xref: /sqlite-3.40.0/src/wal.c (revision cda185d3)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 };
471 
472 /*
473 ** Candidate values for Wal.exclusiveMode.
474 */
475 #define WAL_NORMAL_MODE     0
476 #define WAL_EXCLUSIVE_MODE  1
477 #define WAL_HEAPMEMORY_MODE 2
478 
479 /*
480 ** Possible values for WAL.readOnly
481 */
482 #define WAL_RDWR        0    /* Normal read/write connection */
483 #define WAL_RDONLY      1    /* The WAL file is readonly */
484 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
485 
486 /*
487 ** Each page of the wal-index mapping contains a hash-table made up of
488 ** an array of HASHTABLE_NSLOT elements of the following type.
489 */
490 typedef u16 ht_slot;
491 
492 /*
493 ** This structure is used to implement an iterator that loops through
494 ** all frames in the WAL in database page order. Where two or more frames
495 ** correspond to the same database page, the iterator visits only the
496 ** frame most recently written to the WAL (in other words, the frame with
497 ** the largest index).
498 **
499 ** The internals of this structure are only accessed by:
500 **
501 **   walIteratorInit() - Create a new iterator,
502 **   walIteratorNext() - Step an iterator,
503 **   walIteratorFree() - Free an iterator.
504 **
505 ** This functionality is used by the checkpoint code (see walCheckpoint()).
506 */
507 struct WalIterator {
508   int iPrior;                     /* Last result returned from the iterator */
509   int nSegment;                   /* Number of entries in aSegment[] */
510   struct WalSegment {
511     int iNext;                    /* Next slot in aIndex[] not yet returned */
512     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
513     u32 *aPgno;                   /* Array of page numbers. */
514     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
515     int iZero;                    /* Frame number associated with aPgno[0] */
516   } aSegment[1];                  /* One for every 32KB page in the wal-index */
517 };
518 
519 /*
520 ** Define the parameters of the hash tables in the wal-index file. There
521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522 ** wal-index.
523 **
524 ** Changing any of these constants will alter the wal-index format and
525 ** create incompatibilities.
526 */
527 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
528 #define HASHTABLE_HASH_1     383                  /* Should be prime */
529 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
530 
531 /*
532 ** The block of page numbers associated with the first hash-table in a
533 ** wal-index is smaller than usual. This is so that there is a complete
534 ** hash-table on each aligned 32KB page of the wal-index.
535 */
536 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
537 
538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539 #define WALINDEX_PGSZ   (                                         \
540     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
541 )
542 
543 /*
544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
546 ** numbered from zero.
547 **
548 ** If the wal-index is currently smaller the iPage pages then the size
549 ** of the wal-index might be increased, but only if it is safe to do
550 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
552 **
553 ** If this call is successful, *ppPage is set to point to the wal-index
554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555 ** then an SQLite error code is returned and *ppPage is set to 0.
556 */
557 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
558   int rc = SQLITE_OK;
559 
560   /* Enlarge the pWal->apWiData[] array if required */
561   if( pWal->nWiData<=iPage ){
562     int nByte = sizeof(u32*)*(iPage+1);
563     volatile u32 **apNew;
564     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
565     if( !apNew ){
566       *ppPage = 0;
567       return SQLITE_NOMEM_BKPT;
568     }
569     memset((void*)&apNew[pWal->nWiData], 0,
570            sizeof(u32*)*(iPage+1-pWal->nWiData));
571     pWal->apWiData = apNew;
572     pWal->nWiData = iPage+1;
573   }
574 
575   /* Request a pointer to the required page from the VFS */
576   if( pWal->apWiData[iPage]==0 ){
577     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
578       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
579       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
580     }else{
581       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
582           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
583       );
584       assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
585       testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
586       if( (rc&0xff)==SQLITE_READONLY ){
587         pWal->readOnly |= WAL_SHM_RDONLY;
588         if( rc==SQLITE_READONLY ){
589           rc = SQLITE_OK;
590         }
591       }
592     }
593   }
594 
595   *ppPage = pWal->apWiData[iPage];
596   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
597   return rc;
598 }
599 
600 /*
601 ** Return a pointer to the WalCkptInfo structure in the wal-index.
602 */
603 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
604   assert( pWal->nWiData>0 && pWal->apWiData[0] );
605   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
606 }
607 
608 /*
609 ** Return a pointer to the WalIndexHdr structure in the wal-index.
610 */
611 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
612   assert( pWal->nWiData>0 && pWal->apWiData[0] );
613   return (volatile WalIndexHdr*)pWal->apWiData[0];
614 }
615 
616 /*
617 ** The argument to this macro must be of type u32. On a little-endian
618 ** architecture, it returns the u32 value that results from interpreting
619 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
620 ** returns the value that would be produced by interpreting the 4 bytes
621 ** of the input value as a little-endian integer.
622 */
623 #define BYTESWAP32(x) ( \
624     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
625   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
626 )
627 
628 /*
629 ** Generate or extend an 8 byte checksum based on the data in
630 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
631 ** initial values of 0 and 0 if aIn==NULL).
632 **
633 ** The checksum is written back into aOut[] before returning.
634 **
635 ** nByte must be a positive multiple of 8.
636 */
637 static void walChecksumBytes(
638   int nativeCksum, /* True for native byte-order, false for non-native */
639   u8 *a,           /* Content to be checksummed */
640   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
641   const u32 *aIn,  /* Initial checksum value input */
642   u32 *aOut        /* OUT: Final checksum value output */
643 ){
644   u32 s1, s2;
645   u32 *aData = (u32 *)a;
646   u32 *aEnd = (u32 *)&a[nByte];
647 
648   if( aIn ){
649     s1 = aIn[0];
650     s2 = aIn[1];
651   }else{
652     s1 = s2 = 0;
653   }
654 
655   assert( nByte>=8 );
656   assert( (nByte&0x00000007)==0 );
657 
658   if( nativeCksum ){
659     do {
660       s1 += *aData++ + s2;
661       s2 += *aData++ + s1;
662     }while( aData<aEnd );
663   }else{
664     do {
665       s1 += BYTESWAP32(aData[0]) + s2;
666       s2 += BYTESWAP32(aData[1]) + s1;
667       aData += 2;
668     }while( aData<aEnd );
669   }
670 
671   aOut[0] = s1;
672   aOut[1] = s2;
673 }
674 
675 static void walShmBarrier(Wal *pWal){
676   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
677     sqlite3OsShmBarrier(pWal->pDbFd);
678   }
679 }
680 
681 /*
682 ** Write the header information in pWal->hdr into the wal-index.
683 **
684 ** The checksum on pWal->hdr is updated before it is written.
685 */
686 static void walIndexWriteHdr(Wal *pWal){
687   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
688   const int nCksum = offsetof(WalIndexHdr, aCksum);
689 
690   assert( pWal->writeLock );
691   pWal->hdr.isInit = 1;
692   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
693   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
694   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
695   walShmBarrier(pWal);
696   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
697 }
698 
699 /*
700 ** This function encodes a single frame header and writes it to a buffer
701 ** supplied by the caller. A frame-header is made up of a series of
702 ** 4-byte big-endian integers, as follows:
703 **
704 **     0: Page number.
705 **     4: For commit records, the size of the database image in pages
706 **        after the commit. For all other records, zero.
707 **     8: Salt-1 (copied from the wal-header)
708 **    12: Salt-2 (copied from the wal-header)
709 **    16: Checksum-1.
710 **    20: Checksum-2.
711 */
712 static void walEncodeFrame(
713   Wal *pWal,                      /* The write-ahead log */
714   u32 iPage,                      /* Database page number for frame */
715   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
716   u8 *aData,                      /* Pointer to page data */
717   u8 *aFrame                      /* OUT: Write encoded frame here */
718 ){
719   int nativeCksum;                /* True for native byte-order checksums */
720   u32 *aCksum = pWal->hdr.aFrameCksum;
721   assert( WAL_FRAME_HDRSIZE==24 );
722   sqlite3Put4byte(&aFrame[0], iPage);
723   sqlite3Put4byte(&aFrame[4], nTruncate);
724   if( pWal->iReCksum==0 ){
725     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
726 
727     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
728     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
729     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
730 
731     sqlite3Put4byte(&aFrame[16], aCksum[0]);
732     sqlite3Put4byte(&aFrame[20], aCksum[1]);
733   }else{
734     memset(&aFrame[8], 0, 16);
735   }
736 }
737 
738 /*
739 ** Check to see if the frame with header in aFrame[] and content
740 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
741 ** *pnTruncate and return true.  Return if the frame is not valid.
742 */
743 static int walDecodeFrame(
744   Wal *pWal,                      /* The write-ahead log */
745   u32 *piPage,                    /* OUT: Database page number for frame */
746   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
747   u8 *aData,                      /* Pointer to page data (for checksum) */
748   u8 *aFrame                      /* Frame data */
749 ){
750   int nativeCksum;                /* True for native byte-order checksums */
751   u32 *aCksum = pWal->hdr.aFrameCksum;
752   u32 pgno;                       /* Page number of the frame */
753   assert( WAL_FRAME_HDRSIZE==24 );
754 
755   /* A frame is only valid if the salt values in the frame-header
756   ** match the salt values in the wal-header.
757   */
758   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
759     return 0;
760   }
761 
762   /* A frame is only valid if the page number is creater than zero.
763   */
764   pgno = sqlite3Get4byte(&aFrame[0]);
765   if( pgno==0 ){
766     return 0;
767   }
768 
769   /* A frame is only valid if a checksum of the WAL header,
770   ** all prior frams, the first 16 bytes of this frame-header,
771   ** and the frame-data matches the checksum in the last 8
772   ** bytes of this frame-header.
773   */
774   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
775   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
776   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
777   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
778    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
779   ){
780     /* Checksum failed. */
781     return 0;
782   }
783 
784   /* If we reach this point, the frame is valid.  Return the page number
785   ** and the new database size.
786   */
787   *piPage = pgno;
788   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
789   return 1;
790 }
791 
792 
793 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
794 /*
795 ** Names of locks.  This routine is used to provide debugging output and is not
796 ** a part of an ordinary build.
797 */
798 static const char *walLockName(int lockIdx){
799   if( lockIdx==WAL_WRITE_LOCK ){
800     return "WRITE-LOCK";
801   }else if( lockIdx==WAL_CKPT_LOCK ){
802     return "CKPT-LOCK";
803   }else if( lockIdx==WAL_RECOVER_LOCK ){
804     return "RECOVER-LOCK";
805   }else{
806     static char zName[15];
807     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
808                      lockIdx-WAL_READ_LOCK(0));
809     return zName;
810   }
811 }
812 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
813 
814 
815 /*
816 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
817 ** A lock cannot be moved directly between shared and exclusive - it must go
818 ** through the unlocked state first.
819 **
820 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
821 */
822 static int walLockShared(Wal *pWal, int lockIdx){
823   int rc;
824   if( pWal->exclusiveMode ) return SQLITE_OK;
825   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
826                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
827   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
828             walLockName(lockIdx), rc ? "failed" : "ok"));
829   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
830   return rc;
831 }
832 static void walUnlockShared(Wal *pWal, int lockIdx){
833   if( pWal->exclusiveMode ) return;
834   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
835                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
836   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
837 }
838 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
839   int rc;
840   if( pWal->exclusiveMode ) return SQLITE_OK;
841   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
842                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
843   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
844             walLockName(lockIdx), n, rc ? "failed" : "ok"));
845   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
846   return rc;
847 }
848 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
849   if( pWal->exclusiveMode ) return;
850   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
851                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
852   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
853              walLockName(lockIdx), n));
854 }
855 
856 /*
857 ** Compute a hash on a page number.  The resulting hash value must land
858 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
859 ** the hash to the next value in the event of a collision.
860 */
861 static int walHash(u32 iPage){
862   assert( iPage>0 );
863   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
864   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
865 }
866 static int walNextHash(int iPriorHash){
867   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
868 }
869 
870 /*
871 ** Return pointers to the hash table and page number array stored on
872 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
873 ** numbered starting from 0.
874 **
875 ** Set output variable *paHash to point to the start of the hash table
876 ** in the wal-index file. Set *piZero to one less than the frame
877 ** number of the first frame indexed by this hash table. If a
878 ** slot in the hash table is set to N, it refers to frame number
879 ** (*piZero+N) in the log.
880 **
881 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
882 ** first frame indexed by the hash table, frame (*piZero+1).
883 */
884 static int walHashGet(
885   Wal *pWal,                      /* WAL handle */
886   int iHash,                      /* Find the iHash'th table */
887   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
888   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
889   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
890 ){
891   int rc;                         /* Return code */
892   volatile u32 *aPgno;
893 
894   rc = walIndexPage(pWal, iHash, &aPgno);
895   assert( rc==SQLITE_OK || iHash>0 );
896 
897   if( rc==SQLITE_OK ){
898     u32 iZero;
899     volatile ht_slot *aHash;
900 
901     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
902     if( iHash==0 ){
903       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
904       iZero = 0;
905     }else{
906       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
907     }
908 
909     *paPgno = &aPgno[-1];
910     *paHash = aHash;
911     *piZero = iZero;
912   }
913   return rc;
914 }
915 
916 /*
917 ** Return the number of the wal-index page that contains the hash-table
918 ** and page-number array that contain entries corresponding to WAL frame
919 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
920 ** are numbered starting from 0.
921 */
922 static int walFramePage(u32 iFrame){
923   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
924   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
925        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
926        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
927        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
928        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
929   );
930   return iHash;
931 }
932 
933 /*
934 ** Return the page number associated with frame iFrame in this WAL.
935 */
936 static u32 walFramePgno(Wal *pWal, u32 iFrame){
937   int iHash = walFramePage(iFrame);
938   if( iHash==0 ){
939     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
940   }
941   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
942 }
943 
944 /*
945 ** Remove entries from the hash table that point to WAL slots greater
946 ** than pWal->hdr.mxFrame.
947 **
948 ** This function is called whenever pWal->hdr.mxFrame is decreased due
949 ** to a rollback or savepoint.
950 **
951 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
952 ** updated.  Any later hash tables will be automatically cleared when
953 ** pWal->hdr.mxFrame advances to the point where those hash tables are
954 ** actually needed.
955 */
956 static void walCleanupHash(Wal *pWal){
957   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
958   volatile u32 *aPgno = 0;        /* Page number array for hash table */
959   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
960   int iLimit = 0;                 /* Zero values greater than this */
961   int nByte;                      /* Number of bytes to zero in aPgno[] */
962   int i;                          /* Used to iterate through aHash[] */
963 
964   assert( pWal->writeLock );
965   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
966   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
967   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
968 
969   if( pWal->hdr.mxFrame==0 ) return;
970 
971   /* Obtain pointers to the hash-table and page-number array containing
972   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
973   ** that the page said hash-table and array reside on is already mapped.
974   */
975   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
976   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
977   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
978 
979   /* Zero all hash-table entries that correspond to frame numbers greater
980   ** than pWal->hdr.mxFrame.
981   */
982   iLimit = pWal->hdr.mxFrame - iZero;
983   assert( iLimit>0 );
984   for(i=0; i<HASHTABLE_NSLOT; i++){
985     if( aHash[i]>iLimit ){
986       aHash[i] = 0;
987     }
988   }
989 
990   /* Zero the entries in the aPgno array that correspond to frames with
991   ** frame numbers greater than pWal->hdr.mxFrame.
992   */
993   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
994   memset((void *)&aPgno[iLimit+1], 0, nByte);
995 
996 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
997   /* Verify that the every entry in the mapping region is still reachable
998   ** via the hash table even after the cleanup.
999   */
1000   if( iLimit ){
1001     int j;           /* Loop counter */
1002     int iKey;        /* Hash key */
1003     for(j=1; j<=iLimit; j++){
1004       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
1005         if( aHash[iKey]==j ) break;
1006       }
1007       assert( aHash[iKey]==j );
1008     }
1009   }
1010 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1011 }
1012 
1013 
1014 /*
1015 ** Set an entry in the wal-index that will map database page number
1016 ** pPage into WAL frame iFrame.
1017 */
1018 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1019   int rc;                         /* Return code */
1020   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
1021   volatile u32 *aPgno = 0;        /* Page number array */
1022   volatile ht_slot *aHash = 0;    /* Hash table */
1023 
1024   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1025 
1026   /* Assuming the wal-index file was successfully mapped, populate the
1027   ** page number array and hash table entry.
1028   */
1029   if( rc==SQLITE_OK ){
1030     int iKey;                     /* Hash table key */
1031     int idx;                      /* Value to write to hash-table slot */
1032     int nCollide;                 /* Number of hash collisions */
1033 
1034     idx = iFrame - iZero;
1035     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1036 
1037     /* If this is the first entry to be added to this hash-table, zero the
1038     ** entire hash table and aPgno[] array before proceeding.
1039     */
1040     if( idx==1 ){
1041       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1042       memset((void*)&aPgno[1], 0, nByte);
1043     }
1044 
1045     /* If the entry in aPgno[] is already set, then the previous writer
1046     ** must have exited unexpectedly in the middle of a transaction (after
1047     ** writing one or more dirty pages to the WAL to free up memory).
1048     ** Remove the remnants of that writers uncommitted transaction from
1049     ** the hash-table before writing any new entries.
1050     */
1051     if( aPgno[idx] ){
1052       walCleanupHash(pWal);
1053       assert( !aPgno[idx] );
1054     }
1055 
1056     /* Write the aPgno[] array entry and the hash-table slot. */
1057     nCollide = idx;
1058     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1059       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1060     }
1061     aPgno[idx] = iPage;
1062     aHash[iKey] = (ht_slot)idx;
1063 
1064 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1065     /* Verify that the number of entries in the hash table exactly equals
1066     ** the number of entries in the mapping region.
1067     */
1068     {
1069       int i;           /* Loop counter */
1070       int nEntry = 0;  /* Number of entries in the hash table */
1071       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1072       assert( nEntry==idx );
1073     }
1074 
1075     /* Verify that the every entry in the mapping region is reachable
1076     ** via the hash table.  This turns out to be a really, really expensive
1077     ** thing to check, so only do this occasionally - not on every
1078     ** iteration.
1079     */
1080     if( (idx&0x3ff)==0 ){
1081       int i;           /* Loop counter */
1082       for(i=1; i<=idx; i++){
1083         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1084           if( aHash[iKey]==i ) break;
1085         }
1086         assert( aHash[iKey]==i );
1087       }
1088     }
1089 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1090   }
1091 
1092 
1093   return rc;
1094 }
1095 
1096 
1097 /*
1098 ** Recover the wal-index by reading the write-ahead log file.
1099 **
1100 ** This routine first tries to establish an exclusive lock on the
1101 ** wal-index to prevent other threads/processes from doing anything
1102 ** with the WAL or wal-index while recovery is running.  The
1103 ** WAL_RECOVER_LOCK is also held so that other threads will know
1104 ** that this thread is running recovery.  If unable to establish
1105 ** the necessary locks, this routine returns SQLITE_BUSY.
1106 */
1107 static int walIndexRecover(Wal *pWal){
1108   int rc;                         /* Return Code */
1109   i64 nSize;                      /* Size of log file */
1110   u32 aFrameCksum[2] = {0, 0};
1111   int iLock;                      /* Lock offset to lock for checkpoint */
1112 
1113   /* Obtain an exclusive lock on all byte in the locking range not already
1114   ** locked by the caller. The caller is guaranteed to have locked the
1115   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1116   ** If successful, the same bytes that are locked here are unlocked before
1117   ** this function returns.
1118   */
1119   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1120   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1121   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1122   assert( pWal->writeLock );
1123   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1124   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1125   if( rc==SQLITE_OK ){
1126     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1127     if( rc!=SQLITE_OK ){
1128       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1129     }
1130   }
1131   if( rc ){
1132     return rc;
1133   }
1134 
1135   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1136 
1137   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1138 
1139   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1140   if( rc!=SQLITE_OK ){
1141     goto recovery_error;
1142   }
1143 
1144   if( nSize>WAL_HDRSIZE ){
1145     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1146     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1147     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1148     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1149     int iFrame;                   /* Index of last frame read */
1150     i64 iOffset;                  /* Next offset to read from log file */
1151     int szPage;                   /* Page size according to the log */
1152     u32 magic;                    /* Magic value read from WAL header */
1153     u32 version;                  /* Magic value read from WAL header */
1154     int isValid;                  /* True if this frame is valid */
1155 
1156     /* Read in the WAL header. */
1157     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1158     if( rc!=SQLITE_OK ){
1159       goto recovery_error;
1160     }
1161 
1162     /* If the database page size is not a power of two, or is greater than
1163     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1164     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1165     ** WAL file.
1166     */
1167     magic = sqlite3Get4byte(&aBuf[0]);
1168     szPage = sqlite3Get4byte(&aBuf[8]);
1169     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1170      || szPage&(szPage-1)
1171      || szPage>SQLITE_MAX_PAGE_SIZE
1172      || szPage<512
1173     ){
1174       goto finished;
1175     }
1176     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1177     pWal->szPage = szPage;
1178     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1179     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1180 
1181     /* Verify that the WAL header checksum is correct */
1182     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1183         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1184     );
1185     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1186      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1187     ){
1188       goto finished;
1189     }
1190 
1191     /* Verify that the version number on the WAL format is one that
1192     ** are able to understand */
1193     version = sqlite3Get4byte(&aBuf[4]);
1194     if( version!=WAL_MAX_VERSION ){
1195       rc = SQLITE_CANTOPEN_BKPT;
1196       goto finished;
1197     }
1198 
1199     /* Malloc a buffer to read frames into. */
1200     szFrame = szPage + WAL_FRAME_HDRSIZE;
1201     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1202     if( !aFrame ){
1203       rc = SQLITE_NOMEM_BKPT;
1204       goto recovery_error;
1205     }
1206     aData = &aFrame[WAL_FRAME_HDRSIZE];
1207 
1208     /* Read all frames from the log file. */
1209     iFrame = 0;
1210     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1211       u32 pgno;                   /* Database page number for frame */
1212       u32 nTruncate;              /* dbsize field from frame header */
1213 
1214       /* Read and decode the next log frame. */
1215       iFrame++;
1216       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1217       if( rc!=SQLITE_OK ) break;
1218       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1219       if( !isValid ) break;
1220       rc = walIndexAppend(pWal, iFrame, pgno);
1221       if( rc!=SQLITE_OK ) break;
1222 
1223       /* If nTruncate is non-zero, this is a commit record. */
1224       if( nTruncate ){
1225         pWal->hdr.mxFrame = iFrame;
1226         pWal->hdr.nPage = nTruncate;
1227         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1228         testcase( szPage<=32768 );
1229         testcase( szPage>=65536 );
1230         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1231         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1232       }
1233     }
1234 
1235     sqlite3_free(aFrame);
1236   }
1237 
1238 finished:
1239   if( rc==SQLITE_OK ){
1240     volatile WalCkptInfo *pInfo;
1241     int i;
1242     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1243     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1244     walIndexWriteHdr(pWal);
1245 
1246     /* Reset the checkpoint-header. This is safe because this thread is
1247     ** currently holding locks that exclude all other readers, writers and
1248     ** checkpointers.
1249     */
1250     pInfo = walCkptInfo(pWal);
1251     pInfo->nBackfill = 0;
1252     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1253     pInfo->aReadMark[0] = 0;
1254     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1255     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1256 
1257     /* If more than one frame was recovered from the log file, report an
1258     ** event via sqlite3_log(). This is to help with identifying performance
1259     ** problems caused by applications routinely shutting down without
1260     ** checkpointing the log file.
1261     */
1262     if( pWal->hdr.nPage ){
1263       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1264           "recovered %d frames from WAL file %s",
1265           pWal->hdr.mxFrame, pWal->zWalName
1266       );
1267     }
1268   }
1269 
1270 recovery_error:
1271   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1272   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1273   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1274   return rc;
1275 }
1276 
1277 /*
1278 ** Close an open wal-index.
1279 */
1280 static void walIndexClose(Wal *pWal, int isDelete){
1281   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1282     int i;
1283     for(i=0; i<pWal->nWiData; i++){
1284       sqlite3_free((void *)pWal->apWiData[i]);
1285       pWal->apWiData[i] = 0;
1286     }
1287   }
1288   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1289     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1290   }
1291 }
1292 
1293 /*
1294 ** Open a connection to the WAL file zWalName. The database file must
1295 ** already be opened on connection pDbFd. The buffer that zWalName points
1296 ** to must remain valid for the lifetime of the returned Wal* handle.
1297 **
1298 ** A SHARED lock should be held on the database file when this function
1299 ** is called. The purpose of this SHARED lock is to prevent any other
1300 ** client from unlinking the WAL or wal-index file. If another process
1301 ** were to do this just after this client opened one of these files, the
1302 ** system would be badly broken.
1303 **
1304 ** If the log file is successfully opened, SQLITE_OK is returned and
1305 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1306 ** an SQLite error code is returned and *ppWal is left unmodified.
1307 */
1308 int sqlite3WalOpen(
1309   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1310   sqlite3_file *pDbFd,            /* The open database file */
1311   const char *zWalName,           /* Name of the WAL file */
1312   int bNoShm,                     /* True to run in heap-memory mode */
1313   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1314   Wal **ppWal                     /* OUT: Allocated Wal handle */
1315 ){
1316   int rc;                         /* Return Code */
1317   Wal *pRet;                      /* Object to allocate and return */
1318   int flags;                      /* Flags passed to OsOpen() */
1319 
1320   assert( zWalName && zWalName[0] );
1321   assert( pDbFd );
1322 
1323   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1324   ** this source file.  Verify that the #defines of the locking byte offsets
1325   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1326   ** For that matter, if the lock offset ever changes from its initial design
1327   ** value of 120, we need to know that so there is an assert() to check it.
1328   */
1329   assert( 120==WALINDEX_LOCK_OFFSET );
1330   assert( 136==WALINDEX_HDR_SIZE );
1331 #ifdef WIN_SHM_BASE
1332   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1333 #endif
1334 #ifdef UNIX_SHM_BASE
1335   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1336 #endif
1337 
1338 
1339   /* Allocate an instance of struct Wal to return. */
1340   *ppWal = 0;
1341   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1342   if( !pRet ){
1343     return SQLITE_NOMEM_BKPT;
1344   }
1345 
1346   pRet->pVfs = pVfs;
1347   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1348   pRet->pDbFd = pDbFd;
1349   pRet->readLock = -1;
1350   pRet->mxWalSize = mxWalSize;
1351   pRet->zWalName = zWalName;
1352   pRet->syncHeader = 1;
1353   pRet->padToSectorBoundary = 1;
1354   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1355 
1356   /* Open file handle on the write-ahead log file. */
1357   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1358   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1359   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1360     pRet->readOnly = WAL_RDONLY;
1361   }
1362 
1363   if( rc!=SQLITE_OK ){
1364     walIndexClose(pRet, 0);
1365     sqlite3OsClose(pRet->pWalFd);
1366     sqlite3_free(pRet);
1367   }else{
1368     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1369     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1370     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1371       pRet->padToSectorBoundary = 0;
1372     }
1373     *ppWal = pRet;
1374     WALTRACE(("WAL%d: opened\n", pRet));
1375   }
1376   return rc;
1377 }
1378 
1379 /*
1380 ** Change the size to which the WAL file is trucated on each reset.
1381 */
1382 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1383   if( pWal ) pWal->mxWalSize = iLimit;
1384 }
1385 
1386 /*
1387 ** Find the smallest page number out of all pages held in the WAL that
1388 ** has not been returned by any prior invocation of this method on the
1389 ** same WalIterator object.   Write into *piFrame the frame index where
1390 ** that page was last written into the WAL.  Write into *piPage the page
1391 ** number.
1392 **
1393 ** Return 0 on success.  If there are no pages in the WAL with a page
1394 ** number larger than *piPage, then return 1.
1395 */
1396 static int walIteratorNext(
1397   WalIterator *p,               /* Iterator */
1398   u32 *piPage,                  /* OUT: The page number of the next page */
1399   u32 *piFrame                  /* OUT: Wal frame index of next page */
1400 ){
1401   u32 iMin;                     /* Result pgno must be greater than iMin */
1402   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1403   int i;                        /* For looping through segments */
1404 
1405   iMin = p->iPrior;
1406   assert( iMin<0xffffffff );
1407   for(i=p->nSegment-1; i>=0; i--){
1408     struct WalSegment *pSegment = &p->aSegment[i];
1409     while( pSegment->iNext<pSegment->nEntry ){
1410       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1411       if( iPg>iMin ){
1412         if( iPg<iRet ){
1413           iRet = iPg;
1414           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1415         }
1416         break;
1417       }
1418       pSegment->iNext++;
1419     }
1420   }
1421 
1422   *piPage = p->iPrior = iRet;
1423   return (iRet==0xFFFFFFFF);
1424 }
1425 
1426 /*
1427 ** This function merges two sorted lists into a single sorted list.
1428 **
1429 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1430 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1431 ** is guaranteed for all J<K:
1432 **
1433 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1434 **        aContent[aRight[J]] < aContent[aRight[K]]
1435 **
1436 ** This routine overwrites aRight[] with a new (probably longer) sequence
1437 ** of indices such that the aRight[] contains every index that appears in
1438 ** either aLeft[] or the old aRight[] and such that the second condition
1439 ** above is still met.
1440 **
1441 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1442 ** aContent[aRight[X]] values will be unique too.  But there might be
1443 ** one or more combinations of X and Y such that
1444 **
1445 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1446 **
1447 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1448 */
1449 static void walMerge(
1450   const u32 *aContent,            /* Pages in wal - keys for the sort */
1451   ht_slot *aLeft,                 /* IN: Left hand input list */
1452   int nLeft,                      /* IN: Elements in array *paLeft */
1453   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1454   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1455   ht_slot *aTmp                   /* Temporary buffer */
1456 ){
1457   int iLeft = 0;                  /* Current index in aLeft */
1458   int iRight = 0;                 /* Current index in aRight */
1459   int iOut = 0;                   /* Current index in output buffer */
1460   int nRight = *pnRight;
1461   ht_slot *aRight = *paRight;
1462 
1463   assert( nLeft>0 && nRight>0 );
1464   while( iRight<nRight || iLeft<nLeft ){
1465     ht_slot logpage;
1466     Pgno dbpage;
1467 
1468     if( (iLeft<nLeft)
1469      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1470     ){
1471       logpage = aLeft[iLeft++];
1472     }else{
1473       logpage = aRight[iRight++];
1474     }
1475     dbpage = aContent[logpage];
1476 
1477     aTmp[iOut++] = logpage;
1478     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1479 
1480     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1481     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1482   }
1483 
1484   *paRight = aLeft;
1485   *pnRight = iOut;
1486   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1487 }
1488 
1489 /*
1490 ** Sort the elements in list aList using aContent[] as the sort key.
1491 ** Remove elements with duplicate keys, preferring to keep the
1492 ** larger aList[] values.
1493 **
1494 ** The aList[] entries are indices into aContent[].  The values in
1495 ** aList[] are to be sorted so that for all J<K:
1496 **
1497 **      aContent[aList[J]] < aContent[aList[K]]
1498 **
1499 ** For any X and Y such that
1500 **
1501 **      aContent[aList[X]] == aContent[aList[Y]]
1502 **
1503 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1504 ** the smaller.
1505 */
1506 static void walMergesort(
1507   const u32 *aContent,            /* Pages in wal */
1508   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1509   ht_slot *aList,                 /* IN/OUT: List to sort */
1510   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1511 ){
1512   struct Sublist {
1513     int nList;                    /* Number of elements in aList */
1514     ht_slot *aList;               /* Pointer to sub-list content */
1515   };
1516 
1517   const int nList = *pnList;      /* Size of input list */
1518   int nMerge = 0;                 /* Number of elements in list aMerge */
1519   ht_slot *aMerge = 0;            /* List to be merged */
1520   int iList;                      /* Index into input list */
1521   u32 iSub = 0;                   /* Index into aSub array */
1522   struct Sublist aSub[13];        /* Array of sub-lists */
1523 
1524   memset(aSub, 0, sizeof(aSub));
1525   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1526   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1527 
1528   for(iList=0; iList<nList; iList++){
1529     nMerge = 1;
1530     aMerge = &aList[iList];
1531     for(iSub=0; iList & (1<<iSub); iSub++){
1532       struct Sublist *p;
1533       assert( iSub<ArraySize(aSub) );
1534       p = &aSub[iSub];
1535       assert( p->aList && p->nList<=(1<<iSub) );
1536       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1537       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1538     }
1539     aSub[iSub].aList = aMerge;
1540     aSub[iSub].nList = nMerge;
1541   }
1542 
1543   for(iSub++; iSub<ArraySize(aSub); iSub++){
1544     if( nList & (1<<iSub) ){
1545       struct Sublist *p;
1546       assert( iSub<ArraySize(aSub) );
1547       p = &aSub[iSub];
1548       assert( p->nList<=(1<<iSub) );
1549       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1550       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1551     }
1552   }
1553   assert( aMerge==aList );
1554   *pnList = nMerge;
1555 
1556 #ifdef SQLITE_DEBUG
1557   {
1558     int i;
1559     for(i=1; i<*pnList; i++){
1560       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1561     }
1562   }
1563 #endif
1564 }
1565 
1566 /*
1567 ** Free an iterator allocated by walIteratorInit().
1568 */
1569 static void walIteratorFree(WalIterator *p){
1570   sqlite3_free(p);
1571 }
1572 
1573 /*
1574 ** Construct a WalInterator object that can be used to loop over all
1575 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1576 ** lock.
1577 **
1578 ** On success, make *pp point to the newly allocated WalInterator object
1579 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1580 ** returns an error, the value of *pp is undefined.
1581 **
1582 ** The calling routine should invoke walIteratorFree() to destroy the
1583 ** WalIterator object when it has finished with it.
1584 */
1585 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1586   WalIterator *p;                 /* Return value */
1587   int nSegment;                   /* Number of segments to merge */
1588   u32 iLast;                      /* Last frame in log */
1589   int nByte;                      /* Number of bytes to allocate */
1590   int i;                          /* Iterator variable */
1591   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1592   int rc = SQLITE_OK;             /* Return Code */
1593 
1594   /* This routine only runs while holding the checkpoint lock. And
1595   ** it only runs if there is actually content in the log (mxFrame>0).
1596   */
1597   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1598   iLast = pWal->hdr.mxFrame;
1599 
1600   /* Allocate space for the WalIterator object. */
1601   nSegment = walFramePage(iLast) + 1;
1602   nByte = sizeof(WalIterator)
1603         + (nSegment-1)*sizeof(struct WalSegment)
1604         + iLast*sizeof(ht_slot);
1605   p = (WalIterator *)sqlite3_malloc64(nByte);
1606   if( !p ){
1607     return SQLITE_NOMEM_BKPT;
1608   }
1609   memset(p, 0, nByte);
1610   p->nSegment = nSegment;
1611 
1612   /* Allocate temporary space used by the merge-sort routine. This block
1613   ** of memory will be freed before this function returns.
1614   */
1615   aTmp = (ht_slot *)sqlite3_malloc64(
1616       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1617   );
1618   if( !aTmp ){
1619     rc = SQLITE_NOMEM_BKPT;
1620   }
1621 
1622   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1623     volatile ht_slot *aHash;
1624     u32 iZero;
1625     volatile u32 *aPgno;
1626 
1627     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1628     if( rc==SQLITE_OK ){
1629       int j;                      /* Counter variable */
1630       int nEntry;                 /* Number of entries in this segment */
1631       ht_slot *aIndex;            /* Sorted index for this segment */
1632 
1633       aPgno++;
1634       if( (i+1)==nSegment ){
1635         nEntry = (int)(iLast - iZero);
1636       }else{
1637         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1638       }
1639       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1640       iZero++;
1641 
1642       for(j=0; j<nEntry; j++){
1643         aIndex[j] = (ht_slot)j;
1644       }
1645       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1646       p->aSegment[i].iZero = iZero;
1647       p->aSegment[i].nEntry = nEntry;
1648       p->aSegment[i].aIndex = aIndex;
1649       p->aSegment[i].aPgno = (u32 *)aPgno;
1650     }
1651   }
1652   sqlite3_free(aTmp);
1653 
1654   if( rc!=SQLITE_OK ){
1655     walIteratorFree(p);
1656   }
1657   *pp = p;
1658   return rc;
1659 }
1660 
1661 /*
1662 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1663 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1664 ** busy-handler function. Invoke it and retry the lock until either the
1665 ** lock is successfully obtained or the busy-handler returns 0.
1666 */
1667 static int walBusyLock(
1668   Wal *pWal,                      /* WAL connection */
1669   int (*xBusy)(void*),            /* Function to call when busy */
1670   void *pBusyArg,                 /* Context argument for xBusyHandler */
1671   int lockIdx,                    /* Offset of first byte to lock */
1672   int n                           /* Number of bytes to lock */
1673 ){
1674   int rc;
1675   do {
1676     rc = walLockExclusive(pWal, lockIdx, n);
1677   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1678   return rc;
1679 }
1680 
1681 /*
1682 ** The cache of the wal-index header must be valid to call this function.
1683 ** Return the page-size in bytes used by the database.
1684 */
1685 static int walPagesize(Wal *pWal){
1686   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1687 }
1688 
1689 /*
1690 ** The following is guaranteed when this function is called:
1691 **
1692 **   a) the WRITER lock is held,
1693 **   b) the entire log file has been checkpointed, and
1694 **   c) any existing readers are reading exclusively from the database
1695 **      file - there are no readers that may attempt to read a frame from
1696 **      the log file.
1697 **
1698 ** This function updates the shared-memory structures so that the next
1699 ** client to write to the database (which may be this one) does so by
1700 ** writing frames into the start of the log file.
1701 **
1702 ** The value of parameter salt1 is used as the aSalt[1] value in the
1703 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1704 ** one obtained from sqlite3_randomness()).
1705 */
1706 static void walRestartHdr(Wal *pWal, u32 salt1){
1707   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1708   int i;                          /* Loop counter */
1709   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1710   pWal->nCkpt++;
1711   pWal->hdr.mxFrame = 0;
1712   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1713   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1714   walIndexWriteHdr(pWal);
1715   pInfo->nBackfill = 0;
1716   pInfo->nBackfillAttempted = 0;
1717   pInfo->aReadMark[1] = 0;
1718   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1719   assert( pInfo->aReadMark[0]==0 );
1720 }
1721 
1722 /*
1723 ** Copy as much content as we can from the WAL back into the database file
1724 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1725 **
1726 ** The amount of information copies from WAL to database might be limited
1727 ** by active readers.  This routine will never overwrite a database page
1728 ** that a concurrent reader might be using.
1729 **
1730 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1731 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1732 ** checkpoints are always run by a background thread or background
1733 ** process, foreground threads will never block on a lengthy fsync call.
1734 **
1735 ** Fsync is called on the WAL before writing content out of the WAL and
1736 ** into the database.  This ensures that if the new content is persistent
1737 ** in the WAL and can be recovered following a power-loss or hard reset.
1738 **
1739 ** Fsync is also called on the database file if (and only if) the entire
1740 ** WAL content is copied into the database file.  This second fsync makes
1741 ** it safe to delete the WAL since the new content will persist in the
1742 ** database file.
1743 **
1744 ** This routine uses and updates the nBackfill field of the wal-index header.
1745 ** This is the only routine that will increase the value of nBackfill.
1746 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1747 ** its value.)
1748 **
1749 ** The caller must be holding sufficient locks to ensure that no other
1750 ** checkpoint is running (in any other thread or process) at the same
1751 ** time.
1752 */
1753 static int walCheckpoint(
1754   Wal *pWal,                      /* Wal connection */
1755   sqlite3 *db,                    /* Check for interrupts on this handle */
1756   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1757   int (*xBusy)(void*),            /* Function to call when busy */
1758   void *pBusyArg,                 /* Context argument for xBusyHandler */
1759   int sync_flags,                 /* Flags for OsSync() (or 0) */
1760   u8 *zBuf                        /* Temporary buffer to use */
1761 ){
1762   int rc = SQLITE_OK;             /* Return code */
1763   int szPage;                     /* Database page-size */
1764   WalIterator *pIter = 0;         /* Wal iterator context */
1765   u32 iDbpage = 0;                /* Next database page to write */
1766   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1767   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1768   u32 mxPage;                     /* Max database page to write */
1769   int i;                          /* Loop counter */
1770   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1771 
1772   szPage = walPagesize(pWal);
1773   testcase( szPage<=32768 );
1774   testcase( szPage>=65536 );
1775   pInfo = walCkptInfo(pWal);
1776   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1777 
1778     /* Allocate the iterator */
1779     rc = walIteratorInit(pWal, &pIter);
1780     if( rc!=SQLITE_OK ){
1781       return rc;
1782     }
1783     assert( pIter );
1784 
1785     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1786     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1787     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1788 
1789     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1790     ** safe to write into the database.  Frames beyond mxSafeFrame might
1791     ** overwrite database pages that are in use by active readers and thus
1792     ** cannot be backfilled from the WAL.
1793     */
1794     mxSafeFrame = pWal->hdr.mxFrame;
1795     mxPage = pWal->hdr.nPage;
1796     for(i=1; i<WAL_NREADER; i++){
1797       /* Thread-sanitizer reports that the following is an unsafe read,
1798       ** as some other thread may be in the process of updating the value
1799       ** of the aReadMark[] slot. The assumption here is that if that is
1800       ** happening, the other client may only be increasing the value,
1801       ** not decreasing it. So assuming either that either the "old" or
1802       ** "new" version of the value is read, and not some arbitrary value
1803       ** that would never be written by a real client, things are still
1804       ** safe.  */
1805       u32 y = pInfo->aReadMark[i];
1806       if( mxSafeFrame>y ){
1807         assert( y<=pWal->hdr.mxFrame );
1808         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1809         if( rc==SQLITE_OK ){
1810           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1811           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1812         }else if( rc==SQLITE_BUSY ){
1813           mxSafeFrame = y;
1814           xBusy = 0;
1815         }else{
1816           goto walcheckpoint_out;
1817         }
1818       }
1819     }
1820 
1821     if( pInfo->nBackfill<mxSafeFrame
1822      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1823     ){
1824       i64 nSize;                    /* Current size of database file */
1825       u32 nBackfill = pInfo->nBackfill;
1826 
1827       pInfo->nBackfillAttempted = mxSafeFrame;
1828 
1829       /* Sync the WAL to disk */
1830       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1831 
1832       /* If the database may grow as a result of this checkpoint, hint
1833       ** about the eventual size of the db file to the VFS layer.
1834       */
1835       if( rc==SQLITE_OK ){
1836         i64 nReq = ((i64)mxPage * szPage);
1837         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1838         if( rc==SQLITE_OK && nSize<nReq ){
1839           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1840         }
1841       }
1842 
1843 
1844       /* Iterate through the contents of the WAL, copying data to the db file */
1845       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1846         i64 iOffset;
1847         assert( walFramePgno(pWal, iFrame)==iDbpage );
1848         if( db->u1.isInterrupted ){
1849           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1850           break;
1851         }
1852         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1853           continue;
1854         }
1855         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1856         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1857         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1858         if( rc!=SQLITE_OK ) break;
1859         iOffset = (iDbpage-1)*(i64)szPage;
1860         testcase( IS_BIG_INT(iOffset) );
1861         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1862         if( rc!=SQLITE_OK ) break;
1863       }
1864 
1865       /* If work was actually accomplished... */
1866       if( rc==SQLITE_OK ){
1867         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1868           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1869           testcase( IS_BIG_INT(szDb) );
1870           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1871           if( rc==SQLITE_OK ){
1872             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1873           }
1874         }
1875         if( rc==SQLITE_OK ){
1876           pInfo->nBackfill = mxSafeFrame;
1877         }
1878       }
1879 
1880       /* Release the reader lock held while backfilling */
1881       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1882     }
1883 
1884     if( rc==SQLITE_BUSY ){
1885       /* Reset the return code so as not to report a checkpoint failure
1886       ** just because there are active readers.  */
1887       rc = SQLITE_OK;
1888     }
1889   }
1890 
1891   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1892   ** entire wal file has been copied into the database file, then block
1893   ** until all readers have finished using the wal file. This ensures that
1894   ** the next process to write to the database restarts the wal file.
1895   */
1896   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1897     assert( pWal->writeLock );
1898     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1899       rc = SQLITE_BUSY;
1900     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1901       u32 salt1;
1902       sqlite3_randomness(4, &salt1);
1903       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1904       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1905       if( rc==SQLITE_OK ){
1906         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1907           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1908           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1909           ** truncates the log file to zero bytes just prior to a
1910           ** successful return.
1911           **
1912           ** In theory, it might be safe to do this without updating the
1913           ** wal-index header in shared memory, as all subsequent reader or
1914           ** writer clients should see that the entire log file has been
1915           ** checkpointed and behave accordingly. This seems unsafe though,
1916           ** as it would leave the system in a state where the contents of
1917           ** the wal-index header do not match the contents of the
1918           ** file-system. To avoid this, update the wal-index header to
1919           ** indicate that the log file contains zero valid frames.  */
1920           walRestartHdr(pWal, salt1);
1921           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1922         }
1923         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1924       }
1925     }
1926   }
1927 
1928  walcheckpoint_out:
1929   walIteratorFree(pIter);
1930   return rc;
1931 }
1932 
1933 /*
1934 ** If the WAL file is currently larger than nMax bytes in size, truncate
1935 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1936 */
1937 static void walLimitSize(Wal *pWal, i64 nMax){
1938   i64 sz;
1939   int rx;
1940   sqlite3BeginBenignMalloc();
1941   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1942   if( rx==SQLITE_OK && (sz > nMax ) ){
1943     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1944   }
1945   sqlite3EndBenignMalloc();
1946   if( rx ){
1947     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1948   }
1949 }
1950 
1951 /*
1952 ** Close a connection to a log file.
1953 */
1954 int sqlite3WalClose(
1955   Wal *pWal,                      /* Wal to close */
1956   sqlite3 *db,                    /* For interrupt flag */
1957   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1958   int nBuf,
1959   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1960 ){
1961   int rc = SQLITE_OK;
1962   if( pWal ){
1963     int isDelete = 0;             /* True to unlink wal and wal-index files */
1964 
1965     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1966     ** ordinary, rollback-mode locking methods, this guarantees that the
1967     ** connection associated with this log file is the only connection to
1968     ** the database. In this case checkpoint the database and unlink both
1969     ** the wal and wal-index files.
1970     **
1971     ** The EXCLUSIVE lock is not released before returning.
1972     */
1973     if( zBuf!=0
1974      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1975     ){
1976       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1977         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1978       }
1979       rc = sqlite3WalCheckpoint(pWal, db,
1980           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1981       );
1982       if( rc==SQLITE_OK ){
1983         int bPersist = -1;
1984         sqlite3OsFileControlHint(
1985             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1986         );
1987         if( bPersist!=1 ){
1988           /* Try to delete the WAL file if the checkpoint completed and
1989           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1990           ** mode (!bPersist) */
1991           isDelete = 1;
1992         }else if( pWal->mxWalSize>=0 ){
1993           /* Try to truncate the WAL file to zero bytes if the checkpoint
1994           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1995           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1996           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1997           ** to zero bytes as truncating to the journal_size_limit might
1998           ** leave a corrupt WAL file on disk. */
1999           walLimitSize(pWal, 0);
2000         }
2001       }
2002     }
2003 
2004     walIndexClose(pWal, isDelete);
2005     sqlite3OsClose(pWal->pWalFd);
2006     if( isDelete ){
2007       sqlite3BeginBenignMalloc();
2008       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2009       sqlite3EndBenignMalloc();
2010     }
2011     WALTRACE(("WAL%p: closed\n", pWal));
2012     sqlite3_free((void *)pWal->apWiData);
2013     sqlite3_free(pWal);
2014   }
2015   return rc;
2016 }
2017 
2018 /*
2019 ** Try to read the wal-index header.  Return 0 on success and 1 if
2020 ** there is a problem.
2021 **
2022 ** The wal-index is in shared memory.  Another thread or process might
2023 ** be writing the header at the same time this procedure is trying to
2024 ** read it, which might result in inconsistency.  A dirty read is detected
2025 ** by verifying that both copies of the header are the same and also by
2026 ** a checksum on the header.
2027 **
2028 ** If and only if the read is consistent and the header is different from
2029 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2030 ** and *pChanged is set to 1.
2031 **
2032 ** If the checksum cannot be verified return non-zero. If the header
2033 ** is read successfully and the checksum verified, return zero.
2034 */
2035 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2036   u32 aCksum[2];                  /* Checksum on the header content */
2037   WalIndexHdr h1, h2;             /* Two copies of the header content */
2038   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2039 
2040   /* The first page of the wal-index must be mapped at this point. */
2041   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2042 
2043   /* Read the header. This might happen concurrently with a write to the
2044   ** same area of shared memory on a different CPU in a SMP,
2045   ** meaning it is possible that an inconsistent snapshot is read
2046   ** from the file. If this happens, return non-zero.
2047   **
2048   ** There are two copies of the header at the beginning of the wal-index.
2049   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2050   ** Memory barriers are used to prevent the compiler or the hardware from
2051   ** reordering the reads and writes.
2052   */
2053   aHdr = walIndexHdr(pWal);
2054   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2055   walShmBarrier(pWal);
2056   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2057 
2058   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2059     return 1;   /* Dirty read */
2060   }
2061   if( h1.isInit==0 ){
2062     return 1;   /* Malformed header - probably all zeros */
2063   }
2064   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2065   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2066     return 1;   /* Checksum does not match */
2067   }
2068 
2069   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2070     *pChanged = 1;
2071     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2072     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2073     testcase( pWal->szPage<=32768 );
2074     testcase( pWal->szPage>=65536 );
2075   }
2076 
2077   /* The header was successfully read. Return zero. */
2078   return 0;
2079 }
2080 
2081 /*
2082 ** This is the value that walTryBeginRead returns when it needs to
2083 ** be retried.
2084 */
2085 #define WAL_RETRY  (-1)
2086 
2087 /*
2088 ** Read the wal-index header from the wal-index and into pWal->hdr.
2089 ** If the wal-header appears to be corrupt, try to reconstruct the
2090 ** wal-index from the WAL before returning.
2091 **
2092 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2093 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2094 ** to 0.
2095 **
2096 ** If the wal-index header is successfully read, return SQLITE_OK.
2097 ** Otherwise an SQLite error code.
2098 */
2099 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2100   int rc;                         /* Return code */
2101   int badHdr;                     /* True if a header read failed */
2102   volatile u32 *page0;            /* Chunk of wal-index containing header */
2103 
2104   /* Ensure that page 0 of the wal-index (the page that contains the
2105   ** wal-index header) is mapped. Return early if an error occurs here.
2106   */
2107   assert( pChanged );
2108   rc = walIndexPage(pWal, 0, &page0);
2109   if( rc!=SQLITE_OK ){
2110     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2111     if( rc==SQLITE_READONLY_CANTINIT ){
2112       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2113       ** was openable but is not writable, and this thread is unable to
2114       ** confirm that another write-capable connection has the shared-memory
2115       ** open, and hence the content of the shared-memory is unreliable,
2116       ** since the shared-memory might be inconsistent with the WAL file
2117       ** and there is no writer on hand to fix it. */
2118       assert( page0==0 );
2119       assert( pWal->writeLock==0 );
2120       assert( pWal->readOnly & WAL_SHM_RDONLY );
2121       pWal->bShmUnreliable = 1;
2122       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2123       *pChanged = 1;
2124     }else{
2125       return rc; /* Any other non-OK return is just an error */
2126     }
2127   }else{
2128     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2129     ** is zero, which prevents the SHM from growing */
2130     testcase( page0!=0 );
2131   }
2132   assert( page0!=0 || pWal->writeLock==0 );
2133 
2134   /* If the first page of the wal-index has been mapped, try to read the
2135   ** wal-index header immediately, without holding any lock. This usually
2136   ** works, but may fail if the wal-index header is corrupt or currently
2137   ** being modified by another thread or process.
2138   */
2139   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2140 
2141   /* If the first attempt failed, it might have been due to a race
2142   ** with a writer.  So get a WRITE lock and try again.
2143   */
2144   assert( badHdr==0 || pWal->writeLock==0 );
2145   if( badHdr ){
2146     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2147       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2148         walUnlockShared(pWal, WAL_WRITE_LOCK);
2149         rc = SQLITE_READONLY_RECOVERY;
2150       }
2151     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2152       pWal->writeLock = 1;
2153       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2154         badHdr = walIndexTryHdr(pWal, pChanged);
2155         if( badHdr ){
2156           /* If the wal-index header is still malformed even while holding
2157           ** a WRITE lock, it can only mean that the header is corrupted and
2158           ** needs to be reconstructed.  So run recovery to do exactly that.
2159           */
2160           rc = walIndexRecover(pWal);
2161           *pChanged = 1;
2162         }
2163       }
2164       pWal->writeLock = 0;
2165       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2166     }
2167   }
2168 
2169   /* If the header is read successfully, check the version number to make
2170   ** sure the wal-index was not constructed with some future format that
2171   ** this version of SQLite cannot understand.
2172   */
2173   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2174     rc = SQLITE_CANTOPEN_BKPT;
2175   }
2176   if( pWal->bShmUnreliable ){
2177     if( rc!=SQLITE_OK ){
2178       walIndexClose(pWal, 0);
2179       pWal->bShmUnreliable = 0;
2180       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2181       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2182       ** writer truncated the WAL out from under it.  If that happens, it
2183       ** indicates that a writer has fixed the SHM file for us, so retry */
2184       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2185     }
2186     pWal->exclusiveMode = WAL_NORMAL_MODE;
2187   }
2188 
2189   return rc;
2190 }
2191 
2192 /*
2193 ** Open a transaction in a connection where the shared-memory is read-only
2194 ** and where we cannot verify that there is a separate write-capable connection
2195 ** on hand to keep the shared-memory up-to-date with the WAL file.
2196 **
2197 ** This can happen, for example, when the shared-memory is implemented by
2198 ** memory-mapping a *-shm file, where a prior writer has shut down and
2199 ** left the *-shm file on disk, and now the present connection is trying
2200 ** to use that database but lacks write permission on the *-shm file.
2201 ** Other scenarios are also possible, depending on the VFS implementation.
2202 **
2203 ** Precondition:
2204 **
2205 **    The *-wal file has been read and an appropriate wal-index has been
2206 **    constructed in pWal->apWiData[] using heap memory instead of shared
2207 **    memory.
2208 **
2209 ** If this function returns SQLITE_OK, then the read transaction has
2210 ** been successfully opened. In this case output variable (*pChanged)
2211 ** is set to true before returning if the caller should discard the
2212 ** contents of the page cache before proceeding. Or, if it returns
2213 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2214 ** the caller should retry opening the read transaction from the
2215 ** beginning (including attempting to map the *-shm file).
2216 **
2217 ** If an error occurs, an SQLite error code is returned.
2218 */
2219 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2220   i64 szWal;                      /* Size of wal file on disk in bytes */
2221   i64 iOffset;                    /* Current offset when reading wal file */
2222   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2223   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2224   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2225   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2226   volatile void *pDummy;          /* Dummy argument for xShmMap */
2227   int rc;                         /* Return code */
2228   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2229 
2230   assert( pWal->bShmUnreliable );
2231   assert( pWal->readOnly & WAL_SHM_RDONLY );
2232   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2233 
2234   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2235   ** writers from running a checkpoint, but does not stop them
2236   ** from running recovery.  */
2237   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2238   if( rc!=SQLITE_OK ){
2239     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2240     goto begin_unreliable_shm_out;
2241   }
2242   pWal->readLock = 0;
2243 
2244   /* Check to see if a separate writer has attached to the shared-memory area,
2245   ** thus making the shared-memory "reliable" again.  Do this by invoking
2246   ** the xShmMap() routine of the VFS and looking to see if the return
2247   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2248   **
2249   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2250   ** cause the heap-memory WAL-index to be discarded and the actual
2251   ** shared memory to be used in its place.
2252   **
2253   ** This step is important because, even though this connection is holding
2254   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2255   ** have already checkpointed the WAL file and, while the current
2256   ** is active, wrap the WAL and start overwriting frames that this
2257   ** process wants to use.
2258   **
2259   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2260   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2261   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2262   ** even if some external agent does a "chmod" to make the shared-memory
2263   ** writable by us, until sqlite3OsShmUnmap() has been called.
2264   ** This is a requirement on the VFS implementation.
2265    */
2266   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2267   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2268   if( rc!=SQLITE_READONLY_CANTINIT ){
2269     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2270     goto begin_unreliable_shm_out;
2271   }
2272 
2273   /* We reach this point only if the real shared-memory is still unreliable.
2274   ** Assume the in-memory WAL-index substitute is correct and load it
2275   ** into pWal->hdr.
2276   */
2277   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2278 
2279   /* Make sure some writer hasn't come in and changed the WAL file out
2280   ** from under us, then disconnected, while we were not looking.
2281   */
2282   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2283   if( rc!=SQLITE_OK ){
2284     goto begin_unreliable_shm_out;
2285   }
2286   if( szWal<WAL_HDRSIZE ){
2287     /* If the wal file is too small to contain a wal-header and the
2288     ** wal-index header has mxFrame==0, then it must be safe to proceed
2289     ** reading the database file only. However, the page cache cannot
2290     ** be trusted, as a read/write connection may have connected, written
2291     ** the db, run a checkpoint, truncated the wal file and disconnected
2292     ** since this client's last read transaction.  */
2293     *pChanged = 1;
2294     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2295     goto begin_unreliable_shm_out;
2296   }
2297 
2298   /* Check the salt keys at the start of the wal file still match. */
2299   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2300   if( rc!=SQLITE_OK ){
2301     goto begin_unreliable_shm_out;
2302   }
2303   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2304     /* Some writer has wrapped the WAL file while we were not looking.
2305     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2306     ** rebuilt. */
2307     rc = WAL_RETRY;
2308     goto begin_unreliable_shm_out;
2309   }
2310 
2311   /* Allocate a buffer to read frames into */
2312   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2313   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2314   if( aFrame==0 ){
2315     rc = SQLITE_NOMEM_BKPT;
2316     goto begin_unreliable_shm_out;
2317   }
2318   aData = &aFrame[WAL_FRAME_HDRSIZE];
2319 
2320   /* Check to see if a complete transaction has been appended to the
2321   ** wal file since the heap-memory wal-index was created. If so, the
2322   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2323   ** the caller.  */
2324   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2325   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2326   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2327       iOffset+szFrame<=szWal;
2328       iOffset+=szFrame
2329   ){
2330     u32 pgno;                   /* Database page number for frame */
2331     u32 nTruncate;              /* dbsize field from frame header */
2332 
2333     /* Read and decode the next log frame. */
2334     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2335     if( rc!=SQLITE_OK ) break;
2336     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2337 
2338     /* If nTruncate is non-zero, then a complete transaction has been
2339     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2340     ** the loop.  */
2341     if( nTruncate ){
2342       rc = WAL_RETRY;
2343       break;
2344     }
2345   }
2346   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2347   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2348 
2349  begin_unreliable_shm_out:
2350   sqlite3_free(aFrame);
2351   if( rc!=SQLITE_OK ){
2352     int i;
2353     for(i=0; i<pWal->nWiData; i++){
2354       sqlite3_free((void*)pWal->apWiData[i]);
2355       pWal->apWiData[i] = 0;
2356     }
2357     pWal->bShmUnreliable = 0;
2358     sqlite3WalEndReadTransaction(pWal);
2359     *pChanged = 1;
2360   }
2361   return rc;
2362 }
2363 
2364 /*
2365 ** Attempt to start a read transaction.  This might fail due to a race or
2366 ** other transient condition.  When that happens, it returns WAL_RETRY to
2367 ** indicate to the caller that it is safe to retry immediately.
2368 **
2369 ** On success return SQLITE_OK.  On a permanent failure (such an
2370 ** I/O error or an SQLITE_BUSY because another process is running
2371 ** recovery) return a positive error code.
2372 **
2373 ** The useWal parameter is true to force the use of the WAL and disable
2374 ** the case where the WAL is bypassed because it has been completely
2375 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2376 ** to make a copy of the wal-index header into pWal->hdr.  If the
2377 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2378 ** to the caller that the local page cache is obsolete and needs to be
2379 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2380 ** be loaded and the pChanged parameter is unused.
2381 **
2382 ** The caller must set the cnt parameter to the number of prior calls to
2383 ** this routine during the current read attempt that returned WAL_RETRY.
2384 ** This routine will start taking more aggressive measures to clear the
2385 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2386 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2387 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2388 ** and is not honoring the locking protocol.  There is a vanishingly small
2389 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2390 ** bad luck when there is lots of contention for the wal-index, but that
2391 ** possibility is so small that it can be safely neglected, we believe.
2392 **
2393 ** On success, this routine obtains a read lock on
2394 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2395 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2396 ** that means the Wal does not hold any read lock.  The reader must not
2397 ** access any database page that is modified by a WAL frame up to and
2398 ** including frame number aReadMark[pWal->readLock].  The reader will
2399 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2400 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2401 ** completely and get all content directly from the database file.
2402 ** If the useWal parameter is 1 then the WAL will never be ignored and
2403 ** this routine will always set pWal->readLock>0 on success.
2404 ** When the read transaction is completed, the caller must release the
2405 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2406 **
2407 ** This routine uses the nBackfill and aReadMark[] fields of the header
2408 ** to select a particular WAL_READ_LOCK() that strives to let the
2409 ** checkpoint process do as much work as possible.  This routine might
2410 ** update values of the aReadMark[] array in the header, but if it does
2411 ** so it takes care to hold an exclusive lock on the corresponding
2412 ** WAL_READ_LOCK() while changing values.
2413 */
2414 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2415   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2416   u32 mxReadMark;                 /* Largest aReadMark[] value */
2417   int mxI;                        /* Index of largest aReadMark[] value */
2418   int i;                          /* Loop counter */
2419   int rc = SQLITE_OK;             /* Return code  */
2420   u32 mxFrame;                    /* Wal frame to lock to */
2421 
2422   assert( pWal->readLock<0 );     /* Not currently locked */
2423 
2424   /* useWal may only be set for read/write connections */
2425   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2426 
2427   /* Take steps to avoid spinning forever if there is a protocol error.
2428   **
2429   ** Circumstances that cause a RETRY should only last for the briefest
2430   ** instances of time.  No I/O or other system calls are done while the
2431   ** locks are held, so the locks should not be held for very long. But
2432   ** if we are unlucky, another process that is holding a lock might get
2433   ** paged out or take a page-fault that is time-consuming to resolve,
2434   ** during the few nanoseconds that it is holding the lock.  In that case,
2435   ** it might take longer than normal for the lock to free.
2436   **
2437   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2438   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2439   ** is more of a scheduler yield than an actual delay.  But on the 10th
2440   ** an subsequent retries, the delays start becoming longer and longer,
2441   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2442   ** The total delay time before giving up is less than 10 seconds.
2443   */
2444   if( cnt>5 ){
2445     int nDelay = 1;                      /* Pause time in microseconds */
2446     if( cnt>100 ){
2447       VVA_ONLY( pWal->lockError = 1; )
2448       return SQLITE_PROTOCOL;
2449     }
2450     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2451     sqlite3OsSleep(pWal->pVfs, nDelay);
2452   }
2453 
2454   if( !useWal ){
2455     assert( rc==SQLITE_OK );
2456     if( pWal->bShmUnreliable==0 ){
2457       rc = walIndexReadHdr(pWal, pChanged);
2458     }
2459     if( rc==SQLITE_BUSY ){
2460       /* If there is not a recovery running in another thread or process
2461       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2462       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2463       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2464       ** would be technically correct.  But the race is benign since with
2465       ** WAL_RETRY this routine will be called again and will probably be
2466       ** right on the second iteration.
2467       */
2468       if( pWal->apWiData[0]==0 ){
2469         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2470         ** We assume this is a transient condition, so return WAL_RETRY. The
2471         ** xShmMap() implementation used by the default unix and win32 VFS
2472         ** modules may return SQLITE_BUSY due to a race condition in the
2473         ** code that determines whether or not the shared-memory region
2474         ** must be zeroed before the requested page is returned.
2475         */
2476         rc = WAL_RETRY;
2477       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2478         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2479         rc = WAL_RETRY;
2480       }else if( rc==SQLITE_BUSY ){
2481         rc = SQLITE_BUSY_RECOVERY;
2482       }
2483     }
2484     if( rc!=SQLITE_OK ){
2485       return rc;
2486     }
2487     else if( pWal->bShmUnreliable ){
2488       return walBeginShmUnreliable(pWal, pChanged);
2489     }
2490   }
2491 
2492   assert( pWal->nWiData>0 );
2493   assert( pWal->apWiData[0]!=0 );
2494   pInfo = walCkptInfo(pWal);
2495   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2496 #ifdef SQLITE_ENABLE_SNAPSHOT
2497    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2498      || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2499 #endif
2500   ){
2501     /* The WAL has been completely backfilled (or it is empty).
2502     ** and can be safely ignored.
2503     */
2504     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2505     walShmBarrier(pWal);
2506     if( rc==SQLITE_OK ){
2507       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2508         /* It is not safe to allow the reader to continue here if frames
2509         ** may have been appended to the log before READ_LOCK(0) was obtained.
2510         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2511         ** which implies that the database file contains a trustworthy
2512         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2513         ** happening, this is usually correct.
2514         **
2515         ** However, if frames have been appended to the log (or if the log
2516         ** is wrapped and written for that matter) before the READ_LOCK(0)
2517         ** is obtained, that is not necessarily true. A checkpointer may
2518         ** have started to backfill the appended frames but crashed before
2519         ** it finished. Leaving a corrupt image in the database file.
2520         */
2521         walUnlockShared(pWal, WAL_READ_LOCK(0));
2522         return WAL_RETRY;
2523       }
2524       pWal->readLock = 0;
2525       return SQLITE_OK;
2526     }else if( rc!=SQLITE_BUSY ){
2527       return rc;
2528     }
2529   }
2530 
2531   /* If we get this far, it means that the reader will want to use
2532   ** the WAL to get at content from recent commits.  The job now is
2533   ** to select one of the aReadMark[] entries that is closest to
2534   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2535   */
2536   mxReadMark = 0;
2537   mxI = 0;
2538   mxFrame = pWal->hdr.mxFrame;
2539 #ifdef SQLITE_ENABLE_SNAPSHOT
2540   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2541     mxFrame = pWal->pSnapshot->mxFrame;
2542   }
2543 #endif
2544   for(i=1; i<WAL_NREADER; i++){
2545     u32 thisMark = pInfo->aReadMark[i];
2546     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2547       assert( thisMark!=READMARK_NOT_USED );
2548       mxReadMark = thisMark;
2549       mxI = i;
2550     }
2551   }
2552   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2553    && (mxReadMark<mxFrame || mxI==0)
2554   ){
2555     for(i=1; i<WAL_NREADER; i++){
2556       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2557       if( rc==SQLITE_OK ){
2558         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2559         mxI = i;
2560         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2561         break;
2562       }else if( rc!=SQLITE_BUSY ){
2563         return rc;
2564       }
2565     }
2566   }
2567   if( mxI==0 ){
2568     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2569     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2570   }
2571 
2572   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2573   if( rc ){
2574     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2575   }
2576   /* Now that the read-lock has been obtained, check that neither the
2577   ** value in the aReadMark[] array or the contents of the wal-index
2578   ** header have changed.
2579   **
2580   ** It is necessary to check that the wal-index header did not change
2581   ** between the time it was read and when the shared-lock was obtained
2582   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2583   ** that the log file may have been wrapped by a writer, or that frames
2584   ** that occur later in the log than pWal->hdr.mxFrame may have been
2585   ** copied into the database by a checkpointer. If either of these things
2586   ** happened, then reading the database with the current value of
2587   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2588   ** instead.
2589   **
2590   ** Before checking that the live wal-index header has not changed
2591   ** since it was read, set Wal.minFrame to the first frame in the wal
2592   ** file that has not yet been checkpointed. This client will not need
2593   ** to read any frames earlier than minFrame from the wal file - they
2594   ** can be safely read directly from the database file.
2595   **
2596   ** Because a ShmBarrier() call is made between taking the copy of
2597   ** nBackfill and checking that the wal-header in shared-memory still
2598   ** matches the one cached in pWal->hdr, it is guaranteed that the
2599   ** checkpointer that set nBackfill was not working with a wal-index
2600   ** header newer than that cached in pWal->hdr. If it were, that could
2601   ** cause a problem. The checkpointer could omit to checkpoint
2602   ** a version of page X that lies before pWal->minFrame (call that version
2603   ** A) on the basis that there is a newer version (version B) of the same
2604   ** page later in the wal file. But if version B happens to like past
2605   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2606   ** that it can read version A from the database file. However, since
2607   ** we can guarantee that the checkpointer that set nBackfill could not
2608   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2609   */
2610   pWal->minFrame = pInfo->nBackfill+1;
2611   walShmBarrier(pWal);
2612   if( pInfo->aReadMark[mxI]!=mxReadMark
2613    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2614   ){
2615     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2616     return WAL_RETRY;
2617   }else{
2618     assert( mxReadMark<=pWal->hdr.mxFrame );
2619     pWal->readLock = (i16)mxI;
2620   }
2621   return rc;
2622 }
2623 
2624 #ifdef SQLITE_ENABLE_SNAPSHOT
2625 /*
2626 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2627 ** variable so that older snapshots can be accessed. To do this, loop
2628 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2629 ** comparing their content to the corresponding page with the database
2630 ** file, if any. Set nBackfillAttempted to the frame number of the
2631 ** first frame for which the wal file content matches the db file.
2632 **
2633 ** This is only really safe if the file-system is such that any page
2634 ** writes made by earlier checkpointers were atomic operations, which
2635 ** is not always true. It is also possible that nBackfillAttempted
2636 ** may be left set to a value larger than expected, if a wal frame
2637 ** contains content that duplicate of an earlier version of the same
2638 ** page.
2639 **
2640 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2641 ** error occurs. It is not an error if nBackfillAttempted cannot be
2642 ** decreased at all.
2643 */
2644 int sqlite3WalSnapshotRecover(Wal *pWal){
2645   int rc;
2646 
2647   assert( pWal->readLock>=0 );
2648   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2649   if( rc==SQLITE_OK ){
2650     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2651     int szPage = (int)pWal->szPage;
2652     i64 szDb;                   /* Size of db file in bytes */
2653 
2654     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2655     if( rc==SQLITE_OK ){
2656       void *pBuf1 = sqlite3_malloc(szPage);
2657       void *pBuf2 = sqlite3_malloc(szPage);
2658       if( pBuf1==0 || pBuf2==0 ){
2659         rc = SQLITE_NOMEM;
2660       }else{
2661         u32 i = pInfo->nBackfillAttempted;
2662         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2663           volatile ht_slot *dummy;
2664           volatile u32 *aPgno;      /* Array of page numbers */
2665           u32 iZero;                /* Frame corresponding to aPgno[0] */
2666           u32 pgno;                 /* Page number in db file */
2667           i64 iDbOff;               /* Offset of db file entry */
2668           i64 iWalOff;              /* Offset of wal file entry */
2669 
2670           rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2671           if( rc!=SQLITE_OK ) break;
2672           pgno = aPgno[i-iZero];
2673           iDbOff = (i64)(pgno-1) * szPage;
2674 
2675           if( iDbOff+szPage<=szDb ){
2676             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2677             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2678 
2679             if( rc==SQLITE_OK ){
2680               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2681             }
2682 
2683             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2684               break;
2685             }
2686           }
2687 
2688           pInfo->nBackfillAttempted = i-1;
2689         }
2690       }
2691 
2692       sqlite3_free(pBuf1);
2693       sqlite3_free(pBuf2);
2694     }
2695     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2696   }
2697 
2698   return rc;
2699 }
2700 #endif /* SQLITE_ENABLE_SNAPSHOT */
2701 
2702 /*
2703 ** Begin a read transaction on the database.
2704 **
2705 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2706 ** it takes a snapshot of the state of the WAL and wal-index for the current
2707 ** instant in time.  The current thread will continue to use this snapshot.
2708 ** Other threads might append new content to the WAL and wal-index but
2709 ** that extra content is ignored by the current thread.
2710 **
2711 ** If the database contents have changes since the previous read
2712 ** transaction, then *pChanged is set to 1 before returning.  The
2713 ** Pager layer will use this to know that is cache is stale and
2714 ** needs to be flushed.
2715 */
2716 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2717   int rc;                         /* Return code */
2718   int cnt = 0;                    /* Number of TryBeginRead attempts */
2719 
2720 #ifdef SQLITE_ENABLE_SNAPSHOT
2721   int bChanged = 0;
2722   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2723   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2724     bChanged = 1;
2725   }
2726 #endif
2727 
2728   do{
2729     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2730   }while( rc==WAL_RETRY );
2731   testcase( (rc&0xff)==SQLITE_BUSY );
2732   testcase( (rc&0xff)==SQLITE_IOERR );
2733   testcase( rc==SQLITE_PROTOCOL );
2734   testcase( rc==SQLITE_OK );
2735 
2736 #ifdef SQLITE_ENABLE_SNAPSHOT
2737   if( rc==SQLITE_OK ){
2738     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2739       /* At this point the client has a lock on an aReadMark[] slot holding
2740       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2741       ** is populated with the wal-index header corresponding to the head
2742       ** of the wal file. Verify that pSnapshot is still valid before
2743       ** continuing.  Reasons why pSnapshot might no longer be valid:
2744       **
2745       **    (1)  The WAL file has been reset since the snapshot was taken.
2746       **         In this case, the salt will have changed.
2747       **
2748       **    (2)  A checkpoint as been attempted that wrote frames past
2749       **         pSnapshot->mxFrame into the database file.  Note that the
2750       **         checkpoint need not have completed for this to cause problems.
2751       */
2752       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2753 
2754       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2755       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2756 
2757       /* It is possible that there is a checkpointer thread running
2758       ** concurrent with this code. If this is the case, it may be that the
2759       ** checkpointer has already determined that it will checkpoint
2760       ** snapshot X, where X is later in the wal file than pSnapshot, but
2761       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2762       ** its intent. To avoid the race condition this leads to, ensure that
2763       ** there is no checkpointer process by taking a shared CKPT lock
2764       ** before checking pInfo->nBackfillAttempted.
2765       **
2766       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2767       **       this already?
2768       */
2769       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2770 
2771       if( rc==SQLITE_OK ){
2772         /* Check that the wal file has not been wrapped. Assuming that it has
2773         ** not, also check that no checkpointer has attempted to checkpoint any
2774         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2775         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2776         ** with *pSnapshot and set *pChanged as appropriate for opening the
2777         ** snapshot.  */
2778         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2779          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2780         ){
2781           assert( pWal->readLock>0 );
2782           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2783           *pChanged = bChanged;
2784         }else{
2785           rc = SQLITE_BUSY_SNAPSHOT;
2786         }
2787 
2788         /* Release the shared CKPT lock obtained above. */
2789         walUnlockShared(pWal, WAL_CKPT_LOCK);
2790       }
2791 
2792 
2793       if( rc!=SQLITE_OK ){
2794         sqlite3WalEndReadTransaction(pWal);
2795       }
2796     }
2797   }
2798 #endif
2799   return rc;
2800 }
2801 
2802 /*
2803 ** Finish with a read transaction.  All this does is release the
2804 ** read-lock.
2805 */
2806 void sqlite3WalEndReadTransaction(Wal *pWal){
2807   sqlite3WalEndWriteTransaction(pWal);
2808   if( pWal->readLock>=0 ){
2809     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2810     pWal->readLock = -1;
2811   }
2812 }
2813 
2814 /*
2815 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2816 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2817 ** to zero.
2818 **
2819 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2820 ** error does occur, the final value of *piRead is undefined.
2821 */
2822 int sqlite3WalFindFrame(
2823   Wal *pWal,                      /* WAL handle */
2824   Pgno pgno,                      /* Database page number to read data for */
2825   u32 *piRead                     /* OUT: Frame number (or zero) */
2826 ){
2827   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2828   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2829   int iHash;                      /* Used to loop through N hash tables */
2830   int iMinHash;
2831 
2832   /* This routine is only be called from within a read transaction. */
2833   assert( pWal->readLock>=0 || pWal->lockError );
2834 
2835   /* If the "last page" field of the wal-index header snapshot is 0, then
2836   ** no data will be read from the wal under any circumstances. Return early
2837   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2838   ** then the WAL is ignored by the reader so return early, as if the
2839   ** WAL were empty.
2840   */
2841   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2842     *piRead = 0;
2843     return SQLITE_OK;
2844   }
2845 
2846   /* Search the hash table or tables for an entry matching page number
2847   ** pgno. Each iteration of the following for() loop searches one
2848   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2849   **
2850   ** This code might run concurrently to the code in walIndexAppend()
2851   ** that adds entries to the wal-index (and possibly to this hash
2852   ** table). This means the value just read from the hash
2853   ** slot (aHash[iKey]) may have been added before or after the
2854   ** current read transaction was opened. Values added after the
2855   ** read transaction was opened may have been written incorrectly -
2856   ** i.e. these slots may contain garbage data. However, we assume
2857   ** that any slots written before the current read transaction was
2858   ** opened remain unmodified.
2859   **
2860   ** For the reasons above, the if(...) condition featured in the inner
2861   ** loop of the following block is more stringent that would be required
2862   ** if we had exclusive access to the hash-table:
2863   **
2864   **   (aPgno[iFrame]==pgno):
2865   **     This condition filters out normal hash-table collisions.
2866   **
2867   **   (iFrame<=iLast):
2868   **     This condition filters out entries that were added to the hash
2869   **     table after the current read-transaction had started.
2870   */
2871   iMinHash = walFramePage(pWal->minFrame);
2872   for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2873     volatile ht_slot *aHash;      /* Pointer to hash table */
2874     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2875     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2876     int iKey;                     /* Hash slot index */
2877     int nCollide;                 /* Number of hash collisions remaining */
2878     int rc;                       /* Error code */
2879 
2880     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2881     if( rc!=SQLITE_OK ){
2882       return rc;
2883     }
2884     nCollide = HASHTABLE_NSLOT;
2885     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2886       u32 iFrame = aHash[iKey] + iZero;
2887       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2888         assert( iFrame>iRead || CORRUPT_DB );
2889         iRead = iFrame;
2890       }
2891       if( (nCollide--)==0 ){
2892         return SQLITE_CORRUPT_BKPT;
2893       }
2894     }
2895   }
2896 
2897 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2898   /* If expensive assert() statements are available, do a linear search
2899   ** of the wal-index file content. Make sure the results agree with the
2900   ** result obtained using the hash indexes above.  */
2901   {
2902     u32 iRead2 = 0;
2903     u32 iTest;
2904     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2905     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2906       if( walFramePgno(pWal, iTest)==pgno ){
2907         iRead2 = iTest;
2908         break;
2909       }
2910     }
2911     assert( iRead==iRead2 );
2912   }
2913 #endif
2914 
2915   *piRead = iRead;
2916   return SQLITE_OK;
2917 }
2918 
2919 /*
2920 ** Read the contents of frame iRead from the wal file into buffer pOut
2921 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2922 ** error code otherwise.
2923 */
2924 int sqlite3WalReadFrame(
2925   Wal *pWal,                      /* WAL handle */
2926   u32 iRead,                      /* Frame to read */
2927   int nOut,                       /* Size of buffer pOut in bytes */
2928   u8 *pOut                        /* Buffer to write page data to */
2929 ){
2930   int sz;
2931   i64 iOffset;
2932   sz = pWal->hdr.szPage;
2933   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2934   testcase( sz<=32768 );
2935   testcase( sz>=65536 );
2936   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2937   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2938   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2939 }
2940 
2941 /*
2942 ** Return the size of the database in pages (or zero, if unknown).
2943 */
2944 Pgno sqlite3WalDbsize(Wal *pWal){
2945   if( pWal && ALWAYS(pWal->readLock>=0) ){
2946     return pWal->hdr.nPage;
2947   }
2948   return 0;
2949 }
2950 
2951 
2952 /*
2953 ** This function starts a write transaction on the WAL.
2954 **
2955 ** A read transaction must have already been started by a prior call
2956 ** to sqlite3WalBeginReadTransaction().
2957 **
2958 ** If another thread or process has written into the database since
2959 ** the read transaction was started, then it is not possible for this
2960 ** thread to write as doing so would cause a fork.  So this routine
2961 ** returns SQLITE_BUSY in that case and no write transaction is started.
2962 **
2963 ** There can only be a single writer active at a time.
2964 */
2965 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2966   int rc;
2967 
2968   /* Cannot start a write transaction without first holding a read
2969   ** transaction. */
2970   assert( pWal->readLock>=0 );
2971   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2972 
2973   if( pWal->readOnly ){
2974     return SQLITE_READONLY;
2975   }
2976 
2977   /* Only one writer allowed at a time.  Get the write lock.  Return
2978   ** SQLITE_BUSY if unable.
2979   */
2980   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2981   if( rc ){
2982     return rc;
2983   }
2984   pWal->writeLock = 1;
2985 
2986   /* If another connection has written to the database file since the
2987   ** time the read transaction on this connection was started, then
2988   ** the write is disallowed.
2989   */
2990   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2991     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2992     pWal->writeLock = 0;
2993     rc = SQLITE_BUSY_SNAPSHOT;
2994   }
2995 
2996   return rc;
2997 }
2998 
2999 /*
3000 ** End a write transaction.  The commit has already been done.  This
3001 ** routine merely releases the lock.
3002 */
3003 int sqlite3WalEndWriteTransaction(Wal *pWal){
3004   if( pWal->writeLock ){
3005     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3006     pWal->writeLock = 0;
3007     pWal->iReCksum = 0;
3008     pWal->truncateOnCommit = 0;
3009   }
3010   return SQLITE_OK;
3011 }
3012 
3013 /*
3014 ** If any data has been written (but not committed) to the log file, this
3015 ** function moves the write-pointer back to the start of the transaction.
3016 **
3017 ** Additionally, the callback function is invoked for each frame written
3018 ** to the WAL since the start of the transaction. If the callback returns
3019 ** other than SQLITE_OK, it is not invoked again and the error code is
3020 ** returned to the caller.
3021 **
3022 ** Otherwise, if the callback function does not return an error, this
3023 ** function returns SQLITE_OK.
3024 */
3025 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3026   int rc = SQLITE_OK;
3027   if( ALWAYS(pWal->writeLock) ){
3028     Pgno iMax = pWal->hdr.mxFrame;
3029     Pgno iFrame;
3030 
3031     /* Restore the clients cache of the wal-index header to the state it
3032     ** was in before the client began writing to the database.
3033     */
3034     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3035 
3036     for(iFrame=pWal->hdr.mxFrame+1;
3037         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3038         iFrame++
3039     ){
3040       /* This call cannot fail. Unless the page for which the page number
3041       ** is passed as the second argument is (a) in the cache and
3042       ** (b) has an outstanding reference, then xUndo is either a no-op
3043       ** (if (a) is false) or simply expels the page from the cache (if (b)
3044       ** is false).
3045       **
3046       ** If the upper layer is doing a rollback, it is guaranteed that there
3047       ** are no outstanding references to any page other than page 1. And
3048       ** page 1 is never written to the log until the transaction is
3049       ** committed. As a result, the call to xUndo may not fail.
3050       */
3051       assert( walFramePgno(pWal, iFrame)!=1 );
3052       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3053     }
3054     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3055   }
3056   return rc;
3057 }
3058 
3059 /*
3060 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3061 ** values. This function populates the array with values required to
3062 ** "rollback" the write position of the WAL handle back to the current
3063 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3064 */
3065 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3066   assert( pWal->writeLock );
3067   aWalData[0] = pWal->hdr.mxFrame;
3068   aWalData[1] = pWal->hdr.aFrameCksum[0];
3069   aWalData[2] = pWal->hdr.aFrameCksum[1];
3070   aWalData[3] = pWal->nCkpt;
3071 }
3072 
3073 /*
3074 ** Move the write position of the WAL back to the point identified by
3075 ** the values in the aWalData[] array. aWalData must point to an array
3076 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3077 ** by a call to WalSavepoint().
3078 */
3079 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3080   int rc = SQLITE_OK;
3081 
3082   assert( pWal->writeLock );
3083   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3084 
3085   if( aWalData[3]!=pWal->nCkpt ){
3086     /* This savepoint was opened immediately after the write-transaction
3087     ** was started. Right after that, the writer decided to wrap around
3088     ** to the start of the log. Update the savepoint values to match.
3089     */
3090     aWalData[0] = 0;
3091     aWalData[3] = pWal->nCkpt;
3092   }
3093 
3094   if( aWalData[0]<pWal->hdr.mxFrame ){
3095     pWal->hdr.mxFrame = aWalData[0];
3096     pWal->hdr.aFrameCksum[0] = aWalData[1];
3097     pWal->hdr.aFrameCksum[1] = aWalData[2];
3098     walCleanupHash(pWal);
3099   }
3100 
3101   return rc;
3102 }
3103 
3104 /*
3105 ** This function is called just before writing a set of frames to the log
3106 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3107 ** to the current log file, it is possible to overwrite the start of the
3108 ** existing log file with the new frames (i.e. "reset" the log). If so,
3109 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3110 ** unchanged.
3111 **
3112 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3113 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3114 ** if an error occurs.
3115 */
3116 static int walRestartLog(Wal *pWal){
3117   int rc = SQLITE_OK;
3118   int cnt;
3119 
3120   if( pWal->readLock==0 ){
3121     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3122     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3123     if( pInfo->nBackfill>0 ){
3124       u32 salt1;
3125       sqlite3_randomness(4, &salt1);
3126       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3127       if( rc==SQLITE_OK ){
3128         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3129         ** readers are currently using the WAL), then the transactions
3130         ** frames will overwrite the start of the existing log. Update the
3131         ** wal-index header to reflect this.
3132         **
3133         ** In theory it would be Ok to update the cache of the header only
3134         ** at this point. But updating the actual wal-index header is also
3135         ** safe and means there is no special case for sqlite3WalUndo()
3136         ** to handle if this transaction is rolled back.  */
3137         walRestartHdr(pWal, salt1);
3138         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3139       }else if( rc!=SQLITE_BUSY ){
3140         return rc;
3141       }
3142     }
3143     walUnlockShared(pWal, WAL_READ_LOCK(0));
3144     pWal->readLock = -1;
3145     cnt = 0;
3146     do{
3147       int notUsed;
3148       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3149     }while( rc==WAL_RETRY );
3150     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3151     testcase( (rc&0xff)==SQLITE_IOERR );
3152     testcase( rc==SQLITE_PROTOCOL );
3153     testcase( rc==SQLITE_OK );
3154   }
3155   return rc;
3156 }
3157 
3158 /*
3159 ** Information about the current state of the WAL file and where
3160 ** the next fsync should occur - passed from sqlite3WalFrames() into
3161 ** walWriteToLog().
3162 */
3163 typedef struct WalWriter {
3164   Wal *pWal;                   /* The complete WAL information */
3165   sqlite3_file *pFd;           /* The WAL file to which we write */
3166   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3167   int syncFlags;               /* Flags for the fsync */
3168   int szPage;                  /* Size of one page */
3169 } WalWriter;
3170 
3171 /*
3172 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3173 ** Do a sync when crossing the p->iSyncPoint boundary.
3174 **
3175 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3176 ** first write the part before iSyncPoint, then sync, then write the
3177 ** rest.
3178 */
3179 static int walWriteToLog(
3180   WalWriter *p,              /* WAL to write to */
3181   void *pContent,            /* Content to be written */
3182   int iAmt,                  /* Number of bytes to write */
3183   sqlite3_int64 iOffset      /* Start writing at this offset */
3184 ){
3185   int rc;
3186   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3187     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3188     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3189     if( rc ) return rc;
3190     iOffset += iFirstAmt;
3191     iAmt -= iFirstAmt;
3192     pContent = (void*)(iFirstAmt + (char*)pContent);
3193     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3194     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3195     if( iAmt==0 || rc ) return rc;
3196   }
3197   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3198   return rc;
3199 }
3200 
3201 /*
3202 ** Write out a single frame of the WAL
3203 */
3204 static int walWriteOneFrame(
3205   WalWriter *p,               /* Where to write the frame */
3206   PgHdr *pPage,               /* The page of the frame to be written */
3207   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3208   sqlite3_int64 iOffset       /* Byte offset at which to write */
3209 ){
3210   int rc;                         /* Result code from subfunctions */
3211   void *pData;                    /* Data actually written */
3212   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3213 #if defined(SQLITE_HAS_CODEC)
3214   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3215 #else
3216   pData = pPage->pData;
3217 #endif
3218   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3219   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3220   if( rc ) return rc;
3221   /* Write the page data */
3222   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3223   return rc;
3224 }
3225 
3226 /*
3227 ** This function is called as part of committing a transaction within which
3228 ** one or more frames have been overwritten. It updates the checksums for
3229 ** all frames written to the wal file by the current transaction starting
3230 ** with the earliest to have been overwritten.
3231 **
3232 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3233 */
3234 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3235   const int szPage = pWal->szPage;/* Database page size */
3236   int rc = SQLITE_OK;             /* Return code */
3237   u8 *aBuf;                       /* Buffer to load data from wal file into */
3238   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3239   u32 iRead;                      /* Next frame to read from wal file */
3240   i64 iCksumOff;
3241 
3242   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3243   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3244 
3245   /* Find the checksum values to use as input for the recalculating the
3246   ** first checksum. If the first frame is frame 1 (implying that the current
3247   ** transaction restarted the wal file), these values must be read from the
3248   ** wal-file header. Otherwise, read them from the frame header of the
3249   ** previous frame.  */
3250   assert( pWal->iReCksum>0 );
3251   if( pWal->iReCksum==1 ){
3252     iCksumOff = 24;
3253   }else{
3254     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3255   }
3256   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3257   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3258   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3259 
3260   iRead = pWal->iReCksum;
3261   pWal->iReCksum = 0;
3262   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3263     i64 iOff = walFrameOffset(iRead, szPage);
3264     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3265     if( rc==SQLITE_OK ){
3266       u32 iPgno, nDbSize;
3267       iPgno = sqlite3Get4byte(aBuf);
3268       nDbSize = sqlite3Get4byte(&aBuf[4]);
3269 
3270       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3271       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3272     }
3273   }
3274 
3275   sqlite3_free(aBuf);
3276   return rc;
3277 }
3278 
3279 /*
3280 ** Write a set of frames to the log. The caller must hold the write-lock
3281 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3282 */
3283 int sqlite3WalFrames(
3284   Wal *pWal,                      /* Wal handle to write to */
3285   int szPage,                     /* Database page-size in bytes */
3286   PgHdr *pList,                   /* List of dirty pages to write */
3287   Pgno nTruncate,                 /* Database size after this commit */
3288   int isCommit,                   /* True if this is a commit */
3289   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3290 ){
3291   int rc;                         /* Used to catch return codes */
3292   u32 iFrame;                     /* Next frame address */
3293   PgHdr *p;                       /* Iterator to run through pList with. */
3294   PgHdr *pLast = 0;               /* Last frame in list */
3295   int nExtra = 0;                 /* Number of extra copies of last page */
3296   int szFrame;                    /* The size of a single frame */
3297   i64 iOffset;                    /* Next byte to write in WAL file */
3298   WalWriter w;                    /* The writer */
3299   u32 iFirst = 0;                 /* First frame that may be overwritten */
3300   WalIndexHdr *pLive;             /* Pointer to shared header */
3301 
3302   assert( pList );
3303   assert( pWal->writeLock );
3304 
3305   /* If this frame set completes a transaction, then nTruncate>0.  If
3306   ** nTruncate==0 then this frame set does not complete the transaction. */
3307   assert( (isCommit!=0)==(nTruncate!=0) );
3308 
3309 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3310   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3311     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3312               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3313   }
3314 #endif
3315 
3316   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3317   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3318     iFirst = pLive->mxFrame+1;
3319   }
3320 
3321   /* See if it is possible to write these frames into the start of the
3322   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3323   */
3324   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3325     return rc;
3326   }
3327 
3328   /* If this is the first frame written into the log, write the WAL
3329   ** header to the start of the WAL file. See comments at the top of
3330   ** this source file for a description of the WAL header format.
3331   */
3332   iFrame = pWal->hdr.mxFrame;
3333   if( iFrame==0 ){
3334     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3335     u32 aCksum[2];                /* Checksum for wal-header */
3336 
3337     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3338     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3339     sqlite3Put4byte(&aWalHdr[8], szPage);
3340     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3341     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3342     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3343     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3344     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3345     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3346 
3347     pWal->szPage = szPage;
3348     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3349     pWal->hdr.aFrameCksum[0] = aCksum[0];
3350     pWal->hdr.aFrameCksum[1] = aCksum[1];
3351     pWal->truncateOnCommit = 1;
3352 
3353     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3354     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3355     if( rc!=SQLITE_OK ){
3356       return rc;
3357     }
3358 
3359     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3360     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3361     ** an out-of-order write following a WAL restart could result in
3362     ** database corruption.  See the ticket:
3363     **
3364     **     https://sqlite.org/src/info/ff5be73dee
3365     */
3366     if( pWal->syncHeader ){
3367       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3368       if( rc ) return rc;
3369     }
3370   }
3371   assert( (int)pWal->szPage==szPage );
3372 
3373   /* Setup information needed to write frames into the WAL */
3374   w.pWal = pWal;
3375   w.pFd = pWal->pWalFd;
3376   w.iSyncPoint = 0;
3377   w.syncFlags = sync_flags;
3378   w.szPage = szPage;
3379   iOffset = walFrameOffset(iFrame+1, szPage);
3380   szFrame = szPage + WAL_FRAME_HDRSIZE;
3381 
3382   /* Write all frames into the log file exactly once */
3383   for(p=pList; p; p=p->pDirty){
3384     int nDbSize;   /* 0 normally.  Positive == commit flag */
3385 
3386     /* Check if this page has already been written into the wal file by
3387     ** the current transaction. If so, overwrite the existing frame and
3388     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3389     ** checksums must be recomputed when the transaction is committed.  */
3390     if( iFirst && (p->pDirty || isCommit==0) ){
3391       u32 iWrite = 0;
3392       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3393       assert( rc==SQLITE_OK || iWrite==0 );
3394       if( iWrite>=iFirst ){
3395         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3396         void *pData;
3397         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3398           pWal->iReCksum = iWrite;
3399         }
3400 #if defined(SQLITE_HAS_CODEC)
3401         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3402 #else
3403         pData = p->pData;
3404 #endif
3405         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3406         if( rc ) return rc;
3407         p->flags &= ~PGHDR_WAL_APPEND;
3408         continue;
3409       }
3410     }
3411 
3412     iFrame++;
3413     assert( iOffset==walFrameOffset(iFrame, szPage) );
3414     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3415     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3416     if( rc ) return rc;
3417     pLast = p;
3418     iOffset += szFrame;
3419     p->flags |= PGHDR_WAL_APPEND;
3420   }
3421 
3422   /* Recalculate checksums within the wal file if required. */
3423   if( isCommit && pWal->iReCksum ){
3424     rc = walRewriteChecksums(pWal, iFrame);
3425     if( rc ) return rc;
3426   }
3427 
3428   /* If this is the end of a transaction, then we might need to pad
3429   ** the transaction and/or sync the WAL file.
3430   **
3431   ** Padding and syncing only occur if this set of frames complete a
3432   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3433   ** or synchronous==OFF, then no padding or syncing are needed.
3434   **
3435   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3436   ** needed and only the sync is done.  If padding is needed, then the
3437   ** final frame is repeated (with its commit mark) until the next sector
3438   ** boundary is crossed.  Only the part of the WAL prior to the last
3439   ** sector boundary is synced; the part of the last frame that extends
3440   ** past the sector boundary is written after the sync.
3441   */
3442   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3443     int bSync = 1;
3444     if( pWal->padToSectorBoundary ){
3445       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3446       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3447       bSync = (w.iSyncPoint==iOffset);
3448       testcase( bSync );
3449       while( iOffset<w.iSyncPoint ){
3450         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3451         if( rc ) return rc;
3452         iOffset += szFrame;
3453         nExtra++;
3454       }
3455     }
3456     if( bSync ){
3457       assert( rc==SQLITE_OK );
3458       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3459     }
3460   }
3461 
3462   /* If this frame set completes the first transaction in the WAL and
3463   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3464   ** journal size limit, if possible.
3465   */
3466   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3467     i64 sz = pWal->mxWalSize;
3468     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3469       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3470     }
3471     walLimitSize(pWal, sz);
3472     pWal->truncateOnCommit = 0;
3473   }
3474 
3475   /* Append data to the wal-index. It is not necessary to lock the
3476   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3477   ** guarantees that there are no other writers, and no data that may
3478   ** be in use by existing readers is being overwritten.
3479   */
3480   iFrame = pWal->hdr.mxFrame;
3481   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3482     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3483     iFrame++;
3484     rc = walIndexAppend(pWal, iFrame, p->pgno);
3485   }
3486   while( rc==SQLITE_OK && nExtra>0 ){
3487     iFrame++;
3488     nExtra--;
3489     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3490   }
3491 
3492   if( rc==SQLITE_OK ){
3493     /* Update the private copy of the header. */
3494     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3495     testcase( szPage<=32768 );
3496     testcase( szPage>=65536 );
3497     pWal->hdr.mxFrame = iFrame;
3498     if( isCommit ){
3499       pWal->hdr.iChange++;
3500       pWal->hdr.nPage = nTruncate;
3501     }
3502     /* If this is a commit, update the wal-index header too. */
3503     if( isCommit ){
3504       walIndexWriteHdr(pWal);
3505       pWal->iCallback = iFrame;
3506     }
3507   }
3508 
3509   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3510   return rc;
3511 }
3512 
3513 /*
3514 ** This routine is called to implement sqlite3_wal_checkpoint() and
3515 ** related interfaces.
3516 **
3517 ** Obtain a CHECKPOINT lock and then backfill as much information as
3518 ** we can from WAL into the database.
3519 **
3520 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3521 ** callback. In this case this function runs a blocking checkpoint.
3522 */
3523 int sqlite3WalCheckpoint(
3524   Wal *pWal,                      /* Wal connection */
3525   sqlite3 *db,                    /* Check this handle's interrupt flag */
3526   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3527   int (*xBusy)(void*),            /* Function to call when busy */
3528   void *pBusyArg,                 /* Context argument for xBusyHandler */
3529   int sync_flags,                 /* Flags to sync db file with (or 0) */
3530   int nBuf,                       /* Size of temporary buffer */
3531   u8 *zBuf,                       /* Temporary buffer to use */
3532   int *pnLog,                     /* OUT: Number of frames in WAL */
3533   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3534 ){
3535   int rc;                         /* Return code */
3536   int isChanged = 0;              /* True if a new wal-index header is loaded */
3537   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3538   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3539 
3540   assert( pWal->ckptLock==0 );
3541   assert( pWal->writeLock==0 );
3542 
3543   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3544   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3545   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3546 
3547   if( pWal->readOnly ) return SQLITE_READONLY;
3548   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3549 
3550   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3551   ** "checkpoint" lock on the database file. */
3552   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3553   if( rc ){
3554     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3555     ** checkpoint operation at the same time, the lock cannot be obtained and
3556     ** SQLITE_BUSY is returned.
3557     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3558     ** it will not be invoked in this case.
3559     */
3560     testcase( rc==SQLITE_BUSY );
3561     testcase( xBusy!=0 );
3562     return rc;
3563   }
3564   pWal->ckptLock = 1;
3565 
3566   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3567   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3568   ** file.
3569   **
3570   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3571   ** immediately, and a busy-handler is configured, it is invoked and the
3572   ** writer lock retried until either the busy-handler returns 0 or the
3573   ** lock is successfully obtained.
3574   */
3575   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3576     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3577     if( rc==SQLITE_OK ){
3578       pWal->writeLock = 1;
3579     }else if( rc==SQLITE_BUSY ){
3580       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3581       xBusy2 = 0;
3582       rc = SQLITE_OK;
3583     }
3584   }
3585 
3586   /* Read the wal-index header. */
3587   if( rc==SQLITE_OK ){
3588     rc = walIndexReadHdr(pWal, &isChanged);
3589     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3590       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3591     }
3592   }
3593 
3594   /* Copy data from the log to the database file. */
3595   if( rc==SQLITE_OK ){
3596 
3597     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3598       rc = SQLITE_CORRUPT_BKPT;
3599     }else{
3600       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3601     }
3602 
3603     /* If no error occurred, set the output variables. */
3604     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3605       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3606       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3607     }
3608   }
3609 
3610   if( isChanged ){
3611     /* If a new wal-index header was loaded before the checkpoint was
3612     ** performed, then the pager-cache associated with pWal is now
3613     ** out of date. So zero the cached wal-index header to ensure that
3614     ** next time the pager opens a snapshot on this database it knows that
3615     ** the cache needs to be reset.
3616     */
3617     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3618   }
3619 
3620   /* Release the locks. */
3621   sqlite3WalEndWriteTransaction(pWal);
3622   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3623   pWal->ckptLock = 0;
3624   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3625   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3626 }
3627 
3628 /* Return the value to pass to a sqlite3_wal_hook callback, the
3629 ** number of frames in the WAL at the point of the last commit since
3630 ** sqlite3WalCallback() was called.  If no commits have occurred since
3631 ** the last call, then return 0.
3632 */
3633 int sqlite3WalCallback(Wal *pWal){
3634   u32 ret = 0;
3635   if( pWal ){
3636     ret = pWal->iCallback;
3637     pWal->iCallback = 0;
3638   }
3639   return (int)ret;
3640 }
3641 
3642 /*
3643 ** This function is called to change the WAL subsystem into or out
3644 ** of locking_mode=EXCLUSIVE.
3645 **
3646 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3647 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3648 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3649 ** or if the acquisition of the lock fails, then return 0.  If the
3650 ** transition out of exclusive-mode is successful, return 1.  This
3651 ** operation must occur while the pager is still holding the exclusive
3652 ** lock on the main database file.
3653 **
3654 ** If op is one, then change from locking_mode=NORMAL into
3655 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3656 ** be released.  Return 1 if the transition is made and 0 if the
3657 ** WAL is already in exclusive-locking mode - meaning that this
3658 ** routine is a no-op.  The pager must already hold the exclusive lock
3659 ** on the main database file before invoking this operation.
3660 **
3661 ** If op is negative, then do a dry-run of the op==1 case but do
3662 ** not actually change anything. The pager uses this to see if it
3663 ** should acquire the database exclusive lock prior to invoking
3664 ** the op==1 case.
3665 */
3666 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3667   int rc;
3668   assert( pWal->writeLock==0 );
3669   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3670 
3671   /* pWal->readLock is usually set, but might be -1 if there was a
3672   ** prior error while attempting to acquire are read-lock. This cannot
3673   ** happen if the connection is actually in exclusive mode (as no xShmLock
3674   ** locks are taken in this case). Nor should the pager attempt to
3675   ** upgrade to exclusive-mode following such an error.
3676   */
3677   assert( pWal->readLock>=0 || pWal->lockError );
3678   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3679 
3680   if( op==0 ){
3681     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3682       pWal->exclusiveMode = WAL_NORMAL_MODE;
3683       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3684         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3685       }
3686       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3687     }else{
3688       /* Already in locking_mode=NORMAL */
3689       rc = 0;
3690     }
3691   }else if( op>0 ){
3692     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3693     assert( pWal->readLock>=0 );
3694     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3695     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3696     rc = 1;
3697   }else{
3698     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3699   }
3700   return rc;
3701 }
3702 
3703 /*
3704 ** Return true if the argument is non-NULL and the WAL module is using
3705 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3706 ** WAL module is using shared-memory, return false.
3707 */
3708 int sqlite3WalHeapMemory(Wal *pWal){
3709   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3710 }
3711 
3712 #ifdef SQLITE_ENABLE_SNAPSHOT
3713 /* Create a snapshot object.  The content of a snapshot is opaque to
3714 ** every other subsystem, so the WAL module can put whatever it needs
3715 ** in the object.
3716 */
3717 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3718   int rc = SQLITE_OK;
3719   WalIndexHdr *pRet;
3720   static const u32 aZero[4] = { 0, 0, 0, 0 };
3721 
3722   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3723 
3724   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3725     *ppSnapshot = 0;
3726     return SQLITE_ERROR;
3727   }
3728   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3729   if( pRet==0 ){
3730     rc = SQLITE_NOMEM_BKPT;
3731   }else{
3732     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3733     *ppSnapshot = (sqlite3_snapshot*)pRet;
3734   }
3735 
3736   return rc;
3737 }
3738 
3739 /* Try to open on pSnapshot when the next read-transaction starts
3740 */
3741 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3742   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3743 }
3744 
3745 /*
3746 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3747 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3748 */
3749 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3750   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3751   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3752 
3753   /* aSalt[0] is a copy of the value stored in the wal file header. It
3754   ** is incremented each time the wal file is restarted.  */
3755   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3756   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3757   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3758   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3759   return 0;
3760 }
3761 #endif /* SQLITE_ENABLE_SNAPSHOT */
3762 
3763 #ifdef SQLITE_ENABLE_ZIPVFS
3764 /*
3765 ** If the argument is not NULL, it points to a Wal object that holds a
3766 ** read-lock. This function returns the database page-size if it is known,
3767 ** or zero if it is not (or if pWal is NULL).
3768 */
3769 int sqlite3WalFramesize(Wal *pWal){
3770   assert( pWal==0 || pWal->readLock>=0 );
3771   return (pWal ? pWal->szPage : 0);
3772 }
3773 #endif
3774 
3775 /* Return the sqlite3_file object for the WAL file
3776 */
3777 sqlite3_file *sqlite3WalFile(Wal *pWal){
3778   return pWal->pWalFd;
3779 }
3780 
3781 #endif /* #ifndef SQLITE_OMIT_WAL */
3782