1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 }; 471 472 /* 473 ** Candidate values for Wal.exclusiveMode. 474 */ 475 #define WAL_NORMAL_MODE 0 476 #define WAL_EXCLUSIVE_MODE 1 477 #define WAL_HEAPMEMORY_MODE 2 478 479 /* 480 ** Possible values for WAL.readOnly 481 */ 482 #define WAL_RDWR 0 /* Normal read/write connection */ 483 #define WAL_RDONLY 1 /* The WAL file is readonly */ 484 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 485 486 /* 487 ** Each page of the wal-index mapping contains a hash-table made up of 488 ** an array of HASHTABLE_NSLOT elements of the following type. 489 */ 490 typedef u16 ht_slot; 491 492 /* 493 ** This structure is used to implement an iterator that loops through 494 ** all frames in the WAL in database page order. Where two or more frames 495 ** correspond to the same database page, the iterator visits only the 496 ** frame most recently written to the WAL (in other words, the frame with 497 ** the largest index). 498 ** 499 ** The internals of this structure are only accessed by: 500 ** 501 ** walIteratorInit() - Create a new iterator, 502 ** walIteratorNext() - Step an iterator, 503 ** walIteratorFree() - Free an iterator. 504 ** 505 ** This functionality is used by the checkpoint code (see walCheckpoint()). 506 */ 507 struct WalIterator { 508 int iPrior; /* Last result returned from the iterator */ 509 int nSegment; /* Number of entries in aSegment[] */ 510 struct WalSegment { 511 int iNext; /* Next slot in aIndex[] not yet returned */ 512 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 513 u32 *aPgno; /* Array of page numbers. */ 514 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 515 int iZero; /* Frame number associated with aPgno[0] */ 516 } aSegment[1]; /* One for every 32KB page in the wal-index */ 517 }; 518 519 /* 520 ** Define the parameters of the hash tables in the wal-index file. There 521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 522 ** wal-index. 523 ** 524 ** Changing any of these constants will alter the wal-index format and 525 ** create incompatibilities. 526 */ 527 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 528 #define HASHTABLE_HASH_1 383 /* Should be prime */ 529 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 530 531 /* 532 ** The block of page numbers associated with the first hash-table in a 533 ** wal-index is smaller than usual. This is so that there is a complete 534 ** hash-table on each aligned 32KB page of the wal-index. 535 */ 536 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 537 538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 539 #define WALINDEX_PGSZ ( \ 540 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 541 ) 542 543 /* 544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 546 ** numbered from zero. 547 ** 548 ** If the wal-index is currently smaller the iPage pages then the size 549 ** of the wal-index might be increased, but only if it is safe to do 550 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 552 ** 553 ** If this call is successful, *ppPage is set to point to the wal-index 554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 555 ** then an SQLite error code is returned and *ppPage is set to 0. 556 */ 557 static SQLITE_NOINLINE int walIndexPageRealloc( 558 Wal *pWal, /* The WAL context */ 559 int iPage, /* The page we seek */ 560 volatile u32 **ppPage /* Write the page pointer here */ 561 ){ 562 int rc = SQLITE_OK; 563 564 /* Enlarge the pWal->apWiData[] array if required */ 565 if( pWal->nWiData<=iPage ){ 566 int nByte = sizeof(u32*)*(iPage+1); 567 volatile u32 **apNew; 568 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 569 if( !apNew ){ 570 *ppPage = 0; 571 return SQLITE_NOMEM_BKPT; 572 } 573 memset((void*)&apNew[pWal->nWiData], 0, 574 sizeof(u32*)*(iPage+1-pWal->nWiData)); 575 pWal->apWiData = apNew; 576 pWal->nWiData = iPage+1; 577 } 578 579 /* Request a pointer to the required page from the VFS */ 580 assert( pWal->apWiData[iPage]==0 ); 581 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 582 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 583 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 584 }else{ 585 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 586 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 587 ); 588 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 589 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 590 if( (rc&0xff)==SQLITE_READONLY ){ 591 pWal->readOnly |= WAL_SHM_RDONLY; 592 if( rc==SQLITE_READONLY ){ 593 rc = SQLITE_OK; 594 } 595 } 596 } 597 598 *ppPage = pWal->apWiData[iPage]; 599 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 600 return rc; 601 } 602 static int walIndexPage( 603 Wal *pWal, /* The WAL context */ 604 int iPage, /* The page we seek */ 605 volatile u32 **ppPage /* Write the page pointer here */ 606 ){ 607 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 608 return walIndexPageRealloc(pWal, iPage, ppPage); 609 } 610 return SQLITE_OK; 611 } 612 613 /* 614 ** Return a pointer to the WalCkptInfo structure in the wal-index. 615 */ 616 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 617 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 618 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 619 } 620 621 /* 622 ** Return a pointer to the WalIndexHdr structure in the wal-index. 623 */ 624 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 625 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 626 return (volatile WalIndexHdr*)pWal->apWiData[0]; 627 } 628 629 /* 630 ** The argument to this macro must be of type u32. On a little-endian 631 ** architecture, it returns the u32 value that results from interpreting 632 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 633 ** returns the value that would be produced by interpreting the 4 bytes 634 ** of the input value as a little-endian integer. 635 */ 636 #define BYTESWAP32(x) ( \ 637 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 638 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 639 ) 640 641 /* 642 ** Generate or extend an 8 byte checksum based on the data in 643 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 644 ** initial values of 0 and 0 if aIn==NULL). 645 ** 646 ** The checksum is written back into aOut[] before returning. 647 ** 648 ** nByte must be a positive multiple of 8. 649 */ 650 static void walChecksumBytes( 651 int nativeCksum, /* True for native byte-order, false for non-native */ 652 u8 *a, /* Content to be checksummed */ 653 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 654 const u32 *aIn, /* Initial checksum value input */ 655 u32 *aOut /* OUT: Final checksum value output */ 656 ){ 657 u32 s1, s2; 658 u32 *aData = (u32 *)a; 659 u32 *aEnd = (u32 *)&a[nByte]; 660 661 if( aIn ){ 662 s1 = aIn[0]; 663 s2 = aIn[1]; 664 }else{ 665 s1 = s2 = 0; 666 } 667 668 assert( nByte>=8 ); 669 assert( (nByte&0x00000007)==0 ); 670 671 if( nativeCksum ){ 672 do { 673 s1 += *aData++ + s2; 674 s2 += *aData++ + s1; 675 }while( aData<aEnd ); 676 }else{ 677 do { 678 s1 += BYTESWAP32(aData[0]) + s2; 679 s2 += BYTESWAP32(aData[1]) + s1; 680 aData += 2; 681 }while( aData<aEnd ); 682 } 683 684 aOut[0] = s1; 685 aOut[1] = s2; 686 } 687 688 static void walShmBarrier(Wal *pWal){ 689 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 690 sqlite3OsShmBarrier(pWal->pDbFd); 691 } 692 } 693 694 /* 695 ** Write the header information in pWal->hdr into the wal-index. 696 ** 697 ** The checksum on pWal->hdr is updated before it is written. 698 */ 699 static void walIndexWriteHdr(Wal *pWal){ 700 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 701 const int nCksum = offsetof(WalIndexHdr, aCksum); 702 703 assert( pWal->writeLock ); 704 pWal->hdr.isInit = 1; 705 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 706 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 707 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 708 walShmBarrier(pWal); 709 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 710 } 711 712 /* 713 ** This function encodes a single frame header and writes it to a buffer 714 ** supplied by the caller. A frame-header is made up of a series of 715 ** 4-byte big-endian integers, as follows: 716 ** 717 ** 0: Page number. 718 ** 4: For commit records, the size of the database image in pages 719 ** after the commit. For all other records, zero. 720 ** 8: Salt-1 (copied from the wal-header) 721 ** 12: Salt-2 (copied from the wal-header) 722 ** 16: Checksum-1. 723 ** 20: Checksum-2. 724 */ 725 static void walEncodeFrame( 726 Wal *pWal, /* The write-ahead log */ 727 u32 iPage, /* Database page number for frame */ 728 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 729 u8 *aData, /* Pointer to page data */ 730 u8 *aFrame /* OUT: Write encoded frame here */ 731 ){ 732 int nativeCksum; /* True for native byte-order checksums */ 733 u32 *aCksum = pWal->hdr.aFrameCksum; 734 assert( WAL_FRAME_HDRSIZE==24 ); 735 sqlite3Put4byte(&aFrame[0], iPage); 736 sqlite3Put4byte(&aFrame[4], nTruncate); 737 if( pWal->iReCksum==0 ){ 738 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 739 740 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 741 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 742 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 743 744 sqlite3Put4byte(&aFrame[16], aCksum[0]); 745 sqlite3Put4byte(&aFrame[20], aCksum[1]); 746 }else{ 747 memset(&aFrame[8], 0, 16); 748 } 749 } 750 751 /* 752 ** Check to see if the frame with header in aFrame[] and content 753 ** in aData[] is valid. If it is a valid frame, fill *piPage and 754 ** *pnTruncate and return true. Return if the frame is not valid. 755 */ 756 static int walDecodeFrame( 757 Wal *pWal, /* The write-ahead log */ 758 u32 *piPage, /* OUT: Database page number for frame */ 759 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 760 u8 *aData, /* Pointer to page data (for checksum) */ 761 u8 *aFrame /* Frame data */ 762 ){ 763 int nativeCksum; /* True for native byte-order checksums */ 764 u32 *aCksum = pWal->hdr.aFrameCksum; 765 u32 pgno; /* Page number of the frame */ 766 assert( WAL_FRAME_HDRSIZE==24 ); 767 768 /* A frame is only valid if the salt values in the frame-header 769 ** match the salt values in the wal-header. 770 */ 771 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 772 return 0; 773 } 774 775 /* A frame is only valid if the page number is creater than zero. 776 */ 777 pgno = sqlite3Get4byte(&aFrame[0]); 778 if( pgno==0 ){ 779 return 0; 780 } 781 782 /* A frame is only valid if a checksum of the WAL header, 783 ** all prior frams, the first 16 bytes of this frame-header, 784 ** and the frame-data matches the checksum in the last 8 785 ** bytes of this frame-header. 786 */ 787 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 788 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 789 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 790 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 791 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 792 ){ 793 /* Checksum failed. */ 794 return 0; 795 } 796 797 /* If we reach this point, the frame is valid. Return the page number 798 ** and the new database size. 799 */ 800 *piPage = pgno; 801 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 802 return 1; 803 } 804 805 806 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 807 /* 808 ** Names of locks. This routine is used to provide debugging output and is not 809 ** a part of an ordinary build. 810 */ 811 static const char *walLockName(int lockIdx){ 812 if( lockIdx==WAL_WRITE_LOCK ){ 813 return "WRITE-LOCK"; 814 }else if( lockIdx==WAL_CKPT_LOCK ){ 815 return "CKPT-LOCK"; 816 }else if( lockIdx==WAL_RECOVER_LOCK ){ 817 return "RECOVER-LOCK"; 818 }else{ 819 static char zName[15]; 820 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 821 lockIdx-WAL_READ_LOCK(0)); 822 return zName; 823 } 824 } 825 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 826 827 828 /* 829 ** Set or release locks on the WAL. Locks are either shared or exclusive. 830 ** A lock cannot be moved directly between shared and exclusive - it must go 831 ** through the unlocked state first. 832 ** 833 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 834 */ 835 static int walLockShared(Wal *pWal, int lockIdx){ 836 int rc; 837 if( pWal->exclusiveMode ) return SQLITE_OK; 838 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 839 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 840 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 841 walLockName(lockIdx), rc ? "failed" : "ok")); 842 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 843 return rc; 844 } 845 static void walUnlockShared(Wal *pWal, int lockIdx){ 846 if( pWal->exclusiveMode ) return; 847 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 848 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 849 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 850 } 851 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 852 int rc; 853 if( pWal->exclusiveMode ) return SQLITE_OK; 854 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 855 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 856 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 857 walLockName(lockIdx), n, rc ? "failed" : "ok")); 858 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 859 return rc; 860 } 861 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 862 if( pWal->exclusiveMode ) return; 863 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 864 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 865 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 866 walLockName(lockIdx), n)); 867 } 868 869 /* 870 ** Compute a hash on a page number. The resulting hash value must land 871 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 872 ** the hash to the next value in the event of a collision. 873 */ 874 static int walHash(u32 iPage){ 875 assert( iPage>0 ); 876 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 877 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 878 } 879 static int walNextHash(int iPriorHash){ 880 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 881 } 882 883 /* 884 ** An instance of the WalHashLoc object is used to describe the location 885 ** of a page hash table in the wal-index. This becomes the return value 886 ** from walHashGet(). 887 */ 888 typedef struct WalHashLoc WalHashLoc; 889 struct WalHashLoc { 890 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 891 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 892 u32 iZero; /* One less than the frame number of first indexed*/ 893 }; 894 895 /* 896 ** Return pointers to the hash table and page number array stored on 897 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 898 ** numbered starting from 0. 899 ** 900 ** Set output variable pLoc->aHash to point to the start of the hash table 901 ** in the wal-index file. Set pLoc->iZero to one less than the frame 902 ** number of the first frame indexed by this hash table. If a 903 ** slot in the hash table is set to N, it refers to frame number 904 ** (pLoc->iZero+N) in the log. 905 ** 906 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 907 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 908 */ 909 static int walHashGet( 910 Wal *pWal, /* WAL handle */ 911 int iHash, /* Find the iHash'th table */ 912 WalHashLoc *pLoc /* OUT: Hash table location */ 913 ){ 914 int rc; /* Return code */ 915 916 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 917 assert( rc==SQLITE_OK || iHash>0 ); 918 919 if( rc==SQLITE_OK ){ 920 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 921 if( iHash==0 ){ 922 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 923 pLoc->iZero = 0; 924 }else{ 925 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 926 } 927 pLoc->aPgno = &pLoc->aPgno[-1]; 928 } 929 return rc; 930 } 931 932 /* 933 ** Return the number of the wal-index page that contains the hash-table 934 ** and page-number array that contain entries corresponding to WAL frame 935 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 936 ** are numbered starting from 0. 937 */ 938 static int walFramePage(u32 iFrame){ 939 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 940 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 941 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 942 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 943 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 944 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 945 ); 946 return iHash; 947 } 948 949 /* 950 ** Return the page number associated with frame iFrame in this WAL. 951 */ 952 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 953 int iHash = walFramePage(iFrame); 954 if( iHash==0 ){ 955 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 956 } 957 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 958 } 959 960 /* 961 ** Remove entries from the hash table that point to WAL slots greater 962 ** than pWal->hdr.mxFrame. 963 ** 964 ** This function is called whenever pWal->hdr.mxFrame is decreased due 965 ** to a rollback or savepoint. 966 ** 967 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 968 ** updated. Any later hash tables will be automatically cleared when 969 ** pWal->hdr.mxFrame advances to the point where those hash tables are 970 ** actually needed. 971 */ 972 static void walCleanupHash(Wal *pWal){ 973 WalHashLoc sLoc; /* Hash table location */ 974 int iLimit = 0; /* Zero values greater than this */ 975 int nByte; /* Number of bytes to zero in aPgno[] */ 976 int i; /* Used to iterate through aHash[] */ 977 978 assert( pWal->writeLock ); 979 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 980 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 981 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 982 983 if( pWal->hdr.mxFrame==0 ) return; 984 985 /* Obtain pointers to the hash-table and page-number array containing 986 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 987 ** that the page said hash-table and array reside on is already mapped. 988 */ 989 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 990 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 991 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 992 993 /* Zero all hash-table entries that correspond to frame numbers greater 994 ** than pWal->hdr.mxFrame. 995 */ 996 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 997 assert( iLimit>0 ); 998 for(i=0; i<HASHTABLE_NSLOT; i++){ 999 if( sLoc.aHash[i]>iLimit ){ 1000 sLoc.aHash[i] = 0; 1001 } 1002 } 1003 1004 /* Zero the entries in the aPgno array that correspond to frames with 1005 ** frame numbers greater than pWal->hdr.mxFrame. 1006 */ 1007 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1008 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1009 1010 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1011 /* Verify that the every entry in the mapping region is still reachable 1012 ** via the hash table even after the cleanup. 1013 */ 1014 if( iLimit ){ 1015 int j; /* Loop counter */ 1016 int iKey; /* Hash key */ 1017 for(j=1; j<=iLimit; j++){ 1018 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1019 if( sLoc.aHash[iKey]==j ) break; 1020 } 1021 assert( sLoc.aHash[iKey]==j ); 1022 } 1023 } 1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1025 } 1026 1027 1028 /* 1029 ** Set an entry in the wal-index that will map database page number 1030 ** pPage into WAL frame iFrame. 1031 */ 1032 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1033 int rc; /* Return code */ 1034 WalHashLoc sLoc; /* Wal-index hash table location */ 1035 1036 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1037 1038 /* Assuming the wal-index file was successfully mapped, populate the 1039 ** page number array and hash table entry. 1040 */ 1041 if( rc==SQLITE_OK ){ 1042 int iKey; /* Hash table key */ 1043 int idx; /* Value to write to hash-table slot */ 1044 int nCollide; /* Number of hash collisions */ 1045 1046 idx = iFrame - sLoc.iZero; 1047 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1048 1049 /* If this is the first entry to be added to this hash-table, zero the 1050 ** entire hash table and aPgno[] array before proceeding. 1051 */ 1052 if( idx==1 ){ 1053 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1054 - (u8 *)&sLoc.aPgno[1]); 1055 memset((void*)&sLoc.aPgno[1], 0, nByte); 1056 } 1057 1058 /* If the entry in aPgno[] is already set, then the previous writer 1059 ** must have exited unexpectedly in the middle of a transaction (after 1060 ** writing one or more dirty pages to the WAL to free up memory). 1061 ** Remove the remnants of that writers uncommitted transaction from 1062 ** the hash-table before writing any new entries. 1063 */ 1064 if( sLoc.aPgno[idx] ){ 1065 walCleanupHash(pWal); 1066 assert( !sLoc.aPgno[idx] ); 1067 } 1068 1069 /* Write the aPgno[] array entry and the hash-table slot. */ 1070 nCollide = idx; 1071 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1072 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1073 } 1074 sLoc.aPgno[idx] = iPage; 1075 sLoc.aHash[iKey] = (ht_slot)idx; 1076 1077 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1078 /* Verify that the number of entries in the hash table exactly equals 1079 ** the number of entries in the mapping region. 1080 */ 1081 { 1082 int i; /* Loop counter */ 1083 int nEntry = 0; /* Number of entries in the hash table */ 1084 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1085 assert( nEntry==idx ); 1086 } 1087 1088 /* Verify that the every entry in the mapping region is reachable 1089 ** via the hash table. This turns out to be a really, really expensive 1090 ** thing to check, so only do this occasionally - not on every 1091 ** iteration. 1092 */ 1093 if( (idx&0x3ff)==0 ){ 1094 int i; /* Loop counter */ 1095 for(i=1; i<=idx; i++){ 1096 for(iKey=walHash(sLoc.aPgno[i]); 1097 sLoc.aHash[iKey]; 1098 iKey=walNextHash(iKey)){ 1099 if( sLoc.aHash[iKey]==i ) break; 1100 } 1101 assert( sLoc.aHash[iKey]==i ); 1102 } 1103 } 1104 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1105 } 1106 1107 1108 return rc; 1109 } 1110 1111 1112 /* 1113 ** Recover the wal-index by reading the write-ahead log file. 1114 ** 1115 ** This routine first tries to establish an exclusive lock on the 1116 ** wal-index to prevent other threads/processes from doing anything 1117 ** with the WAL or wal-index while recovery is running. The 1118 ** WAL_RECOVER_LOCK is also held so that other threads will know 1119 ** that this thread is running recovery. If unable to establish 1120 ** the necessary locks, this routine returns SQLITE_BUSY. 1121 */ 1122 static int walIndexRecover(Wal *pWal){ 1123 int rc; /* Return Code */ 1124 i64 nSize; /* Size of log file */ 1125 u32 aFrameCksum[2] = {0, 0}; 1126 int iLock; /* Lock offset to lock for checkpoint */ 1127 1128 /* Obtain an exclusive lock on all byte in the locking range not already 1129 ** locked by the caller. The caller is guaranteed to have locked the 1130 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1131 ** If successful, the same bytes that are locked here are unlocked before 1132 ** this function returns. 1133 */ 1134 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1135 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1136 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1137 assert( pWal->writeLock ); 1138 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1139 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1140 if( rc==SQLITE_OK ){ 1141 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1142 if( rc!=SQLITE_OK ){ 1143 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1144 } 1145 } 1146 if( rc ){ 1147 return rc; 1148 } 1149 1150 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1151 1152 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1153 1154 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1155 if( rc!=SQLITE_OK ){ 1156 goto recovery_error; 1157 } 1158 1159 if( nSize>WAL_HDRSIZE ){ 1160 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1161 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1162 int szFrame; /* Number of bytes in buffer aFrame[] */ 1163 u8 *aData; /* Pointer to data part of aFrame buffer */ 1164 int iFrame; /* Index of last frame read */ 1165 i64 iOffset; /* Next offset to read from log file */ 1166 int szPage; /* Page size according to the log */ 1167 u32 magic; /* Magic value read from WAL header */ 1168 u32 version; /* Magic value read from WAL header */ 1169 int isValid; /* True if this frame is valid */ 1170 1171 /* Read in the WAL header. */ 1172 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1173 if( rc!=SQLITE_OK ){ 1174 goto recovery_error; 1175 } 1176 1177 /* If the database page size is not a power of two, or is greater than 1178 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1179 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1180 ** WAL file. 1181 */ 1182 magic = sqlite3Get4byte(&aBuf[0]); 1183 szPage = sqlite3Get4byte(&aBuf[8]); 1184 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1185 || szPage&(szPage-1) 1186 || szPage>SQLITE_MAX_PAGE_SIZE 1187 || szPage<512 1188 ){ 1189 goto finished; 1190 } 1191 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1192 pWal->szPage = szPage; 1193 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1194 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1195 1196 /* Verify that the WAL header checksum is correct */ 1197 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1198 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1199 ); 1200 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1201 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1202 ){ 1203 goto finished; 1204 } 1205 1206 /* Verify that the version number on the WAL format is one that 1207 ** are able to understand */ 1208 version = sqlite3Get4byte(&aBuf[4]); 1209 if( version!=WAL_MAX_VERSION ){ 1210 rc = SQLITE_CANTOPEN_BKPT; 1211 goto finished; 1212 } 1213 1214 /* Malloc a buffer to read frames into. */ 1215 szFrame = szPage + WAL_FRAME_HDRSIZE; 1216 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1217 if( !aFrame ){ 1218 rc = SQLITE_NOMEM_BKPT; 1219 goto recovery_error; 1220 } 1221 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1222 1223 /* Read all frames from the log file. */ 1224 iFrame = 0; 1225 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1226 u32 pgno; /* Database page number for frame */ 1227 u32 nTruncate; /* dbsize field from frame header */ 1228 1229 /* Read and decode the next log frame. */ 1230 iFrame++; 1231 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1232 if( rc!=SQLITE_OK ) break; 1233 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1234 if( !isValid ) break; 1235 rc = walIndexAppend(pWal, iFrame, pgno); 1236 if( rc!=SQLITE_OK ) break; 1237 1238 /* If nTruncate is non-zero, this is a commit record. */ 1239 if( nTruncate ){ 1240 pWal->hdr.mxFrame = iFrame; 1241 pWal->hdr.nPage = nTruncate; 1242 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1243 testcase( szPage<=32768 ); 1244 testcase( szPage>=65536 ); 1245 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1246 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1247 } 1248 } 1249 1250 sqlite3_free(aFrame); 1251 } 1252 1253 finished: 1254 if( rc==SQLITE_OK ){ 1255 volatile WalCkptInfo *pInfo; 1256 int i; 1257 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1258 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1259 walIndexWriteHdr(pWal); 1260 1261 /* Reset the checkpoint-header. This is safe because this thread is 1262 ** currently holding locks that exclude all other readers, writers and 1263 ** checkpointers. 1264 */ 1265 pInfo = walCkptInfo(pWal); 1266 pInfo->nBackfill = 0; 1267 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1268 pInfo->aReadMark[0] = 0; 1269 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1270 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1271 1272 /* If more than one frame was recovered from the log file, report an 1273 ** event via sqlite3_log(). This is to help with identifying performance 1274 ** problems caused by applications routinely shutting down without 1275 ** checkpointing the log file. 1276 */ 1277 if( pWal->hdr.nPage ){ 1278 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1279 "recovered %d frames from WAL file %s", 1280 pWal->hdr.mxFrame, pWal->zWalName 1281 ); 1282 } 1283 } 1284 1285 recovery_error: 1286 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1287 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1288 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1289 return rc; 1290 } 1291 1292 /* 1293 ** Close an open wal-index. 1294 */ 1295 static void walIndexClose(Wal *pWal, int isDelete){ 1296 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1297 int i; 1298 for(i=0; i<pWal->nWiData; i++){ 1299 sqlite3_free((void *)pWal->apWiData[i]); 1300 pWal->apWiData[i] = 0; 1301 } 1302 } 1303 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1304 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1305 } 1306 } 1307 1308 /* 1309 ** Open a connection to the WAL file zWalName. The database file must 1310 ** already be opened on connection pDbFd. The buffer that zWalName points 1311 ** to must remain valid for the lifetime of the returned Wal* handle. 1312 ** 1313 ** A SHARED lock should be held on the database file when this function 1314 ** is called. The purpose of this SHARED lock is to prevent any other 1315 ** client from unlinking the WAL or wal-index file. If another process 1316 ** were to do this just after this client opened one of these files, the 1317 ** system would be badly broken. 1318 ** 1319 ** If the log file is successfully opened, SQLITE_OK is returned and 1320 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1321 ** an SQLite error code is returned and *ppWal is left unmodified. 1322 */ 1323 int sqlite3WalOpen( 1324 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1325 sqlite3_file *pDbFd, /* The open database file */ 1326 const char *zWalName, /* Name of the WAL file */ 1327 int bNoShm, /* True to run in heap-memory mode */ 1328 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1329 Wal **ppWal /* OUT: Allocated Wal handle */ 1330 ){ 1331 int rc; /* Return Code */ 1332 Wal *pRet; /* Object to allocate and return */ 1333 int flags; /* Flags passed to OsOpen() */ 1334 1335 assert( zWalName && zWalName[0] ); 1336 assert( pDbFd ); 1337 1338 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1339 ** this source file. Verify that the #defines of the locking byte offsets 1340 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1341 ** For that matter, if the lock offset ever changes from its initial design 1342 ** value of 120, we need to know that so there is an assert() to check it. 1343 */ 1344 assert( 120==WALINDEX_LOCK_OFFSET ); 1345 assert( 136==WALINDEX_HDR_SIZE ); 1346 #ifdef WIN_SHM_BASE 1347 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1348 #endif 1349 #ifdef UNIX_SHM_BASE 1350 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1351 #endif 1352 1353 1354 /* Allocate an instance of struct Wal to return. */ 1355 *ppWal = 0; 1356 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1357 if( !pRet ){ 1358 return SQLITE_NOMEM_BKPT; 1359 } 1360 1361 pRet->pVfs = pVfs; 1362 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1363 pRet->pDbFd = pDbFd; 1364 pRet->readLock = -1; 1365 pRet->mxWalSize = mxWalSize; 1366 pRet->zWalName = zWalName; 1367 pRet->syncHeader = 1; 1368 pRet->padToSectorBoundary = 1; 1369 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1370 1371 /* Open file handle on the write-ahead log file. */ 1372 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1373 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1374 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1375 pRet->readOnly = WAL_RDONLY; 1376 } 1377 1378 if( rc!=SQLITE_OK ){ 1379 walIndexClose(pRet, 0); 1380 sqlite3OsClose(pRet->pWalFd); 1381 sqlite3_free(pRet); 1382 }else{ 1383 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1384 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1385 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1386 pRet->padToSectorBoundary = 0; 1387 } 1388 *ppWal = pRet; 1389 WALTRACE(("WAL%d: opened\n", pRet)); 1390 } 1391 return rc; 1392 } 1393 1394 /* 1395 ** Change the size to which the WAL file is trucated on each reset. 1396 */ 1397 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1398 if( pWal ) pWal->mxWalSize = iLimit; 1399 } 1400 1401 /* 1402 ** Find the smallest page number out of all pages held in the WAL that 1403 ** has not been returned by any prior invocation of this method on the 1404 ** same WalIterator object. Write into *piFrame the frame index where 1405 ** that page was last written into the WAL. Write into *piPage the page 1406 ** number. 1407 ** 1408 ** Return 0 on success. If there are no pages in the WAL with a page 1409 ** number larger than *piPage, then return 1. 1410 */ 1411 static int walIteratorNext( 1412 WalIterator *p, /* Iterator */ 1413 u32 *piPage, /* OUT: The page number of the next page */ 1414 u32 *piFrame /* OUT: Wal frame index of next page */ 1415 ){ 1416 u32 iMin; /* Result pgno must be greater than iMin */ 1417 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1418 int i; /* For looping through segments */ 1419 1420 iMin = p->iPrior; 1421 assert( iMin<0xffffffff ); 1422 for(i=p->nSegment-1; i>=0; i--){ 1423 struct WalSegment *pSegment = &p->aSegment[i]; 1424 while( pSegment->iNext<pSegment->nEntry ){ 1425 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1426 if( iPg>iMin ){ 1427 if( iPg<iRet ){ 1428 iRet = iPg; 1429 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1430 } 1431 break; 1432 } 1433 pSegment->iNext++; 1434 } 1435 } 1436 1437 *piPage = p->iPrior = iRet; 1438 return (iRet==0xFFFFFFFF); 1439 } 1440 1441 /* 1442 ** This function merges two sorted lists into a single sorted list. 1443 ** 1444 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1445 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1446 ** is guaranteed for all J<K: 1447 ** 1448 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1449 ** aContent[aRight[J]] < aContent[aRight[K]] 1450 ** 1451 ** This routine overwrites aRight[] with a new (probably longer) sequence 1452 ** of indices such that the aRight[] contains every index that appears in 1453 ** either aLeft[] or the old aRight[] and such that the second condition 1454 ** above is still met. 1455 ** 1456 ** The aContent[aLeft[X]] values will be unique for all X. And the 1457 ** aContent[aRight[X]] values will be unique too. But there might be 1458 ** one or more combinations of X and Y such that 1459 ** 1460 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1461 ** 1462 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1463 */ 1464 static void walMerge( 1465 const u32 *aContent, /* Pages in wal - keys for the sort */ 1466 ht_slot *aLeft, /* IN: Left hand input list */ 1467 int nLeft, /* IN: Elements in array *paLeft */ 1468 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1469 int *pnRight, /* IN/OUT: Elements in *paRight */ 1470 ht_slot *aTmp /* Temporary buffer */ 1471 ){ 1472 int iLeft = 0; /* Current index in aLeft */ 1473 int iRight = 0; /* Current index in aRight */ 1474 int iOut = 0; /* Current index in output buffer */ 1475 int nRight = *pnRight; 1476 ht_slot *aRight = *paRight; 1477 1478 assert( nLeft>0 && nRight>0 ); 1479 while( iRight<nRight || iLeft<nLeft ){ 1480 ht_slot logpage; 1481 Pgno dbpage; 1482 1483 if( (iLeft<nLeft) 1484 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1485 ){ 1486 logpage = aLeft[iLeft++]; 1487 }else{ 1488 logpage = aRight[iRight++]; 1489 } 1490 dbpage = aContent[logpage]; 1491 1492 aTmp[iOut++] = logpage; 1493 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1494 1495 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1496 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1497 } 1498 1499 *paRight = aLeft; 1500 *pnRight = iOut; 1501 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1502 } 1503 1504 /* 1505 ** Sort the elements in list aList using aContent[] as the sort key. 1506 ** Remove elements with duplicate keys, preferring to keep the 1507 ** larger aList[] values. 1508 ** 1509 ** The aList[] entries are indices into aContent[]. The values in 1510 ** aList[] are to be sorted so that for all J<K: 1511 ** 1512 ** aContent[aList[J]] < aContent[aList[K]] 1513 ** 1514 ** For any X and Y such that 1515 ** 1516 ** aContent[aList[X]] == aContent[aList[Y]] 1517 ** 1518 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1519 ** the smaller. 1520 */ 1521 static void walMergesort( 1522 const u32 *aContent, /* Pages in wal */ 1523 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1524 ht_slot *aList, /* IN/OUT: List to sort */ 1525 int *pnList /* IN/OUT: Number of elements in aList[] */ 1526 ){ 1527 struct Sublist { 1528 int nList; /* Number of elements in aList */ 1529 ht_slot *aList; /* Pointer to sub-list content */ 1530 }; 1531 1532 const int nList = *pnList; /* Size of input list */ 1533 int nMerge = 0; /* Number of elements in list aMerge */ 1534 ht_slot *aMerge = 0; /* List to be merged */ 1535 int iList; /* Index into input list */ 1536 u32 iSub = 0; /* Index into aSub array */ 1537 struct Sublist aSub[13]; /* Array of sub-lists */ 1538 1539 memset(aSub, 0, sizeof(aSub)); 1540 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1541 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1542 1543 for(iList=0; iList<nList; iList++){ 1544 nMerge = 1; 1545 aMerge = &aList[iList]; 1546 for(iSub=0; iList & (1<<iSub); iSub++){ 1547 struct Sublist *p; 1548 assert( iSub<ArraySize(aSub) ); 1549 p = &aSub[iSub]; 1550 assert( p->aList && p->nList<=(1<<iSub) ); 1551 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1552 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1553 } 1554 aSub[iSub].aList = aMerge; 1555 aSub[iSub].nList = nMerge; 1556 } 1557 1558 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1559 if( nList & (1<<iSub) ){ 1560 struct Sublist *p; 1561 assert( iSub<ArraySize(aSub) ); 1562 p = &aSub[iSub]; 1563 assert( p->nList<=(1<<iSub) ); 1564 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1565 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1566 } 1567 } 1568 assert( aMerge==aList ); 1569 *pnList = nMerge; 1570 1571 #ifdef SQLITE_DEBUG 1572 { 1573 int i; 1574 for(i=1; i<*pnList; i++){ 1575 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1576 } 1577 } 1578 #endif 1579 } 1580 1581 /* 1582 ** Free an iterator allocated by walIteratorInit(). 1583 */ 1584 static void walIteratorFree(WalIterator *p){ 1585 sqlite3_free(p); 1586 } 1587 1588 /* 1589 ** Construct a WalInterator object that can be used to loop over all 1590 ** pages in the WAL following frame nBackfill in ascending order. Frames 1591 ** nBackfill or earlier may be included - excluding them is an optimization 1592 ** only. The caller must hold the checkpoint lock. 1593 ** 1594 ** On success, make *pp point to the newly allocated WalInterator object 1595 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1596 ** returns an error, the value of *pp is undefined. 1597 ** 1598 ** The calling routine should invoke walIteratorFree() to destroy the 1599 ** WalIterator object when it has finished with it. 1600 */ 1601 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1602 WalIterator *p; /* Return value */ 1603 int nSegment; /* Number of segments to merge */ 1604 u32 iLast; /* Last frame in log */ 1605 int nByte; /* Number of bytes to allocate */ 1606 int i; /* Iterator variable */ 1607 ht_slot *aTmp; /* Temp space used by merge-sort */ 1608 int rc = SQLITE_OK; /* Return Code */ 1609 1610 /* This routine only runs while holding the checkpoint lock. And 1611 ** it only runs if there is actually content in the log (mxFrame>0). 1612 */ 1613 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1614 iLast = pWal->hdr.mxFrame; 1615 1616 /* Allocate space for the WalIterator object. */ 1617 nSegment = walFramePage(iLast) + 1; 1618 nByte = sizeof(WalIterator) 1619 + (nSegment-1)*sizeof(struct WalSegment) 1620 + iLast*sizeof(ht_slot); 1621 p = (WalIterator *)sqlite3_malloc64(nByte); 1622 if( !p ){ 1623 return SQLITE_NOMEM_BKPT; 1624 } 1625 memset(p, 0, nByte); 1626 p->nSegment = nSegment; 1627 1628 /* Allocate temporary space used by the merge-sort routine. This block 1629 ** of memory will be freed before this function returns. 1630 */ 1631 aTmp = (ht_slot *)sqlite3_malloc64( 1632 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1633 ); 1634 if( !aTmp ){ 1635 rc = SQLITE_NOMEM_BKPT; 1636 } 1637 1638 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1639 WalHashLoc sLoc; 1640 1641 rc = walHashGet(pWal, i, &sLoc); 1642 if( rc==SQLITE_OK ){ 1643 int j; /* Counter variable */ 1644 int nEntry; /* Number of entries in this segment */ 1645 ht_slot *aIndex; /* Sorted index for this segment */ 1646 1647 sLoc.aPgno++; 1648 if( (i+1)==nSegment ){ 1649 nEntry = (int)(iLast - sLoc.iZero); 1650 }else{ 1651 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1652 } 1653 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1654 sLoc.iZero++; 1655 1656 for(j=0; j<nEntry; j++){ 1657 aIndex[j] = (ht_slot)j; 1658 } 1659 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1660 p->aSegment[i].iZero = sLoc.iZero; 1661 p->aSegment[i].nEntry = nEntry; 1662 p->aSegment[i].aIndex = aIndex; 1663 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1664 } 1665 } 1666 sqlite3_free(aTmp); 1667 1668 if( rc!=SQLITE_OK ){ 1669 walIteratorFree(p); 1670 p = 0; 1671 } 1672 *pp = p; 1673 return rc; 1674 } 1675 1676 /* 1677 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1678 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1679 ** busy-handler function. Invoke it and retry the lock until either the 1680 ** lock is successfully obtained or the busy-handler returns 0. 1681 */ 1682 static int walBusyLock( 1683 Wal *pWal, /* WAL connection */ 1684 int (*xBusy)(void*), /* Function to call when busy */ 1685 void *pBusyArg, /* Context argument for xBusyHandler */ 1686 int lockIdx, /* Offset of first byte to lock */ 1687 int n /* Number of bytes to lock */ 1688 ){ 1689 int rc; 1690 do { 1691 rc = walLockExclusive(pWal, lockIdx, n); 1692 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1693 return rc; 1694 } 1695 1696 /* 1697 ** The cache of the wal-index header must be valid to call this function. 1698 ** Return the page-size in bytes used by the database. 1699 */ 1700 static int walPagesize(Wal *pWal){ 1701 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1702 } 1703 1704 /* 1705 ** The following is guaranteed when this function is called: 1706 ** 1707 ** a) the WRITER lock is held, 1708 ** b) the entire log file has been checkpointed, and 1709 ** c) any existing readers are reading exclusively from the database 1710 ** file - there are no readers that may attempt to read a frame from 1711 ** the log file. 1712 ** 1713 ** This function updates the shared-memory structures so that the next 1714 ** client to write to the database (which may be this one) does so by 1715 ** writing frames into the start of the log file. 1716 ** 1717 ** The value of parameter salt1 is used as the aSalt[1] value in the 1718 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1719 ** one obtained from sqlite3_randomness()). 1720 */ 1721 static void walRestartHdr(Wal *pWal, u32 salt1){ 1722 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1723 int i; /* Loop counter */ 1724 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1725 pWal->nCkpt++; 1726 pWal->hdr.mxFrame = 0; 1727 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1728 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1729 walIndexWriteHdr(pWal); 1730 pInfo->nBackfill = 0; 1731 pInfo->nBackfillAttempted = 0; 1732 pInfo->aReadMark[1] = 0; 1733 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1734 assert( pInfo->aReadMark[0]==0 ); 1735 } 1736 1737 /* 1738 ** Copy as much content as we can from the WAL back into the database file 1739 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1740 ** 1741 ** The amount of information copies from WAL to database might be limited 1742 ** by active readers. This routine will never overwrite a database page 1743 ** that a concurrent reader might be using. 1744 ** 1745 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1746 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1747 ** checkpoints are always run by a background thread or background 1748 ** process, foreground threads will never block on a lengthy fsync call. 1749 ** 1750 ** Fsync is called on the WAL before writing content out of the WAL and 1751 ** into the database. This ensures that if the new content is persistent 1752 ** in the WAL and can be recovered following a power-loss or hard reset. 1753 ** 1754 ** Fsync is also called on the database file if (and only if) the entire 1755 ** WAL content is copied into the database file. This second fsync makes 1756 ** it safe to delete the WAL since the new content will persist in the 1757 ** database file. 1758 ** 1759 ** This routine uses and updates the nBackfill field of the wal-index header. 1760 ** This is the only routine that will increase the value of nBackfill. 1761 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1762 ** its value.) 1763 ** 1764 ** The caller must be holding sufficient locks to ensure that no other 1765 ** checkpoint is running (in any other thread or process) at the same 1766 ** time. 1767 */ 1768 static int walCheckpoint( 1769 Wal *pWal, /* Wal connection */ 1770 sqlite3 *db, /* Check for interrupts on this handle */ 1771 int eMode, /* One of PASSIVE, FULL or RESTART */ 1772 int (*xBusy)(void*), /* Function to call when busy */ 1773 void *pBusyArg, /* Context argument for xBusyHandler */ 1774 int sync_flags, /* Flags for OsSync() (or 0) */ 1775 u8 *zBuf /* Temporary buffer to use */ 1776 ){ 1777 int rc = SQLITE_OK; /* Return code */ 1778 int szPage; /* Database page-size */ 1779 WalIterator *pIter = 0; /* Wal iterator context */ 1780 u32 iDbpage = 0; /* Next database page to write */ 1781 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1782 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1783 u32 mxPage; /* Max database page to write */ 1784 int i; /* Loop counter */ 1785 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1786 1787 szPage = walPagesize(pWal); 1788 testcase( szPage<=32768 ); 1789 testcase( szPage>=65536 ); 1790 pInfo = walCkptInfo(pWal); 1791 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1792 1793 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1794 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1795 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1796 1797 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1798 ** safe to write into the database. Frames beyond mxSafeFrame might 1799 ** overwrite database pages that are in use by active readers and thus 1800 ** cannot be backfilled from the WAL. 1801 */ 1802 mxSafeFrame = pWal->hdr.mxFrame; 1803 mxPage = pWal->hdr.nPage; 1804 for(i=1; i<WAL_NREADER; i++){ 1805 /* Thread-sanitizer reports that the following is an unsafe read, 1806 ** as some other thread may be in the process of updating the value 1807 ** of the aReadMark[] slot. The assumption here is that if that is 1808 ** happening, the other client may only be increasing the value, 1809 ** not decreasing it. So assuming either that either the "old" or 1810 ** "new" version of the value is read, and not some arbitrary value 1811 ** that would never be written by a real client, things are still 1812 ** safe. */ 1813 u32 y = pInfo->aReadMark[i]; 1814 if( mxSafeFrame>y ){ 1815 assert( y<=pWal->hdr.mxFrame ); 1816 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1817 if( rc==SQLITE_OK ){ 1818 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1819 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1820 }else if( rc==SQLITE_BUSY ){ 1821 mxSafeFrame = y; 1822 xBusy = 0; 1823 }else{ 1824 goto walcheckpoint_out; 1825 } 1826 } 1827 } 1828 1829 /* Allocate the iterator */ 1830 if( pInfo->nBackfill<mxSafeFrame ){ 1831 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1832 assert( rc==SQLITE_OK || pIter==0 ); 1833 } 1834 1835 if( pIter 1836 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1837 ){ 1838 i64 nSize; /* Current size of database file */ 1839 u32 nBackfill = pInfo->nBackfill; 1840 1841 pInfo->nBackfillAttempted = mxSafeFrame; 1842 1843 /* Sync the WAL to disk */ 1844 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1845 1846 /* If the database may grow as a result of this checkpoint, hint 1847 ** about the eventual size of the db file to the VFS layer. 1848 */ 1849 if( rc==SQLITE_OK ){ 1850 i64 nReq = ((i64)mxPage * szPage); 1851 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1852 if( rc==SQLITE_OK && nSize<nReq ){ 1853 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1854 } 1855 } 1856 1857 1858 /* Iterate through the contents of the WAL, copying data to the db file */ 1859 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1860 i64 iOffset; 1861 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1862 if( db->u1.isInterrupted ){ 1863 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1864 break; 1865 } 1866 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1867 continue; 1868 } 1869 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1870 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1871 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1872 if( rc!=SQLITE_OK ) break; 1873 iOffset = (iDbpage-1)*(i64)szPage; 1874 testcase( IS_BIG_INT(iOffset) ); 1875 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1876 if( rc!=SQLITE_OK ) break; 1877 } 1878 1879 /* If work was actually accomplished... */ 1880 if( rc==SQLITE_OK ){ 1881 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1882 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1883 testcase( IS_BIG_INT(szDb) ); 1884 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1885 if( rc==SQLITE_OK ){ 1886 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1887 } 1888 } 1889 if( rc==SQLITE_OK ){ 1890 pInfo->nBackfill = mxSafeFrame; 1891 } 1892 } 1893 1894 /* Release the reader lock held while backfilling */ 1895 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1896 } 1897 1898 if( rc==SQLITE_BUSY ){ 1899 /* Reset the return code so as not to report a checkpoint failure 1900 ** just because there are active readers. */ 1901 rc = SQLITE_OK; 1902 } 1903 } 1904 1905 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1906 ** entire wal file has been copied into the database file, then block 1907 ** until all readers have finished using the wal file. This ensures that 1908 ** the next process to write to the database restarts the wal file. 1909 */ 1910 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1911 assert( pWal->writeLock ); 1912 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1913 rc = SQLITE_BUSY; 1914 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1915 u32 salt1; 1916 sqlite3_randomness(4, &salt1); 1917 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1918 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1919 if( rc==SQLITE_OK ){ 1920 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1921 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1922 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1923 ** truncates the log file to zero bytes just prior to a 1924 ** successful return. 1925 ** 1926 ** In theory, it might be safe to do this without updating the 1927 ** wal-index header in shared memory, as all subsequent reader or 1928 ** writer clients should see that the entire log file has been 1929 ** checkpointed and behave accordingly. This seems unsafe though, 1930 ** as it would leave the system in a state where the contents of 1931 ** the wal-index header do not match the contents of the 1932 ** file-system. To avoid this, update the wal-index header to 1933 ** indicate that the log file contains zero valid frames. */ 1934 walRestartHdr(pWal, salt1); 1935 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1936 } 1937 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1938 } 1939 } 1940 } 1941 1942 walcheckpoint_out: 1943 walIteratorFree(pIter); 1944 return rc; 1945 } 1946 1947 /* 1948 ** If the WAL file is currently larger than nMax bytes in size, truncate 1949 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1950 */ 1951 static void walLimitSize(Wal *pWal, i64 nMax){ 1952 i64 sz; 1953 int rx; 1954 sqlite3BeginBenignMalloc(); 1955 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1956 if( rx==SQLITE_OK && (sz > nMax ) ){ 1957 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1958 } 1959 sqlite3EndBenignMalloc(); 1960 if( rx ){ 1961 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1962 } 1963 } 1964 1965 /* 1966 ** Close a connection to a log file. 1967 */ 1968 int sqlite3WalClose( 1969 Wal *pWal, /* Wal to close */ 1970 sqlite3 *db, /* For interrupt flag */ 1971 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1972 int nBuf, 1973 u8 *zBuf /* Buffer of at least nBuf bytes */ 1974 ){ 1975 int rc = SQLITE_OK; 1976 if( pWal ){ 1977 int isDelete = 0; /* True to unlink wal and wal-index files */ 1978 1979 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1980 ** ordinary, rollback-mode locking methods, this guarantees that the 1981 ** connection associated with this log file is the only connection to 1982 ** the database. In this case checkpoint the database and unlink both 1983 ** the wal and wal-index files. 1984 ** 1985 ** The EXCLUSIVE lock is not released before returning. 1986 */ 1987 if( zBuf!=0 1988 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 1989 ){ 1990 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1991 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1992 } 1993 rc = sqlite3WalCheckpoint(pWal, db, 1994 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1995 ); 1996 if( rc==SQLITE_OK ){ 1997 int bPersist = -1; 1998 sqlite3OsFileControlHint( 1999 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2000 ); 2001 if( bPersist!=1 ){ 2002 /* Try to delete the WAL file if the checkpoint completed and 2003 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2004 ** mode (!bPersist) */ 2005 isDelete = 1; 2006 }else if( pWal->mxWalSize>=0 ){ 2007 /* Try to truncate the WAL file to zero bytes if the checkpoint 2008 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2009 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2010 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2011 ** to zero bytes as truncating to the journal_size_limit might 2012 ** leave a corrupt WAL file on disk. */ 2013 walLimitSize(pWal, 0); 2014 } 2015 } 2016 } 2017 2018 walIndexClose(pWal, isDelete); 2019 sqlite3OsClose(pWal->pWalFd); 2020 if( isDelete ){ 2021 sqlite3BeginBenignMalloc(); 2022 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2023 sqlite3EndBenignMalloc(); 2024 } 2025 WALTRACE(("WAL%p: closed\n", pWal)); 2026 sqlite3_free((void *)pWal->apWiData); 2027 sqlite3_free(pWal); 2028 } 2029 return rc; 2030 } 2031 2032 /* 2033 ** Try to read the wal-index header. Return 0 on success and 1 if 2034 ** there is a problem. 2035 ** 2036 ** The wal-index is in shared memory. Another thread or process might 2037 ** be writing the header at the same time this procedure is trying to 2038 ** read it, which might result in inconsistency. A dirty read is detected 2039 ** by verifying that both copies of the header are the same and also by 2040 ** a checksum on the header. 2041 ** 2042 ** If and only if the read is consistent and the header is different from 2043 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2044 ** and *pChanged is set to 1. 2045 ** 2046 ** If the checksum cannot be verified return non-zero. If the header 2047 ** is read successfully and the checksum verified, return zero. 2048 */ 2049 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2050 u32 aCksum[2]; /* Checksum on the header content */ 2051 WalIndexHdr h1, h2; /* Two copies of the header content */ 2052 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2053 2054 /* The first page of the wal-index must be mapped at this point. */ 2055 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2056 2057 /* Read the header. This might happen concurrently with a write to the 2058 ** same area of shared memory on a different CPU in a SMP, 2059 ** meaning it is possible that an inconsistent snapshot is read 2060 ** from the file. If this happens, return non-zero. 2061 ** 2062 ** There are two copies of the header at the beginning of the wal-index. 2063 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2064 ** Memory barriers are used to prevent the compiler or the hardware from 2065 ** reordering the reads and writes. 2066 */ 2067 aHdr = walIndexHdr(pWal); 2068 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2069 walShmBarrier(pWal); 2070 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2071 2072 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2073 return 1; /* Dirty read */ 2074 } 2075 if( h1.isInit==0 ){ 2076 return 1; /* Malformed header - probably all zeros */ 2077 } 2078 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2079 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2080 return 1; /* Checksum does not match */ 2081 } 2082 2083 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2084 *pChanged = 1; 2085 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2086 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2087 testcase( pWal->szPage<=32768 ); 2088 testcase( pWal->szPage>=65536 ); 2089 } 2090 2091 /* The header was successfully read. Return zero. */ 2092 return 0; 2093 } 2094 2095 /* 2096 ** This is the value that walTryBeginRead returns when it needs to 2097 ** be retried. 2098 */ 2099 #define WAL_RETRY (-1) 2100 2101 /* 2102 ** Read the wal-index header from the wal-index and into pWal->hdr. 2103 ** If the wal-header appears to be corrupt, try to reconstruct the 2104 ** wal-index from the WAL before returning. 2105 ** 2106 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2107 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2108 ** to 0. 2109 ** 2110 ** If the wal-index header is successfully read, return SQLITE_OK. 2111 ** Otherwise an SQLite error code. 2112 */ 2113 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2114 int rc; /* Return code */ 2115 int badHdr; /* True if a header read failed */ 2116 volatile u32 *page0; /* Chunk of wal-index containing header */ 2117 2118 /* Ensure that page 0 of the wal-index (the page that contains the 2119 ** wal-index header) is mapped. Return early if an error occurs here. 2120 */ 2121 assert( pChanged ); 2122 rc = walIndexPage(pWal, 0, &page0); 2123 if( rc!=SQLITE_OK ){ 2124 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2125 if( rc==SQLITE_READONLY_CANTINIT ){ 2126 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2127 ** was openable but is not writable, and this thread is unable to 2128 ** confirm that another write-capable connection has the shared-memory 2129 ** open, and hence the content of the shared-memory is unreliable, 2130 ** since the shared-memory might be inconsistent with the WAL file 2131 ** and there is no writer on hand to fix it. */ 2132 assert( page0==0 ); 2133 assert( pWal->writeLock==0 ); 2134 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2135 pWal->bShmUnreliable = 1; 2136 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2137 *pChanged = 1; 2138 }else{ 2139 return rc; /* Any other non-OK return is just an error */ 2140 } 2141 }else{ 2142 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2143 ** is zero, which prevents the SHM from growing */ 2144 testcase( page0!=0 ); 2145 } 2146 assert( page0!=0 || pWal->writeLock==0 ); 2147 2148 /* If the first page of the wal-index has been mapped, try to read the 2149 ** wal-index header immediately, without holding any lock. This usually 2150 ** works, but may fail if the wal-index header is corrupt or currently 2151 ** being modified by another thread or process. 2152 */ 2153 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2154 2155 /* If the first attempt failed, it might have been due to a race 2156 ** with a writer. So get a WRITE lock and try again. 2157 */ 2158 assert( badHdr==0 || pWal->writeLock==0 ); 2159 if( badHdr ){ 2160 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2161 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2162 walUnlockShared(pWal, WAL_WRITE_LOCK); 2163 rc = SQLITE_READONLY_RECOVERY; 2164 } 2165 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2166 pWal->writeLock = 1; 2167 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2168 badHdr = walIndexTryHdr(pWal, pChanged); 2169 if( badHdr ){ 2170 /* If the wal-index header is still malformed even while holding 2171 ** a WRITE lock, it can only mean that the header is corrupted and 2172 ** needs to be reconstructed. So run recovery to do exactly that. 2173 */ 2174 rc = walIndexRecover(pWal); 2175 *pChanged = 1; 2176 } 2177 } 2178 pWal->writeLock = 0; 2179 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2180 } 2181 } 2182 2183 /* If the header is read successfully, check the version number to make 2184 ** sure the wal-index was not constructed with some future format that 2185 ** this version of SQLite cannot understand. 2186 */ 2187 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2188 rc = SQLITE_CANTOPEN_BKPT; 2189 } 2190 if( pWal->bShmUnreliable ){ 2191 if( rc!=SQLITE_OK ){ 2192 walIndexClose(pWal, 0); 2193 pWal->bShmUnreliable = 0; 2194 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2195 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2196 ** writer truncated the WAL out from under it. If that happens, it 2197 ** indicates that a writer has fixed the SHM file for us, so retry */ 2198 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2199 } 2200 pWal->exclusiveMode = WAL_NORMAL_MODE; 2201 } 2202 2203 return rc; 2204 } 2205 2206 /* 2207 ** Open a transaction in a connection where the shared-memory is read-only 2208 ** and where we cannot verify that there is a separate write-capable connection 2209 ** on hand to keep the shared-memory up-to-date with the WAL file. 2210 ** 2211 ** This can happen, for example, when the shared-memory is implemented by 2212 ** memory-mapping a *-shm file, where a prior writer has shut down and 2213 ** left the *-shm file on disk, and now the present connection is trying 2214 ** to use that database but lacks write permission on the *-shm file. 2215 ** Other scenarios are also possible, depending on the VFS implementation. 2216 ** 2217 ** Precondition: 2218 ** 2219 ** The *-wal file has been read and an appropriate wal-index has been 2220 ** constructed in pWal->apWiData[] using heap memory instead of shared 2221 ** memory. 2222 ** 2223 ** If this function returns SQLITE_OK, then the read transaction has 2224 ** been successfully opened. In this case output variable (*pChanged) 2225 ** is set to true before returning if the caller should discard the 2226 ** contents of the page cache before proceeding. Or, if it returns 2227 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2228 ** the caller should retry opening the read transaction from the 2229 ** beginning (including attempting to map the *-shm file). 2230 ** 2231 ** If an error occurs, an SQLite error code is returned. 2232 */ 2233 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2234 i64 szWal; /* Size of wal file on disk in bytes */ 2235 i64 iOffset; /* Current offset when reading wal file */ 2236 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2237 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2238 int szFrame; /* Number of bytes in buffer aFrame[] */ 2239 u8 *aData; /* Pointer to data part of aFrame buffer */ 2240 volatile void *pDummy; /* Dummy argument for xShmMap */ 2241 int rc; /* Return code */ 2242 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2243 2244 assert( pWal->bShmUnreliable ); 2245 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2246 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2247 2248 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2249 ** writers from running a checkpoint, but does not stop them 2250 ** from running recovery. */ 2251 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2252 if( rc!=SQLITE_OK ){ 2253 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2254 goto begin_unreliable_shm_out; 2255 } 2256 pWal->readLock = 0; 2257 2258 /* Check to see if a separate writer has attached to the shared-memory area, 2259 ** thus making the shared-memory "reliable" again. Do this by invoking 2260 ** the xShmMap() routine of the VFS and looking to see if the return 2261 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2262 ** 2263 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2264 ** cause the heap-memory WAL-index to be discarded and the actual 2265 ** shared memory to be used in its place. 2266 ** 2267 ** This step is important because, even though this connection is holding 2268 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2269 ** have already checkpointed the WAL file and, while the current 2270 ** is active, wrap the WAL and start overwriting frames that this 2271 ** process wants to use. 2272 ** 2273 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2274 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2275 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2276 ** even if some external agent does a "chmod" to make the shared-memory 2277 ** writable by us, until sqlite3OsShmUnmap() has been called. 2278 ** This is a requirement on the VFS implementation. 2279 */ 2280 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2281 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2282 if( rc!=SQLITE_READONLY_CANTINIT ){ 2283 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2284 goto begin_unreliable_shm_out; 2285 } 2286 2287 /* We reach this point only if the real shared-memory is still unreliable. 2288 ** Assume the in-memory WAL-index substitute is correct and load it 2289 ** into pWal->hdr. 2290 */ 2291 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2292 2293 /* Make sure some writer hasn't come in and changed the WAL file out 2294 ** from under us, then disconnected, while we were not looking. 2295 */ 2296 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2297 if( rc!=SQLITE_OK ){ 2298 goto begin_unreliable_shm_out; 2299 } 2300 if( szWal<WAL_HDRSIZE ){ 2301 /* If the wal file is too small to contain a wal-header and the 2302 ** wal-index header has mxFrame==0, then it must be safe to proceed 2303 ** reading the database file only. However, the page cache cannot 2304 ** be trusted, as a read/write connection may have connected, written 2305 ** the db, run a checkpoint, truncated the wal file and disconnected 2306 ** since this client's last read transaction. */ 2307 *pChanged = 1; 2308 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2309 goto begin_unreliable_shm_out; 2310 } 2311 2312 /* Check the salt keys at the start of the wal file still match. */ 2313 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2314 if( rc!=SQLITE_OK ){ 2315 goto begin_unreliable_shm_out; 2316 } 2317 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2318 /* Some writer has wrapped the WAL file while we were not looking. 2319 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2320 ** rebuilt. */ 2321 rc = WAL_RETRY; 2322 goto begin_unreliable_shm_out; 2323 } 2324 2325 /* Allocate a buffer to read frames into */ 2326 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2327 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2328 if( aFrame==0 ){ 2329 rc = SQLITE_NOMEM_BKPT; 2330 goto begin_unreliable_shm_out; 2331 } 2332 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2333 2334 /* Check to see if a complete transaction has been appended to the 2335 ** wal file since the heap-memory wal-index was created. If so, the 2336 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2337 ** the caller. */ 2338 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2339 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2340 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2341 iOffset+szFrame<=szWal; 2342 iOffset+=szFrame 2343 ){ 2344 u32 pgno; /* Database page number for frame */ 2345 u32 nTruncate; /* dbsize field from frame header */ 2346 2347 /* Read and decode the next log frame. */ 2348 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2349 if( rc!=SQLITE_OK ) break; 2350 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2351 2352 /* If nTruncate is non-zero, then a complete transaction has been 2353 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2354 ** the loop. */ 2355 if( nTruncate ){ 2356 rc = WAL_RETRY; 2357 break; 2358 } 2359 } 2360 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2361 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2362 2363 begin_unreliable_shm_out: 2364 sqlite3_free(aFrame); 2365 if( rc!=SQLITE_OK ){ 2366 int i; 2367 for(i=0; i<pWal->nWiData; i++){ 2368 sqlite3_free((void*)pWal->apWiData[i]); 2369 pWal->apWiData[i] = 0; 2370 } 2371 pWal->bShmUnreliable = 0; 2372 sqlite3WalEndReadTransaction(pWal); 2373 *pChanged = 1; 2374 } 2375 return rc; 2376 } 2377 2378 /* 2379 ** Attempt to start a read transaction. This might fail due to a race or 2380 ** other transient condition. When that happens, it returns WAL_RETRY to 2381 ** indicate to the caller that it is safe to retry immediately. 2382 ** 2383 ** On success return SQLITE_OK. On a permanent failure (such an 2384 ** I/O error or an SQLITE_BUSY because another process is running 2385 ** recovery) return a positive error code. 2386 ** 2387 ** The useWal parameter is true to force the use of the WAL and disable 2388 ** the case where the WAL is bypassed because it has been completely 2389 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2390 ** to make a copy of the wal-index header into pWal->hdr. If the 2391 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2392 ** to the caller that the local page cache is obsolete and needs to be 2393 ** flushed.) When useWal==1, the wal-index header is assumed to already 2394 ** be loaded and the pChanged parameter is unused. 2395 ** 2396 ** The caller must set the cnt parameter to the number of prior calls to 2397 ** this routine during the current read attempt that returned WAL_RETRY. 2398 ** This routine will start taking more aggressive measures to clear the 2399 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2400 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2401 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2402 ** and is not honoring the locking protocol. There is a vanishingly small 2403 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2404 ** bad luck when there is lots of contention for the wal-index, but that 2405 ** possibility is so small that it can be safely neglected, we believe. 2406 ** 2407 ** On success, this routine obtains a read lock on 2408 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2409 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2410 ** that means the Wal does not hold any read lock. The reader must not 2411 ** access any database page that is modified by a WAL frame up to and 2412 ** including frame number aReadMark[pWal->readLock]. The reader will 2413 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2414 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2415 ** completely and get all content directly from the database file. 2416 ** If the useWal parameter is 1 then the WAL will never be ignored and 2417 ** this routine will always set pWal->readLock>0 on success. 2418 ** When the read transaction is completed, the caller must release the 2419 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2420 ** 2421 ** This routine uses the nBackfill and aReadMark[] fields of the header 2422 ** to select a particular WAL_READ_LOCK() that strives to let the 2423 ** checkpoint process do as much work as possible. This routine might 2424 ** update values of the aReadMark[] array in the header, but if it does 2425 ** so it takes care to hold an exclusive lock on the corresponding 2426 ** WAL_READ_LOCK() while changing values. 2427 */ 2428 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2429 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2430 u32 mxReadMark; /* Largest aReadMark[] value */ 2431 int mxI; /* Index of largest aReadMark[] value */ 2432 int i; /* Loop counter */ 2433 int rc = SQLITE_OK; /* Return code */ 2434 u32 mxFrame; /* Wal frame to lock to */ 2435 2436 assert( pWal->readLock<0 ); /* Not currently locked */ 2437 2438 /* useWal may only be set for read/write connections */ 2439 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2440 2441 /* Take steps to avoid spinning forever if there is a protocol error. 2442 ** 2443 ** Circumstances that cause a RETRY should only last for the briefest 2444 ** instances of time. No I/O or other system calls are done while the 2445 ** locks are held, so the locks should not be held for very long. But 2446 ** if we are unlucky, another process that is holding a lock might get 2447 ** paged out or take a page-fault that is time-consuming to resolve, 2448 ** during the few nanoseconds that it is holding the lock. In that case, 2449 ** it might take longer than normal for the lock to free. 2450 ** 2451 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2452 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2453 ** is more of a scheduler yield than an actual delay. But on the 10th 2454 ** an subsequent retries, the delays start becoming longer and longer, 2455 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2456 ** The total delay time before giving up is less than 10 seconds. 2457 */ 2458 if( cnt>5 ){ 2459 int nDelay = 1; /* Pause time in microseconds */ 2460 if( cnt>100 ){ 2461 VVA_ONLY( pWal->lockError = 1; ) 2462 return SQLITE_PROTOCOL; 2463 } 2464 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2465 sqlite3OsSleep(pWal->pVfs, nDelay); 2466 } 2467 2468 if( !useWal ){ 2469 assert( rc==SQLITE_OK ); 2470 if( pWal->bShmUnreliable==0 ){ 2471 rc = walIndexReadHdr(pWal, pChanged); 2472 } 2473 if( rc==SQLITE_BUSY ){ 2474 /* If there is not a recovery running in another thread or process 2475 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2476 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2477 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2478 ** would be technically correct. But the race is benign since with 2479 ** WAL_RETRY this routine will be called again and will probably be 2480 ** right on the second iteration. 2481 */ 2482 if( pWal->apWiData[0]==0 ){ 2483 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2484 ** We assume this is a transient condition, so return WAL_RETRY. The 2485 ** xShmMap() implementation used by the default unix and win32 VFS 2486 ** modules may return SQLITE_BUSY due to a race condition in the 2487 ** code that determines whether or not the shared-memory region 2488 ** must be zeroed before the requested page is returned. 2489 */ 2490 rc = WAL_RETRY; 2491 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2492 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2493 rc = WAL_RETRY; 2494 }else if( rc==SQLITE_BUSY ){ 2495 rc = SQLITE_BUSY_RECOVERY; 2496 } 2497 } 2498 if( rc!=SQLITE_OK ){ 2499 return rc; 2500 } 2501 else if( pWal->bShmUnreliable ){ 2502 return walBeginShmUnreliable(pWal, pChanged); 2503 } 2504 } 2505 2506 assert( pWal->nWiData>0 ); 2507 assert( pWal->apWiData[0]!=0 ); 2508 pInfo = walCkptInfo(pWal); 2509 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2510 #ifdef SQLITE_ENABLE_SNAPSHOT 2511 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2512 #endif 2513 ){ 2514 /* The WAL has been completely backfilled (or it is empty). 2515 ** and can be safely ignored. 2516 */ 2517 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2518 walShmBarrier(pWal); 2519 if( rc==SQLITE_OK ){ 2520 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2521 /* It is not safe to allow the reader to continue here if frames 2522 ** may have been appended to the log before READ_LOCK(0) was obtained. 2523 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2524 ** which implies that the database file contains a trustworthy 2525 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2526 ** happening, this is usually correct. 2527 ** 2528 ** However, if frames have been appended to the log (or if the log 2529 ** is wrapped and written for that matter) before the READ_LOCK(0) 2530 ** is obtained, that is not necessarily true. A checkpointer may 2531 ** have started to backfill the appended frames but crashed before 2532 ** it finished. Leaving a corrupt image in the database file. 2533 */ 2534 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2535 return WAL_RETRY; 2536 } 2537 pWal->readLock = 0; 2538 return SQLITE_OK; 2539 }else if( rc!=SQLITE_BUSY ){ 2540 return rc; 2541 } 2542 } 2543 2544 /* If we get this far, it means that the reader will want to use 2545 ** the WAL to get at content from recent commits. The job now is 2546 ** to select one of the aReadMark[] entries that is closest to 2547 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2548 */ 2549 mxReadMark = 0; 2550 mxI = 0; 2551 mxFrame = pWal->hdr.mxFrame; 2552 #ifdef SQLITE_ENABLE_SNAPSHOT 2553 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2554 mxFrame = pWal->pSnapshot->mxFrame; 2555 } 2556 #endif 2557 for(i=1; i<WAL_NREADER; i++){ 2558 u32 thisMark = pInfo->aReadMark[i]; 2559 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2560 assert( thisMark!=READMARK_NOT_USED ); 2561 mxReadMark = thisMark; 2562 mxI = i; 2563 } 2564 } 2565 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2566 && (mxReadMark<mxFrame || mxI==0) 2567 ){ 2568 for(i=1; i<WAL_NREADER; i++){ 2569 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2570 if( rc==SQLITE_OK ){ 2571 mxReadMark = pInfo->aReadMark[i] = mxFrame; 2572 mxI = i; 2573 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2574 break; 2575 }else if( rc!=SQLITE_BUSY ){ 2576 return rc; 2577 } 2578 } 2579 } 2580 if( mxI==0 ){ 2581 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2582 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2583 } 2584 2585 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2586 if( rc ){ 2587 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2588 } 2589 /* Now that the read-lock has been obtained, check that neither the 2590 ** value in the aReadMark[] array or the contents of the wal-index 2591 ** header have changed. 2592 ** 2593 ** It is necessary to check that the wal-index header did not change 2594 ** between the time it was read and when the shared-lock was obtained 2595 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2596 ** that the log file may have been wrapped by a writer, or that frames 2597 ** that occur later in the log than pWal->hdr.mxFrame may have been 2598 ** copied into the database by a checkpointer. If either of these things 2599 ** happened, then reading the database with the current value of 2600 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2601 ** instead. 2602 ** 2603 ** Before checking that the live wal-index header has not changed 2604 ** since it was read, set Wal.minFrame to the first frame in the wal 2605 ** file that has not yet been checkpointed. This client will not need 2606 ** to read any frames earlier than minFrame from the wal file - they 2607 ** can be safely read directly from the database file. 2608 ** 2609 ** Because a ShmBarrier() call is made between taking the copy of 2610 ** nBackfill and checking that the wal-header in shared-memory still 2611 ** matches the one cached in pWal->hdr, it is guaranteed that the 2612 ** checkpointer that set nBackfill was not working with a wal-index 2613 ** header newer than that cached in pWal->hdr. If it were, that could 2614 ** cause a problem. The checkpointer could omit to checkpoint 2615 ** a version of page X that lies before pWal->minFrame (call that version 2616 ** A) on the basis that there is a newer version (version B) of the same 2617 ** page later in the wal file. But if version B happens to like past 2618 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2619 ** that it can read version A from the database file. However, since 2620 ** we can guarantee that the checkpointer that set nBackfill could not 2621 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2622 */ 2623 pWal->minFrame = pInfo->nBackfill+1; 2624 walShmBarrier(pWal); 2625 if( pInfo->aReadMark[mxI]!=mxReadMark 2626 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2627 ){ 2628 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2629 return WAL_RETRY; 2630 }else{ 2631 assert( mxReadMark<=pWal->hdr.mxFrame ); 2632 pWal->readLock = (i16)mxI; 2633 } 2634 return rc; 2635 } 2636 2637 #ifdef SQLITE_ENABLE_SNAPSHOT 2638 /* 2639 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2640 ** variable so that older snapshots can be accessed. To do this, loop 2641 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2642 ** comparing their content to the corresponding page with the database 2643 ** file, if any. Set nBackfillAttempted to the frame number of the 2644 ** first frame for which the wal file content matches the db file. 2645 ** 2646 ** This is only really safe if the file-system is such that any page 2647 ** writes made by earlier checkpointers were atomic operations, which 2648 ** is not always true. It is also possible that nBackfillAttempted 2649 ** may be left set to a value larger than expected, if a wal frame 2650 ** contains content that duplicate of an earlier version of the same 2651 ** page. 2652 ** 2653 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2654 ** error occurs. It is not an error if nBackfillAttempted cannot be 2655 ** decreased at all. 2656 */ 2657 int sqlite3WalSnapshotRecover(Wal *pWal){ 2658 int rc; 2659 2660 assert( pWal->readLock>=0 ); 2661 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2662 if( rc==SQLITE_OK ){ 2663 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2664 int szPage = (int)pWal->szPage; 2665 i64 szDb; /* Size of db file in bytes */ 2666 2667 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2668 if( rc==SQLITE_OK ){ 2669 void *pBuf1 = sqlite3_malloc(szPage); 2670 void *pBuf2 = sqlite3_malloc(szPage); 2671 if( pBuf1==0 || pBuf2==0 ){ 2672 rc = SQLITE_NOMEM; 2673 }else{ 2674 u32 i = pInfo->nBackfillAttempted; 2675 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ 2676 WalHashLoc sLoc; /* Hash table location */ 2677 u32 pgno; /* Page number in db file */ 2678 i64 iDbOff; /* Offset of db file entry */ 2679 i64 iWalOff; /* Offset of wal file entry */ 2680 2681 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2682 if( rc!=SQLITE_OK ) break; 2683 pgno = sLoc.aPgno[i-sLoc.iZero]; 2684 iDbOff = (i64)(pgno-1) * szPage; 2685 2686 if( iDbOff+szPage<=szDb ){ 2687 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2688 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2689 2690 if( rc==SQLITE_OK ){ 2691 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2692 } 2693 2694 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2695 break; 2696 } 2697 } 2698 2699 pInfo->nBackfillAttempted = i-1; 2700 } 2701 } 2702 2703 sqlite3_free(pBuf1); 2704 sqlite3_free(pBuf2); 2705 } 2706 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2707 } 2708 2709 return rc; 2710 } 2711 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2712 2713 /* 2714 ** Begin a read transaction on the database. 2715 ** 2716 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2717 ** it takes a snapshot of the state of the WAL and wal-index for the current 2718 ** instant in time. The current thread will continue to use this snapshot. 2719 ** Other threads might append new content to the WAL and wal-index but 2720 ** that extra content is ignored by the current thread. 2721 ** 2722 ** If the database contents have changes since the previous read 2723 ** transaction, then *pChanged is set to 1 before returning. The 2724 ** Pager layer will use this to know that is cache is stale and 2725 ** needs to be flushed. 2726 */ 2727 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2728 int rc; /* Return code */ 2729 int cnt = 0; /* Number of TryBeginRead attempts */ 2730 2731 #ifdef SQLITE_ENABLE_SNAPSHOT 2732 int bChanged = 0; 2733 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2734 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2735 bChanged = 1; 2736 } 2737 #endif 2738 2739 do{ 2740 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2741 }while( rc==WAL_RETRY ); 2742 testcase( (rc&0xff)==SQLITE_BUSY ); 2743 testcase( (rc&0xff)==SQLITE_IOERR ); 2744 testcase( rc==SQLITE_PROTOCOL ); 2745 testcase( rc==SQLITE_OK ); 2746 2747 #ifdef SQLITE_ENABLE_SNAPSHOT 2748 if( rc==SQLITE_OK ){ 2749 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2750 /* At this point the client has a lock on an aReadMark[] slot holding 2751 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2752 ** is populated with the wal-index header corresponding to the head 2753 ** of the wal file. Verify that pSnapshot is still valid before 2754 ** continuing. Reasons why pSnapshot might no longer be valid: 2755 ** 2756 ** (1) The WAL file has been reset since the snapshot was taken. 2757 ** In this case, the salt will have changed. 2758 ** 2759 ** (2) A checkpoint as been attempted that wrote frames past 2760 ** pSnapshot->mxFrame into the database file. Note that the 2761 ** checkpoint need not have completed for this to cause problems. 2762 */ 2763 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2764 2765 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2766 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2767 2768 /* It is possible that there is a checkpointer thread running 2769 ** concurrent with this code. If this is the case, it may be that the 2770 ** checkpointer has already determined that it will checkpoint 2771 ** snapshot X, where X is later in the wal file than pSnapshot, but 2772 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2773 ** its intent. To avoid the race condition this leads to, ensure that 2774 ** there is no checkpointer process by taking a shared CKPT lock 2775 ** before checking pInfo->nBackfillAttempted. 2776 ** 2777 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing 2778 ** this already? 2779 */ 2780 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2781 2782 if( rc==SQLITE_OK ){ 2783 /* Check that the wal file has not been wrapped. Assuming that it has 2784 ** not, also check that no checkpointer has attempted to checkpoint any 2785 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2786 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr 2787 ** with *pSnapshot and set *pChanged as appropriate for opening the 2788 ** snapshot. */ 2789 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2790 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2791 ){ 2792 assert( pWal->readLock>0 ); 2793 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2794 *pChanged = bChanged; 2795 }else{ 2796 rc = SQLITE_BUSY_SNAPSHOT; 2797 } 2798 2799 /* Release the shared CKPT lock obtained above. */ 2800 walUnlockShared(pWal, WAL_CKPT_LOCK); 2801 } 2802 2803 2804 if( rc!=SQLITE_OK ){ 2805 sqlite3WalEndReadTransaction(pWal); 2806 } 2807 } 2808 } 2809 #endif 2810 return rc; 2811 } 2812 2813 /* 2814 ** Finish with a read transaction. All this does is release the 2815 ** read-lock. 2816 */ 2817 void sqlite3WalEndReadTransaction(Wal *pWal){ 2818 sqlite3WalEndWriteTransaction(pWal); 2819 if( pWal->readLock>=0 ){ 2820 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2821 pWal->readLock = -1; 2822 } 2823 } 2824 2825 /* 2826 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2827 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2828 ** to zero. 2829 ** 2830 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2831 ** error does occur, the final value of *piRead is undefined. 2832 */ 2833 int sqlite3WalFindFrame( 2834 Wal *pWal, /* WAL handle */ 2835 Pgno pgno, /* Database page number to read data for */ 2836 u32 *piRead /* OUT: Frame number (or zero) */ 2837 ){ 2838 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2839 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2840 int iHash; /* Used to loop through N hash tables */ 2841 int iMinHash; 2842 2843 /* This routine is only be called from within a read transaction. */ 2844 assert( pWal->readLock>=0 || pWal->lockError ); 2845 2846 /* If the "last page" field of the wal-index header snapshot is 0, then 2847 ** no data will be read from the wal under any circumstances. Return early 2848 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2849 ** then the WAL is ignored by the reader so return early, as if the 2850 ** WAL were empty. 2851 */ 2852 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2853 *piRead = 0; 2854 return SQLITE_OK; 2855 } 2856 2857 /* Search the hash table or tables for an entry matching page number 2858 ** pgno. Each iteration of the following for() loop searches one 2859 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2860 ** 2861 ** This code might run concurrently to the code in walIndexAppend() 2862 ** that adds entries to the wal-index (and possibly to this hash 2863 ** table). This means the value just read from the hash 2864 ** slot (aHash[iKey]) may have been added before or after the 2865 ** current read transaction was opened. Values added after the 2866 ** read transaction was opened may have been written incorrectly - 2867 ** i.e. these slots may contain garbage data. However, we assume 2868 ** that any slots written before the current read transaction was 2869 ** opened remain unmodified. 2870 ** 2871 ** For the reasons above, the if(...) condition featured in the inner 2872 ** loop of the following block is more stringent that would be required 2873 ** if we had exclusive access to the hash-table: 2874 ** 2875 ** (aPgno[iFrame]==pgno): 2876 ** This condition filters out normal hash-table collisions. 2877 ** 2878 ** (iFrame<=iLast): 2879 ** This condition filters out entries that were added to the hash 2880 ** table after the current read-transaction had started. 2881 */ 2882 iMinHash = walFramePage(pWal->minFrame); 2883 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 2884 WalHashLoc sLoc; /* Hash table location */ 2885 int iKey; /* Hash slot index */ 2886 int nCollide; /* Number of hash collisions remaining */ 2887 int rc; /* Error code */ 2888 2889 rc = walHashGet(pWal, iHash, &sLoc); 2890 if( rc!=SQLITE_OK ){ 2891 return rc; 2892 } 2893 nCollide = HASHTABLE_NSLOT; 2894 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 2895 u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero; 2896 if( iFrame<=iLast && iFrame>=pWal->minFrame 2897 && sLoc.aPgno[sLoc.aHash[iKey]]==pgno ){ 2898 assert( iFrame>iRead || CORRUPT_DB ); 2899 iRead = iFrame; 2900 } 2901 if( (nCollide--)==0 ){ 2902 return SQLITE_CORRUPT_BKPT; 2903 } 2904 } 2905 if( iRead ) break; 2906 } 2907 2908 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2909 /* If expensive assert() statements are available, do a linear search 2910 ** of the wal-index file content. Make sure the results agree with the 2911 ** result obtained using the hash indexes above. */ 2912 { 2913 u32 iRead2 = 0; 2914 u32 iTest; 2915 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 2916 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 2917 if( walFramePgno(pWal, iTest)==pgno ){ 2918 iRead2 = iTest; 2919 break; 2920 } 2921 } 2922 assert( iRead==iRead2 ); 2923 } 2924 #endif 2925 2926 *piRead = iRead; 2927 return SQLITE_OK; 2928 } 2929 2930 /* 2931 ** Read the contents of frame iRead from the wal file into buffer pOut 2932 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2933 ** error code otherwise. 2934 */ 2935 int sqlite3WalReadFrame( 2936 Wal *pWal, /* WAL handle */ 2937 u32 iRead, /* Frame to read */ 2938 int nOut, /* Size of buffer pOut in bytes */ 2939 u8 *pOut /* Buffer to write page data to */ 2940 ){ 2941 int sz; 2942 i64 iOffset; 2943 sz = pWal->hdr.szPage; 2944 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2945 testcase( sz<=32768 ); 2946 testcase( sz>=65536 ); 2947 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2948 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2949 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2950 } 2951 2952 /* 2953 ** Return the size of the database in pages (or zero, if unknown). 2954 */ 2955 Pgno sqlite3WalDbsize(Wal *pWal){ 2956 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2957 return pWal->hdr.nPage; 2958 } 2959 return 0; 2960 } 2961 2962 2963 /* 2964 ** This function starts a write transaction on the WAL. 2965 ** 2966 ** A read transaction must have already been started by a prior call 2967 ** to sqlite3WalBeginReadTransaction(). 2968 ** 2969 ** If another thread or process has written into the database since 2970 ** the read transaction was started, then it is not possible for this 2971 ** thread to write as doing so would cause a fork. So this routine 2972 ** returns SQLITE_BUSY in that case and no write transaction is started. 2973 ** 2974 ** There can only be a single writer active at a time. 2975 */ 2976 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2977 int rc; 2978 2979 /* Cannot start a write transaction without first holding a read 2980 ** transaction. */ 2981 assert( pWal->readLock>=0 ); 2982 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 2983 2984 if( pWal->readOnly ){ 2985 return SQLITE_READONLY; 2986 } 2987 2988 /* Only one writer allowed at a time. Get the write lock. Return 2989 ** SQLITE_BUSY if unable. 2990 */ 2991 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2992 if( rc ){ 2993 return rc; 2994 } 2995 pWal->writeLock = 1; 2996 2997 /* If another connection has written to the database file since the 2998 ** time the read transaction on this connection was started, then 2999 ** the write is disallowed. 3000 */ 3001 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3002 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3003 pWal->writeLock = 0; 3004 rc = SQLITE_BUSY_SNAPSHOT; 3005 } 3006 3007 return rc; 3008 } 3009 3010 /* 3011 ** End a write transaction. The commit has already been done. This 3012 ** routine merely releases the lock. 3013 */ 3014 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3015 if( pWal->writeLock ){ 3016 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3017 pWal->writeLock = 0; 3018 pWal->iReCksum = 0; 3019 pWal->truncateOnCommit = 0; 3020 } 3021 return SQLITE_OK; 3022 } 3023 3024 /* 3025 ** If any data has been written (but not committed) to the log file, this 3026 ** function moves the write-pointer back to the start of the transaction. 3027 ** 3028 ** Additionally, the callback function is invoked for each frame written 3029 ** to the WAL since the start of the transaction. If the callback returns 3030 ** other than SQLITE_OK, it is not invoked again and the error code is 3031 ** returned to the caller. 3032 ** 3033 ** Otherwise, if the callback function does not return an error, this 3034 ** function returns SQLITE_OK. 3035 */ 3036 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3037 int rc = SQLITE_OK; 3038 if( ALWAYS(pWal->writeLock) ){ 3039 Pgno iMax = pWal->hdr.mxFrame; 3040 Pgno iFrame; 3041 3042 /* Restore the clients cache of the wal-index header to the state it 3043 ** was in before the client began writing to the database. 3044 */ 3045 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3046 3047 for(iFrame=pWal->hdr.mxFrame+1; 3048 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3049 iFrame++ 3050 ){ 3051 /* This call cannot fail. Unless the page for which the page number 3052 ** is passed as the second argument is (a) in the cache and 3053 ** (b) has an outstanding reference, then xUndo is either a no-op 3054 ** (if (a) is false) or simply expels the page from the cache (if (b) 3055 ** is false). 3056 ** 3057 ** If the upper layer is doing a rollback, it is guaranteed that there 3058 ** are no outstanding references to any page other than page 1. And 3059 ** page 1 is never written to the log until the transaction is 3060 ** committed. As a result, the call to xUndo may not fail. 3061 */ 3062 assert( walFramePgno(pWal, iFrame)!=1 ); 3063 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3064 } 3065 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3066 } 3067 return rc; 3068 } 3069 3070 /* 3071 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3072 ** values. This function populates the array with values required to 3073 ** "rollback" the write position of the WAL handle back to the current 3074 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3075 */ 3076 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3077 assert( pWal->writeLock ); 3078 aWalData[0] = pWal->hdr.mxFrame; 3079 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3080 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3081 aWalData[3] = pWal->nCkpt; 3082 } 3083 3084 /* 3085 ** Move the write position of the WAL back to the point identified by 3086 ** the values in the aWalData[] array. aWalData must point to an array 3087 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3088 ** by a call to WalSavepoint(). 3089 */ 3090 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3091 int rc = SQLITE_OK; 3092 3093 assert( pWal->writeLock ); 3094 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3095 3096 if( aWalData[3]!=pWal->nCkpt ){ 3097 /* This savepoint was opened immediately after the write-transaction 3098 ** was started. Right after that, the writer decided to wrap around 3099 ** to the start of the log. Update the savepoint values to match. 3100 */ 3101 aWalData[0] = 0; 3102 aWalData[3] = pWal->nCkpt; 3103 } 3104 3105 if( aWalData[0]<pWal->hdr.mxFrame ){ 3106 pWal->hdr.mxFrame = aWalData[0]; 3107 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3108 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3109 walCleanupHash(pWal); 3110 } 3111 3112 return rc; 3113 } 3114 3115 /* 3116 ** This function is called just before writing a set of frames to the log 3117 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3118 ** to the current log file, it is possible to overwrite the start of the 3119 ** existing log file with the new frames (i.e. "reset" the log). If so, 3120 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3121 ** unchanged. 3122 ** 3123 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3124 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3125 ** if an error occurs. 3126 */ 3127 static int walRestartLog(Wal *pWal){ 3128 int rc = SQLITE_OK; 3129 int cnt; 3130 3131 if( pWal->readLock==0 ){ 3132 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3133 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3134 if( pInfo->nBackfill>0 ){ 3135 u32 salt1; 3136 sqlite3_randomness(4, &salt1); 3137 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3138 if( rc==SQLITE_OK ){ 3139 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3140 ** readers are currently using the WAL), then the transactions 3141 ** frames will overwrite the start of the existing log. Update the 3142 ** wal-index header to reflect this. 3143 ** 3144 ** In theory it would be Ok to update the cache of the header only 3145 ** at this point. But updating the actual wal-index header is also 3146 ** safe and means there is no special case for sqlite3WalUndo() 3147 ** to handle if this transaction is rolled back. */ 3148 walRestartHdr(pWal, salt1); 3149 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3150 }else if( rc!=SQLITE_BUSY ){ 3151 return rc; 3152 } 3153 } 3154 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3155 pWal->readLock = -1; 3156 cnt = 0; 3157 do{ 3158 int notUsed; 3159 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3160 }while( rc==WAL_RETRY ); 3161 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3162 testcase( (rc&0xff)==SQLITE_IOERR ); 3163 testcase( rc==SQLITE_PROTOCOL ); 3164 testcase( rc==SQLITE_OK ); 3165 } 3166 return rc; 3167 } 3168 3169 /* 3170 ** Information about the current state of the WAL file and where 3171 ** the next fsync should occur - passed from sqlite3WalFrames() into 3172 ** walWriteToLog(). 3173 */ 3174 typedef struct WalWriter { 3175 Wal *pWal; /* The complete WAL information */ 3176 sqlite3_file *pFd; /* The WAL file to which we write */ 3177 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3178 int syncFlags; /* Flags for the fsync */ 3179 int szPage; /* Size of one page */ 3180 } WalWriter; 3181 3182 /* 3183 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3184 ** Do a sync when crossing the p->iSyncPoint boundary. 3185 ** 3186 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3187 ** first write the part before iSyncPoint, then sync, then write the 3188 ** rest. 3189 */ 3190 static int walWriteToLog( 3191 WalWriter *p, /* WAL to write to */ 3192 void *pContent, /* Content to be written */ 3193 int iAmt, /* Number of bytes to write */ 3194 sqlite3_int64 iOffset /* Start writing at this offset */ 3195 ){ 3196 int rc; 3197 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3198 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3199 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3200 if( rc ) return rc; 3201 iOffset += iFirstAmt; 3202 iAmt -= iFirstAmt; 3203 pContent = (void*)(iFirstAmt + (char*)pContent); 3204 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3205 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3206 if( iAmt==0 || rc ) return rc; 3207 } 3208 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3209 return rc; 3210 } 3211 3212 /* 3213 ** Write out a single frame of the WAL 3214 */ 3215 static int walWriteOneFrame( 3216 WalWriter *p, /* Where to write the frame */ 3217 PgHdr *pPage, /* The page of the frame to be written */ 3218 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3219 sqlite3_int64 iOffset /* Byte offset at which to write */ 3220 ){ 3221 int rc; /* Result code from subfunctions */ 3222 void *pData; /* Data actually written */ 3223 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3224 #if defined(SQLITE_HAS_CODEC) 3225 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; 3226 #else 3227 pData = pPage->pData; 3228 #endif 3229 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3230 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3231 if( rc ) return rc; 3232 /* Write the page data */ 3233 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3234 return rc; 3235 } 3236 3237 /* 3238 ** This function is called as part of committing a transaction within which 3239 ** one or more frames have been overwritten. It updates the checksums for 3240 ** all frames written to the wal file by the current transaction starting 3241 ** with the earliest to have been overwritten. 3242 ** 3243 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3244 */ 3245 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3246 const int szPage = pWal->szPage;/* Database page size */ 3247 int rc = SQLITE_OK; /* Return code */ 3248 u8 *aBuf; /* Buffer to load data from wal file into */ 3249 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3250 u32 iRead; /* Next frame to read from wal file */ 3251 i64 iCksumOff; 3252 3253 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3254 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3255 3256 /* Find the checksum values to use as input for the recalculating the 3257 ** first checksum. If the first frame is frame 1 (implying that the current 3258 ** transaction restarted the wal file), these values must be read from the 3259 ** wal-file header. Otherwise, read them from the frame header of the 3260 ** previous frame. */ 3261 assert( pWal->iReCksum>0 ); 3262 if( pWal->iReCksum==1 ){ 3263 iCksumOff = 24; 3264 }else{ 3265 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3266 } 3267 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3268 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3269 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3270 3271 iRead = pWal->iReCksum; 3272 pWal->iReCksum = 0; 3273 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3274 i64 iOff = walFrameOffset(iRead, szPage); 3275 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3276 if( rc==SQLITE_OK ){ 3277 u32 iPgno, nDbSize; 3278 iPgno = sqlite3Get4byte(aBuf); 3279 nDbSize = sqlite3Get4byte(&aBuf[4]); 3280 3281 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3282 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3283 } 3284 } 3285 3286 sqlite3_free(aBuf); 3287 return rc; 3288 } 3289 3290 /* 3291 ** Write a set of frames to the log. The caller must hold the write-lock 3292 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3293 */ 3294 int sqlite3WalFrames( 3295 Wal *pWal, /* Wal handle to write to */ 3296 int szPage, /* Database page-size in bytes */ 3297 PgHdr *pList, /* List of dirty pages to write */ 3298 Pgno nTruncate, /* Database size after this commit */ 3299 int isCommit, /* True if this is a commit */ 3300 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3301 ){ 3302 int rc; /* Used to catch return codes */ 3303 u32 iFrame; /* Next frame address */ 3304 PgHdr *p; /* Iterator to run through pList with. */ 3305 PgHdr *pLast = 0; /* Last frame in list */ 3306 int nExtra = 0; /* Number of extra copies of last page */ 3307 int szFrame; /* The size of a single frame */ 3308 i64 iOffset; /* Next byte to write in WAL file */ 3309 WalWriter w; /* The writer */ 3310 u32 iFirst = 0; /* First frame that may be overwritten */ 3311 WalIndexHdr *pLive; /* Pointer to shared header */ 3312 3313 assert( pList ); 3314 assert( pWal->writeLock ); 3315 3316 /* If this frame set completes a transaction, then nTruncate>0. If 3317 ** nTruncate==0 then this frame set does not complete the transaction. */ 3318 assert( (isCommit!=0)==(nTruncate!=0) ); 3319 3320 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3321 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3322 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3323 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3324 } 3325 #endif 3326 3327 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3328 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3329 iFirst = pLive->mxFrame+1; 3330 } 3331 3332 /* See if it is possible to write these frames into the start of the 3333 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3334 */ 3335 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3336 return rc; 3337 } 3338 3339 /* If this is the first frame written into the log, write the WAL 3340 ** header to the start of the WAL file. See comments at the top of 3341 ** this source file for a description of the WAL header format. 3342 */ 3343 iFrame = pWal->hdr.mxFrame; 3344 if( iFrame==0 ){ 3345 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3346 u32 aCksum[2]; /* Checksum for wal-header */ 3347 3348 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3349 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3350 sqlite3Put4byte(&aWalHdr[8], szPage); 3351 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3352 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3353 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3354 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3355 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3356 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3357 3358 pWal->szPage = szPage; 3359 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3360 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3361 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3362 pWal->truncateOnCommit = 1; 3363 3364 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3365 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3366 if( rc!=SQLITE_OK ){ 3367 return rc; 3368 } 3369 3370 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3371 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3372 ** an out-of-order write following a WAL restart could result in 3373 ** database corruption. See the ticket: 3374 ** 3375 ** https://sqlite.org/src/info/ff5be73dee 3376 */ 3377 if( pWal->syncHeader ){ 3378 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3379 if( rc ) return rc; 3380 } 3381 } 3382 assert( (int)pWal->szPage==szPage ); 3383 3384 /* Setup information needed to write frames into the WAL */ 3385 w.pWal = pWal; 3386 w.pFd = pWal->pWalFd; 3387 w.iSyncPoint = 0; 3388 w.syncFlags = sync_flags; 3389 w.szPage = szPage; 3390 iOffset = walFrameOffset(iFrame+1, szPage); 3391 szFrame = szPage + WAL_FRAME_HDRSIZE; 3392 3393 /* Write all frames into the log file exactly once */ 3394 for(p=pList; p; p=p->pDirty){ 3395 int nDbSize; /* 0 normally. Positive == commit flag */ 3396 3397 /* Check if this page has already been written into the wal file by 3398 ** the current transaction. If so, overwrite the existing frame and 3399 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3400 ** checksums must be recomputed when the transaction is committed. */ 3401 if( iFirst && (p->pDirty || isCommit==0) ){ 3402 u32 iWrite = 0; 3403 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3404 assert( rc==SQLITE_OK || iWrite==0 ); 3405 if( iWrite>=iFirst ){ 3406 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3407 void *pData; 3408 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3409 pWal->iReCksum = iWrite; 3410 } 3411 #if defined(SQLITE_HAS_CODEC) 3412 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 3413 #else 3414 pData = p->pData; 3415 #endif 3416 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3417 if( rc ) return rc; 3418 p->flags &= ~PGHDR_WAL_APPEND; 3419 continue; 3420 } 3421 } 3422 3423 iFrame++; 3424 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3425 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3426 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3427 if( rc ) return rc; 3428 pLast = p; 3429 iOffset += szFrame; 3430 p->flags |= PGHDR_WAL_APPEND; 3431 } 3432 3433 /* Recalculate checksums within the wal file if required. */ 3434 if( isCommit && pWal->iReCksum ){ 3435 rc = walRewriteChecksums(pWal, iFrame); 3436 if( rc ) return rc; 3437 } 3438 3439 /* If this is the end of a transaction, then we might need to pad 3440 ** the transaction and/or sync the WAL file. 3441 ** 3442 ** Padding and syncing only occur if this set of frames complete a 3443 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3444 ** or synchronous==OFF, then no padding or syncing are needed. 3445 ** 3446 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3447 ** needed and only the sync is done. If padding is needed, then the 3448 ** final frame is repeated (with its commit mark) until the next sector 3449 ** boundary is crossed. Only the part of the WAL prior to the last 3450 ** sector boundary is synced; the part of the last frame that extends 3451 ** past the sector boundary is written after the sync. 3452 */ 3453 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3454 int bSync = 1; 3455 if( pWal->padToSectorBoundary ){ 3456 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3457 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3458 bSync = (w.iSyncPoint==iOffset); 3459 testcase( bSync ); 3460 while( iOffset<w.iSyncPoint ){ 3461 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3462 if( rc ) return rc; 3463 iOffset += szFrame; 3464 nExtra++; 3465 } 3466 } 3467 if( bSync ){ 3468 assert( rc==SQLITE_OK ); 3469 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3470 } 3471 } 3472 3473 /* If this frame set completes the first transaction in the WAL and 3474 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3475 ** journal size limit, if possible. 3476 */ 3477 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3478 i64 sz = pWal->mxWalSize; 3479 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3480 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3481 } 3482 walLimitSize(pWal, sz); 3483 pWal->truncateOnCommit = 0; 3484 } 3485 3486 /* Append data to the wal-index. It is not necessary to lock the 3487 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3488 ** guarantees that there are no other writers, and no data that may 3489 ** be in use by existing readers is being overwritten. 3490 */ 3491 iFrame = pWal->hdr.mxFrame; 3492 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3493 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3494 iFrame++; 3495 rc = walIndexAppend(pWal, iFrame, p->pgno); 3496 } 3497 while( rc==SQLITE_OK && nExtra>0 ){ 3498 iFrame++; 3499 nExtra--; 3500 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3501 } 3502 3503 if( rc==SQLITE_OK ){ 3504 /* Update the private copy of the header. */ 3505 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3506 testcase( szPage<=32768 ); 3507 testcase( szPage>=65536 ); 3508 pWal->hdr.mxFrame = iFrame; 3509 if( isCommit ){ 3510 pWal->hdr.iChange++; 3511 pWal->hdr.nPage = nTruncate; 3512 } 3513 /* If this is a commit, update the wal-index header too. */ 3514 if( isCommit ){ 3515 walIndexWriteHdr(pWal); 3516 pWal->iCallback = iFrame; 3517 } 3518 } 3519 3520 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3521 return rc; 3522 } 3523 3524 /* 3525 ** This routine is called to implement sqlite3_wal_checkpoint() and 3526 ** related interfaces. 3527 ** 3528 ** Obtain a CHECKPOINT lock and then backfill as much information as 3529 ** we can from WAL into the database. 3530 ** 3531 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3532 ** callback. In this case this function runs a blocking checkpoint. 3533 */ 3534 int sqlite3WalCheckpoint( 3535 Wal *pWal, /* Wal connection */ 3536 sqlite3 *db, /* Check this handle's interrupt flag */ 3537 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3538 int (*xBusy)(void*), /* Function to call when busy */ 3539 void *pBusyArg, /* Context argument for xBusyHandler */ 3540 int sync_flags, /* Flags to sync db file with (or 0) */ 3541 int nBuf, /* Size of temporary buffer */ 3542 u8 *zBuf, /* Temporary buffer to use */ 3543 int *pnLog, /* OUT: Number of frames in WAL */ 3544 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3545 ){ 3546 int rc; /* Return code */ 3547 int isChanged = 0; /* True if a new wal-index header is loaded */ 3548 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3549 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3550 3551 assert( pWal->ckptLock==0 ); 3552 assert( pWal->writeLock==0 ); 3553 3554 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3555 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3556 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3557 3558 if( pWal->readOnly ) return SQLITE_READONLY; 3559 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3560 3561 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3562 ** "checkpoint" lock on the database file. */ 3563 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3564 if( rc ){ 3565 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3566 ** checkpoint operation at the same time, the lock cannot be obtained and 3567 ** SQLITE_BUSY is returned. 3568 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3569 ** it will not be invoked in this case. 3570 */ 3571 testcase( rc==SQLITE_BUSY ); 3572 testcase( xBusy!=0 ); 3573 return rc; 3574 } 3575 pWal->ckptLock = 1; 3576 3577 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3578 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3579 ** file. 3580 ** 3581 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3582 ** immediately, and a busy-handler is configured, it is invoked and the 3583 ** writer lock retried until either the busy-handler returns 0 or the 3584 ** lock is successfully obtained. 3585 */ 3586 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3587 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3588 if( rc==SQLITE_OK ){ 3589 pWal->writeLock = 1; 3590 }else if( rc==SQLITE_BUSY ){ 3591 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3592 xBusy2 = 0; 3593 rc = SQLITE_OK; 3594 } 3595 } 3596 3597 /* Read the wal-index header. */ 3598 if( rc==SQLITE_OK ){ 3599 rc = walIndexReadHdr(pWal, &isChanged); 3600 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3601 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3602 } 3603 } 3604 3605 /* Copy data from the log to the database file. */ 3606 if( rc==SQLITE_OK ){ 3607 3608 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3609 rc = SQLITE_CORRUPT_BKPT; 3610 }else{ 3611 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3612 } 3613 3614 /* If no error occurred, set the output variables. */ 3615 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3616 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3617 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3618 } 3619 } 3620 3621 if( isChanged ){ 3622 /* If a new wal-index header was loaded before the checkpoint was 3623 ** performed, then the pager-cache associated with pWal is now 3624 ** out of date. So zero the cached wal-index header to ensure that 3625 ** next time the pager opens a snapshot on this database it knows that 3626 ** the cache needs to be reset. 3627 */ 3628 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3629 } 3630 3631 /* Release the locks. */ 3632 sqlite3WalEndWriteTransaction(pWal); 3633 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3634 pWal->ckptLock = 0; 3635 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3636 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3637 } 3638 3639 /* Return the value to pass to a sqlite3_wal_hook callback, the 3640 ** number of frames in the WAL at the point of the last commit since 3641 ** sqlite3WalCallback() was called. If no commits have occurred since 3642 ** the last call, then return 0. 3643 */ 3644 int sqlite3WalCallback(Wal *pWal){ 3645 u32 ret = 0; 3646 if( pWal ){ 3647 ret = pWal->iCallback; 3648 pWal->iCallback = 0; 3649 } 3650 return (int)ret; 3651 } 3652 3653 /* 3654 ** This function is called to change the WAL subsystem into or out 3655 ** of locking_mode=EXCLUSIVE. 3656 ** 3657 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3658 ** into locking_mode=NORMAL. This means that we must acquire a lock 3659 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3660 ** or if the acquisition of the lock fails, then return 0. If the 3661 ** transition out of exclusive-mode is successful, return 1. This 3662 ** operation must occur while the pager is still holding the exclusive 3663 ** lock on the main database file. 3664 ** 3665 ** If op is one, then change from locking_mode=NORMAL into 3666 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3667 ** be released. Return 1 if the transition is made and 0 if the 3668 ** WAL is already in exclusive-locking mode - meaning that this 3669 ** routine is a no-op. The pager must already hold the exclusive lock 3670 ** on the main database file before invoking this operation. 3671 ** 3672 ** If op is negative, then do a dry-run of the op==1 case but do 3673 ** not actually change anything. The pager uses this to see if it 3674 ** should acquire the database exclusive lock prior to invoking 3675 ** the op==1 case. 3676 */ 3677 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3678 int rc; 3679 assert( pWal->writeLock==0 ); 3680 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3681 3682 /* pWal->readLock is usually set, but might be -1 if there was a 3683 ** prior error while attempting to acquire are read-lock. This cannot 3684 ** happen if the connection is actually in exclusive mode (as no xShmLock 3685 ** locks are taken in this case). Nor should the pager attempt to 3686 ** upgrade to exclusive-mode following such an error. 3687 */ 3688 assert( pWal->readLock>=0 || pWal->lockError ); 3689 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3690 3691 if( op==0 ){ 3692 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3693 pWal->exclusiveMode = WAL_NORMAL_MODE; 3694 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3695 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3696 } 3697 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3698 }else{ 3699 /* Already in locking_mode=NORMAL */ 3700 rc = 0; 3701 } 3702 }else if( op>0 ){ 3703 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3704 assert( pWal->readLock>=0 ); 3705 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3706 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3707 rc = 1; 3708 }else{ 3709 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3710 } 3711 return rc; 3712 } 3713 3714 /* 3715 ** Return true if the argument is non-NULL and the WAL module is using 3716 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3717 ** WAL module is using shared-memory, return false. 3718 */ 3719 int sqlite3WalHeapMemory(Wal *pWal){ 3720 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3721 } 3722 3723 #ifdef SQLITE_ENABLE_SNAPSHOT 3724 /* Create a snapshot object. The content of a snapshot is opaque to 3725 ** every other subsystem, so the WAL module can put whatever it needs 3726 ** in the object. 3727 */ 3728 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3729 int rc = SQLITE_OK; 3730 WalIndexHdr *pRet; 3731 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3732 3733 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3734 3735 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3736 *ppSnapshot = 0; 3737 return SQLITE_ERROR; 3738 } 3739 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3740 if( pRet==0 ){ 3741 rc = SQLITE_NOMEM_BKPT; 3742 }else{ 3743 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3744 *ppSnapshot = (sqlite3_snapshot*)pRet; 3745 } 3746 3747 return rc; 3748 } 3749 3750 /* Try to open on pSnapshot when the next read-transaction starts 3751 */ 3752 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3753 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3754 } 3755 3756 /* 3757 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3758 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3759 */ 3760 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3761 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3762 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3763 3764 /* aSalt[0] is a copy of the value stored in the wal file header. It 3765 ** is incremented each time the wal file is restarted. */ 3766 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3767 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3768 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3769 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3770 return 0; 3771 } 3772 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3773 3774 #ifdef SQLITE_ENABLE_ZIPVFS 3775 /* 3776 ** If the argument is not NULL, it points to a Wal object that holds a 3777 ** read-lock. This function returns the database page-size if it is known, 3778 ** or zero if it is not (or if pWal is NULL). 3779 */ 3780 int sqlite3WalFramesize(Wal *pWal){ 3781 assert( pWal==0 || pWal->readLock>=0 ); 3782 return (pWal ? pWal->szPage : 0); 3783 } 3784 #endif 3785 3786 /* Return the sqlite3_file object for the WAL file 3787 */ 3788 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3789 return pWal->pWalFd; 3790 } 3791 3792 #endif /* #ifndef SQLITE_OMIT_WAL */ 3793