xref: /sqlite-3.40.0/src/wal.c (revision c56fac74)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P and a maximum frame index M, return the index of the
146 ** last frame in the wal before frame M for page P in the WAL, or return
147 ** NULL if there are no frames for page P in the WAL prior to M.
148 **
149 ** The wal-index consists of a header region, followed by an one or
150 ** more index blocks.
151 **
152 ** The wal-index header contains the total number of frames within the WAL
153 ** in the mxFrame field.
154 **
155 ** Each index block except for the first contains information on
156 ** HASHTABLE_NPAGE frames. The first index block contains information on
157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
159 ** first index block are the same size as all other index blocks in the
160 ** wal-index.
161 **
162 ** Each index block contains two sections, a page-mapping that contains the
163 ** database page number associated with each wal frame, and a hash-table
164 ** that allows readers to query an index block for a specific page number.
165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166 ** for the first index block) 32-bit page numbers. The first entry in the
167 ** first index-block contains the database page number corresponding to the
168 ** first frame in the WAL file. The first entry in the second index block
169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170 ** the log, and so on.
171 **
172 ** The last index block in a wal-index usually contains less than the full
173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174 ** depending on the contents of the WAL file. This does not change the
175 ** allocated size of the page-mapping array - the page-mapping array merely
176 ** contains unused entries.
177 **
178 ** Even without using the hash table, the last frame for page P
179 ** can be found by scanning the page-mapping sections of each index block
180 ** starting with the last index block and moving toward the first, and
181 ** within each index block, starting at the end and moving toward the
182 ** beginning.  The first entry that equals P corresponds to the frame
183 ** holding the content for that page.
184 **
185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187 ** hash table for each page number in the mapping section, so the hash
188 ** table is never more than half full.  The expected number of collisions
189 ** prior to finding a match is 1.  Each entry of the hash table is an
190 ** 1-based index of an entry in the mapping section of the same
191 ** index block.   Let K be the 1-based index of the largest entry in
192 ** the mapping section.  (For index blocks other than the last, K will
193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
195 ** contain a value of 0.
196 **
197 ** To look for page P in the hash table, first compute a hash iKey on
198 ** P as follows:
199 **
200 **      iKey = (P * 383) % HASHTABLE_NSLOT
201 **
202 ** Then start scanning entries of the hash table, starting with iKey
203 ** (wrapping around to the beginning when the end of the hash table is
204 ** reached) until an unused hash slot is found. Let the first unused slot
205 ** be at index iUnused.  (iUnused might be less than iKey if there was
206 ** wrap-around.) Because the hash table is never more than half full,
207 ** the search is guaranteed to eventually hit an unused entry.  Let
208 ** iMax be the value between iKey and iUnused, closest to iUnused,
209 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
210 ** no hash slot such that aHash[i]==p) then page P is not in the
211 ** current index block.  Otherwise the iMax-th mapping entry of the
212 ** current index block corresponds to the last entry that references
213 ** page P.
214 **
215 ** A hash search begins with the last index block and moves toward the
216 ** first index block, looking for entries corresponding to page P.  On
217 ** average, only two or three slots in each index block need to be
218 ** examined in order to either find the last entry for page P, or to
219 ** establish that no such entry exists in the block.  Each index block
220 ** holds over 4000 entries.  So two or three index blocks are sufficient
221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
222 ** comparisons (on average) suffice to either locate a frame in the
223 ** WAL or to establish that the frame does not exist in the WAL.  This
224 ** is much faster than scanning the entire 10MB WAL.
225 **
226 ** Note that entries are added in order of increasing K.  Hence, one
227 ** reader might be using some value K0 and a second reader that started
228 ** at a later time (after additional transactions were added to the WAL
229 ** and to the wal-index) might be using a different value K1, where K1>K0.
230 ** Both readers can use the same hash table and mapping section to get
231 ** the correct result.  There may be entries in the hash table with
232 ** K>K0 but to the first reader, those entries will appear to be unused
233 ** slots in the hash table and so the first reader will get an answer as
234 ** if no values greater than K0 had ever been inserted into the hash table
235 ** in the first place - which is what reader one wants.  Meanwhile, the
236 ** second reader using K1 will see additional values that were inserted
237 ** later, which is exactly what reader two wants.
238 **
239 ** When a rollback occurs, the value of K is decreased. Hash table entries
240 ** that correspond to frames greater than the new K value are removed
241 ** from the hash table at this point.
242 */
243 #ifndef SQLITE_OMIT_WAL
244 
245 #include "wal.h"
246 
247 /*
248 ** Trace output macros
249 */
250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
251 int sqlite3WalTrace = 0;
252 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
253 #else
254 # define WALTRACE(X)
255 #endif
256 
257 /*
258 ** The maximum (and only) versions of the wal and wal-index formats
259 ** that may be interpreted by this version of SQLite.
260 **
261 ** If a client begins recovering a WAL file and finds that (a) the checksum
262 ** values in the wal-header are correct and (b) the version field is not
263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264 **
265 ** Similarly, if a client successfully reads a wal-index header (i.e. the
266 ** checksum test is successful) and finds that the version field is not
267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268 ** returns SQLITE_CANTOPEN.
269 */
270 #define WAL_MAX_VERSION      3007000
271 #define WALINDEX_MAX_VERSION 3007000
272 
273 /*
274 ** Indices of various locking bytes.   WAL_NREADER is the number
275 ** of available reader locks and should be at least 3.
276 */
277 #define WAL_WRITE_LOCK         0
278 #define WAL_ALL_BUT_WRITE      1
279 #define WAL_CKPT_LOCK          1
280 #define WAL_RECOVER_LOCK       2
281 #define WAL_READ_LOCK(I)       (3+(I))
282 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
283 
284 
285 /* Object declarations */
286 typedef struct WalIndexHdr WalIndexHdr;
287 typedef struct WalIterator WalIterator;
288 typedef struct WalCkptInfo WalCkptInfo;
289 
290 
291 /*
292 ** The following object holds a copy of the wal-index header content.
293 **
294 ** The actual header in the wal-index consists of two copies of this
295 ** object.
296 **
297 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
299 ** added in 3.7.1 when support for 64K pages was added.
300 */
301 struct WalIndexHdr {
302   u32 iVersion;                   /* Wal-index version */
303   u32 unused;                     /* Unused (padding) field */
304   u32 iChange;                    /* Counter incremented each transaction */
305   u8 isInit;                      /* 1 when initialized */
306   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
307   u16 szPage;                     /* Database page size in bytes. 1==64K */
308   u32 mxFrame;                    /* Index of last valid frame in the WAL */
309   u32 nPage;                      /* Size of database in pages */
310   u32 aFrameCksum[2];             /* Checksum of last frame in log */
311   u32 aSalt[2];                   /* Two salt values copied from WAL header */
312   u32 aCksum[2];                  /* Checksum over all prior fields */
313 };
314 
315 /*
316 ** A copy of the following object occurs in the wal-index immediately
317 ** following the second copy of the WalIndexHdr.  This object stores
318 ** information used by checkpoint.
319 **
320 ** nBackfill is the number of frames in the WAL that have been written
321 ** back into the database. (We call the act of moving content from WAL to
322 ** database "backfilling".)  The nBackfill number is never greater than
323 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
324 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326 ** mxFrame back to zero when the WAL is reset.
327 **
328 ** There is one entry in aReadMark[] for each reader lock.  If a reader
329 ** holds read-lock K, then the value in aReadMark[K] is no greater than
330 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
331 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
332 ** a special case; its value is never used and it exists as a place-holder
333 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
334 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335 ** directly from the database.
336 **
337 ** The value of aReadMark[K] may only be changed by a thread that
338 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
339 ** aReadMark[K] cannot changed while there is a reader is using that mark
340 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341 **
342 ** The checkpointer may only transfer frames from WAL to database where
343 ** the frame numbers are less than or equal to every aReadMark[] that is
344 ** in use (that is, every aReadMark[j] for which there is a corresponding
345 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
346 ** largest value and will increase an unused aReadMark[] to mxFrame if there
347 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
348 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
349 ** in the WAL has been backfilled into the database) then new readers
350 ** will choose aReadMark[0] which has value 0 and hence such reader will
351 ** get all their all content directly from the database file and ignore
352 ** the WAL.
353 **
354 ** Writers normally append new frames to the end of the WAL.  However,
355 ** if nBackfill equals mxFrame (meaning that all WAL content has been
356 ** written back into the database) and if no readers are using the WAL
357 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358 ** the writer will first "reset" the WAL back to the beginning and start
359 ** writing new content beginning at frame 1.
360 **
361 ** We assume that 32-bit loads are atomic and so no locks are needed in
362 ** order to read from any aReadMark[] entries.
363 */
364 struct WalCkptInfo {
365   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
366   u32 aReadMark[WAL_NREADER];     /* Reader marks */
367 };
368 #define READMARK_NOT_USED  0xffffffff
369 
370 
371 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373 ** only support mandatory file-locks, we do not read or write data
374 ** from the region of the file on which locks are applied.
375 */
376 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377 #define WALINDEX_LOCK_RESERVED 16
378 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
379 
380 /* Size of header before each frame in wal */
381 #define WAL_FRAME_HDRSIZE 24
382 
383 /* Size of write ahead log header, including checksum. */
384 /* #define WAL_HDRSIZE 24 */
385 #define WAL_HDRSIZE 32
386 
387 /* WAL magic value. Either this value, or the same value with the least
388 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389 ** big-endian format in the first 4 bytes of a WAL file.
390 **
391 ** If the LSB is set, then the checksums for each frame within the WAL
392 ** file are calculated by treating all data as an array of 32-bit
393 ** big-endian words. Otherwise, they are calculated by interpreting
394 ** all data as 32-bit little-endian words.
395 */
396 #define WAL_MAGIC 0x377f0682
397 
398 /*
399 ** Return the offset of frame iFrame in the write-ahead log file,
400 ** assuming a database page size of szPage bytes. The offset returned
401 ** is to the start of the write-ahead log frame-header.
402 */
403 #define walFrameOffset(iFrame, szPage) (                               \
404   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
405 )
406 
407 /*
408 ** An open write-ahead log file is represented by an instance of the
409 ** following object.
410 */
411 struct Wal {
412   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
413   sqlite3_file *pDbFd;       /* File handle for the database file */
414   sqlite3_file *pWalFd;      /* File handle for WAL file */
415   u32 iCallback;             /* Value to pass to log callback (or 0) */
416   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
417   int nWiData;               /* Size of array apWiData */
418   int szFirstBlock;          /* Size of first block written to WAL file */
419   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
420   u32 szPage;                /* Database page size */
421   i16 readLock;              /* Which read lock is being held.  -1 for none */
422   u8 syncFlags;              /* Flags to use to sync header writes */
423   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
424   u8 writeLock;              /* True if in a write transaction */
425   u8 ckptLock;               /* True if holding a checkpoint lock */
426   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
427   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
428   u8 syncHeader;             /* Fsync the WAL header if true */
429   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
430   WalIndexHdr hdr;           /* Wal-index header for current transaction */
431   u32 minFrame;              /* Ignore wal frames before this one */
432   const char *zWalName;      /* Name of WAL file */
433   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
434 #ifdef SQLITE_DEBUG
435   u8 lockError;              /* True if a locking error has occurred */
436 #endif
437 };
438 
439 /*
440 ** Candidate values for Wal.exclusiveMode.
441 */
442 #define WAL_NORMAL_MODE     0
443 #define WAL_EXCLUSIVE_MODE  1
444 #define WAL_HEAPMEMORY_MODE 2
445 
446 /*
447 ** Possible values for WAL.readOnly
448 */
449 #define WAL_RDWR        0    /* Normal read/write connection */
450 #define WAL_RDONLY      1    /* The WAL file is readonly */
451 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
452 
453 /*
454 ** Each page of the wal-index mapping contains a hash-table made up of
455 ** an array of HASHTABLE_NSLOT elements of the following type.
456 */
457 typedef u16 ht_slot;
458 
459 /*
460 ** This structure is used to implement an iterator that loops through
461 ** all frames in the WAL in database page order. Where two or more frames
462 ** correspond to the same database page, the iterator visits only the
463 ** frame most recently written to the WAL (in other words, the frame with
464 ** the largest index).
465 **
466 ** The internals of this structure are only accessed by:
467 **
468 **   walIteratorInit() - Create a new iterator,
469 **   walIteratorNext() - Step an iterator,
470 **   walIteratorFree() - Free an iterator.
471 **
472 ** This functionality is used by the checkpoint code (see walCheckpoint()).
473 */
474 struct WalIterator {
475   int iPrior;                     /* Last result returned from the iterator */
476   int nSegment;                   /* Number of entries in aSegment[] */
477   struct WalSegment {
478     int iNext;                    /* Next slot in aIndex[] not yet returned */
479     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
480     u32 *aPgno;                   /* Array of page numbers. */
481     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
482     int iZero;                    /* Frame number associated with aPgno[0] */
483   } aSegment[1];                  /* One for every 32KB page in the wal-index */
484 };
485 
486 /*
487 ** Define the parameters of the hash tables in the wal-index file. There
488 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
489 ** wal-index.
490 **
491 ** Changing any of these constants will alter the wal-index format and
492 ** create incompatibilities.
493 */
494 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
495 #define HASHTABLE_HASH_1     383                  /* Should be prime */
496 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
497 
498 /*
499 ** The block of page numbers associated with the first hash-table in a
500 ** wal-index is smaller than usual. This is so that there is a complete
501 ** hash-table on each aligned 32KB page of the wal-index.
502 */
503 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
504 
505 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
506 #define WALINDEX_PGSZ   (                                         \
507     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
508 )
509 
510 /*
511 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
512 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
513 ** numbered from zero.
514 **
515 ** If this call is successful, *ppPage is set to point to the wal-index
516 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
517 ** then an SQLite error code is returned and *ppPage is set to 0.
518 */
519 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
520   int rc = SQLITE_OK;
521 
522   /* Enlarge the pWal->apWiData[] array if required */
523   if( pWal->nWiData<=iPage ){
524     int nByte = sizeof(u32*)*(iPage+1);
525     volatile u32 **apNew;
526     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
527     if( !apNew ){
528       *ppPage = 0;
529       return SQLITE_NOMEM;
530     }
531     memset((void*)&apNew[pWal->nWiData], 0,
532            sizeof(u32*)*(iPage+1-pWal->nWiData));
533     pWal->apWiData = apNew;
534     pWal->nWiData = iPage+1;
535   }
536 
537   /* Request a pointer to the required page from the VFS */
538   if( pWal->apWiData[iPage]==0 ){
539     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
540       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
541       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
542     }else{
543       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
544           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
545       );
546       if( rc==SQLITE_READONLY ){
547         pWal->readOnly |= WAL_SHM_RDONLY;
548         rc = SQLITE_OK;
549       }
550     }
551   }
552 
553   *ppPage = pWal->apWiData[iPage];
554   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
555   return rc;
556 }
557 
558 /*
559 ** Return a pointer to the WalCkptInfo structure in the wal-index.
560 */
561 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
562   assert( pWal->nWiData>0 && pWal->apWiData[0] );
563   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
564 }
565 
566 /*
567 ** Return a pointer to the WalIndexHdr structure in the wal-index.
568 */
569 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
570   assert( pWal->nWiData>0 && pWal->apWiData[0] );
571   return (volatile WalIndexHdr*)pWal->apWiData[0];
572 }
573 
574 /*
575 ** The argument to this macro must be of type u32. On a little-endian
576 ** architecture, it returns the u32 value that results from interpreting
577 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
578 ** returns the value that would be produced by interpreting the 4 bytes
579 ** of the input value as a little-endian integer.
580 */
581 #define BYTESWAP32(x) ( \
582     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
583   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
584 )
585 
586 /*
587 ** Generate or extend an 8 byte checksum based on the data in
588 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
589 ** initial values of 0 and 0 if aIn==NULL).
590 **
591 ** The checksum is written back into aOut[] before returning.
592 **
593 ** nByte must be a positive multiple of 8.
594 */
595 static void walChecksumBytes(
596   int nativeCksum, /* True for native byte-order, false for non-native */
597   u8 *a,           /* Content to be checksummed */
598   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
599   const u32 *aIn,  /* Initial checksum value input */
600   u32 *aOut        /* OUT: Final checksum value output */
601 ){
602   u32 s1, s2;
603   u32 *aData = (u32 *)a;
604   u32 *aEnd = (u32 *)&a[nByte];
605 
606   if( aIn ){
607     s1 = aIn[0];
608     s2 = aIn[1];
609   }else{
610     s1 = s2 = 0;
611   }
612 
613   assert( nByte>=8 );
614   assert( (nByte&0x00000007)==0 );
615 
616   if( nativeCksum ){
617     do {
618       s1 += *aData++ + s2;
619       s2 += *aData++ + s1;
620     }while( aData<aEnd );
621   }else{
622     do {
623       s1 += BYTESWAP32(aData[0]) + s2;
624       s2 += BYTESWAP32(aData[1]) + s1;
625       aData += 2;
626     }while( aData<aEnd );
627   }
628 
629   aOut[0] = s1;
630   aOut[1] = s2;
631 }
632 
633 static void walShmBarrier(Wal *pWal){
634   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
635     sqlite3OsShmBarrier(pWal->pDbFd);
636   }
637 }
638 
639 /*
640 ** Write the header information in pWal->hdr into the wal-index.
641 **
642 ** The checksum on pWal->hdr is updated before it is written.
643 */
644 static void walIndexWriteHdr(Wal *pWal){
645   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
646   const int nCksum = offsetof(WalIndexHdr, aCksum);
647 
648   assert( pWal->writeLock );
649   pWal->hdr.isInit = 1;
650   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
651   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
652   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
653   walShmBarrier(pWal);
654   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
655 }
656 
657 /*
658 ** This function encodes a single frame header and writes it to a buffer
659 ** supplied by the caller. A frame-header is made up of a series of
660 ** 4-byte big-endian integers, as follows:
661 **
662 **     0: Page number.
663 **     4: For commit records, the size of the database image in pages
664 **        after the commit. For all other records, zero.
665 **     8: Salt-1 (copied from the wal-header)
666 **    12: Salt-2 (copied from the wal-header)
667 **    16: Checksum-1.
668 **    20: Checksum-2.
669 */
670 static void walEncodeFrame(
671   Wal *pWal,                      /* The write-ahead log */
672   u32 iPage,                      /* Database page number for frame */
673   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
674   u8 *aData,                      /* Pointer to page data */
675   u8 *aFrame                      /* OUT: Write encoded frame here */
676 ){
677   int nativeCksum;                /* True for native byte-order checksums */
678   u32 *aCksum = pWal->hdr.aFrameCksum;
679   assert( WAL_FRAME_HDRSIZE==24 );
680   sqlite3Put4byte(&aFrame[0], iPage);
681   sqlite3Put4byte(&aFrame[4], nTruncate);
682   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
683 
684   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
685   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
686   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
687 
688   sqlite3Put4byte(&aFrame[16], aCksum[0]);
689   sqlite3Put4byte(&aFrame[20], aCksum[1]);
690 }
691 
692 /*
693 ** Check to see if the frame with header in aFrame[] and content
694 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
695 ** *pnTruncate and return true.  Return if the frame is not valid.
696 */
697 static int walDecodeFrame(
698   Wal *pWal,                      /* The write-ahead log */
699   u32 *piPage,                    /* OUT: Database page number for frame */
700   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
701   u8 *aData,                      /* Pointer to page data (for checksum) */
702   u8 *aFrame                      /* Frame data */
703 ){
704   int nativeCksum;                /* True for native byte-order checksums */
705   u32 *aCksum = pWal->hdr.aFrameCksum;
706   u32 pgno;                       /* Page number of the frame */
707   assert( WAL_FRAME_HDRSIZE==24 );
708 
709   /* A frame is only valid if the salt values in the frame-header
710   ** match the salt values in the wal-header.
711   */
712   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
713     return 0;
714   }
715 
716   /* A frame is only valid if the page number is creater than zero.
717   */
718   pgno = sqlite3Get4byte(&aFrame[0]);
719   if( pgno==0 ){
720     return 0;
721   }
722 
723   /* A frame is only valid if a checksum of the WAL header,
724   ** all prior frams, the first 16 bytes of this frame-header,
725   ** and the frame-data matches the checksum in the last 8
726   ** bytes of this frame-header.
727   */
728   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
729   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
730   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
731   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
732    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
733   ){
734     /* Checksum failed. */
735     return 0;
736   }
737 
738   /* If we reach this point, the frame is valid.  Return the page number
739   ** and the new database size.
740   */
741   *piPage = pgno;
742   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
743   return 1;
744 }
745 
746 
747 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
748 /*
749 ** Names of locks.  This routine is used to provide debugging output and is not
750 ** a part of an ordinary build.
751 */
752 static const char *walLockName(int lockIdx){
753   if( lockIdx==WAL_WRITE_LOCK ){
754     return "WRITE-LOCK";
755   }else if( lockIdx==WAL_CKPT_LOCK ){
756     return "CKPT-LOCK";
757   }else if( lockIdx==WAL_RECOVER_LOCK ){
758     return "RECOVER-LOCK";
759   }else{
760     static char zName[15];
761     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
762                      lockIdx-WAL_READ_LOCK(0));
763     return zName;
764   }
765 }
766 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
767 
768 
769 /*
770 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
771 ** A lock cannot be moved directly between shared and exclusive - it must go
772 ** through the unlocked state first.
773 **
774 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
775 */
776 static int walLockShared(Wal *pWal, int lockIdx){
777   int rc;
778   if( pWal->exclusiveMode ) return SQLITE_OK;
779   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
780                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
781   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
782             walLockName(lockIdx), rc ? "failed" : "ok"));
783   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
784   return rc;
785 }
786 static void walUnlockShared(Wal *pWal, int lockIdx){
787   if( pWal->exclusiveMode ) return;
788   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
789                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
790   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
791 }
792 static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){
793   int rc;
794   if( pWal->exclusiveMode ) return SQLITE_OK;
795   if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0);
796   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
797                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
798   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
799             walLockName(lockIdx), n, rc ? "failed" : "ok"));
800   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
801   return rc;
802 }
803 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
804   if( pWal->exclusiveMode ) return;
805   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
806                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
807   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
808              walLockName(lockIdx), n));
809 }
810 
811 /*
812 ** Compute a hash on a page number.  The resulting hash value must land
813 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
814 ** the hash to the next value in the event of a collision.
815 */
816 static int walHash(u32 iPage){
817   assert( iPage>0 );
818   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
819   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
820 }
821 static int walNextHash(int iPriorHash){
822   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
823 }
824 
825 /*
826 ** Return pointers to the hash table and page number array stored on
827 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
828 ** numbered starting from 0.
829 **
830 ** Set output variable *paHash to point to the start of the hash table
831 ** in the wal-index file. Set *piZero to one less than the frame
832 ** number of the first frame indexed by this hash table. If a
833 ** slot in the hash table is set to N, it refers to frame number
834 ** (*piZero+N) in the log.
835 **
836 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
837 ** first frame indexed by the hash table, frame (*piZero+1).
838 */
839 static int walHashGet(
840   Wal *pWal,                      /* WAL handle */
841   int iHash,                      /* Find the iHash'th table */
842   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
843   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
844   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
845 ){
846   int rc;                         /* Return code */
847   volatile u32 *aPgno;
848 
849   rc = walIndexPage(pWal, iHash, &aPgno);
850   assert( rc==SQLITE_OK || iHash>0 );
851 
852   if( rc==SQLITE_OK ){
853     u32 iZero;
854     volatile ht_slot *aHash;
855 
856     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
857     if( iHash==0 ){
858       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
859       iZero = 0;
860     }else{
861       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
862     }
863 
864     *paPgno = &aPgno[-1];
865     *paHash = aHash;
866     *piZero = iZero;
867   }
868   return rc;
869 }
870 
871 /*
872 ** Return the number of the wal-index page that contains the hash-table
873 ** and page-number array that contain entries corresponding to WAL frame
874 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
875 ** are numbered starting from 0.
876 */
877 static int walFramePage(u32 iFrame){
878   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
879   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
880        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
881        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
882        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
883        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
884   );
885   return iHash;
886 }
887 
888 /*
889 ** Return the page number associated with frame iFrame in this WAL.
890 */
891 static u32 walFramePgno(Wal *pWal, u32 iFrame){
892   int iHash = walFramePage(iFrame);
893   if( iHash==0 ){
894     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
895   }
896   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
897 }
898 
899 /*
900 ** Remove entries from the hash table that point to WAL slots greater
901 ** than pWal->hdr.mxFrame.
902 **
903 ** This function is called whenever pWal->hdr.mxFrame is decreased due
904 ** to a rollback or savepoint.
905 **
906 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
907 ** updated.  Any later hash tables will be automatically cleared when
908 ** pWal->hdr.mxFrame advances to the point where those hash tables are
909 ** actually needed.
910 */
911 static void walCleanupHash(Wal *pWal){
912   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
913   volatile u32 *aPgno = 0;        /* Page number array for hash table */
914   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
915   int iLimit = 0;                 /* Zero values greater than this */
916   int nByte;                      /* Number of bytes to zero in aPgno[] */
917   int i;                          /* Used to iterate through aHash[] */
918 
919   assert( pWal->writeLock );
920   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
921   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
922   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
923 
924   if( pWal->hdr.mxFrame==0 ) return;
925 
926   /* Obtain pointers to the hash-table and page-number array containing
927   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
928   ** that the page said hash-table and array reside on is already mapped.
929   */
930   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
931   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
932   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
933 
934   /* Zero all hash-table entries that correspond to frame numbers greater
935   ** than pWal->hdr.mxFrame.
936   */
937   iLimit = pWal->hdr.mxFrame - iZero;
938   assert( iLimit>0 );
939   for(i=0; i<HASHTABLE_NSLOT; i++){
940     if( aHash[i]>iLimit ){
941       aHash[i] = 0;
942     }
943   }
944 
945   /* Zero the entries in the aPgno array that correspond to frames with
946   ** frame numbers greater than pWal->hdr.mxFrame.
947   */
948   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
949   memset((void *)&aPgno[iLimit+1], 0, nByte);
950 
951 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
952   /* Verify that the every entry in the mapping region is still reachable
953   ** via the hash table even after the cleanup.
954   */
955   if( iLimit ){
956     int j;           /* Loop counter */
957     int iKey;        /* Hash key */
958     for(j=1; j<=iLimit; j++){
959       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
960         if( aHash[iKey]==j ) break;
961       }
962       assert( aHash[iKey]==j );
963     }
964   }
965 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
966 }
967 
968 
969 /*
970 ** Set an entry in the wal-index that will map database page number
971 ** pPage into WAL frame iFrame.
972 */
973 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
974   int rc;                         /* Return code */
975   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
976   volatile u32 *aPgno = 0;        /* Page number array */
977   volatile ht_slot *aHash = 0;    /* Hash table */
978 
979   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
980 
981   /* Assuming the wal-index file was successfully mapped, populate the
982   ** page number array and hash table entry.
983   */
984   if( rc==SQLITE_OK ){
985     int iKey;                     /* Hash table key */
986     int idx;                      /* Value to write to hash-table slot */
987     int nCollide;                 /* Number of hash collisions */
988 
989     idx = iFrame - iZero;
990     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
991 
992     /* If this is the first entry to be added to this hash-table, zero the
993     ** entire hash table and aPgno[] array before proceeding.
994     */
995     if( idx==1 ){
996       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
997       memset((void*)&aPgno[1], 0, nByte);
998     }
999 
1000     /* If the entry in aPgno[] is already set, then the previous writer
1001     ** must have exited unexpectedly in the middle of a transaction (after
1002     ** writing one or more dirty pages to the WAL to free up memory).
1003     ** Remove the remnants of that writers uncommitted transaction from
1004     ** the hash-table before writing any new entries.
1005     */
1006     if( aPgno[idx] ){
1007       walCleanupHash(pWal);
1008       assert( !aPgno[idx] );
1009     }
1010 
1011     /* Write the aPgno[] array entry and the hash-table slot. */
1012     nCollide = idx;
1013     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1014       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1015     }
1016     aPgno[idx] = iPage;
1017     aHash[iKey] = (ht_slot)idx;
1018 
1019 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1020     /* Verify that the number of entries in the hash table exactly equals
1021     ** the number of entries in the mapping region.
1022     */
1023     {
1024       int i;           /* Loop counter */
1025       int nEntry = 0;  /* Number of entries in the hash table */
1026       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1027       assert( nEntry==idx );
1028     }
1029 
1030     /* Verify that the every entry in the mapping region is reachable
1031     ** via the hash table.  This turns out to be a really, really expensive
1032     ** thing to check, so only do this occasionally - not on every
1033     ** iteration.
1034     */
1035     if( (idx&0x3ff)==0 ){
1036       int i;           /* Loop counter */
1037       for(i=1; i<=idx; i++){
1038         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1039           if( aHash[iKey]==i ) break;
1040         }
1041         assert( aHash[iKey]==i );
1042       }
1043     }
1044 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1045   }
1046 
1047 
1048   return rc;
1049 }
1050 
1051 
1052 /*
1053 ** Recover the wal-index by reading the write-ahead log file.
1054 **
1055 ** This routine first tries to establish an exclusive lock on the
1056 ** wal-index to prevent other threads/processes from doing anything
1057 ** with the WAL or wal-index while recovery is running.  The
1058 ** WAL_RECOVER_LOCK is also held so that other threads will know
1059 ** that this thread is running recovery.  If unable to establish
1060 ** the necessary locks, this routine returns SQLITE_BUSY.
1061 */
1062 static int walIndexRecover(Wal *pWal){
1063   int rc;                         /* Return Code */
1064   i64 nSize;                      /* Size of log file */
1065   u32 aFrameCksum[2] = {0, 0};
1066   int iLock;                      /* Lock offset to lock for checkpoint */
1067   int nLock;                      /* Number of locks to hold */
1068 
1069   /* Obtain an exclusive lock on all byte in the locking range not already
1070   ** locked by the caller. The caller is guaranteed to have locked the
1071   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1072   ** If successful, the same bytes that are locked here are unlocked before
1073   ** this function returns.
1074   */
1075   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1076   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1077   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1078   assert( pWal->writeLock );
1079   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1080   nLock = SQLITE_SHM_NLOCK - iLock;
1081   rc = walLockExclusive(pWal, iLock, nLock, 0);
1082   if( rc ){
1083     return rc;
1084   }
1085   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1086 
1087   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1088 
1089   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1090   if( rc!=SQLITE_OK ){
1091     goto recovery_error;
1092   }
1093 
1094   if( nSize>WAL_HDRSIZE ){
1095     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1096     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1097     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1098     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1099     int iFrame;                   /* Index of last frame read */
1100     i64 iOffset;                  /* Next offset to read from log file */
1101     int szPage;                   /* Page size according to the log */
1102     u32 magic;                    /* Magic value read from WAL header */
1103     u32 version;                  /* Magic value read from WAL header */
1104     int isValid;                  /* True if this frame is valid */
1105 
1106     /* Read in the WAL header. */
1107     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1108     if( rc!=SQLITE_OK ){
1109       goto recovery_error;
1110     }
1111 
1112     /* If the database page size is not a power of two, or is greater than
1113     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1114     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1115     ** WAL file.
1116     */
1117     magic = sqlite3Get4byte(&aBuf[0]);
1118     szPage = sqlite3Get4byte(&aBuf[8]);
1119     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1120      || szPage&(szPage-1)
1121      || szPage>SQLITE_MAX_PAGE_SIZE
1122      || szPage<512
1123     ){
1124       goto finished;
1125     }
1126     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1127     pWal->szPage = szPage;
1128     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1129     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1130 
1131     /* Verify that the WAL header checksum is correct */
1132     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1133         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1134     );
1135     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1136      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1137     ){
1138       goto finished;
1139     }
1140 
1141     /* Verify that the version number on the WAL format is one that
1142     ** are able to understand */
1143     version = sqlite3Get4byte(&aBuf[4]);
1144     if( version!=WAL_MAX_VERSION ){
1145       rc = SQLITE_CANTOPEN_BKPT;
1146       goto finished;
1147     }
1148 
1149     /* Malloc a buffer to read frames into. */
1150     szFrame = szPage + WAL_FRAME_HDRSIZE;
1151     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1152     if( !aFrame ){
1153       rc = SQLITE_NOMEM;
1154       goto recovery_error;
1155     }
1156     aData = &aFrame[WAL_FRAME_HDRSIZE];
1157 
1158     /* Read all frames from the log file. */
1159     iFrame = 0;
1160     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1161       u32 pgno;                   /* Database page number for frame */
1162       u32 nTruncate;              /* dbsize field from frame header */
1163 
1164       /* Read and decode the next log frame. */
1165       iFrame++;
1166       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1167       if( rc!=SQLITE_OK ) break;
1168       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1169       if( !isValid ) break;
1170       rc = walIndexAppend(pWal, iFrame, pgno);
1171       if( rc!=SQLITE_OK ) break;
1172 
1173       /* If nTruncate is non-zero, this is a commit record. */
1174       if( nTruncate ){
1175         pWal->hdr.mxFrame = iFrame;
1176         pWal->hdr.nPage = nTruncate;
1177         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1178         testcase( szPage<=32768 );
1179         testcase( szPage>=65536 );
1180         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1181         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1182       }
1183     }
1184 
1185     sqlite3_free(aFrame);
1186   }
1187 
1188 finished:
1189   if( rc==SQLITE_OK ){
1190     volatile WalCkptInfo *pInfo;
1191     int i;
1192     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1193     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1194     walIndexWriteHdr(pWal);
1195 
1196     /* Reset the checkpoint-header. This is safe because this thread is
1197     ** currently holding locks that exclude all other readers, writers and
1198     ** checkpointers.
1199     */
1200     pInfo = walCkptInfo(pWal);
1201     pInfo->nBackfill = 0;
1202     pInfo->aReadMark[0] = 0;
1203     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1204     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1205 
1206     /* If more than one frame was recovered from the log file, report an
1207     ** event via sqlite3_log(). This is to help with identifying performance
1208     ** problems caused by applications routinely shutting down without
1209     ** checkpointing the log file.
1210     */
1211     if( pWal->hdr.nPage ){
1212       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1213           "recovered %d frames from WAL file %s",
1214           pWal->hdr.mxFrame, pWal->zWalName
1215       );
1216     }
1217   }
1218 
1219 recovery_error:
1220   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1221   walUnlockExclusive(pWal, iLock, nLock);
1222   return rc;
1223 }
1224 
1225 /*
1226 ** Close an open wal-index.
1227 */
1228 static void walIndexClose(Wal *pWal, int isDelete){
1229   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1230     int i;
1231     for(i=0; i<pWal->nWiData; i++){
1232       sqlite3_free((void *)pWal->apWiData[i]);
1233       pWal->apWiData[i] = 0;
1234     }
1235   }else{
1236     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1237   }
1238 }
1239 
1240 /*
1241 ** Open a connection to the WAL file zWalName. The database file must
1242 ** already be opened on connection pDbFd. The buffer that zWalName points
1243 ** to must remain valid for the lifetime of the returned Wal* handle.
1244 **
1245 ** A SHARED lock should be held on the database file when this function
1246 ** is called. The purpose of this SHARED lock is to prevent any other
1247 ** client from unlinking the WAL or wal-index file. If another process
1248 ** were to do this just after this client opened one of these files, the
1249 ** system would be badly broken.
1250 **
1251 ** If the log file is successfully opened, SQLITE_OK is returned and
1252 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1253 ** an SQLite error code is returned and *ppWal is left unmodified.
1254 */
1255 int sqlite3WalOpen(
1256   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1257   sqlite3_file *pDbFd,            /* The open database file */
1258   const char *zWalName,           /* Name of the WAL file */
1259   int bNoShm,                     /* True to run in heap-memory mode */
1260   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1261   Wal **ppWal                     /* OUT: Allocated Wal handle */
1262 ){
1263   int rc;                         /* Return Code */
1264   Wal *pRet;                      /* Object to allocate and return */
1265   int flags;                      /* Flags passed to OsOpen() */
1266 
1267   assert( zWalName && zWalName[0] );
1268   assert( pDbFd );
1269 
1270   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1271   ** this source file.  Verify that the #defines of the locking byte offsets
1272   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1273   */
1274 #ifdef WIN_SHM_BASE
1275   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1276 #endif
1277 #ifdef UNIX_SHM_BASE
1278   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1279 #endif
1280 
1281 
1282   /* Allocate an instance of struct Wal to return. */
1283   *ppWal = 0;
1284   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1285   if( !pRet ){
1286     return SQLITE_NOMEM;
1287   }
1288 
1289   pRet->pVfs = pVfs;
1290   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1291   pRet->pDbFd = pDbFd;
1292   pRet->readLock = -1;
1293   pRet->mxWalSize = mxWalSize;
1294   pRet->zWalName = zWalName;
1295   pRet->syncHeader = 1;
1296   pRet->padToSectorBoundary = 1;
1297   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1298 
1299   /* Open file handle on the write-ahead log file. */
1300   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1301   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1302   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1303     pRet->readOnly = WAL_RDONLY;
1304   }
1305 
1306   if( rc!=SQLITE_OK ){
1307     walIndexClose(pRet, 0);
1308     sqlite3OsClose(pRet->pWalFd);
1309     sqlite3_free(pRet);
1310   }else{
1311     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1312     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1313     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1314       pRet->padToSectorBoundary = 0;
1315     }
1316     *ppWal = pRet;
1317     WALTRACE(("WAL%d: opened\n", pRet));
1318   }
1319   return rc;
1320 }
1321 
1322 /*
1323 ** Change the size to which the WAL file is trucated on each reset.
1324 */
1325 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1326   if( pWal ) pWal->mxWalSize = iLimit;
1327 }
1328 
1329 /*
1330 ** Find the smallest page number out of all pages held in the WAL that
1331 ** has not been returned by any prior invocation of this method on the
1332 ** same WalIterator object.   Write into *piFrame the frame index where
1333 ** that page was last written into the WAL.  Write into *piPage the page
1334 ** number.
1335 **
1336 ** Return 0 on success.  If there are no pages in the WAL with a page
1337 ** number larger than *piPage, then return 1.
1338 */
1339 static int walIteratorNext(
1340   WalIterator *p,               /* Iterator */
1341   u32 *piPage,                  /* OUT: The page number of the next page */
1342   u32 *piFrame                  /* OUT: Wal frame index of next page */
1343 ){
1344   u32 iMin;                     /* Result pgno must be greater than iMin */
1345   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1346   int i;                        /* For looping through segments */
1347 
1348   iMin = p->iPrior;
1349   assert( iMin<0xffffffff );
1350   for(i=p->nSegment-1; i>=0; i--){
1351     struct WalSegment *pSegment = &p->aSegment[i];
1352     while( pSegment->iNext<pSegment->nEntry ){
1353       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1354       if( iPg>iMin ){
1355         if( iPg<iRet ){
1356           iRet = iPg;
1357           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1358         }
1359         break;
1360       }
1361       pSegment->iNext++;
1362     }
1363   }
1364 
1365   *piPage = p->iPrior = iRet;
1366   return (iRet==0xFFFFFFFF);
1367 }
1368 
1369 /*
1370 ** This function merges two sorted lists into a single sorted list.
1371 **
1372 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1373 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1374 ** is guaranteed for all J<K:
1375 **
1376 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1377 **        aContent[aRight[J]] < aContent[aRight[K]]
1378 **
1379 ** This routine overwrites aRight[] with a new (probably longer) sequence
1380 ** of indices such that the aRight[] contains every index that appears in
1381 ** either aLeft[] or the old aRight[] and such that the second condition
1382 ** above is still met.
1383 **
1384 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1385 ** aContent[aRight[X]] values will be unique too.  But there might be
1386 ** one or more combinations of X and Y such that
1387 **
1388 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1389 **
1390 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1391 */
1392 static void walMerge(
1393   const u32 *aContent,            /* Pages in wal - keys for the sort */
1394   ht_slot *aLeft,                 /* IN: Left hand input list */
1395   int nLeft,                      /* IN: Elements in array *paLeft */
1396   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1397   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1398   ht_slot *aTmp                   /* Temporary buffer */
1399 ){
1400   int iLeft = 0;                  /* Current index in aLeft */
1401   int iRight = 0;                 /* Current index in aRight */
1402   int iOut = 0;                   /* Current index in output buffer */
1403   int nRight = *pnRight;
1404   ht_slot *aRight = *paRight;
1405 
1406   assert( nLeft>0 && nRight>0 );
1407   while( iRight<nRight || iLeft<nLeft ){
1408     ht_slot logpage;
1409     Pgno dbpage;
1410 
1411     if( (iLeft<nLeft)
1412      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1413     ){
1414       logpage = aLeft[iLeft++];
1415     }else{
1416       logpage = aRight[iRight++];
1417     }
1418     dbpage = aContent[logpage];
1419 
1420     aTmp[iOut++] = logpage;
1421     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1422 
1423     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1424     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1425   }
1426 
1427   *paRight = aLeft;
1428   *pnRight = iOut;
1429   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1430 }
1431 
1432 /*
1433 ** Sort the elements in list aList using aContent[] as the sort key.
1434 ** Remove elements with duplicate keys, preferring to keep the
1435 ** larger aList[] values.
1436 **
1437 ** The aList[] entries are indices into aContent[].  The values in
1438 ** aList[] are to be sorted so that for all J<K:
1439 **
1440 **      aContent[aList[J]] < aContent[aList[K]]
1441 **
1442 ** For any X and Y such that
1443 **
1444 **      aContent[aList[X]] == aContent[aList[Y]]
1445 **
1446 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1447 ** the smaller.
1448 */
1449 static void walMergesort(
1450   const u32 *aContent,            /* Pages in wal */
1451   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1452   ht_slot *aList,                 /* IN/OUT: List to sort */
1453   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1454 ){
1455   struct Sublist {
1456     int nList;                    /* Number of elements in aList */
1457     ht_slot *aList;               /* Pointer to sub-list content */
1458   };
1459 
1460   const int nList = *pnList;      /* Size of input list */
1461   int nMerge = 0;                 /* Number of elements in list aMerge */
1462   ht_slot *aMerge = 0;            /* List to be merged */
1463   int iList;                      /* Index into input list */
1464   u32 iSub = 0;                   /* Index into aSub array */
1465   struct Sublist aSub[13];        /* Array of sub-lists */
1466 
1467   memset(aSub, 0, sizeof(aSub));
1468   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1469   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1470 
1471   for(iList=0; iList<nList; iList++){
1472     nMerge = 1;
1473     aMerge = &aList[iList];
1474     for(iSub=0; iList & (1<<iSub); iSub++){
1475       struct Sublist *p;
1476       assert( iSub<ArraySize(aSub) );
1477       p = &aSub[iSub];
1478       assert( p->aList && p->nList<=(1<<iSub) );
1479       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1480       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1481     }
1482     aSub[iSub].aList = aMerge;
1483     aSub[iSub].nList = nMerge;
1484   }
1485 
1486   for(iSub++; iSub<ArraySize(aSub); iSub++){
1487     if( nList & (1<<iSub) ){
1488       struct Sublist *p;
1489       assert( iSub<ArraySize(aSub) );
1490       p = &aSub[iSub];
1491       assert( p->nList<=(1<<iSub) );
1492       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1493       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1494     }
1495   }
1496   assert( aMerge==aList );
1497   *pnList = nMerge;
1498 
1499 #ifdef SQLITE_DEBUG
1500   {
1501     int i;
1502     for(i=1; i<*pnList; i++){
1503       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1504     }
1505   }
1506 #endif
1507 }
1508 
1509 /*
1510 ** Free an iterator allocated by walIteratorInit().
1511 */
1512 static void walIteratorFree(WalIterator *p){
1513   sqlite3_free(p);
1514 }
1515 
1516 /*
1517 ** Construct a WalInterator object that can be used to loop over all
1518 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1519 ** lock.
1520 **
1521 ** On success, make *pp point to the newly allocated WalInterator object
1522 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1523 ** returns an error, the value of *pp is undefined.
1524 **
1525 ** The calling routine should invoke walIteratorFree() to destroy the
1526 ** WalIterator object when it has finished with it.
1527 */
1528 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1529   WalIterator *p;                 /* Return value */
1530   int nSegment;                   /* Number of segments to merge */
1531   u32 iLast;                      /* Last frame in log */
1532   int nByte;                      /* Number of bytes to allocate */
1533   int i;                          /* Iterator variable */
1534   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1535   int rc = SQLITE_OK;             /* Return Code */
1536 
1537   /* This routine only runs while holding the checkpoint lock. And
1538   ** it only runs if there is actually content in the log (mxFrame>0).
1539   */
1540   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1541   iLast = pWal->hdr.mxFrame;
1542 
1543   /* Allocate space for the WalIterator object. */
1544   nSegment = walFramePage(iLast) + 1;
1545   nByte = sizeof(WalIterator)
1546         + (nSegment-1)*sizeof(struct WalSegment)
1547         + iLast*sizeof(ht_slot);
1548   p = (WalIterator *)sqlite3_malloc64(nByte);
1549   if( !p ){
1550     return SQLITE_NOMEM;
1551   }
1552   memset(p, 0, nByte);
1553   p->nSegment = nSegment;
1554 
1555   /* Allocate temporary space used by the merge-sort routine. This block
1556   ** of memory will be freed before this function returns.
1557   */
1558   aTmp = (ht_slot *)sqlite3_malloc64(
1559       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1560   );
1561   if( !aTmp ){
1562     rc = SQLITE_NOMEM;
1563   }
1564 
1565   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1566     volatile ht_slot *aHash;
1567     u32 iZero;
1568     volatile u32 *aPgno;
1569 
1570     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1571     if( rc==SQLITE_OK ){
1572       int j;                      /* Counter variable */
1573       int nEntry;                 /* Number of entries in this segment */
1574       ht_slot *aIndex;            /* Sorted index for this segment */
1575 
1576       aPgno++;
1577       if( (i+1)==nSegment ){
1578         nEntry = (int)(iLast - iZero);
1579       }else{
1580         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1581       }
1582       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1583       iZero++;
1584 
1585       for(j=0; j<nEntry; j++){
1586         aIndex[j] = (ht_slot)j;
1587       }
1588       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1589       p->aSegment[i].iZero = iZero;
1590       p->aSegment[i].nEntry = nEntry;
1591       p->aSegment[i].aIndex = aIndex;
1592       p->aSegment[i].aPgno = (u32 *)aPgno;
1593     }
1594   }
1595   sqlite3_free(aTmp);
1596 
1597   if( rc!=SQLITE_OK ){
1598     walIteratorFree(p);
1599   }
1600   *pp = p;
1601   return rc;
1602 }
1603 
1604 /*
1605 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1606 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1607 ** busy-handler function. Invoke it and retry the lock until either the
1608 ** lock is successfully obtained or the busy-handler returns 0.
1609 */
1610 static int walBusyLock(
1611   Wal *pWal,                      /* WAL connection */
1612   int (*xBusy)(void*),            /* Function to call when busy */
1613   void *pBusyArg,                 /* Context argument for xBusyHandler */
1614   int lockIdx,                    /* Offset of first byte to lock */
1615   int n                           /* Number of bytes to lock */
1616 ){
1617   int rc;
1618   do {
1619     rc = walLockExclusive(pWal, lockIdx, n, 0);
1620   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1621   return rc;
1622 }
1623 
1624 /*
1625 ** The cache of the wal-index header must be valid to call this function.
1626 ** Return the page-size in bytes used by the database.
1627 */
1628 static int walPagesize(Wal *pWal){
1629   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1630 }
1631 
1632 /*
1633 ** The following is guaranteed when this function is called:
1634 **
1635 **   a) the WRITER lock is held,
1636 **   b) the entire log file has been checkpointed, and
1637 **   c) any existing readers are reading exclusively from the database
1638 **      file - there are no readers that may attempt to read a frame from
1639 **      the log file.
1640 **
1641 ** This function updates the shared-memory structures so that the next
1642 ** client to write to the database (which may be this one) does so by
1643 ** writing frames into the start of the log file.
1644 **
1645 ** The value of parameter salt1 is used as the aSalt[1] value in the
1646 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1647 ** one obtained from sqlite3_randomness()).
1648 */
1649 static void walRestartHdr(Wal *pWal, u32 salt1){
1650   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1651   int i;                          /* Loop counter */
1652   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1653   pWal->nCkpt++;
1654   pWal->hdr.mxFrame = 0;
1655   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1656   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1657   walIndexWriteHdr(pWal);
1658   pInfo->nBackfill = 0;
1659   pInfo->aReadMark[1] = 0;
1660   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1661   assert( pInfo->aReadMark[0]==0 );
1662 }
1663 
1664 /*
1665 ** Copy as much content as we can from the WAL back into the database file
1666 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1667 **
1668 ** The amount of information copies from WAL to database might be limited
1669 ** by active readers.  This routine will never overwrite a database page
1670 ** that a concurrent reader might be using.
1671 **
1672 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1673 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1674 ** checkpoints are always run by a background thread or background
1675 ** process, foreground threads will never block on a lengthy fsync call.
1676 **
1677 ** Fsync is called on the WAL before writing content out of the WAL and
1678 ** into the database.  This ensures that if the new content is persistent
1679 ** in the WAL and can be recovered following a power-loss or hard reset.
1680 **
1681 ** Fsync is also called on the database file if (and only if) the entire
1682 ** WAL content is copied into the database file.  This second fsync makes
1683 ** it safe to delete the WAL since the new content will persist in the
1684 ** database file.
1685 **
1686 ** This routine uses and updates the nBackfill field of the wal-index header.
1687 ** This is the only routine that will increase the value of nBackfill.
1688 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1689 ** its value.)
1690 **
1691 ** The caller must be holding sufficient locks to ensure that no other
1692 ** checkpoint is running (in any other thread or process) at the same
1693 ** time.
1694 */
1695 static int walCheckpoint(
1696   Wal *pWal,                      /* Wal connection */
1697   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1698   int (*xBusy)(void*),            /* Function to call when busy */
1699   void *pBusyArg,                 /* Context argument for xBusyHandler */
1700   int sync_flags,                 /* Flags for OsSync() (or 0) */
1701   u8 *zBuf                        /* Temporary buffer to use */
1702 ){
1703   int rc = SQLITE_OK;             /* Return code */
1704   int szPage;                     /* Database page-size */
1705   WalIterator *pIter = 0;         /* Wal iterator context */
1706   u32 iDbpage = 0;                /* Next database page to write */
1707   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1708   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1709   u32 mxPage;                     /* Max database page to write */
1710   int i;                          /* Loop counter */
1711   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1712 
1713   szPage = walPagesize(pWal);
1714   testcase( szPage<=32768 );
1715   testcase( szPage>=65536 );
1716   pInfo = walCkptInfo(pWal);
1717   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1718 
1719     /* Allocate the iterator */
1720     rc = walIteratorInit(pWal, &pIter);
1721     if( rc!=SQLITE_OK ){
1722       return rc;
1723     }
1724     assert( pIter );
1725 
1726     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1727     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1728     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1729 
1730     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1731     ** safe to write into the database.  Frames beyond mxSafeFrame might
1732     ** overwrite database pages that are in use by active readers and thus
1733     ** cannot be backfilled from the WAL.
1734     */
1735     mxSafeFrame = pWal->hdr.mxFrame;
1736     mxPage = pWal->hdr.nPage;
1737     for(i=1; i<WAL_NREADER; i++){
1738       /* Thread-sanitizer reports that the following is an unsafe read,
1739       ** as some other thread may be in the process of updating the value
1740       ** of the aReadMark[] slot. The assumption here is that if that is
1741       ** happening, the other client may only be increasing the value,
1742       ** not decreasing it. So assuming either that either the "old" or
1743       ** "new" version of the value is read, and not some arbitrary value
1744       ** that would never be written by a real client, things are still
1745       ** safe.  */
1746       u32 y = pInfo->aReadMark[i];
1747       if( mxSafeFrame>y ){
1748         assert( y<=pWal->hdr.mxFrame );
1749         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1750         if( rc==SQLITE_OK ){
1751           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1752           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1753         }else if( rc==SQLITE_BUSY ){
1754           mxSafeFrame = y;
1755           xBusy = 0;
1756         }else{
1757           goto walcheckpoint_out;
1758         }
1759       }
1760     }
1761 
1762     if( pInfo->nBackfill<mxSafeFrame
1763      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1764     ){
1765       i64 nSize;                    /* Current size of database file */
1766       u32 nBackfill = pInfo->nBackfill;
1767 
1768       /* Sync the WAL to disk */
1769       if( sync_flags ){
1770         rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1771       }
1772 
1773       /* If the database may grow as a result of this checkpoint, hint
1774       ** about the eventual size of the db file to the VFS layer.
1775       */
1776       if( rc==SQLITE_OK ){
1777         i64 nReq = ((i64)mxPage * szPage);
1778         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1779         if( rc==SQLITE_OK && nSize<nReq ){
1780           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1781         }
1782       }
1783 
1784 
1785       /* Iterate through the contents of the WAL, copying data to the db file */
1786       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1787         i64 iOffset;
1788         assert( walFramePgno(pWal, iFrame)==iDbpage );
1789         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1790           continue;
1791         }
1792         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1793         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1794         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1795         if( rc!=SQLITE_OK ) break;
1796         iOffset = (iDbpage-1)*(i64)szPage;
1797         testcase( IS_BIG_INT(iOffset) );
1798         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1799         if( rc!=SQLITE_OK ) break;
1800       }
1801 
1802       /* If work was actually accomplished... */
1803       if( rc==SQLITE_OK ){
1804         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1805           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1806           testcase( IS_BIG_INT(szDb) );
1807           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1808           if( rc==SQLITE_OK && sync_flags ){
1809             rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1810           }
1811         }
1812         if( rc==SQLITE_OK ){
1813           pInfo->nBackfill = mxSafeFrame;
1814         }
1815       }
1816 
1817       /* Release the reader lock held while backfilling */
1818       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1819     }
1820 
1821     if( rc==SQLITE_BUSY ){
1822       /* Reset the return code so as not to report a checkpoint failure
1823       ** just because there are active readers.  */
1824       rc = SQLITE_OK;
1825     }
1826   }
1827 
1828   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1829   ** entire wal file has been copied into the database file, then block
1830   ** until all readers have finished using the wal file. This ensures that
1831   ** the next process to write to the database restarts the wal file.
1832   */
1833   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1834     assert( pWal->writeLock );
1835     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1836       rc = SQLITE_BUSY;
1837     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1838       u32 salt1;
1839       sqlite3_randomness(4, &salt1);
1840       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1841       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1842       if( rc==SQLITE_OK ){
1843         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1844           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1845           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1846           ** truncates the log file to zero bytes just prior to a
1847           ** successful return.
1848           **
1849           ** In theory, it might be safe to do this without updating the
1850           ** wal-index header in shared memory, as all subsequent reader or
1851           ** writer clients should see that the entire log file has been
1852           ** checkpointed and behave accordingly. This seems unsafe though,
1853           ** as it would leave the system in a state where the contents of
1854           ** the wal-index header do not match the contents of the
1855           ** file-system. To avoid this, update the wal-index header to
1856           ** indicate that the log file contains zero valid frames.  */
1857           walRestartHdr(pWal, salt1);
1858           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1859         }
1860         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1861       }
1862     }
1863   }
1864 
1865  walcheckpoint_out:
1866   walIteratorFree(pIter);
1867   return rc;
1868 }
1869 
1870 /*
1871 ** If the WAL file is currently larger than nMax bytes in size, truncate
1872 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1873 */
1874 static void walLimitSize(Wal *pWal, i64 nMax){
1875   i64 sz;
1876   int rx;
1877   sqlite3BeginBenignMalloc();
1878   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1879   if( rx==SQLITE_OK && (sz > nMax ) ){
1880     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1881   }
1882   sqlite3EndBenignMalloc();
1883   if( rx ){
1884     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1885   }
1886 }
1887 
1888 /*
1889 ** Close a connection to a log file.
1890 */
1891 int sqlite3WalClose(
1892   Wal *pWal,                      /* Wal to close */
1893   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1894   int nBuf,
1895   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1896 ){
1897   int rc = SQLITE_OK;
1898   if( pWal ){
1899     int isDelete = 0;             /* True to unlink wal and wal-index files */
1900 
1901     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1902     ** ordinary, rollback-mode locking methods, this guarantees that the
1903     ** connection associated with this log file is the only connection to
1904     ** the database. In this case checkpoint the database and unlink both
1905     ** the wal and wal-index files.
1906     **
1907     ** The EXCLUSIVE lock is not released before returning.
1908     */
1909     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1910     if( rc==SQLITE_OK ){
1911       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1912         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1913       }
1914       rc = sqlite3WalCheckpoint(
1915           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1916       );
1917       if( rc==SQLITE_OK ){
1918         int bPersist = -1;
1919         sqlite3OsFileControlHint(
1920             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1921         );
1922         if( bPersist!=1 ){
1923           /* Try to delete the WAL file if the checkpoint completed and
1924           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1925           ** mode (!bPersist) */
1926           isDelete = 1;
1927         }else if( pWal->mxWalSize>=0 ){
1928           /* Try to truncate the WAL file to zero bytes if the checkpoint
1929           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1930           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1931           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1932           ** to zero bytes as truncating to the journal_size_limit might
1933           ** leave a corrupt WAL file on disk. */
1934           walLimitSize(pWal, 0);
1935         }
1936       }
1937     }
1938 
1939     walIndexClose(pWal, isDelete);
1940     sqlite3OsClose(pWal->pWalFd);
1941     if( isDelete ){
1942       sqlite3BeginBenignMalloc();
1943       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1944       sqlite3EndBenignMalloc();
1945     }
1946     WALTRACE(("WAL%p: closed\n", pWal));
1947     sqlite3_free((void *)pWal->apWiData);
1948     sqlite3_free(pWal);
1949   }
1950   return rc;
1951 }
1952 
1953 /*
1954 ** Try to read the wal-index header.  Return 0 on success and 1 if
1955 ** there is a problem.
1956 **
1957 ** The wal-index is in shared memory.  Another thread or process might
1958 ** be writing the header at the same time this procedure is trying to
1959 ** read it, which might result in inconsistency.  A dirty read is detected
1960 ** by verifying that both copies of the header are the same and also by
1961 ** a checksum on the header.
1962 **
1963 ** If and only if the read is consistent and the header is different from
1964 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1965 ** and *pChanged is set to 1.
1966 **
1967 ** If the checksum cannot be verified return non-zero. If the header
1968 ** is read successfully and the checksum verified, return zero.
1969 */
1970 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1971   u32 aCksum[2];                  /* Checksum on the header content */
1972   WalIndexHdr h1, h2;             /* Two copies of the header content */
1973   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
1974 
1975   /* The first page of the wal-index must be mapped at this point. */
1976   assert( pWal->nWiData>0 && pWal->apWiData[0] );
1977 
1978   /* Read the header. This might happen concurrently with a write to the
1979   ** same area of shared memory on a different CPU in a SMP,
1980   ** meaning it is possible that an inconsistent snapshot is read
1981   ** from the file. If this happens, return non-zero.
1982   **
1983   ** There are two copies of the header at the beginning of the wal-index.
1984   ** When reading, read [0] first then [1].  Writes are in the reverse order.
1985   ** Memory barriers are used to prevent the compiler or the hardware from
1986   ** reordering the reads and writes.
1987   */
1988   aHdr = walIndexHdr(pWal);
1989   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1990   walShmBarrier(pWal);
1991   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1992 
1993   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1994     return 1;   /* Dirty read */
1995   }
1996   if( h1.isInit==0 ){
1997     return 1;   /* Malformed header - probably all zeros */
1998   }
1999   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2000   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2001     return 1;   /* Checksum does not match */
2002   }
2003 
2004   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2005     *pChanged = 1;
2006     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2007     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2008     testcase( pWal->szPage<=32768 );
2009     testcase( pWal->szPage>=65536 );
2010   }
2011 
2012   /* The header was successfully read. Return zero. */
2013   return 0;
2014 }
2015 
2016 /*
2017 ** Read the wal-index header from the wal-index and into pWal->hdr.
2018 ** If the wal-header appears to be corrupt, try to reconstruct the
2019 ** wal-index from the WAL before returning.
2020 **
2021 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2022 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2023 ** to 0.
2024 **
2025 ** If the wal-index header is successfully read, return SQLITE_OK.
2026 ** Otherwise an SQLite error code.
2027 */
2028 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2029   int rc;                         /* Return code */
2030   int badHdr;                     /* True if a header read failed */
2031   volatile u32 *page0;            /* Chunk of wal-index containing header */
2032 
2033   /* Ensure that page 0 of the wal-index (the page that contains the
2034   ** wal-index header) is mapped. Return early if an error occurs here.
2035   */
2036   assert( pChanged );
2037   rc = walIndexPage(pWal, 0, &page0);
2038   if( rc!=SQLITE_OK ){
2039     return rc;
2040   };
2041   assert( page0 || pWal->writeLock==0 );
2042 
2043   /* If the first page of the wal-index has been mapped, try to read the
2044   ** wal-index header immediately, without holding any lock. This usually
2045   ** works, but may fail if the wal-index header is corrupt or currently
2046   ** being modified by another thread or process.
2047   */
2048   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2049 
2050   /* If the first attempt failed, it might have been due to a race
2051   ** with a writer.  So get a WRITE lock and try again.
2052   */
2053   assert( badHdr==0 || pWal->writeLock==0 );
2054   if( badHdr ){
2055     if( pWal->readOnly & WAL_SHM_RDONLY ){
2056       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2057         walUnlockShared(pWal, WAL_WRITE_LOCK);
2058         rc = SQLITE_READONLY_RECOVERY;
2059       }
2060     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){
2061       pWal->writeLock = 1;
2062       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2063         badHdr = walIndexTryHdr(pWal, pChanged);
2064         if( badHdr ){
2065           /* If the wal-index header is still malformed even while holding
2066           ** a WRITE lock, it can only mean that the header is corrupted and
2067           ** needs to be reconstructed.  So run recovery to do exactly that.
2068           */
2069           rc = walIndexRecover(pWal);
2070           *pChanged = 1;
2071         }
2072       }
2073       pWal->writeLock = 0;
2074       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2075     }
2076   }
2077 
2078   /* If the header is read successfully, check the version number to make
2079   ** sure the wal-index was not constructed with some future format that
2080   ** this version of SQLite cannot understand.
2081   */
2082   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2083     rc = SQLITE_CANTOPEN_BKPT;
2084   }
2085 
2086   return rc;
2087 }
2088 
2089 /*
2090 ** This is the value that walTryBeginRead returns when it needs to
2091 ** be retried.
2092 */
2093 #define WAL_RETRY  (-1)
2094 
2095 /*
2096 ** Attempt to start a read transaction.  This might fail due to a race or
2097 ** other transient condition.  When that happens, it returns WAL_RETRY to
2098 ** indicate to the caller that it is safe to retry immediately.
2099 **
2100 ** On success return SQLITE_OK.  On a permanent failure (such an
2101 ** I/O error or an SQLITE_BUSY because another process is running
2102 ** recovery) return a positive error code.
2103 **
2104 ** The useWal parameter is true to force the use of the WAL and disable
2105 ** the case where the WAL is bypassed because it has been completely
2106 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2107 ** to make a copy of the wal-index header into pWal->hdr.  If the
2108 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2109 ** to the caller that the local paget cache is obsolete and needs to be
2110 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2111 ** be loaded and the pChanged parameter is unused.
2112 **
2113 ** The caller must set the cnt parameter to the number of prior calls to
2114 ** this routine during the current read attempt that returned WAL_RETRY.
2115 ** This routine will start taking more aggressive measures to clear the
2116 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2117 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2118 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2119 ** and is not honoring the locking protocol.  There is a vanishingly small
2120 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2121 ** bad luck when there is lots of contention for the wal-index, but that
2122 ** possibility is so small that it can be safely neglected, we believe.
2123 **
2124 ** On success, this routine obtains a read lock on
2125 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2126 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2127 ** that means the Wal does not hold any read lock.  The reader must not
2128 ** access any database page that is modified by a WAL frame up to and
2129 ** including frame number aReadMark[pWal->readLock].  The reader will
2130 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2131 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2132 ** completely and get all content directly from the database file.
2133 ** If the useWal parameter is 1 then the WAL will never be ignored and
2134 ** this routine will always set pWal->readLock>0 on success.
2135 ** When the read transaction is completed, the caller must release the
2136 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2137 **
2138 ** This routine uses the nBackfill and aReadMark[] fields of the header
2139 ** to select a particular WAL_READ_LOCK() that strives to let the
2140 ** checkpoint process do as much work as possible.  This routine might
2141 ** update values of the aReadMark[] array in the header, but if it does
2142 ** so it takes care to hold an exclusive lock on the corresponding
2143 ** WAL_READ_LOCK() while changing values.
2144 */
2145 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2146   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2147   u32 mxReadMark;                 /* Largest aReadMark[] value */
2148   int mxI;                        /* Index of largest aReadMark[] value */
2149   int i;                          /* Loop counter */
2150   int rc = SQLITE_OK;             /* Return code  */
2151 
2152   assert( pWal->readLock<0 );     /* Not currently locked */
2153 
2154   /* Take steps to avoid spinning forever if there is a protocol error.
2155   **
2156   ** Circumstances that cause a RETRY should only last for the briefest
2157   ** instances of time.  No I/O or other system calls are done while the
2158   ** locks are held, so the locks should not be held for very long. But
2159   ** if we are unlucky, another process that is holding a lock might get
2160   ** paged out or take a page-fault that is time-consuming to resolve,
2161   ** during the few nanoseconds that it is holding the lock.  In that case,
2162   ** it might take longer than normal for the lock to free.
2163   **
2164   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2165   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2166   ** is more of a scheduler yield than an actual delay.  But on the 10th
2167   ** an subsequent retries, the delays start becoming longer and longer,
2168   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2169   ** The total delay time before giving up is less than 10 seconds.
2170   */
2171   if( cnt>5 ){
2172     int nDelay = 1;                      /* Pause time in microseconds */
2173     if( cnt>100 ){
2174       VVA_ONLY( pWal->lockError = 1; )
2175       return SQLITE_PROTOCOL;
2176     }
2177     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2178     sqlite3OsSleep(pWal->pVfs, nDelay);
2179   }
2180 
2181   if( !useWal ){
2182     rc = walIndexReadHdr(pWal, pChanged);
2183     if( rc==SQLITE_BUSY ){
2184       /* If there is not a recovery running in another thread or process
2185       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2186       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2187       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2188       ** would be technically correct.  But the race is benign since with
2189       ** WAL_RETRY this routine will be called again and will probably be
2190       ** right on the second iteration.
2191       */
2192       if( pWal->apWiData[0]==0 ){
2193         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2194         ** We assume this is a transient condition, so return WAL_RETRY. The
2195         ** xShmMap() implementation used by the default unix and win32 VFS
2196         ** modules may return SQLITE_BUSY due to a race condition in the
2197         ** code that determines whether or not the shared-memory region
2198         ** must be zeroed before the requested page is returned.
2199         */
2200         rc = WAL_RETRY;
2201       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2202         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2203         rc = WAL_RETRY;
2204       }else if( rc==SQLITE_BUSY ){
2205         rc = SQLITE_BUSY_RECOVERY;
2206       }
2207     }
2208     if( rc!=SQLITE_OK ){
2209       return rc;
2210     }
2211   }
2212 
2213   pInfo = walCkptInfo(pWal);
2214   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2215     /* The WAL has been completely backfilled (or it is empty).
2216     ** and can be safely ignored.
2217     */
2218     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2219     walShmBarrier(pWal);
2220     if( rc==SQLITE_OK ){
2221       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2222         /* It is not safe to allow the reader to continue here if frames
2223         ** may have been appended to the log before READ_LOCK(0) was obtained.
2224         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2225         ** which implies that the database file contains a trustworthy
2226         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2227         ** happening, this is usually correct.
2228         **
2229         ** However, if frames have been appended to the log (or if the log
2230         ** is wrapped and written for that matter) before the READ_LOCK(0)
2231         ** is obtained, that is not necessarily true. A checkpointer may
2232         ** have started to backfill the appended frames but crashed before
2233         ** it finished. Leaving a corrupt image in the database file.
2234         */
2235         walUnlockShared(pWal, WAL_READ_LOCK(0));
2236         return WAL_RETRY;
2237       }
2238       pWal->readLock = 0;
2239       return SQLITE_OK;
2240     }else if( rc!=SQLITE_BUSY ){
2241       return rc;
2242     }
2243   }
2244 
2245   /* If we get this far, it means that the reader will want to use
2246   ** the WAL to get at content from recent commits.  The job now is
2247   ** to select one of the aReadMark[] entries that is closest to
2248   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2249   */
2250   mxReadMark = 0;
2251   mxI = 0;
2252   for(i=1; i<WAL_NREADER; i++){
2253     u32 thisMark = pInfo->aReadMark[i];
2254     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2255       assert( thisMark!=READMARK_NOT_USED );
2256       mxReadMark = thisMark;
2257       mxI = i;
2258     }
2259   }
2260   /* There was once an "if" here. The extra "{" is to preserve indentation. */
2261   {
2262     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2263      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2264     ){
2265       for(i=1; i<WAL_NREADER; i++){
2266         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0);
2267         if( rc==SQLITE_OK ){
2268           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2269           mxI = i;
2270           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2271           break;
2272         }else if( rc!=SQLITE_BUSY ){
2273           return rc;
2274         }
2275       }
2276     }
2277     if( mxI==0 ){
2278       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2279       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2280     }
2281 
2282     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2283     if( rc ){
2284       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2285     }
2286     /* Now that the read-lock has been obtained, check that neither the
2287     ** value in the aReadMark[] array or the contents of the wal-index
2288     ** header have changed.
2289     **
2290     ** It is necessary to check that the wal-index header did not change
2291     ** between the time it was read and when the shared-lock was obtained
2292     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2293     ** that the log file may have been wrapped by a writer, or that frames
2294     ** that occur later in the log than pWal->hdr.mxFrame may have been
2295     ** copied into the database by a checkpointer. If either of these things
2296     ** happened, then reading the database with the current value of
2297     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2298     ** instead.
2299     **
2300     ** Before checking that the live wal-index header has not changed
2301     ** since it was read, set Wal.minFrame to the first frame in the wal
2302     ** file that has not yet been checkpointed. This client will not need
2303     ** to read any frames earlier than minFrame from the wal file - they
2304     ** can be safely read directly from the database file.
2305     **
2306     ** Because a ShmBarrier() call is made between taking the copy of
2307     ** nBackfill and checking that the wal-header in shared-memory still
2308     ** matches the one cached in pWal->hdr, it is guaranteed that the
2309     ** checkpointer that set nBackfill was not working with a wal-index
2310     ** header newer than that cached in pWal->hdr. If it were, that could
2311     ** cause a problem. The checkpointer could omit to checkpoint
2312     ** a version of page X that lies before pWal->minFrame (call that version
2313     ** A) on the basis that there is a newer version (version B) of the same
2314     ** page later in the wal file. But if version B happens to like past
2315     ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2316     ** that it can read version A from the database file. However, since
2317     ** we can guarantee that the checkpointer that set nBackfill could not
2318     ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2319     */
2320     pWal->minFrame = pInfo->nBackfill+1;
2321     walShmBarrier(pWal);
2322     if( pInfo->aReadMark[mxI]!=mxReadMark
2323      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2324     ){
2325       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2326       return WAL_RETRY;
2327     }else{
2328       assert( mxReadMark<=pWal->hdr.mxFrame );
2329       pWal->readLock = (i16)mxI;
2330     }
2331   }
2332   return rc;
2333 }
2334 
2335 /*
2336 ** Begin a read transaction on the database.
2337 **
2338 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2339 ** it takes a snapshot of the state of the WAL and wal-index for the current
2340 ** instant in time.  The current thread will continue to use this snapshot.
2341 ** Other threads might append new content to the WAL and wal-index but
2342 ** that extra content is ignored by the current thread.
2343 **
2344 ** If the database contents have changes since the previous read
2345 ** transaction, then *pChanged is set to 1 before returning.  The
2346 ** Pager layer will use this to know that is cache is stale and
2347 ** needs to be flushed.
2348 */
2349 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2350   int rc;                         /* Return code */
2351   int cnt = 0;                    /* Number of TryBeginRead attempts */
2352 
2353   do{
2354     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2355   }while( rc==WAL_RETRY );
2356   testcase( (rc&0xff)==SQLITE_BUSY );
2357   testcase( (rc&0xff)==SQLITE_IOERR );
2358   testcase( rc==SQLITE_PROTOCOL );
2359   testcase( rc==SQLITE_OK );
2360   return rc;
2361 }
2362 
2363 /*
2364 ** Finish with a read transaction.  All this does is release the
2365 ** read-lock.
2366 */
2367 void sqlite3WalEndReadTransaction(Wal *pWal){
2368   sqlite3WalEndWriteTransaction(pWal);
2369   if( pWal->readLock>=0 ){
2370     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2371     pWal->readLock = -1;
2372   }
2373 }
2374 
2375 /*
2376 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2377 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2378 ** to zero.
2379 **
2380 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2381 ** error does occur, the final value of *piRead is undefined.
2382 */
2383 int sqlite3WalFindFrame(
2384   Wal *pWal,                      /* WAL handle */
2385   Pgno pgno,                      /* Database page number to read data for */
2386   u32 *piRead                     /* OUT: Frame number (or zero) */
2387 ){
2388   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2389   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2390   int iHash;                      /* Used to loop through N hash tables */
2391   int iMinHash;
2392 
2393   /* This routine is only be called from within a read transaction. */
2394   assert( pWal->readLock>=0 || pWal->lockError );
2395 
2396   /* If the "last page" field of the wal-index header snapshot is 0, then
2397   ** no data will be read from the wal under any circumstances. Return early
2398   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2399   ** then the WAL is ignored by the reader so return early, as if the
2400   ** WAL were empty.
2401   */
2402   if( iLast==0 || pWal->readLock==0 ){
2403     *piRead = 0;
2404     return SQLITE_OK;
2405   }
2406 
2407   /* Search the hash table or tables for an entry matching page number
2408   ** pgno. Each iteration of the following for() loop searches one
2409   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2410   **
2411   ** This code might run concurrently to the code in walIndexAppend()
2412   ** that adds entries to the wal-index (and possibly to this hash
2413   ** table). This means the value just read from the hash
2414   ** slot (aHash[iKey]) may have been added before or after the
2415   ** current read transaction was opened. Values added after the
2416   ** read transaction was opened may have been written incorrectly -
2417   ** i.e. these slots may contain garbage data. However, we assume
2418   ** that any slots written before the current read transaction was
2419   ** opened remain unmodified.
2420   **
2421   ** For the reasons above, the if(...) condition featured in the inner
2422   ** loop of the following block is more stringent that would be required
2423   ** if we had exclusive access to the hash-table:
2424   **
2425   **   (aPgno[iFrame]==pgno):
2426   **     This condition filters out normal hash-table collisions.
2427   **
2428   **   (iFrame<=iLast):
2429   **     This condition filters out entries that were added to the hash
2430   **     table after the current read-transaction had started.
2431   */
2432   iMinHash = walFramePage(pWal->minFrame);
2433   for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2434     volatile ht_slot *aHash;      /* Pointer to hash table */
2435     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2436     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2437     int iKey;                     /* Hash slot index */
2438     int nCollide;                 /* Number of hash collisions remaining */
2439     int rc;                       /* Error code */
2440 
2441     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2442     if( rc!=SQLITE_OK ){
2443       return rc;
2444     }
2445     nCollide = HASHTABLE_NSLOT;
2446     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2447       u32 iFrame = aHash[iKey] + iZero;
2448       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2449         assert( iFrame>iRead || CORRUPT_DB );
2450         iRead = iFrame;
2451       }
2452       if( (nCollide--)==0 ){
2453         return SQLITE_CORRUPT_BKPT;
2454       }
2455     }
2456   }
2457 
2458 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2459   /* If expensive assert() statements are available, do a linear search
2460   ** of the wal-index file content. Make sure the results agree with the
2461   ** result obtained using the hash indexes above.  */
2462   {
2463     u32 iRead2 = 0;
2464     u32 iTest;
2465     assert( pWal->minFrame>0 );
2466     for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
2467       if( walFramePgno(pWal, iTest)==pgno ){
2468         iRead2 = iTest;
2469         break;
2470       }
2471     }
2472     assert( iRead==iRead2 );
2473   }
2474 #endif
2475 
2476   *piRead = iRead;
2477   return SQLITE_OK;
2478 }
2479 
2480 /*
2481 ** Read the contents of frame iRead from the wal file into buffer pOut
2482 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2483 ** error code otherwise.
2484 */
2485 int sqlite3WalReadFrame(
2486   Wal *pWal,                      /* WAL handle */
2487   u32 iRead,                      /* Frame to read */
2488   int nOut,                       /* Size of buffer pOut in bytes */
2489   u8 *pOut                        /* Buffer to write page data to */
2490 ){
2491   int sz;
2492   i64 iOffset;
2493   sz = pWal->hdr.szPage;
2494   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2495   testcase( sz<=32768 );
2496   testcase( sz>=65536 );
2497   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2498   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2499   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2500 }
2501 
2502 /*
2503 ** Return the size of the database in pages (or zero, if unknown).
2504 */
2505 Pgno sqlite3WalDbsize(Wal *pWal){
2506   if( pWal && ALWAYS(pWal->readLock>=0) ){
2507     return pWal->hdr.nPage;
2508   }
2509   return 0;
2510 }
2511 
2512 
2513 /*
2514 ** This function starts a write transaction on the WAL.
2515 **
2516 ** A read transaction must have already been started by a prior call
2517 ** to sqlite3WalBeginReadTransaction().
2518 **
2519 ** If another thread or process has written into the database since
2520 ** the read transaction was started, then it is not possible for this
2521 ** thread to write as doing so would cause a fork.  So this routine
2522 ** returns SQLITE_BUSY in that case and no write transaction is started.
2523 **
2524 ** There can only be a single writer active at a time.
2525 */
2526 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2527   int rc;
2528 
2529   /* Cannot start a write transaction without first holding a read
2530   ** transaction. */
2531   assert( pWal->readLock>=0 );
2532 
2533   if( pWal->readOnly ){
2534     return SQLITE_READONLY;
2535   }
2536 
2537   /* Only one writer allowed at a time.  Get the write lock.  Return
2538   ** SQLITE_BUSY if unable.
2539   */
2540   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0);
2541   if( rc ){
2542     return rc;
2543   }
2544   pWal->writeLock = 1;
2545 
2546   /* If another connection has written to the database file since the
2547   ** time the read transaction on this connection was started, then
2548   ** the write is disallowed.
2549   */
2550   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2551     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2552     pWal->writeLock = 0;
2553     rc = SQLITE_BUSY_SNAPSHOT;
2554   }
2555 
2556   return rc;
2557 }
2558 
2559 /*
2560 ** End a write transaction.  The commit has already been done.  This
2561 ** routine merely releases the lock.
2562 */
2563 int sqlite3WalEndWriteTransaction(Wal *pWal){
2564   if( pWal->writeLock ){
2565     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2566     pWal->writeLock = 0;
2567     pWal->truncateOnCommit = 0;
2568   }
2569   return SQLITE_OK;
2570 }
2571 
2572 /*
2573 ** If any data has been written (but not committed) to the log file, this
2574 ** function moves the write-pointer back to the start of the transaction.
2575 **
2576 ** Additionally, the callback function is invoked for each frame written
2577 ** to the WAL since the start of the transaction. If the callback returns
2578 ** other than SQLITE_OK, it is not invoked again and the error code is
2579 ** returned to the caller.
2580 **
2581 ** Otherwise, if the callback function does not return an error, this
2582 ** function returns SQLITE_OK.
2583 */
2584 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2585   int rc = SQLITE_OK;
2586   if( ALWAYS(pWal->writeLock) ){
2587     Pgno iMax = pWal->hdr.mxFrame;
2588     Pgno iFrame;
2589 
2590     /* Restore the clients cache of the wal-index header to the state it
2591     ** was in before the client began writing to the database.
2592     */
2593     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2594 
2595     for(iFrame=pWal->hdr.mxFrame+1;
2596         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2597         iFrame++
2598     ){
2599       /* This call cannot fail. Unless the page for which the page number
2600       ** is passed as the second argument is (a) in the cache and
2601       ** (b) has an outstanding reference, then xUndo is either a no-op
2602       ** (if (a) is false) or simply expels the page from the cache (if (b)
2603       ** is false).
2604       **
2605       ** If the upper layer is doing a rollback, it is guaranteed that there
2606       ** are no outstanding references to any page other than page 1. And
2607       ** page 1 is never written to the log until the transaction is
2608       ** committed. As a result, the call to xUndo may not fail.
2609       */
2610       assert( walFramePgno(pWal, iFrame)!=1 );
2611       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2612     }
2613     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2614   }
2615   return rc;
2616 }
2617 
2618 /*
2619 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2620 ** values. This function populates the array with values required to
2621 ** "rollback" the write position of the WAL handle back to the current
2622 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2623 */
2624 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2625   assert( pWal->writeLock );
2626   aWalData[0] = pWal->hdr.mxFrame;
2627   aWalData[1] = pWal->hdr.aFrameCksum[0];
2628   aWalData[2] = pWal->hdr.aFrameCksum[1];
2629   aWalData[3] = pWal->nCkpt;
2630 }
2631 
2632 /*
2633 ** Move the write position of the WAL back to the point identified by
2634 ** the values in the aWalData[] array. aWalData must point to an array
2635 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2636 ** by a call to WalSavepoint().
2637 */
2638 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2639   int rc = SQLITE_OK;
2640 
2641   assert( pWal->writeLock );
2642   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2643 
2644   if( aWalData[3]!=pWal->nCkpt ){
2645     /* This savepoint was opened immediately after the write-transaction
2646     ** was started. Right after that, the writer decided to wrap around
2647     ** to the start of the log. Update the savepoint values to match.
2648     */
2649     aWalData[0] = 0;
2650     aWalData[3] = pWal->nCkpt;
2651   }
2652 
2653   if( aWalData[0]<pWal->hdr.mxFrame ){
2654     pWal->hdr.mxFrame = aWalData[0];
2655     pWal->hdr.aFrameCksum[0] = aWalData[1];
2656     pWal->hdr.aFrameCksum[1] = aWalData[2];
2657     walCleanupHash(pWal);
2658   }
2659 
2660   return rc;
2661 }
2662 
2663 /*
2664 ** This function is called just before writing a set of frames to the log
2665 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2666 ** to the current log file, it is possible to overwrite the start of the
2667 ** existing log file with the new frames (i.e. "reset" the log). If so,
2668 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2669 ** unchanged.
2670 **
2671 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2672 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2673 ** if an error occurs.
2674 */
2675 static int walRestartLog(Wal *pWal){
2676   int rc = SQLITE_OK;
2677   int cnt;
2678 
2679   if( pWal->readLock==0 ){
2680     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2681     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2682     if( pInfo->nBackfill>0 ){
2683       u32 salt1;
2684       sqlite3_randomness(4, &salt1);
2685       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0);
2686       if( rc==SQLITE_OK ){
2687         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2688         ** readers are currently using the WAL), then the transactions
2689         ** frames will overwrite the start of the existing log. Update the
2690         ** wal-index header to reflect this.
2691         **
2692         ** In theory it would be Ok to update the cache of the header only
2693         ** at this point. But updating the actual wal-index header is also
2694         ** safe and means there is no special case for sqlite3WalUndo()
2695         ** to handle if this transaction is rolled back.  */
2696         walRestartHdr(pWal, salt1);
2697         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2698       }else if( rc!=SQLITE_BUSY ){
2699         return rc;
2700       }
2701     }
2702     walUnlockShared(pWal, WAL_READ_LOCK(0));
2703     pWal->readLock = -1;
2704     cnt = 0;
2705     do{
2706       int notUsed;
2707       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2708     }while( rc==WAL_RETRY );
2709     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2710     testcase( (rc&0xff)==SQLITE_IOERR );
2711     testcase( rc==SQLITE_PROTOCOL );
2712     testcase( rc==SQLITE_OK );
2713   }
2714   return rc;
2715 }
2716 
2717 /*
2718 ** Information about the current state of the WAL file and where
2719 ** the next fsync should occur - passed from sqlite3WalFrames() into
2720 ** walWriteToLog().
2721 */
2722 typedef struct WalWriter {
2723   Wal *pWal;                   /* The complete WAL information */
2724   sqlite3_file *pFd;           /* The WAL file to which we write */
2725   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2726   int syncFlags;               /* Flags for the fsync */
2727   int szPage;                  /* Size of one page */
2728 } WalWriter;
2729 
2730 /*
2731 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2732 ** Do a sync when crossing the p->iSyncPoint boundary.
2733 **
2734 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2735 ** first write the part before iSyncPoint, then sync, then write the
2736 ** rest.
2737 */
2738 static int walWriteToLog(
2739   WalWriter *p,              /* WAL to write to */
2740   void *pContent,            /* Content to be written */
2741   int iAmt,                  /* Number of bytes to write */
2742   sqlite3_int64 iOffset      /* Start writing at this offset */
2743 ){
2744   int rc;
2745   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2746     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2747     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2748     if( rc ) return rc;
2749     iOffset += iFirstAmt;
2750     iAmt -= iFirstAmt;
2751     pContent = (void*)(iFirstAmt + (char*)pContent);
2752     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2753     rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
2754     if( iAmt==0 || rc ) return rc;
2755   }
2756   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2757   return rc;
2758 }
2759 
2760 /*
2761 ** Write out a single frame of the WAL
2762 */
2763 static int walWriteOneFrame(
2764   WalWriter *p,               /* Where to write the frame */
2765   PgHdr *pPage,               /* The page of the frame to be written */
2766   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2767   sqlite3_int64 iOffset       /* Byte offset at which to write */
2768 ){
2769   int rc;                         /* Result code from subfunctions */
2770   void *pData;                    /* Data actually written */
2771   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2772 #if defined(SQLITE_HAS_CODEC)
2773   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2774 #else
2775   pData = pPage->pData;
2776 #endif
2777   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2778   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2779   if( rc ) return rc;
2780   /* Write the page data */
2781   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2782   return rc;
2783 }
2784 
2785 /*
2786 ** Write a set of frames to the log. The caller must hold the write-lock
2787 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2788 */
2789 int sqlite3WalFrames(
2790   Wal *pWal,                      /* Wal handle to write to */
2791   int szPage,                     /* Database page-size in bytes */
2792   PgHdr *pList,                   /* List of dirty pages to write */
2793   Pgno nTruncate,                 /* Database size after this commit */
2794   int isCommit,                   /* True if this is a commit */
2795   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2796 ){
2797   int rc;                         /* Used to catch return codes */
2798   u32 iFrame;                     /* Next frame address */
2799   PgHdr *p;                       /* Iterator to run through pList with. */
2800   PgHdr *pLast = 0;               /* Last frame in list */
2801   int nExtra = 0;                 /* Number of extra copies of last page */
2802   int szFrame;                    /* The size of a single frame */
2803   i64 iOffset;                    /* Next byte to write in WAL file */
2804   WalWriter w;                    /* The writer */
2805 
2806   assert( pList );
2807   assert( pWal->writeLock );
2808 
2809   /* If this frame set completes a transaction, then nTruncate>0.  If
2810   ** nTruncate==0 then this frame set does not complete the transaction. */
2811   assert( (isCommit!=0)==(nTruncate!=0) );
2812 
2813 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2814   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2815     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2816               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2817   }
2818 #endif
2819 
2820   /* See if it is possible to write these frames into the start of the
2821   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2822   */
2823   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2824     return rc;
2825   }
2826 
2827   /* If this is the first frame written into the log, write the WAL
2828   ** header to the start of the WAL file. See comments at the top of
2829   ** this source file for a description of the WAL header format.
2830   */
2831   iFrame = pWal->hdr.mxFrame;
2832   if( iFrame==0 ){
2833     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2834     u32 aCksum[2];                /* Checksum for wal-header */
2835 
2836     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2837     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2838     sqlite3Put4byte(&aWalHdr[8], szPage);
2839     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2840     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
2841     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2842     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2843     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2844     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2845 
2846     pWal->szPage = szPage;
2847     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2848     pWal->hdr.aFrameCksum[0] = aCksum[0];
2849     pWal->hdr.aFrameCksum[1] = aCksum[1];
2850     pWal->truncateOnCommit = 1;
2851 
2852     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2853     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2854     if( rc!=SQLITE_OK ){
2855       return rc;
2856     }
2857 
2858     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2859     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
2860     ** an out-of-order write following a WAL restart could result in
2861     ** database corruption.  See the ticket:
2862     **
2863     **     http://localhost:591/sqlite/info/ff5be73dee
2864     */
2865     if( pWal->syncHeader && sync_flags ){
2866       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2867       if( rc ) return rc;
2868     }
2869   }
2870   assert( (int)pWal->szPage==szPage );
2871 
2872   /* Setup information needed to write frames into the WAL */
2873   w.pWal = pWal;
2874   w.pFd = pWal->pWalFd;
2875   w.iSyncPoint = 0;
2876   w.syncFlags = sync_flags;
2877   w.szPage = szPage;
2878   iOffset = walFrameOffset(iFrame+1, szPage);
2879   szFrame = szPage + WAL_FRAME_HDRSIZE;
2880 
2881   /* Write all frames into the log file exactly once */
2882   for(p=pList; p; p=p->pDirty){
2883     int nDbSize;   /* 0 normally.  Positive == commit flag */
2884     iFrame++;
2885     assert( iOffset==walFrameOffset(iFrame, szPage) );
2886     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2887     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2888     if( rc ) return rc;
2889     pLast = p;
2890     iOffset += szFrame;
2891   }
2892 
2893   /* If this is the end of a transaction, then we might need to pad
2894   ** the transaction and/or sync the WAL file.
2895   **
2896   ** Padding and syncing only occur if this set of frames complete a
2897   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
2898   ** or synchronous==OFF, then no padding or syncing are needed.
2899   **
2900   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2901   ** needed and only the sync is done.  If padding is needed, then the
2902   ** final frame is repeated (with its commit mark) until the next sector
2903   ** boundary is crossed.  Only the part of the WAL prior to the last
2904   ** sector boundary is synced; the part of the last frame that extends
2905   ** past the sector boundary is written after the sync.
2906   */
2907   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
2908     if( pWal->padToSectorBoundary ){
2909       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
2910       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2911       while( iOffset<w.iSyncPoint ){
2912         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2913         if( rc ) return rc;
2914         iOffset += szFrame;
2915         nExtra++;
2916       }
2917     }else{
2918       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
2919     }
2920   }
2921 
2922   /* If this frame set completes the first transaction in the WAL and
2923   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2924   ** journal size limit, if possible.
2925   */
2926   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2927     i64 sz = pWal->mxWalSize;
2928     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2929       sz = walFrameOffset(iFrame+nExtra+1, szPage);
2930     }
2931     walLimitSize(pWal, sz);
2932     pWal->truncateOnCommit = 0;
2933   }
2934 
2935   /* Append data to the wal-index. It is not necessary to lock the
2936   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2937   ** guarantees that there are no other writers, and no data that may
2938   ** be in use by existing readers is being overwritten.
2939   */
2940   iFrame = pWal->hdr.mxFrame;
2941   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2942     iFrame++;
2943     rc = walIndexAppend(pWal, iFrame, p->pgno);
2944   }
2945   while( rc==SQLITE_OK && nExtra>0 ){
2946     iFrame++;
2947     nExtra--;
2948     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2949   }
2950 
2951   if( rc==SQLITE_OK ){
2952     /* Update the private copy of the header. */
2953     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2954     testcase( szPage<=32768 );
2955     testcase( szPage>=65536 );
2956     pWal->hdr.mxFrame = iFrame;
2957     if( isCommit ){
2958       pWal->hdr.iChange++;
2959       pWal->hdr.nPage = nTruncate;
2960     }
2961     /* If this is a commit, update the wal-index header too. */
2962     if( isCommit ){
2963       walIndexWriteHdr(pWal);
2964       pWal->iCallback = iFrame;
2965     }
2966   }
2967 
2968   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2969   return rc;
2970 }
2971 
2972 /*
2973 ** This routine is called to implement sqlite3_wal_checkpoint() and
2974 ** related interfaces.
2975 **
2976 ** Obtain a CHECKPOINT lock and then backfill as much information as
2977 ** we can from WAL into the database.
2978 **
2979 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2980 ** callback. In this case this function runs a blocking checkpoint.
2981 */
2982 int sqlite3WalCheckpoint(
2983   Wal *pWal,                      /* Wal connection */
2984   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
2985   int (*xBusy)(void*),            /* Function to call when busy */
2986   void *pBusyArg,                 /* Context argument for xBusyHandler */
2987   int sync_flags,                 /* Flags to sync db file with (or 0) */
2988   int nBuf,                       /* Size of temporary buffer */
2989   u8 *zBuf,                       /* Temporary buffer to use */
2990   int *pnLog,                     /* OUT: Number of frames in WAL */
2991   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
2992 ){
2993   int rc;                         /* Return code */
2994   int isChanged = 0;              /* True if a new wal-index header is loaded */
2995   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
2996   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
2997 
2998   assert( pWal->ckptLock==0 );
2999   assert( pWal->writeLock==0 );
3000 
3001   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3002   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3003   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3004 
3005   if( pWal->readOnly ) return SQLITE_READONLY;
3006   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3007 
3008   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3009   ** "checkpoint" lock on the database file. */
3010   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0);
3011   if( rc ){
3012     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3013     ** checkpoint operation at the same time, the lock cannot be obtained and
3014     ** SQLITE_BUSY is returned.
3015     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3016     ** it will not be invoked in this case.
3017     */
3018     testcase( rc==SQLITE_BUSY );
3019     testcase( xBusy!=0 );
3020     return rc;
3021   }
3022   pWal->ckptLock = 1;
3023 
3024   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3025   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3026   ** file.
3027   **
3028   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3029   ** immediately, and a busy-handler is configured, it is invoked and the
3030   ** writer lock retried until either the busy-handler returns 0 or the
3031   ** lock is successfully obtained.
3032   */
3033   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3034     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3035     if( rc==SQLITE_OK ){
3036       pWal->writeLock = 1;
3037     }else if( rc==SQLITE_BUSY ){
3038       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3039       xBusy2 = 0;
3040       rc = SQLITE_OK;
3041     }
3042   }
3043 
3044   /* Read the wal-index header. */
3045   if( rc==SQLITE_OK ){
3046     rc = walIndexReadHdr(pWal, &isChanged);
3047     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3048       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3049     }
3050   }
3051 
3052   /* Copy data from the log to the database file. */
3053   if( rc==SQLITE_OK ){
3054     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3055       rc = SQLITE_CORRUPT_BKPT;
3056     }else{
3057       rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3058     }
3059 
3060     /* If no error occurred, set the output variables. */
3061     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3062       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3063       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3064     }
3065   }
3066 
3067   if( isChanged ){
3068     /* If a new wal-index header was loaded before the checkpoint was
3069     ** performed, then the pager-cache associated with pWal is now
3070     ** out of date. So zero the cached wal-index header to ensure that
3071     ** next time the pager opens a snapshot on this database it knows that
3072     ** the cache needs to be reset.
3073     */
3074     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3075   }
3076 
3077   /* Release the locks. */
3078   sqlite3WalEndWriteTransaction(pWal);
3079   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3080   pWal->ckptLock = 0;
3081   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3082   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3083 }
3084 
3085 /* Return the value to pass to a sqlite3_wal_hook callback, the
3086 ** number of frames in the WAL at the point of the last commit since
3087 ** sqlite3WalCallback() was called.  If no commits have occurred since
3088 ** the last call, then return 0.
3089 */
3090 int sqlite3WalCallback(Wal *pWal){
3091   u32 ret = 0;
3092   if( pWal ){
3093     ret = pWal->iCallback;
3094     pWal->iCallback = 0;
3095   }
3096   return (int)ret;
3097 }
3098 
3099 /*
3100 ** This function is called to change the WAL subsystem into or out
3101 ** of locking_mode=EXCLUSIVE.
3102 **
3103 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3104 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3105 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3106 ** or if the acquisition of the lock fails, then return 0.  If the
3107 ** transition out of exclusive-mode is successful, return 1.  This
3108 ** operation must occur while the pager is still holding the exclusive
3109 ** lock on the main database file.
3110 **
3111 ** If op is one, then change from locking_mode=NORMAL into
3112 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3113 ** be released.  Return 1 if the transition is made and 0 if the
3114 ** WAL is already in exclusive-locking mode - meaning that this
3115 ** routine is a no-op.  The pager must already hold the exclusive lock
3116 ** on the main database file before invoking this operation.
3117 **
3118 ** If op is negative, then do a dry-run of the op==1 case but do
3119 ** not actually change anything. The pager uses this to see if it
3120 ** should acquire the database exclusive lock prior to invoking
3121 ** the op==1 case.
3122 */
3123 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3124   int rc;
3125   assert( pWal->writeLock==0 );
3126   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3127 
3128   /* pWal->readLock is usually set, but might be -1 if there was a
3129   ** prior error while attempting to acquire are read-lock. This cannot
3130   ** happen if the connection is actually in exclusive mode (as no xShmLock
3131   ** locks are taken in this case). Nor should the pager attempt to
3132   ** upgrade to exclusive-mode following such an error.
3133   */
3134   assert( pWal->readLock>=0 || pWal->lockError );
3135   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3136 
3137   if( op==0 ){
3138     if( pWal->exclusiveMode ){
3139       pWal->exclusiveMode = 0;
3140       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3141         pWal->exclusiveMode = 1;
3142       }
3143       rc = pWal->exclusiveMode==0;
3144     }else{
3145       /* Already in locking_mode=NORMAL */
3146       rc = 0;
3147     }
3148   }else if( op>0 ){
3149     assert( pWal->exclusiveMode==0 );
3150     assert( pWal->readLock>=0 );
3151     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3152     pWal->exclusiveMode = 1;
3153     rc = 1;
3154   }else{
3155     rc = pWal->exclusiveMode==0;
3156   }
3157   return rc;
3158 }
3159 
3160 /*
3161 ** Return true if the argument is non-NULL and the WAL module is using
3162 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3163 ** WAL module is using shared-memory, return false.
3164 */
3165 int sqlite3WalHeapMemory(Wal *pWal){
3166   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3167 }
3168 
3169 #ifdef SQLITE_ENABLE_ZIPVFS
3170 /*
3171 ** If the argument is not NULL, it points to a Wal object that holds a
3172 ** read-lock. This function returns the database page-size if it is known,
3173 ** or zero if it is not (or if pWal is NULL).
3174 */
3175 int sqlite3WalFramesize(Wal *pWal){
3176   assert( pWal==0 || pWal->readLock>=0 );
3177   return (pWal ? pWal->szPage : 0);
3178 }
3179 #endif
3180 
3181 #endif /* #ifndef SQLITE_OMIT_WAL */
3182