xref: /sqlite-3.40.0/src/wal.c (revision e7952263)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 };
471 
472 /*
473 ** Candidate values for Wal.exclusiveMode.
474 */
475 #define WAL_NORMAL_MODE     0
476 #define WAL_EXCLUSIVE_MODE  1
477 #define WAL_HEAPMEMORY_MODE 2
478 
479 /*
480 ** Possible values for WAL.readOnly
481 */
482 #define WAL_RDWR        0    /* Normal read/write connection */
483 #define WAL_RDONLY      1    /* The WAL file is readonly */
484 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
485 
486 /*
487 ** Each page of the wal-index mapping contains a hash-table made up of
488 ** an array of HASHTABLE_NSLOT elements of the following type.
489 */
490 typedef u16 ht_slot;
491 
492 /*
493 ** This structure is used to implement an iterator that loops through
494 ** all frames in the WAL in database page order. Where two or more frames
495 ** correspond to the same database page, the iterator visits only the
496 ** frame most recently written to the WAL (in other words, the frame with
497 ** the largest index).
498 **
499 ** The internals of this structure are only accessed by:
500 **
501 **   walIteratorInit() - Create a new iterator,
502 **   walIteratorNext() - Step an iterator,
503 **   walIteratorFree() - Free an iterator.
504 **
505 ** This functionality is used by the checkpoint code (see walCheckpoint()).
506 */
507 struct WalIterator {
508   int iPrior;                     /* Last result returned from the iterator */
509   int nSegment;                   /* Number of entries in aSegment[] */
510   struct WalSegment {
511     int iNext;                    /* Next slot in aIndex[] not yet returned */
512     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
513     u32 *aPgno;                   /* Array of page numbers. */
514     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
515     int iZero;                    /* Frame number associated with aPgno[0] */
516   } aSegment[1];                  /* One for every 32KB page in the wal-index */
517 };
518 
519 /*
520 ** Define the parameters of the hash tables in the wal-index file. There
521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522 ** wal-index.
523 **
524 ** Changing any of these constants will alter the wal-index format and
525 ** create incompatibilities.
526 */
527 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
528 #define HASHTABLE_HASH_1     383                  /* Should be prime */
529 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
530 
531 /*
532 ** The block of page numbers associated with the first hash-table in a
533 ** wal-index is smaller than usual. This is so that there is a complete
534 ** hash-table on each aligned 32KB page of the wal-index.
535 */
536 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
537 
538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539 #define WALINDEX_PGSZ   (                                         \
540     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
541 )
542 
543 /*
544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
546 ** numbered from zero.
547 **
548 ** If the wal-index is currently smaller the iPage pages then the size
549 ** of the wal-index might be increased, but only if it is safe to do
550 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
552 **
553 ** If this call is successful, *ppPage is set to point to the wal-index
554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555 ** then an SQLite error code is returned and *ppPage is set to 0.
556 */
557 static SQLITE_NOINLINE int walIndexPageRealloc(
558   Wal *pWal,               /* The WAL context */
559   int iPage,               /* The page we seek */
560   volatile u32 **ppPage    /* Write the page pointer here */
561 ){
562   int rc = SQLITE_OK;
563 
564   /* Enlarge the pWal->apWiData[] array if required */
565   if( pWal->nWiData<=iPage ){
566     int nByte = sizeof(u32*)*(iPage+1);
567     volatile u32 **apNew;
568     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
569     if( !apNew ){
570       *ppPage = 0;
571       return SQLITE_NOMEM_BKPT;
572     }
573     memset((void*)&apNew[pWal->nWiData], 0,
574            sizeof(u32*)*(iPage+1-pWal->nWiData));
575     pWal->apWiData = apNew;
576     pWal->nWiData = iPage+1;
577   }
578 
579   /* Request a pointer to the required page from the VFS */
580   assert( pWal->apWiData[iPage]==0 );
581   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
582     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
583     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
584   }else{
585     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
586         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
587     );
588     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
589     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
590     if( (rc&0xff)==SQLITE_READONLY ){
591       pWal->readOnly |= WAL_SHM_RDONLY;
592       if( rc==SQLITE_READONLY ){
593         rc = SQLITE_OK;
594       }
595     }
596   }
597 
598   *ppPage = pWal->apWiData[iPage];
599   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
600   return rc;
601 }
602 static int walIndexPage(
603   Wal *pWal,               /* The WAL context */
604   int iPage,               /* The page we seek */
605   volatile u32 **ppPage    /* Write the page pointer here */
606 ){
607   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
608     return walIndexPageRealloc(pWal, iPage, ppPage);
609   }
610   return SQLITE_OK;
611 }
612 
613 /*
614 ** Return a pointer to the WalCkptInfo structure in the wal-index.
615 */
616 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
617   assert( pWal->nWiData>0 && pWal->apWiData[0] );
618   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
619 }
620 
621 /*
622 ** Return a pointer to the WalIndexHdr structure in the wal-index.
623 */
624 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
625   assert( pWal->nWiData>0 && pWal->apWiData[0] );
626   return (volatile WalIndexHdr*)pWal->apWiData[0];
627 }
628 
629 /*
630 ** The argument to this macro must be of type u32. On a little-endian
631 ** architecture, it returns the u32 value that results from interpreting
632 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
633 ** returns the value that would be produced by interpreting the 4 bytes
634 ** of the input value as a little-endian integer.
635 */
636 #define BYTESWAP32(x) ( \
637     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
638   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
639 )
640 
641 /*
642 ** Generate or extend an 8 byte checksum based on the data in
643 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
644 ** initial values of 0 and 0 if aIn==NULL).
645 **
646 ** The checksum is written back into aOut[] before returning.
647 **
648 ** nByte must be a positive multiple of 8.
649 */
650 static void walChecksumBytes(
651   int nativeCksum, /* True for native byte-order, false for non-native */
652   u8 *a,           /* Content to be checksummed */
653   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
654   const u32 *aIn,  /* Initial checksum value input */
655   u32 *aOut        /* OUT: Final checksum value output */
656 ){
657   u32 s1, s2;
658   u32 *aData = (u32 *)a;
659   u32 *aEnd = (u32 *)&a[nByte];
660 
661   if( aIn ){
662     s1 = aIn[0];
663     s2 = aIn[1];
664   }else{
665     s1 = s2 = 0;
666   }
667 
668   assert( nByte>=8 );
669   assert( (nByte&0x00000007)==0 );
670 
671   if( nativeCksum ){
672     do {
673       s1 += *aData++ + s2;
674       s2 += *aData++ + s1;
675     }while( aData<aEnd );
676   }else{
677     do {
678       s1 += BYTESWAP32(aData[0]) + s2;
679       s2 += BYTESWAP32(aData[1]) + s1;
680       aData += 2;
681     }while( aData<aEnd );
682   }
683 
684   aOut[0] = s1;
685   aOut[1] = s2;
686 }
687 
688 static void walShmBarrier(Wal *pWal){
689   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
690     sqlite3OsShmBarrier(pWal->pDbFd);
691   }
692 }
693 
694 /*
695 ** Write the header information in pWal->hdr into the wal-index.
696 **
697 ** The checksum on pWal->hdr is updated before it is written.
698 */
699 static void walIndexWriteHdr(Wal *pWal){
700   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
701   const int nCksum = offsetof(WalIndexHdr, aCksum);
702 
703   assert( pWal->writeLock );
704   pWal->hdr.isInit = 1;
705   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
706   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
707   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
708   walShmBarrier(pWal);
709   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
710 }
711 
712 /*
713 ** This function encodes a single frame header and writes it to a buffer
714 ** supplied by the caller. A frame-header is made up of a series of
715 ** 4-byte big-endian integers, as follows:
716 **
717 **     0: Page number.
718 **     4: For commit records, the size of the database image in pages
719 **        after the commit. For all other records, zero.
720 **     8: Salt-1 (copied from the wal-header)
721 **    12: Salt-2 (copied from the wal-header)
722 **    16: Checksum-1.
723 **    20: Checksum-2.
724 */
725 static void walEncodeFrame(
726   Wal *pWal,                      /* The write-ahead log */
727   u32 iPage,                      /* Database page number for frame */
728   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
729   u8 *aData,                      /* Pointer to page data */
730   u8 *aFrame                      /* OUT: Write encoded frame here */
731 ){
732   int nativeCksum;                /* True for native byte-order checksums */
733   u32 *aCksum = pWal->hdr.aFrameCksum;
734   assert( WAL_FRAME_HDRSIZE==24 );
735   sqlite3Put4byte(&aFrame[0], iPage);
736   sqlite3Put4byte(&aFrame[4], nTruncate);
737   if( pWal->iReCksum==0 ){
738     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
739 
740     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
741     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
742     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
743 
744     sqlite3Put4byte(&aFrame[16], aCksum[0]);
745     sqlite3Put4byte(&aFrame[20], aCksum[1]);
746   }else{
747     memset(&aFrame[8], 0, 16);
748   }
749 }
750 
751 /*
752 ** Check to see if the frame with header in aFrame[] and content
753 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
754 ** *pnTruncate and return true.  Return if the frame is not valid.
755 */
756 static int walDecodeFrame(
757   Wal *pWal,                      /* The write-ahead log */
758   u32 *piPage,                    /* OUT: Database page number for frame */
759   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
760   u8 *aData,                      /* Pointer to page data (for checksum) */
761   u8 *aFrame                      /* Frame data */
762 ){
763   int nativeCksum;                /* True for native byte-order checksums */
764   u32 *aCksum = pWal->hdr.aFrameCksum;
765   u32 pgno;                       /* Page number of the frame */
766   assert( WAL_FRAME_HDRSIZE==24 );
767 
768   /* A frame is only valid if the salt values in the frame-header
769   ** match the salt values in the wal-header.
770   */
771   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
772     return 0;
773   }
774 
775   /* A frame is only valid if the page number is creater than zero.
776   */
777   pgno = sqlite3Get4byte(&aFrame[0]);
778   if( pgno==0 ){
779     return 0;
780   }
781 
782   /* A frame is only valid if a checksum of the WAL header,
783   ** all prior frams, the first 16 bytes of this frame-header,
784   ** and the frame-data matches the checksum in the last 8
785   ** bytes of this frame-header.
786   */
787   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
788   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
789   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
790   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
791    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
792   ){
793     /* Checksum failed. */
794     return 0;
795   }
796 
797   /* If we reach this point, the frame is valid.  Return the page number
798   ** and the new database size.
799   */
800   *piPage = pgno;
801   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
802   return 1;
803 }
804 
805 
806 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
807 /*
808 ** Names of locks.  This routine is used to provide debugging output and is not
809 ** a part of an ordinary build.
810 */
811 static const char *walLockName(int lockIdx){
812   if( lockIdx==WAL_WRITE_LOCK ){
813     return "WRITE-LOCK";
814   }else if( lockIdx==WAL_CKPT_LOCK ){
815     return "CKPT-LOCK";
816   }else if( lockIdx==WAL_RECOVER_LOCK ){
817     return "RECOVER-LOCK";
818   }else{
819     static char zName[15];
820     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
821                      lockIdx-WAL_READ_LOCK(0));
822     return zName;
823   }
824 }
825 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
826 
827 
828 /*
829 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
830 ** A lock cannot be moved directly between shared and exclusive - it must go
831 ** through the unlocked state first.
832 **
833 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
834 */
835 static int walLockShared(Wal *pWal, int lockIdx){
836   int rc;
837   if( pWal->exclusiveMode ) return SQLITE_OK;
838   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
839                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
840   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
841             walLockName(lockIdx), rc ? "failed" : "ok"));
842   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
843   return rc;
844 }
845 static void walUnlockShared(Wal *pWal, int lockIdx){
846   if( pWal->exclusiveMode ) return;
847   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
848                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
849   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
850 }
851 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
852   int rc;
853   if( pWal->exclusiveMode ) return SQLITE_OK;
854   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
855                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
856   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
857             walLockName(lockIdx), n, rc ? "failed" : "ok"));
858   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
859   return rc;
860 }
861 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
862   if( pWal->exclusiveMode ) return;
863   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
864                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
865   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
866              walLockName(lockIdx), n));
867 }
868 
869 /*
870 ** Compute a hash on a page number.  The resulting hash value must land
871 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
872 ** the hash to the next value in the event of a collision.
873 */
874 static int walHash(u32 iPage){
875   assert( iPage>0 );
876   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
877   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
878 }
879 static int walNextHash(int iPriorHash){
880   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
881 }
882 
883 /*
884 ** An instance of the WalHashLoc object is used to describe the location
885 ** of a page hash table in the wal-index.  This becomes the return value
886 ** from walHashGet().
887 */
888 typedef struct WalHashLoc WalHashLoc;
889 struct WalHashLoc {
890   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
891   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
892   u32 iZero;                /* One less than the frame number of first indexed*/
893 };
894 
895 /*
896 ** Return pointers to the hash table and page number array stored on
897 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
898 ** numbered starting from 0.
899 **
900 ** Set output variable pLoc->aHash to point to the start of the hash table
901 ** in the wal-index file. Set pLoc->iZero to one less than the frame
902 ** number of the first frame indexed by this hash table. If a
903 ** slot in the hash table is set to N, it refers to frame number
904 ** (pLoc->iZero+N) in the log.
905 **
906 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
907 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
908 */
909 static int walHashGet(
910   Wal *pWal,                      /* WAL handle */
911   int iHash,                      /* Find the iHash'th table */
912   WalHashLoc *pLoc                /* OUT: Hash table location */
913 ){
914   int rc;                         /* Return code */
915 
916   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
917   assert( rc==SQLITE_OK || iHash>0 );
918 
919   if( rc==SQLITE_OK ){
920     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
921     if( iHash==0 ){
922       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
923       pLoc->iZero = 0;
924     }else{
925       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
926     }
927     pLoc->aPgno = &pLoc->aPgno[-1];
928   }
929   return rc;
930 }
931 
932 /*
933 ** Return the number of the wal-index page that contains the hash-table
934 ** and page-number array that contain entries corresponding to WAL frame
935 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
936 ** are numbered starting from 0.
937 */
938 static int walFramePage(u32 iFrame){
939   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
940   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
941        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
942        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
943        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
944        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
945   );
946   return iHash;
947 }
948 
949 /*
950 ** Return the page number associated with frame iFrame in this WAL.
951 */
952 static u32 walFramePgno(Wal *pWal, u32 iFrame){
953   int iHash = walFramePage(iFrame);
954   if( iHash==0 ){
955     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
956   }
957   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
958 }
959 
960 /*
961 ** Remove entries from the hash table that point to WAL slots greater
962 ** than pWal->hdr.mxFrame.
963 **
964 ** This function is called whenever pWal->hdr.mxFrame is decreased due
965 ** to a rollback or savepoint.
966 **
967 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
968 ** updated.  Any later hash tables will be automatically cleared when
969 ** pWal->hdr.mxFrame advances to the point where those hash tables are
970 ** actually needed.
971 */
972 static void walCleanupHash(Wal *pWal){
973   WalHashLoc sLoc;                /* Hash table location */
974   int iLimit = 0;                 /* Zero values greater than this */
975   int nByte;                      /* Number of bytes to zero in aPgno[] */
976   int i;                          /* Used to iterate through aHash[] */
977 
978   assert( pWal->writeLock );
979   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
980   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
981   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
982 
983   if( pWal->hdr.mxFrame==0 ) return;
984 
985   /* Obtain pointers to the hash-table and page-number array containing
986   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
987   ** that the page said hash-table and array reside on is already mapped.
988   */
989   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
990   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
991   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
992 
993   /* Zero all hash-table entries that correspond to frame numbers greater
994   ** than pWal->hdr.mxFrame.
995   */
996   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
997   assert( iLimit>0 );
998   for(i=0; i<HASHTABLE_NSLOT; i++){
999     if( sLoc.aHash[i]>iLimit ){
1000       sLoc.aHash[i] = 0;
1001     }
1002   }
1003 
1004   /* Zero the entries in the aPgno array that correspond to frames with
1005   ** frame numbers greater than pWal->hdr.mxFrame.
1006   */
1007   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1008   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1009 
1010 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1011   /* Verify that the every entry in the mapping region is still reachable
1012   ** via the hash table even after the cleanup.
1013   */
1014   if( iLimit ){
1015     int j;           /* Loop counter */
1016     int iKey;        /* Hash key */
1017     for(j=1; j<=iLimit; j++){
1018       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1019         if( sLoc.aHash[iKey]==j ) break;
1020       }
1021       assert( sLoc.aHash[iKey]==j );
1022     }
1023   }
1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1025 }
1026 
1027 
1028 /*
1029 ** Set an entry in the wal-index that will map database page number
1030 ** pPage into WAL frame iFrame.
1031 */
1032 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1033   int rc;                         /* Return code */
1034   WalHashLoc sLoc;                /* Wal-index hash table location */
1035 
1036   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1037 
1038   /* Assuming the wal-index file was successfully mapped, populate the
1039   ** page number array and hash table entry.
1040   */
1041   if( rc==SQLITE_OK ){
1042     int iKey;                     /* Hash table key */
1043     int idx;                      /* Value to write to hash-table slot */
1044     int nCollide;                 /* Number of hash collisions */
1045 
1046     idx = iFrame - sLoc.iZero;
1047     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1048 
1049     /* If this is the first entry to be added to this hash-table, zero the
1050     ** entire hash table and aPgno[] array before proceeding.
1051     */
1052     if( idx==1 ){
1053       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1054                                - (u8 *)&sLoc.aPgno[1]);
1055       memset((void*)&sLoc.aPgno[1], 0, nByte);
1056     }
1057 
1058     /* If the entry in aPgno[] is already set, then the previous writer
1059     ** must have exited unexpectedly in the middle of a transaction (after
1060     ** writing one or more dirty pages to the WAL to free up memory).
1061     ** Remove the remnants of that writers uncommitted transaction from
1062     ** the hash-table before writing any new entries.
1063     */
1064     if( sLoc.aPgno[idx] ){
1065       walCleanupHash(pWal);
1066       assert( !sLoc.aPgno[idx] );
1067     }
1068 
1069     /* Write the aPgno[] array entry and the hash-table slot. */
1070     nCollide = idx;
1071     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1072       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1073     }
1074     sLoc.aPgno[idx] = iPage;
1075     sLoc.aHash[iKey] = (ht_slot)idx;
1076 
1077 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1078     /* Verify that the number of entries in the hash table exactly equals
1079     ** the number of entries in the mapping region.
1080     */
1081     {
1082       int i;           /* Loop counter */
1083       int nEntry = 0;  /* Number of entries in the hash table */
1084       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1085       assert( nEntry==idx );
1086     }
1087 
1088     /* Verify that the every entry in the mapping region is reachable
1089     ** via the hash table.  This turns out to be a really, really expensive
1090     ** thing to check, so only do this occasionally - not on every
1091     ** iteration.
1092     */
1093     if( (idx&0x3ff)==0 ){
1094       int i;           /* Loop counter */
1095       for(i=1; i<=idx; i++){
1096         for(iKey=walHash(sLoc.aPgno[i]);
1097             sLoc.aHash[iKey];
1098             iKey=walNextHash(iKey)){
1099           if( sLoc.aHash[iKey]==i ) break;
1100         }
1101         assert( sLoc.aHash[iKey]==i );
1102       }
1103     }
1104 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1105   }
1106 
1107 
1108   return rc;
1109 }
1110 
1111 
1112 /*
1113 ** Recover the wal-index by reading the write-ahead log file.
1114 **
1115 ** This routine first tries to establish an exclusive lock on the
1116 ** wal-index to prevent other threads/processes from doing anything
1117 ** with the WAL or wal-index while recovery is running.  The
1118 ** WAL_RECOVER_LOCK is also held so that other threads will know
1119 ** that this thread is running recovery.  If unable to establish
1120 ** the necessary locks, this routine returns SQLITE_BUSY.
1121 */
1122 static int walIndexRecover(Wal *pWal){
1123   int rc;                         /* Return Code */
1124   i64 nSize;                      /* Size of log file */
1125   u32 aFrameCksum[2] = {0, 0};
1126   int iLock;                      /* Lock offset to lock for checkpoint */
1127 
1128   /* Obtain an exclusive lock on all byte in the locking range not already
1129   ** locked by the caller. The caller is guaranteed to have locked the
1130   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1131   ** If successful, the same bytes that are locked here are unlocked before
1132   ** this function returns.
1133   */
1134   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1135   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1136   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1137   assert( pWal->writeLock );
1138   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1139   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1140   if( rc==SQLITE_OK ){
1141     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1142     if( rc!=SQLITE_OK ){
1143       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1144     }
1145   }
1146   if( rc ){
1147     return rc;
1148   }
1149 
1150   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1151 
1152   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1153 
1154   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1155   if( rc!=SQLITE_OK ){
1156     goto recovery_error;
1157   }
1158 
1159   if( nSize>WAL_HDRSIZE ){
1160     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1161     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1162     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1163     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1164     int iFrame;                   /* Index of last frame read */
1165     i64 iOffset;                  /* Next offset to read from log file */
1166     int szPage;                   /* Page size according to the log */
1167     u32 magic;                    /* Magic value read from WAL header */
1168     u32 version;                  /* Magic value read from WAL header */
1169     int isValid;                  /* True if this frame is valid */
1170 
1171     /* Read in the WAL header. */
1172     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1173     if( rc!=SQLITE_OK ){
1174       goto recovery_error;
1175     }
1176 
1177     /* If the database page size is not a power of two, or is greater than
1178     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1179     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1180     ** WAL file.
1181     */
1182     magic = sqlite3Get4byte(&aBuf[0]);
1183     szPage = sqlite3Get4byte(&aBuf[8]);
1184     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1185      || szPage&(szPage-1)
1186      || szPage>SQLITE_MAX_PAGE_SIZE
1187      || szPage<512
1188     ){
1189       goto finished;
1190     }
1191     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1192     pWal->szPage = szPage;
1193     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1194     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1195 
1196     /* Verify that the WAL header checksum is correct */
1197     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1198         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1199     );
1200     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1201      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1202     ){
1203       goto finished;
1204     }
1205 
1206     /* Verify that the version number on the WAL format is one that
1207     ** are able to understand */
1208     version = sqlite3Get4byte(&aBuf[4]);
1209     if( version!=WAL_MAX_VERSION ){
1210       rc = SQLITE_CANTOPEN_BKPT;
1211       goto finished;
1212     }
1213 
1214     /* Malloc a buffer to read frames into. */
1215     szFrame = szPage + WAL_FRAME_HDRSIZE;
1216     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1217     if( !aFrame ){
1218       rc = SQLITE_NOMEM_BKPT;
1219       goto recovery_error;
1220     }
1221     aData = &aFrame[WAL_FRAME_HDRSIZE];
1222 
1223     /* Read all frames from the log file. */
1224     iFrame = 0;
1225     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1226       u32 pgno;                   /* Database page number for frame */
1227       u32 nTruncate;              /* dbsize field from frame header */
1228 
1229       /* Read and decode the next log frame. */
1230       iFrame++;
1231       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1232       if( rc!=SQLITE_OK ) break;
1233       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1234       if( !isValid ) break;
1235       rc = walIndexAppend(pWal, iFrame, pgno);
1236       if( rc!=SQLITE_OK ) break;
1237 
1238       /* If nTruncate is non-zero, this is a commit record. */
1239       if( nTruncate ){
1240         pWal->hdr.mxFrame = iFrame;
1241         pWal->hdr.nPage = nTruncate;
1242         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1243         testcase( szPage<=32768 );
1244         testcase( szPage>=65536 );
1245         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1246         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1247       }
1248     }
1249 
1250     sqlite3_free(aFrame);
1251   }
1252 
1253 finished:
1254   if( rc==SQLITE_OK ){
1255     volatile WalCkptInfo *pInfo;
1256     int i;
1257     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1258     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1259     walIndexWriteHdr(pWal);
1260 
1261     /* Reset the checkpoint-header. This is safe because this thread is
1262     ** currently holding locks that exclude all other readers, writers and
1263     ** checkpointers.
1264     */
1265     pInfo = walCkptInfo(pWal);
1266     pInfo->nBackfill = 0;
1267     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1268     pInfo->aReadMark[0] = 0;
1269     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1270     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1271 
1272     /* If more than one frame was recovered from the log file, report an
1273     ** event via sqlite3_log(). This is to help with identifying performance
1274     ** problems caused by applications routinely shutting down without
1275     ** checkpointing the log file.
1276     */
1277     if( pWal->hdr.nPage ){
1278       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1279           "recovered %d frames from WAL file %s",
1280           pWal->hdr.mxFrame, pWal->zWalName
1281       );
1282     }
1283   }
1284 
1285 recovery_error:
1286   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1287   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1288   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1289   return rc;
1290 }
1291 
1292 /*
1293 ** Close an open wal-index.
1294 */
1295 static void walIndexClose(Wal *pWal, int isDelete){
1296   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1297     int i;
1298     for(i=0; i<pWal->nWiData; i++){
1299       sqlite3_free((void *)pWal->apWiData[i]);
1300       pWal->apWiData[i] = 0;
1301     }
1302   }
1303   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1304     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1305   }
1306 }
1307 
1308 /*
1309 ** Open a connection to the WAL file zWalName. The database file must
1310 ** already be opened on connection pDbFd. The buffer that zWalName points
1311 ** to must remain valid for the lifetime of the returned Wal* handle.
1312 **
1313 ** A SHARED lock should be held on the database file when this function
1314 ** is called. The purpose of this SHARED lock is to prevent any other
1315 ** client from unlinking the WAL or wal-index file. If another process
1316 ** were to do this just after this client opened one of these files, the
1317 ** system would be badly broken.
1318 **
1319 ** If the log file is successfully opened, SQLITE_OK is returned and
1320 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1321 ** an SQLite error code is returned and *ppWal is left unmodified.
1322 */
1323 int sqlite3WalOpen(
1324   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1325   sqlite3_file *pDbFd,            /* The open database file */
1326   const char *zWalName,           /* Name of the WAL file */
1327   int bNoShm,                     /* True to run in heap-memory mode */
1328   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1329   Wal **ppWal                     /* OUT: Allocated Wal handle */
1330 ){
1331   int rc;                         /* Return Code */
1332   Wal *pRet;                      /* Object to allocate and return */
1333   int flags;                      /* Flags passed to OsOpen() */
1334 
1335   assert( zWalName && zWalName[0] );
1336   assert( pDbFd );
1337 
1338   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1339   ** this source file.  Verify that the #defines of the locking byte offsets
1340   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1341   ** For that matter, if the lock offset ever changes from its initial design
1342   ** value of 120, we need to know that so there is an assert() to check it.
1343   */
1344   assert( 120==WALINDEX_LOCK_OFFSET );
1345   assert( 136==WALINDEX_HDR_SIZE );
1346 #ifdef WIN_SHM_BASE
1347   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1348 #endif
1349 #ifdef UNIX_SHM_BASE
1350   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1351 #endif
1352 
1353 
1354   /* Allocate an instance of struct Wal to return. */
1355   *ppWal = 0;
1356   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1357   if( !pRet ){
1358     return SQLITE_NOMEM_BKPT;
1359   }
1360 
1361   pRet->pVfs = pVfs;
1362   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1363   pRet->pDbFd = pDbFd;
1364   pRet->readLock = -1;
1365   pRet->mxWalSize = mxWalSize;
1366   pRet->zWalName = zWalName;
1367   pRet->syncHeader = 1;
1368   pRet->padToSectorBoundary = 1;
1369   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1370 
1371   /* Open file handle on the write-ahead log file. */
1372   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1373   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1374   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1375     pRet->readOnly = WAL_RDONLY;
1376   }
1377 
1378   if( rc!=SQLITE_OK ){
1379     walIndexClose(pRet, 0);
1380     sqlite3OsClose(pRet->pWalFd);
1381     sqlite3_free(pRet);
1382   }else{
1383     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1384     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1385     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1386       pRet->padToSectorBoundary = 0;
1387     }
1388     *ppWal = pRet;
1389     WALTRACE(("WAL%d: opened\n", pRet));
1390   }
1391   return rc;
1392 }
1393 
1394 /*
1395 ** Change the size to which the WAL file is trucated on each reset.
1396 */
1397 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1398   if( pWal ) pWal->mxWalSize = iLimit;
1399 }
1400 
1401 /*
1402 ** Find the smallest page number out of all pages held in the WAL that
1403 ** has not been returned by any prior invocation of this method on the
1404 ** same WalIterator object.   Write into *piFrame the frame index where
1405 ** that page was last written into the WAL.  Write into *piPage the page
1406 ** number.
1407 **
1408 ** Return 0 on success.  If there are no pages in the WAL with a page
1409 ** number larger than *piPage, then return 1.
1410 */
1411 static int walIteratorNext(
1412   WalIterator *p,               /* Iterator */
1413   u32 *piPage,                  /* OUT: The page number of the next page */
1414   u32 *piFrame                  /* OUT: Wal frame index of next page */
1415 ){
1416   u32 iMin;                     /* Result pgno must be greater than iMin */
1417   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1418   int i;                        /* For looping through segments */
1419 
1420   iMin = p->iPrior;
1421   assert( iMin<0xffffffff );
1422   for(i=p->nSegment-1; i>=0; i--){
1423     struct WalSegment *pSegment = &p->aSegment[i];
1424     while( pSegment->iNext<pSegment->nEntry ){
1425       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1426       if( iPg>iMin ){
1427         if( iPg<iRet ){
1428           iRet = iPg;
1429           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1430         }
1431         break;
1432       }
1433       pSegment->iNext++;
1434     }
1435   }
1436 
1437   *piPage = p->iPrior = iRet;
1438   return (iRet==0xFFFFFFFF);
1439 }
1440 
1441 /*
1442 ** This function merges two sorted lists into a single sorted list.
1443 **
1444 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1445 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1446 ** is guaranteed for all J<K:
1447 **
1448 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1449 **        aContent[aRight[J]] < aContent[aRight[K]]
1450 **
1451 ** This routine overwrites aRight[] with a new (probably longer) sequence
1452 ** of indices such that the aRight[] contains every index that appears in
1453 ** either aLeft[] or the old aRight[] and such that the second condition
1454 ** above is still met.
1455 **
1456 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1457 ** aContent[aRight[X]] values will be unique too.  But there might be
1458 ** one or more combinations of X and Y such that
1459 **
1460 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1461 **
1462 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1463 */
1464 static void walMerge(
1465   const u32 *aContent,            /* Pages in wal - keys for the sort */
1466   ht_slot *aLeft,                 /* IN: Left hand input list */
1467   int nLeft,                      /* IN: Elements in array *paLeft */
1468   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1469   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1470   ht_slot *aTmp                   /* Temporary buffer */
1471 ){
1472   int iLeft = 0;                  /* Current index in aLeft */
1473   int iRight = 0;                 /* Current index in aRight */
1474   int iOut = 0;                   /* Current index in output buffer */
1475   int nRight = *pnRight;
1476   ht_slot *aRight = *paRight;
1477 
1478   assert( nLeft>0 && nRight>0 );
1479   while( iRight<nRight || iLeft<nLeft ){
1480     ht_slot logpage;
1481     Pgno dbpage;
1482 
1483     if( (iLeft<nLeft)
1484      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1485     ){
1486       logpage = aLeft[iLeft++];
1487     }else{
1488       logpage = aRight[iRight++];
1489     }
1490     dbpage = aContent[logpage];
1491 
1492     aTmp[iOut++] = logpage;
1493     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1494 
1495     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1496     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1497   }
1498 
1499   *paRight = aLeft;
1500   *pnRight = iOut;
1501   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1502 }
1503 
1504 /*
1505 ** Sort the elements in list aList using aContent[] as the sort key.
1506 ** Remove elements with duplicate keys, preferring to keep the
1507 ** larger aList[] values.
1508 **
1509 ** The aList[] entries are indices into aContent[].  The values in
1510 ** aList[] are to be sorted so that for all J<K:
1511 **
1512 **      aContent[aList[J]] < aContent[aList[K]]
1513 **
1514 ** For any X and Y such that
1515 **
1516 **      aContent[aList[X]] == aContent[aList[Y]]
1517 **
1518 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1519 ** the smaller.
1520 */
1521 static void walMergesort(
1522   const u32 *aContent,            /* Pages in wal */
1523   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1524   ht_slot *aList,                 /* IN/OUT: List to sort */
1525   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1526 ){
1527   struct Sublist {
1528     int nList;                    /* Number of elements in aList */
1529     ht_slot *aList;               /* Pointer to sub-list content */
1530   };
1531 
1532   const int nList = *pnList;      /* Size of input list */
1533   int nMerge = 0;                 /* Number of elements in list aMerge */
1534   ht_slot *aMerge = 0;            /* List to be merged */
1535   int iList;                      /* Index into input list */
1536   u32 iSub = 0;                   /* Index into aSub array */
1537   struct Sublist aSub[13];        /* Array of sub-lists */
1538 
1539   memset(aSub, 0, sizeof(aSub));
1540   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1541   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1542 
1543   for(iList=0; iList<nList; iList++){
1544     nMerge = 1;
1545     aMerge = &aList[iList];
1546     for(iSub=0; iList & (1<<iSub); iSub++){
1547       struct Sublist *p;
1548       assert( iSub<ArraySize(aSub) );
1549       p = &aSub[iSub];
1550       assert( p->aList && p->nList<=(1<<iSub) );
1551       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1552       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1553     }
1554     aSub[iSub].aList = aMerge;
1555     aSub[iSub].nList = nMerge;
1556   }
1557 
1558   for(iSub++; iSub<ArraySize(aSub); iSub++){
1559     if( nList & (1<<iSub) ){
1560       struct Sublist *p;
1561       assert( iSub<ArraySize(aSub) );
1562       p = &aSub[iSub];
1563       assert( p->nList<=(1<<iSub) );
1564       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1565       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1566     }
1567   }
1568   assert( aMerge==aList );
1569   *pnList = nMerge;
1570 
1571 #ifdef SQLITE_DEBUG
1572   {
1573     int i;
1574     for(i=1; i<*pnList; i++){
1575       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1576     }
1577   }
1578 #endif
1579 }
1580 
1581 /*
1582 ** Free an iterator allocated by walIteratorInit().
1583 */
1584 static void walIteratorFree(WalIterator *p){
1585   sqlite3_free(p);
1586 }
1587 
1588 /*
1589 ** Construct a WalInterator object that can be used to loop over all
1590 ** pages in the WAL following frame nBackfill in ascending order. Frames
1591 ** nBackfill or earlier may be included - excluding them is an optimization
1592 ** only. The caller must hold the checkpoint lock.
1593 **
1594 ** On success, make *pp point to the newly allocated WalInterator object
1595 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1596 ** returns an error, the value of *pp is undefined.
1597 **
1598 ** The calling routine should invoke walIteratorFree() to destroy the
1599 ** WalIterator object when it has finished with it.
1600 */
1601 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1602   WalIterator *p;                 /* Return value */
1603   int nSegment;                   /* Number of segments to merge */
1604   u32 iLast;                      /* Last frame in log */
1605   int nByte;                      /* Number of bytes to allocate */
1606   int i;                          /* Iterator variable */
1607   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1608   int rc = SQLITE_OK;             /* Return Code */
1609 
1610   /* This routine only runs while holding the checkpoint lock. And
1611   ** it only runs if there is actually content in the log (mxFrame>0).
1612   */
1613   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1614   iLast = pWal->hdr.mxFrame;
1615 
1616   /* Allocate space for the WalIterator object. */
1617   nSegment = walFramePage(iLast) + 1;
1618   nByte = sizeof(WalIterator)
1619         + (nSegment-1)*sizeof(struct WalSegment)
1620         + iLast*sizeof(ht_slot);
1621   p = (WalIterator *)sqlite3_malloc64(nByte);
1622   if( !p ){
1623     return SQLITE_NOMEM_BKPT;
1624   }
1625   memset(p, 0, nByte);
1626   p->nSegment = nSegment;
1627 
1628   /* Allocate temporary space used by the merge-sort routine. This block
1629   ** of memory will be freed before this function returns.
1630   */
1631   aTmp = (ht_slot *)sqlite3_malloc64(
1632       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1633   );
1634   if( !aTmp ){
1635     rc = SQLITE_NOMEM_BKPT;
1636   }
1637 
1638   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1639     WalHashLoc sLoc;
1640 
1641     rc = walHashGet(pWal, i, &sLoc);
1642     if( rc==SQLITE_OK ){
1643       int j;                      /* Counter variable */
1644       int nEntry;                 /* Number of entries in this segment */
1645       ht_slot *aIndex;            /* Sorted index for this segment */
1646 
1647       sLoc.aPgno++;
1648       if( (i+1)==nSegment ){
1649         nEntry = (int)(iLast - sLoc.iZero);
1650       }else{
1651         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1652       }
1653       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1654       sLoc.iZero++;
1655 
1656       for(j=0; j<nEntry; j++){
1657         aIndex[j] = (ht_slot)j;
1658       }
1659       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1660       p->aSegment[i].iZero = sLoc.iZero;
1661       p->aSegment[i].nEntry = nEntry;
1662       p->aSegment[i].aIndex = aIndex;
1663       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1664     }
1665   }
1666   sqlite3_free(aTmp);
1667 
1668   if( rc!=SQLITE_OK ){
1669     walIteratorFree(p);
1670     p = 0;
1671   }
1672   *pp = p;
1673   return rc;
1674 }
1675 
1676 /*
1677 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1678 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1679 ** busy-handler function. Invoke it and retry the lock until either the
1680 ** lock is successfully obtained or the busy-handler returns 0.
1681 */
1682 static int walBusyLock(
1683   Wal *pWal,                      /* WAL connection */
1684   int (*xBusy)(void*),            /* Function to call when busy */
1685   void *pBusyArg,                 /* Context argument for xBusyHandler */
1686   int lockIdx,                    /* Offset of first byte to lock */
1687   int n                           /* Number of bytes to lock */
1688 ){
1689   int rc;
1690   do {
1691     rc = walLockExclusive(pWal, lockIdx, n);
1692   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1693   return rc;
1694 }
1695 
1696 /*
1697 ** The cache of the wal-index header must be valid to call this function.
1698 ** Return the page-size in bytes used by the database.
1699 */
1700 static int walPagesize(Wal *pWal){
1701   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1702 }
1703 
1704 /*
1705 ** The following is guaranteed when this function is called:
1706 **
1707 **   a) the WRITER lock is held,
1708 **   b) the entire log file has been checkpointed, and
1709 **   c) any existing readers are reading exclusively from the database
1710 **      file - there are no readers that may attempt to read a frame from
1711 **      the log file.
1712 **
1713 ** This function updates the shared-memory structures so that the next
1714 ** client to write to the database (which may be this one) does so by
1715 ** writing frames into the start of the log file.
1716 **
1717 ** The value of parameter salt1 is used as the aSalt[1] value in the
1718 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1719 ** one obtained from sqlite3_randomness()).
1720 */
1721 static void walRestartHdr(Wal *pWal, u32 salt1){
1722   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1723   int i;                          /* Loop counter */
1724   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1725   pWal->nCkpt++;
1726   pWal->hdr.mxFrame = 0;
1727   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1728   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1729   walIndexWriteHdr(pWal);
1730   pInfo->nBackfill = 0;
1731   pInfo->nBackfillAttempted = 0;
1732   pInfo->aReadMark[1] = 0;
1733   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1734   assert( pInfo->aReadMark[0]==0 );
1735 }
1736 
1737 /*
1738 ** Copy as much content as we can from the WAL back into the database file
1739 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1740 **
1741 ** The amount of information copies from WAL to database might be limited
1742 ** by active readers.  This routine will never overwrite a database page
1743 ** that a concurrent reader might be using.
1744 **
1745 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1746 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1747 ** checkpoints are always run by a background thread or background
1748 ** process, foreground threads will never block on a lengthy fsync call.
1749 **
1750 ** Fsync is called on the WAL before writing content out of the WAL and
1751 ** into the database.  This ensures that if the new content is persistent
1752 ** in the WAL and can be recovered following a power-loss or hard reset.
1753 **
1754 ** Fsync is also called on the database file if (and only if) the entire
1755 ** WAL content is copied into the database file.  This second fsync makes
1756 ** it safe to delete the WAL since the new content will persist in the
1757 ** database file.
1758 **
1759 ** This routine uses and updates the nBackfill field of the wal-index header.
1760 ** This is the only routine that will increase the value of nBackfill.
1761 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1762 ** its value.)
1763 **
1764 ** The caller must be holding sufficient locks to ensure that no other
1765 ** checkpoint is running (in any other thread or process) at the same
1766 ** time.
1767 */
1768 static int walCheckpoint(
1769   Wal *pWal,                      /* Wal connection */
1770   sqlite3 *db,                    /* Check for interrupts on this handle */
1771   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1772   int (*xBusy)(void*),            /* Function to call when busy */
1773   void *pBusyArg,                 /* Context argument for xBusyHandler */
1774   int sync_flags,                 /* Flags for OsSync() (or 0) */
1775   u8 *zBuf                        /* Temporary buffer to use */
1776 ){
1777   int rc = SQLITE_OK;             /* Return code */
1778   int szPage;                     /* Database page-size */
1779   WalIterator *pIter = 0;         /* Wal iterator context */
1780   u32 iDbpage = 0;                /* Next database page to write */
1781   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1782   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1783   u32 mxPage;                     /* Max database page to write */
1784   int i;                          /* Loop counter */
1785   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1786 
1787   szPage = walPagesize(pWal);
1788   testcase( szPage<=32768 );
1789   testcase( szPage>=65536 );
1790   pInfo = walCkptInfo(pWal);
1791   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1792 
1793     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1794     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1795     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1796 
1797     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1798     ** safe to write into the database.  Frames beyond mxSafeFrame might
1799     ** overwrite database pages that are in use by active readers and thus
1800     ** cannot be backfilled from the WAL.
1801     */
1802     mxSafeFrame = pWal->hdr.mxFrame;
1803     mxPage = pWal->hdr.nPage;
1804     for(i=1; i<WAL_NREADER; i++){
1805       /* Thread-sanitizer reports that the following is an unsafe read,
1806       ** as some other thread may be in the process of updating the value
1807       ** of the aReadMark[] slot. The assumption here is that if that is
1808       ** happening, the other client may only be increasing the value,
1809       ** not decreasing it. So assuming either that either the "old" or
1810       ** "new" version of the value is read, and not some arbitrary value
1811       ** that would never be written by a real client, things are still
1812       ** safe.  */
1813       u32 y = pInfo->aReadMark[i];
1814       if( mxSafeFrame>y ){
1815         assert( y<=pWal->hdr.mxFrame );
1816         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1817         if( rc==SQLITE_OK ){
1818           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1819           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1820         }else if( rc==SQLITE_BUSY ){
1821           mxSafeFrame = y;
1822           xBusy = 0;
1823         }else{
1824           goto walcheckpoint_out;
1825         }
1826       }
1827     }
1828 
1829     /* Allocate the iterator */
1830     if( pInfo->nBackfill<mxSafeFrame ){
1831       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1832       assert( rc==SQLITE_OK || pIter==0 );
1833     }
1834 
1835     if( pIter
1836      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1837     ){
1838       i64 nSize;                    /* Current size of database file */
1839       u32 nBackfill = pInfo->nBackfill;
1840 
1841       pInfo->nBackfillAttempted = mxSafeFrame;
1842 
1843       /* Sync the WAL to disk */
1844       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1845 
1846       /* If the database may grow as a result of this checkpoint, hint
1847       ** about the eventual size of the db file to the VFS layer.
1848       */
1849       if( rc==SQLITE_OK ){
1850         i64 nReq = ((i64)mxPage * szPage);
1851         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1852         if( rc==SQLITE_OK && nSize<nReq ){
1853           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1854         }
1855       }
1856 
1857 
1858       /* Iterate through the contents of the WAL, copying data to the db file */
1859       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1860         i64 iOffset;
1861         assert( walFramePgno(pWal, iFrame)==iDbpage );
1862         if( db->u1.isInterrupted ){
1863           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1864           break;
1865         }
1866         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1867           continue;
1868         }
1869         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1870         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1871         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1872         if( rc!=SQLITE_OK ) break;
1873         iOffset = (iDbpage-1)*(i64)szPage;
1874         testcase( IS_BIG_INT(iOffset) );
1875         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1876         if( rc!=SQLITE_OK ) break;
1877       }
1878 
1879       /* If work was actually accomplished... */
1880       if( rc==SQLITE_OK ){
1881         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1882           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1883           testcase( IS_BIG_INT(szDb) );
1884           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1885           if( rc==SQLITE_OK ){
1886             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1887           }
1888         }
1889         if( rc==SQLITE_OK ){
1890           pInfo->nBackfill = mxSafeFrame;
1891         }
1892       }
1893 
1894       /* Release the reader lock held while backfilling */
1895       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1896     }
1897 
1898     if( rc==SQLITE_BUSY ){
1899       /* Reset the return code so as not to report a checkpoint failure
1900       ** just because there are active readers.  */
1901       rc = SQLITE_OK;
1902     }
1903   }
1904 
1905   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1906   ** entire wal file has been copied into the database file, then block
1907   ** until all readers have finished using the wal file. This ensures that
1908   ** the next process to write to the database restarts the wal file.
1909   */
1910   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1911     assert( pWal->writeLock );
1912     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1913       rc = SQLITE_BUSY;
1914     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1915       u32 salt1;
1916       sqlite3_randomness(4, &salt1);
1917       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1918       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1919       if( rc==SQLITE_OK ){
1920         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1921           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1922           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1923           ** truncates the log file to zero bytes just prior to a
1924           ** successful return.
1925           **
1926           ** In theory, it might be safe to do this without updating the
1927           ** wal-index header in shared memory, as all subsequent reader or
1928           ** writer clients should see that the entire log file has been
1929           ** checkpointed and behave accordingly. This seems unsafe though,
1930           ** as it would leave the system in a state where the contents of
1931           ** the wal-index header do not match the contents of the
1932           ** file-system. To avoid this, update the wal-index header to
1933           ** indicate that the log file contains zero valid frames.  */
1934           walRestartHdr(pWal, salt1);
1935           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1936         }
1937         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1938       }
1939     }
1940   }
1941 
1942  walcheckpoint_out:
1943   walIteratorFree(pIter);
1944   return rc;
1945 }
1946 
1947 /*
1948 ** If the WAL file is currently larger than nMax bytes in size, truncate
1949 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1950 */
1951 static void walLimitSize(Wal *pWal, i64 nMax){
1952   i64 sz;
1953   int rx;
1954   sqlite3BeginBenignMalloc();
1955   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1956   if( rx==SQLITE_OK && (sz > nMax ) ){
1957     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1958   }
1959   sqlite3EndBenignMalloc();
1960   if( rx ){
1961     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1962   }
1963 }
1964 
1965 /*
1966 ** Close a connection to a log file.
1967 */
1968 int sqlite3WalClose(
1969   Wal *pWal,                      /* Wal to close */
1970   sqlite3 *db,                    /* For interrupt flag */
1971   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1972   int nBuf,
1973   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1974 ){
1975   int rc = SQLITE_OK;
1976   if( pWal ){
1977     int isDelete = 0;             /* True to unlink wal and wal-index files */
1978 
1979     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1980     ** ordinary, rollback-mode locking methods, this guarantees that the
1981     ** connection associated with this log file is the only connection to
1982     ** the database. In this case checkpoint the database and unlink both
1983     ** the wal and wal-index files.
1984     **
1985     ** The EXCLUSIVE lock is not released before returning.
1986     */
1987     if( zBuf!=0
1988      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1989     ){
1990       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1991         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1992       }
1993       rc = sqlite3WalCheckpoint(pWal, db,
1994           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1995       );
1996       if( rc==SQLITE_OK ){
1997         int bPersist = -1;
1998         sqlite3OsFileControlHint(
1999             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2000         );
2001         if( bPersist!=1 ){
2002           /* Try to delete the WAL file if the checkpoint completed and
2003           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2004           ** mode (!bPersist) */
2005           isDelete = 1;
2006         }else if( pWal->mxWalSize>=0 ){
2007           /* Try to truncate the WAL file to zero bytes if the checkpoint
2008           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2009           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2010           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2011           ** to zero bytes as truncating to the journal_size_limit might
2012           ** leave a corrupt WAL file on disk. */
2013           walLimitSize(pWal, 0);
2014         }
2015       }
2016     }
2017 
2018     walIndexClose(pWal, isDelete);
2019     sqlite3OsClose(pWal->pWalFd);
2020     if( isDelete ){
2021       sqlite3BeginBenignMalloc();
2022       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2023       sqlite3EndBenignMalloc();
2024     }
2025     WALTRACE(("WAL%p: closed\n", pWal));
2026     sqlite3_free((void *)pWal->apWiData);
2027     sqlite3_free(pWal);
2028   }
2029   return rc;
2030 }
2031 
2032 /*
2033 ** Try to read the wal-index header.  Return 0 on success and 1 if
2034 ** there is a problem.
2035 **
2036 ** The wal-index is in shared memory.  Another thread or process might
2037 ** be writing the header at the same time this procedure is trying to
2038 ** read it, which might result in inconsistency.  A dirty read is detected
2039 ** by verifying that both copies of the header are the same and also by
2040 ** a checksum on the header.
2041 **
2042 ** If and only if the read is consistent and the header is different from
2043 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2044 ** and *pChanged is set to 1.
2045 **
2046 ** If the checksum cannot be verified return non-zero. If the header
2047 ** is read successfully and the checksum verified, return zero.
2048 */
2049 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2050   u32 aCksum[2];                  /* Checksum on the header content */
2051   WalIndexHdr h1, h2;             /* Two copies of the header content */
2052   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2053 
2054   /* The first page of the wal-index must be mapped at this point. */
2055   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2056 
2057   /* Read the header. This might happen concurrently with a write to the
2058   ** same area of shared memory on a different CPU in a SMP,
2059   ** meaning it is possible that an inconsistent snapshot is read
2060   ** from the file. If this happens, return non-zero.
2061   **
2062   ** There are two copies of the header at the beginning of the wal-index.
2063   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2064   ** Memory barriers are used to prevent the compiler or the hardware from
2065   ** reordering the reads and writes.
2066   */
2067   aHdr = walIndexHdr(pWal);
2068   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2069   walShmBarrier(pWal);
2070   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2071 
2072   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2073     return 1;   /* Dirty read */
2074   }
2075   if( h1.isInit==0 ){
2076     return 1;   /* Malformed header - probably all zeros */
2077   }
2078   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2079   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2080     return 1;   /* Checksum does not match */
2081   }
2082 
2083   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2084     *pChanged = 1;
2085     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2086     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2087     testcase( pWal->szPage<=32768 );
2088     testcase( pWal->szPage>=65536 );
2089   }
2090 
2091   /* The header was successfully read. Return zero. */
2092   return 0;
2093 }
2094 
2095 /*
2096 ** This is the value that walTryBeginRead returns when it needs to
2097 ** be retried.
2098 */
2099 #define WAL_RETRY  (-1)
2100 
2101 /*
2102 ** Read the wal-index header from the wal-index and into pWal->hdr.
2103 ** If the wal-header appears to be corrupt, try to reconstruct the
2104 ** wal-index from the WAL before returning.
2105 **
2106 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2107 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2108 ** to 0.
2109 **
2110 ** If the wal-index header is successfully read, return SQLITE_OK.
2111 ** Otherwise an SQLite error code.
2112 */
2113 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2114   int rc;                         /* Return code */
2115   int badHdr;                     /* True if a header read failed */
2116   volatile u32 *page0;            /* Chunk of wal-index containing header */
2117 
2118   /* Ensure that page 0 of the wal-index (the page that contains the
2119   ** wal-index header) is mapped. Return early if an error occurs here.
2120   */
2121   assert( pChanged );
2122   rc = walIndexPage(pWal, 0, &page0);
2123   if( rc!=SQLITE_OK ){
2124     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2125     if( rc==SQLITE_READONLY_CANTINIT ){
2126       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2127       ** was openable but is not writable, and this thread is unable to
2128       ** confirm that another write-capable connection has the shared-memory
2129       ** open, and hence the content of the shared-memory is unreliable,
2130       ** since the shared-memory might be inconsistent with the WAL file
2131       ** and there is no writer on hand to fix it. */
2132       assert( page0==0 );
2133       assert( pWal->writeLock==0 );
2134       assert( pWal->readOnly & WAL_SHM_RDONLY );
2135       pWal->bShmUnreliable = 1;
2136       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2137       *pChanged = 1;
2138     }else{
2139       return rc; /* Any other non-OK return is just an error */
2140     }
2141   }else{
2142     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2143     ** is zero, which prevents the SHM from growing */
2144     testcase( page0!=0 );
2145   }
2146   assert( page0!=0 || pWal->writeLock==0 );
2147 
2148   /* If the first page of the wal-index has been mapped, try to read the
2149   ** wal-index header immediately, without holding any lock. This usually
2150   ** works, but may fail if the wal-index header is corrupt or currently
2151   ** being modified by another thread or process.
2152   */
2153   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2154 
2155   /* If the first attempt failed, it might have been due to a race
2156   ** with a writer.  So get a WRITE lock and try again.
2157   */
2158   assert( badHdr==0 || pWal->writeLock==0 );
2159   if( badHdr ){
2160     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2161       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2162         walUnlockShared(pWal, WAL_WRITE_LOCK);
2163         rc = SQLITE_READONLY_RECOVERY;
2164       }
2165     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2166       pWal->writeLock = 1;
2167       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2168         badHdr = walIndexTryHdr(pWal, pChanged);
2169         if( badHdr ){
2170           /* If the wal-index header is still malformed even while holding
2171           ** a WRITE lock, it can only mean that the header is corrupted and
2172           ** needs to be reconstructed.  So run recovery to do exactly that.
2173           */
2174           rc = walIndexRecover(pWal);
2175           *pChanged = 1;
2176         }
2177       }
2178       pWal->writeLock = 0;
2179       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2180     }
2181   }
2182 
2183   /* If the header is read successfully, check the version number to make
2184   ** sure the wal-index was not constructed with some future format that
2185   ** this version of SQLite cannot understand.
2186   */
2187   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2188     rc = SQLITE_CANTOPEN_BKPT;
2189   }
2190   if( pWal->bShmUnreliable ){
2191     if( rc!=SQLITE_OK ){
2192       walIndexClose(pWal, 0);
2193       pWal->bShmUnreliable = 0;
2194       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2195       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2196       ** writer truncated the WAL out from under it.  If that happens, it
2197       ** indicates that a writer has fixed the SHM file for us, so retry */
2198       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2199     }
2200     pWal->exclusiveMode = WAL_NORMAL_MODE;
2201   }
2202 
2203   return rc;
2204 }
2205 
2206 /*
2207 ** Open a transaction in a connection where the shared-memory is read-only
2208 ** and where we cannot verify that there is a separate write-capable connection
2209 ** on hand to keep the shared-memory up-to-date with the WAL file.
2210 **
2211 ** This can happen, for example, when the shared-memory is implemented by
2212 ** memory-mapping a *-shm file, where a prior writer has shut down and
2213 ** left the *-shm file on disk, and now the present connection is trying
2214 ** to use that database but lacks write permission on the *-shm file.
2215 ** Other scenarios are also possible, depending on the VFS implementation.
2216 **
2217 ** Precondition:
2218 **
2219 **    The *-wal file has been read and an appropriate wal-index has been
2220 **    constructed in pWal->apWiData[] using heap memory instead of shared
2221 **    memory.
2222 **
2223 ** If this function returns SQLITE_OK, then the read transaction has
2224 ** been successfully opened. In this case output variable (*pChanged)
2225 ** is set to true before returning if the caller should discard the
2226 ** contents of the page cache before proceeding. Or, if it returns
2227 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2228 ** the caller should retry opening the read transaction from the
2229 ** beginning (including attempting to map the *-shm file).
2230 **
2231 ** If an error occurs, an SQLite error code is returned.
2232 */
2233 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2234   i64 szWal;                      /* Size of wal file on disk in bytes */
2235   i64 iOffset;                    /* Current offset when reading wal file */
2236   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2237   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2238   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2239   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2240   volatile void *pDummy;          /* Dummy argument for xShmMap */
2241   int rc;                         /* Return code */
2242   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2243 
2244   assert( pWal->bShmUnreliable );
2245   assert( pWal->readOnly & WAL_SHM_RDONLY );
2246   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2247 
2248   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2249   ** writers from running a checkpoint, but does not stop them
2250   ** from running recovery.  */
2251   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2252   if( rc!=SQLITE_OK ){
2253     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2254     goto begin_unreliable_shm_out;
2255   }
2256   pWal->readLock = 0;
2257 
2258   /* Check to see if a separate writer has attached to the shared-memory area,
2259   ** thus making the shared-memory "reliable" again.  Do this by invoking
2260   ** the xShmMap() routine of the VFS and looking to see if the return
2261   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2262   **
2263   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2264   ** cause the heap-memory WAL-index to be discarded and the actual
2265   ** shared memory to be used in its place.
2266   **
2267   ** This step is important because, even though this connection is holding
2268   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2269   ** have already checkpointed the WAL file and, while the current
2270   ** is active, wrap the WAL and start overwriting frames that this
2271   ** process wants to use.
2272   **
2273   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2274   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2275   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2276   ** even if some external agent does a "chmod" to make the shared-memory
2277   ** writable by us, until sqlite3OsShmUnmap() has been called.
2278   ** This is a requirement on the VFS implementation.
2279    */
2280   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2281   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2282   if( rc!=SQLITE_READONLY_CANTINIT ){
2283     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2284     goto begin_unreliable_shm_out;
2285   }
2286 
2287   /* We reach this point only if the real shared-memory is still unreliable.
2288   ** Assume the in-memory WAL-index substitute is correct and load it
2289   ** into pWal->hdr.
2290   */
2291   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2292 
2293   /* Make sure some writer hasn't come in and changed the WAL file out
2294   ** from under us, then disconnected, while we were not looking.
2295   */
2296   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2297   if( rc!=SQLITE_OK ){
2298     goto begin_unreliable_shm_out;
2299   }
2300   if( szWal<WAL_HDRSIZE ){
2301     /* If the wal file is too small to contain a wal-header and the
2302     ** wal-index header has mxFrame==0, then it must be safe to proceed
2303     ** reading the database file only. However, the page cache cannot
2304     ** be trusted, as a read/write connection may have connected, written
2305     ** the db, run a checkpoint, truncated the wal file and disconnected
2306     ** since this client's last read transaction.  */
2307     *pChanged = 1;
2308     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2309     goto begin_unreliable_shm_out;
2310   }
2311 
2312   /* Check the salt keys at the start of the wal file still match. */
2313   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2314   if( rc!=SQLITE_OK ){
2315     goto begin_unreliable_shm_out;
2316   }
2317   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2318     /* Some writer has wrapped the WAL file while we were not looking.
2319     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2320     ** rebuilt. */
2321     rc = WAL_RETRY;
2322     goto begin_unreliable_shm_out;
2323   }
2324 
2325   /* Allocate a buffer to read frames into */
2326   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2327   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2328   if( aFrame==0 ){
2329     rc = SQLITE_NOMEM_BKPT;
2330     goto begin_unreliable_shm_out;
2331   }
2332   aData = &aFrame[WAL_FRAME_HDRSIZE];
2333 
2334   /* Check to see if a complete transaction has been appended to the
2335   ** wal file since the heap-memory wal-index was created. If so, the
2336   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2337   ** the caller.  */
2338   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2339   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2340   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2341       iOffset+szFrame<=szWal;
2342       iOffset+=szFrame
2343   ){
2344     u32 pgno;                   /* Database page number for frame */
2345     u32 nTruncate;              /* dbsize field from frame header */
2346 
2347     /* Read and decode the next log frame. */
2348     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2349     if( rc!=SQLITE_OK ) break;
2350     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2351 
2352     /* If nTruncate is non-zero, then a complete transaction has been
2353     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2354     ** the loop.  */
2355     if( nTruncate ){
2356       rc = WAL_RETRY;
2357       break;
2358     }
2359   }
2360   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2361   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2362 
2363  begin_unreliable_shm_out:
2364   sqlite3_free(aFrame);
2365   if( rc!=SQLITE_OK ){
2366     int i;
2367     for(i=0; i<pWal->nWiData; i++){
2368       sqlite3_free((void*)pWal->apWiData[i]);
2369       pWal->apWiData[i] = 0;
2370     }
2371     pWal->bShmUnreliable = 0;
2372     sqlite3WalEndReadTransaction(pWal);
2373     *pChanged = 1;
2374   }
2375   return rc;
2376 }
2377 
2378 /*
2379 ** Attempt to start a read transaction.  This might fail due to a race or
2380 ** other transient condition.  When that happens, it returns WAL_RETRY to
2381 ** indicate to the caller that it is safe to retry immediately.
2382 **
2383 ** On success return SQLITE_OK.  On a permanent failure (such an
2384 ** I/O error or an SQLITE_BUSY because another process is running
2385 ** recovery) return a positive error code.
2386 **
2387 ** The useWal parameter is true to force the use of the WAL and disable
2388 ** the case where the WAL is bypassed because it has been completely
2389 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2390 ** to make a copy of the wal-index header into pWal->hdr.  If the
2391 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2392 ** to the caller that the local page cache is obsolete and needs to be
2393 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2394 ** be loaded and the pChanged parameter is unused.
2395 **
2396 ** The caller must set the cnt parameter to the number of prior calls to
2397 ** this routine during the current read attempt that returned WAL_RETRY.
2398 ** This routine will start taking more aggressive measures to clear the
2399 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2400 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2401 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2402 ** and is not honoring the locking protocol.  There is a vanishingly small
2403 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2404 ** bad luck when there is lots of contention for the wal-index, but that
2405 ** possibility is so small that it can be safely neglected, we believe.
2406 **
2407 ** On success, this routine obtains a read lock on
2408 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2409 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2410 ** that means the Wal does not hold any read lock.  The reader must not
2411 ** access any database page that is modified by a WAL frame up to and
2412 ** including frame number aReadMark[pWal->readLock].  The reader will
2413 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2414 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2415 ** completely and get all content directly from the database file.
2416 ** If the useWal parameter is 1 then the WAL will never be ignored and
2417 ** this routine will always set pWal->readLock>0 on success.
2418 ** When the read transaction is completed, the caller must release the
2419 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2420 **
2421 ** This routine uses the nBackfill and aReadMark[] fields of the header
2422 ** to select a particular WAL_READ_LOCK() that strives to let the
2423 ** checkpoint process do as much work as possible.  This routine might
2424 ** update values of the aReadMark[] array in the header, but if it does
2425 ** so it takes care to hold an exclusive lock on the corresponding
2426 ** WAL_READ_LOCK() while changing values.
2427 */
2428 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2429   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2430   u32 mxReadMark;                 /* Largest aReadMark[] value */
2431   int mxI;                        /* Index of largest aReadMark[] value */
2432   int i;                          /* Loop counter */
2433   int rc = SQLITE_OK;             /* Return code  */
2434   u32 mxFrame;                    /* Wal frame to lock to */
2435 
2436   assert( pWal->readLock<0 );     /* Not currently locked */
2437 
2438   /* useWal may only be set for read/write connections */
2439   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2440 
2441   /* Take steps to avoid spinning forever if there is a protocol error.
2442   **
2443   ** Circumstances that cause a RETRY should only last for the briefest
2444   ** instances of time.  No I/O or other system calls are done while the
2445   ** locks are held, so the locks should not be held for very long. But
2446   ** if we are unlucky, another process that is holding a lock might get
2447   ** paged out or take a page-fault that is time-consuming to resolve,
2448   ** during the few nanoseconds that it is holding the lock.  In that case,
2449   ** it might take longer than normal for the lock to free.
2450   **
2451   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2452   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2453   ** is more of a scheduler yield than an actual delay.  But on the 10th
2454   ** an subsequent retries, the delays start becoming longer and longer,
2455   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2456   ** The total delay time before giving up is less than 10 seconds.
2457   */
2458   if( cnt>5 ){
2459     int nDelay = 1;                      /* Pause time in microseconds */
2460     if( cnt>100 ){
2461       VVA_ONLY( pWal->lockError = 1; )
2462       return SQLITE_PROTOCOL;
2463     }
2464     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2465     sqlite3OsSleep(pWal->pVfs, nDelay);
2466   }
2467 
2468   if( !useWal ){
2469     assert( rc==SQLITE_OK );
2470     if( pWal->bShmUnreliable==0 ){
2471       rc = walIndexReadHdr(pWal, pChanged);
2472     }
2473     if( rc==SQLITE_BUSY ){
2474       /* If there is not a recovery running in another thread or process
2475       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2476       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2477       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2478       ** would be technically correct.  But the race is benign since with
2479       ** WAL_RETRY this routine will be called again and will probably be
2480       ** right on the second iteration.
2481       */
2482       if( pWal->apWiData[0]==0 ){
2483         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2484         ** We assume this is a transient condition, so return WAL_RETRY. The
2485         ** xShmMap() implementation used by the default unix and win32 VFS
2486         ** modules may return SQLITE_BUSY due to a race condition in the
2487         ** code that determines whether or not the shared-memory region
2488         ** must be zeroed before the requested page is returned.
2489         */
2490         rc = WAL_RETRY;
2491       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2492         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2493         rc = WAL_RETRY;
2494       }else if( rc==SQLITE_BUSY ){
2495         rc = SQLITE_BUSY_RECOVERY;
2496       }
2497     }
2498     if( rc!=SQLITE_OK ){
2499       return rc;
2500     }
2501     else if( pWal->bShmUnreliable ){
2502       return walBeginShmUnreliable(pWal, pChanged);
2503     }
2504   }
2505 
2506   assert( pWal->nWiData>0 );
2507   assert( pWal->apWiData[0]!=0 );
2508   pInfo = walCkptInfo(pWal);
2509   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2510 #ifdef SQLITE_ENABLE_SNAPSHOT
2511    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2512 #endif
2513   ){
2514     /* The WAL has been completely backfilled (or it is empty).
2515     ** and can be safely ignored.
2516     */
2517     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2518     walShmBarrier(pWal);
2519     if( rc==SQLITE_OK ){
2520       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2521         /* It is not safe to allow the reader to continue here if frames
2522         ** may have been appended to the log before READ_LOCK(0) was obtained.
2523         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2524         ** which implies that the database file contains a trustworthy
2525         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2526         ** happening, this is usually correct.
2527         **
2528         ** However, if frames have been appended to the log (or if the log
2529         ** is wrapped and written for that matter) before the READ_LOCK(0)
2530         ** is obtained, that is not necessarily true. A checkpointer may
2531         ** have started to backfill the appended frames but crashed before
2532         ** it finished. Leaving a corrupt image in the database file.
2533         */
2534         walUnlockShared(pWal, WAL_READ_LOCK(0));
2535         return WAL_RETRY;
2536       }
2537       pWal->readLock = 0;
2538       return SQLITE_OK;
2539     }else if( rc!=SQLITE_BUSY ){
2540       return rc;
2541     }
2542   }
2543 
2544   /* If we get this far, it means that the reader will want to use
2545   ** the WAL to get at content from recent commits.  The job now is
2546   ** to select one of the aReadMark[] entries that is closest to
2547   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2548   */
2549   mxReadMark = 0;
2550   mxI = 0;
2551   mxFrame = pWal->hdr.mxFrame;
2552 #ifdef SQLITE_ENABLE_SNAPSHOT
2553   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2554     mxFrame = pWal->pSnapshot->mxFrame;
2555   }
2556 #endif
2557   for(i=1; i<WAL_NREADER; i++){
2558     u32 thisMark = pInfo->aReadMark[i];
2559     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2560       assert( thisMark!=READMARK_NOT_USED );
2561       mxReadMark = thisMark;
2562       mxI = i;
2563     }
2564   }
2565   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2566    && (mxReadMark<mxFrame || mxI==0)
2567   ){
2568     for(i=1; i<WAL_NREADER; i++){
2569       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2570       if( rc==SQLITE_OK ){
2571         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2572         mxI = i;
2573         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2574         break;
2575       }else if( rc!=SQLITE_BUSY ){
2576         return rc;
2577       }
2578     }
2579   }
2580   if( mxI==0 ){
2581     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2582     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2583   }
2584 
2585   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2586   if( rc ){
2587     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2588   }
2589   /* Now that the read-lock has been obtained, check that neither the
2590   ** value in the aReadMark[] array or the contents of the wal-index
2591   ** header have changed.
2592   **
2593   ** It is necessary to check that the wal-index header did not change
2594   ** between the time it was read and when the shared-lock was obtained
2595   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2596   ** that the log file may have been wrapped by a writer, or that frames
2597   ** that occur later in the log than pWal->hdr.mxFrame may have been
2598   ** copied into the database by a checkpointer. If either of these things
2599   ** happened, then reading the database with the current value of
2600   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2601   ** instead.
2602   **
2603   ** Before checking that the live wal-index header has not changed
2604   ** since it was read, set Wal.minFrame to the first frame in the wal
2605   ** file that has not yet been checkpointed. This client will not need
2606   ** to read any frames earlier than minFrame from the wal file - they
2607   ** can be safely read directly from the database file.
2608   **
2609   ** Because a ShmBarrier() call is made between taking the copy of
2610   ** nBackfill and checking that the wal-header in shared-memory still
2611   ** matches the one cached in pWal->hdr, it is guaranteed that the
2612   ** checkpointer that set nBackfill was not working with a wal-index
2613   ** header newer than that cached in pWal->hdr. If it were, that could
2614   ** cause a problem. The checkpointer could omit to checkpoint
2615   ** a version of page X that lies before pWal->minFrame (call that version
2616   ** A) on the basis that there is a newer version (version B) of the same
2617   ** page later in the wal file. But if version B happens to like past
2618   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2619   ** that it can read version A from the database file. However, since
2620   ** we can guarantee that the checkpointer that set nBackfill could not
2621   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2622   */
2623   pWal->minFrame = pInfo->nBackfill+1;
2624   walShmBarrier(pWal);
2625   if( pInfo->aReadMark[mxI]!=mxReadMark
2626    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2627   ){
2628     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2629     return WAL_RETRY;
2630   }else{
2631     assert( mxReadMark<=pWal->hdr.mxFrame );
2632     pWal->readLock = (i16)mxI;
2633   }
2634   return rc;
2635 }
2636 
2637 #ifdef SQLITE_ENABLE_SNAPSHOT
2638 /*
2639 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2640 ** variable so that older snapshots can be accessed. To do this, loop
2641 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2642 ** comparing their content to the corresponding page with the database
2643 ** file, if any. Set nBackfillAttempted to the frame number of the
2644 ** first frame for which the wal file content matches the db file.
2645 **
2646 ** This is only really safe if the file-system is such that any page
2647 ** writes made by earlier checkpointers were atomic operations, which
2648 ** is not always true. It is also possible that nBackfillAttempted
2649 ** may be left set to a value larger than expected, if a wal frame
2650 ** contains content that duplicate of an earlier version of the same
2651 ** page.
2652 **
2653 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2654 ** error occurs. It is not an error if nBackfillAttempted cannot be
2655 ** decreased at all.
2656 */
2657 int sqlite3WalSnapshotRecover(Wal *pWal){
2658   int rc;
2659 
2660   assert( pWal->readLock>=0 );
2661   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2662   if( rc==SQLITE_OK ){
2663     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2664     int szPage = (int)pWal->szPage;
2665     i64 szDb;                   /* Size of db file in bytes */
2666 
2667     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2668     if( rc==SQLITE_OK ){
2669       void *pBuf1 = sqlite3_malloc(szPage);
2670       void *pBuf2 = sqlite3_malloc(szPage);
2671       if( pBuf1==0 || pBuf2==0 ){
2672         rc = SQLITE_NOMEM;
2673       }else{
2674         u32 i = pInfo->nBackfillAttempted;
2675         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2676           WalHashLoc sLoc;          /* Hash table location */
2677           u32 pgno;                 /* Page number in db file */
2678           i64 iDbOff;               /* Offset of db file entry */
2679           i64 iWalOff;              /* Offset of wal file entry */
2680 
2681           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2682           if( rc!=SQLITE_OK ) break;
2683           pgno = sLoc.aPgno[i-sLoc.iZero];
2684           iDbOff = (i64)(pgno-1) * szPage;
2685 
2686           if( iDbOff+szPage<=szDb ){
2687             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2688             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2689 
2690             if( rc==SQLITE_OK ){
2691               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2692             }
2693 
2694             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2695               break;
2696             }
2697           }
2698 
2699           pInfo->nBackfillAttempted = i-1;
2700         }
2701       }
2702 
2703       sqlite3_free(pBuf1);
2704       sqlite3_free(pBuf2);
2705     }
2706     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2707   }
2708 
2709   return rc;
2710 }
2711 #endif /* SQLITE_ENABLE_SNAPSHOT */
2712 
2713 /*
2714 ** Begin a read transaction on the database.
2715 **
2716 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2717 ** it takes a snapshot of the state of the WAL and wal-index for the current
2718 ** instant in time.  The current thread will continue to use this snapshot.
2719 ** Other threads might append new content to the WAL and wal-index but
2720 ** that extra content is ignored by the current thread.
2721 **
2722 ** If the database contents have changes since the previous read
2723 ** transaction, then *pChanged is set to 1 before returning.  The
2724 ** Pager layer will use this to know that is cache is stale and
2725 ** needs to be flushed.
2726 */
2727 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2728   int rc;                         /* Return code */
2729   int cnt = 0;                    /* Number of TryBeginRead attempts */
2730 
2731 #ifdef SQLITE_ENABLE_SNAPSHOT
2732   int bChanged = 0;
2733   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2734   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2735     bChanged = 1;
2736   }
2737 #endif
2738 
2739   do{
2740     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2741   }while( rc==WAL_RETRY );
2742   testcase( (rc&0xff)==SQLITE_BUSY );
2743   testcase( (rc&0xff)==SQLITE_IOERR );
2744   testcase( rc==SQLITE_PROTOCOL );
2745   testcase( rc==SQLITE_OK );
2746 
2747 #ifdef SQLITE_ENABLE_SNAPSHOT
2748   if( rc==SQLITE_OK ){
2749     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2750       /* At this point the client has a lock on an aReadMark[] slot holding
2751       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2752       ** is populated with the wal-index header corresponding to the head
2753       ** of the wal file. Verify that pSnapshot is still valid before
2754       ** continuing.  Reasons why pSnapshot might no longer be valid:
2755       **
2756       **    (1)  The WAL file has been reset since the snapshot was taken.
2757       **         In this case, the salt will have changed.
2758       **
2759       **    (2)  A checkpoint as been attempted that wrote frames past
2760       **         pSnapshot->mxFrame into the database file.  Note that the
2761       **         checkpoint need not have completed for this to cause problems.
2762       */
2763       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2764 
2765       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2766       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2767 
2768       /* It is possible that there is a checkpointer thread running
2769       ** concurrent with this code. If this is the case, it may be that the
2770       ** checkpointer has already determined that it will checkpoint
2771       ** snapshot X, where X is later in the wal file than pSnapshot, but
2772       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2773       ** its intent. To avoid the race condition this leads to, ensure that
2774       ** there is no checkpointer process by taking a shared CKPT lock
2775       ** before checking pInfo->nBackfillAttempted.
2776       **
2777       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2778       **       this already?
2779       */
2780       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2781 
2782       if( rc==SQLITE_OK ){
2783         /* Check that the wal file has not been wrapped. Assuming that it has
2784         ** not, also check that no checkpointer has attempted to checkpoint any
2785         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2786         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2787         ** with *pSnapshot and set *pChanged as appropriate for opening the
2788         ** snapshot.  */
2789         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2790          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2791         ){
2792           assert( pWal->readLock>0 );
2793           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2794           *pChanged = bChanged;
2795         }else{
2796           rc = SQLITE_BUSY_SNAPSHOT;
2797         }
2798 
2799         /* Release the shared CKPT lock obtained above. */
2800         walUnlockShared(pWal, WAL_CKPT_LOCK);
2801       }
2802 
2803 
2804       if( rc!=SQLITE_OK ){
2805         sqlite3WalEndReadTransaction(pWal);
2806       }
2807     }
2808   }
2809 #endif
2810   return rc;
2811 }
2812 
2813 /*
2814 ** Finish with a read transaction.  All this does is release the
2815 ** read-lock.
2816 */
2817 void sqlite3WalEndReadTransaction(Wal *pWal){
2818   sqlite3WalEndWriteTransaction(pWal);
2819   if( pWal->readLock>=0 ){
2820     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2821     pWal->readLock = -1;
2822   }
2823 }
2824 
2825 /*
2826 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2827 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2828 ** to zero.
2829 **
2830 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2831 ** error does occur, the final value of *piRead is undefined.
2832 */
2833 int sqlite3WalFindFrame(
2834   Wal *pWal,                      /* WAL handle */
2835   Pgno pgno,                      /* Database page number to read data for */
2836   u32 *piRead                     /* OUT: Frame number (or zero) */
2837 ){
2838   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2839   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2840   int iHash;                      /* Used to loop through N hash tables */
2841   int iMinHash;
2842 
2843   /* This routine is only be called from within a read transaction. */
2844   assert( pWal->readLock>=0 || pWal->lockError );
2845 
2846   /* If the "last page" field of the wal-index header snapshot is 0, then
2847   ** no data will be read from the wal under any circumstances. Return early
2848   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2849   ** then the WAL is ignored by the reader so return early, as if the
2850   ** WAL were empty.
2851   */
2852   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2853     *piRead = 0;
2854     return SQLITE_OK;
2855   }
2856 
2857   /* Search the hash table or tables for an entry matching page number
2858   ** pgno. Each iteration of the following for() loop searches one
2859   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2860   **
2861   ** This code might run concurrently to the code in walIndexAppend()
2862   ** that adds entries to the wal-index (and possibly to this hash
2863   ** table). This means the value just read from the hash
2864   ** slot (aHash[iKey]) may have been added before or after the
2865   ** current read transaction was opened. Values added after the
2866   ** read transaction was opened may have been written incorrectly -
2867   ** i.e. these slots may contain garbage data. However, we assume
2868   ** that any slots written before the current read transaction was
2869   ** opened remain unmodified.
2870   **
2871   ** For the reasons above, the if(...) condition featured in the inner
2872   ** loop of the following block is more stringent that would be required
2873   ** if we had exclusive access to the hash-table:
2874   **
2875   **   (aPgno[iFrame]==pgno):
2876   **     This condition filters out normal hash-table collisions.
2877   **
2878   **   (iFrame<=iLast):
2879   **     This condition filters out entries that were added to the hash
2880   **     table after the current read-transaction had started.
2881   */
2882   iMinHash = walFramePage(pWal->minFrame);
2883   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2884     WalHashLoc sLoc;              /* Hash table location */
2885     int iKey;                     /* Hash slot index */
2886     int nCollide;                 /* Number of hash collisions remaining */
2887     int rc;                       /* Error code */
2888 
2889     rc = walHashGet(pWal, iHash, &sLoc);
2890     if( rc!=SQLITE_OK ){
2891       return rc;
2892     }
2893     nCollide = HASHTABLE_NSLOT;
2894     for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
2895       u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero;
2896       if( iFrame<=iLast && iFrame>=pWal->minFrame
2897        && sLoc.aPgno[sLoc.aHash[iKey]]==pgno ){
2898         assert( iFrame>iRead || CORRUPT_DB );
2899         iRead = iFrame;
2900       }
2901       if( (nCollide--)==0 ){
2902         return SQLITE_CORRUPT_BKPT;
2903       }
2904     }
2905     if( iRead ) break;
2906   }
2907 
2908 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2909   /* If expensive assert() statements are available, do a linear search
2910   ** of the wal-index file content. Make sure the results agree with the
2911   ** result obtained using the hash indexes above.  */
2912   {
2913     u32 iRead2 = 0;
2914     u32 iTest;
2915     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2916     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2917       if( walFramePgno(pWal, iTest)==pgno ){
2918         iRead2 = iTest;
2919         break;
2920       }
2921     }
2922     assert( iRead==iRead2 );
2923   }
2924 #endif
2925 
2926   *piRead = iRead;
2927   return SQLITE_OK;
2928 }
2929 
2930 /*
2931 ** Read the contents of frame iRead from the wal file into buffer pOut
2932 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2933 ** error code otherwise.
2934 */
2935 int sqlite3WalReadFrame(
2936   Wal *pWal,                      /* WAL handle */
2937   u32 iRead,                      /* Frame to read */
2938   int nOut,                       /* Size of buffer pOut in bytes */
2939   u8 *pOut                        /* Buffer to write page data to */
2940 ){
2941   int sz;
2942   i64 iOffset;
2943   sz = pWal->hdr.szPage;
2944   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2945   testcase( sz<=32768 );
2946   testcase( sz>=65536 );
2947   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2948   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2949   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2950 }
2951 
2952 /*
2953 ** Return the size of the database in pages (or zero, if unknown).
2954 */
2955 Pgno sqlite3WalDbsize(Wal *pWal){
2956   if( pWal && ALWAYS(pWal->readLock>=0) ){
2957     return pWal->hdr.nPage;
2958   }
2959   return 0;
2960 }
2961 
2962 
2963 /*
2964 ** This function starts a write transaction on the WAL.
2965 **
2966 ** A read transaction must have already been started by a prior call
2967 ** to sqlite3WalBeginReadTransaction().
2968 **
2969 ** If another thread or process has written into the database since
2970 ** the read transaction was started, then it is not possible for this
2971 ** thread to write as doing so would cause a fork.  So this routine
2972 ** returns SQLITE_BUSY in that case and no write transaction is started.
2973 **
2974 ** There can only be a single writer active at a time.
2975 */
2976 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2977   int rc;
2978 
2979   /* Cannot start a write transaction without first holding a read
2980   ** transaction. */
2981   assert( pWal->readLock>=0 );
2982   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2983 
2984   if( pWal->readOnly ){
2985     return SQLITE_READONLY;
2986   }
2987 
2988   /* Only one writer allowed at a time.  Get the write lock.  Return
2989   ** SQLITE_BUSY if unable.
2990   */
2991   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2992   if( rc ){
2993     return rc;
2994   }
2995   pWal->writeLock = 1;
2996 
2997   /* If another connection has written to the database file since the
2998   ** time the read transaction on this connection was started, then
2999   ** the write is disallowed.
3000   */
3001   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3002     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3003     pWal->writeLock = 0;
3004     rc = SQLITE_BUSY_SNAPSHOT;
3005   }
3006 
3007   return rc;
3008 }
3009 
3010 /*
3011 ** End a write transaction.  The commit has already been done.  This
3012 ** routine merely releases the lock.
3013 */
3014 int sqlite3WalEndWriteTransaction(Wal *pWal){
3015   if( pWal->writeLock ){
3016     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3017     pWal->writeLock = 0;
3018     pWal->iReCksum = 0;
3019     pWal->truncateOnCommit = 0;
3020   }
3021   return SQLITE_OK;
3022 }
3023 
3024 /*
3025 ** If any data has been written (but not committed) to the log file, this
3026 ** function moves the write-pointer back to the start of the transaction.
3027 **
3028 ** Additionally, the callback function is invoked for each frame written
3029 ** to the WAL since the start of the transaction. If the callback returns
3030 ** other than SQLITE_OK, it is not invoked again and the error code is
3031 ** returned to the caller.
3032 **
3033 ** Otherwise, if the callback function does not return an error, this
3034 ** function returns SQLITE_OK.
3035 */
3036 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3037   int rc = SQLITE_OK;
3038   if( ALWAYS(pWal->writeLock) ){
3039     Pgno iMax = pWal->hdr.mxFrame;
3040     Pgno iFrame;
3041 
3042     /* Restore the clients cache of the wal-index header to the state it
3043     ** was in before the client began writing to the database.
3044     */
3045     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3046 
3047     for(iFrame=pWal->hdr.mxFrame+1;
3048         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3049         iFrame++
3050     ){
3051       /* This call cannot fail. Unless the page for which the page number
3052       ** is passed as the second argument is (a) in the cache and
3053       ** (b) has an outstanding reference, then xUndo is either a no-op
3054       ** (if (a) is false) or simply expels the page from the cache (if (b)
3055       ** is false).
3056       **
3057       ** If the upper layer is doing a rollback, it is guaranteed that there
3058       ** are no outstanding references to any page other than page 1. And
3059       ** page 1 is never written to the log until the transaction is
3060       ** committed. As a result, the call to xUndo may not fail.
3061       */
3062       assert( walFramePgno(pWal, iFrame)!=1 );
3063       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3064     }
3065     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3066   }
3067   return rc;
3068 }
3069 
3070 /*
3071 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3072 ** values. This function populates the array with values required to
3073 ** "rollback" the write position of the WAL handle back to the current
3074 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3075 */
3076 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3077   assert( pWal->writeLock );
3078   aWalData[0] = pWal->hdr.mxFrame;
3079   aWalData[1] = pWal->hdr.aFrameCksum[0];
3080   aWalData[2] = pWal->hdr.aFrameCksum[1];
3081   aWalData[3] = pWal->nCkpt;
3082 }
3083 
3084 /*
3085 ** Move the write position of the WAL back to the point identified by
3086 ** the values in the aWalData[] array. aWalData must point to an array
3087 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3088 ** by a call to WalSavepoint().
3089 */
3090 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3091   int rc = SQLITE_OK;
3092 
3093   assert( pWal->writeLock );
3094   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3095 
3096   if( aWalData[3]!=pWal->nCkpt ){
3097     /* This savepoint was opened immediately after the write-transaction
3098     ** was started. Right after that, the writer decided to wrap around
3099     ** to the start of the log. Update the savepoint values to match.
3100     */
3101     aWalData[0] = 0;
3102     aWalData[3] = pWal->nCkpt;
3103   }
3104 
3105   if( aWalData[0]<pWal->hdr.mxFrame ){
3106     pWal->hdr.mxFrame = aWalData[0];
3107     pWal->hdr.aFrameCksum[0] = aWalData[1];
3108     pWal->hdr.aFrameCksum[1] = aWalData[2];
3109     walCleanupHash(pWal);
3110   }
3111 
3112   return rc;
3113 }
3114 
3115 /*
3116 ** This function is called just before writing a set of frames to the log
3117 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3118 ** to the current log file, it is possible to overwrite the start of the
3119 ** existing log file with the new frames (i.e. "reset" the log). If so,
3120 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3121 ** unchanged.
3122 **
3123 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3124 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3125 ** if an error occurs.
3126 */
3127 static int walRestartLog(Wal *pWal){
3128   int rc = SQLITE_OK;
3129   int cnt;
3130 
3131   if( pWal->readLock==0 ){
3132     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3133     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3134     if( pInfo->nBackfill>0 ){
3135       u32 salt1;
3136       sqlite3_randomness(4, &salt1);
3137       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3138       if( rc==SQLITE_OK ){
3139         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3140         ** readers are currently using the WAL), then the transactions
3141         ** frames will overwrite the start of the existing log. Update the
3142         ** wal-index header to reflect this.
3143         **
3144         ** In theory it would be Ok to update the cache of the header only
3145         ** at this point. But updating the actual wal-index header is also
3146         ** safe and means there is no special case for sqlite3WalUndo()
3147         ** to handle if this transaction is rolled back.  */
3148         walRestartHdr(pWal, salt1);
3149         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3150       }else if( rc!=SQLITE_BUSY ){
3151         return rc;
3152       }
3153     }
3154     walUnlockShared(pWal, WAL_READ_LOCK(0));
3155     pWal->readLock = -1;
3156     cnt = 0;
3157     do{
3158       int notUsed;
3159       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3160     }while( rc==WAL_RETRY );
3161     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3162     testcase( (rc&0xff)==SQLITE_IOERR );
3163     testcase( rc==SQLITE_PROTOCOL );
3164     testcase( rc==SQLITE_OK );
3165   }
3166   return rc;
3167 }
3168 
3169 /*
3170 ** Information about the current state of the WAL file and where
3171 ** the next fsync should occur - passed from sqlite3WalFrames() into
3172 ** walWriteToLog().
3173 */
3174 typedef struct WalWriter {
3175   Wal *pWal;                   /* The complete WAL information */
3176   sqlite3_file *pFd;           /* The WAL file to which we write */
3177   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3178   int syncFlags;               /* Flags for the fsync */
3179   int szPage;                  /* Size of one page */
3180 } WalWriter;
3181 
3182 /*
3183 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3184 ** Do a sync when crossing the p->iSyncPoint boundary.
3185 **
3186 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3187 ** first write the part before iSyncPoint, then sync, then write the
3188 ** rest.
3189 */
3190 static int walWriteToLog(
3191   WalWriter *p,              /* WAL to write to */
3192   void *pContent,            /* Content to be written */
3193   int iAmt,                  /* Number of bytes to write */
3194   sqlite3_int64 iOffset      /* Start writing at this offset */
3195 ){
3196   int rc;
3197   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3198     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3199     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3200     if( rc ) return rc;
3201     iOffset += iFirstAmt;
3202     iAmt -= iFirstAmt;
3203     pContent = (void*)(iFirstAmt + (char*)pContent);
3204     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3205     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3206     if( iAmt==0 || rc ) return rc;
3207   }
3208   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3209   return rc;
3210 }
3211 
3212 /*
3213 ** Write out a single frame of the WAL
3214 */
3215 static int walWriteOneFrame(
3216   WalWriter *p,               /* Where to write the frame */
3217   PgHdr *pPage,               /* The page of the frame to be written */
3218   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3219   sqlite3_int64 iOffset       /* Byte offset at which to write */
3220 ){
3221   int rc;                         /* Result code from subfunctions */
3222   void *pData;                    /* Data actually written */
3223   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3224 #if defined(SQLITE_HAS_CODEC)
3225   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3226 #else
3227   pData = pPage->pData;
3228 #endif
3229   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3230   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3231   if( rc ) return rc;
3232   /* Write the page data */
3233   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3234   return rc;
3235 }
3236 
3237 /*
3238 ** This function is called as part of committing a transaction within which
3239 ** one or more frames have been overwritten. It updates the checksums for
3240 ** all frames written to the wal file by the current transaction starting
3241 ** with the earliest to have been overwritten.
3242 **
3243 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3244 */
3245 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3246   const int szPage = pWal->szPage;/* Database page size */
3247   int rc = SQLITE_OK;             /* Return code */
3248   u8 *aBuf;                       /* Buffer to load data from wal file into */
3249   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3250   u32 iRead;                      /* Next frame to read from wal file */
3251   i64 iCksumOff;
3252 
3253   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3254   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3255 
3256   /* Find the checksum values to use as input for the recalculating the
3257   ** first checksum. If the first frame is frame 1 (implying that the current
3258   ** transaction restarted the wal file), these values must be read from the
3259   ** wal-file header. Otherwise, read them from the frame header of the
3260   ** previous frame.  */
3261   assert( pWal->iReCksum>0 );
3262   if( pWal->iReCksum==1 ){
3263     iCksumOff = 24;
3264   }else{
3265     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3266   }
3267   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3268   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3269   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3270 
3271   iRead = pWal->iReCksum;
3272   pWal->iReCksum = 0;
3273   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3274     i64 iOff = walFrameOffset(iRead, szPage);
3275     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3276     if( rc==SQLITE_OK ){
3277       u32 iPgno, nDbSize;
3278       iPgno = sqlite3Get4byte(aBuf);
3279       nDbSize = sqlite3Get4byte(&aBuf[4]);
3280 
3281       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3282       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3283     }
3284   }
3285 
3286   sqlite3_free(aBuf);
3287   return rc;
3288 }
3289 
3290 /*
3291 ** Write a set of frames to the log. The caller must hold the write-lock
3292 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3293 */
3294 int sqlite3WalFrames(
3295   Wal *pWal,                      /* Wal handle to write to */
3296   int szPage,                     /* Database page-size in bytes */
3297   PgHdr *pList,                   /* List of dirty pages to write */
3298   Pgno nTruncate,                 /* Database size after this commit */
3299   int isCommit,                   /* True if this is a commit */
3300   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3301 ){
3302   int rc;                         /* Used to catch return codes */
3303   u32 iFrame;                     /* Next frame address */
3304   PgHdr *p;                       /* Iterator to run through pList with. */
3305   PgHdr *pLast = 0;               /* Last frame in list */
3306   int nExtra = 0;                 /* Number of extra copies of last page */
3307   int szFrame;                    /* The size of a single frame */
3308   i64 iOffset;                    /* Next byte to write in WAL file */
3309   WalWriter w;                    /* The writer */
3310   u32 iFirst = 0;                 /* First frame that may be overwritten */
3311   WalIndexHdr *pLive;             /* Pointer to shared header */
3312 
3313   assert( pList );
3314   assert( pWal->writeLock );
3315 
3316   /* If this frame set completes a transaction, then nTruncate>0.  If
3317   ** nTruncate==0 then this frame set does not complete the transaction. */
3318   assert( (isCommit!=0)==(nTruncate!=0) );
3319 
3320 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3321   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3322     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3323               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3324   }
3325 #endif
3326 
3327   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3328   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3329     iFirst = pLive->mxFrame+1;
3330   }
3331 
3332   /* See if it is possible to write these frames into the start of the
3333   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3334   */
3335   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3336     return rc;
3337   }
3338 
3339   /* If this is the first frame written into the log, write the WAL
3340   ** header to the start of the WAL file. See comments at the top of
3341   ** this source file for a description of the WAL header format.
3342   */
3343   iFrame = pWal->hdr.mxFrame;
3344   if( iFrame==0 ){
3345     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3346     u32 aCksum[2];                /* Checksum for wal-header */
3347 
3348     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3349     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3350     sqlite3Put4byte(&aWalHdr[8], szPage);
3351     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3352     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3353     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3354     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3355     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3356     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3357 
3358     pWal->szPage = szPage;
3359     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3360     pWal->hdr.aFrameCksum[0] = aCksum[0];
3361     pWal->hdr.aFrameCksum[1] = aCksum[1];
3362     pWal->truncateOnCommit = 1;
3363 
3364     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3365     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3366     if( rc!=SQLITE_OK ){
3367       return rc;
3368     }
3369 
3370     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3371     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3372     ** an out-of-order write following a WAL restart could result in
3373     ** database corruption.  See the ticket:
3374     **
3375     **     https://sqlite.org/src/info/ff5be73dee
3376     */
3377     if( pWal->syncHeader ){
3378       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3379       if( rc ) return rc;
3380     }
3381   }
3382   assert( (int)pWal->szPage==szPage );
3383 
3384   /* Setup information needed to write frames into the WAL */
3385   w.pWal = pWal;
3386   w.pFd = pWal->pWalFd;
3387   w.iSyncPoint = 0;
3388   w.syncFlags = sync_flags;
3389   w.szPage = szPage;
3390   iOffset = walFrameOffset(iFrame+1, szPage);
3391   szFrame = szPage + WAL_FRAME_HDRSIZE;
3392 
3393   /* Write all frames into the log file exactly once */
3394   for(p=pList; p; p=p->pDirty){
3395     int nDbSize;   /* 0 normally.  Positive == commit flag */
3396 
3397     /* Check if this page has already been written into the wal file by
3398     ** the current transaction. If so, overwrite the existing frame and
3399     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3400     ** checksums must be recomputed when the transaction is committed.  */
3401     if( iFirst && (p->pDirty || isCommit==0) ){
3402       u32 iWrite = 0;
3403       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3404       assert( rc==SQLITE_OK || iWrite==0 );
3405       if( iWrite>=iFirst ){
3406         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3407         void *pData;
3408         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3409           pWal->iReCksum = iWrite;
3410         }
3411 #if defined(SQLITE_HAS_CODEC)
3412         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3413 #else
3414         pData = p->pData;
3415 #endif
3416         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3417         if( rc ) return rc;
3418         p->flags &= ~PGHDR_WAL_APPEND;
3419         continue;
3420       }
3421     }
3422 
3423     iFrame++;
3424     assert( iOffset==walFrameOffset(iFrame, szPage) );
3425     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3426     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3427     if( rc ) return rc;
3428     pLast = p;
3429     iOffset += szFrame;
3430     p->flags |= PGHDR_WAL_APPEND;
3431   }
3432 
3433   /* Recalculate checksums within the wal file if required. */
3434   if( isCommit && pWal->iReCksum ){
3435     rc = walRewriteChecksums(pWal, iFrame);
3436     if( rc ) return rc;
3437   }
3438 
3439   /* If this is the end of a transaction, then we might need to pad
3440   ** the transaction and/or sync the WAL file.
3441   **
3442   ** Padding and syncing only occur if this set of frames complete a
3443   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3444   ** or synchronous==OFF, then no padding or syncing are needed.
3445   **
3446   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3447   ** needed and only the sync is done.  If padding is needed, then the
3448   ** final frame is repeated (with its commit mark) until the next sector
3449   ** boundary is crossed.  Only the part of the WAL prior to the last
3450   ** sector boundary is synced; the part of the last frame that extends
3451   ** past the sector boundary is written after the sync.
3452   */
3453   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3454     int bSync = 1;
3455     if( pWal->padToSectorBoundary ){
3456       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3457       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3458       bSync = (w.iSyncPoint==iOffset);
3459       testcase( bSync );
3460       while( iOffset<w.iSyncPoint ){
3461         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3462         if( rc ) return rc;
3463         iOffset += szFrame;
3464         nExtra++;
3465       }
3466     }
3467     if( bSync ){
3468       assert( rc==SQLITE_OK );
3469       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3470     }
3471   }
3472 
3473   /* If this frame set completes the first transaction in the WAL and
3474   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3475   ** journal size limit, if possible.
3476   */
3477   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3478     i64 sz = pWal->mxWalSize;
3479     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3480       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3481     }
3482     walLimitSize(pWal, sz);
3483     pWal->truncateOnCommit = 0;
3484   }
3485 
3486   /* Append data to the wal-index. It is not necessary to lock the
3487   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3488   ** guarantees that there are no other writers, and no data that may
3489   ** be in use by existing readers is being overwritten.
3490   */
3491   iFrame = pWal->hdr.mxFrame;
3492   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3493     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3494     iFrame++;
3495     rc = walIndexAppend(pWal, iFrame, p->pgno);
3496   }
3497   while( rc==SQLITE_OK && nExtra>0 ){
3498     iFrame++;
3499     nExtra--;
3500     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3501   }
3502 
3503   if( rc==SQLITE_OK ){
3504     /* Update the private copy of the header. */
3505     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3506     testcase( szPage<=32768 );
3507     testcase( szPage>=65536 );
3508     pWal->hdr.mxFrame = iFrame;
3509     if( isCommit ){
3510       pWal->hdr.iChange++;
3511       pWal->hdr.nPage = nTruncate;
3512     }
3513     /* If this is a commit, update the wal-index header too. */
3514     if( isCommit ){
3515       walIndexWriteHdr(pWal);
3516       pWal->iCallback = iFrame;
3517     }
3518   }
3519 
3520   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3521   return rc;
3522 }
3523 
3524 /*
3525 ** This routine is called to implement sqlite3_wal_checkpoint() and
3526 ** related interfaces.
3527 **
3528 ** Obtain a CHECKPOINT lock and then backfill as much information as
3529 ** we can from WAL into the database.
3530 **
3531 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3532 ** callback. In this case this function runs a blocking checkpoint.
3533 */
3534 int sqlite3WalCheckpoint(
3535   Wal *pWal,                      /* Wal connection */
3536   sqlite3 *db,                    /* Check this handle's interrupt flag */
3537   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3538   int (*xBusy)(void*),            /* Function to call when busy */
3539   void *pBusyArg,                 /* Context argument for xBusyHandler */
3540   int sync_flags,                 /* Flags to sync db file with (or 0) */
3541   int nBuf,                       /* Size of temporary buffer */
3542   u8 *zBuf,                       /* Temporary buffer to use */
3543   int *pnLog,                     /* OUT: Number of frames in WAL */
3544   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3545 ){
3546   int rc;                         /* Return code */
3547   int isChanged = 0;              /* True if a new wal-index header is loaded */
3548   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3549   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3550 
3551   assert( pWal->ckptLock==0 );
3552   assert( pWal->writeLock==0 );
3553 
3554   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3555   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3556   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3557 
3558   if( pWal->readOnly ) return SQLITE_READONLY;
3559   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3560 
3561   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3562   ** "checkpoint" lock on the database file. */
3563   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3564   if( rc ){
3565     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3566     ** checkpoint operation at the same time, the lock cannot be obtained and
3567     ** SQLITE_BUSY is returned.
3568     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3569     ** it will not be invoked in this case.
3570     */
3571     testcase( rc==SQLITE_BUSY );
3572     testcase( xBusy!=0 );
3573     return rc;
3574   }
3575   pWal->ckptLock = 1;
3576 
3577   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3578   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3579   ** file.
3580   **
3581   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3582   ** immediately, and a busy-handler is configured, it is invoked and the
3583   ** writer lock retried until either the busy-handler returns 0 or the
3584   ** lock is successfully obtained.
3585   */
3586   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3587     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3588     if( rc==SQLITE_OK ){
3589       pWal->writeLock = 1;
3590     }else if( rc==SQLITE_BUSY ){
3591       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3592       xBusy2 = 0;
3593       rc = SQLITE_OK;
3594     }
3595   }
3596 
3597   /* Read the wal-index header. */
3598   if( rc==SQLITE_OK ){
3599     rc = walIndexReadHdr(pWal, &isChanged);
3600     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3601       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3602     }
3603   }
3604 
3605   /* Copy data from the log to the database file. */
3606   if( rc==SQLITE_OK ){
3607 
3608     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3609       rc = SQLITE_CORRUPT_BKPT;
3610     }else{
3611       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3612     }
3613 
3614     /* If no error occurred, set the output variables. */
3615     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3616       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3617       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3618     }
3619   }
3620 
3621   if( isChanged ){
3622     /* If a new wal-index header was loaded before the checkpoint was
3623     ** performed, then the pager-cache associated with pWal is now
3624     ** out of date. So zero the cached wal-index header to ensure that
3625     ** next time the pager opens a snapshot on this database it knows that
3626     ** the cache needs to be reset.
3627     */
3628     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3629   }
3630 
3631   /* Release the locks. */
3632   sqlite3WalEndWriteTransaction(pWal);
3633   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3634   pWal->ckptLock = 0;
3635   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3636   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3637 }
3638 
3639 /* Return the value to pass to a sqlite3_wal_hook callback, the
3640 ** number of frames in the WAL at the point of the last commit since
3641 ** sqlite3WalCallback() was called.  If no commits have occurred since
3642 ** the last call, then return 0.
3643 */
3644 int sqlite3WalCallback(Wal *pWal){
3645   u32 ret = 0;
3646   if( pWal ){
3647     ret = pWal->iCallback;
3648     pWal->iCallback = 0;
3649   }
3650   return (int)ret;
3651 }
3652 
3653 /*
3654 ** This function is called to change the WAL subsystem into or out
3655 ** of locking_mode=EXCLUSIVE.
3656 **
3657 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3658 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3659 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3660 ** or if the acquisition of the lock fails, then return 0.  If the
3661 ** transition out of exclusive-mode is successful, return 1.  This
3662 ** operation must occur while the pager is still holding the exclusive
3663 ** lock on the main database file.
3664 **
3665 ** If op is one, then change from locking_mode=NORMAL into
3666 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3667 ** be released.  Return 1 if the transition is made and 0 if the
3668 ** WAL is already in exclusive-locking mode - meaning that this
3669 ** routine is a no-op.  The pager must already hold the exclusive lock
3670 ** on the main database file before invoking this operation.
3671 **
3672 ** If op is negative, then do a dry-run of the op==1 case but do
3673 ** not actually change anything. The pager uses this to see if it
3674 ** should acquire the database exclusive lock prior to invoking
3675 ** the op==1 case.
3676 */
3677 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3678   int rc;
3679   assert( pWal->writeLock==0 );
3680   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3681 
3682   /* pWal->readLock is usually set, but might be -1 if there was a
3683   ** prior error while attempting to acquire are read-lock. This cannot
3684   ** happen if the connection is actually in exclusive mode (as no xShmLock
3685   ** locks are taken in this case). Nor should the pager attempt to
3686   ** upgrade to exclusive-mode following such an error.
3687   */
3688   assert( pWal->readLock>=0 || pWal->lockError );
3689   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3690 
3691   if( op==0 ){
3692     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3693       pWal->exclusiveMode = WAL_NORMAL_MODE;
3694       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3695         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3696       }
3697       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3698     }else{
3699       /* Already in locking_mode=NORMAL */
3700       rc = 0;
3701     }
3702   }else if( op>0 ){
3703     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3704     assert( pWal->readLock>=0 );
3705     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3706     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3707     rc = 1;
3708   }else{
3709     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3710   }
3711   return rc;
3712 }
3713 
3714 /*
3715 ** Return true if the argument is non-NULL and the WAL module is using
3716 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3717 ** WAL module is using shared-memory, return false.
3718 */
3719 int sqlite3WalHeapMemory(Wal *pWal){
3720   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3721 }
3722 
3723 #ifdef SQLITE_ENABLE_SNAPSHOT
3724 /* Create a snapshot object.  The content of a snapshot is opaque to
3725 ** every other subsystem, so the WAL module can put whatever it needs
3726 ** in the object.
3727 */
3728 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3729   int rc = SQLITE_OK;
3730   WalIndexHdr *pRet;
3731   static const u32 aZero[4] = { 0, 0, 0, 0 };
3732 
3733   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3734 
3735   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3736     *ppSnapshot = 0;
3737     return SQLITE_ERROR;
3738   }
3739   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3740   if( pRet==0 ){
3741     rc = SQLITE_NOMEM_BKPT;
3742   }else{
3743     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3744     *ppSnapshot = (sqlite3_snapshot*)pRet;
3745   }
3746 
3747   return rc;
3748 }
3749 
3750 /* Try to open on pSnapshot when the next read-transaction starts
3751 */
3752 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3753   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3754 }
3755 
3756 /*
3757 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3758 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3759 */
3760 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3761   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3762   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3763 
3764   /* aSalt[0] is a copy of the value stored in the wal file header. It
3765   ** is incremented each time the wal file is restarted.  */
3766   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3767   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3768   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3769   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3770   return 0;
3771 }
3772 #endif /* SQLITE_ENABLE_SNAPSHOT */
3773 
3774 #ifdef SQLITE_ENABLE_ZIPVFS
3775 /*
3776 ** If the argument is not NULL, it points to a Wal object that holds a
3777 ** read-lock. This function returns the database page-size if it is known,
3778 ** or zero if it is not (or if pWal is NULL).
3779 */
3780 int sqlite3WalFramesize(Wal *pWal){
3781   assert( pWal==0 || pWal->readLock>=0 );
3782   return (pWal ? pWal->szPage : 0);
3783 }
3784 #endif
3785 
3786 /* Return the sqlite3_file object for the WAL file
3787 */
3788 sqlite3_file *sqlite3WalFile(Wal *pWal){
3789   return pWal->pWalFd;
3790 }
3791 
3792 #endif /* #ifndef SQLITE_OMIT_WAL */
3793