1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P and a maximum frame index M, return the index of the 146 ** last frame in the wal before frame M for page P in the WAL, or return 147 ** NULL if there are no frames for page P in the WAL prior to M. 148 ** 149 ** The wal-index consists of a header region, followed by an one or 150 ** more index blocks. 151 ** 152 ** The wal-index header contains the total number of frames within the WAL 153 ** in the mxFrame field. 154 ** 155 ** Each index block except for the first contains information on 156 ** HASHTABLE_NPAGE frames. The first index block contains information on 157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 159 ** first index block are the same size as all other index blocks in the 160 ** wal-index. 161 ** 162 ** Each index block contains two sections, a page-mapping that contains the 163 ** database page number associated with each wal frame, and a hash-table 164 ** that allows readers to query an index block for a specific page number. 165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 166 ** for the first index block) 32-bit page numbers. The first entry in the 167 ** first index-block contains the database page number corresponding to the 168 ** first frame in the WAL file. The first entry in the second index block 169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 170 ** the log, and so on. 171 ** 172 ** The last index block in a wal-index usually contains less than the full 173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 174 ** depending on the contents of the WAL file. This does not change the 175 ** allocated size of the page-mapping array - the page-mapping array merely 176 ** contains unused entries. 177 ** 178 ** Even without using the hash table, the last frame for page P 179 ** can be found by scanning the page-mapping sections of each index block 180 ** starting with the last index block and moving toward the first, and 181 ** within each index block, starting at the end and moving toward the 182 ** beginning. The first entry that equals P corresponds to the frame 183 ** holding the content for that page. 184 ** 185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 187 ** hash table for each page number in the mapping section, so the hash 188 ** table is never more than half full. The expected number of collisions 189 ** prior to finding a match is 1. Each entry of the hash table is an 190 ** 1-based index of an entry in the mapping section of the same 191 ** index block. Let K be the 1-based index of the largest entry in 192 ** the mapping section. (For index blocks other than the last, K will 193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 195 ** contain a value of 0. 196 ** 197 ** To look for page P in the hash table, first compute a hash iKey on 198 ** P as follows: 199 ** 200 ** iKey = (P * 383) % HASHTABLE_NSLOT 201 ** 202 ** Then start scanning entries of the hash table, starting with iKey 203 ** (wrapping around to the beginning when the end of the hash table is 204 ** reached) until an unused hash slot is found. Let the first unused slot 205 ** be at index iUnused. (iUnused might be less than iKey if there was 206 ** wrap-around.) Because the hash table is never more than half full, 207 ** the search is guaranteed to eventually hit an unused entry. Let 208 ** iMax be the value between iKey and iUnused, closest to iUnused, 209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 210 ** no hash slot such that aHash[i]==p) then page P is not in the 211 ** current index block. Otherwise the iMax-th mapping entry of the 212 ** current index block corresponds to the last entry that references 213 ** page P. 214 ** 215 ** A hash search begins with the last index block and moves toward the 216 ** first index block, looking for entries corresponding to page P. On 217 ** average, only two or three slots in each index block need to be 218 ** examined in order to either find the last entry for page P, or to 219 ** establish that no such entry exists in the block. Each index block 220 ** holds over 4000 entries. So two or three index blocks are sufficient 221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 222 ** comparisons (on average) suffice to either locate a frame in the 223 ** WAL or to establish that the frame does not exist in the WAL. This 224 ** is much faster than scanning the entire 10MB WAL. 225 ** 226 ** Note that entries are added in order of increasing K. Hence, one 227 ** reader might be using some value K0 and a second reader that started 228 ** at a later time (after additional transactions were added to the WAL 229 ** and to the wal-index) might be using a different value K1, where K1>K0. 230 ** Both readers can use the same hash table and mapping section to get 231 ** the correct result. There may be entries in the hash table with 232 ** K>K0 but to the first reader, those entries will appear to be unused 233 ** slots in the hash table and so the first reader will get an answer as 234 ** if no values greater than K0 had ever been inserted into the hash table 235 ** in the first place - which is what reader one wants. Meanwhile, the 236 ** second reader using K1 will see additional values that were inserted 237 ** later, which is exactly what reader two wants. 238 ** 239 ** When a rollback occurs, the value of K is decreased. Hash table entries 240 ** that correspond to frames greater than the new K value are removed 241 ** from the hash table at this point. 242 */ 243 #ifndef SQLITE_OMIT_WAL 244 245 #include "wal.h" 246 247 /* 248 ** Trace output macros 249 */ 250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 251 int sqlite3WalTrace = 0; 252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 253 #else 254 # define WALTRACE(X) 255 #endif 256 257 /* 258 ** The maximum (and only) versions of the wal and wal-index formats 259 ** that may be interpreted by this version of SQLite. 260 ** 261 ** If a client begins recovering a WAL file and finds that (a) the checksum 262 ** values in the wal-header are correct and (b) the version field is not 263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 264 ** 265 ** Similarly, if a client successfully reads a wal-index header (i.e. the 266 ** checksum test is successful) and finds that the version field is not 267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 268 ** returns SQLITE_CANTOPEN. 269 */ 270 #define WAL_MAX_VERSION 3007000 271 #define WALINDEX_MAX_VERSION 3007000 272 273 /* 274 ** Indices of various locking bytes. WAL_NREADER is the number 275 ** of available reader locks and should be at least 3. The default 276 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 277 */ 278 #define WAL_WRITE_LOCK 0 279 #define WAL_ALL_BUT_WRITE 1 280 #define WAL_CKPT_LOCK 1 281 #define WAL_RECOVER_LOCK 2 282 #define WAL_READ_LOCK(I) (3+(I)) 283 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 284 285 286 /* Object declarations */ 287 typedef struct WalIndexHdr WalIndexHdr; 288 typedef struct WalIterator WalIterator; 289 typedef struct WalCkptInfo WalCkptInfo; 290 291 292 /* 293 ** The following object holds a copy of the wal-index header content. 294 ** 295 ** The actual header in the wal-index consists of two copies of this 296 ** object followed by one instance of the WalCkptInfo object. 297 ** For all versions of SQLite through 3.10.0 and probably beyond, 298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 299 ** the total header size is 136 bytes. 300 ** 301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 302 ** Or it can be 1 to represent a 65536-byte page. The latter case was 303 ** added in 3.7.1 when support for 64K pages was added. 304 */ 305 struct WalIndexHdr { 306 u32 iVersion; /* Wal-index version */ 307 u32 unused; /* Unused (padding) field */ 308 u32 iChange; /* Counter incremented each transaction */ 309 u8 isInit; /* 1 when initialized */ 310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 311 u16 szPage; /* Database page size in bytes. 1==64K */ 312 u32 mxFrame; /* Index of last valid frame in the WAL */ 313 u32 nPage; /* Size of database in pages */ 314 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 315 u32 aSalt[2]; /* Two salt values copied from WAL header */ 316 u32 aCksum[2]; /* Checksum over all prior fields */ 317 }; 318 319 /* 320 ** A copy of the following object occurs in the wal-index immediately 321 ** following the second copy of the WalIndexHdr. This object stores 322 ** information used by checkpoint. 323 ** 324 ** nBackfill is the number of frames in the WAL that have been written 325 ** back into the database. (We call the act of moving content from WAL to 326 ** database "backfilling".) The nBackfill number is never greater than 327 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 330 ** mxFrame back to zero when the WAL is reset. 331 ** 332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 333 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 334 ** the nBackfillAttempted is set before any backfilling is done and the 335 ** nBackfill is only set after all backfilling completes. So if a checkpoint 336 ** crashes, nBackfillAttempted might be larger than nBackfill. The 337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 338 ** 339 ** The aLock[] field is a set of bytes used for locking. These bytes should 340 ** never be read or written. 341 ** 342 ** There is one entry in aReadMark[] for each reader lock. If a reader 343 ** holds read-lock K, then the value in aReadMark[K] is no greater than 344 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 345 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 346 ** a special case; its value is never used and it exists as a place-holder 347 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 349 ** directly from the database. 350 ** 351 ** The value of aReadMark[K] may only be changed by a thread that 352 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 353 ** aReadMark[K] cannot changed while there is a reader is using that mark 354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 355 ** 356 ** The checkpointer may only transfer frames from WAL to database where 357 ** the frame numbers are less than or equal to every aReadMark[] that is 358 ** in use (that is, every aReadMark[j] for which there is a corresponding 359 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 360 ** largest value and will increase an unused aReadMark[] to mxFrame if there 361 ** is not already an aReadMark[] equal to mxFrame. The exception to the 362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 363 ** in the WAL has been backfilled into the database) then new readers 364 ** will choose aReadMark[0] which has value 0 and hence such reader will 365 ** get all their all content directly from the database file and ignore 366 ** the WAL. 367 ** 368 ** Writers normally append new frames to the end of the WAL. However, 369 ** if nBackfill equals mxFrame (meaning that all WAL content has been 370 ** written back into the database) and if no readers are using the WAL 371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 372 ** the writer will first "reset" the WAL back to the beginning and start 373 ** writing new content beginning at frame 1. 374 ** 375 ** We assume that 32-bit loads are atomic and so no locks are needed in 376 ** order to read from any aReadMark[] entries. 377 */ 378 struct WalCkptInfo { 379 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 380 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 383 u32 notUsed0; /* Available for future enhancements */ 384 }; 385 #define READMARK_NOT_USED 0xffffffff 386 387 388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 390 ** only support mandatory file-locks, we do not read or write data 391 ** from the region of the file on which locks are applied. 392 */ 393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 394 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 395 396 /* Size of header before each frame in wal */ 397 #define WAL_FRAME_HDRSIZE 24 398 399 /* Size of write ahead log header, including checksum. */ 400 /* #define WAL_HDRSIZE 24 */ 401 #define WAL_HDRSIZE 32 402 403 /* WAL magic value. Either this value, or the same value with the least 404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 405 ** big-endian format in the first 4 bytes of a WAL file. 406 ** 407 ** If the LSB is set, then the checksums for each frame within the WAL 408 ** file are calculated by treating all data as an array of 32-bit 409 ** big-endian words. Otherwise, they are calculated by interpreting 410 ** all data as 32-bit little-endian words. 411 */ 412 #define WAL_MAGIC 0x377f0682 413 414 /* 415 ** Return the offset of frame iFrame in the write-ahead log file, 416 ** assuming a database page size of szPage bytes. The offset returned 417 ** is to the start of the write-ahead log frame-header. 418 */ 419 #define walFrameOffset(iFrame, szPage) ( \ 420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 421 ) 422 423 /* 424 ** An open write-ahead log file is represented by an instance of the 425 ** following object. 426 */ 427 struct Wal { 428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 429 sqlite3_file *pDbFd; /* File handle for the database file */ 430 sqlite3_file *pWalFd; /* File handle for WAL file */ 431 u32 iCallback; /* Value to pass to log callback (or 0) */ 432 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 433 int nWiData; /* Size of array apWiData */ 434 int szFirstBlock; /* Size of first block written to WAL file */ 435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 436 u32 szPage; /* Database page size */ 437 i16 readLock; /* Which read lock is being held. -1 for none */ 438 u8 syncFlags; /* Flags to use to sync header writes */ 439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 440 u8 writeLock; /* True if in a write transaction */ 441 u8 ckptLock; /* True if holding a checkpoint lock */ 442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 443 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 444 u8 syncHeader; /* Fsync the WAL header if true */ 445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 446 WalIndexHdr hdr; /* Wal-index header for current transaction */ 447 u32 minFrame; /* Ignore wal frames before this one */ 448 u32 iReCksum; /* On commit, recalculate checksums from here */ 449 const char *zWalName; /* Name of WAL file */ 450 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 451 #ifdef SQLITE_DEBUG 452 u8 lockError; /* True if a locking error has occurred */ 453 #endif 454 #ifdef SQLITE_ENABLE_SNAPSHOT 455 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 456 #endif 457 }; 458 459 /* 460 ** Candidate values for Wal.exclusiveMode. 461 */ 462 #define WAL_NORMAL_MODE 0 463 #define WAL_EXCLUSIVE_MODE 1 464 #define WAL_HEAPMEMORY_MODE 2 465 466 /* 467 ** Possible values for WAL.readOnly 468 */ 469 #define WAL_RDWR 0 /* Normal read/write connection */ 470 #define WAL_RDONLY 1 /* The WAL file is readonly */ 471 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 472 473 /* 474 ** Each page of the wal-index mapping contains a hash-table made up of 475 ** an array of HASHTABLE_NSLOT elements of the following type. 476 */ 477 typedef u16 ht_slot; 478 479 /* 480 ** This structure is used to implement an iterator that loops through 481 ** all frames in the WAL in database page order. Where two or more frames 482 ** correspond to the same database page, the iterator visits only the 483 ** frame most recently written to the WAL (in other words, the frame with 484 ** the largest index). 485 ** 486 ** The internals of this structure are only accessed by: 487 ** 488 ** walIteratorInit() - Create a new iterator, 489 ** walIteratorNext() - Step an iterator, 490 ** walIteratorFree() - Free an iterator. 491 ** 492 ** This functionality is used by the checkpoint code (see walCheckpoint()). 493 */ 494 struct WalIterator { 495 int iPrior; /* Last result returned from the iterator */ 496 int nSegment; /* Number of entries in aSegment[] */ 497 struct WalSegment { 498 int iNext; /* Next slot in aIndex[] not yet returned */ 499 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 500 u32 *aPgno; /* Array of page numbers. */ 501 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 502 int iZero; /* Frame number associated with aPgno[0] */ 503 } aSegment[1]; /* One for every 32KB page in the wal-index */ 504 }; 505 506 /* 507 ** Define the parameters of the hash tables in the wal-index file. There 508 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 509 ** wal-index. 510 ** 511 ** Changing any of these constants will alter the wal-index format and 512 ** create incompatibilities. 513 */ 514 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 515 #define HASHTABLE_HASH_1 383 /* Should be prime */ 516 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 517 518 /* 519 ** The block of page numbers associated with the first hash-table in a 520 ** wal-index is smaller than usual. This is so that there is a complete 521 ** hash-table on each aligned 32KB page of the wal-index. 522 */ 523 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 524 525 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 526 #define WALINDEX_PGSZ ( \ 527 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 528 ) 529 530 /* 531 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 532 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 533 ** numbered from zero. 534 ** 535 ** If this call is successful, *ppPage is set to point to the wal-index 536 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 537 ** then an SQLite error code is returned and *ppPage is set to 0. 538 */ 539 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 540 int rc = SQLITE_OK; 541 542 /* Enlarge the pWal->apWiData[] array if required */ 543 if( pWal->nWiData<=iPage ){ 544 int nByte = sizeof(u32*)*(iPage+1); 545 volatile u32 **apNew; 546 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 547 if( !apNew ){ 548 *ppPage = 0; 549 return SQLITE_NOMEM; 550 } 551 memset((void*)&apNew[pWal->nWiData], 0, 552 sizeof(u32*)*(iPage+1-pWal->nWiData)); 553 pWal->apWiData = apNew; 554 pWal->nWiData = iPage+1; 555 } 556 557 /* Request a pointer to the required page from the VFS */ 558 if( pWal->apWiData[iPage]==0 ){ 559 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 560 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 561 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; 562 }else{ 563 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 564 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 565 ); 566 if( rc==SQLITE_READONLY ){ 567 pWal->readOnly |= WAL_SHM_RDONLY; 568 rc = SQLITE_OK; 569 } 570 } 571 } 572 573 *ppPage = pWal->apWiData[iPage]; 574 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 575 return rc; 576 } 577 578 /* 579 ** Return a pointer to the WalCkptInfo structure in the wal-index. 580 */ 581 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 582 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 583 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 584 } 585 586 /* 587 ** Return a pointer to the WalIndexHdr structure in the wal-index. 588 */ 589 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 590 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 591 return (volatile WalIndexHdr*)pWal->apWiData[0]; 592 } 593 594 /* 595 ** The argument to this macro must be of type u32. On a little-endian 596 ** architecture, it returns the u32 value that results from interpreting 597 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 598 ** returns the value that would be produced by interpreting the 4 bytes 599 ** of the input value as a little-endian integer. 600 */ 601 #define BYTESWAP32(x) ( \ 602 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 603 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 604 ) 605 606 /* 607 ** Generate or extend an 8 byte checksum based on the data in 608 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 609 ** initial values of 0 and 0 if aIn==NULL). 610 ** 611 ** The checksum is written back into aOut[] before returning. 612 ** 613 ** nByte must be a positive multiple of 8. 614 */ 615 static void walChecksumBytes( 616 int nativeCksum, /* True for native byte-order, false for non-native */ 617 u8 *a, /* Content to be checksummed */ 618 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 619 const u32 *aIn, /* Initial checksum value input */ 620 u32 *aOut /* OUT: Final checksum value output */ 621 ){ 622 u32 s1, s2; 623 u32 *aData = (u32 *)a; 624 u32 *aEnd = (u32 *)&a[nByte]; 625 626 if( aIn ){ 627 s1 = aIn[0]; 628 s2 = aIn[1]; 629 }else{ 630 s1 = s2 = 0; 631 } 632 633 assert( nByte>=8 ); 634 assert( (nByte&0x00000007)==0 ); 635 636 if( nativeCksum ){ 637 do { 638 s1 += *aData++ + s2; 639 s2 += *aData++ + s1; 640 }while( aData<aEnd ); 641 }else{ 642 do { 643 s1 += BYTESWAP32(aData[0]) + s2; 644 s2 += BYTESWAP32(aData[1]) + s1; 645 aData += 2; 646 }while( aData<aEnd ); 647 } 648 649 aOut[0] = s1; 650 aOut[1] = s2; 651 } 652 653 static void walShmBarrier(Wal *pWal){ 654 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 655 sqlite3OsShmBarrier(pWal->pDbFd); 656 } 657 } 658 659 /* 660 ** Write the header information in pWal->hdr into the wal-index. 661 ** 662 ** The checksum on pWal->hdr is updated before it is written. 663 */ 664 static void walIndexWriteHdr(Wal *pWal){ 665 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 666 const int nCksum = offsetof(WalIndexHdr, aCksum); 667 668 assert( pWal->writeLock ); 669 pWal->hdr.isInit = 1; 670 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 671 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 672 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 673 walShmBarrier(pWal); 674 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 675 } 676 677 /* 678 ** This function encodes a single frame header and writes it to a buffer 679 ** supplied by the caller. A frame-header is made up of a series of 680 ** 4-byte big-endian integers, as follows: 681 ** 682 ** 0: Page number. 683 ** 4: For commit records, the size of the database image in pages 684 ** after the commit. For all other records, zero. 685 ** 8: Salt-1 (copied from the wal-header) 686 ** 12: Salt-2 (copied from the wal-header) 687 ** 16: Checksum-1. 688 ** 20: Checksum-2. 689 */ 690 static void walEncodeFrame( 691 Wal *pWal, /* The write-ahead log */ 692 u32 iPage, /* Database page number for frame */ 693 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 694 u8 *aData, /* Pointer to page data */ 695 u8 *aFrame /* OUT: Write encoded frame here */ 696 ){ 697 int nativeCksum; /* True for native byte-order checksums */ 698 u32 *aCksum = pWal->hdr.aFrameCksum; 699 assert( WAL_FRAME_HDRSIZE==24 ); 700 sqlite3Put4byte(&aFrame[0], iPage); 701 sqlite3Put4byte(&aFrame[4], nTruncate); 702 if( pWal->iReCksum==0 ){ 703 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 704 705 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 706 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 707 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 708 709 sqlite3Put4byte(&aFrame[16], aCksum[0]); 710 sqlite3Put4byte(&aFrame[20], aCksum[1]); 711 }else{ 712 memset(&aFrame[8], 0, 16); 713 } 714 } 715 716 /* 717 ** Check to see if the frame with header in aFrame[] and content 718 ** in aData[] is valid. If it is a valid frame, fill *piPage and 719 ** *pnTruncate and return true. Return if the frame is not valid. 720 */ 721 static int walDecodeFrame( 722 Wal *pWal, /* The write-ahead log */ 723 u32 *piPage, /* OUT: Database page number for frame */ 724 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 725 u8 *aData, /* Pointer to page data (for checksum) */ 726 u8 *aFrame /* Frame data */ 727 ){ 728 int nativeCksum; /* True for native byte-order checksums */ 729 u32 *aCksum = pWal->hdr.aFrameCksum; 730 u32 pgno; /* Page number of the frame */ 731 assert( WAL_FRAME_HDRSIZE==24 ); 732 733 /* A frame is only valid if the salt values in the frame-header 734 ** match the salt values in the wal-header. 735 */ 736 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 737 return 0; 738 } 739 740 /* A frame is only valid if the page number is creater than zero. 741 */ 742 pgno = sqlite3Get4byte(&aFrame[0]); 743 if( pgno==0 ){ 744 return 0; 745 } 746 747 /* A frame is only valid if a checksum of the WAL header, 748 ** all prior frams, the first 16 bytes of this frame-header, 749 ** and the frame-data matches the checksum in the last 8 750 ** bytes of this frame-header. 751 */ 752 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 753 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 754 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 755 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 756 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 757 ){ 758 /* Checksum failed. */ 759 return 0; 760 } 761 762 /* If we reach this point, the frame is valid. Return the page number 763 ** and the new database size. 764 */ 765 *piPage = pgno; 766 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 767 return 1; 768 } 769 770 771 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 772 /* 773 ** Names of locks. This routine is used to provide debugging output and is not 774 ** a part of an ordinary build. 775 */ 776 static const char *walLockName(int lockIdx){ 777 if( lockIdx==WAL_WRITE_LOCK ){ 778 return "WRITE-LOCK"; 779 }else if( lockIdx==WAL_CKPT_LOCK ){ 780 return "CKPT-LOCK"; 781 }else if( lockIdx==WAL_RECOVER_LOCK ){ 782 return "RECOVER-LOCK"; 783 }else{ 784 static char zName[15]; 785 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 786 lockIdx-WAL_READ_LOCK(0)); 787 return zName; 788 } 789 } 790 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 791 792 793 /* 794 ** Set or release locks on the WAL. Locks are either shared or exclusive. 795 ** A lock cannot be moved directly between shared and exclusive - it must go 796 ** through the unlocked state first. 797 ** 798 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 799 */ 800 static int walLockShared(Wal *pWal, int lockIdx){ 801 int rc; 802 if( pWal->exclusiveMode ) return SQLITE_OK; 803 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 804 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 805 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 806 walLockName(lockIdx), rc ? "failed" : "ok")); 807 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 808 return rc; 809 } 810 static void walUnlockShared(Wal *pWal, int lockIdx){ 811 if( pWal->exclusiveMode ) return; 812 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 813 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 814 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 815 } 816 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 817 int rc; 818 if( pWal->exclusiveMode ) return SQLITE_OK; 819 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 820 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 821 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 822 walLockName(lockIdx), n, rc ? "failed" : "ok")); 823 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 824 return rc; 825 } 826 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 827 if( pWal->exclusiveMode ) return; 828 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 829 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 830 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 831 walLockName(lockIdx), n)); 832 } 833 834 /* 835 ** Compute a hash on a page number. The resulting hash value must land 836 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 837 ** the hash to the next value in the event of a collision. 838 */ 839 static int walHash(u32 iPage){ 840 assert( iPage>0 ); 841 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 842 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 843 } 844 static int walNextHash(int iPriorHash){ 845 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 846 } 847 848 /* 849 ** Return pointers to the hash table and page number array stored on 850 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 851 ** numbered starting from 0. 852 ** 853 ** Set output variable *paHash to point to the start of the hash table 854 ** in the wal-index file. Set *piZero to one less than the frame 855 ** number of the first frame indexed by this hash table. If a 856 ** slot in the hash table is set to N, it refers to frame number 857 ** (*piZero+N) in the log. 858 ** 859 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 860 ** first frame indexed by the hash table, frame (*piZero+1). 861 */ 862 static int walHashGet( 863 Wal *pWal, /* WAL handle */ 864 int iHash, /* Find the iHash'th table */ 865 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 866 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 867 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 868 ){ 869 int rc; /* Return code */ 870 volatile u32 *aPgno; 871 872 rc = walIndexPage(pWal, iHash, &aPgno); 873 assert( rc==SQLITE_OK || iHash>0 ); 874 875 if( rc==SQLITE_OK ){ 876 u32 iZero; 877 volatile ht_slot *aHash; 878 879 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 880 if( iHash==0 ){ 881 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 882 iZero = 0; 883 }else{ 884 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 885 } 886 887 *paPgno = &aPgno[-1]; 888 *paHash = aHash; 889 *piZero = iZero; 890 } 891 return rc; 892 } 893 894 /* 895 ** Return the number of the wal-index page that contains the hash-table 896 ** and page-number array that contain entries corresponding to WAL frame 897 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 898 ** are numbered starting from 0. 899 */ 900 static int walFramePage(u32 iFrame){ 901 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 902 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 903 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 904 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 905 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 906 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 907 ); 908 return iHash; 909 } 910 911 /* 912 ** Return the page number associated with frame iFrame in this WAL. 913 */ 914 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 915 int iHash = walFramePage(iFrame); 916 if( iHash==0 ){ 917 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 918 } 919 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 920 } 921 922 /* 923 ** Remove entries from the hash table that point to WAL slots greater 924 ** than pWal->hdr.mxFrame. 925 ** 926 ** This function is called whenever pWal->hdr.mxFrame is decreased due 927 ** to a rollback or savepoint. 928 ** 929 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 930 ** updated. Any later hash tables will be automatically cleared when 931 ** pWal->hdr.mxFrame advances to the point where those hash tables are 932 ** actually needed. 933 */ 934 static void walCleanupHash(Wal *pWal){ 935 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 936 volatile u32 *aPgno = 0; /* Page number array for hash table */ 937 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 938 int iLimit = 0; /* Zero values greater than this */ 939 int nByte; /* Number of bytes to zero in aPgno[] */ 940 int i; /* Used to iterate through aHash[] */ 941 942 assert( pWal->writeLock ); 943 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 944 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 945 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 946 947 if( pWal->hdr.mxFrame==0 ) return; 948 949 /* Obtain pointers to the hash-table and page-number array containing 950 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 951 ** that the page said hash-table and array reside on is already mapped. 952 */ 953 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 954 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 955 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 956 957 /* Zero all hash-table entries that correspond to frame numbers greater 958 ** than pWal->hdr.mxFrame. 959 */ 960 iLimit = pWal->hdr.mxFrame - iZero; 961 assert( iLimit>0 ); 962 for(i=0; i<HASHTABLE_NSLOT; i++){ 963 if( aHash[i]>iLimit ){ 964 aHash[i] = 0; 965 } 966 } 967 968 /* Zero the entries in the aPgno array that correspond to frames with 969 ** frame numbers greater than pWal->hdr.mxFrame. 970 */ 971 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 972 memset((void *)&aPgno[iLimit+1], 0, nByte); 973 974 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 975 /* Verify that the every entry in the mapping region is still reachable 976 ** via the hash table even after the cleanup. 977 */ 978 if( iLimit ){ 979 int j; /* Loop counter */ 980 int iKey; /* Hash key */ 981 for(j=1; j<=iLimit; j++){ 982 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ 983 if( aHash[iKey]==j ) break; 984 } 985 assert( aHash[iKey]==j ); 986 } 987 } 988 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 989 } 990 991 992 /* 993 ** Set an entry in the wal-index that will map database page number 994 ** pPage into WAL frame iFrame. 995 */ 996 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 997 int rc; /* Return code */ 998 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 999 volatile u32 *aPgno = 0; /* Page number array */ 1000 volatile ht_slot *aHash = 0; /* Hash table */ 1001 1002 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 1003 1004 /* Assuming the wal-index file was successfully mapped, populate the 1005 ** page number array and hash table entry. 1006 */ 1007 if( rc==SQLITE_OK ){ 1008 int iKey; /* Hash table key */ 1009 int idx; /* Value to write to hash-table slot */ 1010 int nCollide; /* Number of hash collisions */ 1011 1012 idx = iFrame - iZero; 1013 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1014 1015 /* If this is the first entry to be added to this hash-table, zero the 1016 ** entire hash table and aPgno[] array before proceeding. 1017 */ 1018 if( idx==1 ){ 1019 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 1020 memset((void*)&aPgno[1], 0, nByte); 1021 } 1022 1023 /* If the entry in aPgno[] is already set, then the previous writer 1024 ** must have exited unexpectedly in the middle of a transaction (after 1025 ** writing one or more dirty pages to the WAL to free up memory). 1026 ** Remove the remnants of that writers uncommitted transaction from 1027 ** the hash-table before writing any new entries. 1028 */ 1029 if( aPgno[idx] ){ 1030 walCleanupHash(pWal); 1031 assert( !aPgno[idx] ); 1032 } 1033 1034 /* Write the aPgno[] array entry and the hash-table slot. */ 1035 nCollide = idx; 1036 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1037 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1038 } 1039 aPgno[idx] = iPage; 1040 aHash[iKey] = (ht_slot)idx; 1041 1042 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1043 /* Verify that the number of entries in the hash table exactly equals 1044 ** the number of entries in the mapping region. 1045 */ 1046 { 1047 int i; /* Loop counter */ 1048 int nEntry = 0; /* Number of entries in the hash table */ 1049 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1050 assert( nEntry==idx ); 1051 } 1052 1053 /* Verify that the every entry in the mapping region is reachable 1054 ** via the hash table. This turns out to be a really, really expensive 1055 ** thing to check, so only do this occasionally - not on every 1056 ** iteration. 1057 */ 1058 if( (idx&0x3ff)==0 ){ 1059 int i; /* Loop counter */ 1060 for(i=1; i<=idx; i++){ 1061 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1062 if( aHash[iKey]==i ) break; 1063 } 1064 assert( aHash[iKey]==i ); 1065 } 1066 } 1067 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1068 } 1069 1070 1071 return rc; 1072 } 1073 1074 1075 /* 1076 ** Recover the wal-index by reading the write-ahead log file. 1077 ** 1078 ** This routine first tries to establish an exclusive lock on the 1079 ** wal-index to prevent other threads/processes from doing anything 1080 ** with the WAL or wal-index while recovery is running. The 1081 ** WAL_RECOVER_LOCK is also held so that other threads will know 1082 ** that this thread is running recovery. If unable to establish 1083 ** the necessary locks, this routine returns SQLITE_BUSY. 1084 */ 1085 static int walIndexRecover(Wal *pWal){ 1086 int rc; /* Return Code */ 1087 i64 nSize; /* Size of log file */ 1088 u32 aFrameCksum[2] = {0, 0}; 1089 int iLock; /* Lock offset to lock for checkpoint */ 1090 int nLock; /* Number of locks to hold */ 1091 1092 /* Obtain an exclusive lock on all byte in the locking range not already 1093 ** locked by the caller. The caller is guaranteed to have locked the 1094 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1095 ** If successful, the same bytes that are locked here are unlocked before 1096 ** this function returns. 1097 */ 1098 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1099 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1100 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1101 assert( pWal->writeLock ); 1102 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1103 nLock = SQLITE_SHM_NLOCK - iLock; 1104 rc = walLockExclusive(pWal, iLock, nLock); 1105 if( rc ){ 1106 return rc; 1107 } 1108 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1109 1110 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1111 1112 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1113 if( rc!=SQLITE_OK ){ 1114 goto recovery_error; 1115 } 1116 1117 if( nSize>WAL_HDRSIZE ){ 1118 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1119 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1120 int szFrame; /* Number of bytes in buffer aFrame[] */ 1121 u8 *aData; /* Pointer to data part of aFrame buffer */ 1122 int iFrame; /* Index of last frame read */ 1123 i64 iOffset; /* Next offset to read from log file */ 1124 int szPage; /* Page size according to the log */ 1125 u32 magic; /* Magic value read from WAL header */ 1126 u32 version; /* Magic value read from WAL header */ 1127 int isValid; /* True if this frame is valid */ 1128 1129 /* Read in the WAL header. */ 1130 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1131 if( rc!=SQLITE_OK ){ 1132 goto recovery_error; 1133 } 1134 1135 /* If the database page size is not a power of two, or is greater than 1136 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1137 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1138 ** WAL file. 1139 */ 1140 magic = sqlite3Get4byte(&aBuf[0]); 1141 szPage = sqlite3Get4byte(&aBuf[8]); 1142 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1143 || szPage&(szPage-1) 1144 || szPage>SQLITE_MAX_PAGE_SIZE 1145 || szPage<512 1146 ){ 1147 goto finished; 1148 } 1149 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1150 pWal->szPage = szPage; 1151 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1152 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1153 1154 /* Verify that the WAL header checksum is correct */ 1155 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1156 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1157 ); 1158 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1159 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1160 ){ 1161 goto finished; 1162 } 1163 1164 /* Verify that the version number on the WAL format is one that 1165 ** are able to understand */ 1166 version = sqlite3Get4byte(&aBuf[4]); 1167 if( version!=WAL_MAX_VERSION ){ 1168 rc = SQLITE_CANTOPEN_BKPT; 1169 goto finished; 1170 } 1171 1172 /* Malloc a buffer to read frames into. */ 1173 szFrame = szPage + WAL_FRAME_HDRSIZE; 1174 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1175 if( !aFrame ){ 1176 rc = SQLITE_NOMEM; 1177 goto recovery_error; 1178 } 1179 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1180 1181 /* Read all frames from the log file. */ 1182 iFrame = 0; 1183 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1184 u32 pgno; /* Database page number for frame */ 1185 u32 nTruncate; /* dbsize field from frame header */ 1186 1187 /* Read and decode the next log frame. */ 1188 iFrame++; 1189 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1190 if( rc!=SQLITE_OK ) break; 1191 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1192 if( !isValid ) break; 1193 rc = walIndexAppend(pWal, iFrame, pgno); 1194 if( rc!=SQLITE_OK ) break; 1195 1196 /* If nTruncate is non-zero, this is a commit record. */ 1197 if( nTruncate ){ 1198 pWal->hdr.mxFrame = iFrame; 1199 pWal->hdr.nPage = nTruncate; 1200 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1201 testcase( szPage<=32768 ); 1202 testcase( szPage>=65536 ); 1203 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1204 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1205 } 1206 } 1207 1208 sqlite3_free(aFrame); 1209 } 1210 1211 finished: 1212 if( rc==SQLITE_OK ){ 1213 volatile WalCkptInfo *pInfo; 1214 int i; 1215 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1216 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1217 walIndexWriteHdr(pWal); 1218 1219 /* Reset the checkpoint-header. This is safe because this thread is 1220 ** currently holding locks that exclude all other readers, writers and 1221 ** checkpointers. 1222 */ 1223 pInfo = walCkptInfo(pWal); 1224 pInfo->nBackfill = 0; 1225 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1226 pInfo->aReadMark[0] = 0; 1227 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1228 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1229 1230 /* If more than one frame was recovered from the log file, report an 1231 ** event via sqlite3_log(). This is to help with identifying performance 1232 ** problems caused by applications routinely shutting down without 1233 ** checkpointing the log file. 1234 */ 1235 if( pWal->hdr.nPage ){ 1236 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1237 "recovered %d frames from WAL file %s", 1238 pWal->hdr.mxFrame, pWal->zWalName 1239 ); 1240 } 1241 } 1242 1243 recovery_error: 1244 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1245 walUnlockExclusive(pWal, iLock, nLock); 1246 return rc; 1247 } 1248 1249 /* 1250 ** Close an open wal-index. 1251 */ 1252 static void walIndexClose(Wal *pWal, int isDelete){ 1253 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 1254 int i; 1255 for(i=0; i<pWal->nWiData; i++){ 1256 sqlite3_free((void *)pWal->apWiData[i]); 1257 pWal->apWiData[i] = 0; 1258 } 1259 }else{ 1260 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1261 } 1262 } 1263 1264 /* 1265 ** Open a connection to the WAL file zWalName. The database file must 1266 ** already be opened on connection pDbFd. The buffer that zWalName points 1267 ** to must remain valid for the lifetime of the returned Wal* handle. 1268 ** 1269 ** A SHARED lock should be held on the database file when this function 1270 ** is called. The purpose of this SHARED lock is to prevent any other 1271 ** client from unlinking the WAL or wal-index file. If another process 1272 ** were to do this just after this client opened one of these files, the 1273 ** system would be badly broken. 1274 ** 1275 ** If the log file is successfully opened, SQLITE_OK is returned and 1276 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1277 ** an SQLite error code is returned and *ppWal is left unmodified. 1278 */ 1279 int sqlite3WalOpen( 1280 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1281 sqlite3_file *pDbFd, /* The open database file */ 1282 const char *zWalName, /* Name of the WAL file */ 1283 int bNoShm, /* True to run in heap-memory mode */ 1284 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1285 Wal **ppWal /* OUT: Allocated Wal handle */ 1286 ){ 1287 int rc; /* Return Code */ 1288 Wal *pRet; /* Object to allocate and return */ 1289 int flags; /* Flags passed to OsOpen() */ 1290 1291 assert( zWalName && zWalName[0] ); 1292 assert( pDbFd ); 1293 1294 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1295 ** this source file. Verify that the #defines of the locking byte offsets 1296 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1297 ** For that matter, if the lock offset ever changes from its initial design 1298 ** value of 120, we need to know that so there is an assert() to check it. 1299 */ 1300 assert( 120==WALINDEX_LOCK_OFFSET ); 1301 assert( 136==WALINDEX_HDR_SIZE ); 1302 #ifdef WIN_SHM_BASE 1303 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1304 #endif 1305 #ifdef UNIX_SHM_BASE 1306 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1307 #endif 1308 1309 1310 /* Allocate an instance of struct Wal to return. */ 1311 *ppWal = 0; 1312 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1313 if( !pRet ){ 1314 return SQLITE_NOMEM; 1315 } 1316 1317 pRet->pVfs = pVfs; 1318 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1319 pRet->pDbFd = pDbFd; 1320 pRet->readLock = -1; 1321 pRet->mxWalSize = mxWalSize; 1322 pRet->zWalName = zWalName; 1323 pRet->syncHeader = 1; 1324 pRet->padToSectorBoundary = 1; 1325 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1326 1327 /* Open file handle on the write-ahead log file. */ 1328 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1329 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1330 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1331 pRet->readOnly = WAL_RDONLY; 1332 } 1333 1334 if( rc!=SQLITE_OK ){ 1335 walIndexClose(pRet, 0); 1336 sqlite3OsClose(pRet->pWalFd); 1337 sqlite3_free(pRet); 1338 }else{ 1339 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1340 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1341 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1342 pRet->padToSectorBoundary = 0; 1343 } 1344 *ppWal = pRet; 1345 WALTRACE(("WAL%d: opened\n", pRet)); 1346 } 1347 return rc; 1348 } 1349 1350 /* 1351 ** Change the size to which the WAL file is trucated on each reset. 1352 */ 1353 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1354 if( pWal ) pWal->mxWalSize = iLimit; 1355 } 1356 1357 /* 1358 ** Find the smallest page number out of all pages held in the WAL that 1359 ** has not been returned by any prior invocation of this method on the 1360 ** same WalIterator object. Write into *piFrame the frame index where 1361 ** that page was last written into the WAL. Write into *piPage the page 1362 ** number. 1363 ** 1364 ** Return 0 on success. If there are no pages in the WAL with a page 1365 ** number larger than *piPage, then return 1. 1366 */ 1367 static int walIteratorNext( 1368 WalIterator *p, /* Iterator */ 1369 u32 *piPage, /* OUT: The page number of the next page */ 1370 u32 *piFrame /* OUT: Wal frame index of next page */ 1371 ){ 1372 u32 iMin; /* Result pgno must be greater than iMin */ 1373 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1374 int i; /* For looping through segments */ 1375 1376 iMin = p->iPrior; 1377 assert( iMin<0xffffffff ); 1378 for(i=p->nSegment-1; i>=0; i--){ 1379 struct WalSegment *pSegment = &p->aSegment[i]; 1380 while( pSegment->iNext<pSegment->nEntry ){ 1381 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1382 if( iPg>iMin ){ 1383 if( iPg<iRet ){ 1384 iRet = iPg; 1385 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1386 } 1387 break; 1388 } 1389 pSegment->iNext++; 1390 } 1391 } 1392 1393 *piPage = p->iPrior = iRet; 1394 return (iRet==0xFFFFFFFF); 1395 } 1396 1397 /* 1398 ** This function merges two sorted lists into a single sorted list. 1399 ** 1400 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1401 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1402 ** is guaranteed for all J<K: 1403 ** 1404 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1405 ** aContent[aRight[J]] < aContent[aRight[K]] 1406 ** 1407 ** This routine overwrites aRight[] with a new (probably longer) sequence 1408 ** of indices such that the aRight[] contains every index that appears in 1409 ** either aLeft[] or the old aRight[] and such that the second condition 1410 ** above is still met. 1411 ** 1412 ** The aContent[aLeft[X]] values will be unique for all X. And the 1413 ** aContent[aRight[X]] values will be unique too. But there might be 1414 ** one or more combinations of X and Y such that 1415 ** 1416 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1417 ** 1418 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1419 */ 1420 static void walMerge( 1421 const u32 *aContent, /* Pages in wal - keys for the sort */ 1422 ht_slot *aLeft, /* IN: Left hand input list */ 1423 int nLeft, /* IN: Elements in array *paLeft */ 1424 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1425 int *pnRight, /* IN/OUT: Elements in *paRight */ 1426 ht_slot *aTmp /* Temporary buffer */ 1427 ){ 1428 int iLeft = 0; /* Current index in aLeft */ 1429 int iRight = 0; /* Current index in aRight */ 1430 int iOut = 0; /* Current index in output buffer */ 1431 int nRight = *pnRight; 1432 ht_slot *aRight = *paRight; 1433 1434 assert( nLeft>0 && nRight>0 ); 1435 while( iRight<nRight || iLeft<nLeft ){ 1436 ht_slot logpage; 1437 Pgno dbpage; 1438 1439 if( (iLeft<nLeft) 1440 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1441 ){ 1442 logpage = aLeft[iLeft++]; 1443 }else{ 1444 logpage = aRight[iRight++]; 1445 } 1446 dbpage = aContent[logpage]; 1447 1448 aTmp[iOut++] = logpage; 1449 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1450 1451 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1452 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1453 } 1454 1455 *paRight = aLeft; 1456 *pnRight = iOut; 1457 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1458 } 1459 1460 /* 1461 ** Sort the elements in list aList using aContent[] as the sort key. 1462 ** Remove elements with duplicate keys, preferring to keep the 1463 ** larger aList[] values. 1464 ** 1465 ** The aList[] entries are indices into aContent[]. The values in 1466 ** aList[] are to be sorted so that for all J<K: 1467 ** 1468 ** aContent[aList[J]] < aContent[aList[K]] 1469 ** 1470 ** For any X and Y such that 1471 ** 1472 ** aContent[aList[X]] == aContent[aList[Y]] 1473 ** 1474 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1475 ** the smaller. 1476 */ 1477 static void walMergesort( 1478 const u32 *aContent, /* Pages in wal */ 1479 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1480 ht_slot *aList, /* IN/OUT: List to sort */ 1481 int *pnList /* IN/OUT: Number of elements in aList[] */ 1482 ){ 1483 struct Sublist { 1484 int nList; /* Number of elements in aList */ 1485 ht_slot *aList; /* Pointer to sub-list content */ 1486 }; 1487 1488 const int nList = *pnList; /* Size of input list */ 1489 int nMerge = 0; /* Number of elements in list aMerge */ 1490 ht_slot *aMerge = 0; /* List to be merged */ 1491 int iList; /* Index into input list */ 1492 u32 iSub = 0; /* Index into aSub array */ 1493 struct Sublist aSub[13]; /* Array of sub-lists */ 1494 1495 memset(aSub, 0, sizeof(aSub)); 1496 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1497 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1498 1499 for(iList=0; iList<nList; iList++){ 1500 nMerge = 1; 1501 aMerge = &aList[iList]; 1502 for(iSub=0; iList & (1<<iSub); iSub++){ 1503 struct Sublist *p; 1504 assert( iSub<ArraySize(aSub) ); 1505 p = &aSub[iSub]; 1506 assert( p->aList && p->nList<=(1<<iSub) ); 1507 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1508 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1509 } 1510 aSub[iSub].aList = aMerge; 1511 aSub[iSub].nList = nMerge; 1512 } 1513 1514 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1515 if( nList & (1<<iSub) ){ 1516 struct Sublist *p; 1517 assert( iSub<ArraySize(aSub) ); 1518 p = &aSub[iSub]; 1519 assert( p->nList<=(1<<iSub) ); 1520 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1521 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1522 } 1523 } 1524 assert( aMerge==aList ); 1525 *pnList = nMerge; 1526 1527 #ifdef SQLITE_DEBUG 1528 { 1529 int i; 1530 for(i=1; i<*pnList; i++){ 1531 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1532 } 1533 } 1534 #endif 1535 } 1536 1537 /* 1538 ** Free an iterator allocated by walIteratorInit(). 1539 */ 1540 static void walIteratorFree(WalIterator *p){ 1541 sqlite3_free(p); 1542 } 1543 1544 /* 1545 ** Construct a WalInterator object that can be used to loop over all 1546 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1547 ** lock. 1548 ** 1549 ** On success, make *pp point to the newly allocated WalInterator object 1550 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1551 ** returns an error, the value of *pp is undefined. 1552 ** 1553 ** The calling routine should invoke walIteratorFree() to destroy the 1554 ** WalIterator object when it has finished with it. 1555 */ 1556 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1557 WalIterator *p; /* Return value */ 1558 int nSegment; /* Number of segments to merge */ 1559 u32 iLast; /* Last frame in log */ 1560 int nByte; /* Number of bytes to allocate */ 1561 int i; /* Iterator variable */ 1562 ht_slot *aTmp; /* Temp space used by merge-sort */ 1563 int rc = SQLITE_OK; /* Return Code */ 1564 1565 /* This routine only runs while holding the checkpoint lock. And 1566 ** it only runs if there is actually content in the log (mxFrame>0). 1567 */ 1568 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1569 iLast = pWal->hdr.mxFrame; 1570 1571 /* Allocate space for the WalIterator object. */ 1572 nSegment = walFramePage(iLast) + 1; 1573 nByte = sizeof(WalIterator) 1574 + (nSegment-1)*sizeof(struct WalSegment) 1575 + iLast*sizeof(ht_slot); 1576 p = (WalIterator *)sqlite3_malloc64(nByte); 1577 if( !p ){ 1578 return SQLITE_NOMEM; 1579 } 1580 memset(p, 0, nByte); 1581 p->nSegment = nSegment; 1582 1583 /* Allocate temporary space used by the merge-sort routine. This block 1584 ** of memory will be freed before this function returns. 1585 */ 1586 aTmp = (ht_slot *)sqlite3_malloc64( 1587 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1588 ); 1589 if( !aTmp ){ 1590 rc = SQLITE_NOMEM; 1591 } 1592 1593 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1594 volatile ht_slot *aHash; 1595 u32 iZero; 1596 volatile u32 *aPgno; 1597 1598 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1599 if( rc==SQLITE_OK ){ 1600 int j; /* Counter variable */ 1601 int nEntry; /* Number of entries in this segment */ 1602 ht_slot *aIndex; /* Sorted index for this segment */ 1603 1604 aPgno++; 1605 if( (i+1)==nSegment ){ 1606 nEntry = (int)(iLast - iZero); 1607 }else{ 1608 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1609 } 1610 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1611 iZero++; 1612 1613 for(j=0; j<nEntry; j++){ 1614 aIndex[j] = (ht_slot)j; 1615 } 1616 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1617 p->aSegment[i].iZero = iZero; 1618 p->aSegment[i].nEntry = nEntry; 1619 p->aSegment[i].aIndex = aIndex; 1620 p->aSegment[i].aPgno = (u32 *)aPgno; 1621 } 1622 } 1623 sqlite3_free(aTmp); 1624 1625 if( rc!=SQLITE_OK ){ 1626 walIteratorFree(p); 1627 } 1628 *pp = p; 1629 return rc; 1630 } 1631 1632 /* 1633 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1634 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1635 ** busy-handler function. Invoke it and retry the lock until either the 1636 ** lock is successfully obtained or the busy-handler returns 0. 1637 */ 1638 static int walBusyLock( 1639 Wal *pWal, /* WAL connection */ 1640 int (*xBusy)(void*), /* Function to call when busy */ 1641 void *pBusyArg, /* Context argument for xBusyHandler */ 1642 int lockIdx, /* Offset of first byte to lock */ 1643 int n /* Number of bytes to lock */ 1644 ){ 1645 int rc; 1646 do { 1647 rc = walLockExclusive(pWal, lockIdx, n); 1648 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1649 return rc; 1650 } 1651 1652 /* 1653 ** The cache of the wal-index header must be valid to call this function. 1654 ** Return the page-size in bytes used by the database. 1655 */ 1656 static int walPagesize(Wal *pWal){ 1657 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1658 } 1659 1660 /* 1661 ** The following is guaranteed when this function is called: 1662 ** 1663 ** a) the WRITER lock is held, 1664 ** b) the entire log file has been checkpointed, and 1665 ** c) any existing readers are reading exclusively from the database 1666 ** file - there are no readers that may attempt to read a frame from 1667 ** the log file. 1668 ** 1669 ** This function updates the shared-memory structures so that the next 1670 ** client to write to the database (which may be this one) does so by 1671 ** writing frames into the start of the log file. 1672 ** 1673 ** The value of parameter salt1 is used as the aSalt[1] value in the 1674 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1675 ** one obtained from sqlite3_randomness()). 1676 */ 1677 static void walRestartHdr(Wal *pWal, u32 salt1){ 1678 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1679 int i; /* Loop counter */ 1680 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1681 pWal->nCkpt++; 1682 pWal->hdr.mxFrame = 0; 1683 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1684 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1685 walIndexWriteHdr(pWal); 1686 pInfo->nBackfill = 0; 1687 pInfo->nBackfillAttempted = 0; 1688 pInfo->aReadMark[1] = 0; 1689 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1690 assert( pInfo->aReadMark[0]==0 ); 1691 } 1692 1693 /* 1694 ** Copy as much content as we can from the WAL back into the database file 1695 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1696 ** 1697 ** The amount of information copies from WAL to database might be limited 1698 ** by active readers. This routine will never overwrite a database page 1699 ** that a concurrent reader might be using. 1700 ** 1701 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1702 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1703 ** checkpoints are always run by a background thread or background 1704 ** process, foreground threads will never block on a lengthy fsync call. 1705 ** 1706 ** Fsync is called on the WAL before writing content out of the WAL and 1707 ** into the database. This ensures that if the new content is persistent 1708 ** in the WAL and can be recovered following a power-loss or hard reset. 1709 ** 1710 ** Fsync is also called on the database file if (and only if) the entire 1711 ** WAL content is copied into the database file. This second fsync makes 1712 ** it safe to delete the WAL since the new content will persist in the 1713 ** database file. 1714 ** 1715 ** This routine uses and updates the nBackfill field of the wal-index header. 1716 ** This is the only routine that will increase the value of nBackfill. 1717 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1718 ** its value.) 1719 ** 1720 ** The caller must be holding sufficient locks to ensure that no other 1721 ** checkpoint is running (in any other thread or process) at the same 1722 ** time. 1723 */ 1724 static int walCheckpoint( 1725 Wal *pWal, /* Wal connection */ 1726 int eMode, /* One of PASSIVE, FULL or RESTART */ 1727 int (*xBusy)(void*), /* Function to call when busy */ 1728 void *pBusyArg, /* Context argument for xBusyHandler */ 1729 int sync_flags, /* Flags for OsSync() (or 0) */ 1730 u8 *zBuf /* Temporary buffer to use */ 1731 ){ 1732 int rc = SQLITE_OK; /* Return code */ 1733 int szPage; /* Database page-size */ 1734 WalIterator *pIter = 0; /* Wal iterator context */ 1735 u32 iDbpage = 0; /* Next database page to write */ 1736 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1737 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1738 u32 mxPage; /* Max database page to write */ 1739 int i; /* Loop counter */ 1740 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1741 1742 szPage = walPagesize(pWal); 1743 testcase( szPage<=32768 ); 1744 testcase( szPage>=65536 ); 1745 pInfo = walCkptInfo(pWal); 1746 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1747 1748 /* Allocate the iterator */ 1749 rc = walIteratorInit(pWal, &pIter); 1750 if( rc!=SQLITE_OK ){ 1751 return rc; 1752 } 1753 assert( pIter ); 1754 1755 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1756 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1757 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1758 1759 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1760 ** safe to write into the database. Frames beyond mxSafeFrame might 1761 ** overwrite database pages that are in use by active readers and thus 1762 ** cannot be backfilled from the WAL. 1763 */ 1764 mxSafeFrame = pWal->hdr.mxFrame; 1765 mxPage = pWal->hdr.nPage; 1766 for(i=1; i<WAL_NREADER; i++){ 1767 /* Thread-sanitizer reports that the following is an unsafe read, 1768 ** as some other thread may be in the process of updating the value 1769 ** of the aReadMark[] slot. The assumption here is that if that is 1770 ** happening, the other client may only be increasing the value, 1771 ** not decreasing it. So assuming either that either the "old" or 1772 ** "new" version of the value is read, and not some arbitrary value 1773 ** that would never be written by a real client, things are still 1774 ** safe. */ 1775 u32 y = pInfo->aReadMark[i]; 1776 if( mxSafeFrame>y ){ 1777 assert( y<=pWal->hdr.mxFrame ); 1778 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1779 if( rc==SQLITE_OK ){ 1780 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1781 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1782 }else if( rc==SQLITE_BUSY ){ 1783 mxSafeFrame = y; 1784 xBusy = 0; 1785 }else{ 1786 goto walcheckpoint_out; 1787 } 1788 } 1789 } 1790 1791 if( pInfo->nBackfill<mxSafeFrame 1792 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1793 ){ 1794 i64 nSize; /* Current size of database file */ 1795 u32 nBackfill = pInfo->nBackfill; 1796 1797 pInfo->nBackfillAttempted = mxSafeFrame; 1798 1799 /* Sync the WAL to disk */ 1800 if( sync_flags ){ 1801 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1802 } 1803 1804 /* If the database may grow as a result of this checkpoint, hint 1805 ** about the eventual size of the db file to the VFS layer. 1806 */ 1807 if( rc==SQLITE_OK ){ 1808 i64 nReq = ((i64)mxPage * szPage); 1809 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1810 if( rc==SQLITE_OK && nSize<nReq ){ 1811 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1812 } 1813 } 1814 1815 1816 /* Iterate through the contents of the WAL, copying data to the db file */ 1817 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1818 i64 iOffset; 1819 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1820 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1821 continue; 1822 } 1823 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1824 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1825 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1826 if( rc!=SQLITE_OK ) break; 1827 iOffset = (iDbpage-1)*(i64)szPage; 1828 testcase( IS_BIG_INT(iOffset) ); 1829 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1830 if( rc!=SQLITE_OK ) break; 1831 } 1832 1833 /* If work was actually accomplished... */ 1834 if( rc==SQLITE_OK ){ 1835 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1836 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1837 testcase( IS_BIG_INT(szDb) ); 1838 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1839 if( rc==SQLITE_OK && sync_flags ){ 1840 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1841 } 1842 } 1843 if( rc==SQLITE_OK ){ 1844 pInfo->nBackfill = mxSafeFrame; 1845 } 1846 } 1847 1848 /* Release the reader lock held while backfilling */ 1849 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1850 } 1851 1852 if( rc==SQLITE_BUSY ){ 1853 /* Reset the return code so as not to report a checkpoint failure 1854 ** just because there are active readers. */ 1855 rc = SQLITE_OK; 1856 } 1857 } 1858 1859 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1860 ** entire wal file has been copied into the database file, then block 1861 ** until all readers have finished using the wal file. This ensures that 1862 ** the next process to write to the database restarts the wal file. 1863 */ 1864 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1865 assert( pWal->writeLock ); 1866 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1867 rc = SQLITE_BUSY; 1868 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1869 u32 salt1; 1870 sqlite3_randomness(4, &salt1); 1871 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1872 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1873 if( rc==SQLITE_OK ){ 1874 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1875 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1876 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1877 ** truncates the log file to zero bytes just prior to a 1878 ** successful return. 1879 ** 1880 ** In theory, it might be safe to do this without updating the 1881 ** wal-index header in shared memory, as all subsequent reader or 1882 ** writer clients should see that the entire log file has been 1883 ** checkpointed and behave accordingly. This seems unsafe though, 1884 ** as it would leave the system in a state where the contents of 1885 ** the wal-index header do not match the contents of the 1886 ** file-system. To avoid this, update the wal-index header to 1887 ** indicate that the log file contains zero valid frames. */ 1888 walRestartHdr(pWal, salt1); 1889 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1890 } 1891 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1892 } 1893 } 1894 } 1895 1896 walcheckpoint_out: 1897 walIteratorFree(pIter); 1898 return rc; 1899 } 1900 1901 /* 1902 ** If the WAL file is currently larger than nMax bytes in size, truncate 1903 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1904 */ 1905 static void walLimitSize(Wal *pWal, i64 nMax){ 1906 i64 sz; 1907 int rx; 1908 sqlite3BeginBenignMalloc(); 1909 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1910 if( rx==SQLITE_OK && (sz > nMax ) ){ 1911 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1912 } 1913 sqlite3EndBenignMalloc(); 1914 if( rx ){ 1915 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1916 } 1917 } 1918 1919 /* 1920 ** Close a connection to a log file. 1921 */ 1922 int sqlite3WalClose( 1923 Wal *pWal, /* Wal to close */ 1924 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1925 int nBuf, 1926 u8 *zBuf /* Buffer of at least nBuf bytes */ 1927 ){ 1928 int rc = SQLITE_OK; 1929 if( pWal ){ 1930 int isDelete = 0; /* True to unlink wal and wal-index files */ 1931 1932 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1933 ** ordinary, rollback-mode locking methods, this guarantees that the 1934 ** connection associated with this log file is the only connection to 1935 ** the database. In this case checkpoint the database and unlink both 1936 ** the wal and wal-index files. 1937 ** 1938 ** The EXCLUSIVE lock is not released before returning. 1939 */ 1940 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1941 if( rc==SQLITE_OK ){ 1942 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1943 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1944 } 1945 rc = sqlite3WalCheckpoint( 1946 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1947 ); 1948 if( rc==SQLITE_OK ){ 1949 int bPersist = -1; 1950 sqlite3OsFileControlHint( 1951 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1952 ); 1953 if( bPersist!=1 ){ 1954 /* Try to delete the WAL file if the checkpoint completed and 1955 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1956 ** mode (!bPersist) */ 1957 isDelete = 1; 1958 }else if( pWal->mxWalSize>=0 ){ 1959 /* Try to truncate the WAL file to zero bytes if the checkpoint 1960 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1961 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1962 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1963 ** to zero bytes as truncating to the journal_size_limit might 1964 ** leave a corrupt WAL file on disk. */ 1965 walLimitSize(pWal, 0); 1966 } 1967 } 1968 } 1969 1970 walIndexClose(pWal, isDelete); 1971 sqlite3OsClose(pWal->pWalFd); 1972 if( isDelete ){ 1973 sqlite3BeginBenignMalloc(); 1974 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1975 sqlite3EndBenignMalloc(); 1976 } 1977 WALTRACE(("WAL%p: closed\n", pWal)); 1978 sqlite3_free((void *)pWal->apWiData); 1979 sqlite3_free(pWal); 1980 } 1981 return rc; 1982 } 1983 1984 /* 1985 ** Try to read the wal-index header. Return 0 on success and 1 if 1986 ** there is a problem. 1987 ** 1988 ** The wal-index is in shared memory. Another thread or process might 1989 ** be writing the header at the same time this procedure is trying to 1990 ** read it, which might result in inconsistency. A dirty read is detected 1991 ** by verifying that both copies of the header are the same and also by 1992 ** a checksum on the header. 1993 ** 1994 ** If and only if the read is consistent and the header is different from 1995 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1996 ** and *pChanged is set to 1. 1997 ** 1998 ** If the checksum cannot be verified return non-zero. If the header 1999 ** is read successfully and the checksum verified, return zero. 2000 */ 2001 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2002 u32 aCksum[2]; /* Checksum on the header content */ 2003 WalIndexHdr h1, h2; /* Two copies of the header content */ 2004 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2005 2006 /* The first page of the wal-index must be mapped at this point. */ 2007 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2008 2009 /* Read the header. This might happen concurrently with a write to the 2010 ** same area of shared memory on a different CPU in a SMP, 2011 ** meaning it is possible that an inconsistent snapshot is read 2012 ** from the file. If this happens, return non-zero. 2013 ** 2014 ** There are two copies of the header at the beginning of the wal-index. 2015 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2016 ** Memory barriers are used to prevent the compiler or the hardware from 2017 ** reordering the reads and writes. 2018 */ 2019 aHdr = walIndexHdr(pWal); 2020 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2021 walShmBarrier(pWal); 2022 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2023 2024 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2025 return 1; /* Dirty read */ 2026 } 2027 if( h1.isInit==0 ){ 2028 return 1; /* Malformed header - probably all zeros */ 2029 } 2030 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2031 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2032 return 1; /* Checksum does not match */ 2033 } 2034 2035 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2036 *pChanged = 1; 2037 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2038 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2039 testcase( pWal->szPage<=32768 ); 2040 testcase( pWal->szPage>=65536 ); 2041 } 2042 2043 /* The header was successfully read. Return zero. */ 2044 return 0; 2045 } 2046 2047 /* 2048 ** Read the wal-index header from the wal-index and into pWal->hdr. 2049 ** If the wal-header appears to be corrupt, try to reconstruct the 2050 ** wal-index from the WAL before returning. 2051 ** 2052 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2053 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2054 ** to 0. 2055 ** 2056 ** If the wal-index header is successfully read, return SQLITE_OK. 2057 ** Otherwise an SQLite error code. 2058 */ 2059 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2060 int rc; /* Return code */ 2061 int badHdr; /* True if a header read failed */ 2062 volatile u32 *page0; /* Chunk of wal-index containing header */ 2063 2064 /* Ensure that page 0 of the wal-index (the page that contains the 2065 ** wal-index header) is mapped. Return early if an error occurs here. 2066 */ 2067 assert( pChanged ); 2068 rc = walIndexPage(pWal, 0, &page0); 2069 if( rc!=SQLITE_OK ){ 2070 return rc; 2071 }; 2072 assert( page0 || pWal->writeLock==0 ); 2073 2074 /* If the first page of the wal-index has been mapped, try to read the 2075 ** wal-index header immediately, without holding any lock. This usually 2076 ** works, but may fail if the wal-index header is corrupt or currently 2077 ** being modified by another thread or process. 2078 */ 2079 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2080 2081 /* If the first attempt failed, it might have been due to a race 2082 ** with a writer. So get a WRITE lock and try again. 2083 */ 2084 assert( badHdr==0 || pWal->writeLock==0 ); 2085 if( badHdr ){ 2086 if( pWal->readOnly & WAL_SHM_RDONLY ){ 2087 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2088 walUnlockShared(pWal, WAL_WRITE_LOCK); 2089 rc = SQLITE_READONLY_RECOVERY; 2090 } 2091 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2092 pWal->writeLock = 1; 2093 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2094 badHdr = walIndexTryHdr(pWal, pChanged); 2095 if( badHdr ){ 2096 /* If the wal-index header is still malformed even while holding 2097 ** a WRITE lock, it can only mean that the header is corrupted and 2098 ** needs to be reconstructed. So run recovery to do exactly that. 2099 */ 2100 rc = walIndexRecover(pWal); 2101 *pChanged = 1; 2102 } 2103 } 2104 pWal->writeLock = 0; 2105 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2106 } 2107 } 2108 2109 /* If the header is read successfully, check the version number to make 2110 ** sure the wal-index was not constructed with some future format that 2111 ** this version of SQLite cannot understand. 2112 */ 2113 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2114 rc = SQLITE_CANTOPEN_BKPT; 2115 } 2116 2117 return rc; 2118 } 2119 2120 /* 2121 ** This is the value that walTryBeginRead returns when it needs to 2122 ** be retried. 2123 */ 2124 #define WAL_RETRY (-1) 2125 2126 /* 2127 ** Attempt to start a read transaction. This might fail due to a race or 2128 ** other transient condition. When that happens, it returns WAL_RETRY to 2129 ** indicate to the caller that it is safe to retry immediately. 2130 ** 2131 ** On success return SQLITE_OK. On a permanent failure (such an 2132 ** I/O error or an SQLITE_BUSY because another process is running 2133 ** recovery) return a positive error code. 2134 ** 2135 ** The useWal parameter is true to force the use of the WAL and disable 2136 ** the case where the WAL is bypassed because it has been completely 2137 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2138 ** to make a copy of the wal-index header into pWal->hdr. If the 2139 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2140 ** to the caller that the local paget cache is obsolete and needs to be 2141 ** flushed.) When useWal==1, the wal-index header is assumed to already 2142 ** be loaded and the pChanged parameter is unused. 2143 ** 2144 ** The caller must set the cnt parameter to the number of prior calls to 2145 ** this routine during the current read attempt that returned WAL_RETRY. 2146 ** This routine will start taking more aggressive measures to clear the 2147 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2148 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2149 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2150 ** and is not honoring the locking protocol. There is a vanishingly small 2151 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2152 ** bad luck when there is lots of contention for the wal-index, but that 2153 ** possibility is so small that it can be safely neglected, we believe. 2154 ** 2155 ** On success, this routine obtains a read lock on 2156 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2157 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2158 ** that means the Wal does not hold any read lock. The reader must not 2159 ** access any database page that is modified by a WAL frame up to and 2160 ** including frame number aReadMark[pWal->readLock]. The reader will 2161 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2162 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2163 ** completely and get all content directly from the database file. 2164 ** If the useWal parameter is 1 then the WAL will never be ignored and 2165 ** this routine will always set pWal->readLock>0 on success. 2166 ** When the read transaction is completed, the caller must release the 2167 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2168 ** 2169 ** This routine uses the nBackfill and aReadMark[] fields of the header 2170 ** to select a particular WAL_READ_LOCK() that strives to let the 2171 ** checkpoint process do as much work as possible. This routine might 2172 ** update values of the aReadMark[] array in the header, but if it does 2173 ** so it takes care to hold an exclusive lock on the corresponding 2174 ** WAL_READ_LOCK() while changing values. 2175 */ 2176 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2177 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2178 u32 mxReadMark; /* Largest aReadMark[] value */ 2179 int mxI; /* Index of largest aReadMark[] value */ 2180 int i; /* Loop counter */ 2181 int rc = SQLITE_OK; /* Return code */ 2182 u32 mxFrame; /* Wal frame to lock to */ 2183 2184 assert( pWal->readLock<0 ); /* Not currently locked */ 2185 2186 /* Take steps to avoid spinning forever if there is a protocol error. 2187 ** 2188 ** Circumstances that cause a RETRY should only last for the briefest 2189 ** instances of time. No I/O or other system calls are done while the 2190 ** locks are held, so the locks should not be held for very long. But 2191 ** if we are unlucky, another process that is holding a lock might get 2192 ** paged out or take a page-fault that is time-consuming to resolve, 2193 ** during the few nanoseconds that it is holding the lock. In that case, 2194 ** it might take longer than normal for the lock to free. 2195 ** 2196 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2197 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2198 ** is more of a scheduler yield than an actual delay. But on the 10th 2199 ** an subsequent retries, the delays start becoming longer and longer, 2200 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2201 ** The total delay time before giving up is less than 10 seconds. 2202 */ 2203 if( cnt>5 ){ 2204 int nDelay = 1; /* Pause time in microseconds */ 2205 if( cnt>100 ){ 2206 VVA_ONLY( pWal->lockError = 1; ) 2207 return SQLITE_PROTOCOL; 2208 } 2209 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2210 sqlite3OsSleep(pWal->pVfs, nDelay); 2211 } 2212 2213 if( !useWal ){ 2214 rc = walIndexReadHdr(pWal, pChanged); 2215 if( rc==SQLITE_BUSY ){ 2216 /* If there is not a recovery running in another thread or process 2217 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2218 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2219 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2220 ** would be technically correct. But the race is benign since with 2221 ** WAL_RETRY this routine will be called again and will probably be 2222 ** right on the second iteration. 2223 */ 2224 if( pWal->apWiData[0]==0 ){ 2225 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2226 ** We assume this is a transient condition, so return WAL_RETRY. The 2227 ** xShmMap() implementation used by the default unix and win32 VFS 2228 ** modules may return SQLITE_BUSY due to a race condition in the 2229 ** code that determines whether or not the shared-memory region 2230 ** must be zeroed before the requested page is returned. 2231 */ 2232 rc = WAL_RETRY; 2233 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2234 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2235 rc = WAL_RETRY; 2236 }else if( rc==SQLITE_BUSY ){ 2237 rc = SQLITE_BUSY_RECOVERY; 2238 } 2239 } 2240 if( rc!=SQLITE_OK ){ 2241 return rc; 2242 } 2243 } 2244 2245 pInfo = walCkptInfo(pWal); 2246 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2247 #ifdef SQLITE_ENABLE_SNAPSHOT 2248 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 2249 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) 2250 #endif 2251 ){ 2252 /* The WAL has been completely backfilled (or it is empty). 2253 ** and can be safely ignored. 2254 */ 2255 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2256 walShmBarrier(pWal); 2257 if( rc==SQLITE_OK ){ 2258 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2259 /* It is not safe to allow the reader to continue here if frames 2260 ** may have been appended to the log before READ_LOCK(0) was obtained. 2261 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2262 ** which implies that the database file contains a trustworthy 2263 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2264 ** happening, this is usually correct. 2265 ** 2266 ** However, if frames have been appended to the log (or if the log 2267 ** is wrapped and written for that matter) before the READ_LOCK(0) 2268 ** is obtained, that is not necessarily true. A checkpointer may 2269 ** have started to backfill the appended frames but crashed before 2270 ** it finished. Leaving a corrupt image in the database file. 2271 */ 2272 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2273 return WAL_RETRY; 2274 } 2275 pWal->readLock = 0; 2276 return SQLITE_OK; 2277 }else if( rc!=SQLITE_BUSY ){ 2278 return rc; 2279 } 2280 } 2281 2282 /* If we get this far, it means that the reader will want to use 2283 ** the WAL to get at content from recent commits. The job now is 2284 ** to select one of the aReadMark[] entries that is closest to 2285 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2286 */ 2287 mxReadMark = 0; 2288 mxI = 0; 2289 mxFrame = pWal->hdr.mxFrame; 2290 #ifdef SQLITE_ENABLE_SNAPSHOT 2291 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2292 mxFrame = pWal->pSnapshot->mxFrame; 2293 } 2294 #endif 2295 for(i=1; i<WAL_NREADER; i++){ 2296 u32 thisMark = pInfo->aReadMark[i]; 2297 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2298 assert( thisMark!=READMARK_NOT_USED ); 2299 mxReadMark = thisMark; 2300 mxI = i; 2301 } 2302 } 2303 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2304 && (mxReadMark<mxFrame || mxI==0) 2305 ){ 2306 for(i=1; i<WAL_NREADER; i++){ 2307 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2308 if( rc==SQLITE_OK ){ 2309 mxReadMark = pInfo->aReadMark[i] = mxFrame; 2310 mxI = i; 2311 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2312 break; 2313 }else if( rc!=SQLITE_BUSY ){ 2314 return rc; 2315 } 2316 } 2317 } 2318 if( mxI==0 ){ 2319 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2320 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 2321 } 2322 2323 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2324 if( rc ){ 2325 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2326 } 2327 /* Now that the read-lock has been obtained, check that neither the 2328 ** value in the aReadMark[] array or the contents of the wal-index 2329 ** header have changed. 2330 ** 2331 ** It is necessary to check that the wal-index header did not change 2332 ** between the time it was read and when the shared-lock was obtained 2333 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2334 ** that the log file may have been wrapped by a writer, or that frames 2335 ** that occur later in the log than pWal->hdr.mxFrame may have been 2336 ** copied into the database by a checkpointer. If either of these things 2337 ** happened, then reading the database with the current value of 2338 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2339 ** instead. 2340 ** 2341 ** Before checking that the live wal-index header has not changed 2342 ** since it was read, set Wal.minFrame to the first frame in the wal 2343 ** file that has not yet been checkpointed. This client will not need 2344 ** to read any frames earlier than minFrame from the wal file - they 2345 ** can be safely read directly from the database file. 2346 ** 2347 ** Because a ShmBarrier() call is made between taking the copy of 2348 ** nBackfill and checking that the wal-header in shared-memory still 2349 ** matches the one cached in pWal->hdr, it is guaranteed that the 2350 ** checkpointer that set nBackfill was not working with a wal-index 2351 ** header newer than that cached in pWal->hdr. If it were, that could 2352 ** cause a problem. The checkpointer could omit to checkpoint 2353 ** a version of page X that lies before pWal->minFrame (call that version 2354 ** A) on the basis that there is a newer version (version B) of the same 2355 ** page later in the wal file. But if version B happens to like past 2356 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2357 ** that it can read version A from the database file. However, since 2358 ** we can guarantee that the checkpointer that set nBackfill could not 2359 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2360 */ 2361 pWal->minFrame = pInfo->nBackfill+1; 2362 walShmBarrier(pWal); 2363 if( pInfo->aReadMark[mxI]!=mxReadMark 2364 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2365 ){ 2366 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2367 return WAL_RETRY; 2368 }else{ 2369 assert( mxReadMark<=pWal->hdr.mxFrame ); 2370 pWal->readLock = (i16)mxI; 2371 } 2372 return rc; 2373 } 2374 2375 /* 2376 ** Begin a read transaction on the database. 2377 ** 2378 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2379 ** it takes a snapshot of the state of the WAL and wal-index for the current 2380 ** instant in time. The current thread will continue to use this snapshot. 2381 ** Other threads might append new content to the WAL and wal-index but 2382 ** that extra content is ignored by the current thread. 2383 ** 2384 ** If the database contents have changes since the previous read 2385 ** transaction, then *pChanged is set to 1 before returning. The 2386 ** Pager layer will use this to know that is cache is stale and 2387 ** needs to be flushed. 2388 */ 2389 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2390 int rc; /* Return code */ 2391 int cnt = 0; /* Number of TryBeginRead attempts */ 2392 2393 #ifdef SQLITE_ENABLE_SNAPSHOT 2394 int bChanged = 0; 2395 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2396 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2397 bChanged = 1; 2398 } 2399 #endif 2400 2401 do{ 2402 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2403 }while( rc==WAL_RETRY ); 2404 testcase( (rc&0xff)==SQLITE_BUSY ); 2405 testcase( (rc&0xff)==SQLITE_IOERR ); 2406 testcase( rc==SQLITE_PROTOCOL ); 2407 testcase( rc==SQLITE_OK ); 2408 2409 #ifdef SQLITE_ENABLE_SNAPSHOT 2410 if( rc==SQLITE_OK ){ 2411 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2412 /* At this point the client has a lock on an aReadMark[] slot holding 2413 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2414 ** is populated with the wal-index header corresponding to the head 2415 ** of the wal file. Verify that pSnapshot is still valid before 2416 ** continuing. Reasons why pSnapshot might no longer be valid: 2417 ** 2418 ** (1) The WAL file has been reset since the snapshot was taken. 2419 ** In this case, the salt will have changed. 2420 ** 2421 ** (2) A checkpoint as been attempted that wrote frames past 2422 ** pSnapshot->mxFrame into the database file. Note that the 2423 ** checkpoint need not have completed for this to cause problems. 2424 */ 2425 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2426 2427 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2428 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2429 2430 /* It is possible that there is a checkpointer thread running 2431 ** concurrent with this code. If this is the case, it may be that the 2432 ** checkpointer has already determined that it will checkpoint 2433 ** snapshot X, where X is later in the wal file than pSnapshot, but 2434 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2435 ** its intent. To avoid the race condition this leads to, ensure that 2436 ** there is no checkpointer process by taking a shared CKPT lock 2437 ** before checking pInfo->nBackfillAttempted. */ 2438 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2439 2440 if( rc==SQLITE_OK ){ 2441 /* Check that the wal file has not been wrapped. Assuming that it has 2442 ** not, also check that no checkpointer has attempted to checkpoint any 2443 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2444 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr 2445 ** with *pSnapshot and set *pChanged as appropriate for opening the 2446 ** snapshot. */ 2447 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2448 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2449 ){ 2450 assert( pWal->readLock>0 ); 2451 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2452 *pChanged = bChanged; 2453 }else{ 2454 rc = SQLITE_BUSY_SNAPSHOT; 2455 } 2456 2457 /* Release the shared CKPT lock obtained above. */ 2458 walUnlockShared(pWal, WAL_CKPT_LOCK); 2459 } 2460 2461 2462 if( rc!=SQLITE_OK ){ 2463 sqlite3WalEndReadTransaction(pWal); 2464 } 2465 } 2466 } 2467 #endif 2468 return rc; 2469 } 2470 2471 /* 2472 ** Finish with a read transaction. All this does is release the 2473 ** read-lock. 2474 */ 2475 void sqlite3WalEndReadTransaction(Wal *pWal){ 2476 sqlite3WalEndWriteTransaction(pWal); 2477 if( pWal->readLock>=0 ){ 2478 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2479 pWal->readLock = -1; 2480 } 2481 } 2482 2483 /* 2484 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2485 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2486 ** to zero. 2487 ** 2488 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2489 ** error does occur, the final value of *piRead is undefined. 2490 */ 2491 int sqlite3WalFindFrame( 2492 Wal *pWal, /* WAL handle */ 2493 Pgno pgno, /* Database page number to read data for */ 2494 u32 *piRead /* OUT: Frame number (or zero) */ 2495 ){ 2496 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2497 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2498 int iHash; /* Used to loop through N hash tables */ 2499 int iMinHash; 2500 2501 /* This routine is only be called from within a read transaction. */ 2502 assert( pWal->readLock>=0 || pWal->lockError ); 2503 2504 /* If the "last page" field of the wal-index header snapshot is 0, then 2505 ** no data will be read from the wal under any circumstances. Return early 2506 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2507 ** then the WAL is ignored by the reader so return early, as if the 2508 ** WAL were empty. 2509 */ 2510 if( iLast==0 || pWal->readLock==0 ){ 2511 *piRead = 0; 2512 return SQLITE_OK; 2513 } 2514 2515 /* Search the hash table or tables for an entry matching page number 2516 ** pgno. Each iteration of the following for() loop searches one 2517 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2518 ** 2519 ** This code might run concurrently to the code in walIndexAppend() 2520 ** that adds entries to the wal-index (and possibly to this hash 2521 ** table). This means the value just read from the hash 2522 ** slot (aHash[iKey]) may have been added before or after the 2523 ** current read transaction was opened. Values added after the 2524 ** read transaction was opened may have been written incorrectly - 2525 ** i.e. these slots may contain garbage data. However, we assume 2526 ** that any slots written before the current read transaction was 2527 ** opened remain unmodified. 2528 ** 2529 ** For the reasons above, the if(...) condition featured in the inner 2530 ** loop of the following block is more stringent that would be required 2531 ** if we had exclusive access to the hash-table: 2532 ** 2533 ** (aPgno[iFrame]==pgno): 2534 ** This condition filters out normal hash-table collisions. 2535 ** 2536 ** (iFrame<=iLast): 2537 ** This condition filters out entries that were added to the hash 2538 ** table after the current read-transaction had started. 2539 */ 2540 iMinHash = walFramePage(pWal->minFrame); 2541 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ 2542 volatile ht_slot *aHash; /* Pointer to hash table */ 2543 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2544 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2545 int iKey; /* Hash slot index */ 2546 int nCollide; /* Number of hash collisions remaining */ 2547 int rc; /* Error code */ 2548 2549 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2550 if( rc!=SQLITE_OK ){ 2551 return rc; 2552 } 2553 nCollide = HASHTABLE_NSLOT; 2554 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2555 u32 iFrame = aHash[iKey] + iZero; 2556 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ 2557 assert( iFrame>iRead || CORRUPT_DB ); 2558 iRead = iFrame; 2559 } 2560 if( (nCollide--)==0 ){ 2561 return SQLITE_CORRUPT_BKPT; 2562 } 2563 } 2564 } 2565 2566 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2567 /* If expensive assert() statements are available, do a linear search 2568 ** of the wal-index file content. Make sure the results agree with the 2569 ** result obtained using the hash indexes above. */ 2570 { 2571 u32 iRead2 = 0; 2572 u32 iTest; 2573 assert( pWal->minFrame>0 ); 2574 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ 2575 if( walFramePgno(pWal, iTest)==pgno ){ 2576 iRead2 = iTest; 2577 break; 2578 } 2579 } 2580 assert( iRead==iRead2 ); 2581 } 2582 #endif 2583 2584 *piRead = iRead; 2585 return SQLITE_OK; 2586 } 2587 2588 /* 2589 ** Read the contents of frame iRead from the wal file into buffer pOut 2590 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2591 ** error code otherwise. 2592 */ 2593 int sqlite3WalReadFrame( 2594 Wal *pWal, /* WAL handle */ 2595 u32 iRead, /* Frame to read */ 2596 int nOut, /* Size of buffer pOut in bytes */ 2597 u8 *pOut /* Buffer to write page data to */ 2598 ){ 2599 int sz; 2600 i64 iOffset; 2601 sz = pWal->hdr.szPage; 2602 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2603 testcase( sz<=32768 ); 2604 testcase( sz>=65536 ); 2605 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2606 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2607 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2608 } 2609 2610 /* 2611 ** Return the size of the database in pages (or zero, if unknown). 2612 */ 2613 Pgno sqlite3WalDbsize(Wal *pWal){ 2614 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2615 return pWal->hdr.nPage; 2616 } 2617 return 0; 2618 } 2619 2620 2621 /* 2622 ** This function starts a write transaction on the WAL. 2623 ** 2624 ** A read transaction must have already been started by a prior call 2625 ** to sqlite3WalBeginReadTransaction(). 2626 ** 2627 ** If another thread or process has written into the database since 2628 ** the read transaction was started, then it is not possible for this 2629 ** thread to write as doing so would cause a fork. So this routine 2630 ** returns SQLITE_BUSY in that case and no write transaction is started. 2631 ** 2632 ** There can only be a single writer active at a time. 2633 */ 2634 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2635 int rc; 2636 2637 /* Cannot start a write transaction without first holding a read 2638 ** transaction. */ 2639 assert( pWal->readLock>=0 ); 2640 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 2641 2642 if( pWal->readOnly ){ 2643 return SQLITE_READONLY; 2644 } 2645 2646 /* Only one writer allowed at a time. Get the write lock. Return 2647 ** SQLITE_BUSY if unable. 2648 */ 2649 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2650 if( rc ){ 2651 return rc; 2652 } 2653 pWal->writeLock = 1; 2654 2655 /* If another connection has written to the database file since the 2656 ** time the read transaction on this connection was started, then 2657 ** the write is disallowed. 2658 */ 2659 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2660 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2661 pWal->writeLock = 0; 2662 rc = SQLITE_BUSY_SNAPSHOT; 2663 } 2664 2665 return rc; 2666 } 2667 2668 /* 2669 ** End a write transaction. The commit has already been done. This 2670 ** routine merely releases the lock. 2671 */ 2672 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2673 if( pWal->writeLock ){ 2674 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2675 pWal->writeLock = 0; 2676 pWal->iReCksum = 0; 2677 pWal->truncateOnCommit = 0; 2678 } 2679 return SQLITE_OK; 2680 } 2681 2682 /* 2683 ** If any data has been written (but not committed) to the log file, this 2684 ** function moves the write-pointer back to the start of the transaction. 2685 ** 2686 ** Additionally, the callback function is invoked for each frame written 2687 ** to the WAL since the start of the transaction. If the callback returns 2688 ** other than SQLITE_OK, it is not invoked again and the error code is 2689 ** returned to the caller. 2690 ** 2691 ** Otherwise, if the callback function does not return an error, this 2692 ** function returns SQLITE_OK. 2693 */ 2694 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2695 int rc = SQLITE_OK; 2696 if( ALWAYS(pWal->writeLock) ){ 2697 Pgno iMax = pWal->hdr.mxFrame; 2698 Pgno iFrame; 2699 2700 /* Restore the clients cache of the wal-index header to the state it 2701 ** was in before the client began writing to the database. 2702 */ 2703 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2704 2705 for(iFrame=pWal->hdr.mxFrame+1; 2706 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2707 iFrame++ 2708 ){ 2709 /* This call cannot fail. Unless the page for which the page number 2710 ** is passed as the second argument is (a) in the cache and 2711 ** (b) has an outstanding reference, then xUndo is either a no-op 2712 ** (if (a) is false) or simply expels the page from the cache (if (b) 2713 ** is false). 2714 ** 2715 ** If the upper layer is doing a rollback, it is guaranteed that there 2716 ** are no outstanding references to any page other than page 1. And 2717 ** page 1 is never written to the log until the transaction is 2718 ** committed. As a result, the call to xUndo may not fail. 2719 */ 2720 assert( walFramePgno(pWal, iFrame)!=1 ); 2721 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2722 } 2723 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 2724 } 2725 return rc; 2726 } 2727 2728 /* 2729 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2730 ** values. This function populates the array with values required to 2731 ** "rollback" the write position of the WAL handle back to the current 2732 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2733 */ 2734 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2735 assert( pWal->writeLock ); 2736 aWalData[0] = pWal->hdr.mxFrame; 2737 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2738 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2739 aWalData[3] = pWal->nCkpt; 2740 } 2741 2742 /* 2743 ** Move the write position of the WAL back to the point identified by 2744 ** the values in the aWalData[] array. aWalData must point to an array 2745 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2746 ** by a call to WalSavepoint(). 2747 */ 2748 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2749 int rc = SQLITE_OK; 2750 2751 assert( pWal->writeLock ); 2752 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2753 2754 if( aWalData[3]!=pWal->nCkpt ){ 2755 /* This savepoint was opened immediately after the write-transaction 2756 ** was started. Right after that, the writer decided to wrap around 2757 ** to the start of the log. Update the savepoint values to match. 2758 */ 2759 aWalData[0] = 0; 2760 aWalData[3] = pWal->nCkpt; 2761 } 2762 2763 if( aWalData[0]<pWal->hdr.mxFrame ){ 2764 pWal->hdr.mxFrame = aWalData[0]; 2765 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2766 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2767 walCleanupHash(pWal); 2768 } 2769 2770 return rc; 2771 } 2772 2773 /* 2774 ** This function is called just before writing a set of frames to the log 2775 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2776 ** to the current log file, it is possible to overwrite the start of the 2777 ** existing log file with the new frames (i.e. "reset" the log). If so, 2778 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2779 ** unchanged. 2780 ** 2781 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2782 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2783 ** if an error occurs. 2784 */ 2785 static int walRestartLog(Wal *pWal){ 2786 int rc = SQLITE_OK; 2787 int cnt; 2788 2789 if( pWal->readLock==0 ){ 2790 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2791 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2792 if( pInfo->nBackfill>0 ){ 2793 u32 salt1; 2794 sqlite3_randomness(4, &salt1); 2795 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2796 if( rc==SQLITE_OK ){ 2797 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2798 ** readers are currently using the WAL), then the transactions 2799 ** frames will overwrite the start of the existing log. Update the 2800 ** wal-index header to reflect this. 2801 ** 2802 ** In theory it would be Ok to update the cache of the header only 2803 ** at this point. But updating the actual wal-index header is also 2804 ** safe and means there is no special case for sqlite3WalUndo() 2805 ** to handle if this transaction is rolled back. */ 2806 walRestartHdr(pWal, salt1); 2807 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2808 }else if( rc!=SQLITE_BUSY ){ 2809 return rc; 2810 } 2811 } 2812 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2813 pWal->readLock = -1; 2814 cnt = 0; 2815 do{ 2816 int notUsed; 2817 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2818 }while( rc==WAL_RETRY ); 2819 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 2820 testcase( (rc&0xff)==SQLITE_IOERR ); 2821 testcase( rc==SQLITE_PROTOCOL ); 2822 testcase( rc==SQLITE_OK ); 2823 } 2824 return rc; 2825 } 2826 2827 /* 2828 ** Information about the current state of the WAL file and where 2829 ** the next fsync should occur - passed from sqlite3WalFrames() into 2830 ** walWriteToLog(). 2831 */ 2832 typedef struct WalWriter { 2833 Wal *pWal; /* The complete WAL information */ 2834 sqlite3_file *pFd; /* The WAL file to which we write */ 2835 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 2836 int syncFlags; /* Flags for the fsync */ 2837 int szPage; /* Size of one page */ 2838 } WalWriter; 2839 2840 /* 2841 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 2842 ** Do a sync when crossing the p->iSyncPoint boundary. 2843 ** 2844 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 2845 ** first write the part before iSyncPoint, then sync, then write the 2846 ** rest. 2847 */ 2848 static int walWriteToLog( 2849 WalWriter *p, /* WAL to write to */ 2850 void *pContent, /* Content to be written */ 2851 int iAmt, /* Number of bytes to write */ 2852 sqlite3_int64 iOffset /* Start writing at this offset */ 2853 ){ 2854 int rc; 2855 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 2856 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 2857 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 2858 if( rc ) return rc; 2859 iOffset += iFirstAmt; 2860 iAmt -= iFirstAmt; 2861 pContent = (void*)(iFirstAmt + (char*)pContent); 2862 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 2863 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); 2864 if( iAmt==0 || rc ) return rc; 2865 } 2866 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 2867 return rc; 2868 } 2869 2870 /* 2871 ** Write out a single frame of the WAL 2872 */ 2873 static int walWriteOneFrame( 2874 WalWriter *p, /* Where to write the frame */ 2875 PgHdr *pPage, /* The page of the frame to be written */ 2876 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 2877 sqlite3_int64 iOffset /* Byte offset at which to write */ 2878 ){ 2879 int rc; /* Result code from subfunctions */ 2880 void *pData; /* Data actually written */ 2881 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2882 #if defined(SQLITE_HAS_CODEC) 2883 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; 2884 #else 2885 pData = pPage->pData; 2886 #endif 2887 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 2888 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 2889 if( rc ) return rc; 2890 /* Write the page data */ 2891 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 2892 return rc; 2893 } 2894 2895 /* 2896 ** This function is called as part of committing a transaction within which 2897 ** one or more frames have been overwritten. It updates the checksums for 2898 ** all frames written to the wal file by the current transaction starting 2899 ** with the earliest to have been overwritten. 2900 ** 2901 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2902 */ 2903 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 2904 const int szPage = pWal->szPage;/* Database page size */ 2905 int rc = SQLITE_OK; /* Return code */ 2906 u8 *aBuf; /* Buffer to load data from wal file into */ 2907 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 2908 u32 iRead; /* Next frame to read from wal file */ 2909 i64 iCksumOff; 2910 2911 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 2912 if( aBuf==0 ) return SQLITE_NOMEM; 2913 2914 /* Find the checksum values to use as input for the recalculating the 2915 ** first checksum. If the first frame is frame 1 (implying that the current 2916 ** transaction restarted the wal file), these values must be read from the 2917 ** wal-file header. Otherwise, read them from the frame header of the 2918 ** previous frame. */ 2919 assert( pWal->iReCksum>0 ); 2920 if( pWal->iReCksum==1 ){ 2921 iCksumOff = 24; 2922 }else{ 2923 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 2924 } 2925 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 2926 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 2927 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 2928 2929 iRead = pWal->iReCksum; 2930 pWal->iReCksum = 0; 2931 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 2932 i64 iOff = walFrameOffset(iRead, szPage); 2933 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 2934 if( rc==SQLITE_OK ){ 2935 u32 iPgno, nDbSize; 2936 iPgno = sqlite3Get4byte(aBuf); 2937 nDbSize = sqlite3Get4byte(&aBuf[4]); 2938 2939 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 2940 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 2941 } 2942 } 2943 2944 sqlite3_free(aBuf); 2945 return rc; 2946 } 2947 2948 /* 2949 ** Write a set of frames to the log. The caller must hold the write-lock 2950 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2951 */ 2952 int sqlite3WalFrames( 2953 Wal *pWal, /* Wal handle to write to */ 2954 int szPage, /* Database page-size in bytes */ 2955 PgHdr *pList, /* List of dirty pages to write */ 2956 Pgno nTruncate, /* Database size after this commit */ 2957 int isCommit, /* True if this is a commit */ 2958 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2959 ){ 2960 int rc; /* Used to catch return codes */ 2961 u32 iFrame; /* Next frame address */ 2962 PgHdr *p; /* Iterator to run through pList with. */ 2963 PgHdr *pLast = 0; /* Last frame in list */ 2964 int nExtra = 0; /* Number of extra copies of last page */ 2965 int szFrame; /* The size of a single frame */ 2966 i64 iOffset; /* Next byte to write in WAL file */ 2967 WalWriter w; /* The writer */ 2968 u32 iFirst = 0; /* First frame that may be overwritten */ 2969 WalIndexHdr *pLive; /* Pointer to shared header */ 2970 2971 assert( pList ); 2972 assert( pWal->writeLock ); 2973 2974 /* If this frame set completes a transaction, then nTruncate>0. If 2975 ** nTruncate==0 then this frame set does not complete the transaction. */ 2976 assert( (isCommit!=0)==(nTruncate!=0) ); 2977 2978 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2979 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2980 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2981 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2982 } 2983 #endif 2984 2985 pLive = (WalIndexHdr*)walIndexHdr(pWal); 2986 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 2987 iFirst = pLive->mxFrame+1; 2988 } 2989 2990 /* See if it is possible to write these frames into the start of the 2991 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2992 */ 2993 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2994 return rc; 2995 } 2996 2997 /* If this is the first frame written into the log, write the WAL 2998 ** header to the start of the WAL file. See comments at the top of 2999 ** this source file for a description of the WAL header format. 3000 */ 3001 iFrame = pWal->hdr.mxFrame; 3002 if( iFrame==0 ){ 3003 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3004 u32 aCksum[2]; /* Checksum for wal-header */ 3005 3006 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3007 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3008 sqlite3Put4byte(&aWalHdr[8], szPage); 3009 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3010 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3011 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3012 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3013 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3014 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3015 3016 pWal->szPage = szPage; 3017 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3018 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3019 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3020 pWal->truncateOnCommit = 1; 3021 3022 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3023 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3024 if( rc!=SQLITE_OK ){ 3025 return rc; 3026 } 3027 3028 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3029 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3030 ** an out-of-order write following a WAL restart could result in 3031 ** database corruption. See the ticket: 3032 ** 3033 ** http://localhost:591/sqlite/info/ff5be73dee 3034 */ 3035 if( pWal->syncHeader && sync_flags ){ 3036 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 3037 if( rc ) return rc; 3038 } 3039 } 3040 assert( (int)pWal->szPage==szPage ); 3041 3042 /* Setup information needed to write frames into the WAL */ 3043 w.pWal = pWal; 3044 w.pFd = pWal->pWalFd; 3045 w.iSyncPoint = 0; 3046 w.syncFlags = sync_flags; 3047 w.szPage = szPage; 3048 iOffset = walFrameOffset(iFrame+1, szPage); 3049 szFrame = szPage + WAL_FRAME_HDRSIZE; 3050 3051 /* Write all frames into the log file exactly once */ 3052 for(p=pList; p; p=p->pDirty){ 3053 int nDbSize; /* 0 normally. Positive == commit flag */ 3054 3055 /* Check if this page has already been written into the wal file by 3056 ** the current transaction. If so, overwrite the existing frame and 3057 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3058 ** checksums must be recomputed when the transaction is committed. */ 3059 if( iFirst && (p->pDirty || isCommit==0) ){ 3060 u32 iWrite = 0; 3061 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3062 assert( rc==SQLITE_OK || iWrite==0 ); 3063 if( iWrite>=iFirst ){ 3064 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3065 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3066 pWal->iReCksum = iWrite; 3067 } 3068 rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOff); 3069 if( rc ) return rc; 3070 p->flags &= ~PGHDR_WAL_APPEND; 3071 continue; 3072 } 3073 } 3074 3075 iFrame++; 3076 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3077 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3078 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3079 if( rc ) return rc; 3080 pLast = p; 3081 iOffset += szFrame; 3082 p->flags |= PGHDR_WAL_APPEND; 3083 } 3084 3085 /* Recalculate checksums within the wal file if required. */ 3086 if( isCommit && pWal->iReCksum ){ 3087 rc = walRewriteChecksums(pWal, iFrame); 3088 if( rc ) return rc; 3089 } 3090 3091 /* If this is the end of a transaction, then we might need to pad 3092 ** the transaction and/or sync the WAL file. 3093 ** 3094 ** Padding and syncing only occur if this set of frames complete a 3095 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3096 ** or synchronous==OFF, then no padding or syncing are needed. 3097 ** 3098 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3099 ** needed and only the sync is done. If padding is needed, then the 3100 ** final frame is repeated (with its commit mark) until the next sector 3101 ** boundary is crossed. Only the part of the WAL prior to the last 3102 ** sector boundary is synced; the part of the last frame that extends 3103 ** past the sector boundary is written after the sync. 3104 */ 3105 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 3106 if( pWal->padToSectorBoundary ){ 3107 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3108 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3109 while( iOffset<w.iSyncPoint ){ 3110 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3111 if( rc ) return rc; 3112 iOffset += szFrame; 3113 nExtra++; 3114 } 3115 }else{ 3116 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 3117 } 3118 } 3119 3120 /* If this frame set completes the first transaction in the WAL and 3121 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3122 ** journal size limit, if possible. 3123 */ 3124 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3125 i64 sz = pWal->mxWalSize; 3126 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3127 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3128 } 3129 walLimitSize(pWal, sz); 3130 pWal->truncateOnCommit = 0; 3131 } 3132 3133 /* Append data to the wal-index. It is not necessary to lock the 3134 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3135 ** guarantees that there are no other writers, and no data that may 3136 ** be in use by existing readers is being overwritten. 3137 */ 3138 iFrame = pWal->hdr.mxFrame; 3139 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3140 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3141 iFrame++; 3142 rc = walIndexAppend(pWal, iFrame, p->pgno); 3143 } 3144 while( rc==SQLITE_OK && nExtra>0 ){ 3145 iFrame++; 3146 nExtra--; 3147 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3148 } 3149 3150 if( rc==SQLITE_OK ){ 3151 /* Update the private copy of the header. */ 3152 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3153 testcase( szPage<=32768 ); 3154 testcase( szPage>=65536 ); 3155 pWal->hdr.mxFrame = iFrame; 3156 if( isCommit ){ 3157 pWal->hdr.iChange++; 3158 pWal->hdr.nPage = nTruncate; 3159 } 3160 /* If this is a commit, update the wal-index header too. */ 3161 if( isCommit ){ 3162 walIndexWriteHdr(pWal); 3163 pWal->iCallback = iFrame; 3164 } 3165 } 3166 3167 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3168 return rc; 3169 } 3170 3171 /* 3172 ** This routine is called to implement sqlite3_wal_checkpoint() and 3173 ** related interfaces. 3174 ** 3175 ** Obtain a CHECKPOINT lock and then backfill as much information as 3176 ** we can from WAL into the database. 3177 ** 3178 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3179 ** callback. In this case this function runs a blocking checkpoint. 3180 */ 3181 int sqlite3WalCheckpoint( 3182 Wal *pWal, /* Wal connection */ 3183 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3184 int (*xBusy)(void*), /* Function to call when busy */ 3185 void *pBusyArg, /* Context argument for xBusyHandler */ 3186 int sync_flags, /* Flags to sync db file with (or 0) */ 3187 int nBuf, /* Size of temporary buffer */ 3188 u8 *zBuf, /* Temporary buffer to use */ 3189 int *pnLog, /* OUT: Number of frames in WAL */ 3190 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3191 ){ 3192 int rc; /* Return code */ 3193 int isChanged = 0; /* True if a new wal-index header is loaded */ 3194 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3195 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3196 3197 assert( pWal->ckptLock==0 ); 3198 assert( pWal->writeLock==0 ); 3199 3200 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3201 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3202 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3203 3204 if( pWal->readOnly ) return SQLITE_READONLY; 3205 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3206 3207 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3208 ** "checkpoint" lock on the database file. */ 3209 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3210 if( rc ){ 3211 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3212 ** checkpoint operation at the same time, the lock cannot be obtained and 3213 ** SQLITE_BUSY is returned. 3214 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3215 ** it will not be invoked in this case. 3216 */ 3217 testcase( rc==SQLITE_BUSY ); 3218 testcase( xBusy!=0 ); 3219 return rc; 3220 } 3221 pWal->ckptLock = 1; 3222 3223 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3224 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3225 ** file. 3226 ** 3227 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3228 ** immediately, and a busy-handler is configured, it is invoked and the 3229 ** writer lock retried until either the busy-handler returns 0 or the 3230 ** lock is successfully obtained. 3231 */ 3232 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3233 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3234 if( rc==SQLITE_OK ){ 3235 pWal->writeLock = 1; 3236 }else if( rc==SQLITE_BUSY ){ 3237 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3238 xBusy2 = 0; 3239 rc = SQLITE_OK; 3240 } 3241 } 3242 3243 /* Read the wal-index header. */ 3244 if( rc==SQLITE_OK ){ 3245 rc = walIndexReadHdr(pWal, &isChanged); 3246 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3247 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3248 } 3249 } 3250 3251 /* Copy data from the log to the database file. */ 3252 if( rc==SQLITE_OK ){ 3253 3254 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3255 rc = SQLITE_CORRUPT_BKPT; 3256 }else{ 3257 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3258 } 3259 3260 /* If no error occurred, set the output variables. */ 3261 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3262 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3263 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3264 } 3265 } 3266 3267 if( isChanged ){ 3268 /* If a new wal-index header was loaded before the checkpoint was 3269 ** performed, then the pager-cache associated with pWal is now 3270 ** out of date. So zero the cached wal-index header to ensure that 3271 ** next time the pager opens a snapshot on this database it knows that 3272 ** the cache needs to be reset. 3273 */ 3274 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3275 } 3276 3277 /* Release the locks. */ 3278 sqlite3WalEndWriteTransaction(pWal); 3279 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3280 pWal->ckptLock = 0; 3281 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3282 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3283 } 3284 3285 /* Return the value to pass to a sqlite3_wal_hook callback, the 3286 ** number of frames in the WAL at the point of the last commit since 3287 ** sqlite3WalCallback() was called. If no commits have occurred since 3288 ** the last call, then return 0. 3289 */ 3290 int sqlite3WalCallback(Wal *pWal){ 3291 u32 ret = 0; 3292 if( pWal ){ 3293 ret = pWal->iCallback; 3294 pWal->iCallback = 0; 3295 } 3296 return (int)ret; 3297 } 3298 3299 /* 3300 ** This function is called to change the WAL subsystem into or out 3301 ** of locking_mode=EXCLUSIVE. 3302 ** 3303 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3304 ** into locking_mode=NORMAL. This means that we must acquire a lock 3305 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3306 ** or if the acquisition of the lock fails, then return 0. If the 3307 ** transition out of exclusive-mode is successful, return 1. This 3308 ** operation must occur while the pager is still holding the exclusive 3309 ** lock on the main database file. 3310 ** 3311 ** If op is one, then change from locking_mode=NORMAL into 3312 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3313 ** be released. Return 1 if the transition is made and 0 if the 3314 ** WAL is already in exclusive-locking mode - meaning that this 3315 ** routine is a no-op. The pager must already hold the exclusive lock 3316 ** on the main database file before invoking this operation. 3317 ** 3318 ** If op is negative, then do a dry-run of the op==1 case but do 3319 ** not actually change anything. The pager uses this to see if it 3320 ** should acquire the database exclusive lock prior to invoking 3321 ** the op==1 case. 3322 */ 3323 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3324 int rc; 3325 assert( pWal->writeLock==0 ); 3326 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3327 3328 /* pWal->readLock is usually set, but might be -1 if there was a 3329 ** prior error while attempting to acquire are read-lock. This cannot 3330 ** happen if the connection is actually in exclusive mode (as no xShmLock 3331 ** locks are taken in this case). Nor should the pager attempt to 3332 ** upgrade to exclusive-mode following such an error. 3333 */ 3334 assert( pWal->readLock>=0 || pWal->lockError ); 3335 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3336 3337 if( op==0 ){ 3338 if( pWal->exclusiveMode ){ 3339 pWal->exclusiveMode = 0; 3340 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3341 pWal->exclusiveMode = 1; 3342 } 3343 rc = pWal->exclusiveMode==0; 3344 }else{ 3345 /* Already in locking_mode=NORMAL */ 3346 rc = 0; 3347 } 3348 }else if( op>0 ){ 3349 assert( pWal->exclusiveMode==0 ); 3350 assert( pWal->readLock>=0 ); 3351 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3352 pWal->exclusiveMode = 1; 3353 rc = 1; 3354 }else{ 3355 rc = pWal->exclusiveMode==0; 3356 } 3357 return rc; 3358 } 3359 3360 /* 3361 ** Return true if the argument is non-NULL and the WAL module is using 3362 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3363 ** WAL module is using shared-memory, return false. 3364 */ 3365 int sqlite3WalHeapMemory(Wal *pWal){ 3366 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3367 } 3368 3369 #ifdef SQLITE_ENABLE_SNAPSHOT 3370 /* Create a snapshot object. The content of a snapshot is opaque to 3371 ** every other subsystem, so the WAL module can put whatever it needs 3372 ** in the object. 3373 */ 3374 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3375 int rc = SQLITE_OK; 3376 WalIndexHdr *pRet; 3377 3378 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3379 3380 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3381 if( pRet==0 ){ 3382 rc = SQLITE_NOMEM; 3383 }else{ 3384 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3385 *ppSnapshot = (sqlite3_snapshot*)pRet; 3386 } 3387 3388 return rc; 3389 } 3390 3391 /* Try to open on pSnapshot when the next read-transaction starts 3392 */ 3393 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3394 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3395 } 3396 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3397 3398 #ifdef SQLITE_ENABLE_ZIPVFS 3399 /* 3400 ** If the argument is not NULL, it points to a Wal object that holds a 3401 ** read-lock. This function returns the database page-size if it is known, 3402 ** or zero if it is not (or if pWal is NULL). 3403 */ 3404 int sqlite3WalFramesize(Wal *pWal){ 3405 assert( pWal==0 || pWal->readLock>=0 ); 3406 return (pWal ? pWal->szPage : 0); 3407 } 3408 #endif 3409 3410 /* Return the sqlite3_file object for the WAL file 3411 */ 3412 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3413 return pWal->pWalFd; 3414 } 3415 3416 #endif /* #ifndef SQLITE_OMIT_WAL */ 3417