265 ** was openable but is not writable, and this thread is unable to 2266 ** confirm that another write-capable connection has the shared-memory 2267 ** open, and hence the content of the shared-memory is unreliable, 2268 ** since the shared-memory might be inconsistent with the WAL file 2269 ** and there is no writer on hand to fix it. */ 2270 assert( page0==0 ); 2271 assert( pWal->writeLock==0 ); 2272 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2273 pWal->bShmUnreliable = 1; 2274 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2275 *pChanged = 1; 2276 }else{ 2277 return rc; /* Any other non-OK return is just an error */ 2278 } 2279 }else{ 2280 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2281 ** is zero, which prevents the SHM from growing */ 2282 testcase( page0!=0 ); 2283 } 2284 assert( page0!=0 || pWal->writeLock==0 ); 2285 2286 /* If the first page of the wal-index has been mapped, try to read the 2287 ** wal-index header immediately, without holding any lock. This usually 2288 ** works, but may fail if the wal-index header is corrupt or currently 2289 ** being modified by another thread or process. 2290 */ 2291 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2292 2293 /* If the first attempt failed, it might have been due to a race 2294 ** with a writer. So get a WRITE lock and try again. 2295 */ 2296 if( badHdr ){ 2297 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2298 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2299 walUnlockShared(pWal, WAL_WRITE_LOCK); 2300 rc = SQLITE_READONLY_RECOVERY; 2301 } 2302 }else{ 2303 int bWriteLock = pWal->writeLock; 2304 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2305 pWal->writeLock = 1; 2306 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2307 badHdr = walIndexTryHdr(pWal, pChanged); 2308 if( badHdr ){ 2309 /* If the wal-index header is still malformed even while holding 2310 ** a WRITE lock, it can only mean that the header is corrupted and 2311 ** needs to be reconstructed. So run recovery to do exactly that. 2312 */ 2313 rc = walIndexRecover(pWal); 2314 *pChanged = 1; 2315 } 2316 } 2317 if( bWriteLock==0 ){ 2318 pWal->writeLock = 0; 2319 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2320 } 2321 } 2322 } 2323 } 2324 2325 /* If the header is read successfully, check the version number to make 2326 ** sure the wal-index was not constructed with some future format that 2327 ** this version of SQLite cannot understand. 2328 */ 2329 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2330 rc = SQLITE_CANTOPEN_BKPT; 2331 } 2332 if( pWal->bShmUnreliable ){ 2333 if( rc!=SQLITE_OK ){ 2334 walIndexClose(pWal, 0); 2335 pWal->bShmUnreliable = 0; 2336 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2337 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2338 ** writer truncated the WAL out from under it. If that happens, it 2339 ** indicates that a writer has fixed the SHM file for us, so retry */ 2340 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2341 } 2342 pWal->exclusiveMode = WAL_NORMAL_MODE; 2343 } 2344 2345 return rc; 2346 } 2347 2348 /* 2349 ** Open a transaction in a connection where the shared-memory is read-only 2350 ** and where we cannot verify that there is a separate write-capable connection 2351 ** on hand to keep the shared-memory up-to-date with the WAL file. 2352 ** 2353 ** This can happen, for example, when the shared-memory is implemented by 2354 ** memory-mapping a *-shm file, where a prior writer has shut down and 2355 ** left the *-shm file on disk, and now the present connection is trying 2356 ** to use that database but lacks write permission on the *-shm file. 2357 ** Other scenarios are also possible, depending on the VFS implementation. 2358 ** 2359 ** Precondition: 2360 ** 2361 ** The *-wal file has been read and an appropriate wal-index has been 2362 ** constructed in pWal->apWiData[] using heap memory instead of shared 2363 ** memory. 2364 ** 2365 ** If this function returns SQLITE_OK, then the read transaction has 2366 ** been successfully opened. In this case output variable (*pChanged) 2367 ** is set to true before returning if the caller should discard the 2368 ** contents of the page cache before proceeding. Or, if it returns 2369 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2370 ** the caller should retry opening the read transaction from the 2371 ** beginning (including attempting to map the *-shm file). 2372 ** 2373 ** If an error occurs, an SQLite error code is returned. 2374 */ 2375 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2376 i64 szWal; /* Size of wal file on disk in bytes */ 2377 i64 iOffset; /* Current offset when reading wal file */ 2378 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2379 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2380 int szFrame; /* Number of bytes in buffer aFrame[] */ 2381 u8 *aData; /* Pointer to data part of aFrame buffer */ 2382 volatile void *pDummy; /* Dummy argument for xShmMap */ 2383 int rc; /* Return code */ 2384 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2385 2386 assert( pWal->bShmUnreliable ); 2387 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2388 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2389 2390 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2391 ** writers from running a checkpoint, but does not stop them 2392 ** from running recovery. */ 2393 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2394 if( rc!=SQLITE_OK ){ 2395 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2396 goto begin_unreliable_shm_out; 2397 } 2398 pWal->readLock = 0; 2399 2400 /* Check to see if a separate writer has attached to the shared-memory area, 2401 ** thus making the shared-memory "reliable" again. Do this by invoking 2402 ** the xShmMap() routine of the VFS and looking to see if the return 2403 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2404 ** 2405 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2406 ** cause the heap-memory WAL-index to be discarded and the actual 2407 ** shared memory to be used in its place. 2408 ** 2409 ** This step is important because, even though this connection is holding 2410 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2411 ** have already checkpointed the WAL file and, while the current 2412 ** is active, wrap the WAL and start overwriting frames that this 2413 ** process wants to use. 2414 ** 2415 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2416 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2417 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2418 ** even if some external agent does a "chmod" to make the shared-memory 2419 ** writable by us, until sqlite3OsShmUnmap() has been called. 2420 ** This is a requirement on the VFS implementation. 2421 */ 2422 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2423 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2424 if( rc!=SQLITE_READONLY_CANTINIT ){ 2425 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2426 goto begin_unreliable_shm_out; 2427 } 2428 2429 /* We reach this point only if the real shared-memory is still unreliable. 2430 ** Assume the in-memory WAL-index substitute is correct and load it 2431 ** into pWal->hdr. 2432 */ 2433 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2434 2435 /* Make sure some writer hasn't come in and changed the WAL file out 2436 ** from under us, then disconnected, while we were not looking. 2437 */ 2438 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2439 if( rc!=SQLITE_OK ){ 2440 goto begin_unreliable_shm_out; 2441 } 2442 if( szWal<WAL_HDRSIZE ){ 2443 /* If the wal file is too small to contain a wal-header and the 2444 ** wal-index header has mxFrame==0, then it must be safe to proceed 2445 ** reading the database file only. However, the page cache cannot 2446 ** be trusted, as a read/write connection may have connected, written 2447 ** the db, run a checkpoint, truncated the wal file and disconnected 2448 ** since this client's last read transaction. */ 2449 *pChanged = 1; 2450 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2451 goto begin_unreliable_shm_out; 2452 } 2453 2454 /* Check the salt keys at the start of the wal file still match. */ 2455 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2456 if( rc!=SQLITE_OK ){ 2457 goto begin_unreliable_shm_out; 2458 } 2459 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2460 /* Some writer has wrapped the WAL file while we were not looking. 2461 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2462 ** rebuilt. */ 2463 rc = WAL_RETRY; 2464 goto begin_unreliable_shm_out; 2465 } 2466 2467 /* Allocate a buffer to read frames into */ 2468 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2469 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2470 if( aFrame==0 ){ 2471 rc = SQLITE_NOMEM_BKPT; 2472 goto begin_unreliable_shm_out; 2473 } 2474 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2475 2476 /* Check to see if a complete transaction has been appended to the 2477 ** wal file since the heap-memory wal-index was created. If so, the 2478 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2479 ** the caller. */ 2480 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2481 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2482 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2483 iOffset+szFrame<=szWal; 2484 iOffset+=szFrame 2485 ){ 2486 u32 pgno; /* Database page number for frame */ 2487 u32 nTruncate; /* dbsize field from frame header */ 2488 2489 /* Read and decode the next log frame. */ 2490 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2491 if( rc!=SQLITE_OK ) break; 2492 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2493 2494 /* If nTruncate is non-zero, then a complete transaction has been 2495 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2496 ** the loop. */ 2497 if( nTruncate ){ 2498 rc = WAL_RETRY; 2499 break; 2500 } 2501 } 2502 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2503 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2504 2505 begin_unreliable_shm_out: 2506 sqlite3_free(aFrame); 2507 if( rc!=SQLITE_OK ){ 2508 int i; 2509 for(i=0; i<pWal->nWiData; i++){ 2510 sqlite3_free((void*)pWal->apWiData[i]); 2511 pWal->apWiData[i] = 0; 2512 } 2513 pWal->bShmUnreliable = 0; 2514 sqlite3WalEndReadTransaction(pWal); 2515 *pChanged = 1; 2516 } 2517 return rc; 2518 } 2519 2520 /* 2521 ** Attempt to start a read transaction. This might fail due to a race or 2522 ** other transient condition. When that happens, it returns WAL_RETRY to 2523 ** indicate to the caller that it is safe to retry immediately. 2524 ** 2525 ** On success return SQLITE_OK. On a permanent failure (such an 2526 ** I/O error or an SQLITE_BUSY because another process is running 2527 ** recovery) return a positive error code. 2528 ** 2529 ** The useWal parameter is true to force the use of the WAL and disable 2530 ** the case where the WAL is bypassed because it has been completely 2531 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2532 ** to make a copy of the wal-index header into pWal->hdr. If the 2533 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2534 ** to the caller that the local page cache is obsolete and needs to be 2535 ** flushed.) When useWal==1, the wal-index header is assumed to already 2536 ** be loaded and the pChanged parameter is unused. 2537 ** 2538 ** The caller must set the cnt parameter to the number of prior calls to 2539 ** this routine during the current read attempt that returned WAL_RETRY. 2540 ** This routine will start taking more aggressive measures to clear the 2541 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2542 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2543 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2544 ** and is not honoring the locking protocol. There is a vanishingly small 2545 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2546 ** bad luck when there is lots of contention for the wal-index, but that 2547 ** possibility is so small that it can be safely neglected, we believe. 2548 ** 2549 ** On success, this routine obtains a read lock on 2550 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2551 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2552 ** that means the Wal does not hold any read lock. The reader must not 2553 ** access any database page that is modified by a WAL frame up to and 2554 ** including frame number aReadMark[pWal->readLock]. The reader will 2555 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2556 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2557 ** completely and get all content directly from the database file. 2558 ** If the useWal parameter is 1 then the WAL will never be ignored and 2559 ** this routine will always set pWal->readLock>0 on success. 2560 ** When the read transaction is completed, the caller must release the 2561 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2562 ** 2563 ** This routine uses the nBackfill and aReadMark[] fields of the header 2564 ** to select a particular WAL_READ_LOCK() that strives to let the 2565 ** checkpoint process do as much work as possible. This routine might 2566 ** update values of the aReadMark[] array in the header, but if it does 2567 ** so it takes care to hold an exclusive lock on the corresponding 2568 ** WAL_READ_LOCK() while changing values. 2569 */ 2570 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2571 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2572 u32 mxReadMark; /* Largest aReadMark[] value */ 2573 int mxI; /* Index of largest aReadMark[] value */ 2574 int i; /* Loop counter */ 2575 int rc = SQLITE_OK; /* Return code */ 2576 u32 mxFrame; /* Wal frame to lock to */ 2577 2578 assert( pWal->readLock<0 ); /* Not currently locked */ 2579 2580 /* useWal may only be set for read/write connections */ 2581 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2582 2583 /* Take steps to avoid spinning forever if there is a protocol error. 2584 ** 2585 ** Circumstances that cause a RETRY should only last for the briefest 2586 ** instances of time. No I/O or other system calls are done while the 2587 ** locks are held, so the locks should not be held for very long. But 2588 ** if we are unlucky, another process that is holding a lock might get 2589 ** paged out or take a page-fault that is time-consuming to resolve, 2590 ** during the few nanoseconds that it is holding the lock. In that case, 2591 ** it might take longer than normal for the lock to free. 2592 ** 2593 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2594 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2595 ** is more of a scheduler yield than an actual delay. But on the 10th 2596 ** an subsequent retries, the delays start becoming longer and longer, 2597 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2598 ** The total delay time before giving up is less than 10 seconds. 2599 */ 2600 if( cnt>5 ){ 2601 int nDelay = 1; /* Pause time in microseconds */ 2602 if( cnt>100 ){ 2603 VVA_ONLY( pWal->lockError = 1; ) 2604 return SQLITE_PROTOCOL; 2605 } 2606 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2607 sqlite3OsSleep(pWal->pVfs, nDelay); 2608 } 2609 2610 if( !useWal ){ 2611 assert( rc==SQLITE_OK ); 2612 if( pWal->bShmUnreliable==0 ){ 2613 rc = walIndexReadHdr(pWal, pChanged); 2614 } 2615 if( rc==SQLITE_BUSY ){ 2616 /* If there is not a recovery running in another thread or process 2617 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2618 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2619 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2620 ** would be technically correct. But the race is benign since with 2621 ** WAL_RETRY this routine will be called again and will probably be 2622 ** right on the second iteration. 2623 */ 2624 if( pWal->apWiData[0]==0 ){ 2625 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2626 ** We assume this is a transient condition, so return WAL_RETRY. The 2627 ** xShmMap() implementation used by the default unix and win32 VFS 2628 ** modules may return SQLITE_BUSY due to a race condition in the 2629 ** code that determines whether or not the shared-memory region 2630 ** must be zeroed before the requested page is returned. 2631 */ 2632 rc = WAL_RETRY; 2633 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2634 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2635 rc = WAL_RETRY; 2636 }else if( rc==SQLITE_BUSY ){ 2637 rc = SQLITE_BUSY_RECOVERY; 2638 } 2639 } 2640 if( rc!=SQLITE_OK ){ 2641 return rc; 2642 } 2643 else if( pWal->bShmUnreliable ){ 2644 return walBeginShmUnreliable(pWal, pChanged); 2645 } 2646 } 2647 2648 assert( pWal->nWiData>0 ); 2649 assert( pWal->apWiData[0]!=0 ); 2650 pInfo = walCkptInfo(pWal); 2651 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2652 #ifdef SQLITE_ENABLE_SNAPSHOT 2653 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2654 #endif 2655 ){ 2656 /* The WAL has been completely backfilled (or it is empty). 2657 ** and can be safely ignored. 2658 */ 2659 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2660 walShmBarrier(pWal); 2661 if( rc==SQLITE_OK ){ 2662 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2663 /* It is not safe to allow the reader to continue here if frames 2664 ** may have been appended to the log before READ_LOCK(0) was obtained. 2665 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2666 ** which implies that the database file contains a trustworthy 2667 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2668 ** happening, this is usually correct. 2669 ** 2670 ** However, if frames have been appended to the log (or if the log 2671 ** is wrapped and written for that matter) before the READ_LOCK(0) 2672 ** is obtained, that is not necessarily true. A checkpointer may 2673 ** have started to backfill the appended frames but crashed before 2674 ** it finished. Leaving a corrupt image in the database file. 2675 */ 2676 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2677 return WAL_RETRY; 2678 } 2679 pWal->readLock = 0; 2680 return SQLITE_OK; 2681 }else if( rc!=SQLITE_BUSY ){ 2682 return rc; 2683 } 2684 } 2685 2686 /* If we get this far, it means that the reader will want to use 2687 ** the WAL to get at content from recent commits. The job now is 2688 ** to select one of the aReadMark[] entries that is closest to 2689 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2690 */ 2691 mxReadMark = 0; 2692 mxI = 0; 2693 mxFrame = pWal->hdr.mxFrame; 2694 #ifdef SQLITE_ENABLE_SNAPSHOT 2695 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2696 mxFrame = pWal->pSnapshot->mxFrame; 2697 } 2698 #endif 2699 for(i=1; i<WAL_NREADER; i++){ 2700 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2701 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2702 assert( thisMark!=READMARK_NOT_USED ); 2703 mxReadMark = thisMark; 2704 mxI = i; 2705 } 2706 } 2707 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2708 && (mxReadMark<mxFrame || mxI==0) 2709 ){ 2710 for(i=1; i<WAL_NREADER; i++){ 2711 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2712 if( rc==SQLITE_OK ){ 2713 AtomicStore(pInfo->aReadMark+i,mxFrame); 2714 mxReadMark = mxFrame; 2715 mxI = i; 2716 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2717 break; 2718 }else if( rc!=SQLITE_BUSY ){ 2719 return rc; 2720 } 2721 } 2722 } 2723 if( mxI==0 ){ 2724 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2725 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2726 } 2727 2728 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2729 if( rc ){ 2730 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2731 } 2732 /* Now that the read-lock has been obtained, check that neither the 2733 ** value in the aReadMark[] array or the contents of the wal-index 2734 ** header have changed. 2735 ** 2736 ** It is necessary to check that the wal-index header did not change 2737 ** between the time it was read and when the shared-lock was obtained 2738 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2739 ** that the log file may have been wrapped by a writer, or that frames 2740 ** that occur later in the log than pWal->hdr.mxFrame may have been 2741 ** copied into the database by a checkpointer. If either of these things 2742 ** happened, then reading the database with the current value of 2743 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2744 ** instead. 2745 ** 2746 ** Before checking that the live wal-index header has not changed 2747 ** since it was read, set Wal.minFrame to the first frame in the wal 2748 ** file that has not yet been checkpointed. This client will not need 2749 ** to read any frames earlier than minFrame from the wal file - they 2750 ** can be safely read directly from the database file. 2751 ** 2752 ** Because a ShmBarrier() call is made between taking the copy of 2753 ** nBackfill and checking that the wal-header in shared-memory still 2754 ** matches the one cached in pWal->hdr, it is guaranteed that the 2755 ** checkpointer that set nBackfill was not working with a wal-index 2756 ** header newer than that cached in pWal->hdr. If it were, that could 2757 ** cause a problem. The checkpointer could omit to checkpoint 2758 ** a version of page X that lies before pWal->minFrame (call that version 2759 ** A) on the basis that there is a newer version (version B) of the same 2760 ** page later in the wal file. But if version B happens to like past 2761 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2762 ** that it can read version A from the database file. However, since 2763 ** we can guarantee that the checkpointer that set nBackfill could not 2764 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2765 */ 2766 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2767 walShmBarrier(pWal); 2768 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2769 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2770 ){ 2771 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2772 return WAL_RETRY; 2773 }else{ 2774 assert( mxReadMark<=pWal->hdr.mxFrame ); 2775 pWal->readLock = (i16)mxI; 2776 } 2777 return rc; 2778 } 2779 2780 #ifdef SQLITE_ENABLE_SNAPSHOT 2781 /* 2782 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2783 ** variable so that older snapshots can be accessed. To do this, loop 2784 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2785 ** comparing their content to the corresponding page with the database 2786 ** file, if any. Set nBackfillAttempted to the frame number of the 2787 ** first frame for which the wal file content matches the db file. 2788 ** 2789 ** This is only really safe if the file-system is such that any page 2790 ** writes made by earlier checkpointers were atomic operations, which 2791 ** is not always true. It is also possible that nBackfillAttempted 2792 ** may be left set to a value larger than expected, if a wal frame 2793 ** contains content that duplicate of an earlier version of the same 2794 ** page. 2795 ** 2796 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2797 ** error occurs. It is not an error if nBackfillAttempted cannot be 2798 ** decreased at all. 2799 */ 2800 int sqlite3WalSnapshotRecover(Wal *pWal){ 2801 int rc; 2802 2803 assert( pWal->readLock>=0 ); 2804 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2805 if( rc==SQLITE_OK ){ 2806 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2807 int szPage = (int)pWal->szPage; 2808 i64 szDb; /* Size of db file in bytes */ 2809 2810 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2811 if( rc==SQLITE_OK ){ 2812 void *pBuf1 = sqlite3_malloc(szPage); 2813 void *pBuf2 = sqlite3_malloc(szPage); 2814 if( pBuf1==0 || pBuf2==0 ){ 2815 rc = SQLITE_NOMEM; 2816 }else{ 2817 u32 i = pInfo->nBackfillAttempted; 2818 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2819 WalHashLoc sLoc; /* Hash table location */ 2820 u32 pgno; /* Page number in db file */ 2821 i64 iDbOff; /* Offset of db file entry */ 2822 i64 iWalOff; /* Offset of wal file entry */ 2823 2824 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2825 if( rc!=SQLITE_OK ) break; 2826 pgno = sLoc.aPgno[i-sLoc.iZero]; 2827 iDbOff = (i64)(pgno-1) * szPage; 2828 2829 if( iDbOff+szPage<=szDb ){ 2830 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2831 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2832 2833 if( rc==SQLITE_OK ){ 2834 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2835 } 2836 2837 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2838 break; 2839 } 2840 } 2841 2842 pInfo->nBackfillAttempted = i-1; 2843 } 2844 } 2845 2846 sqlite3_free(pBuf1); 2847 sqlite3_free(pBuf2); 2848 } 2849 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2850 } 2851 2852 return rc; 2853 } 2854 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2855 2856 /* 2857 ** Begin a read transaction on the database. 2858 ** 2859 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2860 ** it takes a snapshot of the state of the WAL and wal-index for the current 2861 ** instant in time. The current thread will continue to use this snapshot. 2862 ** Other threads might append new content to the WAL and wal-index but 2863 ** that extra content is ignored by the current thread. 2864 ** 2865 ** If the database contents have changes since the previous read 2866 ** transaction, then *pChanged is set to 1 before returning. The 2867 ** Pager layer will use this to know that its cache is stale and 2868 ** needs to be flushed. 2869 */ 2870 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2871 int rc; /* Return code */ 2872 int cnt = 0; /* Number of TryBeginRead attempts */ 2873 #ifdef SQLITE_ENABLE_SNAPSHOT 2874 int bChanged = 0; 2875 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2876 #endif 2877 2878 assert( pWal->ckptLock==0 ); 2879 2880 #ifdef SQLITE_ENABLE_SNAPSHOT 2881 if( pSnapshot ){ 2882 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2883 bChanged = 1; 2884 } 2885 2886 /* It is possible that there is a checkpointer thread running 2887 ** concurrent with this code. If this is the case, it may be that the 2888 ** checkpointer has already determined that it will checkpoint 2889 ** snapshot X, where X is later in the wal file than pSnapshot, but 2890 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2891 ** its intent. To avoid the race condition this leads to, ensure that 2892 ** there is no checkpointer process by taking a shared CKPT lock 2893 ** before checking pInfo->nBackfillAttempted. */ 2894 (void)walEnableBlocking(pWal); 2895 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2896 walDisableBlocking(pWal); 2897 2898 if( rc!=SQLITE_OK ){ 2899 return rc; 2900 } 2901 pWal->ckptLock = 1; 2902 } 2903 #endif 2904 2905 do{ 2906 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2907 }while( rc==WAL_RETRY ); 2908 testcase( (rc&0xff)==SQLITE_BUSY ); 2909 testcase( (rc&0xff)==SQLITE_IOERR ); 2910 testcase( rc==SQLITE_PROTOCOL ); 2911 testcase( rc==SQLITE_OK ); 2912 2913 #ifdef SQLITE_ENABLE_SNAPSHOT 2914 if( rc==SQLITE_OK ){ 2915 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2916 /* At this point the client has a lock on an aReadMark[] slot holding 2917 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2918 ** is populated with the wal-index header corresponding to the head 2919 ** of the wal file. Verify that pSnapshot is still valid before 2920 ** continuing. Reasons why pSnapshot might no longer be valid: 2921 ** 2922 ** (1) The WAL file has been reset since the snapshot was taken. 2923 ** In this case, the salt will have changed. 2924 ** 2925 ** (2) A checkpoint as been attempted that wrote frames past 2926 ** pSnapshot->mxFrame into the database file. Note that the 2927 ** checkpoint need not have completed for this to cause problems. 2928 */ 2929 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2930 2931 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2932 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2933 2934 /* Check that the wal file has not been wrapped. Assuming that it has 2935 ** not, also check that no checkpointer has attempted to checkpoint any 2936 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2937 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2938 ** with *pSnapshot and set *pChanged as appropriate for opening the 2939 ** snapshot. */ 2940 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2941 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2942 ){ 2943 assert( pWal->readLock>0 ); 2944 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2945 *pChanged = bChanged; 2946 }else{ 2947 rc = SQLITE_ERROR_SNAPSHOT; 2948 } 2949 2950 /* A client using a non-current snapshot may not ignore any frames 2951 ** from the start of the wal file. This is because, for a system 2952 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 2953 ** have omitted to checkpoint a frame earlier than minFrame in 2954 ** the file because there exists a frame after iSnapshot that 2955 ** is the same database page. */ 2956 pWal->minFrame = 1; 2957 2958 if( rc!=SQLITE_OK ){ 2959 sqlite3WalEndReadTransaction(pWal); 2960 } 2961 } 2962 } 2963 2964 /* Release the shared CKPT lock obtained above. */ 2965 if( pWal->ckptLock ){ 2966 assert( pSnapshot ); 2967 walUnlockShared(pWal, WAL_CKPT_LOCK); 2968 pWal->ckptLock = 0; 2969 } 2970 #endif 2971 return rc; 2972 } 2973 2974 /* 2975 ** Finish with a read transaction. All this does is release the 2976 ** read-lock. 2977 */ 2978 void sqlite3WalEndReadTransaction(Wal *pWal){ 2979 sqlite3WalEndWriteTransaction(pWal); 2980 if( pWal->readLock>=0 ){ 2981 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2982 pWal->readLock = -1; 2983 } 2984 } 2985 2986 /* 2987 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2988 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2989 ** to zero. 2990 ** 2991 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2992 ** error does occur, the final value of *piRead is undefined. 2993 */ 2994 int sqlite3WalFindFrame( 2995 Wal *pWal, /* WAL handle */ 2996 Pgno pgno, /* Database page number to read data for */ 2997 u32 *piRead /* OUT: Frame number (or zero) */ 2998 ){ 2999 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 3000 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 3001 int iHash; /* Used to loop through N hash tables */ 3002 int iMinHash; 3003 3004 /* This routine is only be called from within a read transaction. */ 3005 assert( pWal->readLock>=0 || pWal->lockError ); 3006 3007 /* If the "last page" field of the wal-index header snapshot is 0, then 3008 ** no data will be read from the wal under any circumstances. Return early 3009 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3010 ** then the WAL is ignored by the reader so return early, as if the 3011 ** WAL were empty. 3012 */ 3013 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3014 *piRead = 0; 3015 return SQLITE_OK; 3016 } 3017 3018 /* Search the hash table or tables for an entry matching page number 3019 ** pgno. Each iteration of the following for() loop searches one 3020 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3021 ** 3022 ** This code might run concurrently to the code in walIndexAppend() 3023 ** that adds entries to the wal-index (and possibly to this hash 3024 ** table). This means the value just read from the hash 3025 ** slot (aHash[iKey]) may have been added before or after the 3026 ** current read transaction was opened. Values added after the 3027 ** read transaction was opened may have been written incorrectly - 3028 ** i.e. these slots may contain garbage data. However, we assume 3029 ** that any slots written before the current read transaction was 3030 ** opened remain unmodified. 3031 ** 3032 ** For the reasons above, the if(...) condition featured in the inner 3033 ** loop of the following block is more stringent that would be required 3034 ** if we had exclusive access to the hash-table: 3035 ** 3036 ** (aPgno[iFrame]==pgno): 3037 ** This condition filters out normal hash-table collisions. 3038 ** 3039 ** (iFrame<=iLast): 3040 ** This condition filters out entries that were added to the hash 3041 ** table after the current read-transaction had started. 3042 */ 3043 iMinHash = walFramePage(pWal->minFrame); 3044 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3045 WalHashLoc sLoc; /* Hash table location */ 3046 int iKey; /* Hash slot index */ 3047 int nCollide; /* Number of hash collisions remaining */ 3048 int rc; /* Error code */ 3049 u32 iH; 3050 3051 rc = walHashGet(pWal, iHash, &sLoc); 3052 if( rc!=SQLITE_OK ){ 3053 return rc; 3054 } 3055 nCollide = HASHTABLE_NSLOT; 3056 iKey = walHash(pgno); 3057 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3058 u32 iFrame = iH + sLoc.iZero; 3059 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3060 assert( iFrame>iRead || CORRUPT_DB ); 3061 iRead = iFrame; 3062 } 3063 if( (nCollide--)==0 ){ 3064 return SQLITE_CORRUPT_BKPT; 3065 } 3066 iKey = walNextHash(iKey); 3067 } 3068 if( iRead ) break; 3069 } 3070 3071 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3072 /* If expensive assert() statements are available, do a linear search 3073 ** of the wal-index file content. Make sure the results agree with the 3074 ** result obtained using the hash indexes above. */ 3075 { 3076 u32 iRead2 = 0; 3077 u32 iTest; 3078 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3079 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3080 if( walFramePgno(pWal, iTest)==pgno ){ 3081 iRead2 = iTest; 3082 break; 3083 } 3084 } 3085 assert( iRead==iRead2 ); 3086 } 3087 #endif 3088 3089 *piRead = iRead; 3090 return SQLITE_OK; 3091 } 3092 3093 /* 3094 ** Read the contents of frame iRead from the wal file into buffer pOut 3095 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3096 ** error code otherwise. 3097 */ 3098 int sqlite3WalReadFrame( 3099 Wal *pWal, /* WAL handle */ 3100 u32 iRead, /* Frame to read */ 3101 int nOut, /* Size of buffer pOut in bytes */ 3102 u8 *pOut /* Buffer to write page data to */ 3103 ){ 3104 int sz; 3105 i64 iOffset; 3106 sz = pWal->hdr.szPage; 3107 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3108 testcase( sz<=32768 ); 3109 testcase( sz>=65536 ); 3110 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3111 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3112 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3113 } 3114 3115 /* 3116 ** Return the size of the database in pages (or zero, if unknown). 3117 */ 3118 Pgno sqlite3WalDbsize(Wal *pWal){ 3119 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3120 return pWal->hdr.nPage; 3121 } 3122 return 0; 3123 } 3124 3125 3126 /* 3127 ** This function starts a write transaction on the WAL. 3128 ** 3129 ** A read transaction must have already been started by a prior call 3130 ** to sqlite3WalBeginReadTransaction(). 3131 ** 3132 ** If another thread or process has written into the database since 3133 ** the read transaction was started, then it is not possible for this 3134 ** thread to write as doing so would cause a fork. So this routine 3135 ** returns SQLITE_BUSY in that case and no write transaction is started. 3136 ** 3137 ** There can only be a single writer active at a time. 3138 */ 3139 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3140 int rc; 3141 3142 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3143 /* If the write-lock is already held, then it was obtained before the 3144 ** read-transaction was even opened, making this call a no-op. 3145 ** Return early. */ 3146 if( pWal->writeLock ){ 3147 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3148 return SQLITE_OK; 3149 } 3150 #endif 3151 3152 /* Cannot start a write transaction without first holding a read 3153 ** transaction. */ 3154 assert( pWal->readLock>=0 ); 3155 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3156 3157 if( pWal->readOnly ){ 3158 return SQLITE_READONLY; 3159 } 3160 3161 /* Only one writer allowed at a time. Get the write lock. Return 3162 ** SQLITE_BUSY if unable. 3163 */ 3164 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3165 if( rc ){ 3166 return rc; 3167 } 3168 pWal->writeLock = 1; 3169 3170 /* If another connection has written to the database file since the 3171 ** time the read transaction on this connection was started, then 3172 ** the write is disallowed. 3173 */ 3174 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3175 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3176 pWal->writeLock = 0; 3177 rc = SQLITE_BUSY_SNAPSHOT; 3178 } 3179 3180 return rc; 3181 } 3182 3183 /* 3184 ** End a write transaction. The commit has already been done. This 3185 ** routine merely releases the lock. 3186 */ 3187 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3188 if( pWal->writeLock ){ 3189 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3190 pWal->writeLock = 0; 3191 pWal->iReCksum = 0; 3192 pWal->truncateOnCommit = 0; 3193 } 3194 return SQLITE_OK; 3195 } 3196 3197 /* 3198 ** If any data has been written (but not committed) to the log file, this 3199 ** function moves the write-pointer back to the start of the transaction. 3200 ** 3201 ** Additionally, the callback function is invoked for each frame written 3202 ** to the WAL since the start of the transaction. If the callback returns 3203 ** other than SQLITE_OK, it is not invoked again and the error code is 3204 ** returned to the caller. 3205 ** 3206 ** Otherwise, if the callback function does not return an error, this 3207 ** function returns SQLITE_OK. 3208 */ 3209 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3210 int rc = SQLITE_OK; 3211 if( ALWAYS(pWal->writeLock) ){ 3212 Pgno iMax = pWal->hdr.mxFrame; 3213 Pgno iFrame; 3214 3215 /* Restore the clients cache of the wal-index header to the state it 3216 ** was in before the client began writing to the database. 3217 */ 3218 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3219 3220 for(iFrame=pWal->hdr.mxFrame+1; 3221 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3222 iFrame++ 3223 ){ 3224 /* This call cannot fail. Unless the page for which the page number 3225 ** is passed as the second argument is (a) in the cache and 3226 ** (b) has an outstanding reference, then xUndo is either a no-op 3227 ** (if (a) is false) or simply expels the page from the cache (if (b) 3228 ** is false). 3229 ** 3230 ** If the upper layer is doing a rollback, it is guaranteed that there 3231 ** are no outstanding references to any page other than page 1. And 3232 ** page 1 is never written to the log until the transaction is 3233 ** committed. As a result, the call to xUndo may not fail. 3234 */ 3235 assert( walFramePgno(pWal, iFrame)!=1 ); 3236 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3237 } 3238 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3239 } 3240 return rc; 3241 } 3242 3243 /* 3244 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3245 ** values. This function populates the array with values required to 3246 ** "rollback" the write position of the WAL handle back to the current 3247 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3248 */ 3249 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3250 assert( pWal->writeLock ); 3251 aWalData[0] = pWal->hdr.mxFrame; 3252 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3253 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3254 aWalData[3] = pWal->nCkpt; 3255 } 3256 3257 /* 3258 ** Move the write position of the WAL back to the point identified by 3259 ** the values in the aWalData[] array. aWalData must point to an array 3260 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3261 ** by a call to WalSavepoint(). 3262 */ 3263 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3264 int rc = SQLITE_OK; 3265 3266 assert( pWal->writeLock ); 3267 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3268 3269 if( aWalData[3]!=pWal->nCkpt ){ 3270 /* This savepoint was opened immediately after the write-transaction 3271 ** was started. Right after that, the writer decided to wrap around 3272 ** to the start of the log. Update the savepoint values to match. 3273 */ 3274 aWalData[0] = 0; 3275 aWalData[3] = pWal->nCkpt; 3276 } 3277 3278 if( aWalData[0]<pWal->hdr.mxFrame ){ 3279 pWal->hdr.mxFrame = aWalData[0]; 3280 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3281 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3282 walCleanupHash(pWal); 3283 } 3284 3285 return rc; 3286 } 3287 3288 /* 3289 ** This function is called just before writing a set of frames to the log 3290 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3291 ** to the current log file, it is possible to overwrite the start of the 3292 ** existing log file with the new frames (i.e. "reset" the log). If so, 3293 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3294 ** unchanged. 3295 ** 3296 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3297 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3298 ** if an error occurs. 3299 */ 3300 static int walRestartLog(Wal *pWal){ 3301 int rc = SQLITE_OK; 3302 int cnt; 3303 3304 if( pWal->readLock==0 ){ 3305 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3306 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3307 if( pInfo->nBackfill>0 ){ 3308 u32 salt1; 3309 sqlite3_randomness(4, &salt1); 3310 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3311 if( rc==SQLITE_OK ){ 3312 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3313 ** readers are currently using the WAL), then the transactions 3314 ** frames will overwrite the start of the existing log. Update the 3315 ** wal-index header to reflect this. 3316 ** 3317 ** In theory it would be Ok to update the cache of the header only 3318 ** at this point. But updating the actual wal-index header is also 3319 ** safe and means there is no special case for sqlite3WalUndo() 3320 ** to handle if this transaction is rolled back. */ 3321 walRestartHdr(pWal, salt1); 3322 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3323 }else if( rc!=SQLITE_BUSY ){ 3324 return rc; 3325 } 3326 } 3327 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3328 pWal->readLock = -1; 3329 cnt = 0; 3330 do{ 3331 int notUsed; 3332 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3333 }while( rc==WAL_RETRY ); 3334 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3335 testcase( (rc&0xff)==SQLITE_IOERR ); 3336 testcase( rc==SQLITE_PROTOCOL ); 3337 testcase( rc==SQLITE_OK ); 3338 } 3339 return rc; 3340 } 3341 3342 /* 3343 ** Information about the current state of the WAL file and where 3344 ** the next fsync should occur - passed from sqlite3WalFrames() into 3345 ** walWriteToLog(). 3346 */ 3347 typedef struct WalWriter { 3348 Wal *pWal; /* The complete WAL information */ 3349 sqlite3_file *pFd; /* The WAL file to which we write */ 3350 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3351 int syncFlags; /* Flags for the fsync */ 3352 int szPage; /* Size of one page */ 3353 } WalWriter; 3354 3355 /* 3356 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3357 ** Do a sync when crossing the p->iSyncPoint boundary. 3358 ** 3359 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3360 ** first write the part before iSyncPoint, then sync, then write the 3361 ** rest. 3362 */ 3363 static int walWriteToLog( 3364 WalWriter *p, /* WAL to write to */ 3365 void *pContent, /* Content to be written */ 3366 int iAmt, /* Number of bytes to write */ 3367 sqlite3_int64 iOffset /* Start writing at this offset */ 3368 ){ 3369 int rc; 3370 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3371 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3372 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3373 if( rc ) return rc; 3374 iOffset += iFirstAmt; 3375 iAmt -= iFirstAmt; 3376 pContent = (void*)(iFirstAmt + (char*)pContent); 3377 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3378 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3379 if( iAmt==0 || rc ) return rc; 3380 } 3381 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3382 return rc; 3383 } 3384 3385 /* 3386 ** Write out a single frame of the WAL 3387 */ 3388 static int walWriteOneFrame( 3389 WalWriter *p, /* Where to write the frame */ 3390 PgHdr *pPage, /* The page of the frame to be written */ 3391 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3392 sqlite3_int64 iOffset /* Byte offset at which to write */ 3393 ){ 3394 int rc; /* Result code from subfunctions */ 3395 void *pData; /* Data actually written */ 3396 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3397 pData = pPage->pData; 3398 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3399 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3400 if( rc ) return rc; 3401 /* Write the page data */ 3402 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3403 return rc; 3404 } 3405 3406 /* 3407 ** This function is called as part of committing a transaction within which 3408 ** one or more frames have been overwritten. It updates the checksums for 3409 ** all frames written to the wal file by the current transaction starting 3410 ** with the earliest to have been overwritten. 3411 ** 3412 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3413 */ 3414 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3415 const int szPage = pWal->szPage;/* Database page size */ 3416 int rc = SQLITE_OK; /* Return code */ 3417 u8 *aBuf; /* Buffer to load data from wal file into */ 3418 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3419 u32 iRead; /* Next frame to read from wal file */ 3420 i64 iCksumOff; 3421 3422 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3423 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3424 3425 /* Find the checksum values to use as input for the recalculating the 3426 ** first checksum. If the first frame is frame 1 (implying that the current 3427 ** transaction restarted the wal file), these values must be read from the 3428 ** wal-file header. Otherwise, read them from the frame header of the 3429 ** previous frame. */ 3430 assert( pWal->iReCksum>0 ); 3431 if( pWal->iReCksum==1 ){ 3432 iCksumOff = 24; 3433 }else{ 3434 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3435 } 3436 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3437 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3438 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3439 3440 iRead = pWal->iReCksum; 3441 pWal->iReCksum = 0; 3442 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3443 i64 iOff = walFrameOffset(iRead, szPage); 3444 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3445 if( rc==SQLITE_OK ){ 3446 u32 iPgno, nDbSize; 3447 iPgno = sqlite3Get4byte(aBuf); 3448 nDbSize = sqlite3Get4byte(&aBuf[4]); 3449 3450 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3451 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3452 } 3453 } 3454 3455 sqlite3_free(aBuf); 3456 return rc; 3457 } 3458 3459 /* 3460 ** Write a set of frames to the log. The caller must hold the write-lock 3461 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3462 */ 3463 int sqlite3WalFrames( 3464 Wal *pWal, /* Wal handle to write to */ 3465 int szPage, /* Database page-size in bytes */ 3466 PgHdr *pList, /* List of dirty pages to write */ 3467 Pgno nTruncate, /* Database size after this commit */ 3468 int isCommit, /* True if this is a commit */ 3469 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3470 ){ 3471 int rc; /* Used to catch return codes */ 3472 u32 iFrame; /* Next frame address */ 3473 PgHdr *p; /* Iterator to run through pList with. */ 3474 PgHdr *pLast = 0; /* Last frame in list */ 3475 int nExtra = 0; /* Number of extra copies of last page */ 3476 int szFrame; /* The size of a single frame */ 3477 i64 iOffset; /* Next byte to write in WAL file */ 3478 WalWriter w; /* The writer */ 3479 u32 iFirst = 0; /* First frame that may be overwritten */ 3480 WalIndexHdr *pLive; /* Pointer to shared header */ 3481 3482 assert( pList ); 3483 assert( pWal->writeLock ); 3484 3485 /* If this frame set completes a transaction, then nTruncate>0. If 3486 ** nTruncate==0 then this frame set does not complete the transaction. */ 3487 assert( (isCommit!=0)==(nTruncate!=0) ); 3488 3489 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3490 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3491 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3492 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3493 } 3494 #endif 3495 3496 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3497 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3498 iFirst = pLive->mxFrame+1; 3499 } 3500 3501 /* See if it is possible to write these frames into the start of the 3502 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3503 */ 3504 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3505 return rc; 3506 } 3507 3508 /* If this is the first frame written into the log, write the WAL 3509 ** header to the start of the WAL file. See comments at the top of 3510 ** this source file for a description of the WAL header format. 3511 */ 3512 iFrame = pWal->hdr.mxFrame; 3513 if( iFrame==0 ){ 3514 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3515 u32 aCksum[2]; /* Checksum for wal-header */ 3516 3517 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3518 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3519 sqlite3Put4byte(&aWalHdr[8], szPage); 3520 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3521 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3522 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3523 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3524 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3525 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3526 3527 pWal->szPage = szPage; 3528 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3529 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3530 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3531 pWal->truncateOnCommit = 1; 3532 3533 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3534 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3535 if( rc!=SQLITE_OK ){ 3536 return rc; 3537 } 3538 3539 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3540 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3541 ** an out-of-order write following a WAL restart could result in 3542 ** database corruption. See the ticket: 3543 ** 3544 ** https://sqlite.org/src/info/ff5be73dee 3545 */ 3546 if( pWal->syncHeader ){ 3547 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3548 if( rc ) return rc; 3549 } 3550 } 3551 assert( (int)pWal->szPage==szPage ); 3552 3553 /* Setup information needed to write frames into the WAL */ 3554 w.pWal = pWal; 3555 w.pFd = pWal->pWalFd; 3556 w.iSyncPoint = 0; 3557 w.syncFlags = sync_flags; 3558 w.szPage = szPage; 3559 iOffset = walFrameOffset(iFrame+1, szPage); 3560 szFrame = szPage + WAL_FRAME_HDRSIZE; 3561 3562 /* Write all frames into the log file exactly once */ 3563 for(p=pList; p; p=p->pDirty){ 3564 int nDbSize; /* 0 normally. Positive == commit flag */ 3565 3566 /* Check if this page has already been written into the wal file by 3567 ** the current transaction. If so, overwrite the existing frame and 3568 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3569 ** checksums must be recomputed when the transaction is committed. */ 3570 if( iFirst && (p->pDirty || isCommit==0) ){ 3571 u32 iWrite = 0; 3572 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3573 assert( rc==SQLITE_OK || iWrite==0 ); 3574 if( iWrite>=iFirst ){ 3575 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3576 void *pData; 3577 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3578 pWal->iReCksum = iWrite; 3579 } 3580 pData = p->pData; 3581 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3582 if( rc ) return rc; 3583 p->flags &= ~PGHDR_WAL_APPEND; 3584 continue; 3585 } 3586 } 3587 3588 iFrame++; 3589 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3590 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3591 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3592 if( rc ) return rc; 3593 pLast = p; 3594 iOffset += szFrame; 3595 p->flags |= PGHDR_WAL_APPEND; 3596 } 3597 3598 /* Recalculate checksums within the wal file if required. */ 3599 if( isCommit && pWal->iReCksum ){ 3600 rc = walRewriteChecksums(pWal, iFrame); 3601 if( rc ) return rc; 3602 } 3603 3604 /* If this is the end of a transaction, then we might need to pad 3605 ** the transaction and/or sync the WAL file. 3606 ** 3607 ** Padding and syncing only occur if this set of frames complete a 3608 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3609 ** or synchronous==OFF, then no padding or syncing are needed. 3610 ** 3611 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3612 ** needed and only the sync is done. If padding is needed, then the 3613 ** final frame is repeated (with its commit mark) until the next sector 3614 ** boundary is crossed. Only the part of the WAL prior to the last 3615 ** sector boundary is synced; the part of the last frame that extends 3616 ** past the sector boundary is written after the sync. 3617 */ 3618 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3619 int bSync = 1; 3620 if( pWal->padToSectorBoundary ){ 3621 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3622 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3623 bSync = (w.iSyncPoint==iOffset); 3624 testcase( bSync ); 3625 while( iOffset<w.iSyncPoint ){ 3626 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3627 if( rc ) return rc; 3628 iOffset += szFrame; 3629 nExtra++; 3630 assert( pLast!=0 ); 3631 } 3632 } 3633 if( bSync ){ 3634 assert( rc==SQLITE_OK ); 3635 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3636 } 3637 } 3638 3639 /* If this frame set completes the first transaction in the WAL and 3640 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3641 ** journal size limit, if possible. 3642 */ 3643 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3644 i64 sz = pWal->mxWalSize; 3645 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3646 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3647 } 3648 walLimitSize(pWal, sz); 3649 pWal->truncateOnCommit = 0; 3650 } 3651 3652 /* Append data to the wal-index. It is not necessary to lock the 3653 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3654 ** guarantees that there are no other writers, and no data that may 3655 ** be in use by existing readers is being overwritten. 3656 */ 3657 iFrame = pWal->hdr.mxFrame; 3658 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3659 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3660 iFrame++; 3661 rc = walIndexAppend(pWal, iFrame, p->pgno); 3662 } 3663 assert( pLast!=0 || nExtra==0 ); 3664 while( rc==SQLITE_OK && nExtra>0 ){ 3665 iFrame++; 3666 nExtra--; 3667 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3668 } 3669 3670 if( rc==SQLITE_OK ){ 3671 /* Update the private copy of the header. */ 3672 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3673 testcase( szPage<=32768 ); 3674 testcase( szPage>=65536 ); 3675 pWal->hdr.mxFrame = iFrame; 3676 if( isCommit ){ 3677 pWal->hdr.iChange++; 3678 pWal->hdr.nPage = nTruncate; 3679 } 3680 /* If this is a commit, update the wal-index header too. */ 3681 if( isCommit ){ 3682 walIndexWriteHdr(pWal); 3683 pWal->iCallback = iFrame; 3684 } 3685 } 3686 3687 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3688 return rc; 3689 } 3690 3691 /* 3692 ** This routine is called to implement sqlite3_wal_checkpoint() and 3693 ** related interfaces. 3694 ** 3695 ** Obtain a CHECKPOINT lock and then backfill as much information as 3696 ** we can from WAL into the database. 3697 ** 3698 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3699 ** callback. In this case this function runs a blocking checkpoint. 3700 */ 3701 int sqlite3WalCheckpoint( 3702 Wal *pWal, /* Wal connection */ 3703 sqlite3 *db, /* Check this handle's interrupt flag */ 3704 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3705 int (*xBusy)(void*), /* Function to call when busy */ 3706 void *pBusyArg, /* Context argument for xBusyHandler */ 3707 int sync_flags, /* Flags to sync db file with (or 0) */ 3708 int nBuf, /* Size of temporary buffer */ 3709 u8 *zBuf, /* Temporary buffer to use */ 3710 int *pnLog, /* OUT: Number of frames in WAL */ 3711 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3712 ){ 3713 int rc; /* Return code */ 3714 int isChanged = 0; /* True if a new wal-index header is loaded */ 3715 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3716 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3717 3718 assert( pWal->ckptLock==0 ); 3719 assert( pWal->writeLock==0 ); 3720 3721 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3722 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3723 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3724 3725 if( pWal->readOnly ) return SQLITE_READONLY; 3726 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3727 3728 /* Enable blocking locks, if possible. If blocking locks are successfully 3729 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3730 sqlite3WalDb(pWal, db); 3731 (void)walEnableBlocking(pWal); 3732 3733 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3734 ** "checkpoint" lock on the database file. 3735 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3736 ** checkpoint operation at the same time, the lock cannot be obtained and 3737 ** SQLITE_BUSY is returned. 3738 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3739 ** it will not be invoked in this case. 3740 */ 3741 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3742 testcase( rc==SQLITE_BUSY ); 3743 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3744 if( rc==SQLITE_OK ){ 3745 pWal->ckptLock = 1; 3746 3747 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3748 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3749 ** file. 3750 ** 3751 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3752 ** immediately, and a busy-handler is configured, it is invoked and the 3753 ** writer lock retried until either the busy-handler returns 0 or the 3754 ** lock is successfully obtained. 3755 */ 3756 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3757 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3758 if( rc==SQLITE_OK ){ 3759 pWal->writeLock = 1; 3760 }else if( rc==SQLITE_BUSY ){ 3761 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3762 xBusy2 = 0; 3763 rc = SQLITE_OK; 3764 } 3765 } 3766 } 3767 3768 3769 /* Read the wal-index header. */ 3770 if( rc==SQLITE_OK ){ 3771 walDisableBlocking(pWal); 3772 rc = walIndexReadHdr(pWal, &isChanged); 3773 (void)walEnableBlocking(pWal); 3774 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3775 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3776 } 3777 } 3778 3779 /* Copy data from the log to the database file. */ 3780 if( rc==SQLITE_OK ){ 3781 3782 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3783 rc = SQLITE_CORRUPT_BKPT; 3784 }else{ 3785 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3786 } 3787 3788 /* If no error occurred, set the output variables. */ 3789 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3790 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3791 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3792 } 3793 } 3794 3795 if( isChanged ){ 3796 /* If a new wal-index header was loaded before the checkpoint was 3797 ** performed, then the pager-cache associated with pWal is now 3798 ** out of date. So zero the cached wal-index header to ensure that 3799 ** next time the pager opens a snapshot on this database it knows that 3800 ** the cache needs to be reset. 3801 */ 3802 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3803 } 3804 3805 walDisableBlocking(pWal); 3806 sqlite3WalDb(pWal, 0); 3807 3808 /* Release the locks. */ 3809 sqlite3WalEndWriteTransaction(pWal); 3810 if( pWal->ckptLock ){ 3811 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3812 pWal->ckptLock = 0; 3813 } 3814 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3815 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3816 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3817 #endif 3818 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3819 } 3820 3821 /* Return the value to pass to a sqlite3_wal_hook callback, the 3822 ** number of frames in the WAL at the point of the last commit since 3823 ** sqlite3WalCallback() was called. If no commits have occurred since 3824 ** the last call, then return 0. 3825 */ 3826 int sqlite3WalCallback(Wal *pWal){ 3827 u32 ret = 0; 3828 if( pWal ){ 3829 ret = pWal->iCallback; 3830 pWal->iCallback = 0; 3831 } 3832 return (int)ret; 3833 } 3834 3835 /* 3836 ** This function is called to change the WAL subsystem into or out 3837 ** of locking_mode=EXCLUSIVE. 3838 ** 3839 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3840 ** into locking_mode=NORMAL. This means that we must acquire a lock 3841 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3842 ** or if the acquisition of the lock fails, then return 0. If the 3843 ** transition out of exclusive-mode is successful, return 1. This 3844 ** operation must occur while the pager is still holding the exclusive 3845 ** lock on the main database file. 3846 ** 3847 ** If op is one, then change from locking_mode=NORMAL into 3848 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3849 ** be released. Return 1 if the transition is made and 0 if the 3850 ** WAL is already in exclusive-locking mode - meaning that this 3851 ** routine is a no-op. The pager must already hold the exclusive lock 3852 ** on the main database file before invoking this operation. 3853 ** 3854 ** If op is negative, then do a dry-run of the op==1 case but do 3855 ** not actually change anything. The pager uses this to see if it 3856 ** should acquire the database exclusive lock prior to invoking 3857 ** the op==1 case. 3858 */ 3859 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3860 int rc; 3861 assert( pWal->writeLock==0 ); 3862 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3863 3864 /* pWal->readLock is usually set, but might be -1 if there was a 3865 ** prior error while attempting to acquire are read-lock. This cannot 3866 ** happen if the connection is actually in exclusive mode (as no xShmLock 3867 ** locks are taken in this case). Nor should the pager attempt to 3868 ** upgrade to exclusive-mode following such an error. 3869 */ 3870 assert( pWal->readLock>=0 || pWal->lockError ); 3871 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3872 3873 if( op==0 ){ 3874 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3875 pWal->exclusiveMode = WAL_NORMAL_MODE; 3876 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3877 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3878 } 3879 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3880 }else{ 3881 /* Already in locking_mode=NORMAL */ 3882 rc = 0; 3883 } 3884 }else if( op>0 ){ 3885 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3886 assert( pWal->readLock>=0 ); 3887 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3888 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3889 rc = 1; 3890 }else{ 3891 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3892 } 3893 return rc; 3894 } 3895 3896 /* 3897 ** Return true if the argument is non-NULL and the WAL module is using 3898 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3899 ** WAL module is using shared-memory, return false. 3900 */ 3901 int sqlite3WalHeapMemory(Wal *pWal){ 3902 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3903 } 3904 3905 #ifdef SQLITE_ENABLE_SNAPSHOT 3906 /* Create a snapshot object. The content of a snapshot is opaque to 3907 ** every other subsystem, so the WAL module can put whatever it needs 3908 ** in the object. 3909 */ 3910 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3911 int rc = SQLITE_OK; 3912 WalIndexHdr *pRet; 3913 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3914 3915 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3916 3917 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3918 *ppSnapshot = 0; 3919 return SQLITE_ERROR; 3920 } 3921 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3922 if( pRet==0 ){ 3923 rc = SQLITE_NOMEM_BKPT; 3924 }else{ 3925 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3926 *ppSnapshot = (sqlite3_snapshot*)pRet; 3927 } 3928 3929 return rc; 3930 } 3931 3932 /* Try to open on pSnapshot when the next read-transaction starts 3933 */ 3934 void sqlite3WalSnapshotOpen( 3935 Wal *pWal, 3936 sqlite3_snapshot *pSnapshot 3937 ){ 3938 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3939 } 3940 3941 /* 3942 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3943 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3944 */ 3945 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3946 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3947 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3948 3949 /* aSalt[0] is a copy of the value stored in the wal file header. It 3950 ** is incremented each time the wal file is restarted. */ 3951 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3952 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3953 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3954 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3955 return 0; 3956 } 3957 3958 /* 3959 ** The caller currently has a read transaction open on the database. 3960 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3961 ** checks if the snapshot passed as the second argument is still 3962 ** available. If so, SQLITE_OK is returned. 3963 ** 3964 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3965 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3966 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3967 ** lock is released before returning. 3968 */ 3969 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3970 int rc; 3971 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3972 if( rc==SQLITE_OK ){ 3973 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3974 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3975 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3976 ){ 3977 rc = SQLITE_ERROR_SNAPSHOT; 3978 walUnlockShared(pWal, WAL_CKPT_LOCK); 3979 } 3980 } 3981 return rc; 3982 } 3983 3984 /* 3985 ** Release a lock obtained by an earlier successful call to 3986 ** sqlite3WalSnapshotCheck(). 3987 */ 3988 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3989 assert( pWal ); 3990 walUnlockShared(pWal, WAL_CKPT_LOCK); 3991 } 3992 3993 3994 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3995 3996 #ifdef SQLITE_ENABLE_ZIPVFS 3997 /* 3998 ** If the argument is not NULL, it points to a Wal object that holds a 3999 ** read-lock. This function returns the database page-size if it is known, 4000 ** or zero if it is not (or if pWal is NULL). 4001 */ 4002 int sqlite3WalFramesize(Wal *pWal){ 4003 assert( pWal==0 || pWal->readLock>=0 ); 4004 return (pWal ? pWal->szPage : 0); 4005 } 4006 #endif 4007 4008 /* Return the sqlite3_file object for the WAL file 4009 */ 4010 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4011 return pWal->pWalFd; 4012 } 4013 4014 #endif /* #ifndef SQLITE_OMIT_WAL */ 4015