xref: /sqlite-3.40.0/src/wal.c (revision bd41d566)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P and a maximum frame index M, return the index of the
146 ** last frame in the wal before frame M for page P in the WAL, or return
147 ** NULL if there are no frames for page P in the WAL prior to M.
148 **
149 ** The wal-index consists of a header region, followed by an one or
150 ** more index blocks.
151 **
152 ** The wal-index header contains the total number of frames within the WAL
153 ** in the mxFrame field.
154 **
155 ** Each index block except for the first contains information on
156 ** HASHTABLE_NPAGE frames. The first index block contains information on
157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
159 ** first index block are the same size as all other index blocks in the
160 ** wal-index.
161 **
162 ** Each index block contains two sections, a page-mapping that contains the
163 ** database page number associated with each wal frame, and a hash-table
164 ** that allows readers to query an index block for a specific page number.
165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166 ** for the first index block) 32-bit page numbers. The first entry in the
167 ** first index-block contains the database page number corresponding to the
168 ** first frame in the WAL file. The first entry in the second index block
169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170 ** the log, and so on.
171 **
172 ** The last index block in a wal-index usually contains less than the full
173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174 ** depending on the contents of the WAL file. This does not change the
175 ** allocated size of the page-mapping array - the page-mapping array merely
176 ** contains unused entries.
177 **
178 ** Even without using the hash table, the last frame for page P
179 ** can be found by scanning the page-mapping sections of each index block
180 ** starting with the last index block and moving toward the first, and
181 ** within each index block, starting at the end and moving toward the
182 ** beginning.  The first entry that equals P corresponds to the frame
183 ** holding the content for that page.
184 **
185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187 ** hash table for each page number in the mapping section, so the hash
188 ** table is never more than half full.  The expected number of collisions
189 ** prior to finding a match is 1.  Each entry of the hash table is an
190 ** 1-based index of an entry in the mapping section of the same
191 ** index block.   Let K be the 1-based index of the largest entry in
192 ** the mapping section.  (For index blocks other than the last, K will
193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
195 ** contain a value of 0.
196 **
197 ** To look for page P in the hash table, first compute a hash iKey on
198 ** P as follows:
199 **
200 **      iKey = (P * 383) % HASHTABLE_NSLOT
201 **
202 ** Then start scanning entries of the hash table, starting with iKey
203 ** (wrapping around to the beginning when the end of the hash table is
204 ** reached) until an unused hash slot is found. Let the first unused slot
205 ** be at index iUnused.  (iUnused might be less than iKey if there was
206 ** wrap-around.) Because the hash table is never more than half full,
207 ** the search is guaranteed to eventually hit an unused entry.  Let
208 ** iMax be the value between iKey and iUnused, closest to iUnused,
209 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
210 ** no hash slot such that aHash[i]==p) then page P is not in the
211 ** current index block.  Otherwise the iMax-th mapping entry of the
212 ** current index block corresponds to the last entry that references
213 ** page P.
214 **
215 ** A hash search begins with the last index block and moves toward the
216 ** first index block, looking for entries corresponding to page P.  On
217 ** average, only two or three slots in each index block need to be
218 ** examined in order to either find the last entry for page P, or to
219 ** establish that no such entry exists in the block.  Each index block
220 ** holds over 4000 entries.  So two or three index blocks are sufficient
221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
222 ** comparisons (on average) suffice to either locate a frame in the
223 ** WAL or to establish that the frame does not exist in the WAL.  This
224 ** is much faster than scanning the entire 10MB WAL.
225 **
226 ** Note that entries are added in order of increasing K.  Hence, one
227 ** reader might be using some value K0 and a second reader that started
228 ** at a later time (after additional transactions were added to the WAL
229 ** and to the wal-index) might be using a different value K1, where K1>K0.
230 ** Both readers can use the same hash table and mapping section to get
231 ** the correct result.  There may be entries in the hash table with
232 ** K>K0 but to the first reader, those entries will appear to be unused
233 ** slots in the hash table and so the first reader will get an answer as
234 ** if no values greater than K0 had ever been inserted into the hash table
235 ** in the first place - which is what reader one wants.  Meanwhile, the
236 ** second reader using K1 will see additional values that were inserted
237 ** later, which is exactly what reader two wants.
238 **
239 ** When a rollback occurs, the value of K is decreased. Hash table entries
240 ** that correspond to frames greater than the new K value are removed
241 ** from the hash table at this point.
242 */
243 #ifndef SQLITE_OMIT_WAL
244 
245 #include "wal.h"
246 
247 /*
248 ** Trace output macros
249 */
250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
251 int sqlite3WalTrace = 0;
252 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
253 #else
254 # define WALTRACE(X)
255 #endif
256 
257 /*
258 ** The maximum (and only) versions of the wal and wal-index formats
259 ** that may be interpreted by this version of SQLite.
260 **
261 ** If a client begins recovering a WAL file and finds that (a) the checksum
262 ** values in the wal-header are correct and (b) the version field is not
263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264 **
265 ** Similarly, if a client successfully reads a wal-index header (i.e. the
266 ** checksum test is successful) and finds that the version field is not
267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268 ** returns SQLITE_CANTOPEN.
269 */
270 #define WAL_MAX_VERSION      3007000
271 #define WALINDEX_MAX_VERSION 3007000
272 
273 /*
274 ** Indices of various locking bytes.   WAL_NREADER is the number
275 ** of available reader locks and should be at least 3.
276 */
277 #define WAL_WRITE_LOCK         0
278 #define WAL_ALL_BUT_WRITE      1
279 #define WAL_CKPT_LOCK          1
280 #define WAL_RECOVER_LOCK       2
281 #define WAL_READ_LOCK(I)       (3+(I))
282 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
283 
284 
285 /* Object declarations */
286 typedef struct WalIndexHdr WalIndexHdr;
287 typedef struct WalIterator WalIterator;
288 typedef struct WalCkptInfo WalCkptInfo;
289 
290 
291 /*
292 ** The following object holds a copy of the wal-index header content.
293 **
294 ** The actual header in the wal-index consists of two copies of this
295 ** object.
296 **
297 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
299 ** added in 3.7.1 when support for 64K pages was added.
300 */
301 struct WalIndexHdr {
302   u32 iVersion;                   /* Wal-index version */
303   u32 unused;                     /* Unused (padding) field */
304   u32 iChange;                    /* Counter incremented each transaction */
305   u8 isInit;                      /* 1 when initialized */
306   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
307   u16 szPage;                     /* Database page size in bytes. 1==64K */
308   u32 mxFrame;                    /* Index of last valid frame in the WAL */
309   u32 nPage;                      /* Size of database in pages */
310   u32 aFrameCksum[2];             /* Checksum of last frame in log */
311   u32 aSalt[2];                   /* Two salt values copied from WAL header */
312   u32 aCksum[2];                  /* Checksum over all prior fields */
313 };
314 
315 /*
316 ** A copy of the following object occurs in the wal-index immediately
317 ** following the second copy of the WalIndexHdr.  This object stores
318 ** information used by checkpoint.
319 **
320 ** nBackfill is the number of frames in the WAL that have been written
321 ** back into the database. (We call the act of moving content from WAL to
322 ** database "backfilling".)  The nBackfill number is never greater than
323 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
324 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326 ** mxFrame back to zero when the WAL is reset.
327 **
328 ** There is one entry in aReadMark[] for each reader lock.  If a reader
329 ** holds read-lock K, then the value in aReadMark[K] is no greater than
330 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
331 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
332 ** a special case; its value is never used and it exists as a place-holder
333 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
334 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335 ** directly from the database.
336 **
337 ** The value of aReadMark[K] may only be changed by a thread that
338 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
339 ** aReadMark[K] cannot changed while there is a reader is using that mark
340 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341 **
342 ** The checkpointer may only transfer frames from WAL to database where
343 ** the frame numbers are less than or equal to every aReadMark[] that is
344 ** in use (that is, every aReadMark[j] for which there is a corresponding
345 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
346 ** largest value and will increase an unused aReadMark[] to mxFrame if there
347 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
348 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
349 ** in the WAL has been backfilled into the database) then new readers
350 ** will choose aReadMark[0] which has value 0 and hence such reader will
351 ** get all their all content directly from the database file and ignore
352 ** the WAL.
353 **
354 ** Writers normally append new frames to the end of the WAL.  However,
355 ** if nBackfill equals mxFrame (meaning that all WAL content has been
356 ** written back into the database) and if no readers are using the WAL
357 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358 ** the writer will first "reset" the WAL back to the beginning and start
359 ** writing new content beginning at frame 1.
360 **
361 ** We assume that 32-bit loads are atomic and so no locks are needed in
362 ** order to read from any aReadMark[] entries.
363 */
364 struct WalCkptInfo {
365   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
366   u32 aReadMark[WAL_NREADER];     /* Reader marks */
367 };
368 #define READMARK_NOT_USED  0xffffffff
369 
370 
371 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373 ** only support mandatory file-locks, we do not read or write data
374 ** from the region of the file on which locks are applied.
375 */
376 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377 #define WALINDEX_LOCK_RESERVED 16
378 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
379 
380 /* Size of header before each frame in wal */
381 #define WAL_FRAME_HDRSIZE 24
382 
383 /* Size of write ahead log header, including checksum. */
384 /* #define WAL_HDRSIZE 24 */
385 #define WAL_HDRSIZE 32
386 
387 /* WAL magic value. Either this value, or the same value with the least
388 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389 ** big-endian format in the first 4 bytes of a WAL file.
390 **
391 ** If the LSB is set, then the checksums for each frame within the WAL
392 ** file are calculated by treating all data as an array of 32-bit
393 ** big-endian words. Otherwise, they are calculated by interpreting
394 ** all data as 32-bit little-endian words.
395 */
396 #define WAL_MAGIC 0x377f0682
397 
398 /*
399 ** Return the offset of frame iFrame in the write-ahead log file,
400 ** assuming a database page size of szPage bytes. The offset returned
401 ** is to the start of the write-ahead log frame-header.
402 */
403 #define walFrameOffset(iFrame, szPage) (                               \
404   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
405 )
406 
407 /*
408 ** An open write-ahead log file is represented by an instance of the
409 ** following object.
410 */
411 struct Wal {
412   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
413   sqlite3_file *pDbFd;       /* File handle for the database file */
414   sqlite3_file *pWalFd;      /* File handle for WAL file */
415   u32 iCallback;             /* Value to pass to log callback (or 0) */
416   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
417   int nWiData;               /* Size of array apWiData */
418   int szFirstBlock;          /* Size of first block written to WAL file */
419   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
420   u32 szPage;                /* Database page size */
421   i16 readLock;              /* Which read lock is being held.  -1 for none */
422   u8 syncFlags;              /* Flags to use to sync header writes */
423   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
424   u8 writeLock;              /* True if in a write transaction */
425   u8 ckptLock;               /* True if holding a checkpoint lock */
426   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
427   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
428   u8 syncHeader;             /* Fsync the WAL header if true */
429   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
430   WalIndexHdr hdr;           /* Wal-index header for current transaction */
431   const char *zWalName;      /* Name of WAL file */
432   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
433 #ifdef SQLITE_DEBUG
434   u8 lockError;              /* True if a locking error has occurred */
435 #endif
436 };
437 
438 /*
439 ** Candidate values for Wal.exclusiveMode.
440 */
441 #define WAL_NORMAL_MODE     0
442 #define WAL_EXCLUSIVE_MODE  1
443 #define WAL_HEAPMEMORY_MODE 2
444 
445 /*
446 ** Possible values for WAL.readOnly
447 */
448 #define WAL_RDWR        0    /* Normal read/write connection */
449 #define WAL_RDONLY      1    /* The WAL file is readonly */
450 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
451 
452 /*
453 ** Each page of the wal-index mapping contains a hash-table made up of
454 ** an array of HASHTABLE_NSLOT elements of the following type.
455 */
456 typedef u16 ht_slot;
457 
458 /*
459 ** This structure is used to implement an iterator that loops through
460 ** all frames in the WAL in database page order. Where two or more frames
461 ** correspond to the same database page, the iterator visits only the
462 ** frame most recently written to the WAL (in other words, the frame with
463 ** the largest index).
464 **
465 ** The internals of this structure are only accessed by:
466 **
467 **   walIteratorInit() - Create a new iterator,
468 **   walIteratorNext() - Step an iterator,
469 **   walIteratorFree() - Free an iterator.
470 **
471 ** This functionality is used by the checkpoint code (see walCheckpoint()).
472 */
473 struct WalIterator {
474   int iPrior;                     /* Last result returned from the iterator */
475   int nSegment;                   /* Number of entries in aSegment[] */
476   struct WalSegment {
477     int iNext;                    /* Next slot in aIndex[] not yet returned */
478     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
479     u32 *aPgno;                   /* Array of page numbers. */
480     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
481     int iZero;                    /* Frame number associated with aPgno[0] */
482   } aSegment[1];                  /* One for every 32KB page in the wal-index */
483 };
484 
485 /*
486 ** Define the parameters of the hash tables in the wal-index file. There
487 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
488 ** wal-index.
489 **
490 ** Changing any of these constants will alter the wal-index format and
491 ** create incompatibilities.
492 */
493 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
494 #define HASHTABLE_HASH_1     383                  /* Should be prime */
495 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
496 
497 /*
498 ** The block of page numbers associated with the first hash-table in a
499 ** wal-index is smaller than usual. This is so that there is a complete
500 ** hash-table on each aligned 32KB page of the wal-index.
501 */
502 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
503 
504 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
505 #define WALINDEX_PGSZ   (                                         \
506     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
507 )
508 
509 /*
510 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
511 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
512 ** numbered from zero.
513 **
514 ** If this call is successful, *ppPage is set to point to the wal-index
515 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
516 ** then an SQLite error code is returned and *ppPage is set to 0.
517 */
518 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
519   int rc = SQLITE_OK;
520 
521   /* Enlarge the pWal->apWiData[] array if required */
522   if( pWal->nWiData<=iPage ){
523     int nByte = sizeof(u32*)*(iPage+1);
524     volatile u32 **apNew;
525     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
526     if( !apNew ){
527       *ppPage = 0;
528       return SQLITE_NOMEM;
529     }
530     memset((void*)&apNew[pWal->nWiData], 0,
531            sizeof(u32*)*(iPage+1-pWal->nWiData));
532     pWal->apWiData = apNew;
533     pWal->nWiData = iPage+1;
534   }
535 
536   /* Request a pointer to the required page from the VFS */
537   if( pWal->apWiData[iPage]==0 ){
538     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
539       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
540       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
541     }else{
542       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
543           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
544       );
545       if( rc==SQLITE_READONLY ){
546         pWal->readOnly |= WAL_SHM_RDONLY;
547         rc = SQLITE_OK;
548       }
549     }
550   }
551 
552   *ppPage = pWal->apWiData[iPage];
553   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
554   return rc;
555 }
556 
557 /*
558 ** Return a pointer to the WalCkptInfo structure in the wal-index.
559 */
560 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
561   assert( pWal->nWiData>0 && pWal->apWiData[0] );
562   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
563 }
564 
565 /*
566 ** Return a pointer to the WalIndexHdr structure in the wal-index.
567 */
568 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
569   assert( pWal->nWiData>0 && pWal->apWiData[0] );
570   return (volatile WalIndexHdr*)pWal->apWiData[0];
571 }
572 
573 /*
574 ** The argument to this macro must be of type u32. On a little-endian
575 ** architecture, it returns the u32 value that results from interpreting
576 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
577 ** returns the value that would be produced by interpreting the 4 bytes
578 ** of the input value as a little-endian integer.
579 */
580 #define BYTESWAP32(x) ( \
581     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
582   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
583 )
584 
585 /*
586 ** Generate or extend an 8 byte checksum based on the data in
587 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
588 ** initial values of 0 and 0 if aIn==NULL).
589 **
590 ** The checksum is written back into aOut[] before returning.
591 **
592 ** nByte must be a positive multiple of 8.
593 */
594 static void walChecksumBytes(
595   int nativeCksum, /* True for native byte-order, false for non-native */
596   u8 *a,           /* Content to be checksummed */
597   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
598   const u32 *aIn,  /* Initial checksum value input */
599   u32 *aOut        /* OUT: Final checksum value output */
600 ){
601   u32 s1, s2;
602   u32 *aData = (u32 *)a;
603   u32 *aEnd = (u32 *)&a[nByte];
604 
605   if( aIn ){
606     s1 = aIn[0];
607     s2 = aIn[1];
608   }else{
609     s1 = s2 = 0;
610   }
611 
612   assert( nByte>=8 );
613   assert( (nByte&0x00000007)==0 );
614 
615   if( nativeCksum ){
616     do {
617       s1 += *aData++ + s2;
618       s2 += *aData++ + s1;
619     }while( aData<aEnd );
620   }else{
621     do {
622       s1 += BYTESWAP32(aData[0]) + s2;
623       s2 += BYTESWAP32(aData[1]) + s1;
624       aData += 2;
625     }while( aData<aEnd );
626   }
627 
628   aOut[0] = s1;
629   aOut[1] = s2;
630 }
631 
632 static void walShmBarrier(Wal *pWal){
633   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
634     sqlite3OsShmBarrier(pWal->pDbFd);
635   }
636 }
637 
638 /*
639 ** Write the header information in pWal->hdr into the wal-index.
640 **
641 ** The checksum on pWal->hdr is updated before it is written.
642 */
643 static void walIndexWriteHdr(Wal *pWal){
644   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
645   const int nCksum = offsetof(WalIndexHdr, aCksum);
646 
647   assert( pWal->writeLock );
648   pWal->hdr.isInit = 1;
649   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
650   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
651   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
652   walShmBarrier(pWal);
653   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
654 }
655 
656 /*
657 ** This function encodes a single frame header and writes it to a buffer
658 ** supplied by the caller. A frame-header is made up of a series of
659 ** 4-byte big-endian integers, as follows:
660 **
661 **     0: Page number.
662 **     4: For commit records, the size of the database image in pages
663 **        after the commit. For all other records, zero.
664 **     8: Salt-1 (copied from the wal-header)
665 **    12: Salt-2 (copied from the wal-header)
666 **    16: Checksum-1.
667 **    20: Checksum-2.
668 */
669 static void walEncodeFrame(
670   Wal *pWal,                      /* The write-ahead log */
671   u32 iPage,                      /* Database page number for frame */
672   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
673   u8 *aData,                      /* Pointer to page data */
674   u8 *aFrame                      /* OUT: Write encoded frame here */
675 ){
676   int nativeCksum;                /* True for native byte-order checksums */
677   u32 *aCksum = pWal->hdr.aFrameCksum;
678   assert( WAL_FRAME_HDRSIZE==24 );
679   sqlite3Put4byte(&aFrame[0], iPage);
680   sqlite3Put4byte(&aFrame[4], nTruncate);
681   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
682 
683   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
684   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
685   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
686 
687   sqlite3Put4byte(&aFrame[16], aCksum[0]);
688   sqlite3Put4byte(&aFrame[20], aCksum[1]);
689 }
690 
691 /*
692 ** Check to see if the frame with header in aFrame[] and content
693 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
694 ** *pnTruncate and return true.  Return if the frame is not valid.
695 */
696 static int walDecodeFrame(
697   Wal *pWal,                      /* The write-ahead log */
698   u32 *piPage,                    /* OUT: Database page number for frame */
699   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
700   u8 *aData,                      /* Pointer to page data (for checksum) */
701   u8 *aFrame                      /* Frame data */
702 ){
703   int nativeCksum;                /* True for native byte-order checksums */
704   u32 *aCksum = pWal->hdr.aFrameCksum;
705   u32 pgno;                       /* Page number of the frame */
706   assert( WAL_FRAME_HDRSIZE==24 );
707 
708   /* A frame is only valid if the salt values in the frame-header
709   ** match the salt values in the wal-header.
710   */
711   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
712     return 0;
713   }
714 
715   /* A frame is only valid if the page number is creater than zero.
716   */
717   pgno = sqlite3Get4byte(&aFrame[0]);
718   if( pgno==0 ){
719     return 0;
720   }
721 
722   /* A frame is only valid if a checksum of the WAL header,
723   ** all prior frams, the first 16 bytes of this frame-header,
724   ** and the frame-data matches the checksum in the last 8
725   ** bytes of this frame-header.
726   */
727   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
728   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
729   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
730   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
731    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
732   ){
733     /* Checksum failed. */
734     return 0;
735   }
736 
737   /* If we reach this point, the frame is valid.  Return the page number
738   ** and the new database size.
739   */
740   *piPage = pgno;
741   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
742   return 1;
743 }
744 
745 
746 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
747 /*
748 ** Names of locks.  This routine is used to provide debugging output and is not
749 ** a part of an ordinary build.
750 */
751 static const char *walLockName(int lockIdx){
752   if( lockIdx==WAL_WRITE_LOCK ){
753     return "WRITE-LOCK";
754   }else if( lockIdx==WAL_CKPT_LOCK ){
755     return "CKPT-LOCK";
756   }else if( lockIdx==WAL_RECOVER_LOCK ){
757     return "RECOVER-LOCK";
758   }else{
759     static char zName[15];
760     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
761                      lockIdx-WAL_READ_LOCK(0));
762     return zName;
763   }
764 }
765 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
766 
767 
768 /*
769 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
770 ** A lock cannot be moved directly between shared and exclusive - it must go
771 ** through the unlocked state first.
772 **
773 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
774 */
775 static int walLockShared(Wal *pWal, int lockIdx){
776   int rc;
777   if( pWal->exclusiveMode ) return SQLITE_OK;
778   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
779                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
780   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
781             walLockName(lockIdx), rc ? "failed" : "ok"));
782   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
783   return rc;
784 }
785 static void walUnlockShared(Wal *pWal, int lockIdx){
786   if( pWal->exclusiveMode ) return;
787   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
788                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
789   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
790 }
791 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
792   int rc;
793   if( pWal->exclusiveMode ) return SQLITE_OK;
794   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
795                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
796   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
797             walLockName(lockIdx), n, rc ? "failed" : "ok"));
798   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
799   return rc;
800 }
801 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
802   if( pWal->exclusiveMode ) return;
803   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
804                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
805   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
806              walLockName(lockIdx), n));
807 }
808 
809 /*
810 ** Compute a hash on a page number.  The resulting hash value must land
811 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
812 ** the hash to the next value in the event of a collision.
813 */
814 static int walHash(u32 iPage){
815   assert( iPage>0 );
816   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
817   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
818 }
819 static int walNextHash(int iPriorHash){
820   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
821 }
822 
823 /*
824 ** Return pointers to the hash table and page number array stored on
825 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
826 ** numbered starting from 0.
827 **
828 ** Set output variable *paHash to point to the start of the hash table
829 ** in the wal-index file. Set *piZero to one less than the frame
830 ** number of the first frame indexed by this hash table. If a
831 ** slot in the hash table is set to N, it refers to frame number
832 ** (*piZero+N) in the log.
833 **
834 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
835 ** first frame indexed by the hash table, frame (*piZero+1).
836 */
837 static int walHashGet(
838   Wal *pWal,                      /* WAL handle */
839   int iHash,                      /* Find the iHash'th table */
840   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
841   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
842   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
843 ){
844   int rc;                         /* Return code */
845   volatile u32 *aPgno;
846 
847   rc = walIndexPage(pWal, iHash, &aPgno);
848   assert( rc==SQLITE_OK || iHash>0 );
849 
850   if( rc==SQLITE_OK ){
851     u32 iZero;
852     volatile ht_slot *aHash;
853 
854     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
855     if( iHash==0 ){
856       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
857       iZero = 0;
858     }else{
859       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
860     }
861 
862     *paPgno = &aPgno[-1];
863     *paHash = aHash;
864     *piZero = iZero;
865   }
866   return rc;
867 }
868 
869 /*
870 ** Return the number of the wal-index page that contains the hash-table
871 ** and page-number array that contain entries corresponding to WAL frame
872 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
873 ** are numbered starting from 0.
874 */
875 static int walFramePage(u32 iFrame){
876   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
877   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
878        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
879        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
880        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
881        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
882   );
883   return iHash;
884 }
885 
886 /*
887 ** Return the page number associated with frame iFrame in this WAL.
888 */
889 static u32 walFramePgno(Wal *pWal, u32 iFrame){
890   int iHash = walFramePage(iFrame);
891   if( iHash==0 ){
892     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
893   }
894   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
895 }
896 
897 /*
898 ** Remove entries from the hash table that point to WAL slots greater
899 ** than pWal->hdr.mxFrame.
900 **
901 ** This function is called whenever pWal->hdr.mxFrame is decreased due
902 ** to a rollback or savepoint.
903 **
904 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
905 ** updated.  Any later hash tables will be automatically cleared when
906 ** pWal->hdr.mxFrame advances to the point where those hash tables are
907 ** actually needed.
908 */
909 static void walCleanupHash(Wal *pWal){
910   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
911   volatile u32 *aPgno = 0;        /* Page number array for hash table */
912   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
913   int iLimit = 0;                 /* Zero values greater than this */
914   int nByte;                      /* Number of bytes to zero in aPgno[] */
915   int i;                          /* Used to iterate through aHash[] */
916 
917   assert( pWal->writeLock );
918   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
919   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
920   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
921 
922   if( pWal->hdr.mxFrame==0 ) return;
923 
924   /* Obtain pointers to the hash-table and page-number array containing
925   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
926   ** that the page said hash-table and array reside on is already mapped.
927   */
928   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
929   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
930   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
931 
932   /* Zero all hash-table entries that correspond to frame numbers greater
933   ** than pWal->hdr.mxFrame.
934   */
935   iLimit = pWal->hdr.mxFrame - iZero;
936   assert( iLimit>0 );
937   for(i=0; i<HASHTABLE_NSLOT; i++){
938     if( aHash[i]>iLimit ){
939       aHash[i] = 0;
940     }
941   }
942 
943   /* Zero the entries in the aPgno array that correspond to frames with
944   ** frame numbers greater than pWal->hdr.mxFrame.
945   */
946   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
947   memset((void *)&aPgno[iLimit+1], 0, nByte);
948 
949 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
950   /* Verify that the every entry in the mapping region is still reachable
951   ** via the hash table even after the cleanup.
952   */
953   if( iLimit ){
954     int i;           /* Loop counter */
955     int iKey;        /* Hash key */
956     for(i=1; i<=iLimit; i++){
957       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
958         if( aHash[iKey]==i ) break;
959       }
960       assert( aHash[iKey]==i );
961     }
962   }
963 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
964 }
965 
966 
967 /*
968 ** Set an entry in the wal-index that will map database page number
969 ** pPage into WAL frame iFrame.
970 */
971 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
972   int rc;                         /* Return code */
973   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
974   volatile u32 *aPgno = 0;        /* Page number array */
975   volatile ht_slot *aHash = 0;    /* Hash table */
976 
977   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
978 
979   /* Assuming the wal-index file was successfully mapped, populate the
980   ** page number array and hash table entry.
981   */
982   if( rc==SQLITE_OK ){
983     int iKey;                     /* Hash table key */
984     int idx;                      /* Value to write to hash-table slot */
985     int nCollide;                 /* Number of hash collisions */
986 
987     idx = iFrame - iZero;
988     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
989 
990     /* If this is the first entry to be added to this hash-table, zero the
991     ** entire hash table and aPgno[] array before proceeding.
992     */
993     if( idx==1 ){
994       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
995       memset((void*)&aPgno[1], 0, nByte);
996     }
997 
998     /* If the entry in aPgno[] is already set, then the previous writer
999     ** must have exited unexpectedly in the middle of a transaction (after
1000     ** writing one or more dirty pages to the WAL to free up memory).
1001     ** Remove the remnants of that writers uncommitted transaction from
1002     ** the hash-table before writing any new entries.
1003     */
1004     if( aPgno[idx] ){
1005       walCleanupHash(pWal);
1006       assert( !aPgno[idx] );
1007     }
1008 
1009     /* Write the aPgno[] array entry and the hash-table slot. */
1010     nCollide = idx;
1011     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1012       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1013     }
1014     aPgno[idx] = iPage;
1015     aHash[iKey] = (ht_slot)idx;
1016 
1017 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1018     /* Verify that the number of entries in the hash table exactly equals
1019     ** the number of entries in the mapping region.
1020     */
1021     {
1022       int i;           /* Loop counter */
1023       int nEntry = 0;  /* Number of entries in the hash table */
1024       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1025       assert( nEntry==idx );
1026     }
1027 
1028     /* Verify that the every entry in the mapping region is reachable
1029     ** via the hash table.  This turns out to be a really, really expensive
1030     ** thing to check, so only do this occasionally - not on every
1031     ** iteration.
1032     */
1033     if( (idx&0x3ff)==0 ){
1034       int i;           /* Loop counter */
1035       for(i=1; i<=idx; i++){
1036         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1037           if( aHash[iKey]==i ) break;
1038         }
1039         assert( aHash[iKey]==i );
1040       }
1041     }
1042 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1043   }
1044 
1045 
1046   return rc;
1047 }
1048 
1049 
1050 /*
1051 ** Recover the wal-index by reading the write-ahead log file.
1052 **
1053 ** This routine first tries to establish an exclusive lock on the
1054 ** wal-index to prevent other threads/processes from doing anything
1055 ** with the WAL or wal-index while recovery is running.  The
1056 ** WAL_RECOVER_LOCK is also held so that other threads will know
1057 ** that this thread is running recovery.  If unable to establish
1058 ** the necessary locks, this routine returns SQLITE_BUSY.
1059 */
1060 static int walIndexRecover(Wal *pWal){
1061   int rc;                         /* Return Code */
1062   i64 nSize;                      /* Size of log file */
1063   u32 aFrameCksum[2] = {0, 0};
1064   int iLock;                      /* Lock offset to lock for checkpoint */
1065   int nLock;                      /* Number of locks to hold */
1066 
1067   /* Obtain an exclusive lock on all byte in the locking range not already
1068   ** locked by the caller. The caller is guaranteed to have locked the
1069   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1070   ** If successful, the same bytes that are locked here are unlocked before
1071   ** this function returns.
1072   */
1073   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1074   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1075   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1076   assert( pWal->writeLock );
1077   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1078   nLock = SQLITE_SHM_NLOCK - iLock;
1079   rc = walLockExclusive(pWal, iLock, nLock);
1080   if( rc ){
1081     return rc;
1082   }
1083   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1084 
1085   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1086 
1087   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1088   if( rc!=SQLITE_OK ){
1089     goto recovery_error;
1090   }
1091 
1092   if( nSize>WAL_HDRSIZE ){
1093     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1094     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1095     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1096     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1097     int iFrame;                   /* Index of last frame read */
1098     i64 iOffset;                  /* Next offset to read from log file */
1099     int szPage;                   /* Page size according to the log */
1100     u32 magic;                    /* Magic value read from WAL header */
1101     u32 version;                  /* Magic value read from WAL header */
1102     int isValid;                  /* True if this frame is valid */
1103 
1104     /* Read in the WAL header. */
1105     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1106     if( rc!=SQLITE_OK ){
1107       goto recovery_error;
1108     }
1109 
1110     /* If the database page size is not a power of two, or is greater than
1111     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1112     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1113     ** WAL file.
1114     */
1115     magic = sqlite3Get4byte(&aBuf[0]);
1116     szPage = sqlite3Get4byte(&aBuf[8]);
1117     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1118      || szPage&(szPage-1)
1119      || szPage>SQLITE_MAX_PAGE_SIZE
1120      || szPage<512
1121     ){
1122       goto finished;
1123     }
1124     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1125     pWal->szPage = szPage;
1126     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1127     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1128 
1129     /* Verify that the WAL header checksum is correct */
1130     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1131         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1132     );
1133     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1134      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1135     ){
1136       goto finished;
1137     }
1138 
1139     /* Verify that the version number on the WAL format is one that
1140     ** are able to understand */
1141     version = sqlite3Get4byte(&aBuf[4]);
1142     if( version!=WAL_MAX_VERSION ){
1143       rc = SQLITE_CANTOPEN_BKPT;
1144       goto finished;
1145     }
1146 
1147     /* Malloc a buffer to read frames into. */
1148     szFrame = szPage + WAL_FRAME_HDRSIZE;
1149     aFrame = (u8 *)sqlite3_malloc(szFrame);
1150     if( !aFrame ){
1151       rc = SQLITE_NOMEM;
1152       goto recovery_error;
1153     }
1154     aData = &aFrame[WAL_FRAME_HDRSIZE];
1155 
1156     /* Read all frames from the log file. */
1157     iFrame = 0;
1158     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1159       u32 pgno;                   /* Database page number for frame */
1160       u32 nTruncate;              /* dbsize field from frame header */
1161 
1162       /* Read and decode the next log frame. */
1163       iFrame++;
1164       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1165       if( rc!=SQLITE_OK ) break;
1166       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1167       if( !isValid ) break;
1168       rc = walIndexAppend(pWal, iFrame, pgno);
1169       if( rc!=SQLITE_OK ) break;
1170 
1171       /* If nTruncate is non-zero, this is a commit record. */
1172       if( nTruncate ){
1173         pWal->hdr.mxFrame = iFrame;
1174         pWal->hdr.nPage = nTruncate;
1175         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1176         testcase( szPage<=32768 );
1177         testcase( szPage>=65536 );
1178         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1179         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1180       }
1181     }
1182 
1183     sqlite3_free(aFrame);
1184   }
1185 
1186 finished:
1187   if( rc==SQLITE_OK ){
1188     volatile WalCkptInfo *pInfo;
1189     int i;
1190     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1191     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1192     walIndexWriteHdr(pWal);
1193 
1194     /* Reset the checkpoint-header. This is safe because this thread is
1195     ** currently holding locks that exclude all other readers, writers and
1196     ** checkpointers.
1197     */
1198     pInfo = walCkptInfo(pWal);
1199     pInfo->nBackfill = 0;
1200     pInfo->aReadMark[0] = 0;
1201     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1202     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1203 
1204     /* If more than one frame was recovered from the log file, report an
1205     ** event via sqlite3_log(). This is to help with identifying performance
1206     ** problems caused by applications routinely shutting down without
1207     ** checkpointing the log file.
1208     */
1209     if( pWal->hdr.nPage ){
1210       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1211           "recovered %d frames from WAL file %s",
1212           pWal->hdr.mxFrame, pWal->zWalName
1213       );
1214     }
1215   }
1216 
1217 recovery_error:
1218   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1219   walUnlockExclusive(pWal, iLock, nLock);
1220   return rc;
1221 }
1222 
1223 /*
1224 ** Close an open wal-index.
1225 */
1226 static void walIndexClose(Wal *pWal, int isDelete){
1227   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1228     int i;
1229     for(i=0; i<pWal->nWiData; i++){
1230       sqlite3_free((void *)pWal->apWiData[i]);
1231       pWal->apWiData[i] = 0;
1232     }
1233   }else{
1234     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1235   }
1236 }
1237 
1238 /*
1239 ** Open a connection to the WAL file zWalName. The database file must
1240 ** already be opened on connection pDbFd. The buffer that zWalName points
1241 ** to must remain valid for the lifetime of the returned Wal* handle.
1242 **
1243 ** A SHARED lock should be held on the database file when this function
1244 ** is called. The purpose of this SHARED lock is to prevent any other
1245 ** client from unlinking the WAL or wal-index file. If another process
1246 ** were to do this just after this client opened one of these files, the
1247 ** system would be badly broken.
1248 **
1249 ** If the log file is successfully opened, SQLITE_OK is returned and
1250 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1251 ** an SQLite error code is returned and *ppWal is left unmodified.
1252 */
1253 int sqlite3WalOpen(
1254   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1255   sqlite3_file *pDbFd,            /* The open database file */
1256   const char *zWalName,           /* Name of the WAL file */
1257   int bNoShm,                     /* True to run in heap-memory mode */
1258   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1259   Wal **ppWal                     /* OUT: Allocated Wal handle */
1260 ){
1261   int rc;                         /* Return Code */
1262   Wal *pRet;                      /* Object to allocate and return */
1263   int flags;                      /* Flags passed to OsOpen() */
1264 
1265   assert( zWalName && zWalName[0] );
1266   assert( pDbFd );
1267 
1268   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1269   ** this source file.  Verify that the #defines of the locking byte offsets
1270   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1271   */
1272 #ifdef WIN_SHM_BASE
1273   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1274 #endif
1275 #ifdef UNIX_SHM_BASE
1276   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1277 #endif
1278 
1279 
1280   /* Allocate an instance of struct Wal to return. */
1281   *ppWal = 0;
1282   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1283   if( !pRet ){
1284     return SQLITE_NOMEM;
1285   }
1286 
1287   pRet->pVfs = pVfs;
1288   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1289   pRet->pDbFd = pDbFd;
1290   pRet->readLock = -1;
1291   pRet->mxWalSize = mxWalSize;
1292   pRet->zWalName = zWalName;
1293   pRet->syncHeader = 1;
1294   pRet->padToSectorBoundary = 1;
1295   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1296 
1297   /* Open file handle on the write-ahead log file. */
1298   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1299   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1300   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1301     pRet->readOnly = WAL_RDONLY;
1302   }
1303 
1304   if( rc!=SQLITE_OK ){
1305     walIndexClose(pRet, 0);
1306     sqlite3OsClose(pRet->pWalFd);
1307     sqlite3_free(pRet);
1308   }else{
1309     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1310     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1311     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1312       pRet->padToSectorBoundary = 0;
1313     }
1314     *ppWal = pRet;
1315     WALTRACE(("WAL%d: opened\n", pRet));
1316   }
1317   return rc;
1318 }
1319 
1320 /*
1321 ** Change the size to which the WAL file is trucated on each reset.
1322 */
1323 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1324   if( pWal ) pWal->mxWalSize = iLimit;
1325 }
1326 
1327 /*
1328 ** Find the smallest page number out of all pages held in the WAL that
1329 ** has not been returned by any prior invocation of this method on the
1330 ** same WalIterator object.   Write into *piFrame the frame index where
1331 ** that page was last written into the WAL.  Write into *piPage the page
1332 ** number.
1333 **
1334 ** Return 0 on success.  If there are no pages in the WAL with a page
1335 ** number larger than *piPage, then return 1.
1336 */
1337 static int walIteratorNext(
1338   WalIterator *p,               /* Iterator */
1339   u32 *piPage,                  /* OUT: The page number of the next page */
1340   u32 *piFrame                  /* OUT: Wal frame index of next page */
1341 ){
1342   u32 iMin;                     /* Result pgno must be greater than iMin */
1343   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1344   int i;                        /* For looping through segments */
1345 
1346   iMin = p->iPrior;
1347   assert( iMin<0xffffffff );
1348   for(i=p->nSegment-1; i>=0; i--){
1349     struct WalSegment *pSegment = &p->aSegment[i];
1350     while( pSegment->iNext<pSegment->nEntry ){
1351       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1352       if( iPg>iMin ){
1353         if( iPg<iRet ){
1354           iRet = iPg;
1355           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1356         }
1357         break;
1358       }
1359       pSegment->iNext++;
1360     }
1361   }
1362 
1363   *piPage = p->iPrior = iRet;
1364   return (iRet==0xFFFFFFFF);
1365 }
1366 
1367 /*
1368 ** This function merges two sorted lists into a single sorted list.
1369 **
1370 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1371 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1372 ** is guaranteed for all J<K:
1373 **
1374 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1375 **        aContent[aRight[J]] < aContent[aRight[K]]
1376 **
1377 ** This routine overwrites aRight[] with a new (probably longer) sequence
1378 ** of indices such that the aRight[] contains every index that appears in
1379 ** either aLeft[] or the old aRight[] and such that the second condition
1380 ** above is still met.
1381 **
1382 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1383 ** aContent[aRight[X]] values will be unique too.  But there might be
1384 ** one or more combinations of X and Y such that
1385 **
1386 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1387 **
1388 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1389 */
1390 static void walMerge(
1391   const u32 *aContent,            /* Pages in wal - keys for the sort */
1392   ht_slot *aLeft,                 /* IN: Left hand input list */
1393   int nLeft,                      /* IN: Elements in array *paLeft */
1394   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1395   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1396   ht_slot *aTmp                   /* Temporary buffer */
1397 ){
1398   int iLeft = 0;                  /* Current index in aLeft */
1399   int iRight = 0;                 /* Current index in aRight */
1400   int iOut = 0;                   /* Current index in output buffer */
1401   int nRight = *pnRight;
1402   ht_slot *aRight = *paRight;
1403 
1404   assert( nLeft>0 && nRight>0 );
1405   while( iRight<nRight || iLeft<nLeft ){
1406     ht_slot logpage;
1407     Pgno dbpage;
1408 
1409     if( (iLeft<nLeft)
1410      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1411     ){
1412       logpage = aLeft[iLeft++];
1413     }else{
1414       logpage = aRight[iRight++];
1415     }
1416     dbpage = aContent[logpage];
1417 
1418     aTmp[iOut++] = logpage;
1419     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1420 
1421     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1422     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1423   }
1424 
1425   *paRight = aLeft;
1426   *pnRight = iOut;
1427   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1428 }
1429 
1430 /*
1431 ** Sort the elements in list aList using aContent[] as the sort key.
1432 ** Remove elements with duplicate keys, preferring to keep the
1433 ** larger aList[] values.
1434 **
1435 ** The aList[] entries are indices into aContent[].  The values in
1436 ** aList[] are to be sorted so that for all J<K:
1437 **
1438 **      aContent[aList[J]] < aContent[aList[K]]
1439 **
1440 ** For any X and Y such that
1441 **
1442 **      aContent[aList[X]] == aContent[aList[Y]]
1443 **
1444 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1445 ** the smaller.
1446 */
1447 static void walMergesort(
1448   const u32 *aContent,            /* Pages in wal */
1449   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1450   ht_slot *aList,                 /* IN/OUT: List to sort */
1451   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1452 ){
1453   struct Sublist {
1454     int nList;                    /* Number of elements in aList */
1455     ht_slot *aList;               /* Pointer to sub-list content */
1456   };
1457 
1458   const int nList = *pnList;      /* Size of input list */
1459   int nMerge = 0;                 /* Number of elements in list aMerge */
1460   ht_slot *aMerge = 0;            /* List to be merged */
1461   int iList;                      /* Index into input list */
1462   int iSub = 0;                   /* Index into aSub array */
1463   struct Sublist aSub[13];        /* Array of sub-lists */
1464 
1465   memset(aSub, 0, sizeof(aSub));
1466   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1467   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1468 
1469   for(iList=0; iList<nList; iList++){
1470     nMerge = 1;
1471     aMerge = &aList[iList];
1472     for(iSub=0; iList & (1<<iSub); iSub++){
1473       struct Sublist *p = &aSub[iSub];
1474       assert( p->aList && p->nList<=(1<<iSub) );
1475       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1476       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1477     }
1478     aSub[iSub].aList = aMerge;
1479     aSub[iSub].nList = nMerge;
1480   }
1481 
1482   for(iSub++; iSub<ArraySize(aSub); iSub++){
1483     if( nList & (1<<iSub) ){
1484       struct Sublist *p = &aSub[iSub];
1485       assert( p->nList<=(1<<iSub) );
1486       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1487       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1488     }
1489   }
1490   assert( aMerge==aList );
1491   *pnList = nMerge;
1492 
1493 #ifdef SQLITE_DEBUG
1494   {
1495     int i;
1496     for(i=1; i<*pnList; i++){
1497       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1498     }
1499   }
1500 #endif
1501 }
1502 
1503 /*
1504 ** Free an iterator allocated by walIteratorInit().
1505 */
1506 static void walIteratorFree(WalIterator *p){
1507   sqlite3_free(p);
1508 }
1509 
1510 /*
1511 ** Construct a WalInterator object that can be used to loop over all
1512 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1513 ** lock.
1514 **
1515 ** On success, make *pp point to the newly allocated WalInterator object
1516 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1517 ** returns an error, the value of *pp is undefined.
1518 **
1519 ** The calling routine should invoke walIteratorFree() to destroy the
1520 ** WalIterator object when it has finished with it.
1521 */
1522 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1523   WalIterator *p;                 /* Return value */
1524   int nSegment;                   /* Number of segments to merge */
1525   u32 iLast;                      /* Last frame in log */
1526   int nByte;                      /* Number of bytes to allocate */
1527   int i;                          /* Iterator variable */
1528   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1529   int rc = SQLITE_OK;             /* Return Code */
1530 
1531   /* This routine only runs while holding the checkpoint lock. And
1532   ** it only runs if there is actually content in the log (mxFrame>0).
1533   */
1534   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1535   iLast = pWal->hdr.mxFrame;
1536 
1537   /* Allocate space for the WalIterator object. */
1538   nSegment = walFramePage(iLast) + 1;
1539   nByte = sizeof(WalIterator)
1540         + (nSegment-1)*sizeof(struct WalSegment)
1541         + iLast*sizeof(ht_slot);
1542   p = (WalIterator *)sqlite3_malloc(nByte);
1543   if( !p ){
1544     return SQLITE_NOMEM;
1545   }
1546   memset(p, 0, nByte);
1547   p->nSegment = nSegment;
1548 
1549   /* Allocate temporary space used by the merge-sort routine. This block
1550   ** of memory will be freed before this function returns.
1551   */
1552   aTmp = (ht_slot *)sqlite3_malloc(
1553       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1554   );
1555   if( !aTmp ){
1556     rc = SQLITE_NOMEM;
1557   }
1558 
1559   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1560     volatile ht_slot *aHash;
1561     u32 iZero;
1562     volatile u32 *aPgno;
1563 
1564     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1565     if( rc==SQLITE_OK ){
1566       int j;                      /* Counter variable */
1567       int nEntry;                 /* Number of entries in this segment */
1568       ht_slot *aIndex;            /* Sorted index for this segment */
1569 
1570       aPgno++;
1571       if( (i+1)==nSegment ){
1572         nEntry = (int)(iLast - iZero);
1573       }else{
1574         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1575       }
1576       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1577       iZero++;
1578 
1579       for(j=0; j<nEntry; j++){
1580         aIndex[j] = (ht_slot)j;
1581       }
1582       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1583       p->aSegment[i].iZero = iZero;
1584       p->aSegment[i].nEntry = nEntry;
1585       p->aSegment[i].aIndex = aIndex;
1586       p->aSegment[i].aPgno = (u32 *)aPgno;
1587     }
1588   }
1589   sqlite3_free(aTmp);
1590 
1591   if( rc!=SQLITE_OK ){
1592     walIteratorFree(p);
1593   }
1594   *pp = p;
1595   return rc;
1596 }
1597 
1598 /*
1599 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1600 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1601 ** busy-handler function. Invoke it and retry the lock until either the
1602 ** lock is successfully obtained or the busy-handler returns 0.
1603 */
1604 static int walBusyLock(
1605   Wal *pWal,                      /* WAL connection */
1606   int (*xBusy)(void*),            /* Function to call when busy */
1607   void *pBusyArg,                 /* Context argument for xBusyHandler */
1608   int lockIdx,                    /* Offset of first byte to lock */
1609   int n                           /* Number of bytes to lock */
1610 ){
1611   int rc;
1612   do {
1613     rc = walLockExclusive(pWal, lockIdx, n);
1614   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1615   return rc;
1616 }
1617 
1618 /*
1619 ** The cache of the wal-index header must be valid to call this function.
1620 ** Return the page-size in bytes used by the database.
1621 */
1622 static int walPagesize(Wal *pWal){
1623   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1624 }
1625 
1626 /*
1627 ** The following is guaranteed when this function is called:
1628 **
1629 **   a) the WRITER lock is held,
1630 **   b) the entire log file has been checkpointed, and
1631 **   c) any existing readers are reading exclusively from the database
1632 **      file - there are no readers that may attempt to read a frame from
1633 **      the log file.
1634 **
1635 ** This function updates the shared-memory structures so that the next
1636 ** client to write to the database (which may be this one) does so by
1637 ** writing frames into the start of the log file.
1638 **
1639 ** The value of parameter salt1 is used as the aSalt[1] value in the
1640 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1641 ** one obtained from sqlite3_randomness()).
1642 */
1643 static void walRestartHdr(Wal *pWal, u32 salt1){
1644   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1645   int i;                          /* Loop counter */
1646   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1647   pWal->nCkpt++;
1648   pWal->hdr.mxFrame = 0;
1649   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1650   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1651   walIndexWriteHdr(pWal);
1652   pInfo->nBackfill = 0;
1653   pInfo->aReadMark[1] = 0;
1654   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1655   assert( pInfo->aReadMark[0]==0 );
1656 }
1657 
1658 /*
1659 ** Copy as much content as we can from the WAL back into the database file
1660 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1661 **
1662 ** The amount of information copies from WAL to database might be limited
1663 ** by active readers.  This routine will never overwrite a database page
1664 ** that a concurrent reader might be using.
1665 **
1666 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1667 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1668 ** checkpoints are always run by a background thread or background
1669 ** process, foreground threads will never block on a lengthy fsync call.
1670 **
1671 ** Fsync is called on the WAL before writing content out of the WAL and
1672 ** into the database.  This ensures that if the new content is persistent
1673 ** in the WAL and can be recovered following a power-loss or hard reset.
1674 **
1675 ** Fsync is also called on the database file if (and only if) the entire
1676 ** WAL content is copied into the database file.  This second fsync makes
1677 ** it safe to delete the WAL since the new content will persist in the
1678 ** database file.
1679 **
1680 ** This routine uses and updates the nBackfill field of the wal-index header.
1681 ** This is the only routine that will increase the value of nBackfill.
1682 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1683 ** its value.)
1684 **
1685 ** The caller must be holding sufficient locks to ensure that no other
1686 ** checkpoint is running (in any other thread or process) at the same
1687 ** time.
1688 */
1689 static int walCheckpoint(
1690   Wal *pWal,                      /* Wal connection */
1691   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1692   int (*xBusy)(void*),            /* Function to call when busy */
1693   void *pBusyArg,                 /* Context argument for xBusyHandler */
1694   int sync_flags,                 /* Flags for OsSync() (or 0) */
1695   u8 *zBuf                        /* Temporary buffer to use */
1696 ){
1697   int rc;                         /* Return code */
1698   int szPage;                     /* Database page-size */
1699   WalIterator *pIter = 0;         /* Wal iterator context */
1700   u32 iDbpage = 0;                /* Next database page to write */
1701   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1702   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1703   u32 mxPage;                     /* Max database page to write */
1704   int i;                          /* Loop counter */
1705   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1706 
1707   szPage = walPagesize(pWal);
1708   testcase( szPage<=32768 );
1709   testcase( szPage>=65536 );
1710   pInfo = walCkptInfo(pWal);
1711   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
1712 
1713   /* Allocate the iterator */
1714   rc = walIteratorInit(pWal, &pIter);
1715   if( rc!=SQLITE_OK ){
1716     return rc;
1717   }
1718   assert( pIter );
1719 
1720   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1721   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1722   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1723 
1724   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1725   ** safe to write into the database.  Frames beyond mxSafeFrame might
1726   ** overwrite database pages that are in use by active readers and thus
1727   ** cannot be backfilled from the WAL.
1728   */
1729   mxSafeFrame = pWal->hdr.mxFrame;
1730   mxPage = pWal->hdr.nPage;
1731   for(i=1; i<WAL_NREADER; i++){
1732     u32 y = pInfo->aReadMark[i];
1733     if( mxSafeFrame>y ){
1734       assert( y<=pWal->hdr.mxFrame );
1735       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1736       if( rc==SQLITE_OK ){
1737         pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1738         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1739       }else if( rc==SQLITE_BUSY ){
1740         mxSafeFrame = y;
1741         xBusy = 0;
1742       }else{
1743         goto walcheckpoint_out;
1744       }
1745     }
1746   }
1747 
1748   if( pInfo->nBackfill<mxSafeFrame
1749    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
1750   ){
1751     i64 nSize;                    /* Current size of database file */
1752     u32 nBackfill = pInfo->nBackfill;
1753 
1754     /* Sync the WAL to disk */
1755     if( sync_flags ){
1756       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1757     }
1758 
1759     /* If the database may grow as a result of this checkpoint, hint
1760     ** about the eventual size of the db file to the VFS layer.
1761     */
1762     if( rc==SQLITE_OK ){
1763       i64 nReq = ((i64)mxPage * szPage);
1764       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1765       if( rc==SQLITE_OK && nSize<nReq ){
1766         sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1767       }
1768     }
1769 
1770 
1771     /* Iterate through the contents of the WAL, copying data to the db file. */
1772     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1773       i64 iOffset;
1774       assert( walFramePgno(pWal, iFrame)==iDbpage );
1775       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
1776       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1777       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1778       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1779       if( rc!=SQLITE_OK ) break;
1780       iOffset = (iDbpage-1)*(i64)szPage;
1781       testcase( IS_BIG_INT(iOffset) );
1782       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1783       if( rc!=SQLITE_OK ) break;
1784     }
1785 
1786     /* If work was actually accomplished... */
1787     if( rc==SQLITE_OK ){
1788       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1789         i64 szDb = pWal->hdr.nPage*(i64)szPage;
1790         testcase( IS_BIG_INT(szDb) );
1791         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1792         if( rc==SQLITE_OK && sync_flags ){
1793           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1794         }
1795       }
1796       if( rc==SQLITE_OK ){
1797         pInfo->nBackfill = mxSafeFrame;
1798       }
1799     }
1800 
1801     /* Release the reader lock held while backfilling */
1802     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1803   }
1804 
1805   if( rc==SQLITE_BUSY ){
1806     /* Reset the return code so as not to report a checkpoint failure
1807     ** just because there are active readers.  */
1808     rc = SQLITE_OK;
1809   }
1810 
1811   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1812   ** entire wal file has been copied into the database file, then block
1813   ** until all readers have finished using the wal file. This ensures that
1814   ** the next process to write to the database restarts the wal file.
1815   */
1816   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1817     assert( pWal->writeLock );
1818     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1819       rc = SQLITE_BUSY;
1820     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1821       u32 salt1;
1822       sqlite3_randomness(4, &salt1);
1823       assert( mxSafeFrame==pWal->hdr.mxFrame );
1824       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1825       if( rc==SQLITE_OK ){
1826         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1827           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1828           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1829           ** truncates the log file to zero bytes just prior to a
1830           ** successful return.
1831           **
1832           ** In theory, it might be safe to do this without updating the
1833           ** wal-index header in shared memory, as all subsequent reader or
1834           ** writer clients should see that the entire log file has been
1835           ** checkpointed and behave accordingly. This seems unsafe though,
1836           ** as it would leave the system in a state where the contents of
1837           ** the wal-index header do not match the contents of the
1838           ** file-system. To avoid this, update the wal-index header to
1839           ** indicate that the log file contains zero valid frames.  */
1840           walRestartHdr(pWal, salt1);
1841           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1842         }
1843         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1844       }
1845     }
1846   }
1847 
1848  walcheckpoint_out:
1849   walIteratorFree(pIter);
1850   return rc;
1851 }
1852 
1853 /*
1854 ** If the WAL file is currently larger than nMax bytes in size, truncate
1855 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1856 */
1857 static void walLimitSize(Wal *pWal, i64 nMax){
1858   i64 sz;
1859   int rx;
1860   sqlite3BeginBenignMalloc();
1861   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1862   if( rx==SQLITE_OK && (sz > nMax ) ){
1863     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1864   }
1865   sqlite3EndBenignMalloc();
1866   if( rx ){
1867     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1868   }
1869 }
1870 
1871 /*
1872 ** Close a connection to a log file.
1873 */
1874 int sqlite3WalClose(
1875   Wal *pWal,                      /* Wal to close */
1876   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1877   int nBuf,
1878   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1879 ){
1880   int rc = SQLITE_OK;
1881   if( pWal ){
1882     int isDelete = 0;             /* True to unlink wal and wal-index files */
1883 
1884     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1885     ** ordinary, rollback-mode locking methods, this guarantees that the
1886     ** connection associated with this log file is the only connection to
1887     ** the database. In this case checkpoint the database and unlink both
1888     ** the wal and wal-index files.
1889     **
1890     ** The EXCLUSIVE lock is not released before returning.
1891     */
1892     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1893     if( rc==SQLITE_OK ){
1894       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1895         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1896       }
1897       rc = sqlite3WalCheckpoint(
1898           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1899       );
1900       if( rc==SQLITE_OK ){
1901         int bPersist = -1;
1902         sqlite3OsFileControlHint(
1903             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1904         );
1905         if( bPersist!=1 ){
1906           /* Try to delete the WAL file if the checkpoint completed and
1907           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1908           ** mode (!bPersist) */
1909           isDelete = 1;
1910         }else if( pWal->mxWalSize>=0 ){
1911           /* Try to truncate the WAL file to zero bytes if the checkpoint
1912           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1913           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1914           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1915           ** to zero bytes as truncating to the journal_size_limit might
1916           ** leave a corrupt WAL file on disk. */
1917           walLimitSize(pWal, 0);
1918         }
1919       }
1920     }
1921 
1922     walIndexClose(pWal, isDelete);
1923     sqlite3OsClose(pWal->pWalFd);
1924     if( isDelete ){
1925       sqlite3BeginBenignMalloc();
1926       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1927       sqlite3EndBenignMalloc();
1928     }
1929     WALTRACE(("WAL%p: closed\n", pWal));
1930     sqlite3_free((void *)pWal->apWiData);
1931     sqlite3_free(pWal);
1932   }
1933   return rc;
1934 }
1935 
1936 /*
1937 ** Try to read the wal-index header.  Return 0 on success and 1 if
1938 ** there is a problem.
1939 **
1940 ** The wal-index is in shared memory.  Another thread or process might
1941 ** be writing the header at the same time this procedure is trying to
1942 ** read it, which might result in inconsistency.  A dirty read is detected
1943 ** by verifying that both copies of the header are the same and also by
1944 ** a checksum on the header.
1945 **
1946 ** If and only if the read is consistent and the header is different from
1947 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1948 ** and *pChanged is set to 1.
1949 **
1950 ** If the checksum cannot be verified return non-zero. If the header
1951 ** is read successfully and the checksum verified, return zero.
1952 */
1953 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1954   u32 aCksum[2];                  /* Checksum on the header content */
1955   WalIndexHdr h1, h2;             /* Two copies of the header content */
1956   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
1957 
1958   /* The first page of the wal-index must be mapped at this point. */
1959   assert( pWal->nWiData>0 && pWal->apWiData[0] );
1960 
1961   /* Read the header. This might happen concurrently with a write to the
1962   ** same area of shared memory on a different CPU in a SMP,
1963   ** meaning it is possible that an inconsistent snapshot is read
1964   ** from the file. If this happens, return non-zero.
1965   **
1966   ** There are two copies of the header at the beginning of the wal-index.
1967   ** When reading, read [0] first then [1].  Writes are in the reverse order.
1968   ** Memory barriers are used to prevent the compiler or the hardware from
1969   ** reordering the reads and writes.
1970   */
1971   aHdr = walIndexHdr(pWal);
1972   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1973   walShmBarrier(pWal);
1974   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1975 
1976   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1977     return 1;   /* Dirty read */
1978   }
1979   if( h1.isInit==0 ){
1980     return 1;   /* Malformed header - probably all zeros */
1981   }
1982   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
1983   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1984     return 1;   /* Checksum does not match */
1985   }
1986 
1987   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
1988     *pChanged = 1;
1989     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
1990     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1991     testcase( pWal->szPage<=32768 );
1992     testcase( pWal->szPage>=65536 );
1993   }
1994 
1995   /* The header was successfully read. Return zero. */
1996   return 0;
1997 }
1998 
1999 /*
2000 ** Read the wal-index header from the wal-index and into pWal->hdr.
2001 ** If the wal-header appears to be corrupt, try to reconstruct the
2002 ** wal-index from the WAL before returning.
2003 **
2004 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2005 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2006 ** to 0.
2007 **
2008 ** If the wal-index header is successfully read, return SQLITE_OK.
2009 ** Otherwise an SQLite error code.
2010 */
2011 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2012   int rc;                         /* Return code */
2013   int badHdr;                     /* True if a header read failed */
2014   volatile u32 *page0;            /* Chunk of wal-index containing header */
2015 
2016   /* Ensure that page 0 of the wal-index (the page that contains the
2017   ** wal-index header) is mapped. Return early if an error occurs here.
2018   */
2019   assert( pChanged );
2020   rc = walIndexPage(pWal, 0, &page0);
2021   if( rc!=SQLITE_OK ){
2022     return rc;
2023   };
2024   assert( page0 || pWal->writeLock==0 );
2025 
2026   /* If the first page of the wal-index has been mapped, try to read the
2027   ** wal-index header immediately, without holding any lock. This usually
2028   ** works, but may fail if the wal-index header is corrupt or currently
2029   ** being modified by another thread or process.
2030   */
2031   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2032 
2033   /* If the first attempt failed, it might have been due to a race
2034   ** with a writer.  So get a WRITE lock and try again.
2035   */
2036   assert( badHdr==0 || pWal->writeLock==0 );
2037   if( badHdr ){
2038     if( pWal->readOnly & WAL_SHM_RDONLY ){
2039       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2040         walUnlockShared(pWal, WAL_WRITE_LOCK);
2041         rc = SQLITE_READONLY_RECOVERY;
2042       }
2043     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2044       pWal->writeLock = 1;
2045       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2046         badHdr = walIndexTryHdr(pWal, pChanged);
2047         if( badHdr ){
2048           /* If the wal-index header is still malformed even while holding
2049           ** a WRITE lock, it can only mean that the header is corrupted and
2050           ** needs to be reconstructed.  So run recovery to do exactly that.
2051           */
2052           rc = walIndexRecover(pWal);
2053           *pChanged = 1;
2054         }
2055       }
2056       pWal->writeLock = 0;
2057       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2058     }
2059   }
2060 
2061   /* If the header is read successfully, check the version number to make
2062   ** sure the wal-index was not constructed with some future format that
2063   ** this version of SQLite cannot understand.
2064   */
2065   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2066     rc = SQLITE_CANTOPEN_BKPT;
2067   }
2068 
2069   return rc;
2070 }
2071 
2072 /*
2073 ** This is the value that walTryBeginRead returns when it needs to
2074 ** be retried.
2075 */
2076 #define WAL_RETRY  (-1)
2077 
2078 /*
2079 ** Attempt to start a read transaction.  This might fail due to a race or
2080 ** other transient condition.  When that happens, it returns WAL_RETRY to
2081 ** indicate to the caller that it is safe to retry immediately.
2082 **
2083 ** On success return SQLITE_OK.  On a permanent failure (such an
2084 ** I/O error or an SQLITE_BUSY because another process is running
2085 ** recovery) return a positive error code.
2086 **
2087 ** The useWal parameter is true to force the use of the WAL and disable
2088 ** the case where the WAL is bypassed because it has been completely
2089 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2090 ** to make a copy of the wal-index header into pWal->hdr.  If the
2091 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2092 ** to the caller that the local paget cache is obsolete and needs to be
2093 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2094 ** be loaded and the pChanged parameter is unused.
2095 **
2096 ** The caller must set the cnt parameter to the number of prior calls to
2097 ** this routine during the current read attempt that returned WAL_RETRY.
2098 ** This routine will start taking more aggressive measures to clear the
2099 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2100 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2101 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2102 ** and is not honoring the locking protocol.  There is a vanishingly small
2103 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2104 ** bad luck when there is lots of contention for the wal-index, but that
2105 ** possibility is so small that it can be safely neglected, we believe.
2106 **
2107 ** On success, this routine obtains a read lock on
2108 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2109 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2110 ** that means the Wal does not hold any read lock.  The reader must not
2111 ** access any database page that is modified by a WAL frame up to and
2112 ** including frame number aReadMark[pWal->readLock].  The reader will
2113 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2114 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2115 ** completely and get all content directly from the database file.
2116 ** If the useWal parameter is 1 then the WAL will never be ignored and
2117 ** this routine will always set pWal->readLock>0 on success.
2118 ** When the read transaction is completed, the caller must release the
2119 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2120 **
2121 ** This routine uses the nBackfill and aReadMark[] fields of the header
2122 ** to select a particular WAL_READ_LOCK() that strives to let the
2123 ** checkpoint process do as much work as possible.  This routine might
2124 ** update values of the aReadMark[] array in the header, but if it does
2125 ** so it takes care to hold an exclusive lock on the corresponding
2126 ** WAL_READ_LOCK() while changing values.
2127 */
2128 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2129   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2130   u32 mxReadMark;                 /* Largest aReadMark[] value */
2131   int mxI;                        /* Index of largest aReadMark[] value */
2132   int i;                          /* Loop counter */
2133   int rc = SQLITE_OK;             /* Return code  */
2134 
2135   assert( pWal->readLock<0 );     /* Not currently locked */
2136 
2137   /* Take steps to avoid spinning forever if there is a protocol error.
2138   **
2139   ** Circumstances that cause a RETRY should only last for the briefest
2140   ** instances of time.  No I/O or other system calls are done while the
2141   ** locks are held, so the locks should not be held for very long. But
2142   ** if we are unlucky, another process that is holding a lock might get
2143   ** paged out or take a page-fault that is time-consuming to resolve,
2144   ** during the few nanoseconds that it is holding the lock.  In that case,
2145   ** it might take longer than normal for the lock to free.
2146   **
2147   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2148   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2149   ** is more of a scheduler yield than an actual delay.  But on the 10th
2150   ** an subsequent retries, the delays start becoming longer and longer,
2151   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2152   ** The total delay time before giving up is less than 10 seconds.
2153   */
2154   if( cnt>5 ){
2155     int nDelay = 1;                      /* Pause time in microseconds */
2156     if( cnt>100 ){
2157       VVA_ONLY( pWal->lockError = 1; )
2158       return SQLITE_PROTOCOL;
2159     }
2160     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2161     sqlite3OsSleep(pWal->pVfs, nDelay);
2162   }
2163 
2164   if( !useWal ){
2165     rc = walIndexReadHdr(pWal, pChanged);
2166     if( rc==SQLITE_BUSY ){
2167       /* If there is not a recovery running in another thread or process
2168       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2169       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2170       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2171       ** would be technically correct.  But the race is benign since with
2172       ** WAL_RETRY this routine will be called again and will probably be
2173       ** right on the second iteration.
2174       */
2175       if( pWal->apWiData[0]==0 ){
2176         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2177         ** We assume this is a transient condition, so return WAL_RETRY. The
2178         ** xShmMap() implementation used by the default unix and win32 VFS
2179         ** modules may return SQLITE_BUSY due to a race condition in the
2180         ** code that determines whether or not the shared-memory region
2181         ** must be zeroed before the requested page is returned.
2182         */
2183         rc = WAL_RETRY;
2184       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2185         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2186         rc = WAL_RETRY;
2187       }else if( rc==SQLITE_BUSY ){
2188         rc = SQLITE_BUSY_RECOVERY;
2189       }
2190     }
2191     if( rc!=SQLITE_OK ){
2192       return rc;
2193     }
2194   }
2195 
2196   pInfo = walCkptInfo(pWal);
2197   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2198     /* The WAL has been completely backfilled (or it is empty).
2199     ** and can be safely ignored.
2200     */
2201     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2202     walShmBarrier(pWal);
2203     if( rc==SQLITE_OK ){
2204       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2205         /* It is not safe to allow the reader to continue here if frames
2206         ** may have been appended to the log before READ_LOCK(0) was obtained.
2207         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2208         ** which implies that the database file contains a trustworthy
2209         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2210         ** happening, this is usually correct.
2211         **
2212         ** However, if frames have been appended to the log (or if the log
2213         ** is wrapped and written for that matter) before the READ_LOCK(0)
2214         ** is obtained, that is not necessarily true. A checkpointer may
2215         ** have started to backfill the appended frames but crashed before
2216         ** it finished. Leaving a corrupt image in the database file.
2217         */
2218         walUnlockShared(pWal, WAL_READ_LOCK(0));
2219         return WAL_RETRY;
2220       }
2221       pWal->readLock = 0;
2222       return SQLITE_OK;
2223     }else if( rc!=SQLITE_BUSY ){
2224       return rc;
2225     }
2226   }
2227 
2228   /* If we get this far, it means that the reader will want to use
2229   ** the WAL to get at content from recent commits.  The job now is
2230   ** to select one of the aReadMark[] entries that is closest to
2231   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2232   */
2233   mxReadMark = 0;
2234   mxI = 0;
2235   for(i=1; i<WAL_NREADER; i++){
2236     u32 thisMark = pInfo->aReadMark[i];
2237     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2238       assert( thisMark!=READMARK_NOT_USED );
2239       mxReadMark = thisMark;
2240       mxI = i;
2241     }
2242   }
2243   /* There was once an "if" here. The extra "{" is to preserve indentation. */
2244   {
2245     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2246      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2247     ){
2248       for(i=1; i<WAL_NREADER; i++){
2249         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2250         if( rc==SQLITE_OK ){
2251           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2252           mxI = i;
2253           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2254           break;
2255         }else if( rc!=SQLITE_BUSY ){
2256           return rc;
2257         }
2258       }
2259     }
2260     if( mxI==0 ){
2261       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2262       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2263     }
2264 
2265     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2266     if( rc ){
2267       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2268     }
2269     /* Now that the read-lock has been obtained, check that neither the
2270     ** value in the aReadMark[] array or the contents of the wal-index
2271     ** header have changed.
2272     **
2273     ** It is necessary to check that the wal-index header did not change
2274     ** between the time it was read and when the shared-lock was obtained
2275     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2276     ** that the log file may have been wrapped by a writer, or that frames
2277     ** that occur later in the log than pWal->hdr.mxFrame may have been
2278     ** copied into the database by a checkpointer. If either of these things
2279     ** happened, then reading the database with the current value of
2280     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2281     ** instead.
2282     **
2283     ** This does not guarantee that the copy of the wal-index header is up to
2284     ** date before proceeding. That would not be possible without somehow
2285     ** blocking writers. It only guarantees that a dangerous checkpoint or
2286     ** log-wrap (either of which would require an exclusive lock on
2287     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2288     */
2289     walShmBarrier(pWal);
2290     if( pInfo->aReadMark[mxI]!=mxReadMark
2291      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2292     ){
2293       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2294       return WAL_RETRY;
2295     }else{
2296       assert( mxReadMark<=pWal->hdr.mxFrame );
2297       pWal->readLock = (i16)mxI;
2298     }
2299   }
2300   return rc;
2301 }
2302 
2303 /*
2304 ** Begin a read transaction on the database.
2305 **
2306 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2307 ** it takes a snapshot of the state of the WAL and wal-index for the current
2308 ** instant in time.  The current thread will continue to use this snapshot.
2309 ** Other threads might append new content to the WAL and wal-index but
2310 ** that extra content is ignored by the current thread.
2311 **
2312 ** If the database contents have changes since the previous read
2313 ** transaction, then *pChanged is set to 1 before returning.  The
2314 ** Pager layer will use this to know that is cache is stale and
2315 ** needs to be flushed.
2316 */
2317 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2318   int rc;                         /* Return code */
2319   int cnt = 0;                    /* Number of TryBeginRead attempts */
2320 
2321   do{
2322     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2323   }while( rc==WAL_RETRY );
2324   testcase( (rc&0xff)==SQLITE_BUSY );
2325   testcase( (rc&0xff)==SQLITE_IOERR );
2326   testcase( rc==SQLITE_PROTOCOL );
2327   testcase( rc==SQLITE_OK );
2328   return rc;
2329 }
2330 
2331 /*
2332 ** Finish with a read transaction.  All this does is release the
2333 ** read-lock.
2334 */
2335 void sqlite3WalEndReadTransaction(Wal *pWal){
2336   sqlite3WalEndWriteTransaction(pWal);
2337   if( pWal->readLock>=0 ){
2338     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2339     pWal->readLock = -1;
2340   }
2341 }
2342 
2343 /*
2344 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2345 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2346 ** to zero.
2347 **
2348 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2349 ** error does occur, the final value of *piRead is undefined.
2350 */
2351 int sqlite3WalFindFrame(
2352   Wal *pWal,                      /* WAL handle */
2353   Pgno pgno,                      /* Database page number to read data for */
2354   u32 *piRead                     /* OUT: Frame number (or zero) */
2355 ){
2356   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2357   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2358   int iHash;                      /* Used to loop through N hash tables */
2359 
2360   /* This routine is only be called from within a read transaction. */
2361   assert( pWal->readLock>=0 || pWal->lockError );
2362 
2363   /* If the "last page" field of the wal-index header snapshot is 0, then
2364   ** no data will be read from the wal under any circumstances. Return early
2365   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2366   ** then the WAL is ignored by the reader so return early, as if the
2367   ** WAL were empty.
2368   */
2369   if( iLast==0 || pWal->readLock==0 ){
2370     *piRead = 0;
2371     return SQLITE_OK;
2372   }
2373 
2374   /* Search the hash table or tables for an entry matching page number
2375   ** pgno. Each iteration of the following for() loop searches one
2376   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2377   **
2378   ** This code might run concurrently to the code in walIndexAppend()
2379   ** that adds entries to the wal-index (and possibly to this hash
2380   ** table). This means the value just read from the hash
2381   ** slot (aHash[iKey]) may have been added before or after the
2382   ** current read transaction was opened. Values added after the
2383   ** read transaction was opened may have been written incorrectly -
2384   ** i.e. these slots may contain garbage data. However, we assume
2385   ** that any slots written before the current read transaction was
2386   ** opened remain unmodified.
2387   **
2388   ** For the reasons above, the if(...) condition featured in the inner
2389   ** loop of the following block is more stringent that would be required
2390   ** if we had exclusive access to the hash-table:
2391   **
2392   **   (aPgno[iFrame]==pgno):
2393   **     This condition filters out normal hash-table collisions.
2394   **
2395   **   (iFrame<=iLast):
2396   **     This condition filters out entries that were added to the hash
2397   **     table after the current read-transaction had started.
2398   */
2399   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
2400     volatile ht_slot *aHash;      /* Pointer to hash table */
2401     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2402     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2403     int iKey;                     /* Hash slot index */
2404     int nCollide;                 /* Number of hash collisions remaining */
2405     int rc;                       /* Error code */
2406 
2407     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2408     if( rc!=SQLITE_OK ){
2409       return rc;
2410     }
2411     nCollide = HASHTABLE_NSLOT;
2412     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2413       u32 iFrame = aHash[iKey] + iZero;
2414       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
2415         assert( iFrame>iRead || CORRUPT_DB );
2416         iRead = iFrame;
2417       }
2418       if( (nCollide--)==0 ){
2419         return SQLITE_CORRUPT_BKPT;
2420       }
2421     }
2422   }
2423 
2424 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2425   /* If expensive assert() statements are available, do a linear search
2426   ** of the wal-index file content. Make sure the results agree with the
2427   ** result obtained using the hash indexes above.  */
2428   {
2429     u32 iRead2 = 0;
2430     u32 iTest;
2431     for(iTest=iLast; iTest>0; iTest--){
2432       if( walFramePgno(pWal, iTest)==pgno ){
2433         iRead2 = iTest;
2434         break;
2435       }
2436     }
2437     assert( iRead==iRead2 );
2438   }
2439 #endif
2440 
2441   *piRead = iRead;
2442   return SQLITE_OK;
2443 }
2444 
2445 /*
2446 ** Read the contents of frame iRead from the wal file into buffer pOut
2447 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2448 ** error code otherwise.
2449 */
2450 int sqlite3WalReadFrame(
2451   Wal *pWal,                      /* WAL handle */
2452   u32 iRead,                      /* Frame to read */
2453   int nOut,                       /* Size of buffer pOut in bytes */
2454   u8 *pOut                        /* Buffer to write page data to */
2455 ){
2456   int sz;
2457   i64 iOffset;
2458   sz = pWal->hdr.szPage;
2459   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2460   testcase( sz<=32768 );
2461   testcase( sz>=65536 );
2462   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2463   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2464   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2465 }
2466 
2467 /*
2468 ** Return the size of the database in pages (or zero, if unknown).
2469 */
2470 Pgno sqlite3WalDbsize(Wal *pWal){
2471   if( pWal && ALWAYS(pWal->readLock>=0) ){
2472     return pWal->hdr.nPage;
2473   }
2474   return 0;
2475 }
2476 
2477 
2478 /*
2479 ** This function starts a write transaction on the WAL.
2480 **
2481 ** A read transaction must have already been started by a prior call
2482 ** to sqlite3WalBeginReadTransaction().
2483 **
2484 ** If another thread or process has written into the database since
2485 ** the read transaction was started, then it is not possible for this
2486 ** thread to write as doing so would cause a fork.  So this routine
2487 ** returns SQLITE_BUSY in that case and no write transaction is started.
2488 **
2489 ** There can only be a single writer active at a time.
2490 */
2491 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2492   int rc;
2493 
2494   /* Cannot start a write transaction without first holding a read
2495   ** transaction. */
2496   assert( pWal->readLock>=0 );
2497 
2498   if( pWal->readOnly ){
2499     return SQLITE_READONLY;
2500   }
2501 
2502   /* Only one writer allowed at a time.  Get the write lock.  Return
2503   ** SQLITE_BUSY if unable.
2504   */
2505   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2506   if( rc ){
2507     return rc;
2508   }
2509   pWal->writeLock = 1;
2510 
2511   /* If another connection has written to the database file since the
2512   ** time the read transaction on this connection was started, then
2513   ** the write is disallowed.
2514   */
2515   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2516     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2517     pWal->writeLock = 0;
2518     rc = SQLITE_BUSY_SNAPSHOT;
2519   }
2520 
2521   return rc;
2522 }
2523 
2524 /*
2525 ** End a write transaction.  The commit has already been done.  This
2526 ** routine merely releases the lock.
2527 */
2528 int sqlite3WalEndWriteTransaction(Wal *pWal){
2529   if( pWal->writeLock ){
2530     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2531     pWal->writeLock = 0;
2532     pWal->truncateOnCommit = 0;
2533   }
2534   return SQLITE_OK;
2535 }
2536 
2537 /*
2538 ** If any data has been written (but not committed) to the log file, this
2539 ** function moves the write-pointer back to the start of the transaction.
2540 **
2541 ** Additionally, the callback function is invoked for each frame written
2542 ** to the WAL since the start of the transaction. If the callback returns
2543 ** other than SQLITE_OK, it is not invoked again and the error code is
2544 ** returned to the caller.
2545 **
2546 ** Otherwise, if the callback function does not return an error, this
2547 ** function returns SQLITE_OK.
2548 */
2549 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2550   int rc = SQLITE_OK;
2551   if( ALWAYS(pWal->writeLock) ){
2552     Pgno iMax = pWal->hdr.mxFrame;
2553     Pgno iFrame;
2554 
2555     /* Restore the clients cache of the wal-index header to the state it
2556     ** was in before the client began writing to the database.
2557     */
2558     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2559 
2560     for(iFrame=pWal->hdr.mxFrame+1;
2561         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2562         iFrame++
2563     ){
2564       /* This call cannot fail. Unless the page for which the page number
2565       ** is passed as the second argument is (a) in the cache and
2566       ** (b) has an outstanding reference, then xUndo is either a no-op
2567       ** (if (a) is false) or simply expels the page from the cache (if (b)
2568       ** is false).
2569       **
2570       ** If the upper layer is doing a rollback, it is guaranteed that there
2571       ** are no outstanding references to any page other than page 1. And
2572       ** page 1 is never written to the log until the transaction is
2573       ** committed. As a result, the call to xUndo may not fail.
2574       */
2575       assert( walFramePgno(pWal, iFrame)!=1 );
2576       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2577     }
2578     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2579   }
2580   return rc;
2581 }
2582 
2583 /*
2584 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2585 ** values. This function populates the array with values required to
2586 ** "rollback" the write position of the WAL handle back to the current
2587 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2588 */
2589 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2590   assert( pWal->writeLock );
2591   aWalData[0] = pWal->hdr.mxFrame;
2592   aWalData[1] = pWal->hdr.aFrameCksum[0];
2593   aWalData[2] = pWal->hdr.aFrameCksum[1];
2594   aWalData[3] = pWal->nCkpt;
2595 }
2596 
2597 /*
2598 ** Move the write position of the WAL back to the point identified by
2599 ** the values in the aWalData[] array. aWalData must point to an array
2600 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2601 ** by a call to WalSavepoint().
2602 */
2603 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2604   int rc = SQLITE_OK;
2605 
2606   assert( pWal->writeLock );
2607   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2608 
2609   if( aWalData[3]!=pWal->nCkpt ){
2610     /* This savepoint was opened immediately after the write-transaction
2611     ** was started. Right after that, the writer decided to wrap around
2612     ** to the start of the log. Update the savepoint values to match.
2613     */
2614     aWalData[0] = 0;
2615     aWalData[3] = pWal->nCkpt;
2616   }
2617 
2618   if( aWalData[0]<pWal->hdr.mxFrame ){
2619     pWal->hdr.mxFrame = aWalData[0];
2620     pWal->hdr.aFrameCksum[0] = aWalData[1];
2621     pWal->hdr.aFrameCksum[1] = aWalData[2];
2622     walCleanupHash(pWal);
2623   }
2624 
2625   return rc;
2626 }
2627 
2628 /*
2629 ** This function is called just before writing a set of frames to the log
2630 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2631 ** to the current log file, it is possible to overwrite the start of the
2632 ** existing log file with the new frames (i.e. "reset" the log). If so,
2633 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2634 ** unchanged.
2635 **
2636 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2637 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2638 ** if an error occurs.
2639 */
2640 static int walRestartLog(Wal *pWal){
2641   int rc = SQLITE_OK;
2642   int cnt;
2643 
2644   if( pWal->readLock==0 ){
2645     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2646     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2647     if( pInfo->nBackfill>0 ){
2648       u32 salt1;
2649       sqlite3_randomness(4, &salt1);
2650       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2651       if( rc==SQLITE_OK ){
2652         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2653         ** readers are currently using the WAL), then the transactions
2654         ** frames will overwrite the start of the existing log. Update the
2655         ** wal-index header to reflect this.
2656         **
2657         ** In theory it would be Ok to update the cache of the header only
2658         ** at this point. But updating the actual wal-index header is also
2659         ** safe and means there is no special case for sqlite3WalUndo()
2660         ** to handle if this transaction is rolled back.  */
2661         walRestartHdr(pWal, salt1);
2662         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2663       }else if( rc!=SQLITE_BUSY ){
2664         return rc;
2665       }
2666     }
2667     walUnlockShared(pWal, WAL_READ_LOCK(0));
2668     pWal->readLock = -1;
2669     cnt = 0;
2670     do{
2671       int notUsed;
2672       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2673     }while( rc==WAL_RETRY );
2674     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2675     testcase( (rc&0xff)==SQLITE_IOERR );
2676     testcase( rc==SQLITE_PROTOCOL );
2677     testcase( rc==SQLITE_OK );
2678   }
2679   return rc;
2680 }
2681 
2682 /*
2683 ** Information about the current state of the WAL file and where
2684 ** the next fsync should occur - passed from sqlite3WalFrames() into
2685 ** walWriteToLog().
2686 */
2687 typedef struct WalWriter {
2688   Wal *pWal;                   /* The complete WAL information */
2689   sqlite3_file *pFd;           /* The WAL file to which we write */
2690   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2691   int syncFlags;               /* Flags for the fsync */
2692   int szPage;                  /* Size of one page */
2693 } WalWriter;
2694 
2695 /*
2696 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2697 ** Do a sync when crossing the p->iSyncPoint boundary.
2698 **
2699 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2700 ** first write the part before iSyncPoint, then sync, then write the
2701 ** rest.
2702 */
2703 static int walWriteToLog(
2704   WalWriter *p,              /* WAL to write to */
2705   void *pContent,            /* Content to be written */
2706   int iAmt,                  /* Number of bytes to write */
2707   sqlite3_int64 iOffset      /* Start writing at this offset */
2708 ){
2709   int rc;
2710   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2711     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2712     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2713     if( rc ) return rc;
2714     iOffset += iFirstAmt;
2715     iAmt -= iFirstAmt;
2716     pContent = (void*)(iFirstAmt + (char*)pContent);
2717     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2718     rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
2719     if( iAmt==0 || rc ) return rc;
2720   }
2721   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2722   return rc;
2723 }
2724 
2725 /*
2726 ** Write out a single frame of the WAL
2727 */
2728 static int walWriteOneFrame(
2729   WalWriter *p,               /* Where to write the frame */
2730   PgHdr *pPage,               /* The page of the frame to be written */
2731   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2732   sqlite3_int64 iOffset       /* Byte offset at which to write */
2733 ){
2734   int rc;                         /* Result code from subfunctions */
2735   void *pData;                    /* Data actually written */
2736   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2737 #if defined(SQLITE_HAS_CODEC)
2738   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2739 #else
2740   pData = pPage->pData;
2741 #endif
2742   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2743   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2744   if( rc ) return rc;
2745   /* Write the page data */
2746   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2747   return rc;
2748 }
2749 
2750 /*
2751 ** Write a set of frames to the log. The caller must hold the write-lock
2752 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2753 */
2754 int sqlite3WalFrames(
2755   Wal *pWal,                      /* Wal handle to write to */
2756   int szPage,                     /* Database page-size in bytes */
2757   PgHdr *pList,                   /* List of dirty pages to write */
2758   Pgno nTruncate,                 /* Database size after this commit */
2759   int isCommit,                   /* True if this is a commit */
2760   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2761 ){
2762   int rc;                         /* Used to catch return codes */
2763   u32 iFrame;                     /* Next frame address */
2764   PgHdr *p;                       /* Iterator to run through pList with. */
2765   PgHdr *pLast = 0;               /* Last frame in list */
2766   int nExtra = 0;                 /* Number of extra copies of last page */
2767   int szFrame;                    /* The size of a single frame */
2768   i64 iOffset;                    /* Next byte to write in WAL file */
2769   WalWriter w;                    /* The writer */
2770 
2771   assert( pList );
2772   assert( pWal->writeLock );
2773 
2774   /* If this frame set completes a transaction, then nTruncate>0.  If
2775   ** nTruncate==0 then this frame set does not complete the transaction. */
2776   assert( (isCommit!=0)==(nTruncate!=0) );
2777 
2778 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2779   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2780     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2781               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2782   }
2783 #endif
2784 
2785   /* See if it is possible to write these frames into the start of the
2786   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2787   */
2788   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2789     return rc;
2790   }
2791 
2792   /* If this is the first frame written into the log, write the WAL
2793   ** header to the start of the WAL file. See comments at the top of
2794   ** this source file for a description of the WAL header format.
2795   */
2796   iFrame = pWal->hdr.mxFrame;
2797   if( iFrame==0 ){
2798     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2799     u32 aCksum[2];                /* Checksum for wal-header */
2800 
2801     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2802     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2803     sqlite3Put4byte(&aWalHdr[8], szPage);
2804     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2805     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
2806     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2807     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2808     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2809     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2810 
2811     pWal->szPage = szPage;
2812     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2813     pWal->hdr.aFrameCksum[0] = aCksum[0];
2814     pWal->hdr.aFrameCksum[1] = aCksum[1];
2815     pWal->truncateOnCommit = 1;
2816 
2817     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2818     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2819     if( rc!=SQLITE_OK ){
2820       return rc;
2821     }
2822 
2823     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2824     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
2825     ** an out-of-order write following a WAL restart could result in
2826     ** database corruption.  See the ticket:
2827     **
2828     **     http://localhost:591/sqlite/info/ff5be73dee
2829     */
2830     if( pWal->syncHeader && sync_flags ){
2831       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2832       if( rc ) return rc;
2833     }
2834   }
2835   assert( (int)pWal->szPage==szPage );
2836 
2837   /* Setup information needed to write frames into the WAL */
2838   w.pWal = pWal;
2839   w.pFd = pWal->pWalFd;
2840   w.iSyncPoint = 0;
2841   w.syncFlags = sync_flags;
2842   w.szPage = szPage;
2843   iOffset = walFrameOffset(iFrame+1, szPage);
2844   szFrame = szPage + WAL_FRAME_HDRSIZE;
2845 
2846   /* Write all frames into the log file exactly once */
2847   for(p=pList; p; p=p->pDirty){
2848     int nDbSize;   /* 0 normally.  Positive == commit flag */
2849     iFrame++;
2850     assert( iOffset==walFrameOffset(iFrame, szPage) );
2851     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2852     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2853     if( rc ) return rc;
2854     pLast = p;
2855     iOffset += szFrame;
2856   }
2857 
2858   /* If this is the end of a transaction, then we might need to pad
2859   ** the transaction and/or sync the WAL file.
2860   **
2861   ** Padding and syncing only occur if this set of frames complete a
2862   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
2863   ** or synchronous==OFF, then no padding or syncing are needed.
2864   **
2865   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2866   ** needed and only the sync is done.  If padding is needed, then the
2867   ** final frame is repeated (with its commit mark) until the next sector
2868   ** boundary is crossed.  Only the part of the WAL prior to the last
2869   ** sector boundary is synced; the part of the last frame that extends
2870   ** past the sector boundary is written after the sync.
2871   */
2872   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
2873     if( pWal->padToSectorBoundary ){
2874       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
2875       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2876       while( iOffset<w.iSyncPoint ){
2877         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2878         if( rc ) return rc;
2879         iOffset += szFrame;
2880         nExtra++;
2881       }
2882     }else{
2883       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
2884     }
2885   }
2886 
2887   /* If this frame set completes the first transaction in the WAL and
2888   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2889   ** journal size limit, if possible.
2890   */
2891   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2892     i64 sz = pWal->mxWalSize;
2893     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2894       sz = walFrameOffset(iFrame+nExtra+1, szPage);
2895     }
2896     walLimitSize(pWal, sz);
2897     pWal->truncateOnCommit = 0;
2898   }
2899 
2900   /* Append data to the wal-index. It is not necessary to lock the
2901   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2902   ** guarantees that there are no other writers, and no data that may
2903   ** be in use by existing readers is being overwritten.
2904   */
2905   iFrame = pWal->hdr.mxFrame;
2906   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2907     iFrame++;
2908     rc = walIndexAppend(pWal, iFrame, p->pgno);
2909   }
2910   while( rc==SQLITE_OK && nExtra>0 ){
2911     iFrame++;
2912     nExtra--;
2913     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2914   }
2915 
2916   if( rc==SQLITE_OK ){
2917     /* Update the private copy of the header. */
2918     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2919     testcase( szPage<=32768 );
2920     testcase( szPage>=65536 );
2921     pWal->hdr.mxFrame = iFrame;
2922     if( isCommit ){
2923       pWal->hdr.iChange++;
2924       pWal->hdr.nPage = nTruncate;
2925     }
2926     /* If this is a commit, update the wal-index header too. */
2927     if( isCommit ){
2928       walIndexWriteHdr(pWal);
2929       pWal->iCallback = iFrame;
2930     }
2931   }
2932 
2933   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2934   return rc;
2935 }
2936 
2937 /*
2938 ** This routine is called to implement sqlite3_wal_checkpoint() and
2939 ** related interfaces.
2940 **
2941 ** Obtain a CHECKPOINT lock and then backfill as much information as
2942 ** we can from WAL into the database.
2943 **
2944 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2945 ** callback. In this case this function runs a blocking checkpoint.
2946 */
2947 int sqlite3WalCheckpoint(
2948   Wal *pWal,                      /* Wal connection */
2949   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
2950   int (*xBusy)(void*),            /* Function to call when busy */
2951   void *pBusyArg,                 /* Context argument for xBusyHandler */
2952   int sync_flags,                 /* Flags to sync db file with (or 0) */
2953   int nBuf,                       /* Size of temporary buffer */
2954   u8 *zBuf,                       /* Temporary buffer to use */
2955   int *pnLog,                     /* OUT: Number of frames in WAL */
2956   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
2957 ){
2958   int rc;                         /* Return code */
2959   int isChanged = 0;              /* True if a new wal-index header is loaded */
2960   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
2961   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
2962 
2963   assert( pWal->ckptLock==0 );
2964   assert( pWal->writeLock==0 );
2965 
2966   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2967   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2968   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2969 
2970   if( pWal->readOnly ) return SQLITE_READONLY;
2971   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
2972 
2973   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
2974   ** "checkpoint" lock on the database file. */
2975   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2976   if( rc ){
2977     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
2978     ** checkpoint operation at the same time, the lock cannot be obtained and
2979     ** SQLITE_BUSY is returned.
2980     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
2981     ** it will not be invoked in this case.
2982     */
2983     testcase( rc==SQLITE_BUSY );
2984     testcase( xBusy!=0 );
2985     return rc;
2986   }
2987   pWal->ckptLock = 1;
2988 
2989   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
2990   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
2991   ** file.
2992   **
2993   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
2994   ** immediately, and a busy-handler is configured, it is invoked and the
2995   ** writer lock retried until either the busy-handler returns 0 or the
2996   ** lock is successfully obtained.
2997   */
2998   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2999     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3000     if( rc==SQLITE_OK ){
3001       pWal->writeLock = 1;
3002     }else if( rc==SQLITE_BUSY ){
3003       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3004       xBusy2 = 0;
3005       rc = SQLITE_OK;
3006     }
3007   }
3008 
3009   /* Read the wal-index header. */
3010   if( rc==SQLITE_OK ){
3011     rc = walIndexReadHdr(pWal, &isChanged);
3012     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3013       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3014     }
3015   }
3016 
3017   /* Copy data from the log to the database file. */
3018   if( rc==SQLITE_OK ){
3019     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3020       rc = SQLITE_CORRUPT_BKPT;
3021     }else{
3022       rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3023     }
3024 
3025     /* If no error occurred, set the output variables. */
3026     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3027       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3028       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3029     }
3030   }
3031 
3032   if( isChanged ){
3033     /* If a new wal-index header was loaded before the checkpoint was
3034     ** performed, then the pager-cache associated with pWal is now
3035     ** out of date. So zero the cached wal-index header to ensure that
3036     ** next time the pager opens a snapshot on this database it knows that
3037     ** the cache needs to be reset.
3038     */
3039     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3040   }
3041 
3042   /* Release the locks. */
3043   sqlite3WalEndWriteTransaction(pWal);
3044   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3045   pWal->ckptLock = 0;
3046   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3047   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3048 }
3049 
3050 /* Return the value to pass to a sqlite3_wal_hook callback, the
3051 ** number of frames in the WAL at the point of the last commit since
3052 ** sqlite3WalCallback() was called.  If no commits have occurred since
3053 ** the last call, then return 0.
3054 */
3055 int sqlite3WalCallback(Wal *pWal){
3056   u32 ret = 0;
3057   if( pWal ){
3058     ret = pWal->iCallback;
3059     pWal->iCallback = 0;
3060   }
3061   return (int)ret;
3062 }
3063 
3064 /*
3065 ** This function is called to change the WAL subsystem into or out
3066 ** of locking_mode=EXCLUSIVE.
3067 **
3068 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3069 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3070 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3071 ** or if the acquisition of the lock fails, then return 0.  If the
3072 ** transition out of exclusive-mode is successful, return 1.  This
3073 ** operation must occur while the pager is still holding the exclusive
3074 ** lock on the main database file.
3075 **
3076 ** If op is one, then change from locking_mode=NORMAL into
3077 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3078 ** be released.  Return 1 if the transition is made and 0 if the
3079 ** WAL is already in exclusive-locking mode - meaning that this
3080 ** routine is a no-op.  The pager must already hold the exclusive lock
3081 ** on the main database file before invoking this operation.
3082 **
3083 ** If op is negative, then do a dry-run of the op==1 case but do
3084 ** not actually change anything. The pager uses this to see if it
3085 ** should acquire the database exclusive lock prior to invoking
3086 ** the op==1 case.
3087 */
3088 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3089   int rc;
3090   assert( pWal->writeLock==0 );
3091   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3092 
3093   /* pWal->readLock is usually set, but might be -1 if there was a
3094   ** prior error while attempting to acquire are read-lock. This cannot
3095   ** happen if the connection is actually in exclusive mode (as no xShmLock
3096   ** locks are taken in this case). Nor should the pager attempt to
3097   ** upgrade to exclusive-mode following such an error.
3098   */
3099   assert( pWal->readLock>=0 || pWal->lockError );
3100   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3101 
3102   if( op==0 ){
3103     if( pWal->exclusiveMode ){
3104       pWal->exclusiveMode = 0;
3105       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3106         pWal->exclusiveMode = 1;
3107       }
3108       rc = pWal->exclusiveMode==0;
3109     }else{
3110       /* Already in locking_mode=NORMAL */
3111       rc = 0;
3112     }
3113   }else if( op>0 ){
3114     assert( pWal->exclusiveMode==0 );
3115     assert( pWal->readLock>=0 );
3116     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3117     pWal->exclusiveMode = 1;
3118     rc = 1;
3119   }else{
3120     rc = pWal->exclusiveMode==0;
3121   }
3122   return rc;
3123 }
3124 
3125 /*
3126 ** Return true if the argument is non-NULL and the WAL module is using
3127 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3128 ** WAL module is using shared-memory, return false.
3129 */
3130 int sqlite3WalHeapMemory(Wal *pWal){
3131   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3132 }
3133 
3134 #ifdef SQLITE_ENABLE_ZIPVFS
3135 /*
3136 ** If the argument is not NULL, it points to a Wal object that holds a
3137 ** read-lock. This function returns the database page-size if it is known,
3138 ** or zero if it is not (or if pWal is NULL).
3139 */
3140 int sqlite3WalFramesize(Wal *pWal){
3141   assert( pWal==0 || pWal->readLock>=0 );
3142   return (pWal ? pWal->szPage : 0);
3143 }
3144 #endif
3145 
3146 #endif /* #ifndef SQLITE_OMIT_WAL */
3147