1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P and a maximum frame index M, return the index of the 146 ** last frame in the wal before frame M for page P in the WAL, or return 147 ** NULL if there are no frames for page P in the WAL prior to M. 148 ** 149 ** The wal-index consists of a header region, followed by an one or 150 ** more index blocks. 151 ** 152 ** The wal-index header contains the total number of frames within the WAL 153 ** in the mxFrame field. 154 ** 155 ** Each index block except for the first contains information on 156 ** HASHTABLE_NPAGE frames. The first index block contains information on 157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 159 ** first index block are the same size as all other index blocks in the 160 ** wal-index. 161 ** 162 ** Each index block contains two sections, a page-mapping that contains the 163 ** database page number associated with each wal frame, and a hash-table 164 ** that allows readers to query an index block for a specific page number. 165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 166 ** for the first index block) 32-bit page numbers. The first entry in the 167 ** first index-block contains the database page number corresponding to the 168 ** first frame in the WAL file. The first entry in the second index block 169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 170 ** the log, and so on. 171 ** 172 ** The last index block in a wal-index usually contains less than the full 173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 174 ** depending on the contents of the WAL file. This does not change the 175 ** allocated size of the page-mapping array - the page-mapping array merely 176 ** contains unused entries. 177 ** 178 ** Even without using the hash table, the last frame for page P 179 ** can be found by scanning the page-mapping sections of each index block 180 ** starting with the last index block and moving toward the first, and 181 ** within each index block, starting at the end and moving toward the 182 ** beginning. The first entry that equals P corresponds to the frame 183 ** holding the content for that page. 184 ** 185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 187 ** hash table for each page number in the mapping section, so the hash 188 ** table is never more than half full. The expected number of collisions 189 ** prior to finding a match is 1. Each entry of the hash table is an 190 ** 1-based index of an entry in the mapping section of the same 191 ** index block. Let K be the 1-based index of the largest entry in 192 ** the mapping section. (For index blocks other than the last, K will 193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 195 ** contain a value of 0. 196 ** 197 ** To look for page P in the hash table, first compute a hash iKey on 198 ** P as follows: 199 ** 200 ** iKey = (P * 383) % HASHTABLE_NSLOT 201 ** 202 ** Then start scanning entries of the hash table, starting with iKey 203 ** (wrapping around to the beginning when the end of the hash table is 204 ** reached) until an unused hash slot is found. Let the first unused slot 205 ** be at index iUnused. (iUnused might be less than iKey if there was 206 ** wrap-around.) Because the hash table is never more than half full, 207 ** the search is guaranteed to eventually hit an unused entry. Let 208 ** iMax be the value between iKey and iUnused, closest to iUnused, 209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 210 ** no hash slot such that aHash[i]==p) then page P is not in the 211 ** current index block. Otherwise the iMax-th mapping entry of the 212 ** current index block corresponds to the last entry that references 213 ** page P. 214 ** 215 ** A hash search begins with the last index block and moves toward the 216 ** first index block, looking for entries corresponding to page P. On 217 ** average, only two or three slots in each index block need to be 218 ** examined in order to either find the last entry for page P, or to 219 ** establish that no such entry exists in the block. Each index block 220 ** holds over 4000 entries. So two or three index blocks are sufficient 221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 222 ** comparisons (on average) suffice to either locate a frame in the 223 ** WAL or to establish that the frame does not exist in the WAL. This 224 ** is much faster than scanning the entire 10MB WAL. 225 ** 226 ** Note that entries are added in order of increasing K. Hence, one 227 ** reader might be using some value K0 and a second reader that started 228 ** at a later time (after additional transactions were added to the WAL 229 ** and to the wal-index) might be using a different value K1, where K1>K0. 230 ** Both readers can use the same hash table and mapping section to get 231 ** the correct result. There may be entries in the hash table with 232 ** K>K0 but to the first reader, those entries will appear to be unused 233 ** slots in the hash table and so the first reader will get an answer as 234 ** if no values greater than K0 had ever been inserted into the hash table 235 ** in the first place - which is what reader one wants. Meanwhile, the 236 ** second reader using K1 will see additional values that were inserted 237 ** later, which is exactly what reader two wants. 238 ** 239 ** When a rollback occurs, the value of K is decreased. Hash table entries 240 ** that correspond to frames greater than the new K value are removed 241 ** from the hash table at this point. 242 */ 243 #ifndef SQLITE_OMIT_WAL 244 245 #include "wal.h" 246 247 /* 248 ** Trace output macros 249 */ 250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 251 int sqlite3WalTrace = 0; 252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 253 #else 254 # define WALTRACE(X) 255 #endif 256 257 /* 258 ** The maximum (and only) versions of the wal and wal-index formats 259 ** that may be interpreted by this version of SQLite. 260 ** 261 ** If a client begins recovering a WAL file and finds that (a) the checksum 262 ** values in the wal-header are correct and (b) the version field is not 263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 264 ** 265 ** Similarly, if a client successfully reads a wal-index header (i.e. the 266 ** checksum test is successful) and finds that the version field is not 267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 268 ** returns SQLITE_CANTOPEN. 269 */ 270 #define WAL_MAX_VERSION 3007000 271 #define WALINDEX_MAX_VERSION 3007000 272 273 /* 274 ** Indices of various locking bytes. WAL_NREADER is the number 275 ** of available reader locks and should be at least 3. 276 */ 277 #define WAL_WRITE_LOCK 0 278 #define WAL_ALL_BUT_WRITE 1 279 #define WAL_CKPT_LOCK 1 280 #define WAL_RECOVER_LOCK 2 281 #define WAL_READ_LOCK(I) (3+(I)) 282 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 283 284 285 /* Object declarations */ 286 typedef struct WalIndexHdr WalIndexHdr; 287 typedef struct WalIterator WalIterator; 288 typedef struct WalCkptInfo WalCkptInfo; 289 290 291 /* 292 ** The following object holds a copy of the wal-index header content. 293 ** 294 ** The actual header in the wal-index consists of two copies of this 295 ** object. 296 ** 297 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 298 ** Or it can be 1 to represent a 65536-byte page. The latter case was 299 ** added in 3.7.1 when support for 64K pages was added. 300 */ 301 struct WalIndexHdr { 302 u32 iVersion; /* Wal-index version */ 303 u32 unused; /* Unused (padding) field */ 304 u32 iChange; /* Counter incremented each transaction */ 305 u8 isInit; /* 1 when initialized */ 306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 307 u16 szPage; /* Database page size in bytes. 1==64K */ 308 u32 mxFrame; /* Index of last valid frame in the WAL */ 309 u32 nPage; /* Size of database in pages */ 310 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 311 u32 aSalt[2]; /* Two salt values copied from WAL header */ 312 u32 aCksum[2]; /* Checksum over all prior fields */ 313 }; 314 315 /* 316 ** A copy of the following object occurs in the wal-index immediately 317 ** following the second copy of the WalIndexHdr. This object stores 318 ** information used by checkpoint. 319 ** 320 ** nBackfill is the number of frames in the WAL that have been written 321 ** back into the database. (We call the act of moving content from WAL to 322 ** database "backfilling".) The nBackfill number is never greater than 323 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 324 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 325 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 326 ** mxFrame back to zero when the WAL is reset. 327 ** 328 ** There is one entry in aReadMark[] for each reader lock. If a reader 329 ** holds read-lock K, then the value in aReadMark[K] is no greater than 330 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 331 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 332 ** a special case; its value is never used and it exists as a place-holder 333 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 334 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 335 ** directly from the database. 336 ** 337 ** The value of aReadMark[K] may only be changed by a thread that 338 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 339 ** aReadMark[K] cannot changed while there is a reader is using that mark 340 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 341 ** 342 ** The checkpointer may only transfer frames from WAL to database where 343 ** the frame numbers are less than or equal to every aReadMark[] that is 344 ** in use (that is, every aReadMark[j] for which there is a corresponding 345 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 346 ** largest value and will increase an unused aReadMark[] to mxFrame if there 347 ** is not already an aReadMark[] equal to mxFrame. The exception to the 348 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 349 ** in the WAL has been backfilled into the database) then new readers 350 ** will choose aReadMark[0] which has value 0 and hence such reader will 351 ** get all their all content directly from the database file and ignore 352 ** the WAL. 353 ** 354 ** Writers normally append new frames to the end of the WAL. However, 355 ** if nBackfill equals mxFrame (meaning that all WAL content has been 356 ** written back into the database) and if no readers are using the WAL 357 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 358 ** the writer will first "reset" the WAL back to the beginning and start 359 ** writing new content beginning at frame 1. 360 ** 361 ** We assume that 32-bit loads are atomic and so no locks are needed in 362 ** order to read from any aReadMark[] entries. 363 */ 364 struct WalCkptInfo { 365 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 366 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 367 }; 368 #define READMARK_NOT_USED 0xffffffff 369 370 371 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 372 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 373 ** only support mandatory file-locks, we do not read or write data 374 ** from the region of the file on which locks are applied. 375 */ 376 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) 377 #define WALINDEX_LOCK_RESERVED 16 378 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) 379 380 /* Size of header before each frame in wal */ 381 #define WAL_FRAME_HDRSIZE 24 382 383 /* Size of write ahead log header, including checksum. */ 384 /* #define WAL_HDRSIZE 24 */ 385 #define WAL_HDRSIZE 32 386 387 /* WAL magic value. Either this value, or the same value with the least 388 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 389 ** big-endian format in the first 4 bytes of a WAL file. 390 ** 391 ** If the LSB is set, then the checksums for each frame within the WAL 392 ** file are calculated by treating all data as an array of 32-bit 393 ** big-endian words. Otherwise, they are calculated by interpreting 394 ** all data as 32-bit little-endian words. 395 */ 396 #define WAL_MAGIC 0x377f0682 397 398 /* 399 ** Return the offset of frame iFrame in the write-ahead log file, 400 ** assuming a database page size of szPage bytes. The offset returned 401 ** is to the start of the write-ahead log frame-header. 402 */ 403 #define walFrameOffset(iFrame, szPage) ( \ 404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 405 ) 406 407 /* 408 ** An open write-ahead log file is represented by an instance of the 409 ** following object. 410 */ 411 struct Wal { 412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 413 sqlite3_file *pDbFd; /* File handle for the database file */ 414 sqlite3_file *pWalFd; /* File handle for WAL file */ 415 u32 iCallback; /* Value to pass to log callback (or 0) */ 416 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 417 int nWiData; /* Size of array apWiData */ 418 int szFirstBlock; /* Size of first block written to WAL file */ 419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 420 u32 szPage; /* Database page size */ 421 i16 readLock; /* Which read lock is being held. -1 for none */ 422 u8 syncFlags; /* Flags to use to sync header writes */ 423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 424 u8 writeLock; /* True if in a write transaction */ 425 u8 ckptLock; /* True if holding a checkpoint lock */ 426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 427 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 428 u8 syncHeader; /* Fsync the WAL header if true */ 429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 430 WalIndexHdr hdr; /* Wal-index header for current transaction */ 431 u32 minFrame; /* Ignore wal frames before this one */ 432 const char *zWalName; /* Name of WAL file */ 433 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 434 #ifdef SQLITE_DEBUG 435 u8 lockError; /* True if a locking error has occurred */ 436 #endif 437 }; 438 439 /* 440 ** Candidate values for Wal.exclusiveMode. 441 */ 442 #define WAL_NORMAL_MODE 0 443 #define WAL_EXCLUSIVE_MODE 1 444 #define WAL_HEAPMEMORY_MODE 2 445 446 /* 447 ** Possible values for WAL.readOnly 448 */ 449 #define WAL_RDWR 0 /* Normal read/write connection */ 450 #define WAL_RDONLY 1 /* The WAL file is readonly */ 451 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 452 453 /* 454 ** Each page of the wal-index mapping contains a hash-table made up of 455 ** an array of HASHTABLE_NSLOT elements of the following type. 456 */ 457 typedef u16 ht_slot; 458 459 /* 460 ** This structure is used to implement an iterator that loops through 461 ** all frames in the WAL in database page order. Where two or more frames 462 ** correspond to the same database page, the iterator visits only the 463 ** frame most recently written to the WAL (in other words, the frame with 464 ** the largest index). 465 ** 466 ** The internals of this structure are only accessed by: 467 ** 468 ** walIteratorInit() - Create a new iterator, 469 ** walIteratorNext() - Step an iterator, 470 ** walIteratorFree() - Free an iterator. 471 ** 472 ** This functionality is used by the checkpoint code (see walCheckpoint()). 473 */ 474 struct WalIterator { 475 int iPrior; /* Last result returned from the iterator */ 476 int nSegment; /* Number of entries in aSegment[] */ 477 struct WalSegment { 478 int iNext; /* Next slot in aIndex[] not yet returned */ 479 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 480 u32 *aPgno; /* Array of page numbers. */ 481 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 482 int iZero; /* Frame number associated with aPgno[0] */ 483 } aSegment[1]; /* One for every 32KB page in the wal-index */ 484 }; 485 486 /* 487 ** Define the parameters of the hash tables in the wal-index file. There 488 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 489 ** wal-index. 490 ** 491 ** Changing any of these constants will alter the wal-index format and 492 ** create incompatibilities. 493 */ 494 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 495 #define HASHTABLE_HASH_1 383 /* Should be prime */ 496 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 497 498 /* 499 ** The block of page numbers associated with the first hash-table in a 500 ** wal-index is smaller than usual. This is so that there is a complete 501 ** hash-table on each aligned 32KB page of the wal-index. 502 */ 503 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 504 505 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 506 #define WALINDEX_PGSZ ( \ 507 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 508 ) 509 510 /* 511 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 512 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 513 ** numbered from zero. 514 ** 515 ** If this call is successful, *ppPage is set to point to the wal-index 516 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 517 ** then an SQLite error code is returned and *ppPage is set to 0. 518 */ 519 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 520 int rc = SQLITE_OK; 521 522 /* Enlarge the pWal->apWiData[] array if required */ 523 if( pWal->nWiData<=iPage ){ 524 int nByte = sizeof(u32*)*(iPage+1); 525 volatile u32 **apNew; 526 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 527 if( !apNew ){ 528 *ppPage = 0; 529 return SQLITE_NOMEM; 530 } 531 memset((void*)&apNew[pWal->nWiData], 0, 532 sizeof(u32*)*(iPage+1-pWal->nWiData)); 533 pWal->apWiData = apNew; 534 pWal->nWiData = iPage+1; 535 } 536 537 /* Request a pointer to the required page from the VFS */ 538 if( pWal->apWiData[iPage]==0 ){ 539 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 540 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 541 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; 542 }else{ 543 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 544 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 545 ); 546 if( rc==SQLITE_READONLY ){ 547 pWal->readOnly |= WAL_SHM_RDONLY; 548 rc = SQLITE_OK; 549 } 550 } 551 } 552 553 *ppPage = pWal->apWiData[iPage]; 554 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 555 return rc; 556 } 557 558 /* 559 ** Return a pointer to the WalCkptInfo structure in the wal-index. 560 */ 561 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 562 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 563 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 564 } 565 566 /* 567 ** Return a pointer to the WalIndexHdr structure in the wal-index. 568 */ 569 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 570 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 571 return (volatile WalIndexHdr*)pWal->apWiData[0]; 572 } 573 574 /* 575 ** The argument to this macro must be of type u32. On a little-endian 576 ** architecture, it returns the u32 value that results from interpreting 577 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 578 ** returns the value that would be produced by interpreting the 4 bytes 579 ** of the input value as a little-endian integer. 580 */ 581 #define BYTESWAP32(x) ( \ 582 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 583 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 584 ) 585 586 /* 587 ** Generate or extend an 8 byte checksum based on the data in 588 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 589 ** initial values of 0 and 0 if aIn==NULL). 590 ** 591 ** The checksum is written back into aOut[] before returning. 592 ** 593 ** nByte must be a positive multiple of 8. 594 */ 595 static void walChecksumBytes( 596 int nativeCksum, /* True for native byte-order, false for non-native */ 597 u8 *a, /* Content to be checksummed */ 598 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 599 const u32 *aIn, /* Initial checksum value input */ 600 u32 *aOut /* OUT: Final checksum value output */ 601 ){ 602 u32 s1, s2; 603 u32 *aData = (u32 *)a; 604 u32 *aEnd = (u32 *)&a[nByte]; 605 606 if( aIn ){ 607 s1 = aIn[0]; 608 s2 = aIn[1]; 609 }else{ 610 s1 = s2 = 0; 611 } 612 613 assert( nByte>=8 ); 614 assert( (nByte&0x00000007)==0 ); 615 616 if( nativeCksum ){ 617 do { 618 s1 += *aData++ + s2; 619 s2 += *aData++ + s1; 620 }while( aData<aEnd ); 621 }else{ 622 do { 623 s1 += BYTESWAP32(aData[0]) + s2; 624 s2 += BYTESWAP32(aData[1]) + s1; 625 aData += 2; 626 }while( aData<aEnd ); 627 } 628 629 aOut[0] = s1; 630 aOut[1] = s2; 631 } 632 633 static void walShmBarrier(Wal *pWal){ 634 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 635 sqlite3OsShmBarrier(pWal->pDbFd); 636 } 637 } 638 639 /* 640 ** Write the header information in pWal->hdr into the wal-index. 641 ** 642 ** The checksum on pWal->hdr is updated before it is written. 643 */ 644 static void walIndexWriteHdr(Wal *pWal){ 645 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 646 const int nCksum = offsetof(WalIndexHdr, aCksum); 647 648 assert( pWal->writeLock ); 649 pWal->hdr.isInit = 1; 650 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 651 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 652 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 653 walShmBarrier(pWal); 654 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 655 } 656 657 /* 658 ** This function encodes a single frame header and writes it to a buffer 659 ** supplied by the caller. A frame-header is made up of a series of 660 ** 4-byte big-endian integers, as follows: 661 ** 662 ** 0: Page number. 663 ** 4: For commit records, the size of the database image in pages 664 ** after the commit. For all other records, zero. 665 ** 8: Salt-1 (copied from the wal-header) 666 ** 12: Salt-2 (copied from the wal-header) 667 ** 16: Checksum-1. 668 ** 20: Checksum-2. 669 */ 670 static void walEncodeFrame( 671 Wal *pWal, /* The write-ahead log */ 672 u32 iPage, /* Database page number for frame */ 673 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 674 u8 *aData, /* Pointer to page data */ 675 u8 *aFrame /* OUT: Write encoded frame here */ 676 ){ 677 int nativeCksum; /* True for native byte-order checksums */ 678 u32 *aCksum = pWal->hdr.aFrameCksum; 679 assert( WAL_FRAME_HDRSIZE==24 ); 680 sqlite3Put4byte(&aFrame[0], iPage); 681 sqlite3Put4byte(&aFrame[4], nTruncate); 682 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 683 684 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 685 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 686 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 687 688 sqlite3Put4byte(&aFrame[16], aCksum[0]); 689 sqlite3Put4byte(&aFrame[20], aCksum[1]); 690 } 691 692 /* 693 ** Check to see if the frame with header in aFrame[] and content 694 ** in aData[] is valid. If it is a valid frame, fill *piPage and 695 ** *pnTruncate and return true. Return if the frame is not valid. 696 */ 697 static int walDecodeFrame( 698 Wal *pWal, /* The write-ahead log */ 699 u32 *piPage, /* OUT: Database page number for frame */ 700 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 701 u8 *aData, /* Pointer to page data (for checksum) */ 702 u8 *aFrame /* Frame data */ 703 ){ 704 int nativeCksum; /* True for native byte-order checksums */ 705 u32 *aCksum = pWal->hdr.aFrameCksum; 706 u32 pgno; /* Page number of the frame */ 707 assert( WAL_FRAME_HDRSIZE==24 ); 708 709 /* A frame is only valid if the salt values in the frame-header 710 ** match the salt values in the wal-header. 711 */ 712 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 713 return 0; 714 } 715 716 /* A frame is only valid if the page number is creater than zero. 717 */ 718 pgno = sqlite3Get4byte(&aFrame[0]); 719 if( pgno==0 ){ 720 return 0; 721 } 722 723 /* A frame is only valid if a checksum of the WAL header, 724 ** all prior frams, the first 16 bytes of this frame-header, 725 ** and the frame-data matches the checksum in the last 8 726 ** bytes of this frame-header. 727 */ 728 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 729 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 730 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 731 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 732 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 733 ){ 734 /* Checksum failed. */ 735 return 0; 736 } 737 738 /* If we reach this point, the frame is valid. Return the page number 739 ** and the new database size. 740 */ 741 *piPage = pgno; 742 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 743 return 1; 744 } 745 746 747 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 748 /* 749 ** Names of locks. This routine is used to provide debugging output and is not 750 ** a part of an ordinary build. 751 */ 752 static const char *walLockName(int lockIdx){ 753 if( lockIdx==WAL_WRITE_LOCK ){ 754 return "WRITE-LOCK"; 755 }else if( lockIdx==WAL_CKPT_LOCK ){ 756 return "CKPT-LOCK"; 757 }else if( lockIdx==WAL_RECOVER_LOCK ){ 758 return "RECOVER-LOCK"; 759 }else{ 760 static char zName[15]; 761 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 762 lockIdx-WAL_READ_LOCK(0)); 763 return zName; 764 } 765 } 766 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 767 768 769 /* 770 ** Set or release locks on the WAL. Locks are either shared or exclusive. 771 ** A lock cannot be moved directly between shared and exclusive - it must go 772 ** through the unlocked state first. 773 ** 774 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 775 */ 776 static int walLockShared(Wal *pWal, int lockIdx){ 777 int rc; 778 if( pWal->exclusiveMode ) return SQLITE_OK; 779 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 780 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 781 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 782 walLockName(lockIdx), rc ? "failed" : "ok")); 783 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 784 return rc; 785 } 786 static void walUnlockShared(Wal *pWal, int lockIdx){ 787 if( pWal->exclusiveMode ) return; 788 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 789 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 790 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 791 } 792 static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){ 793 int rc; 794 if( pWal->exclusiveMode ) return SQLITE_OK; 795 if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0); 796 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 797 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 798 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 799 walLockName(lockIdx), n, rc ? "failed" : "ok")); 800 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 801 return rc; 802 } 803 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 804 if( pWal->exclusiveMode ) return; 805 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 806 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 807 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 808 walLockName(lockIdx), n)); 809 } 810 811 /* 812 ** Compute a hash on a page number. The resulting hash value must land 813 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 814 ** the hash to the next value in the event of a collision. 815 */ 816 static int walHash(u32 iPage){ 817 assert( iPage>0 ); 818 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 819 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 820 } 821 static int walNextHash(int iPriorHash){ 822 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 823 } 824 825 /* 826 ** Return pointers to the hash table and page number array stored on 827 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 828 ** numbered starting from 0. 829 ** 830 ** Set output variable *paHash to point to the start of the hash table 831 ** in the wal-index file. Set *piZero to one less than the frame 832 ** number of the first frame indexed by this hash table. If a 833 ** slot in the hash table is set to N, it refers to frame number 834 ** (*piZero+N) in the log. 835 ** 836 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 837 ** first frame indexed by the hash table, frame (*piZero+1). 838 */ 839 static int walHashGet( 840 Wal *pWal, /* WAL handle */ 841 int iHash, /* Find the iHash'th table */ 842 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 843 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 844 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 845 ){ 846 int rc; /* Return code */ 847 volatile u32 *aPgno; 848 849 rc = walIndexPage(pWal, iHash, &aPgno); 850 assert( rc==SQLITE_OK || iHash>0 ); 851 852 if( rc==SQLITE_OK ){ 853 u32 iZero; 854 volatile ht_slot *aHash; 855 856 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 857 if( iHash==0 ){ 858 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 859 iZero = 0; 860 }else{ 861 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 862 } 863 864 *paPgno = &aPgno[-1]; 865 *paHash = aHash; 866 *piZero = iZero; 867 } 868 return rc; 869 } 870 871 /* 872 ** Return the number of the wal-index page that contains the hash-table 873 ** and page-number array that contain entries corresponding to WAL frame 874 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 875 ** are numbered starting from 0. 876 */ 877 static int walFramePage(u32 iFrame){ 878 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 879 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 880 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 881 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 882 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 883 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 884 ); 885 return iHash; 886 } 887 888 /* 889 ** Return the page number associated with frame iFrame in this WAL. 890 */ 891 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 892 int iHash = walFramePage(iFrame); 893 if( iHash==0 ){ 894 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 895 } 896 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 897 } 898 899 /* 900 ** Remove entries from the hash table that point to WAL slots greater 901 ** than pWal->hdr.mxFrame. 902 ** 903 ** This function is called whenever pWal->hdr.mxFrame is decreased due 904 ** to a rollback or savepoint. 905 ** 906 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 907 ** updated. Any later hash tables will be automatically cleared when 908 ** pWal->hdr.mxFrame advances to the point where those hash tables are 909 ** actually needed. 910 */ 911 static void walCleanupHash(Wal *pWal){ 912 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 913 volatile u32 *aPgno = 0; /* Page number array for hash table */ 914 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 915 int iLimit = 0; /* Zero values greater than this */ 916 int nByte; /* Number of bytes to zero in aPgno[] */ 917 int i; /* Used to iterate through aHash[] */ 918 919 assert( pWal->writeLock ); 920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 921 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 922 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 923 924 if( pWal->hdr.mxFrame==0 ) return; 925 926 /* Obtain pointers to the hash-table and page-number array containing 927 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 928 ** that the page said hash-table and array reside on is already mapped. 929 */ 930 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 931 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 932 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 933 934 /* Zero all hash-table entries that correspond to frame numbers greater 935 ** than pWal->hdr.mxFrame. 936 */ 937 iLimit = pWal->hdr.mxFrame - iZero; 938 assert( iLimit>0 ); 939 for(i=0; i<HASHTABLE_NSLOT; i++){ 940 if( aHash[i]>iLimit ){ 941 aHash[i] = 0; 942 } 943 } 944 945 /* Zero the entries in the aPgno array that correspond to frames with 946 ** frame numbers greater than pWal->hdr.mxFrame. 947 */ 948 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 949 memset((void *)&aPgno[iLimit+1], 0, nByte); 950 951 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 952 /* Verify that the every entry in the mapping region is still reachable 953 ** via the hash table even after the cleanup. 954 */ 955 if( iLimit ){ 956 int j; /* Loop counter */ 957 int iKey; /* Hash key */ 958 for(j=1; j<=iLimit; j++){ 959 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ 960 if( aHash[iKey]==j ) break; 961 } 962 assert( aHash[iKey]==j ); 963 } 964 } 965 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 966 } 967 968 969 /* 970 ** Set an entry in the wal-index that will map database page number 971 ** pPage into WAL frame iFrame. 972 */ 973 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 974 int rc; /* Return code */ 975 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 976 volatile u32 *aPgno = 0; /* Page number array */ 977 volatile ht_slot *aHash = 0; /* Hash table */ 978 979 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 980 981 /* Assuming the wal-index file was successfully mapped, populate the 982 ** page number array and hash table entry. 983 */ 984 if( rc==SQLITE_OK ){ 985 int iKey; /* Hash table key */ 986 int idx; /* Value to write to hash-table slot */ 987 int nCollide; /* Number of hash collisions */ 988 989 idx = iFrame - iZero; 990 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 991 992 /* If this is the first entry to be added to this hash-table, zero the 993 ** entire hash table and aPgno[] array before proceeding. 994 */ 995 if( idx==1 ){ 996 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 997 memset((void*)&aPgno[1], 0, nByte); 998 } 999 1000 /* If the entry in aPgno[] is already set, then the previous writer 1001 ** must have exited unexpectedly in the middle of a transaction (after 1002 ** writing one or more dirty pages to the WAL to free up memory). 1003 ** Remove the remnants of that writers uncommitted transaction from 1004 ** the hash-table before writing any new entries. 1005 */ 1006 if( aPgno[idx] ){ 1007 walCleanupHash(pWal); 1008 assert( !aPgno[idx] ); 1009 } 1010 1011 /* Write the aPgno[] array entry and the hash-table slot. */ 1012 nCollide = idx; 1013 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1014 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1015 } 1016 aPgno[idx] = iPage; 1017 aHash[iKey] = (ht_slot)idx; 1018 1019 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1020 /* Verify that the number of entries in the hash table exactly equals 1021 ** the number of entries in the mapping region. 1022 */ 1023 { 1024 int i; /* Loop counter */ 1025 int nEntry = 0; /* Number of entries in the hash table */ 1026 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1027 assert( nEntry==idx ); 1028 } 1029 1030 /* Verify that the every entry in the mapping region is reachable 1031 ** via the hash table. This turns out to be a really, really expensive 1032 ** thing to check, so only do this occasionally - not on every 1033 ** iteration. 1034 */ 1035 if( (idx&0x3ff)==0 ){ 1036 int i; /* Loop counter */ 1037 for(i=1; i<=idx; i++){ 1038 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1039 if( aHash[iKey]==i ) break; 1040 } 1041 assert( aHash[iKey]==i ); 1042 } 1043 } 1044 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1045 } 1046 1047 1048 return rc; 1049 } 1050 1051 1052 /* 1053 ** Recover the wal-index by reading the write-ahead log file. 1054 ** 1055 ** This routine first tries to establish an exclusive lock on the 1056 ** wal-index to prevent other threads/processes from doing anything 1057 ** with the WAL or wal-index while recovery is running. The 1058 ** WAL_RECOVER_LOCK is also held so that other threads will know 1059 ** that this thread is running recovery. If unable to establish 1060 ** the necessary locks, this routine returns SQLITE_BUSY. 1061 */ 1062 static int walIndexRecover(Wal *pWal){ 1063 int rc; /* Return Code */ 1064 i64 nSize; /* Size of log file */ 1065 u32 aFrameCksum[2] = {0, 0}; 1066 int iLock; /* Lock offset to lock for checkpoint */ 1067 int nLock; /* Number of locks to hold */ 1068 1069 /* Obtain an exclusive lock on all byte in the locking range not already 1070 ** locked by the caller. The caller is guaranteed to have locked the 1071 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1072 ** If successful, the same bytes that are locked here are unlocked before 1073 ** this function returns. 1074 */ 1075 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1076 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1077 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1078 assert( pWal->writeLock ); 1079 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1080 nLock = SQLITE_SHM_NLOCK - iLock; 1081 rc = walLockExclusive(pWal, iLock, nLock, 0); 1082 if( rc ){ 1083 return rc; 1084 } 1085 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1086 1087 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1088 1089 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1090 if( rc!=SQLITE_OK ){ 1091 goto recovery_error; 1092 } 1093 1094 if( nSize>WAL_HDRSIZE ){ 1095 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1096 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1097 int szFrame; /* Number of bytes in buffer aFrame[] */ 1098 u8 *aData; /* Pointer to data part of aFrame buffer */ 1099 int iFrame; /* Index of last frame read */ 1100 i64 iOffset; /* Next offset to read from log file */ 1101 int szPage; /* Page size according to the log */ 1102 u32 magic; /* Magic value read from WAL header */ 1103 u32 version; /* Magic value read from WAL header */ 1104 int isValid; /* True if this frame is valid */ 1105 1106 /* Read in the WAL header. */ 1107 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1108 if( rc!=SQLITE_OK ){ 1109 goto recovery_error; 1110 } 1111 1112 /* If the database page size is not a power of two, or is greater than 1113 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1114 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1115 ** WAL file. 1116 */ 1117 magic = sqlite3Get4byte(&aBuf[0]); 1118 szPage = sqlite3Get4byte(&aBuf[8]); 1119 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1120 || szPage&(szPage-1) 1121 || szPage>SQLITE_MAX_PAGE_SIZE 1122 || szPage<512 1123 ){ 1124 goto finished; 1125 } 1126 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1127 pWal->szPage = szPage; 1128 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1129 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1130 1131 /* Verify that the WAL header checksum is correct */ 1132 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1133 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1134 ); 1135 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1136 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1137 ){ 1138 goto finished; 1139 } 1140 1141 /* Verify that the version number on the WAL format is one that 1142 ** are able to understand */ 1143 version = sqlite3Get4byte(&aBuf[4]); 1144 if( version!=WAL_MAX_VERSION ){ 1145 rc = SQLITE_CANTOPEN_BKPT; 1146 goto finished; 1147 } 1148 1149 /* Malloc a buffer to read frames into. */ 1150 szFrame = szPage + WAL_FRAME_HDRSIZE; 1151 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1152 if( !aFrame ){ 1153 rc = SQLITE_NOMEM; 1154 goto recovery_error; 1155 } 1156 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1157 1158 /* Read all frames from the log file. */ 1159 iFrame = 0; 1160 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1161 u32 pgno; /* Database page number for frame */ 1162 u32 nTruncate; /* dbsize field from frame header */ 1163 1164 /* Read and decode the next log frame. */ 1165 iFrame++; 1166 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1167 if( rc!=SQLITE_OK ) break; 1168 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1169 if( !isValid ) break; 1170 rc = walIndexAppend(pWal, iFrame, pgno); 1171 if( rc!=SQLITE_OK ) break; 1172 1173 /* If nTruncate is non-zero, this is a commit record. */ 1174 if( nTruncate ){ 1175 pWal->hdr.mxFrame = iFrame; 1176 pWal->hdr.nPage = nTruncate; 1177 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1178 testcase( szPage<=32768 ); 1179 testcase( szPage>=65536 ); 1180 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1181 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1182 } 1183 } 1184 1185 sqlite3_free(aFrame); 1186 } 1187 1188 finished: 1189 if( rc==SQLITE_OK ){ 1190 volatile WalCkptInfo *pInfo; 1191 int i; 1192 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1193 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1194 walIndexWriteHdr(pWal); 1195 1196 /* Reset the checkpoint-header. This is safe because this thread is 1197 ** currently holding locks that exclude all other readers, writers and 1198 ** checkpointers. 1199 */ 1200 pInfo = walCkptInfo(pWal); 1201 pInfo->nBackfill = 0; 1202 pInfo->aReadMark[0] = 0; 1203 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1204 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1205 1206 /* If more than one frame was recovered from the log file, report an 1207 ** event via sqlite3_log(). This is to help with identifying performance 1208 ** problems caused by applications routinely shutting down without 1209 ** checkpointing the log file. 1210 */ 1211 if( pWal->hdr.nPage ){ 1212 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1213 "recovered %d frames from WAL file %s", 1214 pWal->hdr.mxFrame, pWal->zWalName 1215 ); 1216 } 1217 } 1218 1219 recovery_error: 1220 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1221 walUnlockExclusive(pWal, iLock, nLock); 1222 return rc; 1223 } 1224 1225 /* 1226 ** Close an open wal-index. 1227 */ 1228 static void walIndexClose(Wal *pWal, int isDelete){ 1229 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 1230 int i; 1231 for(i=0; i<pWal->nWiData; i++){ 1232 sqlite3_free((void *)pWal->apWiData[i]); 1233 pWal->apWiData[i] = 0; 1234 } 1235 }else{ 1236 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1237 } 1238 } 1239 1240 /* 1241 ** Open a connection to the WAL file zWalName. The database file must 1242 ** already be opened on connection pDbFd. The buffer that zWalName points 1243 ** to must remain valid for the lifetime of the returned Wal* handle. 1244 ** 1245 ** A SHARED lock should be held on the database file when this function 1246 ** is called. The purpose of this SHARED lock is to prevent any other 1247 ** client from unlinking the WAL or wal-index file. If another process 1248 ** were to do this just after this client opened one of these files, the 1249 ** system would be badly broken. 1250 ** 1251 ** If the log file is successfully opened, SQLITE_OK is returned and 1252 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1253 ** an SQLite error code is returned and *ppWal is left unmodified. 1254 */ 1255 int sqlite3WalOpen( 1256 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1257 sqlite3_file *pDbFd, /* The open database file */ 1258 const char *zWalName, /* Name of the WAL file */ 1259 int bNoShm, /* True to run in heap-memory mode */ 1260 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1261 Wal **ppWal /* OUT: Allocated Wal handle */ 1262 ){ 1263 int rc; /* Return Code */ 1264 Wal *pRet; /* Object to allocate and return */ 1265 int flags; /* Flags passed to OsOpen() */ 1266 1267 assert( zWalName && zWalName[0] ); 1268 assert( pDbFd ); 1269 1270 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1271 ** this source file. Verify that the #defines of the locking byte offsets 1272 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1273 */ 1274 #ifdef WIN_SHM_BASE 1275 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1276 #endif 1277 #ifdef UNIX_SHM_BASE 1278 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1279 #endif 1280 1281 1282 /* Allocate an instance of struct Wal to return. */ 1283 *ppWal = 0; 1284 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1285 if( !pRet ){ 1286 return SQLITE_NOMEM; 1287 } 1288 1289 pRet->pVfs = pVfs; 1290 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1291 pRet->pDbFd = pDbFd; 1292 pRet->readLock = -1; 1293 pRet->mxWalSize = mxWalSize; 1294 pRet->zWalName = zWalName; 1295 pRet->syncHeader = 1; 1296 pRet->padToSectorBoundary = 1; 1297 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1298 1299 /* Open file handle on the write-ahead log file. */ 1300 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1301 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1302 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1303 pRet->readOnly = WAL_RDONLY; 1304 } 1305 1306 if( rc!=SQLITE_OK ){ 1307 walIndexClose(pRet, 0); 1308 sqlite3OsClose(pRet->pWalFd); 1309 sqlite3_free(pRet); 1310 }else{ 1311 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1312 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1313 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1314 pRet->padToSectorBoundary = 0; 1315 } 1316 *ppWal = pRet; 1317 WALTRACE(("WAL%d: opened\n", pRet)); 1318 } 1319 return rc; 1320 } 1321 1322 /* 1323 ** Change the size to which the WAL file is trucated on each reset. 1324 */ 1325 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1326 if( pWal ) pWal->mxWalSize = iLimit; 1327 } 1328 1329 /* 1330 ** Find the smallest page number out of all pages held in the WAL that 1331 ** has not been returned by any prior invocation of this method on the 1332 ** same WalIterator object. Write into *piFrame the frame index where 1333 ** that page was last written into the WAL. Write into *piPage the page 1334 ** number. 1335 ** 1336 ** Return 0 on success. If there are no pages in the WAL with a page 1337 ** number larger than *piPage, then return 1. 1338 */ 1339 static int walIteratorNext( 1340 WalIterator *p, /* Iterator */ 1341 u32 *piPage, /* OUT: The page number of the next page */ 1342 u32 *piFrame /* OUT: Wal frame index of next page */ 1343 ){ 1344 u32 iMin; /* Result pgno must be greater than iMin */ 1345 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1346 int i; /* For looping through segments */ 1347 1348 iMin = p->iPrior; 1349 assert( iMin<0xffffffff ); 1350 for(i=p->nSegment-1; i>=0; i--){ 1351 struct WalSegment *pSegment = &p->aSegment[i]; 1352 while( pSegment->iNext<pSegment->nEntry ){ 1353 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1354 if( iPg>iMin ){ 1355 if( iPg<iRet ){ 1356 iRet = iPg; 1357 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1358 } 1359 break; 1360 } 1361 pSegment->iNext++; 1362 } 1363 } 1364 1365 *piPage = p->iPrior = iRet; 1366 return (iRet==0xFFFFFFFF); 1367 } 1368 1369 /* 1370 ** This function merges two sorted lists into a single sorted list. 1371 ** 1372 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1373 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1374 ** is guaranteed for all J<K: 1375 ** 1376 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1377 ** aContent[aRight[J]] < aContent[aRight[K]] 1378 ** 1379 ** This routine overwrites aRight[] with a new (probably longer) sequence 1380 ** of indices such that the aRight[] contains every index that appears in 1381 ** either aLeft[] or the old aRight[] and such that the second condition 1382 ** above is still met. 1383 ** 1384 ** The aContent[aLeft[X]] values will be unique for all X. And the 1385 ** aContent[aRight[X]] values will be unique too. But there might be 1386 ** one or more combinations of X and Y such that 1387 ** 1388 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1389 ** 1390 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1391 */ 1392 static void walMerge( 1393 const u32 *aContent, /* Pages in wal - keys for the sort */ 1394 ht_slot *aLeft, /* IN: Left hand input list */ 1395 int nLeft, /* IN: Elements in array *paLeft */ 1396 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1397 int *pnRight, /* IN/OUT: Elements in *paRight */ 1398 ht_slot *aTmp /* Temporary buffer */ 1399 ){ 1400 int iLeft = 0; /* Current index in aLeft */ 1401 int iRight = 0; /* Current index in aRight */ 1402 int iOut = 0; /* Current index in output buffer */ 1403 int nRight = *pnRight; 1404 ht_slot *aRight = *paRight; 1405 1406 assert( nLeft>0 && nRight>0 ); 1407 while( iRight<nRight || iLeft<nLeft ){ 1408 ht_slot logpage; 1409 Pgno dbpage; 1410 1411 if( (iLeft<nLeft) 1412 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1413 ){ 1414 logpage = aLeft[iLeft++]; 1415 }else{ 1416 logpage = aRight[iRight++]; 1417 } 1418 dbpage = aContent[logpage]; 1419 1420 aTmp[iOut++] = logpage; 1421 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1422 1423 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1424 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1425 } 1426 1427 *paRight = aLeft; 1428 *pnRight = iOut; 1429 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1430 } 1431 1432 /* 1433 ** Sort the elements in list aList using aContent[] as the sort key. 1434 ** Remove elements with duplicate keys, preferring to keep the 1435 ** larger aList[] values. 1436 ** 1437 ** The aList[] entries are indices into aContent[]. The values in 1438 ** aList[] are to be sorted so that for all J<K: 1439 ** 1440 ** aContent[aList[J]] < aContent[aList[K]] 1441 ** 1442 ** For any X and Y such that 1443 ** 1444 ** aContent[aList[X]] == aContent[aList[Y]] 1445 ** 1446 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1447 ** the smaller. 1448 */ 1449 static void walMergesort( 1450 const u32 *aContent, /* Pages in wal */ 1451 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1452 ht_slot *aList, /* IN/OUT: List to sort */ 1453 int *pnList /* IN/OUT: Number of elements in aList[] */ 1454 ){ 1455 struct Sublist { 1456 int nList; /* Number of elements in aList */ 1457 ht_slot *aList; /* Pointer to sub-list content */ 1458 }; 1459 1460 const int nList = *pnList; /* Size of input list */ 1461 int nMerge = 0; /* Number of elements in list aMerge */ 1462 ht_slot *aMerge = 0; /* List to be merged */ 1463 int iList; /* Index into input list */ 1464 u32 iSub = 0; /* Index into aSub array */ 1465 struct Sublist aSub[13]; /* Array of sub-lists */ 1466 1467 memset(aSub, 0, sizeof(aSub)); 1468 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1469 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1470 1471 for(iList=0; iList<nList; iList++){ 1472 nMerge = 1; 1473 aMerge = &aList[iList]; 1474 for(iSub=0; iList & (1<<iSub); iSub++){ 1475 struct Sublist *p; 1476 assert( iSub<ArraySize(aSub) ); 1477 p = &aSub[iSub]; 1478 assert( p->aList && p->nList<=(1<<iSub) ); 1479 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1480 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1481 } 1482 aSub[iSub].aList = aMerge; 1483 aSub[iSub].nList = nMerge; 1484 } 1485 1486 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1487 if( nList & (1<<iSub) ){ 1488 struct Sublist *p; 1489 assert( iSub<ArraySize(aSub) ); 1490 p = &aSub[iSub]; 1491 assert( p->nList<=(1<<iSub) ); 1492 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1493 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1494 } 1495 } 1496 assert( aMerge==aList ); 1497 *pnList = nMerge; 1498 1499 #ifdef SQLITE_DEBUG 1500 { 1501 int i; 1502 for(i=1; i<*pnList; i++){ 1503 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1504 } 1505 } 1506 #endif 1507 } 1508 1509 /* 1510 ** Free an iterator allocated by walIteratorInit(). 1511 */ 1512 static void walIteratorFree(WalIterator *p){ 1513 sqlite3_free(p); 1514 } 1515 1516 /* 1517 ** Construct a WalInterator object that can be used to loop over all 1518 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1519 ** lock. 1520 ** 1521 ** On success, make *pp point to the newly allocated WalInterator object 1522 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1523 ** returns an error, the value of *pp is undefined. 1524 ** 1525 ** The calling routine should invoke walIteratorFree() to destroy the 1526 ** WalIterator object when it has finished with it. 1527 */ 1528 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1529 WalIterator *p; /* Return value */ 1530 int nSegment; /* Number of segments to merge */ 1531 u32 iLast; /* Last frame in log */ 1532 int nByte; /* Number of bytes to allocate */ 1533 int i; /* Iterator variable */ 1534 ht_slot *aTmp; /* Temp space used by merge-sort */ 1535 int rc = SQLITE_OK; /* Return Code */ 1536 1537 /* This routine only runs while holding the checkpoint lock. And 1538 ** it only runs if there is actually content in the log (mxFrame>0). 1539 */ 1540 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1541 iLast = pWal->hdr.mxFrame; 1542 1543 /* Allocate space for the WalIterator object. */ 1544 nSegment = walFramePage(iLast) + 1; 1545 nByte = sizeof(WalIterator) 1546 + (nSegment-1)*sizeof(struct WalSegment) 1547 + iLast*sizeof(ht_slot); 1548 p = (WalIterator *)sqlite3_malloc64(nByte); 1549 if( !p ){ 1550 return SQLITE_NOMEM; 1551 } 1552 memset(p, 0, nByte); 1553 p->nSegment = nSegment; 1554 1555 /* Allocate temporary space used by the merge-sort routine. This block 1556 ** of memory will be freed before this function returns. 1557 */ 1558 aTmp = (ht_slot *)sqlite3_malloc64( 1559 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1560 ); 1561 if( !aTmp ){ 1562 rc = SQLITE_NOMEM; 1563 } 1564 1565 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1566 volatile ht_slot *aHash; 1567 u32 iZero; 1568 volatile u32 *aPgno; 1569 1570 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1571 if( rc==SQLITE_OK ){ 1572 int j; /* Counter variable */ 1573 int nEntry; /* Number of entries in this segment */ 1574 ht_slot *aIndex; /* Sorted index for this segment */ 1575 1576 aPgno++; 1577 if( (i+1)==nSegment ){ 1578 nEntry = (int)(iLast - iZero); 1579 }else{ 1580 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1581 } 1582 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1583 iZero++; 1584 1585 for(j=0; j<nEntry; j++){ 1586 aIndex[j] = (ht_slot)j; 1587 } 1588 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1589 p->aSegment[i].iZero = iZero; 1590 p->aSegment[i].nEntry = nEntry; 1591 p->aSegment[i].aIndex = aIndex; 1592 p->aSegment[i].aPgno = (u32 *)aPgno; 1593 } 1594 } 1595 sqlite3_free(aTmp); 1596 1597 if( rc!=SQLITE_OK ){ 1598 walIteratorFree(p); 1599 } 1600 *pp = p; 1601 return rc; 1602 } 1603 1604 /* 1605 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1606 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1607 ** busy-handler function. Invoke it and retry the lock until either the 1608 ** lock is successfully obtained or the busy-handler returns 0. 1609 */ 1610 static int walBusyLock( 1611 Wal *pWal, /* WAL connection */ 1612 int (*xBusy)(void*), /* Function to call when busy */ 1613 void *pBusyArg, /* Context argument for xBusyHandler */ 1614 int lockIdx, /* Offset of first byte to lock */ 1615 int n /* Number of bytes to lock */ 1616 ){ 1617 int rc; 1618 do { 1619 rc = walLockExclusive(pWal, lockIdx, n, 0); 1620 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1621 return rc; 1622 } 1623 1624 /* 1625 ** The cache of the wal-index header must be valid to call this function. 1626 ** Return the page-size in bytes used by the database. 1627 */ 1628 static int walPagesize(Wal *pWal){ 1629 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1630 } 1631 1632 /* 1633 ** The following is guaranteed when this function is called: 1634 ** 1635 ** a) the WRITER lock is held, 1636 ** b) the entire log file has been checkpointed, and 1637 ** c) any existing readers are reading exclusively from the database 1638 ** file - there are no readers that may attempt to read a frame from 1639 ** the log file. 1640 ** 1641 ** This function updates the shared-memory structures so that the next 1642 ** client to write to the database (which may be this one) does so by 1643 ** writing frames into the start of the log file. 1644 ** 1645 ** The value of parameter salt1 is used as the aSalt[1] value in the 1646 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1647 ** one obtained from sqlite3_randomness()). 1648 */ 1649 static void walRestartHdr(Wal *pWal, u32 salt1){ 1650 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1651 int i; /* Loop counter */ 1652 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1653 pWal->nCkpt++; 1654 pWal->hdr.mxFrame = 0; 1655 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1656 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1657 walIndexWriteHdr(pWal); 1658 pInfo->nBackfill = 0; 1659 pInfo->aReadMark[1] = 0; 1660 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1661 assert( pInfo->aReadMark[0]==0 ); 1662 } 1663 1664 /* 1665 ** Copy as much content as we can from the WAL back into the database file 1666 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1667 ** 1668 ** The amount of information copies from WAL to database might be limited 1669 ** by active readers. This routine will never overwrite a database page 1670 ** that a concurrent reader might be using. 1671 ** 1672 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1673 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1674 ** checkpoints are always run by a background thread or background 1675 ** process, foreground threads will never block on a lengthy fsync call. 1676 ** 1677 ** Fsync is called on the WAL before writing content out of the WAL and 1678 ** into the database. This ensures that if the new content is persistent 1679 ** in the WAL and can be recovered following a power-loss or hard reset. 1680 ** 1681 ** Fsync is also called on the database file if (and only if) the entire 1682 ** WAL content is copied into the database file. This second fsync makes 1683 ** it safe to delete the WAL since the new content will persist in the 1684 ** database file. 1685 ** 1686 ** This routine uses and updates the nBackfill field of the wal-index header. 1687 ** This is the only routine that will increase the value of nBackfill. 1688 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1689 ** its value.) 1690 ** 1691 ** The caller must be holding sufficient locks to ensure that no other 1692 ** checkpoint is running (in any other thread or process) at the same 1693 ** time. 1694 */ 1695 static int walCheckpoint( 1696 Wal *pWal, /* Wal connection */ 1697 int eMode, /* One of PASSIVE, FULL or RESTART */ 1698 int (*xBusy)(void*), /* Function to call when busy */ 1699 void *pBusyArg, /* Context argument for xBusyHandler */ 1700 int sync_flags, /* Flags for OsSync() (or 0) */ 1701 u8 *zBuf /* Temporary buffer to use */ 1702 ){ 1703 int rc = SQLITE_OK; /* Return code */ 1704 int szPage; /* Database page-size */ 1705 WalIterator *pIter = 0; /* Wal iterator context */ 1706 u32 iDbpage = 0; /* Next database page to write */ 1707 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1708 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1709 u32 mxPage; /* Max database page to write */ 1710 int i; /* Loop counter */ 1711 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1712 1713 szPage = walPagesize(pWal); 1714 testcase( szPage<=32768 ); 1715 testcase( szPage>=65536 ); 1716 pInfo = walCkptInfo(pWal); 1717 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1718 1719 /* Allocate the iterator */ 1720 rc = walIteratorInit(pWal, &pIter); 1721 if( rc!=SQLITE_OK ){ 1722 return rc; 1723 } 1724 assert( pIter ); 1725 1726 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1727 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1728 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1729 1730 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1731 ** safe to write into the database. Frames beyond mxSafeFrame might 1732 ** overwrite database pages that are in use by active readers and thus 1733 ** cannot be backfilled from the WAL. 1734 */ 1735 mxSafeFrame = pWal->hdr.mxFrame; 1736 mxPage = pWal->hdr.nPage; 1737 for(i=1; i<WAL_NREADER; i++){ 1738 /* Thread-sanitizer reports that the following is an unsafe read, 1739 ** as some other thread may be in the process of updating the value 1740 ** of the aReadMark[] slot. The assumption here is that if that is 1741 ** happening, the other client may only be increasing the value, 1742 ** not decreasing it. So assuming either that either the "old" or 1743 ** "new" version of the value is read, and not some arbitrary value 1744 ** that would never be written by a real client, things are still 1745 ** safe. */ 1746 u32 y = pInfo->aReadMark[i]; 1747 if( mxSafeFrame>y ){ 1748 assert( y<=pWal->hdr.mxFrame ); 1749 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1750 if( rc==SQLITE_OK ){ 1751 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1752 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1753 }else if( rc==SQLITE_BUSY ){ 1754 mxSafeFrame = y; 1755 xBusy = 0; 1756 }else{ 1757 goto walcheckpoint_out; 1758 } 1759 } 1760 } 1761 1762 if( pInfo->nBackfill<mxSafeFrame 1763 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1764 ){ 1765 i64 nSize; /* Current size of database file */ 1766 u32 nBackfill = pInfo->nBackfill; 1767 1768 /* Sync the WAL to disk */ 1769 if( sync_flags ){ 1770 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1771 } 1772 1773 /* If the database may grow as a result of this checkpoint, hint 1774 ** about the eventual size of the db file to the VFS layer. 1775 */ 1776 if( rc==SQLITE_OK ){ 1777 i64 nReq = ((i64)mxPage * szPage); 1778 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1779 if( rc==SQLITE_OK && nSize<nReq ){ 1780 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1781 } 1782 } 1783 1784 1785 /* Iterate through the contents of the WAL, copying data to the db file */ 1786 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1787 i64 iOffset; 1788 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1789 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1790 continue; 1791 } 1792 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1793 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1794 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1795 if( rc!=SQLITE_OK ) break; 1796 iOffset = (iDbpage-1)*(i64)szPage; 1797 testcase( IS_BIG_INT(iOffset) ); 1798 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1799 if( rc!=SQLITE_OK ) break; 1800 } 1801 1802 /* If work was actually accomplished... */ 1803 if( rc==SQLITE_OK ){ 1804 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1805 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1806 testcase( IS_BIG_INT(szDb) ); 1807 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1808 if( rc==SQLITE_OK && sync_flags ){ 1809 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1810 } 1811 } 1812 if( rc==SQLITE_OK ){ 1813 pInfo->nBackfill = mxSafeFrame; 1814 } 1815 } 1816 1817 /* Release the reader lock held while backfilling */ 1818 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1819 } 1820 1821 if( rc==SQLITE_BUSY ){ 1822 /* Reset the return code so as not to report a checkpoint failure 1823 ** just because there are active readers. */ 1824 rc = SQLITE_OK; 1825 } 1826 } 1827 1828 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1829 ** entire wal file has been copied into the database file, then block 1830 ** until all readers have finished using the wal file. This ensures that 1831 ** the next process to write to the database restarts the wal file. 1832 */ 1833 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1834 assert( pWal->writeLock ); 1835 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1836 rc = SQLITE_BUSY; 1837 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1838 u32 salt1; 1839 sqlite3_randomness(4, &salt1); 1840 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1841 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1842 if( rc==SQLITE_OK ){ 1843 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1844 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1845 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1846 ** truncates the log file to zero bytes just prior to a 1847 ** successful return. 1848 ** 1849 ** In theory, it might be safe to do this without updating the 1850 ** wal-index header in shared memory, as all subsequent reader or 1851 ** writer clients should see that the entire log file has been 1852 ** checkpointed and behave accordingly. This seems unsafe though, 1853 ** as it would leave the system in a state where the contents of 1854 ** the wal-index header do not match the contents of the 1855 ** file-system. To avoid this, update the wal-index header to 1856 ** indicate that the log file contains zero valid frames. */ 1857 walRestartHdr(pWal, salt1); 1858 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1859 } 1860 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1861 } 1862 } 1863 } 1864 1865 walcheckpoint_out: 1866 walIteratorFree(pIter); 1867 return rc; 1868 } 1869 1870 /* 1871 ** If the WAL file is currently larger than nMax bytes in size, truncate 1872 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1873 */ 1874 static void walLimitSize(Wal *pWal, i64 nMax){ 1875 i64 sz; 1876 int rx; 1877 sqlite3BeginBenignMalloc(); 1878 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1879 if( rx==SQLITE_OK && (sz > nMax ) ){ 1880 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1881 } 1882 sqlite3EndBenignMalloc(); 1883 if( rx ){ 1884 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1885 } 1886 } 1887 1888 /* 1889 ** Close a connection to a log file. 1890 */ 1891 int sqlite3WalClose( 1892 Wal *pWal, /* Wal to close */ 1893 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1894 int nBuf, 1895 u8 *zBuf /* Buffer of at least nBuf bytes */ 1896 ){ 1897 int rc = SQLITE_OK; 1898 if( pWal ){ 1899 int isDelete = 0; /* True to unlink wal and wal-index files */ 1900 1901 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1902 ** ordinary, rollback-mode locking methods, this guarantees that the 1903 ** connection associated with this log file is the only connection to 1904 ** the database. In this case checkpoint the database and unlink both 1905 ** the wal and wal-index files. 1906 ** 1907 ** The EXCLUSIVE lock is not released before returning. 1908 */ 1909 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1910 if( rc==SQLITE_OK ){ 1911 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1912 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1913 } 1914 rc = sqlite3WalCheckpoint( 1915 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1916 ); 1917 if( rc==SQLITE_OK ){ 1918 int bPersist = -1; 1919 sqlite3OsFileControlHint( 1920 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1921 ); 1922 if( bPersist!=1 ){ 1923 /* Try to delete the WAL file if the checkpoint completed and 1924 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1925 ** mode (!bPersist) */ 1926 isDelete = 1; 1927 }else if( pWal->mxWalSize>=0 ){ 1928 /* Try to truncate the WAL file to zero bytes if the checkpoint 1929 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1930 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1931 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1932 ** to zero bytes as truncating to the journal_size_limit might 1933 ** leave a corrupt WAL file on disk. */ 1934 walLimitSize(pWal, 0); 1935 } 1936 } 1937 } 1938 1939 walIndexClose(pWal, isDelete); 1940 sqlite3OsClose(pWal->pWalFd); 1941 if( isDelete ){ 1942 sqlite3BeginBenignMalloc(); 1943 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1944 sqlite3EndBenignMalloc(); 1945 } 1946 WALTRACE(("WAL%p: closed\n", pWal)); 1947 sqlite3_free((void *)pWal->apWiData); 1948 sqlite3_free(pWal); 1949 } 1950 return rc; 1951 } 1952 1953 /* 1954 ** Try to read the wal-index header. Return 0 on success and 1 if 1955 ** there is a problem. 1956 ** 1957 ** The wal-index is in shared memory. Another thread or process might 1958 ** be writing the header at the same time this procedure is trying to 1959 ** read it, which might result in inconsistency. A dirty read is detected 1960 ** by verifying that both copies of the header are the same and also by 1961 ** a checksum on the header. 1962 ** 1963 ** If and only if the read is consistent and the header is different from 1964 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1965 ** and *pChanged is set to 1. 1966 ** 1967 ** If the checksum cannot be verified return non-zero. If the header 1968 ** is read successfully and the checksum verified, return zero. 1969 */ 1970 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 1971 u32 aCksum[2]; /* Checksum on the header content */ 1972 WalIndexHdr h1, h2; /* Two copies of the header content */ 1973 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 1974 1975 /* The first page of the wal-index must be mapped at this point. */ 1976 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 1977 1978 /* Read the header. This might happen concurrently with a write to the 1979 ** same area of shared memory on a different CPU in a SMP, 1980 ** meaning it is possible that an inconsistent snapshot is read 1981 ** from the file. If this happens, return non-zero. 1982 ** 1983 ** There are two copies of the header at the beginning of the wal-index. 1984 ** When reading, read [0] first then [1]. Writes are in the reverse order. 1985 ** Memory barriers are used to prevent the compiler or the hardware from 1986 ** reordering the reads and writes. 1987 */ 1988 aHdr = walIndexHdr(pWal); 1989 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 1990 walShmBarrier(pWal); 1991 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 1992 1993 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 1994 return 1; /* Dirty read */ 1995 } 1996 if( h1.isInit==0 ){ 1997 return 1; /* Malformed header - probably all zeros */ 1998 } 1999 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2000 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2001 return 1; /* Checksum does not match */ 2002 } 2003 2004 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2005 *pChanged = 1; 2006 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2007 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2008 testcase( pWal->szPage<=32768 ); 2009 testcase( pWal->szPage>=65536 ); 2010 } 2011 2012 /* The header was successfully read. Return zero. */ 2013 return 0; 2014 } 2015 2016 /* 2017 ** Read the wal-index header from the wal-index and into pWal->hdr. 2018 ** If the wal-header appears to be corrupt, try to reconstruct the 2019 ** wal-index from the WAL before returning. 2020 ** 2021 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2022 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2023 ** to 0. 2024 ** 2025 ** If the wal-index header is successfully read, return SQLITE_OK. 2026 ** Otherwise an SQLite error code. 2027 */ 2028 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2029 int rc; /* Return code */ 2030 int badHdr; /* True if a header read failed */ 2031 volatile u32 *page0; /* Chunk of wal-index containing header */ 2032 2033 /* Ensure that page 0 of the wal-index (the page that contains the 2034 ** wal-index header) is mapped. Return early if an error occurs here. 2035 */ 2036 assert( pChanged ); 2037 rc = walIndexPage(pWal, 0, &page0); 2038 if( rc!=SQLITE_OK ){ 2039 return rc; 2040 }; 2041 assert( page0 || pWal->writeLock==0 ); 2042 2043 /* If the first page of the wal-index has been mapped, try to read the 2044 ** wal-index header immediately, without holding any lock. This usually 2045 ** works, but may fail if the wal-index header is corrupt or currently 2046 ** being modified by another thread or process. 2047 */ 2048 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2049 2050 /* If the first attempt failed, it might have been due to a race 2051 ** with a writer. So get a WRITE lock and try again. 2052 */ 2053 assert( badHdr==0 || pWal->writeLock==0 ); 2054 if( badHdr ){ 2055 if( pWal->readOnly & WAL_SHM_RDONLY ){ 2056 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2057 walUnlockShared(pWal, WAL_WRITE_LOCK); 2058 rc = SQLITE_READONLY_RECOVERY; 2059 } 2060 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){ 2061 pWal->writeLock = 1; 2062 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2063 badHdr = walIndexTryHdr(pWal, pChanged); 2064 if( badHdr ){ 2065 /* If the wal-index header is still malformed even while holding 2066 ** a WRITE lock, it can only mean that the header is corrupted and 2067 ** needs to be reconstructed. So run recovery to do exactly that. 2068 */ 2069 rc = walIndexRecover(pWal); 2070 *pChanged = 1; 2071 } 2072 } 2073 pWal->writeLock = 0; 2074 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2075 } 2076 } 2077 2078 /* If the header is read successfully, check the version number to make 2079 ** sure the wal-index was not constructed with some future format that 2080 ** this version of SQLite cannot understand. 2081 */ 2082 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2083 rc = SQLITE_CANTOPEN_BKPT; 2084 } 2085 2086 return rc; 2087 } 2088 2089 /* 2090 ** This is the value that walTryBeginRead returns when it needs to 2091 ** be retried. 2092 */ 2093 #define WAL_RETRY (-1) 2094 2095 /* 2096 ** Attempt to start a read transaction. This might fail due to a race or 2097 ** other transient condition. When that happens, it returns WAL_RETRY to 2098 ** indicate to the caller that it is safe to retry immediately. 2099 ** 2100 ** On success return SQLITE_OK. On a permanent failure (such an 2101 ** I/O error or an SQLITE_BUSY because another process is running 2102 ** recovery) return a positive error code. 2103 ** 2104 ** The useWal parameter is true to force the use of the WAL and disable 2105 ** the case where the WAL is bypassed because it has been completely 2106 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2107 ** to make a copy of the wal-index header into pWal->hdr. If the 2108 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2109 ** to the caller that the local paget cache is obsolete and needs to be 2110 ** flushed.) When useWal==1, the wal-index header is assumed to already 2111 ** be loaded and the pChanged parameter is unused. 2112 ** 2113 ** The caller must set the cnt parameter to the number of prior calls to 2114 ** this routine during the current read attempt that returned WAL_RETRY. 2115 ** This routine will start taking more aggressive measures to clear the 2116 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2117 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2118 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2119 ** and is not honoring the locking protocol. There is a vanishingly small 2120 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2121 ** bad luck when there is lots of contention for the wal-index, but that 2122 ** possibility is so small that it can be safely neglected, we believe. 2123 ** 2124 ** On success, this routine obtains a read lock on 2125 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2126 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2127 ** that means the Wal does not hold any read lock. The reader must not 2128 ** access any database page that is modified by a WAL frame up to and 2129 ** including frame number aReadMark[pWal->readLock]. The reader will 2130 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2131 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2132 ** completely and get all content directly from the database file. 2133 ** If the useWal parameter is 1 then the WAL will never be ignored and 2134 ** this routine will always set pWal->readLock>0 on success. 2135 ** When the read transaction is completed, the caller must release the 2136 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2137 ** 2138 ** This routine uses the nBackfill and aReadMark[] fields of the header 2139 ** to select a particular WAL_READ_LOCK() that strives to let the 2140 ** checkpoint process do as much work as possible. This routine might 2141 ** update values of the aReadMark[] array in the header, but if it does 2142 ** so it takes care to hold an exclusive lock on the corresponding 2143 ** WAL_READ_LOCK() while changing values. 2144 */ 2145 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2146 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2147 u32 mxReadMark; /* Largest aReadMark[] value */ 2148 int mxI; /* Index of largest aReadMark[] value */ 2149 int i; /* Loop counter */ 2150 int rc = SQLITE_OK; /* Return code */ 2151 2152 assert( pWal->readLock<0 ); /* Not currently locked */ 2153 2154 /* Take steps to avoid spinning forever if there is a protocol error. 2155 ** 2156 ** Circumstances that cause a RETRY should only last for the briefest 2157 ** instances of time. No I/O or other system calls are done while the 2158 ** locks are held, so the locks should not be held for very long. But 2159 ** if we are unlucky, another process that is holding a lock might get 2160 ** paged out or take a page-fault that is time-consuming to resolve, 2161 ** during the few nanoseconds that it is holding the lock. In that case, 2162 ** it might take longer than normal for the lock to free. 2163 ** 2164 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2165 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2166 ** is more of a scheduler yield than an actual delay. But on the 10th 2167 ** an subsequent retries, the delays start becoming longer and longer, 2168 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2169 ** The total delay time before giving up is less than 10 seconds. 2170 */ 2171 if( cnt>5 ){ 2172 int nDelay = 1; /* Pause time in microseconds */ 2173 if( cnt>100 ){ 2174 VVA_ONLY( pWal->lockError = 1; ) 2175 return SQLITE_PROTOCOL; 2176 } 2177 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2178 sqlite3OsSleep(pWal->pVfs, nDelay); 2179 } 2180 2181 if( !useWal ){ 2182 rc = walIndexReadHdr(pWal, pChanged); 2183 if( rc==SQLITE_BUSY ){ 2184 /* If there is not a recovery running in another thread or process 2185 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2186 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2187 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2188 ** would be technically correct. But the race is benign since with 2189 ** WAL_RETRY this routine will be called again and will probably be 2190 ** right on the second iteration. 2191 */ 2192 if( pWal->apWiData[0]==0 ){ 2193 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2194 ** We assume this is a transient condition, so return WAL_RETRY. The 2195 ** xShmMap() implementation used by the default unix and win32 VFS 2196 ** modules may return SQLITE_BUSY due to a race condition in the 2197 ** code that determines whether or not the shared-memory region 2198 ** must be zeroed before the requested page is returned. 2199 */ 2200 rc = WAL_RETRY; 2201 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2202 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2203 rc = WAL_RETRY; 2204 }else if( rc==SQLITE_BUSY ){ 2205 rc = SQLITE_BUSY_RECOVERY; 2206 } 2207 } 2208 if( rc!=SQLITE_OK ){ 2209 return rc; 2210 } 2211 } 2212 2213 pInfo = walCkptInfo(pWal); 2214 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ 2215 /* The WAL has been completely backfilled (or it is empty). 2216 ** and can be safely ignored. 2217 */ 2218 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2219 walShmBarrier(pWal); 2220 if( rc==SQLITE_OK ){ 2221 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2222 /* It is not safe to allow the reader to continue here if frames 2223 ** may have been appended to the log before READ_LOCK(0) was obtained. 2224 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2225 ** which implies that the database file contains a trustworthy 2226 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2227 ** happening, this is usually correct. 2228 ** 2229 ** However, if frames have been appended to the log (or if the log 2230 ** is wrapped and written for that matter) before the READ_LOCK(0) 2231 ** is obtained, that is not necessarily true. A checkpointer may 2232 ** have started to backfill the appended frames but crashed before 2233 ** it finished. Leaving a corrupt image in the database file. 2234 */ 2235 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2236 return WAL_RETRY; 2237 } 2238 pWal->readLock = 0; 2239 return SQLITE_OK; 2240 }else if( rc!=SQLITE_BUSY ){ 2241 return rc; 2242 } 2243 } 2244 2245 /* If we get this far, it means that the reader will want to use 2246 ** the WAL to get at content from recent commits. The job now is 2247 ** to select one of the aReadMark[] entries that is closest to 2248 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2249 */ 2250 mxReadMark = 0; 2251 mxI = 0; 2252 for(i=1; i<WAL_NREADER; i++){ 2253 u32 thisMark = pInfo->aReadMark[i]; 2254 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ 2255 assert( thisMark!=READMARK_NOT_USED ); 2256 mxReadMark = thisMark; 2257 mxI = i; 2258 } 2259 } 2260 /* There was once an "if" here. The extra "{" is to preserve indentation. */ 2261 { 2262 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2263 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) 2264 ){ 2265 for(i=1; i<WAL_NREADER; i++){ 2266 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0); 2267 if( rc==SQLITE_OK ){ 2268 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; 2269 mxI = i; 2270 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2271 break; 2272 }else if( rc!=SQLITE_BUSY ){ 2273 return rc; 2274 } 2275 } 2276 } 2277 if( mxI==0 ){ 2278 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2279 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 2280 } 2281 2282 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2283 if( rc ){ 2284 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2285 } 2286 /* Now that the read-lock has been obtained, check that neither the 2287 ** value in the aReadMark[] array or the contents of the wal-index 2288 ** header have changed. 2289 ** 2290 ** It is necessary to check that the wal-index header did not change 2291 ** between the time it was read and when the shared-lock was obtained 2292 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2293 ** that the log file may have been wrapped by a writer, or that frames 2294 ** that occur later in the log than pWal->hdr.mxFrame may have been 2295 ** copied into the database by a checkpointer. If either of these things 2296 ** happened, then reading the database with the current value of 2297 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2298 ** instead. 2299 ** 2300 ** Before checking that the live wal-index header has not changed 2301 ** since it was read, set Wal.minFrame to the first frame in the wal 2302 ** file that has not yet been checkpointed. This client will not need 2303 ** to read any frames earlier than minFrame from the wal file - they 2304 ** can be safely read directly from the database file. 2305 ** 2306 ** Because a ShmBarrier() call is made between taking the copy of 2307 ** nBackfill and checking that the wal-header in shared-memory still 2308 ** matches the one cached in pWal->hdr, it is guaranteed that the 2309 ** checkpointer that set nBackfill was not working with a wal-index 2310 ** header newer than that cached in pWal->hdr. If it were, that could 2311 ** cause a problem. The checkpointer could omit to checkpoint 2312 ** a version of page X that lies before pWal->minFrame (call that version 2313 ** A) on the basis that there is a newer version (version B) of the same 2314 ** page later in the wal file. But if version B happens to like past 2315 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2316 ** that it can read version A from the database file. However, since 2317 ** we can guarantee that the checkpointer that set nBackfill could not 2318 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2319 */ 2320 pWal->minFrame = pInfo->nBackfill+1; 2321 walShmBarrier(pWal); 2322 if( pInfo->aReadMark[mxI]!=mxReadMark 2323 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2324 ){ 2325 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2326 return WAL_RETRY; 2327 }else{ 2328 assert( mxReadMark<=pWal->hdr.mxFrame ); 2329 pWal->readLock = (i16)mxI; 2330 } 2331 } 2332 return rc; 2333 } 2334 2335 /* 2336 ** Begin a read transaction on the database. 2337 ** 2338 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2339 ** it takes a snapshot of the state of the WAL and wal-index for the current 2340 ** instant in time. The current thread will continue to use this snapshot. 2341 ** Other threads might append new content to the WAL and wal-index but 2342 ** that extra content is ignored by the current thread. 2343 ** 2344 ** If the database contents have changes since the previous read 2345 ** transaction, then *pChanged is set to 1 before returning. The 2346 ** Pager layer will use this to know that is cache is stale and 2347 ** needs to be flushed. 2348 */ 2349 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2350 int rc; /* Return code */ 2351 int cnt = 0; /* Number of TryBeginRead attempts */ 2352 2353 do{ 2354 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2355 }while( rc==WAL_RETRY ); 2356 testcase( (rc&0xff)==SQLITE_BUSY ); 2357 testcase( (rc&0xff)==SQLITE_IOERR ); 2358 testcase( rc==SQLITE_PROTOCOL ); 2359 testcase( rc==SQLITE_OK ); 2360 return rc; 2361 } 2362 2363 /* 2364 ** Finish with a read transaction. All this does is release the 2365 ** read-lock. 2366 */ 2367 void sqlite3WalEndReadTransaction(Wal *pWal){ 2368 sqlite3WalEndWriteTransaction(pWal); 2369 if( pWal->readLock>=0 ){ 2370 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2371 pWal->readLock = -1; 2372 } 2373 } 2374 2375 /* 2376 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2377 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2378 ** to zero. 2379 ** 2380 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2381 ** error does occur, the final value of *piRead is undefined. 2382 */ 2383 int sqlite3WalFindFrame( 2384 Wal *pWal, /* WAL handle */ 2385 Pgno pgno, /* Database page number to read data for */ 2386 u32 *piRead /* OUT: Frame number (or zero) */ 2387 ){ 2388 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2389 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2390 int iHash; /* Used to loop through N hash tables */ 2391 int iMinHash; 2392 2393 /* This routine is only be called from within a read transaction. */ 2394 assert( pWal->readLock>=0 || pWal->lockError ); 2395 2396 /* If the "last page" field of the wal-index header snapshot is 0, then 2397 ** no data will be read from the wal under any circumstances. Return early 2398 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2399 ** then the WAL is ignored by the reader so return early, as if the 2400 ** WAL were empty. 2401 */ 2402 if( iLast==0 || pWal->readLock==0 ){ 2403 *piRead = 0; 2404 return SQLITE_OK; 2405 } 2406 2407 /* Search the hash table or tables for an entry matching page number 2408 ** pgno. Each iteration of the following for() loop searches one 2409 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2410 ** 2411 ** This code might run concurrently to the code in walIndexAppend() 2412 ** that adds entries to the wal-index (and possibly to this hash 2413 ** table). This means the value just read from the hash 2414 ** slot (aHash[iKey]) may have been added before or after the 2415 ** current read transaction was opened. Values added after the 2416 ** read transaction was opened may have been written incorrectly - 2417 ** i.e. these slots may contain garbage data. However, we assume 2418 ** that any slots written before the current read transaction was 2419 ** opened remain unmodified. 2420 ** 2421 ** For the reasons above, the if(...) condition featured in the inner 2422 ** loop of the following block is more stringent that would be required 2423 ** if we had exclusive access to the hash-table: 2424 ** 2425 ** (aPgno[iFrame]==pgno): 2426 ** This condition filters out normal hash-table collisions. 2427 ** 2428 ** (iFrame<=iLast): 2429 ** This condition filters out entries that were added to the hash 2430 ** table after the current read-transaction had started. 2431 */ 2432 iMinHash = walFramePage(pWal->minFrame); 2433 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ 2434 volatile ht_slot *aHash; /* Pointer to hash table */ 2435 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2436 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2437 int iKey; /* Hash slot index */ 2438 int nCollide; /* Number of hash collisions remaining */ 2439 int rc; /* Error code */ 2440 2441 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2442 if( rc!=SQLITE_OK ){ 2443 return rc; 2444 } 2445 nCollide = HASHTABLE_NSLOT; 2446 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2447 u32 iFrame = aHash[iKey] + iZero; 2448 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ 2449 assert( iFrame>iRead || CORRUPT_DB ); 2450 iRead = iFrame; 2451 } 2452 if( (nCollide--)==0 ){ 2453 return SQLITE_CORRUPT_BKPT; 2454 } 2455 } 2456 } 2457 2458 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2459 /* If expensive assert() statements are available, do a linear search 2460 ** of the wal-index file content. Make sure the results agree with the 2461 ** result obtained using the hash indexes above. */ 2462 { 2463 u32 iRead2 = 0; 2464 u32 iTest; 2465 assert( pWal->minFrame>0 ); 2466 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ 2467 if( walFramePgno(pWal, iTest)==pgno ){ 2468 iRead2 = iTest; 2469 break; 2470 } 2471 } 2472 assert( iRead==iRead2 ); 2473 } 2474 #endif 2475 2476 *piRead = iRead; 2477 return SQLITE_OK; 2478 } 2479 2480 /* 2481 ** Read the contents of frame iRead from the wal file into buffer pOut 2482 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2483 ** error code otherwise. 2484 */ 2485 int sqlite3WalReadFrame( 2486 Wal *pWal, /* WAL handle */ 2487 u32 iRead, /* Frame to read */ 2488 int nOut, /* Size of buffer pOut in bytes */ 2489 u8 *pOut /* Buffer to write page data to */ 2490 ){ 2491 int sz; 2492 i64 iOffset; 2493 sz = pWal->hdr.szPage; 2494 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2495 testcase( sz<=32768 ); 2496 testcase( sz>=65536 ); 2497 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2498 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2499 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2500 } 2501 2502 /* 2503 ** Return the size of the database in pages (or zero, if unknown). 2504 */ 2505 Pgno sqlite3WalDbsize(Wal *pWal){ 2506 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2507 return pWal->hdr.nPage; 2508 } 2509 return 0; 2510 } 2511 2512 2513 /* 2514 ** This function starts a write transaction on the WAL. 2515 ** 2516 ** A read transaction must have already been started by a prior call 2517 ** to sqlite3WalBeginReadTransaction(). 2518 ** 2519 ** If another thread or process has written into the database since 2520 ** the read transaction was started, then it is not possible for this 2521 ** thread to write as doing so would cause a fork. So this routine 2522 ** returns SQLITE_BUSY in that case and no write transaction is started. 2523 ** 2524 ** There can only be a single writer active at a time. 2525 */ 2526 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2527 int rc; 2528 2529 /* Cannot start a write transaction without first holding a read 2530 ** transaction. */ 2531 assert( pWal->readLock>=0 ); 2532 2533 if( pWal->readOnly ){ 2534 return SQLITE_READONLY; 2535 } 2536 2537 /* Only one writer allowed at a time. Get the write lock. Return 2538 ** SQLITE_BUSY if unable. 2539 */ 2540 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0); 2541 if( rc ){ 2542 return rc; 2543 } 2544 pWal->writeLock = 1; 2545 2546 /* If another connection has written to the database file since the 2547 ** time the read transaction on this connection was started, then 2548 ** the write is disallowed. 2549 */ 2550 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2551 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2552 pWal->writeLock = 0; 2553 rc = SQLITE_BUSY_SNAPSHOT; 2554 } 2555 2556 return rc; 2557 } 2558 2559 /* 2560 ** End a write transaction. The commit has already been done. This 2561 ** routine merely releases the lock. 2562 */ 2563 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2564 if( pWal->writeLock ){ 2565 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2566 pWal->writeLock = 0; 2567 pWal->truncateOnCommit = 0; 2568 } 2569 return SQLITE_OK; 2570 } 2571 2572 /* 2573 ** If any data has been written (but not committed) to the log file, this 2574 ** function moves the write-pointer back to the start of the transaction. 2575 ** 2576 ** Additionally, the callback function is invoked for each frame written 2577 ** to the WAL since the start of the transaction. If the callback returns 2578 ** other than SQLITE_OK, it is not invoked again and the error code is 2579 ** returned to the caller. 2580 ** 2581 ** Otherwise, if the callback function does not return an error, this 2582 ** function returns SQLITE_OK. 2583 */ 2584 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2585 int rc = SQLITE_OK; 2586 if( ALWAYS(pWal->writeLock) ){ 2587 Pgno iMax = pWal->hdr.mxFrame; 2588 Pgno iFrame; 2589 2590 /* Restore the clients cache of the wal-index header to the state it 2591 ** was in before the client began writing to the database. 2592 */ 2593 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2594 2595 for(iFrame=pWal->hdr.mxFrame+1; 2596 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2597 iFrame++ 2598 ){ 2599 /* This call cannot fail. Unless the page for which the page number 2600 ** is passed as the second argument is (a) in the cache and 2601 ** (b) has an outstanding reference, then xUndo is either a no-op 2602 ** (if (a) is false) or simply expels the page from the cache (if (b) 2603 ** is false). 2604 ** 2605 ** If the upper layer is doing a rollback, it is guaranteed that there 2606 ** are no outstanding references to any page other than page 1. And 2607 ** page 1 is never written to the log until the transaction is 2608 ** committed. As a result, the call to xUndo may not fail. 2609 */ 2610 assert( walFramePgno(pWal, iFrame)!=1 ); 2611 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2612 } 2613 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 2614 } 2615 return rc; 2616 } 2617 2618 /* 2619 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2620 ** values. This function populates the array with values required to 2621 ** "rollback" the write position of the WAL handle back to the current 2622 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2623 */ 2624 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2625 assert( pWal->writeLock ); 2626 aWalData[0] = pWal->hdr.mxFrame; 2627 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2628 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2629 aWalData[3] = pWal->nCkpt; 2630 } 2631 2632 /* 2633 ** Move the write position of the WAL back to the point identified by 2634 ** the values in the aWalData[] array. aWalData must point to an array 2635 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2636 ** by a call to WalSavepoint(). 2637 */ 2638 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2639 int rc = SQLITE_OK; 2640 2641 assert( pWal->writeLock ); 2642 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2643 2644 if( aWalData[3]!=pWal->nCkpt ){ 2645 /* This savepoint was opened immediately after the write-transaction 2646 ** was started. Right after that, the writer decided to wrap around 2647 ** to the start of the log. Update the savepoint values to match. 2648 */ 2649 aWalData[0] = 0; 2650 aWalData[3] = pWal->nCkpt; 2651 } 2652 2653 if( aWalData[0]<pWal->hdr.mxFrame ){ 2654 pWal->hdr.mxFrame = aWalData[0]; 2655 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2656 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2657 walCleanupHash(pWal); 2658 } 2659 2660 return rc; 2661 } 2662 2663 /* 2664 ** This function is called just before writing a set of frames to the log 2665 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2666 ** to the current log file, it is possible to overwrite the start of the 2667 ** existing log file with the new frames (i.e. "reset" the log). If so, 2668 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2669 ** unchanged. 2670 ** 2671 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2672 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2673 ** if an error occurs. 2674 */ 2675 static int walRestartLog(Wal *pWal){ 2676 int rc = SQLITE_OK; 2677 int cnt; 2678 2679 if( pWal->readLock==0 ){ 2680 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2681 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2682 if( pInfo->nBackfill>0 ){ 2683 u32 salt1; 2684 sqlite3_randomness(4, &salt1); 2685 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0); 2686 if( rc==SQLITE_OK ){ 2687 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2688 ** readers are currently using the WAL), then the transactions 2689 ** frames will overwrite the start of the existing log. Update the 2690 ** wal-index header to reflect this. 2691 ** 2692 ** In theory it would be Ok to update the cache of the header only 2693 ** at this point. But updating the actual wal-index header is also 2694 ** safe and means there is no special case for sqlite3WalUndo() 2695 ** to handle if this transaction is rolled back. */ 2696 walRestartHdr(pWal, salt1); 2697 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2698 }else if( rc!=SQLITE_BUSY ){ 2699 return rc; 2700 } 2701 } 2702 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2703 pWal->readLock = -1; 2704 cnt = 0; 2705 do{ 2706 int notUsed; 2707 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2708 }while( rc==WAL_RETRY ); 2709 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 2710 testcase( (rc&0xff)==SQLITE_IOERR ); 2711 testcase( rc==SQLITE_PROTOCOL ); 2712 testcase( rc==SQLITE_OK ); 2713 } 2714 return rc; 2715 } 2716 2717 /* 2718 ** Information about the current state of the WAL file and where 2719 ** the next fsync should occur - passed from sqlite3WalFrames() into 2720 ** walWriteToLog(). 2721 */ 2722 typedef struct WalWriter { 2723 Wal *pWal; /* The complete WAL information */ 2724 sqlite3_file *pFd; /* The WAL file to which we write */ 2725 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 2726 int syncFlags; /* Flags for the fsync */ 2727 int szPage; /* Size of one page */ 2728 } WalWriter; 2729 2730 /* 2731 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 2732 ** Do a sync when crossing the p->iSyncPoint boundary. 2733 ** 2734 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 2735 ** first write the part before iSyncPoint, then sync, then write the 2736 ** rest. 2737 */ 2738 static int walWriteToLog( 2739 WalWriter *p, /* WAL to write to */ 2740 void *pContent, /* Content to be written */ 2741 int iAmt, /* Number of bytes to write */ 2742 sqlite3_int64 iOffset /* Start writing at this offset */ 2743 ){ 2744 int rc; 2745 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 2746 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 2747 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 2748 if( rc ) return rc; 2749 iOffset += iFirstAmt; 2750 iAmt -= iFirstAmt; 2751 pContent = (void*)(iFirstAmt + (char*)pContent); 2752 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 2753 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); 2754 if( iAmt==0 || rc ) return rc; 2755 } 2756 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 2757 return rc; 2758 } 2759 2760 /* 2761 ** Write out a single frame of the WAL 2762 */ 2763 static int walWriteOneFrame( 2764 WalWriter *p, /* Where to write the frame */ 2765 PgHdr *pPage, /* The page of the frame to be written */ 2766 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 2767 sqlite3_int64 iOffset /* Byte offset at which to write */ 2768 ){ 2769 int rc; /* Result code from subfunctions */ 2770 void *pData; /* Data actually written */ 2771 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2772 #if defined(SQLITE_HAS_CODEC) 2773 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; 2774 #else 2775 pData = pPage->pData; 2776 #endif 2777 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 2778 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 2779 if( rc ) return rc; 2780 /* Write the page data */ 2781 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 2782 return rc; 2783 } 2784 2785 /* 2786 ** Write a set of frames to the log. The caller must hold the write-lock 2787 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2788 */ 2789 int sqlite3WalFrames( 2790 Wal *pWal, /* Wal handle to write to */ 2791 int szPage, /* Database page-size in bytes */ 2792 PgHdr *pList, /* List of dirty pages to write */ 2793 Pgno nTruncate, /* Database size after this commit */ 2794 int isCommit, /* True if this is a commit */ 2795 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2796 ){ 2797 int rc; /* Used to catch return codes */ 2798 u32 iFrame; /* Next frame address */ 2799 PgHdr *p; /* Iterator to run through pList with. */ 2800 PgHdr *pLast = 0; /* Last frame in list */ 2801 int nExtra = 0; /* Number of extra copies of last page */ 2802 int szFrame; /* The size of a single frame */ 2803 i64 iOffset; /* Next byte to write in WAL file */ 2804 WalWriter w; /* The writer */ 2805 2806 assert( pList ); 2807 assert( pWal->writeLock ); 2808 2809 /* If this frame set completes a transaction, then nTruncate>0. If 2810 ** nTruncate==0 then this frame set does not complete the transaction. */ 2811 assert( (isCommit!=0)==(nTruncate!=0) ); 2812 2813 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2814 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2815 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2816 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2817 } 2818 #endif 2819 2820 /* See if it is possible to write these frames into the start of the 2821 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2822 */ 2823 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2824 return rc; 2825 } 2826 2827 /* If this is the first frame written into the log, write the WAL 2828 ** header to the start of the WAL file. See comments at the top of 2829 ** this source file for a description of the WAL header format. 2830 */ 2831 iFrame = pWal->hdr.mxFrame; 2832 if( iFrame==0 ){ 2833 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 2834 u32 aCksum[2]; /* Checksum for wal-header */ 2835 2836 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 2837 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 2838 sqlite3Put4byte(&aWalHdr[8], szPage); 2839 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 2840 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 2841 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 2842 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 2843 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 2844 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 2845 2846 pWal->szPage = szPage; 2847 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 2848 pWal->hdr.aFrameCksum[0] = aCksum[0]; 2849 pWal->hdr.aFrameCksum[1] = aCksum[1]; 2850 pWal->truncateOnCommit = 1; 2851 2852 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 2853 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 2854 if( rc!=SQLITE_OK ){ 2855 return rc; 2856 } 2857 2858 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 2859 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 2860 ** an out-of-order write following a WAL restart could result in 2861 ** database corruption. See the ticket: 2862 ** 2863 ** http://localhost:591/sqlite/info/ff5be73dee 2864 */ 2865 if( pWal->syncHeader && sync_flags ){ 2866 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 2867 if( rc ) return rc; 2868 } 2869 } 2870 assert( (int)pWal->szPage==szPage ); 2871 2872 /* Setup information needed to write frames into the WAL */ 2873 w.pWal = pWal; 2874 w.pFd = pWal->pWalFd; 2875 w.iSyncPoint = 0; 2876 w.syncFlags = sync_flags; 2877 w.szPage = szPage; 2878 iOffset = walFrameOffset(iFrame+1, szPage); 2879 szFrame = szPage + WAL_FRAME_HDRSIZE; 2880 2881 /* Write all frames into the log file exactly once */ 2882 for(p=pList; p; p=p->pDirty){ 2883 int nDbSize; /* 0 normally. Positive == commit flag */ 2884 iFrame++; 2885 assert( iOffset==walFrameOffset(iFrame, szPage) ); 2886 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 2887 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 2888 if( rc ) return rc; 2889 pLast = p; 2890 iOffset += szFrame; 2891 } 2892 2893 /* If this is the end of a transaction, then we might need to pad 2894 ** the transaction and/or sync the WAL file. 2895 ** 2896 ** Padding and syncing only occur if this set of frames complete a 2897 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 2898 ** or synchronous==OFF, then no padding or syncing are needed. 2899 ** 2900 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 2901 ** needed and only the sync is done. If padding is needed, then the 2902 ** final frame is repeated (with its commit mark) until the next sector 2903 ** boundary is crossed. Only the part of the WAL prior to the last 2904 ** sector boundary is synced; the part of the last frame that extends 2905 ** past the sector boundary is written after the sync. 2906 */ 2907 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 2908 if( pWal->padToSectorBoundary ){ 2909 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 2910 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 2911 while( iOffset<w.iSyncPoint ){ 2912 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 2913 if( rc ) return rc; 2914 iOffset += szFrame; 2915 nExtra++; 2916 } 2917 }else{ 2918 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 2919 } 2920 } 2921 2922 /* If this frame set completes the first transaction in the WAL and 2923 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 2924 ** journal size limit, if possible. 2925 */ 2926 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 2927 i64 sz = pWal->mxWalSize; 2928 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 2929 sz = walFrameOffset(iFrame+nExtra+1, szPage); 2930 } 2931 walLimitSize(pWal, sz); 2932 pWal->truncateOnCommit = 0; 2933 } 2934 2935 /* Append data to the wal-index. It is not necessary to lock the 2936 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 2937 ** guarantees that there are no other writers, and no data that may 2938 ** be in use by existing readers is being overwritten. 2939 */ 2940 iFrame = pWal->hdr.mxFrame; 2941 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 2942 iFrame++; 2943 rc = walIndexAppend(pWal, iFrame, p->pgno); 2944 } 2945 while( rc==SQLITE_OK && nExtra>0 ){ 2946 iFrame++; 2947 nExtra--; 2948 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 2949 } 2950 2951 if( rc==SQLITE_OK ){ 2952 /* Update the private copy of the header. */ 2953 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 2954 testcase( szPage<=32768 ); 2955 testcase( szPage>=65536 ); 2956 pWal->hdr.mxFrame = iFrame; 2957 if( isCommit ){ 2958 pWal->hdr.iChange++; 2959 pWal->hdr.nPage = nTruncate; 2960 } 2961 /* If this is a commit, update the wal-index header too. */ 2962 if( isCommit ){ 2963 walIndexWriteHdr(pWal); 2964 pWal->iCallback = iFrame; 2965 } 2966 } 2967 2968 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 2969 return rc; 2970 } 2971 2972 /* 2973 ** This routine is called to implement sqlite3_wal_checkpoint() and 2974 ** related interfaces. 2975 ** 2976 ** Obtain a CHECKPOINT lock and then backfill as much information as 2977 ** we can from WAL into the database. 2978 ** 2979 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 2980 ** callback. In this case this function runs a blocking checkpoint. 2981 */ 2982 int sqlite3WalCheckpoint( 2983 Wal *pWal, /* Wal connection */ 2984 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 2985 int (*xBusy)(void*), /* Function to call when busy */ 2986 void *pBusyArg, /* Context argument for xBusyHandler */ 2987 int sync_flags, /* Flags to sync db file with (or 0) */ 2988 int nBuf, /* Size of temporary buffer */ 2989 u8 *zBuf, /* Temporary buffer to use */ 2990 int *pnLog, /* OUT: Number of frames in WAL */ 2991 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 2992 ){ 2993 int rc; /* Return code */ 2994 int isChanged = 0; /* True if a new wal-index header is loaded */ 2995 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 2996 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 2997 2998 assert( pWal->ckptLock==0 ); 2999 assert( pWal->writeLock==0 ); 3000 3001 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3002 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3003 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3004 3005 if( pWal->readOnly ) return SQLITE_READONLY; 3006 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3007 3008 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3009 ** "checkpoint" lock on the database file. */ 3010 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0); 3011 if( rc ){ 3012 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3013 ** checkpoint operation at the same time, the lock cannot be obtained and 3014 ** SQLITE_BUSY is returned. 3015 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3016 ** it will not be invoked in this case. 3017 */ 3018 testcase( rc==SQLITE_BUSY ); 3019 testcase( xBusy!=0 ); 3020 return rc; 3021 } 3022 pWal->ckptLock = 1; 3023 3024 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3025 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3026 ** file. 3027 ** 3028 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3029 ** immediately, and a busy-handler is configured, it is invoked and the 3030 ** writer lock retried until either the busy-handler returns 0 or the 3031 ** lock is successfully obtained. 3032 */ 3033 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3034 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3035 if( rc==SQLITE_OK ){ 3036 pWal->writeLock = 1; 3037 }else if( rc==SQLITE_BUSY ){ 3038 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3039 xBusy2 = 0; 3040 rc = SQLITE_OK; 3041 } 3042 } 3043 3044 /* Read the wal-index header. */ 3045 if( rc==SQLITE_OK ){ 3046 rc = walIndexReadHdr(pWal, &isChanged); 3047 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3048 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3049 } 3050 } 3051 3052 /* Copy data from the log to the database file. */ 3053 if( rc==SQLITE_OK ){ 3054 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3055 rc = SQLITE_CORRUPT_BKPT; 3056 }else{ 3057 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3058 } 3059 3060 /* If no error occurred, set the output variables. */ 3061 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3062 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3063 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3064 } 3065 } 3066 3067 if( isChanged ){ 3068 /* If a new wal-index header was loaded before the checkpoint was 3069 ** performed, then the pager-cache associated with pWal is now 3070 ** out of date. So zero the cached wal-index header to ensure that 3071 ** next time the pager opens a snapshot on this database it knows that 3072 ** the cache needs to be reset. 3073 */ 3074 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3075 } 3076 3077 /* Release the locks. */ 3078 sqlite3WalEndWriteTransaction(pWal); 3079 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3080 pWal->ckptLock = 0; 3081 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3082 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3083 } 3084 3085 /* Return the value to pass to a sqlite3_wal_hook callback, the 3086 ** number of frames in the WAL at the point of the last commit since 3087 ** sqlite3WalCallback() was called. If no commits have occurred since 3088 ** the last call, then return 0. 3089 */ 3090 int sqlite3WalCallback(Wal *pWal){ 3091 u32 ret = 0; 3092 if( pWal ){ 3093 ret = pWal->iCallback; 3094 pWal->iCallback = 0; 3095 } 3096 return (int)ret; 3097 } 3098 3099 /* 3100 ** This function is called to change the WAL subsystem into or out 3101 ** of locking_mode=EXCLUSIVE. 3102 ** 3103 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3104 ** into locking_mode=NORMAL. This means that we must acquire a lock 3105 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3106 ** or if the acquisition of the lock fails, then return 0. If the 3107 ** transition out of exclusive-mode is successful, return 1. This 3108 ** operation must occur while the pager is still holding the exclusive 3109 ** lock on the main database file. 3110 ** 3111 ** If op is one, then change from locking_mode=NORMAL into 3112 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3113 ** be released. Return 1 if the transition is made and 0 if the 3114 ** WAL is already in exclusive-locking mode - meaning that this 3115 ** routine is a no-op. The pager must already hold the exclusive lock 3116 ** on the main database file before invoking this operation. 3117 ** 3118 ** If op is negative, then do a dry-run of the op==1 case but do 3119 ** not actually change anything. The pager uses this to see if it 3120 ** should acquire the database exclusive lock prior to invoking 3121 ** the op==1 case. 3122 */ 3123 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3124 int rc; 3125 assert( pWal->writeLock==0 ); 3126 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3127 3128 /* pWal->readLock is usually set, but might be -1 if there was a 3129 ** prior error while attempting to acquire are read-lock. This cannot 3130 ** happen if the connection is actually in exclusive mode (as no xShmLock 3131 ** locks are taken in this case). Nor should the pager attempt to 3132 ** upgrade to exclusive-mode following such an error. 3133 */ 3134 assert( pWal->readLock>=0 || pWal->lockError ); 3135 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3136 3137 if( op==0 ){ 3138 if( pWal->exclusiveMode ){ 3139 pWal->exclusiveMode = 0; 3140 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3141 pWal->exclusiveMode = 1; 3142 } 3143 rc = pWal->exclusiveMode==0; 3144 }else{ 3145 /* Already in locking_mode=NORMAL */ 3146 rc = 0; 3147 } 3148 }else if( op>0 ){ 3149 assert( pWal->exclusiveMode==0 ); 3150 assert( pWal->readLock>=0 ); 3151 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3152 pWal->exclusiveMode = 1; 3153 rc = 1; 3154 }else{ 3155 rc = pWal->exclusiveMode==0; 3156 } 3157 return rc; 3158 } 3159 3160 /* 3161 ** Return true if the argument is non-NULL and the WAL module is using 3162 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3163 ** WAL module is using shared-memory, return false. 3164 */ 3165 int sqlite3WalHeapMemory(Wal *pWal){ 3166 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3167 } 3168 3169 #ifdef SQLITE_ENABLE_ZIPVFS 3170 /* 3171 ** If the argument is not NULL, it points to a Wal object that holds a 3172 ** read-lock. This function returns the database page-size if it is known, 3173 ** or zero if it is not (or if pWal is NULL). 3174 */ 3175 int sqlite3WalFramesize(Wal *pWal){ 3176 assert( pWal==0 || pWal->readLock>=0 ); 3177 return (pWal ? pWal->szPage : 0); 3178 } 3179 #endif 3180 3181 #endif /* #ifndef SQLITE_OMIT_WAL */ 3182