1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 }; 471 472 /* 473 ** Candidate values for Wal.exclusiveMode. 474 */ 475 #define WAL_NORMAL_MODE 0 476 #define WAL_EXCLUSIVE_MODE 1 477 #define WAL_HEAPMEMORY_MODE 2 478 479 /* 480 ** Possible values for WAL.readOnly 481 */ 482 #define WAL_RDWR 0 /* Normal read/write connection */ 483 #define WAL_RDONLY 1 /* The WAL file is readonly */ 484 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 485 486 /* 487 ** Each page of the wal-index mapping contains a hash-table made up of 488 ** an array of HASHTABLE_NSLOT elements of the following type. 489 */ 490 typedef u16 ht_slot; 491 492 /* 493 ** This structure is used to implement an iterator that loops through 494 ** all frames in the WAL in database page order. Where two or more frames 495 ** correspond to the same database page, the iterator visits only the 496 ** frame most recently written to the WAL (in other words, the frame with 497 ** the largest index). 498 ** 499 ** The internals of this structure are only accessed by: 500 ** 501 ** walIteratorInit() - Create a new iterator, 502 ** walIteratorNext() - Step an iterator, 503 ** walIteratorFree() - Free an iterator. 504 ** 505 ** This functionality is used by the checkpoint code (see walCheckpoint()). 506 */ 507 struct WalIterator { 508 int iPrior; /* Last result returned from the iterator */ 509 int nSegment; /* Number of entries in aSegment[] */ 510 struct WalSegment { 511 int iNext; /* Next slot in aIndex[] not yet returned */ 512 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 513 u32 *aPgno; /* Array of page numbers. */ 514 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 515 int iZero; /* Frame number associated with aPgno[0] */ 516 } aSegment[1]; /* One for every 32KB page in the wal-index */ 517 }; 518 519 /* 520 ** Define the parameters of the hash tables in the wal-index file. There 521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 522 ** wal-index. 523 ** 524 ** Changing any of these constants will alter the wal-index format and 525 ** create incompatibilities. 526 */ 527 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 528 #define HASHTABLE_HASH_1 383 /* Should be prime */ 529 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 530 531 /* 532 ** The block of page numbers associated with the first hash-table in a 533 ** wal-index is smaller than usual. This is so that there is a complete 534 ** hash-table on each aligned 32KB page of the wal-index. 535 */ 536 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 537 538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 539 #define WALINDEX_PGSZ ( \ 540 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 541 ) 542 543 /* 544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 546 ** numbered from zero. 547 ** 548 ** If the wal-index is currently smaller the iPage pages then the size 549 ** of the wal-index might be increased, but only if it is safe to do 550 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 552 ** 553 ** If this call is successful, *ppPage is set to point to the wal-index 554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 555 ** then an SQLite error code is returned and *ppPage is set to 0. 556 */ 557 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 558 int rc = SQLITE_OK; 559 560 /* Enlarge the pWal->apWiData[] array if required */ 561 if( pWal->nWiData<=iPage ){ 562 int nByte = sizeof(u32*)*(iPage+1); 563 volatile u32 **apNew; 564 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 565 if( !apNew ){ 566 *ppPage = 0; 567 return SQLITE_NOMEM_BKPT; 568 } 569 memset((void*)&apNew[pWal->nWiData], 0, 570 sizeof(u32*)*(iPage+1-pWal->nWiData)); 571 pWal->apWiData = apNew; 572 pWal->nWiData = iPage+1; 573 } 574 575 /* Request a pointer to the required page from the VFS */ 576 if( pWal->apWiData[iPage]==0 ){ 577 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 578 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 579 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 580 }else{ 581 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 582 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 583 ); 584 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 585 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 586 if( (rc&0xff)==SQLITE_READONLY ){ 587 pWal->readOnly |= WAL_SHM_RDONLY; 588 if( rc==SQLITE_READONLY ){ 589 rc = SQLITE_OK; 590 } 591 } 592 } 593 } 594 595 *ppPage = pWal->apWiData[iPage]; 596 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 597 return rc; 598 } 599 600 /* 601 ** Return a pointer to the WalCkptInfo structure in the wal-index. 602 */ 603 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 604 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 605 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 606 } 607 608 /* 609 ** Return a pointer to the WalIndexHdr structure in the wal-index. 610 */ 611 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 612 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 613 return (volatile WalIndexHdr*)pWal->apWiData[0]; 614 } 615 616 /* 617 ** The argument to this macro must be of type u32. On a little-endian 618 ** architecture, it returns the u32 value that results from interpreting 619 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 620 ** returns the value that would be produced by interpreting the 4 bytes 621 ** of the input value as a little-endian integer. 622 */ 623 #define BYTESWAP32(x) ( \ 624 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 625 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 626 ) 627 628 /* 629 ** Generate or extend an 8 byte checksum based on the data in 630 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 631 ** initial values of 0 and 0 if aIn==NULL). 632 ** 633 ** The checksum is written back into aOut[] before returning. 634 ** 635 ** nByte must be a positive multiple of 8. 636 */ 637 static void walChecksumBytes( 638 int nativeCksum, /* True for native byte-order, false for non-native */ 639 u8 *a, /* Content to be checksummed */ 640 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 641 const u32 *aIn, /* Initial checksum value input */ 642 u32 *aOut /* OUT: Final checksum value output */ 643 ){ 644 u32 s1, s2; 645 u32 *aData = (u32 *)a; 646 u32 *aEnd = (u32 *)&a[nByte]; 647 648 if( aIn ){ 649 s1 = aIn[0]; 650 s2 = aIn[1]; 651 }else{ 652 s1 = s2 = 0; 653 } 654 655 assert( nByte>=8 ); 656 assert( (nByte&0x00000007)==0 ); 657 658 if( nativeCksum ){ 659 do { 660 s1 += *aData++ + s2; 661 s2 += *aData++ + s1; 662 }while( aData<aEnd ); 663 }else{ 664 do { 665 s1 += BYTESWAP32(aData[0]) + s2; 666 s2 += BYTESWAP32(aData[1]) + s1; 667 aData += 2; 668 }while( aData<aEnd ); 669 } 670 671 aOut[0] = s1; 672 aOut[1] = s2; 673 } 674 675 static void walShmBarrier(Wal *pWal){ 676 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 677 sqlite3OsShmBarrier(pWal->pDbFd); 678 } 679 } 680 681 /* 682 ** Write the header information in pWal->hdr into the wal-index. 683 ** 684 ** The checksum on pWal->hdr is updated before it is written. 685 */ 686 static void walIndexWriteHdr(Wal *pWal){ 687 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 688 const int nCksum = offsetof(WalIndexHdr, aCksum); 689 690 assert( pWal->writeLock ); 691 pWal->hdr.isInit = 1; 692 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 693 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 694 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 695 walShmBarrier(pWal); 696 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 697 } 698 699 /* 700 ** This function encodes a single frame header and writes it to a buffer 701 ** supplied by the caller. A frame-header is made up of a series of 702 ** 4-byte big-endian integers, as follows: 703 ** 704 ** 0: Page number. 705 ** 4: For commit records, the size of the database image in pages 706 ** after the commit. For all other records, zero. 707 ** 8: Salt-1 (copied from the wal-header) 708 ** 12: Salt-2 (copied from the wal-header) 709 ** 16: Checksum-1. 710 ** 20: Checksum-2. 711 */ 712 static void walEncodeFrame( 713 Wal *pWal, /* The write-ahead log */ 714 u32 iPage, /* Database page number for frame */ 715 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 716 u8 *aData, /* Pointer to page data */ 717 u8 *aFrame /* OUT: Write encoded frame here */ 718 ){ 719 int nativeCksum; /* True for native byte-order checksums */ 720 u32 *aCksum = pWal->hdr.aFrameCksum; 721 assert( WAL_FRAME_HDRSIZE==24 ); 722 sqlite3Put4byte(&aFrame[0], iPage); 723 sqlite3Put4byte(&aFrame[4], nTruncate); 724 if( pWal->iReCksum==0 ){ 725 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 726 727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 730 731 sqlite3Put4byte(&aFrame[16], aCksum[0]); 732 sqlite3Put4byte(&aFrame[20], aCksum[1]); 733 }else{ 734 memset(&aFrame[8], 0, 16); 735 } 736 } 737 738 /* 739 ** Check to see if the frame with header in aFrame[] and content 740 ** in aData[] is valid. If it is a valid frame, fill *piPage and 741 ** *pnTruncate and return true. Return if the frame is not valid. 742 */ 743 static int walDecodeFrame( 744 Wal *pWal, /* The write-ahead log */ 745 u32 *piPage, /* OUT: Database page number for frame */ 746 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 747 u8 *aData, /* Pointer to page data (for checksum) */ 748 u8 *aFrame /* Frame data */ 749 ){ 750 int nativeCksum; /* True for native byte-order checksums */ 751 u32 *aCksum = pWal->hdr.aFrameCksum; 752 u32 pgno; /* Page number of the frame */ 753 assert( WAL_FRAME_HDRSIZE==24 ); 754 755 /* A frame is only valid if the salt values in the frame-header 756 ** match the salt values in the wal-header. 757 */ 758 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 759 return 0; 760 } 761 762 /* A frame is only valid if the page number is creater than zero. 763 */ 764 pgno = sqlite3Get4byte(&aFrame[0]); 765 if( pgno==0 ){ 766 return 0; 767 } 768 769 /* A frame is only valid if a checksum of the WAL header, 770 ** all prior frams, the first 16 bytes of this frame-header, 771 ** and the frame-data matches the checksum in the last 8 772 ** bytes of this frame-header. 773 */ 774 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 775 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 776 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 777 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 778 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 779 ){ 780 /* Checksum failed. */ 781 return 0; 782 } 783 784 /* If we reach this point, the frame is valid. Return the page number 785 ** and the new database size. 786 */ 787 *piPage = pgno; 788 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 789 return 1; 790 } 791 792 793 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 794 /* 795 ** Names of locks. This routine is used to provide debugging output and is not 796 ** a part of an ordinary build. 797 */ 798 static const char *walLockName(int lockIdx){ 799 if( lockIdx==WAL_WRITE_LOCK ){ 800 return "WRITE-LOCK"; 801 }else if( lockIdx==WAL_CKPT_LOCK ){ 802 return "CKPT-LOCK"; 803 }else if( lockIdx==WAL_RECOVER_LOCK ){ 804 return "RECOVER-LOCK"; 805 }else{ 806 static char zName[15]; 807 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 808 lockIdx-WAL_READ_LOCK(0)); 809 return zName; 810 } 811 } 812 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 813 814 815 /* 816 ** Set or release locks on the WAL. Locks are either shared or exclusive. 817 ** A lock cannot be moved directly between shared and exclusive - it must go 818 ** through the unlocked state first. 819 ** 820 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 821 */ 822 static int walLockShared(Wal *pWal, int lockIdx){ 823 int rc; 824 if( pWal->exclusiveMode ) return SQLITE_OK; 825 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 826 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 827 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 828 walLockName(lockIdx), rc ? "failed" : "ok")); 829 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 830 return rc; 831 } 832 static void walUnlockShared(Wal *pWal, int lockIdx){ 833 if( pWal->exclusiveMode ) return; 834 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 835 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 836 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 837 } 838 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 839 int rc; 840 if( pWal->exclusiveMode ) return SQLITE_OK; 841 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 842 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 843 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 844 walLockName(lockIdx), n, rc ? "failed" : "ok")); 845 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 846 return rc; 847 } 848 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 849 if( pWal->exclusiveMode ) return; 850 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 851 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 852 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 853 walLockName(lockIdx), n)); 854 } 855 856 /* 857 ** Compute a hash on a page number. The resulting hash value must land 858 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 859 ** the hash to the next value in the event of a collision. 860 */ 861 static int walHash(u32 iPage){ 862 assert( iPage>0 ); 863 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 864 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 865 } 866 static int walNextHash(int iPriorHash){ 867 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 868 } 869 870 /* 871 ** Return pointers to the hash table and page number array stored on 872 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 873 ** numbered starting from 0. 874 ** 875 ** Set output variable *paHash to point to the start of the hash table 876 ** in the wal-index file. Set *piZero to one less than the frame 877 ** number of the first frame indexed by this hash table. If a 878 ** slot in the hash table is set to N, it refers to frame number 879 ** (*piZero+N) in the log. 880 ** 881 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 882 ** first frame indexed by the hash table, frame (*piZero+1). 883 */ 884 static int walHashGet( 885 Wal *pWal, /* WAL handle */ 886 int iHash, /* Find the iHash'th table */ 887 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 888 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 889 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 890 ){ 891 int rc; /* Return code */ 892 volatile u32 *aPgno; 893 894 rc = walIndexPage(pWal, iHash, &aPgno); 895 assert( rc==SQLITE_OK || iHash>0 ); 896 897 if( rc==SQLITE_OK ){ 898 u32 iZero; 899 volatile ht_slot *aHash; 900 901 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 902 if( iHash==0 ){ 903 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 904 iZero = 0; 905 }else{ 906 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 907 } 908 909 *paPgno = &aPgno[-1]; 910 *paHash = aHash; 911 *piZero = iZero; 912 } 913 return rc; 914 } 915 916 /* 917 ** Return the number of the wal-index page that contains the hash-table 918 ** and page-number array that contain entries corresponding to WAL frame 919 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 920 ** are numbered starting from 0. 921 */ 922 static int walFramePage(u32 iFrame){ 923 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 924 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 925 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 926 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 927 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 928 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 929 ); 930 return iHash; 931 } 932 933 /* 934 ** Return the page number associated with frame iFrame in this WAL. 935 */ 936 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 937 int iHash = walFramePage(iFrame); 938 if( iHash==0 ){ 939 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 940 } 941 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 942 } 943 944 /* 945 ** Remove entries from the hash table that point to WAL slots greater 946 ** than pWal->hdr.mxFrame. 947 ** 948 ** This function is called whenever pWal->hdr.mxFrame is decreased due 949 ** to a rollback or savepoint. 950 ** 951 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 952 ** updated. Any later hash tables will be automatically cleared when 953 ** pWal->hdr.mxFrame advances to the point where those hash tables are 954 ** actually needed. 955 */ 956 static void walCleanupHash(Wal *pWal){ 957 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 958 volatile u32 *aPgno = 0; /* Page number array for hash table */ 959 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 960 int iLimit = 0; /* Zero values greater than this */ 961 int nByte; /* Number of bytes to zero in aPgno[] */ 962 int i; /* Used to iterate through aHash[] */ 963 964 assert( pWal->writeLock ); 965 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 966 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 967 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 968 969 if( pWal->hdr.mxFrame==0 ) return; 970 971 /* Obtain pointers to the hash-table and page-number array containing 972 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 973 ** that the page said hash-table and array reside on is already mapped. 974 */ 975 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 976 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 977 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 978 979 /* Zero all hash-table entries that correspond to frame numbers greater 980 ** than pWal->hdr.mxFrame. 981 */ 982 iLimit = pWal->hdr.mxFrame - iZero; 983 assert( iLimit>0 ); 984 for(i=0; i<HASHTABLE_NSLOT; i++){ 985 if( aHash[i]>iLimit ){ 986 aHash[i] = 0; 987 } 988 } 989 990 /* Zero the entries in the aPgno array that correspond to frames with 991 ** frame numbers greater than pWal->hdr.mxFrame. 992 */ 993 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 994 memset((void *)&aPgno[iLimit+1], 0, nByte); 995 996 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 997 /* Verify that the every entry in the mapping region is still reachable 998 ** via the hash table even after the cleanup. 999 */ 1000 if( iLimit ){ 1001 int j; /* Loop counter */ 1002 int iKey; /* Hash key */ 1003 for(j=1; j<=iLimit; j++){ 1004 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ 1005 if( aHash[iKey]==j ) break; 1006 } 1007 assert( aHash[iKey]==j ); 1008 } 1009 } 1010 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1011 } 1012 1013 1014 /* 1015 ** Set an entry in the wal-index that will map database page number 1016 ** pPage into WAL frame iFrame. 1017 */ 1018 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1019 int rc; /* Return code */ 1020 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 1021 volatile u32 *aPgno = 0; /* Page number array */ 1022 volatile ht_slot *aHash = 0; /* Hash table */ 1023 1024 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 1025 1026 /* Assuming the wal-index file was successfully mapped, populate the 1027 ** page number array and hash table entry. 1028 */ 1029 if( rc==SQLITE_OK ){ 1030 int iKey; /* Hash table key */ 1031 int idx; /* Value to write to hash-table slot */ 1032 int nCollide; /* Number of hash collisions */ 1033 1034 idx = iFrame - iZero; 1035 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1036 1037 /* If this is the first entry to be added to this hash-table, zero the 1038 ** entire hash table and aPgno[] array before proceeding. 1039 */ 1040 if( idx==1 ){ 1041 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 1042 memset((void*)&aPgno[1], 0, nByte); 1043 } 1044 1045 /* If the entry in aPgno[] is already set, then the previous writer 1046 ** must have exited unexpectedly in the middle of a transaction (after 1047 ** writing one or more dirty pages to the WAL to free up memory). 1048 ** Remove the remnants of that writers uncommitted transaction from 1049 ** the hash-table before writing any new entries. 1050 */ 1051 if( aPgno[idx] ){ 1052 walCleanupHash(pWal); 1053 assert( !aPgno[idx] ); 1054 } 1055 1056 /* Write the aPgno[] array entry and the hash-table slot. */ 1057 nCollide = idx; 1058 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1059 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1060 } 1061 aPgno[idx] = iPage; 1062 aHash[iKey] = (ht_slot)idx; 1063 1064 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1065 /* Verify that the number of entries in the hash table exactly equals 1066 ** the number of entries in the mapping region. 1067 */ 1068 { 1069 int i; /* Loop counter */ 1070 int nEntry = 0; /* Number of entries in the hash table */ 1071 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1072 assert( nEntry==idx ); 1073 } 1074 1075 /* Verify that the every entry in the mapping region is reachable 1076 ** via the hash table. This turns out to be a really, really expensive 1077 ** thing to check, so only do this occasionally - not on every 1078 ** iteration. 1079 */ 1080 if( (idx&0x3ff)==0 ){ 1081 int i; /* Loop counter */ 1082 for(i=1; i<=idx; i++){ 1083 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1084 if( aHash[iKey]==i ) break; 1085 } 1086 assert( aHash[iKey]==i ); 1087 } 1088 } 1089 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1090 } 1091 1092 1093 return rc; 1094 } 1095 1096 1097 /* 1098 ** Recover the wal-index by reading the write-ahead log file. 1099 ** 1100 ** This routine first tries to establish an exclusive lock on the 1101 ** wal-index to prevent other threads/processes from doing anything 1102 ** with the WAL or wal-index while recovery is running. The 1103 ** WAL_RECOVER_LOCK is also held so that other threads will know 1104 ** that this thread is running recovery. If unable to establish 1105 ** the necessary locks, this routine returns SQLITE_BUSY. 1106 */ 1107 static int walIndexRecover(Wal *pWal){ 1108 int rc; /* Return Code */ 1109 i64 nSize; /* Size of log file */ 1110 u32 aFrameCksum[2] = {0, 0}; 1111 int iLock; /* Lock offset to lock for checkpoint */ 1112 1113 /* Obtain an exclusive lock on all byte in the locking range not already 1114 ** locked by the caller. The caller is guaranteed to have locked the 1115 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1116 ** If successful, the same bytes that are locked here are unlocked before 1117 ** this function returns. 1118 */ 1119 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1120 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1121 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1122 assert( pWal->writeLock ); 1123 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1124 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1125 if( rc==SQLITE_OK ){ 1126 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1127 if( rc!=SQLITE_OK ){ 1128 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1129 } 1130 } 1131 if( rc ){ 1132 return rc; 1133 } 1134 1135 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1136 1137 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1138 1139 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1140 if( rc!=SQLITE_OK ){ 1141 goto recovery_error; 1142 } 1143 1144 if( nSize>WAL_HDRSIZE ){ 1145 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1146 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1147 int szFrame; /* Number of bytes in buffer aFrame[] */ 1148 u8 *aData; /* Pointer to data part of aFrame buffer */ 1149 int iFrame; /* Index of last frame read */ 1150 i64 iOffset; /* Next offset to read from log file */ 1151 int szPage; /* Page size according to the log */ 1152 u32 magic; /* Magic value read from WAL header */ 1153 u32 version; /* Magic value read from WAL header */ 1154 int isValid; /* True if this frame is valid */ 1155 1156 /* Read in the WAL header. */ 1157 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1158 if( rc!=SQLITE_OK ){ 1159 goto recovery_error; 1160 } 1161 1162 /* If the database page size is not a power of two, or is greater than 1163 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1164 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1165 ** WAL file. 1166 */ 1167 magic = sqlite3Get4byte(&aBuf[0]); 1168 szPage = sqlite3Get4byte(&aBuf[8]); 1169 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1170 || szPage&(szPage-1) 1171 || szPage>SQLITE_MAX_PAGE_SIZE 1172 || szPage<512 1173 ){ 1174 goto finished; 1175 } 1176 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1177 pWal->szPage = szPage; 1178 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1179 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1180 1181 /* Verify that the WAL header checksum is correct */ 1182 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1183 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1184 ); 1185 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1186 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1187 ){ 1188 goto finished; 1189 } 1190 1191 /* Verify that the version number on the WAL format is one that 1192 ** are able to understand */ 1193 version = sqlite3Get4byte(&aBuf[4]); 1194 if( version!=WAL_MAX_VERSION ){ 1195 rc = SQLITE_CANTOPEN_BKPT; 1196 goto finished; 1197 } 1198 1199 /* Malloc a buffer to read frames into. */ 1200 szFrame = szPage + WAL_FRAME_HDRSIZE; 1201 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1202 if( !aFrame ){ 1203 rc = SQLITE_NOMEM_BKPT; 1204 goto recovery_error; 1205 } 1206 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1207 1208 /* Read all frames from the log file. */ 1209 iFrame = 0; 1210 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1211 u32 pgno; /* Database page number for frame */ 1212 u32 nTruncate; /* dbsize field from frame header */ 1213 1214 /* Read and decode the next log frame. */ 1215 iFrame++; 1216 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1217 if( rc!=SQLITE_OK ) break; 1218 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1219 if( !isValid ) break; 1220 rc = walIndexAppend(pWal, iFrame, pgno); 1221 if( rc!=SQLITE_OK ) break; 1222 1223 /* If nTruncate is non-zero, this is a commit record. */ 1224 if( nTruncate ){ 1225 pWal->hdr.mxFrame = iFrame; 1226 pWal->hdr.nPage = nTruncate; 1227 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1228 testcase( szPage<=32768 ); 1229 testcase( szPage>=65536 ); 1230 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1231 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1232 } 1233 } 1234 1235 sqlite3_free(aFrame); 1236 } 1237 1238 finished: 1239 if( rc==SQLITE_OK ){ 1240 volatile WalCkptInfo *pInfo; 1241 int i; 1242 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1243 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1244 walIndexWriteHdr(pWal); 1245 1246 /* Reset the checkpoint-header. This is safe because this thread is 1247 ** currently holding locks that exclude all other readers, writers and 1248 ** checkpointers. 1249 */ 1250 pInfo = walCkptInfo(pWal); 1251 pInfo->nBackfill = 0; 1252 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1253 pInfo->aReadMark[0] = 0; 1254 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1255 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1256 1257 /* If more than one frame was recovered from the log file, report an 1258 ** event via sqlite3_log(). This is to help with identifying performance 1259 ** problems caused by applications routinely shutting down without 1260 ** checkpointing the log file. 1261 */ 1262 if( pWal->hdr.nPage ){ 1263 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1264 "recovered %d frames from WAL file %s", 1265 pWal->hdr.mxFrame, pWal->zWalName 1266 ); 1267 } 1268 } 1269 1270 recovery_error: 1271 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1272 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1273 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1274 return rc; 1275 } 1276 1277 /* 1278 ** Close an open wal-index. 1279 */ 1280 static void walIndexClose(Wal *pWal, int isDelete){ 1281 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1282 int i; 1283 for(i=0; i<pWal->nWiData; i++){ 1284 sqlite3_free((void *)pWal->apWiData[i]); 1285 pWal->apWiData[i] = 0; 1286 } 1287 } 1288 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1289 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1290 } 1291 } 1292 1293 /* 1294 ** Open a connection to the WAL file zWalName. The database file must 1295 ** already be opened on connection pDbFd. The buffer that zWalName points 1296 ** to must remain valid for the lifetime of the returned Wal* handle. 1297 ** 1298 ** A SHARED lock should be held on the database file when this function 1299 ** is called. The purpose of this SHARED lock is to prevent any other 1300 ** client from unlinking the WAL or wal-index file. If another process 1301 ** were to do this just after this client opened one of these files, the 1302 ** system would be badly broken. 1303 ** 1304 ** If the log file is successfully opened, SQLITE_OK is returned and 1305 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1306 ** an SQLite error code is returned and *ppWal is left unmodified. 1307 */ 1308 int sqlite3WalOpen( 1309 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1310 sqlite3_file *pDbFd, /* The open database file */ 1311 const char *zWalName, /* Name of the WAL file */ 1312 int bNoShm, /* True to run in heap-memory mode */ 1313 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1314 Wal **ppWal /* OUT: Allocated Wal handle */ 1315 ){ 1316 int rc; /* Return Code */ 1317 Wal *pRet; /* Object to allocate and return */ 1318 int flags; /* Flags passed to OsOpen() */ 1319 1320 assert( zWalName && zWalName[0] ); 1321 assert( pDbFd ); 1322 1323 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1324 ** this source file. Verify that the #defines of the locking byte offsets 1325 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1326 ** For that matter, if the lock offset ever changes from its initial design 1327 ** value of 120, we need to know that so there is an assert() to check it. 1328 */ 1329 assert( 120==WALINDEX_LOCK_OFFSET ); 1330 assert( 136==WALINDEX_HDR_SIZE ); 1331 #ifdef WIN_SHM_BASE 1332 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1333 #endif 1334 #ifdef UNIX_SHM_BASE 1335 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1336 #endif 1337 1338 1339 /* Allocate an instance of struct Wal to return. */ 1340 *ppWal = 0; 1341 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1342 if( !pRet ){ 1343 return SQLITE_NOMEM_BKPT; 1344 } 1345 1346 pRet->pVfs = pVfs; 1347 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1348 pRet->pDbFd = pDbFd; 1349 pRet->readLock = -1; 1350 pRet->mxWalSize = mxWalSize; 1351 pRet->zWalName = zWalName; 1352 pRet->syncHeader = 1; 1353 pRet->padToSectorBoundary = 1; 1354 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1355 1356 /* Open file handle on the write-ahead log file. */ 1357 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1358 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1359 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1360 pRet->readOnly = WAL_RDONLY; 1361 } 1362 1363 if( rc!=SQLITE_OK ){ 1364 walIndexClose(pRet, 0); 1365 sqlite3OsClose(pRet->pWalFd); 1366 sqlite3_free(pRet); 1367 }else{ 1368 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1369 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1370 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1371 pRet->padToSectorBoundary = 0; 1372 } 1373 *ppWal = pRet; 1374 WALTRACE(("WAL%d: opened\n", pRet)); 1375 } 1376 return rc; 1377 } 1378 1379 /* 1380 ** Change the size to which the WAL file is trucated on each reset. 1381 */ 1382 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1383 if( pWal ) pWal->mxWalSize = iLimit; 1384 } 1385 1386 /* 1387 ** Find the smallest page number out of all pages held in the WAL that 1388 ** has not been returned by any prior invocation of this method on the 1389 ** same WalIterator object. Write into *piFrame the frame index where 1390 ** that page was last written into the WAL. Write into *piPage the page 1391 ** number. 1392 ** 1393 ** Return 0 on success. If there are no pages in the WAL with a page 1394 ** number larger than *piPage, then return 1. 1395 */ 1396 static int walIteratorNext( 1397 WalIterator *p, /* Iterator */ 1398 u32 *piPage, /* OUT: The page number of the next page */ 1399 u32 *piFrame /* OUT: Wal frame index of next page */ 1400 ){ 1401 u32 iMin; /* Result pgno must be greater than iMin */ 1402 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1403 int i; /* For looping through segments */ 1404 1405 iMin = p->iPrior; 1406 assert( iMin<0xffffffff ); 1407 for(i=p->nSegment-1; i>=0; i--){ 1408 struct WalSegment *pSegment = &p->aSegment[i]; 1409 while( pSegment->iNext<pSegment->nEntry ){ 1410 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1411 if( iPg>iMin ){ 1412 if( iPg<iRet ){ 1413 iRet = iPg; 1414 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1415 } 1416 break; 1417 } 1418 pSegment->iNext++; 1419 } 1420 } 1421 1422 *piPage = p->iPrior = iRet; 1423 return (iRet==0xFFFFFFFF); 1424 } 1425 1426 /* 1427 ** This function merges two sorted lists into a single sorted list. 1428 ** 1429 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1430 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1431 ** is guaranteed for all J<K: 1432 ** 1433 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1434 ** aContent[aRight[J]] < aContent[aRight[K]] 1435 ** 1436 ** This routine overwrites aRight[] with a new (probably longer) sequence 1437 ** of indices such that the aRight[] contains every index that appears in 1438 ** either aLeft[] or the old aRight[] and such that the second condition 1439 ** above is still met. 1440 ** 1441 ** The aContent[aLeft[X]] values will be unique for all X. And the 1442 ** aContent[aRight[X]] values will be unique too. But there might be 1443 ** one or more combinations of X and Y such that 1444 ** 1445 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1446 ** 1447 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1448 */ 1449 static void walMerge( 1450 const u32 *aContent, /* Pages in wal - keys for the sort */ 1451 ht_slot *aLeft, /* IN: Left hand input list */ 1452 int nLeft, /* IN: Elements in array *paLeft */ 1453 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1454 int *pnRight, /* IN/OUT: Elements in *paRight */ 1455 ht_slot *aTmp /* Temporary buffer */ 1456 ){ 1457 int iLeft = 0; /* Current index in aLeft */ 1458 int iRight = 0; /* Current index in aRight */ 1459 int iOut = 0; /* Current index in output buffer */ 1460 int nRight = *pnRight; 1461 ht_slot *aRight = *paRight; 1462 1463 assert( nLeft>0 && nRight>0 ); 1464 while( iRight<nRight || iLeft<nLeft ){ 1465 ht_slot logpage; 1466 Pgno dbpage; 1467 1468 if( (iLeft<nLeft) 1469 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1470 ){ 1471 logpage = aLeft[iLeft++]; 1472 }else{ 1473 logpage = aRight[iRight++]; 1474 } 1475 dbpage = aContent[logpage]; 1476 1477 aTmp[iOut++] = logpage; 1478 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1479 1480 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1481 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1482 } 1483 1484 *paRight = aLeft; 1485 *pnRight = iOut; 1486 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1487 } 1488 1489 /* 1490 ** Sort the elements in list aList using aContent[] as the sort key. 1491 ** Remove elements with duplicate keys, preferring to keep the 1492 ** larger aList[] values. 1493 ** 1494 ** The aList[] entries are indices into aContent[]. The values in 1495 ** aList[] are to be sorted so that for all J<K: 1496 ** 1497 ** aContent[aList[J]] < aContent[aList[K]] 1498 ** 1499 ** For any X and Y such that 1500 ** 1501 ** aContent[aList[X]] == aContent[aList[Y]] 1502 ** 1503 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1504 ** the smaller. 1505 */ 1506 static void walMergesort( 1507 const u32 *aContent, /* Pages in wal */ 1508 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1509 ht_slot *aList, /* IN/OUT: List to sort */ 1510 int *pnList /* IN/OUT: Number of elements in aList[] */ 1511 ){ 1512 struct Sublist { 1513 int nList; /* Number of elements in aList */ 1514 ht_slot *aList; /* Pointer to sub-list content */ 1515 }; 1516 1517 const int nList = *pnList; /* Size of input list */ 1518 int nMerge = 0; /* Number of elements in list aMerge */ 1519 ht_slot *aMerge = 0; /* List to be merged */ 1520 int iList; /* Index into input list */ 1521 u32 iSub = 0; /* Index into aSub array */ 1522 struct Sublist aSub[13]; /* Array of sub-lists */ 1523 1524 memset(aSub, 0, sizeof(aSub)); 1525 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1526 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1527 1528 for(iList=0; iList<nList; iList++){ 1529 nMerge = 1; 1530 aMerge = &aList[iList]; 1531 for(iSub=0; iList & (1<<iSub); iSub++){ 1532 struct Sublist *p; 1533 assert( iSub<ArraySize(aSub) ); 1534 p = &aSub[iSub]; 1535 assert( p->aList && p->nList<=(1<<iSub) ); 1536 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1537 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1538 } 1539 aSub[iSub].aList = aMerge; 1540 aSub[iSub].nList = nMerge; 1541 } 1542 1543 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1544 if( nList & (1<<iSub) ){ 1545 struct Sublist *p; 1546 assert( iSub<ArraySize(aSub) ); 1547 p = &aSub[iSub]; 1548 assert( p->nList<=(1<<iSub) ); 1549 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1550 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1551 } 1552 } 1553 assert( aMerge==aList ); 1554 *pnList = nMerge; 1555 1556 #ifdef SQLITE_DEBUG 1557 { 1558 int i; 1559 for(i=1; i<*pnList; i++){ 1560 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1561 } 1562 } 1563 #endif 1564 } 1565 1566 /* 1567 ** Free an iterator allocated by walIteratorInit(). 1568 */ 1569 static void walIteratorFree(WalIterator *p){ 1570 sqlite3_free(p); 1571 } 1572 1573 /* 1574 ** Construct a WalInterator object that can be used to loop over all 1575 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1576 ** lock. 1577 ** 1578 ** On success, make *pp point to the newly allocated WalInterator object 1579 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1580 ** returns an error, the value of *pp is undefined. 1581 ** 1582 ** The calling routine should invoke walIteratorFree() to destroy the 1583 ** WalIterator object when it has finished with it. 1584 */ 1585 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1586 WalIterator *p; /* Return value */ 1587 int nSegment; /* Number of segments to merge */ 1588 u32 iLast; /* Last frame in log */ 1589 int nByte; /* Number of bytes to allocate */ 1590 int i; /* Iterator variable */ 1591 ht_slot *aTmp; /* Temp space used by merge-sort */ 1592 int rc = SQLITE_OK; /* Return Code */ 1593 1594 /* This routine only runs while holding the checkpoint lock. And 1595 ** it only runs if there is actually content in the log (mxFrame>0). 1596 */ 1597 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1598 iLast = pWal->hdr.mxFrame; 1599 1600 /* Allocate space for the WalIterator object. */ 1601 nSegment = walFramePage(iLast) + 1; 1602 nByte = sizeof(WalIterator) 1603 + (nSegment-1)*sizeof(struct WalSegment) 1604 + iLast*sizeof(ht_slot); 1605 p = (WalIterator *)sqlite3_malloc64(nByte); 1606 if( !p ){ 1607 return SQLITE_NOMEM_BKPT; 1608 } 1609 memset(p, 0, nByte); 1610 p->nSegment = nSegment; 1611 1612 /* Allocate temporary space used by the merge-sort routine. This block 1613 ** of memory will be freed before this function returns. 1614 */ 1615 aTmp = (ht_slot *)sqlite3_malloc64( 1616 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1617 ); 1618 if( !aTmp ){ 1619 rc = SQLITE_NOMEM_BKPT; 1620 } 1621 1622 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1623 volatile ht_slot *aHash; 1624 u32 iZero; 1625 volatile u32 *aPgno; 1626 1627 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1628 if( rc==SQLITE_OK ){ 1629 int j; /* Counter variable */ 1630 int nEntry; /* Number of entries in this segment */ 1631 ht_slot *aIndex; /* Sorted index for this segment */ 1632 1633 aPgno++; 1634 if( (i+1)==nSegment ){ 1635 nEntry = (int)(iLast - iZero); 1636 }else{ 1637 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1638 } 1639 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1640 iZero++; 1641 1642 for(j=0; j<nEntry; j++){ 1643 aIndex[j] = (ht_slot)j; 1644 } 1645 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1646 p->aSegment[i].iZero = iZero; 1647 p->aSegment[i].nEntry = nEntry; 1648 p->aSegment[i].aIndex = aIndex; 1649 p->aSegment[i].aPgno = (u32 *)aPgno; 1650 } 1651 } 1652 sqlite3_free(aTmp); 1653 1654 if( rc!=SQLITE_OK ){ 1655 walIteratorFree(p); 1656 } 1657 *pp = p; 1658 return rc; 1659 } 1660 1661 /* 1662 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1663 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1664 ** busy-handler function. Invoke it and retry the lock until either the 1665 ** lock is successfully obtained or the busy-handler returns 0. 1666 */ 1667 static int walBusyLock( 1668 Wal *pWal, /* WAL connection */ 1669 int (*xBusy)(void*), /* Function to call when busy */ 1670 void *pBusyArg, /* Context argument for xBusyHandler */ 1671 int lockIdx, /* Offset of first byte to lock */ 1672 int n /* Number of bytes to lock */ 1673 ){ 1674 int rc; 1675 do { 1676 rc = walLockExclusive(pWal, lockIdx, n); 1677 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1678 return rc; 1679 } 1680 1681 /* 1682 ** The cache of the wal-index header must be valid to call this function. 1683 ** Return the page-size in bytes used by the database. 1684 */ 1685 static int walPagesize(Wal *pWal){ 1686 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1687 } 1688 1689 /* 1690 ** The following is guaranteed when this function is called: 1691 ** 1692 ** a) the WRITER lock is held, 1693 ** b) the entire log file has been checkpointed, and 1694 ** c) any existing readers are reading exclusively from the database 1695 ** file - there are no readers that may attempt to read a frame from 1696 ** the log file. 1697 ** 1698 ** This function updates the shared-memory structures so that the next 1699 ** client to write to the database (which may be this one) does so by 1700 ** writing frames into the start of the log file. 1701 ** 1702 ** The value of parameter salt1 is used as the aSalt[1] value in the 1703 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1704 ** one obtained from sqlite3_randomness()). 1705 */ 1706 static void walRestartHdr(Wal *pWal, u32 salt1){ 1707 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1708 int i; /* Loop counter */ 1709 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1710 pWal->nCkpt++; 1711 pWal->hdr.mxFrame = 0; 1712 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1713 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1714 walIndexWriteHdr(pWal); 1715 pInfo->nBackfill = 0; 1716 pInfo->nBackfillAttempted = 0; 1717 pInfo->aReadMark[1] = 0; 1718 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1719 assert( pInfo->aReadMark[0]==0 ); 1720 } 1721 1722 /* 1723 ** Copy as much content as we can from the WAL back into the database file 1724 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1725 ** 1726 ** The amount of information copies from WAL to database might be limited 1727 ** by active readers. This routine will never overwrite a database page 1728 ** that a concurrent reader might be using. 1729 ** 1730 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1731 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1732 ** checkpoints are always run by a background thread or background 1733 ** process, foreground threads will never block on a lengthy fsync call. 1734 ** 1735 ** Fsync is called on the WAL before writing content out of the WAL and 1736 ** into the database. This ensures that if the new content is persistent 1737 ** in the WAL and can be recovered following a power-loss or hard reset. 1738 ** 1739 ** Fsync is also called on the database file if (and only if) the entire 1740 ** WAL content is copied into the database file. This second fsync makes 1741 ** it safe to delete the WAL since the new content will persist in the 1742 ** database file. 1743 ** 1744 ** This routine uses and updates the nBackfill field of the wal-index header. 1745 ** This is the only routine that will increase the value of nBackfill. 1746 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1747 ** its value.) 1748 ** 1749 ** The caller must be holding sufficient locks to ensure that no other 1750 ** checkpoint is running (in any other thread or process) at the same 1751 ** time. 1752 */ 1753 static int walCheckpoint( 1754 Wal *pWal, /* Wal connection */ 1755 sqlite3 *db, /* Check for interrupts on this handle */ 1756 int eMode, /* One of PASSIVE, FULL or RESTART */ 1757 int (*xBusy)(void*), /* Function to call when busy */ 1758 void *pBusyArg, /* Context argument for xBusyHandler */ 1759 int sync_flags, /* Flags for OsSync() (or 0) */ 1760 u8 *zBuf /* Temporary buffer to use */ 1761 ){ 1762 int rc = SQLITE_OK; /* Return code */ 1763 int szPage; /* Database page-size */ 1764 WalIterator *pIter = 0; /* Wal iterator context */ 1765 u32 iDbpage = 0; /* Next database page to write */ 1766 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1767 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1768 u32 mxPage; /* Max database page to write */ 1769 int i; /* Loop counter */ 1770 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1771 1772 szPage = walPagesize(pWal); 1773 testcase( szPage<=32768 ); 1774 testcase( szPage>=65536 ); 1775 pInfo = walCkptInfo(pWal); 1776 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1777 1778 /* Allocate the iterator */ 1779 rc = walIteratorInit(pWal, &pIter); 1780 if( rc!=SQLITE_OK ){ 1781 return rc; 1782 } 1783 assert( pIter ); 1784 1785 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1786 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1787 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1788 1789 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1790 ** safe to write into the database. Frames beyond mxSafeFrame might 1791 ** overwrite database pages that are in use by active readers and thus 1792 ** cannot be backfilled from the WAL. 1793 */ 1794 mxSafeFrame = pWal->hdr.mxFrame; 1795 mxPage = pWal->hdr.nPage; 1796 for(i=1; i<WAL_NREADER; i++){ 1797 /* Thread-sanitizer reports that the following is an unsafe read, 1798 ** as some other thread may be in the process of updating the value 1799 ** of the aReadMark[] slot. The assumption here is that if that is 1800 ** happening, the other client may only be increasing the value, 1801 ** not decreasing it. So assuming either that either the "old" or 1802 ** "new" version of the value is read, and not some arbitrary value 1803 ** that would never be written by a real client, things are still 1804 ** safe. */ 1805 u32 y = pInfo->aReadMark[i]; 1806 if( mxSafeFrame>y ){ 1807 assert( y<=pWal->hdr.mxFrame ); 1808 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1809 if( rc==SQLITE_OK ){ 1810 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1811 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1812 }else if( rc==SQLITE_BUSY ){ 1813 mxSafeFrame = y; 1814 xBusy = 0; 1815 }else{ 1816 goto walcheckpoint_out; 1817 } 1818 } 1819 } 1820 1821 if( pInfo->nBackfill<mxSafeFrame 1822 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1823 ){ 1824 i64 nSize; /* Current size of database file */ 1825 u32 nBackfill = pInfo->nBackfill; 1826 1827 pInfo->nBackfillAttempted = mxSafeFrame; 1828 1829 /* Sync the WAL to disk */ 1830 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1831 1832 /* If the database may grow as a result of this checkpoint, hint 1833 ** about the eventual size of the db file to the VFS layer. 1834 */ 1835 if( rc==SQLITE_OK ){ 1836 i64 nReq = ((i64)mxPage * szPage); 1837 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1838 if( rc==SQLITE_OK && nSize<nReq ){ 1839 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1840 } 1841 } 1842 1843 1844 /* Iterate through the contents of the WAL, copying data to the db file */ 1845 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1846 i64 iOffset; 1847 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1848 if( db->u1.isInterrupted ){ 1849 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1850 break; 1851 } 1852 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1853 continue; 1854 } 1855 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1856 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1857 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1858 if( rc!=SQLITE_OK ) break; 1859 iOffset = (iDbpage-1)*(i64)szPage; 1860 testcase( IS_BIG_INT(iOffset) ); 1861 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1862 if( rc!=SQLITE_OK ) break; 1863 } 1864 1865 /* If work was actually accomplished... */ 1866 if( rc==SQLITE_OK ){ 1867 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1868 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1869 testcase( IS_BIG_INT(szDb) ); 1870 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1871 if( rc==SQLITE_OK ){ 1872 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1873 } 1874 } 1875 if( rc==SQLITE_OK ){ 1876 pInfo->nBackfill = mxSafeFrame; 1877 } 1878 } 1879 1880 /* Release the reader lock held while backfilling */ 1881 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1882 } 1883 1884 if( rc==SQLITE_BUSY ){ 1885 /* Reset the return code so as not to report a checkpoint failure 1886 ** just because there are active readers. */ 1887 rc = SQLITE_OK; 1888 } 1889 } 1890 1891 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1892 ** entire wal file has been copied into the database file, then block 1893 ** until all readers have finished using the wal file. This ensures that 1894 ** the next process to write to the database restarts the wal file. 1895 */ 1896 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1897 assert( pWal->writeLock ); 1898 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1899 rc = SQLITE_BUSY; 1900 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1901 u32 salt1; 1902 sqlite3_randomness(4, &salt1); 1903 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1904 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1905 if( rc==SQLITE_OK ){ 1906 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1907 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1908 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1909 ** truncates the log file to zero bytes just prior to a 1910 ** successful return. 1911 ** 1912 ** In theory, it might be safe to do this without updating the 1913 ** wal-index header in shared memory, as all subsequent reader or 1914 ** writer clients should see that the entire log file has been 1915 ** checkpointed and behave accordingly. This seems unsafe though, 1916 ** as it would leave the system in a state where the contents of 1917 ** the wal-index header do not match the contents of the 1918 ** file-system. To avoid this, update the wal-index header to 1919 ** indicate that the log file contains zero valid frames. */ 1920 walRestartHdr(pWal, salt1); 1921 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1922 } 1923 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1924 } 1925 } 1926 } 1927 1928 walcheckpoint_out: 1929 walIteratorFree(pIter); 1930 return rc; 1931 } 1932 1933 /* 1934 ** If the WAL file is currently larger than nMax bytes in size, truncate 1935 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1936 */ 1937 static void walLimitSize(Wal *pWal, i64 nMax){ 1938 i64 sz; 1939 int rx; 1940 sqlite3BeginBenignMalloc(); 1941 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1942 if( rx==SQLITE_OK && (sz > nMax ) ){ 1943 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1944 } 1945 sqlite3EndBenignMalloc(); 1946 if( rx ){ 1947 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1948 } 1949 } 1950 1951 /* 1952 ** Close a connection to a log file. 1953 */ 1954 int sqlite3WalClose( 1955 Wal *pWal, /* Wal to close */ 1956 sqlite3 *db, /* For interrupt flag */ 1957 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1958 int nBuf, 1959 u8 *zBuf /* Buffer of at least nBuf bytes */ 1960 ){ 1961 int rc = SQLITE_OK; 1962 if( pWal ){ 1963 int isDelete = 0; /* True to unlink wal and wal-index files */ 1964 1965 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1966 ** ordinary, rollback-mode locking methods, this guarantees that the 1967 ** connection associated with this log file is the only connection to 1968 ** the database. In this case checkpoint the database and unlink both 1969 ** the wal and wal-index files. 1970 ** 1971 ** The EXCLUSIVE lock is not released before returning. 1972 */ 1973 if( zBuf!=0 1974 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 1975 ){ 1976 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1977 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1978 } 1979 rc = sqlite3WalCheckpoint(pWal, db, 1980 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1981 ); 1982 if( rc==SQLITE_OK ){ 1983 int bPersist = -1; 1984 sqlite3OsFileControlHint( 1985 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1986 ); 1987 if( bPersist!=1 ){ 1988 /* Try to delete the WAL file if the checkpoint completed and 1989 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1990 ** mode (!bPersist) */ 1991 isDelete = 1; 1992 }else if( pWal->mxWalSize>=0 ){ 1993 /* Try to truncate the WAL file to zero bytes if the checkpoint 1994 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1995 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1996 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1997 ** to zero bytes as truncating to the journal_size_limit might 1998 ** leave a corrupt WAL file on disk. */ 1999 walLimitSize(pWal, 0); 2000 } 2001 } 2002 } 2003 2004 walIndexClose(pWal, isDelete); 2005 sqlite3OsClose(pWal->pWalFd); 2006 if( isDelete ){ 2007 sqlite3BeginBenignMalloc(); 2008 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2009 sqlite3EndBenignMalloc(); 2010 } 2011 WALTRACE(("WAL%p: closed\n", pWal)); 2012 sqlite3_free((void *)pWal->apWiData); 2013 sqlite3_free(pWal); 2014 } 2015 return rc; 2016 } 2017 2018 /* 2019 ** Try to read the wal-index header. Return 0 on success and 1 if 2020 ** there is a problem. 2021 ** 2022 ** The wal-index is in shared memory. Another thread or process might 2023 ** be writing the header at the same time this procedure is trying to 2024 ** read it, which might result in inconsistency. A dirty read is detected 2025 ** by verifying that both copies of the header are the same and also by 2026 ** a checksum on the header. 2027 ** 2028 ** If and only if the read is consistent and the header is different from 2029 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2030 ** and *pChanged is set to 1. 2031 ** 2032 ** If the checksum cannot be verified return non-zero. If the header 2033 ** is read successfully and the checksum verified, return zero. 2034 */ 2035 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2036 u32 aCksum[2]; /* Checksum on the header content */ 2037 WalIndexHdr h1, h2; /* Two copies of the header content */ 2038 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2039 2040 /* The first page of the wal-index must be mapped at this point. */ 2041 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2042 2043 /* Read the header. This might happen concurrently with a write to the 2044 ** same area of shared memory on a different CPU in a SMP, 2045 ** meaning it is possible that an inconsistent snapshot is read 2046 ** from the file. If this happens, return non-zero. 2047 ** 2048 ** There are two copies of the header at the beginning of the wal-index. 2049 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2050 ** Memory barriers are used to prevent the compiler or the hardware from 2051 ** reordering the reads and writes. 2052 */ 2053 aHdr = walIndexHdr(pWal); 2054 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2055 walShmBarrier(pWal); 2056 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2057 2058 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2059 return 1; /* Dirty read */ 2060 } 2061 if( h1.isInit==0 ){ 2062 return 1; /* Malformed header - probably all zeros */ 2063 } 2064 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2065 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2066 return 1; /* Checksum does not match */ 2067 } 2068 2069 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2070 *pChanged = 1; 2071 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2072 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2073 testcase( pWal->szPage<=32768 ); 2074 testcase( pWal->szPage>=65536 ); 2075 } 2076 2077 /* The header was successfully read. Return zero. */ 2078 return 0; 2079 } 2080 2081 /* 2082 ** This is the value that walTryBeginRead returns when it needs to 2083 ** be retried. 2084 */ 2085 #define WAL_RETRY (-1) 2086 2087 /* 2088 ** Read the wal-index header from the wal-index and into pWal->hdr. 2089 ** If the wal-header appears to be corrupt, try to reconstruct the 2090 ** wal-index from the WAL before returning. 2091 ** 2092 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2093 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2094 ** to 0. 2095 ** 2096 ** If the wal-index header is successfully read, return SQLITE_OK. 2097 ** Otherwise an SQLite error code. 2098 */ 2099 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2100 int rc; /* Return code */ 2101 int badHdr; /* True if a header read failed */ 2102 volatile u32 *page0; /* Chunk of wal-index containing header */ 2103 2104 /* Ensure that page 0 of the wal-index (the page that contains the 2105 ** wal-index header) is mapped. Return early if an error occurs here. 2106 */ 2107 assert( pChanged ); 2108 rc = walIndexPage(pWal, 0, &page0); 2109 if( rc!=SQLITE_OK ){ 2110 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2111 if( rc==SQLITE_READONLY_CANTINIT ){ 2112 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2113 ** was openable but is not writable, and this thread is unable to 2114 ** confirm that another write-capable connection has the shared-memory 2115 ** open, and hence the content of the shared-memory is unreliable, 2116 ** since the shared-memory might be inconsistent with the WAL file 2117 ** and there is no writer on hand to fix it. */ 2118 assert( page0==0 ); 2119 assert( pWal->writeLock==0 ); 2120 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2121 pWal->bShmUnreliable = 1; 2122 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2123 *pChanged = 1; 2124 }else{ 2125 return rc; /* Any other non-OK return is just an error */ 2126 } 2127 }else{ 2128 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2129 ** is zero, which prevents the SHM from growing */ 2130 testcase( page0!=0 ); 2131 } 2132 assert( page0!=0 || pWal->writeLock==0 ); 2133 2134 /* If the first page of the wal-index has been mapped, try to read the 2135 ** wal-index header immediately, without holding any lock. This usually 2136 ** works, but may fail if the wal-index header is corrupt or currently 2137 ** being modified by another thread or process. 2138 */ 2139 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2140 2141 /* If the first attempt failed, it might have been due to a race 2142 ** with a writer. So get a WRITE lock and try again. 2143 */ 2144 assert( badHdr==0 || pWal->writeLock==0 ); 2145 if( badHdr ){ 2146 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2147 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2148 walUnlockShared(pWal, WAL_WRITE_LOCK); 2149 rc = SQLITE_READONLY_RECOVERY; 2150 } 2151 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2152 pWal->writeLock = 1; 2153 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2154 badHdr = walIndexTryHdr(pWal, pChanged); 2155 if( badHdr ){ 2156 /* If the wal-index header is still malformed even while holding 2157 ** a WRITE lock, it can only mean that the header is corrupted and 2158 ** needs to be reconstructed. So run recovery to do exactly that. 2159 */ 2160 rc = walIndexRecover(pWal); 2161 *pChanged = 1; 2162 } 2163 } 2164 pWal->writeLock = 0; 2165 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2166 } 2167 } 2168 2169 /* If the header is read successfully, check the version number to make 2170 ** sure the wal-index was not constructed with some future format that 2171 ** this version of SQLite cannot understand. 2172 */ 2173 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2174 rc = SQLITE_CANTOPEN_BKPT; 2175 } 2176 if( pWal->bShmUnreliable ){ 2177 if( rc!=SQLITE_OK ){ 2178 walIndexClose(pWal, 0); 2179 pWal->bShmUnreliable = 0; 2180 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2181 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2182 ** writer truncated the WAL out from under it. If that happens, it 2183 ** indicates that a writer has fixed the SHM file for us, so retry */ 2184 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2185 } 2186 pWal->exclusiveMode = WAL_NORMAL_MODE; 2187 } 2188 2189 return rc; 2190 } 2191 2192 /* 2193 ** Open a transaction in a connection where the shared-memory is read-only 2194 ** and where we cannot verify that there is a separate write-capable connection 2195 ** on hand to keep the shared-memory up-to-date with the WAL file. 2196 ** 2197 ** This can happen, for example, when the shared-memory is implemented by 2198 ** memory-mapping a *-shm file, where a prior writer has shut down and 2199 ** left the *-shm file on disk, and now the present connection is trying 2200 ** to use that database but lacks write permission on the *-shm file. 2201 ** Other scenarios are also possible, depending on the VFS implementation. 2202 ** 2203 ** Precondition: 2204 ** 2205 ** The *-wal file has been read and an appropriate wal-index has been 2206 ** constructed in pWal->apWiData[] using heap memory instead of shared 2207 ** memory. 2208 ** 2209 ** If this function returns SQLITE_OK, then the read transaction has 2210 ** been successfully opened. In this case output variable (*pChanged) 2211 ** is set to true before returning if the caller should discard the 2212 ** contents of the page cache before proceeding. Or, if it returns 2213 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2214 ** the caller should retry opening the read transaction from the 2215 ** beginning (including attempting to map the *-shm file). 2216 ** 2217 ** If an error occurs, an SQLite error code is returned. 2218 */ 2219 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2220 i64 szWal; /* Size of wal file on disk in bytes */ 2221 i64 iOffset; /* Current offset when reading wal file */ 2222 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2223 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2224 int szFrame; /* Number of bytes in buffer aFrame[] */ 2225 u8 *aData; /* Pointer to data part of aFrame buffer */ 2226 volatile void *pDummy; /* Dummy argument for xShmMap */ 2227 int rc; /* Return code */ 2228 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2229 2230 assert( pWal->bShmUnreliable ); 2231 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2232 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2233 2234 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2235 ** writers from running a checkpoint, but does not stop them 2236 ** from running recovery. */ 2237 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2238 if( rc!=SQLITE_OK ){ 2239 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2240 goto begin_unreliable_shm_out; 2241 } 2242 pWal->readLock = 0; 2243 2244 /* Check to see if a separate writer has attached to the shared-memory area, 2245 ** thus making the shared-memory "reliable" again. Do this by invoking 2246 ** the xShmMap() routine of the VFS and looking to see if the return 2247 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2248 ** 2249 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2250 ** cause the heap-memory WAL-index to be discarded and the actual 2251 ** shared memory to be used in its place. 2252 ** 2253 ** This step is important because, even though this connection is holding 2254 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2255 ** have already checkpointed the WAL file and, while the current 2256 ** is active, wrap the WAL and start overwriting frames that this 2257 ** process wants to use. 2258 ** 2259 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2260 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2261 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2262 ** even if some external agent does a "chmod" to make the shared-memory 2263 ** writable by us, until sqlite3OsShmUnmap() has been called. 2264 ** This is a requirement on the VFS implementation. 2265 */ 2266 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2267 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2268 if( rc!=SQLITE_READONLY_CANTINIT ){ 2269 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2270 goto begin_unreliable_shm_out; 2271 } 2272 2273 /* We reach this point only if the real shared-memory is still unreliable. 2274 ** Assume the in-memory WAL-index substitute is correct and load it 2275 ** into pWal->hdr. 2276 */ 2277 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2278 2279 /* Make sure some writer hasn't come in and changed the WAL file out 2280 ** from under us, then disconnected, while we were not looking. 2281 */ 2282 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2283 if( rc!=SQLITE_OK ){ 2284 goto begin_unreliable_shm_out; 2285 } 2286 if( szWal<WAL_HDRSIZE ){ 2287 /* If the wal file is too small to contain a wal-header and the 2288 ** wal-index header has mxFrame==0, then it must be safe to proceed 2289 ** reading the database file only. However, the page cache cannot 2290 ** be trusted, as a read/write connection may have connected, written 2291 ** the db, run a checkpoint, truncated the wal file and disconnected 2292 ** since this client's last read transaction. */ 2293 *pChanged = 1; 2294 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2295 goto begin_unreliable_shm_out; 2296 } 2297 2298 /* Check the salt keys at the start of the wal file still match. */ 2299 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2300 if( rc!=SQLITE_OK ){ 2301 goto begin_unreliable_shm_out; 2302 } 2303 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2304 /* Some writer has wrapped the WAL file while we were not looking. 2305 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2306 ** rebuilt. */ 2307 rc = WAL_RETRY; 2308 goto begin_unreliable_shm_out; 2309 } 2310 2311 /* Allocate a buffer to read frames into */ 2312 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2313 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2314 if( aFrame==0 ){ 2315 rc = SQLITE_NOMEM_BKPT; 2316 goto begin_unreliable_shm_out; 2317 } 2318 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2319 2320 /* Check to see if a complete transaction has been appended to the 2321 ** wal file since the heap-memory wal-index was created. If so, the 2322 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2323 ** the caller. */ 2324 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2325 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2326 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2327 iOffset+szFrame<=szWal; 2328 iOffset+=szFrame 2329 ){ 2330 u32 pgno; /* Database page number for frame */ 2331 u32 nTruncate; /* dbsize field from frame header */ 2332 2333 /* Read and decode the next log frame. */ 2334 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2335 if( rc!=SQLITE_OK ) break; 2336 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2337 2338 /* If nTruncate is non-zero, then a complete transaction has been 2339 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2340 ** the loop. */ 2341 if( nTruncate ){ 2342 rc = WAL_RETRY; 2343 break; 2344 } 2345 } 2346 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2347 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2348 2349 begin_unreliable_shm_out: 2350 sqlite3_free(aFrame); 2351 if( rc!=SQLITE_OK ){ 2352 int i; 2353 for(i=0; i<pWal->nWiData; i++){ 2354 sqlite3_free((void*)pWal->apWiData[i]); 2355 pWal->apWiData[i] = 0; 2356 } 2357 pWal->bShmUnreliable = 0; 2358 sqlite3WalEndReadTransaction(pWal); 2359 *pChanged = 1; 2360 } 2361 return rc; 2362 } 2363 2364 /* 2365 ** Attempt to start a read transaction. This might fail due to a race or 2366 ** other transient condition. When that happens, it returns WAL_RETRY to 2367 ** indicate to the caller that it is safe to retry immediately. 2368 ** 2369 ** On success return SQLITE_OK. On a permanent failure (such an 2370 ** I/O error or an SQLITE_BUSY because another process is running 2371 ** recovery) return a positive error code. 2372 ** 2373 ** The useWal parameter is true to force the use of the WAL and disable 2374 ** the case where the WAL is bypassed because it has been completely 2375 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2376 ** to make a copy of the wal-index header into pWal->hdr. If the 2377 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2378 ** to the caller that the local page cache is obsolete and needs to be 2379 ** flushed.) When useWal==1, the wal-index header is assumed to already 2380 ** be loaded and the pChanged parameter is unused. 2381 ** 2382 ** The caller must set the cnt parameter to the number of prior calls to 2383 ** this routine during the current read attempt that returned WAL_RETRY. 2384 ** This routine will start taking more aggressive measures to clear the 2385 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2386 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2387 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2388 ** and is not honoring the locking protocol. There is a vanishingly small 2389 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2390 ** bad luck when there is lots of contention for the wal-index, but that 2391 ** possibility is so small that it can be safely neglected, we believe. 2392 ** 2393 ** On success, this routine obtains a read lock on 2394 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2395 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2396 ** that means the Wal does not hold any read lock. The reader must not 2397 ** access any database page that is modified by a WAL frame up to and 2398 ** including frame number aReadMark[pWal->readLock]. The reader will 2399 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2400 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2401 ** completely and get all content directly from the database file. 2402 ** If the useWal parameter is 1 then the WAL will never be ignored and 2403 ** this routine will always set pWal->readLock>0 on success. 2404 ** When the read transaction is completed, the caller must release the 2405 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2406 ** 2407 ** This routine uses the nBackfill and aReadMark[] fields of the header 2408 ** to select a particular WAL_READ_LOCK() that strives to let the 2409 ** checkpoint process do as much work as possible. This routine might 2410 ** update values of the aReadMark[] array in the header, but if it does 2411 ** so it takes care to hold an exclusive lock on the corresponding 2412 ** WAL_READ_LOCK() while changing values. 2413 */ 2414 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2415 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2416 u32 mxReadMark; /* Largest aReadMark[] value */ 2417 int mxI; /* Index of largest aReadMark[] value */ 2418 int i; /* Loop counter */ 2419 int rc = SQLITE_OK; /* Return code */ 2420 u32 mxFrame; /* Wal frame to lock to */ 2421 2422 assert( pWal->readLock<0 ); /* Not currently locked */ 2423 2424 /* useWal may only be set for read/write connections */ 2425 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2426 2427 /* Take steps to avoid spinning forever if there is a protocol error. 2428 ** 2429 ** Circumstances that cause a RETRY should only last for the briefest 2430 ** instances of time. No I/O or other system calls are done while the 2431 ** locks are held, so the locks should not be held for very long. But 2432 ** if we are unlucky, another process that is holding a lock might get 2433 ** paged out or take a page-fault that is time-consuming to resolve, 2434 ** during the few nanoseconds that it is holding the lock. In that case, 2435 ** it might take longer than normal for the lock to free. 2436 ** 2437 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2438 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2439 ** is more of a scheduler yield than an actual delay. But on the 10th 2440 ** an subsequent retries, the delays start becoming longer and longer, 2441 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2442 ** The total delay time before giving up is less than 10 seconds. 2443 */ 2444 if( cnt>5 ){ 2445 int nDelay = 1; /* Pause time in microseconds */ 2446 if( cnt>100 ){ 2447 VVA_ONLY( pWal->lockError = 1; ) 2448 return SQLITE_PROTOCOL; 2449 } 2450 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2451 sqlite3OsSleep(pWal->pVfs, nDelay); 2452 } 2453 2454 if( !useWal ){ 2455 assert( rc==SQLITE_OK ); 2456 if( pWal->bShmUnreliable==0 ){ 2457 rc = walIndexReadHdr(pWal, pChanged); 2458 } 2459 if( rc==SQLITE_BUSY ){ 2460 /* If there is not a recovery running in another thread or process 2461 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2462 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2463 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2464 ** would be technically correct. But the race is benign since with 2465 ** WAL_RETRY this routine will be called again and will probably be 2466 ** right on the second iteration. 2467 */ 2468 if( pWal->apWiData[0]==0 ){ 2469 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2470 ** We assume this is a transient condition, so return WAL_RETRY. The 2471 ** xShmMap() implementation used by the default unix and win32 VFS 2472 ** modules may return SQLITE_BUSY due to a race condition in the 2473 ** code that determines whether or not the shared-memory region 2474 ** must be zeroed before the requested page is returned. 2475 */ 2476 rc = WAL_RETRY; 2477 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2478 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2479 rc = WAL_RETRY; 2480 }else if( rc==SQLITE_BUSY ){ 2481 rc = SQLITE_BUSY_RECOVERY; 2482 } 2483 } 2484 if( rc!=SQLITE_OK ){ 2485 return rc; 2486 } 2487 else if( pWal->bShmUnreliable ){ 2488 return walBeginShmUnreliable(pWal, pChanged); 2489 } 2490 } 2491 2492 assert( pWal->nWiData>0 ); 2493 assert( pWal->apWiData[0]!=0 ); 2494 pInfo = walCkptInfo(pWal); 2495 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2496 #ifdef SQLITE_ENABLE_SNAPSHOT 2497 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 2498 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) 2499 #endif 2500 ){ 2501 /* The WAL has been completely backfilled (or it is empty). 2502 ** and can be safely ignored. 2503 */ 2504 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2505 walShmBarrier(pWal); 2506 if( rc==SQLITE_OK ){ 2507 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2508 /* It is not safe to allow the reader to continue here if frames 2509 ** may have been appended to the log before READ_LOCK(0) was obtained. 2510 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2511 ** which implies that the database file contains a trustworthy 2512 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2513 ** happening, this is usually correct. 2514 ** 2515 ** However, if frames have been appended to the log (or if the log 2516 ** is wrapped and written for that matter) before the READ_LOCK(0) 2517 ** is obtained, that is not necessarily true. A checkpointer may 2518 ** have started to backfill the appended frames but crashed before 2519 ** it finished. Leaving a corrupt image in the database file. 2520 */ 2521 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2522 return WAL_RETRY; 2523 } 2524 pWal->readLock = 0; 2525 return SQLITE_OK; 2526 }else if( rc!=SQLITE_BUSY ){ 2527 return rc; 2528 } 2529 } 2530 2531 /* If we get this far, it means that the reader will want to use 2532 ** the WAL to get at content from recent commits. The job now is 2533 ** to select one of the aReadMark[] entries that is closest to 2534 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2535 */ 2536 mxReadMark = 0; 2537 mxI = 0; 2538 mxFrame = pWal->hdr.mxFrame; 2539 #ifdef SQLITE_ENABLE_SNAPSHOT 2540 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2541 mxFrame = pWal->pSnapshot->mxFrame; 2542 } 2543 #endif 2544 for(i=1; i<WAL_NREADER; i++){ 2545 u32 thisMark = pInfo->aReadMark[i]; 2546 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2547 assert( thisMark!=READMARK_NOT_USED ); 2548 mxReadMark = thisMark; 2549 mxI = i; 2550 } 2551 } 2552 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2553 && (mxReadMark<mxFrame || mxI==0) 2554 ){ 2555 for(i=1; i<WAL_NREADER; i++){ 2556 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2557 if( rc==SQLITE_OK ){ 2558 mxReadMark = pInfo->aReadMark[i] = mxFrame; 2559 mxI = i; 2560 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2561 break; 2562 }else if( rc!=SQLITE_BUSY ){ 2563 return rc; 2564 } 2565 } 2566 } 2567 if( mxI==0 ){ 2568 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2569 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2570 } 2571 2572 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2573 if( rc ){ 2574 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2575 } 2576 /* Now that the read-lock has been obtained, check that neither the 2577 ** value in the aReadMark[] array or the contents of the wal-index 2578 ** header have changed. 2579 ** 2580 ** It is necessary to check that the wal-index header did not change 2581 ** between the time it was read and when the shared-lock was obtained 2582 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2583 ** that the log file may have been wrapped by a writer, or that frames 2584 ** that occur later in the log than pWal->hdr.mxFrame may have been 2585 ** copied into the database by a checkpointer. If either of these things 2586 ** happened, then reading the database with the current value of 2587 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2588 ** instead. 2589 ** 2590 ** Before checking that the live wal-index header has not changed 2591 ** since it was read, set Wal.minFrame to the first frame in the wal 2592 ** file that has not yet been checkpointed. This client will not need 2593 ** to read any frames earlier than minFrame from the wal file - they 2594 ** can be safely read directly from the database file. 2595 ** 2596 ** Because a ShmBarrier() call is made between taking the copy of 2597 ** nBackfill and checking that the wal-header in shared-memory still 2598 ** matches the one cached in pWal->hdr, it is guaranteed that the 2599 ** checkpointer that set nBackfill was not working with a wal-index 2600 ** header newer than that cached in pWal->hdr. If it were, that could 2601 ** cause a problem. The checkpointer could omit to checkpoint 2602 ** a version of page X that lies before pWal->minFrame (call that version 2603 ** A) on the basis that there is a newer version (version B) of the same 2604 ** page later in the wal file. But if version B happens to like past 2605 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2606 ** that it can read version A from the database file. However, since 2607 ** we can guarantee that the checkpointer that set nBackfill could not 2608 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2609 */ 2610 pWal->minFrame = pInfo->nBackfill+1; 2611 walShmBarrier(pWal); 2612 if( pInfo->aReadMark[mxI]!=mxReadMark 2613 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2614 ){ 2615 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2616 return WAL_RETRY; 2617 }else{ 2618 assert( mxReadMark<=pWal->hdr.mxFrame ); 2619 pWal->readLock = (i16)mxI; 2620 } 2621 return rc; 2622 } 2623 2624 #ifdef SQLITE_ENABLE_SNAPSHOT 2625 /* 2626 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2627 ** variable so that older snapshots can be accessed. To do this, loop 2628 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2629 ** comparing their content to the corresponding page with the database 2630 ** file, if any. Set nBackfillAttempted to the frame number of the 2631 ** first frame for which the wal file content matches the db file. 2632 ** 2633 ** This is only really safe if the file-system is such that any page 2634 ** writes made by earlier checkpointers were atomic operations, which 2635 ** is not always true. It is also possible that nBackfillAttempted 2636 ** may be left set to a value larger than expected, if a wal frame 2637 ** contains content that duplicate of an earlier version of the same 2638 ** page. 2639 ** 2640 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2641 ** error occurs. It is not an error if nBackfillAttempted cannot be 2642 ** decreased at all. 2643 */ 2644 int sqlite3WalSnapshotRecover(Wal *pWal){ 2645 int rc; 2646 2647 assert( pWal->readLock>=0 ); 2648 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2649 if( rc==SQLITE_OK ){ 2650 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2651 int szPage = (int)pWal->szPage; 2652 i64 szDb; /* Size of db file in bytes */ 2653 2654 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2655 if( rc==SQLITE_OK ){ 2656 void *pBuf1 = sqlite3_malloc(szPage); 2657 void *pBuf2 = sqlite3_malloc(szPage); 2658 if( pBuf1==0 || pBuf2==0 ){ 2659 rc = SQLITE_NOMEM; 2660 }else{ 2661 u32 i = pInfo->nBackfillAttempted; 2662 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ 2663 volatile ht_slot *dummy; 2664 volatile u32 *aPgno; /* Array of page numbers */ 2665 u32 iZero; /* Frame corresponding to aPgno[0] */ 2666 u32 pgno; /* Page number in db file */ 2667 i64 iDbOff; /* Offset of db file entry */ 2668 i64 iWalOff; /* Offset of wal file entry */ 2669 2670 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero); 2671 if( rc!=SQLITE_OK ) break; 2672 pgno = aPgno[i-iZero]; 2673 iDbOff = (i64)(pgno-1) * szPage; 2674 2675 if( iDbOff+szPage<=szDb ){ 2676 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2677 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2678 2679 if( rc==SQLITE_OK ){ 2680 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2681 } 2682 2683 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2684 break; 2685 } 2686 } 2687 2688 pInfo->nBackfillAttempted = i-1; 2689 } 2690 } 2691 2692 sqlite3_free(pBuf1); 2693 sqlite3_free(pBuf2); 2694 } 2695 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2696 } 2697 2698 return rc; 2699 } 2700 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2701 2702 /* 2703 ** Begin a read transaction on the database. 2704 ** 2705 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2706 ** it takes a snapshot of the state of the WAL and wal-index for the current 2707 ** instant in time. The current thread will continue to use this snapshot. 2708 ** Other threads might append new content to the WAL and wal-index but 2709 ** that extra content is ignored by the current thread. 2710 ** 2711 ** If the database contents have changes since the previous read 2712 ** transaction, then *pChanged is set to 1 before returning. The 2713 ** Pager layer will use this to know that is cache is stale and 2714 ** needs to be flushed. 2715 */ 2716 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2717 int rc; /* Return code */ 2718 int cnt = 0; /* Number of TryBeginRead attempts */ 2719 2720 #ifdef SQLITE_ENABLE_SNAPSHOT 2721 int bChanged = 0; 2722 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2723 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2724 bChanged = 1; 2725 } 2726 #endif 2727 2728 do{ 2729 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2730 }while( rc==WAL_RETRY ); 2731 testcase( (rc&0xff)==SQLITE_BUSY ); 2732 testcase( (rc&0xff)==SQLITE_IOERR ); 2733 testcase( rc==SQLITE_PROTOCOL ); 2734 testcase( rc==SQLITE_OK ); 2735 2736 #ifdef SQLITE_ENABLE_SNAPSHOT 2737 if( rc==SQLITE_OK ){ 2738 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2739 /* At this point the client has a lock on an aReadMark[] slot holding 2740 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2741 ** is populated with the wal-index header corresponding to the head 2742 ** of the wal file. Verify that pSnapshot is still valid before 2743 ** continuing. Reasons why pSnapshot might no longer be valid: 2744 ** 2745 ** (1) The WAL file has been reset since the snapshot was taken. 2746 ** In this case, the salt will have changed. 2747 ** 2748 ** (2) A checkpoint as been attempted that wrote frames past 2749 ** pSnapshot->mxFrame into the database file. Note that the 2750 ** checkpoint need not have completed for this to cause problems. 2751 */ 2752 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2753 2754 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2755 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2756 2757 /* It is possible that there is a checkpointer thread running 2758 ** concurrent with this code. If this is the case, it may be that the 2759 ** checkpointer has already determined that it will checkpoint 2760 ** snapshot X, where X is later in the wal file than pSnapshot, but 2761 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2762 ** its intent. To avoid the race condition this leads to, ensure that 2763 ** there is no checkpointer process by taking a shared CKPT lock 2764 ** before checking pInfo->nBackfillAttempted. 2765 ** 2766 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing 2767 ** this already? 2768 */ 2769 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2770 2771 if( rc==SQLITE_OK ){ 2772 /* Check that the wal file has not been wrapped. Assuming that it has 2773 ** not, also check that no checkpointer has attempted to checkpoint any 2774 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2775 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr 2776 ** with *pSnapshot and set *pChanged as appropriate for opening the 2777 ** snapshot. */ 2778 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2779 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2780 ){ 2781 assert( pWal->readLock>0 ); 2782 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2783 *pChanged = bChanged; 2784 }else{ 2785 rc = SQLITE_BUSY_SNAPSHOT; 2786 } 2787 2788 /* Release the shared CKPT lock obtained above. */ 2789 walUnlockShared(pWal, WAL_CKPT_LOCK); 2790 } 2791 2792 2793 if( rc!=SQLITE_OK ){ 2794 sqlite3WalEndReadTransaction(pWal); 2795 } 2796 } 2797 } 2798 #endif 2799 return rc; 2800 } 2801 2802 /* 2803 ** Finish with a read transaction. All this does is release the 2804 ** read-lock. 2805 */ 2806 void sqlite3WalEndReadTransaction(Wal *pWal){ 2807 sqlite3WalEndWriteTransaction(pWal); 2808 if( pWal->readLock>=0 ){ 2809 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2810 pWal->readLock = -1; 2811 } 2812 } 2813 2814 /* 2815 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2816 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2817 ** to zero. 2818 ** 2819 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2820 ** error does occur, the final value of *piRead is undefined. 2821 */ 2822 int sqlite3WalFindFrame( 2823 Wal *pWal, /* WAL handle */ 2824 Pgno pgno, /* Database page number to read data for */ 2825 u32 *piRead /* OUT: Frame number (or zero) */ 2826 ){ 2827 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2828 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2829 int iHash; /* Used to loop through N hash tables */ 2830 int iMinHash; 2831 2832 /* This routine is only be called from within a read transaction. */ 2833 assert( pWal->readLock>=0 || pWal->lockError ); 2834 2835 /* If the "last page" field of the wal-index header snapshot is 0, then 2836 ** no data will be read from the wal under any circumstances. Return early 2837 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2838 ** then the WAL is ignored by the reader so return early, as if the 2839 ** WAL were empty. 2840 */ 2841 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2842 *piRead = 0; 2843 return SQLITE_OK; 2844 } 2845 2846 /* Search the hash table or tables for an entry matching page number 2847 ** pgno. Each iteration of the following for() loop searches one 2848 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2849 ** 2850 ** This code might run concurrently to the code in walIndexAppend() 2851 ** that adds entries to the wal-index (and possibly to this hash 2852 ** table). This means the value just read from the hash 2853 ** slot (aHash[iKey]) may have been added before or after the 2854 ** current read transaction was opened. Values added after the 2855 ** read transaction was opened may have been written incorrectly - 2856 ** i.e. these slots may contain garbage data. However, we assume 2857 ** that any slots written before the current read transaction was 2858 ** opened remain unmodified. 2859 ** 2860 ** For the reasons above, the if(...) condition featured in the inner 2861 ** loop of the following block is more stringent that would be required 2862 ** if we had exclusive access to the hash-table: 2863 ** 2864 ** (aPgno[iFrame]==pgno): 2865 ** This condition filters out normal hash-table collisions. 2866 ** 2867 ** (iFrame<=iLast): 2868 ** This condition filters out entries that were added to the hash 2869 ** table after the current read-transaction had started. 2870 */ 2871 iMinHash = walFramePage(pWal->minFrame); 2872 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ 2873 volatile ht_slot *aHash; /* Pointer to hash table */ 2874 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2875 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2876 int iKey; /* Hash slot index */ 2877 int nCollide; /* Number of hash collisions remaining */ 2878 int rc; /* Error code */ 2879 2880 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2881 if( rc!=SQLITE_OK ){ 2882 return rc; 2883 } 2884 nCollide = HASHTABLE_NSLOT; 2885 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2886 u32 iFrame = aHash[iKey] + iZero; 2887 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ 2888 assert( iFrame>iRead || CORRUPT_DB ); 2889 iRead = iFrame; 2890 } 2891 if( (nCollide--)==0 ){ 2892 return SQLITE_CORRUPT_BKPT; 2893 } 2894 } 2895 } 2896 2897 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2898 /* If expensive assert() statements are available, do a linear search 2899 ** of the wal-index file content. Make sure the results agree with the 2900 ** result obtained using the hash indexes above. */ 2901 { 2902 u32 iRead2 = 0; 2903 u32 iTest; 2904 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 2905 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 2906 if( walFramePgno(pWal, iTest)==pgno ){ 2907 iRead2 = iTest; 2908 break; 2909 } 2910 } 2911 assert( iRead==iRead2 ); 2912 } 2913 #endif 2914 2915 *piRead = iRead; 2916 return SQLITE_OK; 2917 } 2918 2919 /* 2920 ** Read the contents of frame iRead from the wal file into buffer pOut 2921 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2922 ** error code otherwise. 2923 */ 2924 int sqlite3WalReadFrame( 2925 Wal *pWal, /* WAL handle */ 2926 u32 iRead, /* Frame to read */ 2927 int nOut, /* Size of buffer pOut in bytes */ 2928 u8 *pOut /* Buffer to write page data to */ 2929 ){ 2930 int sz; 2931 i64 iOffset; 2932 sz = pWal->hdr.szPage; 2933 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2934 testcase( sz<=32768 ); 2935 testcase( sz>=65536 ); 2936 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2937 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2938 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2939 } 2940 2941 /* 2942 ** Return the size of the database in pages (or zero, if unknown). 2943 */ 2944 Pgno sqlite3WalDbsize(Wal *pWal){ 2945 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2946 return pWal->hdr.nPage; 2947 } 2948 return 0; 2949 } 2950 2951 2952 /* 2953 ** This function starts a write transaction on the WAL. 2954 ** 2955 ** A read transaction must have already been started by a prior call 2956 ** to sqlite3WalBeginReadTransaction(). 2957 ** 2958 ** If another thread or process has written into the database since 2959 ** the read transaction was started, then it is not possible for this 2960 ** thread to write as doing so would cause a fork. So this routine 2961 ** returns SQLITE_BUSY in that case and no write transaction is started. 2962 ** 2963 ** There can only be a single writer active at a time. 2964 */ 2965 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2966 int rc; 2967 2968 /* Cannot start a write transaction without first holding a read 2969 ** transaction. */ 2970 assert( pWal->readLock>=0 ); 2971 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 2972 2973 if( pWal->readOnly ){ 2974 return SQLITE_READONLY; 2975 } 2976 2977 /* Only one writer allowed at a time. Get the write lock. Return 2978 ** SQLITE_BUSY if unable. 2979 */ 2980 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2981 if( rc ){ 2982 return rc; 2983 } 2984 pWal->writeLock = 1; 2985 2986 /* If another connection has written to the database file since the 2987 ** time the read transaction on this connection was started, then 2988 ** the write is disallowed. 2989 */ 2990 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2991 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2992 pWal->writeLock = 0; 2993 rc = SQLITE_BUSY_SNAPSHOT; 2994 } 2995 2996 return rc; 2997 } 2998 2999 /* 3000 ** End a write transaction. The commit has already been done. This 3001 ** routine merely releases the lock. 3002 */ 3003 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3004 if( pWal->writeLock ){ 3005 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3006 pWal->writeLock = 0; 3007 pWal->iReCksum = 0; 3008 pWal->truncateOnCommit = 0; 3009 } 3010 return SQLITE_OK; 3011 } 3012 3013 /* 3014 ** If any data has been written (but not committed) to the log file, this 3015 ** function moves the write-pointer back to the start of the transaction. 3016 ** 3017 ** Additionally, the callback function is invoked for each frame written 3018 ** to the WAL since the start of the transaction. If the callback returns 3019 ** other than SQLITE_OK, it is not invoked again and the error code is 3020 ** returned to the caller. 3021 ** 3022 ** Otherwise, if the callback function does not return an error, this 3023 ** function returns SQLITE_OK. 3024 */ 3025 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3026 int rc = SQLITE_OK; 3027 if( ALWAYS(pWal->writeLock) ){ 3028 Pgno iMax = pWal->hdr.mxFrame; 3029 Pgno iFrame; 3030 3031 /* Restore the clients cache of the wal-index header to the state it 3032 ** was in before the client began writing to the database. 3033 */ 3034 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3035 3036 for(iFrame=pWal->hdr.mxFrame+1; 3037 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3038 iFrame++ 3039 ){ 3040 /* This call cannot fail. Unless the page for which the page number 3041 ** is passed as the second argument is (a) in the cache and 3042 ** (b) has an outstanding reference, then xUndo is either a no-op 3043 ** (if (a) is false) or simply expels the page from the cache (if (b) 3044 ** is false). 3045 ** 3046 ** If the upper layer is doing a rollback, it is guaranteed that there 3047 ** are no outstanding references to any page other than page 1. And 3048 ** page 1 is never written to the log until the transaction is 3049 ** committed. As a result, the call to xUndo may not fail. 3050 */ 3051 assert( walFramePgno(pWal, iFrame)!=1 ); 3052 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3053 } 3054 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3055 } 3056 return rc; 3057 } 3058 3059 /* 3060 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3061 ** values. This function populates the array with values required to 3062 ** "rollback" the write position of the WAL handle back to the current 3063 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3064 */ 3065 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3066 assert( pWal->writeLock ); 3067 aWalData[0] = pWal->hdr.mxFrame; 3068 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3069 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3070 aWalData[3] = pWal->nCkpt; 3071 } 3072 3073 /* 3074 ** Move the write position of the WAL back to the point identified by 3075 ** the values in the aWalData[] array. aWalData must point to an array 3076 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3077 ** by a call to WalSavepoint(). 3078 */ 3079 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3080 int rc = SQLITE_OK; 3081 3082 assert( pWal->writeLock ); 3083 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3084 3085 if( aWalData[3]!=pWal->nCkpt ){ 3086 /* This savepoint was opened immediately after the write-transaction 3087 ** was started. Right after that, the writer decided to wrap around 3088 ** to the start of the log. Update the savepoint values to match. 3089 */ 3090 aWalData[0] = 0; 3091 aWalData[3] = pWal->nCkpt; 3092 } 3093 3094 if( aWalData[0]<pWal->hdr.mxFrame ){ 3095 pWal->hdr.mxFrame = aWalData[0]; 3096 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3097 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3098 walCleanupHash(pWal); 3099 } 3100 3101 return rc; 3102 } 3103 3104 /* 3105 ** This function is called just before writing a set of frames to the log 3106 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3107 ** to the current log file, it is possible to overwrite the start of the 3108 ** existing log file with the new frames (i.e. "reset" the log). If so, 3109 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3110 ** unchanged. 3111 ** 3112 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3113 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3114 ** if an error occurs. 3115 */ 3116 static int walRestartLog(Wal *pWal){ 3117 int rc = SQLITE_OK; 3118 int cnt; 3119 3120 if( pWal->readLock==0 ){ 3121 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3122 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3123 if( pInfo->nBackfill>0 ){ 3124 u32 salt1; 3125 sqlite3_randomness(4, &salt1); 3126 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3127 if( rc==SQLITE_OK ){ 3128 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3129 ** readers are currently using the WAL), then the transactions 3130 ** frames will overwrite the start of the existing log. Update the 3131 ** wal-index header to reflect this. 3132 ** 3133 ** In theory it would be Ok to update the cache of the header only 3134 ** at this point. But updating the actual wal-index header is also 3135 ** safe and means there is no special case for sqlite3WalUndo() 3136 ** to handle if this transaction is rolled back. */ 3137 walRestartHdr(pWal, salt1); 3138 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3139 }else if( rc!=SQLITE_BUSY ){ 3140 return rc; 3141 } 3142 } 3143 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3144 pWal->readLock = -1; 3145 cnt = 0; 3146 do{ 3147 int notUsed; 3148 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3149 }while( rc==WAL_RETRY ); 3150 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3151 testcase( (rc&0xff)==SQLITE_IOERR ); 3152 testcase( rc==SQLITE_PROTOCOL ); 3153 testcase( rc==SQLITE_OK ); 3154 } 3155 return rc; 3156 } 3157 3158 /* 3159 ** Information about the current state of the WAL file and where 3160 ** the next fsync should occur - passed from sqlite3WalFrames() into 3161 ** walWriteToLog(). 3162 */ 3163 typedef struct WalWriter { 3164 Wal *pWal; /* The complete WAL information */ 3165 sqlite3_file *pFd; /* The WAL file to which we write */ 3166 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3167 int syncFlags; /* Flags for the fsync */ 3168 int szPage; /* Size of one page */ 3169 } WalWriter; 3170 3171 /* 3172 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3173 ** Do a sync when crossing the p->iSyncPoint boundary. 3174 ** 3175 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3176 ** first write the part before iSyncPoint, then sync, then write the 3177 ** rest. 3178 */ 3179 static int walWriteToLog( 3180 WalWriter *p, /* WAL to write to */ 3181 void *pContent, /* Content to be written */ 3182 int iAmt, /* Number of bytes to write */ 3183 sqlite3_int64 iOffset /* Start writing at this offset */ 3184 ){ 3185 int rc; 3186 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3187 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3188 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3189 if( rc ) return rc; 3190 iOffset += iFirstAmt; 3191 iAmt -= iFirstAmt; 3192 pContent = (void*)(iFirstAmt + (char*)pContent); 3193 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3194 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3195 if( iAmt==0 || rc ) return rc; 3196 } 3197 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3198 return rc; 3199 } 3200 3201 /* 3202 ** Write out a single frame of the WAL 3203 */ 3204 static int walWriteOneFrame( 3205 WalWriter *p, /* Where to write the frame */ 3206 PgHdr *pPage, /* The page of the frame to be written */ 3207 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3208 sqlite3_int64 iOffset /* Byte offset at which to write */ 3209 ){ 3210 int rc; /* Result code from subfunctions */ 3211 void *pData; /* Data actually written */ 3212 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3213 #if defined(SQLITE_HAS_CODEC) 3214 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; 3215 #else 3216 pData = pPage->pData; 3217 #endif 3218 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3219 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3220 if( rc ) return rc; 3221 /* Write the page data */ 3222 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3223 return rc; 3224 } 3225 3226 /* 3227 ** This function is called as part of committing a transaction within which 3228 ** one or more frames have been overwritten. It updates the checksums for 3229 ** all frames written to the wal file by the current transaction starting 3230 ** with the earliest to have been overwritten. 3231 ** 3232 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3233 */ 3234 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3235 const int szPage = pWal->szPage;/* Database page size */ 3236 int rc = SQLITE_OK; /* Return code */ 3237 u8 *aBuf; /* Buffer to load data from wal file into */ 3238 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3239 u32 iRead; /* Next frame to read from wal file */ 3240 i64 iCksumOff; 3241 3242 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3243 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3244 3245 /* Find the checksum values to use as input for the recalculating the 3246 ** first checksum. If the first frame is frame 1 (implying that the current 3247 ** transaction restarted the wal file), these values must be read from the 3248 ** wal-file header. Otherwise, read them from the frame header of the 3249 ** previous frame. */ 3250 assert( pWal->iReCksum>0 ); 3251 if( pWal->iReCksum==1 ){ 3252 iCksumOff = 24; 3253 }else{ 3254 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3255 } 3256 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3257 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3258 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3259 3260 iRead = pWal->iReCksum; 3261 pWal->iReCksum = 0; 3262 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3263 i64 iOff = walFrameOffset(iRead, szPage); 3264 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3265 if( rc==SQLITE_OK ){ 3266 u32 iPgno, nDbSize; 3267 iPgno = sqlite3Get4byte(aBuf); 3268 nDbSize = sqlite3Get4byte(&aBuf[4]); 3269 3270 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3271 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3272 } 3273 } 3274 3275 sqlite3_free(aBuf); 3276 return rc; 3277 } 3278 3279 /* 3280 ** Write a set of frames to the log. The caller must hold the write-lock 3281 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3282 */ 3283 int sqlite3WalFrames( 3284 Wal *pWal, /* Wal handle to write to */ 3285 int szPage, /* Database page-size in bytes */ 3286 PgHdr *pList, /* List of dirty pages to write */ 3287 Pgno nTruncate, /* Database size after this commit */ 3288 int isCommit, /* True if this is a commit */ 3289 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3290 ){ 3291 int rc; /* Used to catch return codes */ 3292 u32 iFrame; /* Next frame address */ 3293 PgHdr *p; /* Iterator to run through pList with. */ 3294 PgHdr *pLast = 0; /* Last frame in list */ 3295 int nExtra = 0; /* Number of extra copies of last page */ 3296 int szFrame; /* The size of a single frame */ 3297 i64 iOffset; /* Next byte to write in WAL file */ 3298 WalWriter w; /* The writer */ 3299 u32 iFirst = 0; /* First frame that may be overwritten */ 3300 WalIndexHdr *pLive; /* Pointer to shared header */ 3301 3302 assert( pList ); 3303 assert( pWal->writeLock ); 3304 3305 /* If this frame set completes a transaction, then nTruncate>0. If 3306 ** nTruncate==0 then this frame set does not complete the transaction. */ 3307 assert( (isCommit!=0)==(nTruncate!=0) ); 3308 3309 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3310 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3311 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3312 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3313 } 3314 #endif 3315 3316 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3317 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3318 iFirst = pLive->mxFrame+1; 3319 } 3320 3321 /* See if it is possible to write these frames into the start of the 3322 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3323 */ 3324 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3325 return rc; 3326 } 3327 3328 /* If this is the first frame written into the log, write the WAL 3329 ** header to the start of the WAL file. See comments at the top of 3330 ** this source file for a description of the WAL header format. 3331 */ 3332 iFrame = pWal->hdr.mxFrame; 3333 if( iFrame==0 ){ 3334 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3335 u32 aCksum[2]; /* Checksum for wal-header */ 3336 3337 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3338 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3339 sqlite3Put4byte(&aWalHdr[8], szPage); 3340 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3341 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3342 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3343 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3344 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3345 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3346 3347 pWal->szPage = szPage; 3348 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3349 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3350 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3351 pWal->truncateOnCommit = 1; 3352 3353 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3354 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3355 if( rc!=SQLITE_OK ){ 3356 return rc; 3357 } 3358 3359 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3360 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3361 ** an out-of-order write following a WAL restart could result in 3362 ** database corruption. See the ticket: 3363 ** 3364 ** https://sqlite.org/src/info/ff5be73dee 3365 */ 3366 if( pWal->syncHeader ){ 3367 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3368 if( rc ) return rc; 3369 } 3370 } 3371 assert( (int)pWal->szPage==szPage ); 3372 3373 /* Setup information needed to write frames into the WAL */ 3374 w.pWal = pWal; 3375 w.pFd = pWal->pWalFd; 3376 w.iSyncPoint = 0; 3377 w.syncFlags = sync_flags; 3378 w.szPage = szPage; 3379 iOffset = walFrameOffset(iFrame+1, szPage); 3380 szFrame = szPage + WAL_FRAME_HDRSIZE; 3381 3382 /* Write all frames into the log file exactly once */ 3383 for(p=pList; p; p=p->pDirty){ 3384 int nDbSize; /* 0 normally. Positive == commit flag */ 3385 3386 /* Check if this page has already been written into the wal file by 3387 ** the current transaction. If so, overwrite the existing frame and 3388 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3389 ** checksums must be recomputed when the transaction is committed. */ 3390 if( iFirst && (p->pDirty || isCommit==0) ){ 3391 u32 iWrite = 0; 3392 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3393 assert( rc==SQLITE_OK || iWrite==0 ); 3394 if( iWrite>=iFirst ){ 3395 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3396 void *pData; 3397 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3398 pWal->iReCksum = iWrite; 3399 } 3400 #if defined(SQLITE_HAS_CODEC) 3401 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 3402 #else 3403 pData = p->pData; 3404 #endif 3405 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3406 if( rc ) return rc; 3407 p->flags &= ~PGHDR_WAL_APPEND; 3408 continue; 3409 } 3410 } 3411 3412 iFrame++; 3413 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3414 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3415 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3416 if( rc ) return rc; 3417 pLast = p; 3418 iOffset += szFrame; 3419 p->flags |= PGHDR_WAL_APPEND; 3420 } 3421 3422 /* Recalculate checksums within the wal file if required. */ 3423 if( isCommit && pWal->iReCksum ){ 3424 rc = walRewriteChecksums(pWal, iFrame); 3425 if( rc ) return rc; 3426 } 3427 3428 /* If this is the end of a transaction, then we might need to pad 3429 ** the transaction and/or sync the WAL file. 3430 ** 3431 ** Padding and syncing only occur if this set of frames complete a 3432 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3433 ** or synchronous==OFF, then no padding or syncing are needed. 3434 ** 3435 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3436 ** needed and only the sync is done. If padding is needed, then the 3437 ** final frame is repeated (with its commit mark) until the next sector 3438 ** boundary is crossed. Only the part of the WAL prior to the last 3439 ** sector boundary is synced; the part of the last frame that extends 3440 ** past the sector boundary is written after the sync. 3441 */ 3442 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3443 int bSync = 1; 3444 if( pWal->padToSectorBoundary ){ 3445 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3446 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3447 bSync = (w.iSyncPoint==iOffset); 3448 testcase( bSync ); 3449 while( iOffset<w.iSyncPoint ){ 3450 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3451 if( rc ) return rc; 3452 iOffset += szFrame; 3453 nExtra++; 3454 } 3455 } 3456 if( bSync ){ 3457 assert( rc==SQLITE_OK ); 3458 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3459 } 3460 } 3461 3462 /* If this frame set completes the first transaction in the WAL and 3463 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3464 ** journal size limit, if possible. 3465 */ 3466 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3467 i64 sz = pWal->mxWalSize; 3468 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3469 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3470 } 3471 walLimitSize(pWal, sz); 3472 pWal->truncateOnCommit = 0; 3473 } 3474 3475 /* Append data to the wal-index. It is not necessary to lock the 3476 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3477 ** guarantees that there are no other writers, and no data that may 3478 ** be in use by existing readers is being overwritten. 3479 */ 3480 iFrame = pWal->hdr.mxFrame; 3481 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3482 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3483 iFrame++; 3484 rc = walIndexAppend(pWal, iFrame, p->pgno); 3485 } 3486 while( rc==SQLITE_OK && nExtra>0 ){ 3487 iFrame++; 3488 nExtra--; 3489 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3490 } 3491 3492 if( rc==SQLITE_OK ){ 3493 /* Update the private copy of the header. */ 3494 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3495 testcase( szPage<=32768 ); 3496 testcase( szPage>=65536 ); 3497 pWal->hdr.mxFrame = iFrame; 3498 if( isCommit ){ 3499 pWal->hdr.iChange++; 3500 pWal->hdr.nPage = nTruncate; 3501 } 3502 /* If this is a commit, update the wal-index header too. */ 3503 if( isCommit ){ 3504 walIndexWriteHdr(pWal); 3505 pWal->iCallback = iFrame; 3506 } 3507 } 3508 3509 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3510 return rc; 3511 } 3512 3513 /* 3514 ** This routine is called to implement sqlite3_wal_checkpoint() and 3515 ** related interfaces. 3516 ** 3517 ** Obtain a CHECKPOINT lock and then backfill as much information as 3518 ** we can from WAL into the database. 3519 ** 3520 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3521 ** callback. In this case this function runs a blocking checkpoint. 3522 */ 3523 int sqlite3WalCheckpoint( 3524 Wal *pWal, /* Wal connection */ 3525 sqlite3 *db, /* Check this handle's interrupt flag */ 3526 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3527 int (*xBusy)(void*), /* Function to call when busy */ 3528 void *pBusyArg, /* Context argument for xBusyHandler */ 3529 int sync_flags, /* Flags to sync db file with (or 0) */ 3530 int nBuf, /* Size of temporary buffer */ 3531 u8 *zBuf, /* Temporary buffer to use */ 3532 int *pnLog, /* OUT: Number of frames in WAL */ 3533 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3534 ){ 3535 int rc; /* Return code */ 3536 int isChanged = 0; /* True if a new wal-index header is loaded */ 3537 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3538 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3539 3540 assert( pWal->ckptLock==0 ); 3541 assert( pWal->writeLock==0 ); 3542 3543 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3544 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3545 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3546 3547 if( pWal->readOnly ) return SQLITE_READONLY; 3548 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3549 3550 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3551 ** "checkpoint" lock on the database file. */ 3552 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3553 if( rc ){ 3554 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3555 ** checkpoint operation at the same time, the lock cannot be obtained and 3556 ** SQLITE_BUSY is returned. 3557 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3558 ** it will not be invoked in this case. 3559 */ 3560 testcase( rc==SQLITE_BUSY ); 3561 testcase( xBusy!=0 ); 3562 return rc; 3563 } 3564 pWal->ckptLock = 1; 3565 3566 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3567 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3568 ** file. 3569 ** 3570 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3571 ** immediately, and a busy-handler is configured, it is invoked and the 3572 ** writer lock retried until either the busy-handler returns 0 or the 3573 ** lock is successfully obtained. 3574 */ 3575 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3576 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3577 if( rc==SQLITE_OK ){ 3578 pWal->writeLock = 1; 3579 }else if( rc==SQLITE_BUSY ){ 3580 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3581 xBusy2 = 0; 3582 rc = SQLITE_OK; 3583 } 3584 } 3585 3586 /* Read the wal-index header. */ 3587 if( rc==SQLITE_OK ){ 3588 rc = walIndexReadHdr(pWal, &isChanged); 3589 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3590 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3591 } 3592 } 3593 3594 /* Copy data from the log to the database file. */ 3595 if( rc==SQLITE_OK ){ 3596 3597 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3598 rc = SQLITE_CORRUPT_BKPT; 3599 }else{ 3600 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3601 } 3602 3603 /* If no error occurred, set the output variables. */ 3604 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3605 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3606 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3607 } 3608 } 3609 3610 if( isChanged ){ 3611 /* If a new wal-index header was loaded before the checkpoint was 3612 ** performed, then the pager-cache associated with pWal is now 3613 ** out of date. So zero the cached wal-index header to ensure that 3614 ** next time the pager opens a snapshot on this database it knows that 3615 ** the cache needs to be reset. 3616 */ 3617 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3618 } 3619 3620 /* Release the locks. */ 3621 sqlite3WalEndWriteTransaction(pWal); 3622 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3623 pWal->ckptLock = 0; 3624 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3625 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3626 } 3627 3628 /* Return the value to pass to a sqlite3_wal_hook callback, the 3629 ** number of frames in the WAL at the point of the last commit since 3630 ** sqlite3WalCallback() was called. If no commits have occurred since 3631 ** the last call, then return 0. 3632 */ 3633 int sqlite3WalCallback(Wal *pWal){ 3634 u32 ret = 0; 3635 if( pWal ){ 3636 ret = pWal->iCallback; 3637 pWal->iCallback = 0; 3638 } 3639 return (int)ret; 3640 } 3641 3642 /* 3643 ** This function is called to change the WAL subsystem into or out 3644 ** of locking_mode=EXCLUSIVE. 3645 ** 3646 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3647 ** into locking_mode=NORMAL. This means that we must acquire a lock 3648 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3649 ** or if the acquisition of the lock fails, then return 0. If the 3650 ** transition out of exclusive-mode is successful, return 1. This 3651 ** operation must occur while the pager is still holding the exclusive 3652 ** lock on the main database file. 3653 ** 3654 ** If op is one, then change from locking_mode=NORMAL into 3655 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3656 ** be released. Return 1 if the transition is made and 0 if the 3657 ** WAL is already in exclusive-locking mode - meaning that this 3658 ** routine is a no-op. The pager must already hold the exclusive lock 3659 ** on the main database file before invoking this operation. 3660 ** 3661 ** If op is negative, then do a dry-run of the op==1 case but do 3662 ** not actually change anything. The pager uses this to see if it 3663 ** should acquire the database exclusive lock prior to invoking 3664 ** the op==1 case. 3665 */ 3666 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3667 int rc; 3668 assert( pWal->writeLock==0 ); 3669 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3670 3671 /* pWal->readLock is usually set, but might be -1 if there was a 3672 ** prior error while attempting to acquire are read-lock. This cannot 3673 ** happen if the connection is actually in exclusive mode (as no xShmLock 3674 ** locks are taken in this case). Nor should the pager attempt to 3675 ** upgrade to exclusive-mode following such an error. 3676 */ 3677 assert( pWal->readLock>=0 || pWal->lockError ); 3678 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3679 3680 if( op==0 ){ 3681 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3682 pWal->exclusiveMode = WAL_NORMAL_MODE; 3683 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3684 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3685 } 3686 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3687 }else{ 3688 /* Already in locking_mode=NORMAL */ 3689 rc = 0; 3690 } 3691 }else if( op>0 ){ 3692 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3693 assert( pWal->readLock>=0 ); 3694 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3695 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3696 rc = 1; 3697 }else{ 3698 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3699 } 3700 return rc; 3701 } 3702 3703 /* 3704 ** Return true if the argument is non-NULL and the WAL module is using 3705 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3706 ** WAL module is using shared-memory, return false. 3707 */ 3708 int sqlite3WalHeapMemory(Wal *pWal){ 3709 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3710 } 3711 3712 #ifdef SQLITE_ENABLE_SNAPSHOT 3713 /* Create a snapshot object. The content of a snapshot is opaque to 3714 ** every other subsystem, so the WAL module can put whatever it needs 3715 ** in the object. 3716 */ 3717 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3718 int rc = SQLITE_OK; 3719 WalIndexHdr *pRet; 3720 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3721 3722 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3723 3724 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3725 *ppSnapshot = 0; 3726 return SQLITE_ERROR; 3727 } 3728 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3729 if( pRet==0 ){ 3730 rc = SQLITE_NOMEM_BKPT; 3731 }else{ 3732 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3733 *ppSnapshot = (sqlite3_snapshot*)pRet; 3734 } 3735 3736 return rc; 3737 } 3738 3739 /* Try to open on pSnapshot when the next read-transaction starts 3740 */ 3741 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3742 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3743 } 3744 3745 /* 3746 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3747 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3748 */ 3749 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3750 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3751 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3752 3753 /* aSalt[0] is a copy of the value stored in the wal file header. It 3754 ** is incremented each time the wal file is restarted. */ 3755 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3756 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3757 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3758 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3759 return 0; 3760 } 3761 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3762 3763 #ifdef SQLITE_ENABLE_ZIPVFS 3764 /* 3765 ** If the argument is not NULL, it points to a Wal object that holds a 3766 ** read-lock. This function returns the database page-size if it is known, 3767 ** or zero if it is not (or if pWal is NULL). 3768 */ 3769 int sqlite3WalFramesize(Wal *pWal){ 3770 assert( pWal==0 || pWal->readLock>=0 ); 3771 return (pWal ? pWal->szPage : 0); 3772 } 3773 #endif 3774 3775 /* Return the sqlite3_file object for the WAL file 3776 */ 3777 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3778 return pWal->pWalFd; 3779 } 3780 3781 #endif /* #ifndef SQLITE_OMIT_WAL */ 3782