1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** WAL mode depends on atomic aligned 32-bit loads and stores in a few 263 ** places. The following macros try to make this explicit. 264 */ 265 #if GCC_VESRION>=5004000 266 # define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED) 267 # define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED) 268 #else 269 # define AtomicLoad(PTR) (*(PTR)) 270 # define AtomicStore(PTR,VAL) (*(PTR) = (VAL)) 271 #endif 272 273 /* 274 ** The maximum (and only) versions of the wal and wal-index formats 275 ** that may be interpreted by this version of SQLite. 276 ** 277 ** If a client begins recovering a WAL file and finds that (a) the checksum 278 ** values in the wal-header are correct and (b) the version field is not 279 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 280 ** 281 ** Similarly, if a client successfully reads a wal-index header (i.e. the 282 ** checksum test is successful) and finds that the version field is not 283 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 284 ** returns SQLITE_CANTOPEN. 285 */ 286 #define WAL_MAX_VERSION 3007000 287 #define WALINDEX_MAX_VERSION 3007000 288 289 /* 290 ** Index numbers for various locking bytes. WAL_NREADER is the number 291 ** of available reader locks and should be at least 3. The default 292 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 293 ** 294 ** Technically, the various VFSes are free to implement these locks however 295 ** they see fit. However, compatibility is encouraged so that VFSes can 296 ** interoperate. The standard implemention used on both unix and windows 297 ** is for the index number to indicate a byte offset into the 298 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 299 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 300 ** should be 120) is the location in the shm file for the first locking 301 ** byte. 302 */ 303 #define WAL_WRITE_LOCK 0 304 #define WAL_ALL_BUT_WRITE 1 305 #define WAL_CKPT_LOCK 1 306 #define WAL_RECOVER_LOCK 2 307 #define WAL_READ_LOCK(I) (3+(I)) 308 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 309 310 311 /* Object declarations */ 312 typedef struct WalIndexHdr WalIndexHdr; 313 typedef struct WalIterator WalIterator; 314 typedef struct WalCkptInfo WalCkptInfo; 315 316 317 /* 318 ** The following object holds a copy of the wal-index header content. 319 ** 320 ** The actual header in the wal-index consists of two copies of this 321 ** object followed by one instance of the WalCkptInfo object. 322 ** For all versions of SQLite through 3.10.0 and probably beyond, 323 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 324 ** the total header size is 136 bytes. 325 ** 326 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 327 ** Or it can be 1 to represent a 65536-byte page. The latter case was 328 ** added in 3.7.1 when support for 64K pages was added. 329 */ 330 struct WalIndexHdr { 331 u32 iVersion; /* Wal-index version */ 332 u32 unused; /* Unused (padding) field */ 333 u32 iChange; /* Counter incremented each transaction */ 334 u8 isInit; /* 1 when initialized */ 335 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 336 u16 szPage; /* Database page size in bytes. 1==64K */ 337 u32 mxFrame; /* Index of last valid frame in the WAL */ 338 u32 nPage; /* Size of database in pages */ 339 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 340 u32 aSalt[2]; /* Two salt values copied from WAL header */ 341 u32 aCksum[2]; /* Checksum over all prior fields */ 342 }; 343 344 /* 345 ** A copy of the following object occurs in the wal-index immediately 346 ** following the second copy of the WalIndexHdr. This object stores 347 ** information used by checkpoint. 348 ** 349 ** nBackfill is the number of frames in the WAL that have been written 350 ** back into the database. (We call the act of moving content from WAL to 351 ** database "backfilling".) The nBackfill number is never greater than 352 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 353 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 354 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 355 ** mxFrame back to zero when the WAL is reset. 356 ** 357 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 358 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 359 ** the nBackfillAttempted is set before any backfilling is done and the 360 ** nBackfill is only set after all backfilling completes. So if a checkpoint 361 ** crashes, nBackfillAttempted might be larger than nBackfill. The 362 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 363 ** 364 ** The aLock[] field is a set of bytes used for locking. These bytes should 365 ** never be read or written. 366 ** 367 ** There is one entry in aReadMark[] for each reader lock. If a reader 368 ** holds read-lock K, then the value in aReadMark[K] is no greater than 369 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 370 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 371 ** a special case; its value is never used and it exists as a place-holder 372 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 373 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 374 ** directly from the database. 375 ** 376 ** The value of aReadMark[K] may only be changed by a thread that 377 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 378 ** aReadMark[K] cannot changed while there is a reader is using that mark 379 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 380 ** 381 ** The checkpointer may only transfer frames from WAL to database where 382 ** the frame numbers are less than or equal to every aReadMark[] that is 383 ** in use (that is, every aReadMark[j] for which there is a corresponding 384 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 385 ** largest value and will increase an unused aReadMark[] to mxFrame if there 386 ** is not already an aReadMark[] equal to mxFrame. The exception to the 387 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 388 ** in the WAL has been backfilled into the database) then new readers 389 ** will choose aReadMark[0] which has value 0 and hence such reader will 390 ** get all their all content directly from the database file and ignore 391 ** the WAL. 392 ** 393 ** Writers normally append new frames to the end of the WAL. However, 394 ** if nBackfill equals mxFrame (meaning that all WAL content has been 395 ** written back into the database) and if no readers are using the WAL 396 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 397 ** the writer will first "reset" the WAL back to the beginning and start 398 ** writing new content beginning at frame 1. 399 ** 400 ** We assume that 32-bit loads are atomic and so no locks are needed in 401 ** order to read from any aReadMark[] entries. 402 */ 403 struct WalCkptInfo { 404 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 405 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 406 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 407 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 408 u32 notUsed0; /* Available for future enhancements */ 409 }; 410 #define READMARK_NOT_USED 0xffffffff 411 412 413 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 414 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 415 ** only support mandatory file-locks, we do not read or write data 416 ** from the region of the file on which locks are applied. 417 */ 418 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 419 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 420 421 /* Size of header before each frame in wal */ 422 #define WAL_FRAME_HDRSIZE 24 423 424 /* Size of write ahead log header, including checksum. */ 425 #define WAL_HDRSIZE 32 426 427 /* WAL magic value. Either this value, or the same value with the least 428 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 429 ** big-endian format in the first 4 bytes of a WAL file. 430 ** 431 ** If the LSB is set, then the checksums for each frame within the WAL 432 ** file are calculated by treating all data as an array of 32-bit 433 ** big-endian words. Otherwise, they are calculated by interpreting 434 ** all data as 32-bit little-endian words. 435 */ 436 #define WAL_MAGIC 0x377f0682 437 438 /* 439 ** Return the offset of frame iFrame in the write-ahead log file, 440 ** assuming a database page size of szPage bytes. The offset returned 441 ** is to the start of the write-ahead log frame-header. 442 */ 443 #define walFrameOffset(iFrame, szPage) ( \ 444 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 445 ) 446 447 /* 448 ** An open write-ahead log file is represented by an instance of the 449 ** following object. 450 */ 451 struct Wal { 452 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 453 sqlite3_file *pDbFd; /* File handle for the database file */ 454 sqlite3_file *pWalFd; /* File handle for WAL file */ 455 u32 iCallback; /* Value to pass to log callback (or 0) */ 456 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 457 int nWiData; /* Size of array apWiData */ 458 int szFirstBlock; /* Size of first block written to WAL file */ 459 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 460 u32 szPage; /* Database page size */ 461 i16 readLock; /* Which read lock is being held. -1 for none */ 462 u8 syncFlags; /* Flags to use to sync header writes */ 463 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 464 u8 writeLock; /* True if in a write transaction */ 465 u8 ckptLock; /* True if holding a checkpoint lock */ 466 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 467 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 468 u8 syncHeader; /* Fsync the WAL header if true */ 469 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 470 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 471 WalIndexHdr hdr; /* Wal-index header for current transaction */ 472 u32 minFrame; /* Ignore wal frames before this one */ 473 u32 iReCksum; /* On commit, recalculate checksums from here */ 474 const char *zWalName; /* Name of WAL file */ 475 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 476 #ifdef SQLITE_DEBUG 477 u8 lockError; /* True if a locking error has occurred */ 478 #endif 479 #ifdef SQLITE_ENABLE_SNAPSHOT 480 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 481 #endif 482 }; 483 484 /* 485 ** Candidate values for Wal.exclusiveMode. 486 */ 487 #define WAL_NORMAL_MODE 0 488 #define WAL_EXCLUSIVE_MODE 1 489 #define WAL_HEAPMEMORY_MODE 2 490 491 /* 492 ** Possible values for WAL.readOnly 493 */ 494 #define WAL_RDWR 0 /* Normal read/write connection */ 495 #define WAL_RDONLY 1 /* The WAL file is readonly */ 496 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 497 498 /* 499 ** Each page of the wal-index mapping contains a hash-table made up of 500 ** an array of HASHTABLE_NSLOT elements of the following type. 501 */ 502 typedef u16 ht_slot; 503 504 /* 505 ** This structure is used to implement an iterator that loops through 506 ** all frames in the WAL in database page order. Where two or more frames 507 ** correspond to the same database page, the iterator visits only the 508 ** frame most recently written to the WAL (in other words, the frame with 509 ** the largest index). 510 ** 511 ** The internals of this structure are only accessed by: 512 ** 513 ** walIteratorInit() - Create a new iterator, 514 ** walIteratorNext() - Step an iterator, 515 ** walIteratorFree() - Free an iterator. 516 ** 517 ** This functionality is used by the checkpoint code (see walCheckpoint()). 518 */ 519 struct WalIterator { 520 int iPrior; /* Last result returned from the iterator */ 521 int nSegment; /* Number of entries in aSegment[] */ 522 struct WalSegment { 523 int iNext; /* Next slot in aIndex[] not yet returned */ 524 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 525 u32 *aPgno; /* Array of page numbers. */ 526 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 527 int iZero; /* Frame number associated with aPgno[0] */ 528 } aSegment[1]; /* One for every 32KB page in the wal-index */ 529 }; 530 531 /* 532 ** Define the parameters of the hash tables in the wal-index file. There 533 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 534 ** wal-index. 535 ** 536 ** Changing any of these constants will alter the wal-index format and 537 ** create incompatibilities. 538 */ 539 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 540 #define HASHTABLE_HASH_1 383 /* Should be prime */ 541 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 542 543 /* 544 ** The block of page numbers associated with the first hash-table in a 545 ** wal-index is smaller than usual. This is so that there is a complete 546 ** hash-table on each aligned 32KB page of the wal-index. 547 */ 548 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 549 550 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 551 #define WALINDEX_PGSZ ( \ 552 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 553 ) 554 555 /* 556 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 557 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 558 ** numbered from zero. 559 ** 560 ** If the wal-index is currently smaller the iPage pages then the size 561 ** of the wal-index might be increased, but only if it is safe to do 562 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 563 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 564 ** 565 ** If this call is successful, *ppPage is set to point to the wal-index 566 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 567 ** then an SQLite error code is returned and *ppPage is set to 0. 568 */ 569 static SQLITE_NOINLINE int walIndexPageRealloc( 570 Wal *pWal, /* The WAL context */ 571 int iPage, /* The page we seek */ 572 volatile u32 **ppPage /* Write the page pointer here */ 573 ){ 574 int rc = SQLITE_OK; 575 576 /* Enlarge the pWal->apWiData[] array if required */ 577 if( pWal->nWiData<=iPage ){ 578 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 579 volatile u32 **apNew; 580 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 581 if( !apNew ){ 582 *ppPage = 0; 583 return SQLITE_NOMEM_BKPT; 584 } 585 memset((void*)&apNew[pWal->nWiData], 0, 586 sizeof(u32*)*(iPage+1-pWal->nWiData)); 587 pWal->apWiData = apNew; 588 pWal->nWiData = iPage+1; 589 } 590 591 /* Request a pointer to the required page from the VFS */ 592 assert( pWal->apWiData[iPage]==0 ); 593 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 594 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 595 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 596 }else{ 597 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 598 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 599 ); 600 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 601 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 602 if( (rc&0xff)==SQLITE_READONLY ){ 603 pWal->readOnly |= WAL_SHM_RDONLY; 604 if( rc==SQLITE_READONLY ){ 605 rc = SQLITE_OK; 606 } 607 } 608 } 609 610 *ppPage = pWal->apWiData[iPage]; 611 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 612 return rc; 613 } 614 static int walIndexPage( 615 Wal *pWal, /* The WAL context */ 616 int iPage, /* The page we seek */ 617 volatile u32 **ppPage /* Write the page pointer here */ 618 ){ 619 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 620 return walIndexPageRealloc(pWal, iPage, ppPage); 621 } 622 return SQLITE_OK; 623 } 624 625 /* 626 ** Return a pointer to the WalCkptInfo structure in the wal-index. 627 */ 628 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 629 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 630 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 631 } 632 633 /* 634 ** Return a pointer to the WalIndexHdr structure in the wal-index. 635 */ 636 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 637 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 638 return (volatile WalIndexHdr*)pWal->apWiData[0]; 639 } 640 641 /* 642 ** The argument to this macro must be of type u32. On a little-endian 643 ** architecture, it returns the u32 value that results from interpreting 644 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 645 ** returns the value that would be produced by interpreting the 4 bytes 646 ** of the input value as a little-endian integer. 647 */ 648 #define BYTESWAP32(x) ( \ 649 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 650 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 651 ) 652 653 /* 654 ** Generate or extend an 8 byte checksum based on the data in 655 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 656 ** initial values of 0 and 0 if aIn==NULL). 657 ** 658 ** The checksum is written back into aOut[] before returning. 659 ** 660 ** nByte must be a positive multiple of 8. 661 */ 662 static void walChecksumBytes( 663 int nativeCksum, /* True for native byte-order, false for non-native */ 664 u8 *a, /* Content to be checksummed */ 665 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 666 const u32 *aIn, /* Initial checksum value input */ 667 u32 *aOut /* OUT: Final checksum value output */ 668 ){ 669 u32 s1, s2; 670 u32 *aData = (u32 *)a; 671 u32 *aEnd = (u32 *)&a[nByte]; 672 673 if( aIn ){ 674 s1 = aIn[0]; 675 s2 = aIn[1]; 676 }else{ 677 s1 = s2 = 0; 678 } 679 680 assert( nByte>=8 ); 681 assert( (nByte&0x00000007)==0 ); 682 assert( nByte<=65536 ); 683 684 if( nativeCksum ){ 685 do { 686 s1 += *aData++ + s2; 687 s2 += *aData++ + s1; 688 }while( aData<aEnd ); 689 }else{ 690 do { 691 s1 += BYTESWAP32(aData[0]) + s2; 692 s2 += BYTESWAP32(aData[1]) + s1; 693 aData += 2; 694 }while( aData<aEnd ); 695 } 696 697 aOut[0] = s1; 698 aOut[1] = s2; 699 } 700 701 static void walShmBarrier(Wal *pWal){ 702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 703 sqlite3OsShmBarrier(pWal->pDbFd); 704 } 705 } 706 707 /* 708 ** Write the header information in pWal->hdr into the wal-index. 709 ** 710 ** The checksum on pWal->hdr is updated before it is written. 711 */ 712 static void walIndexWriteHdr(Wal *pWal){ 713 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 714 const int nCksum = offsetof(WalIndexHdr, aCksum); 715 716 assert( pWal->writeLock ); 717 pWal->hdr.isInit = 1; 718 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 719 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 720 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 721 walShmBarrier(pWal); 722 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 723 } 724 725 /* 726 ** This function encodes a single frame header and writes it to a buffer 727 ** supplied by the caller. A frame-header is made up of a series of 728 ** 4-byte big-endian integers, as follows: 729 ** 730 ** 0: Page number. 731 ** 4: For commit records, the size of the database image in pages 732 ** after the commit. For all other records, zero. 733 ** 8: Salt-1 (copied from the wal-header) 734 ** 12: Salt-2 (copied from the wal-header) 735 ** 16: Checksum-1. 736 ** 20: Checksum-2. 737 */ 738 static void walEncodeFrame( 739 Wal *pWal, /* The write-ahead log */ 740 u32 iPage, /* Database page number for frame */ 741 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 742 u8 *aData, /* Pointer to page data */ 743 u8 *aFrame /* OUT: Write encoded frame here */ 744 ){ 745 int nativeCksum; /* True for native byte-order checksums */ 746 u32 *aCksum = pWal->hdr.aFrameCksum; 747 assert( WAL_FRAME_HDRSIZE==24 ); 748 sqlite3Put4byte(&aFrame[0], iPage); 749 sqlite3Put4byte(&aFrame[4], nTruncate); 750 if( pWal->iReCksum==0 ){ 751 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 752 753 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 754 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 755 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 756 757 sqlite3Put4byte(&aFrame[16], aCksum[0]); 758 sqlite3Put4byte(&aFrame[20], aCksum[1]); 759 }else{ 760 memset(&aFrame[8], 0, 16); 761 } 762 } 763 764 /* 765 ** Check to see if the frame with header in aFrame[] and content 766 ** in aData[] is valid. If it is a valid frame, fill *piPage and 767 ** *pnTruncate and return true. Return if the frame is not valid. 768 */ 769 static int walDecodeFrame( 770 Wal *pWal, /* The write-ahead log */ 771 u32 *piPage, /* OUT: Database page number for frame */ 772 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 773 u8 *aData, /* Pointer to page data (for checksum) */ 774 u8 *aFrame /* Frame data */ 775 ){ 776 int nativeCksum; /* True for native byte-order checksums */ 777 u32 *aCksum = pWal->hdr.aFrameCksum; 778 u32 pgno; /* Page number of the frame */ 779 assert( WAL_FRAME_HDRSIZE==24 ); 780 781 /* A frame is only valid if the salt values in the frame-header 782 ** match the salt values in the wal-header. 783 */ 784 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 785 return 0; 786 } 787 788 /* A frame is only valid if the page number is creater than zero. 789 */ 790 pgno = sqlite3Get4byte(&aFrame[0]); 791 if( pgno==0 ){ 792 return 0; 793 } 794 795 /* A frame is only valid if a checksum of the WAL header, 796 ** all prior frams, the first 16 bytes of this frame-header, 797 ** and the frame-data matches the checksum in the last 8 798 ** bytes of this frame-header. 799 */ 800 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 801 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 802 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 803 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 804 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 805 ){ 806 /* Checksum failed. */ 807 return 0; 808 } 809 810 /* If we reach this point, the frame is valid. Return the page number 811 ** and the new database size. 812 */ 813 *piPage = pgno; 814 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 815 return 1; 816 } 817 818 819 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 820 /* 821 ** Names of locks. This routine is used to provide debugging output and is not 822 ** a part of an ordinary build. 823 */ 824 static const char *walLockName(int lockIdx){ 825 if( lockIdx==WAL_WRITE_LOCK ){ 826 return "WRITE-LOCK"; 827 }else if( lockIdx==WAL_CKPT_LOCK ){ 828 return "CKPT-LOCK"; 829 }else if( lockIdx==WAL_RECOVER_LOCK ){ 830 return "RECOVER-LOCK"; 831 }else{ 832 static char zName[15]; 833 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 834 lockIdx-WAL_READ_LOCK(0)); 835 return zName; 836 } 837 } 838 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 839 840 841 /* 842 ** Set or release locks on the WAL. Locks are either shared or exclusive. 843 ** A lock cannot be moved directly between shared and exclusive - it must go 844 ** through the unlocked state first. 845 ** 846 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 847 */ 848 static int walLockShared(Wal *pWal, int lockIdx){ 849 int rc; 850 if( pWal->exclusiveMode ) return SQLITE_OK; 851 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 852 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 853 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 854 walLockName(lockIdx), rc ? "failed" : "ok")); 855 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 856 return rc; 857 } 858 static void walUnlockShared(Wal *pWal, int lockIdx){ 859 if( pWal->exclusiveMode ) return; 860 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 861 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 862 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 863 } 864 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 865 int rc; 866 if( pWal->exclusiveMode ) return SQLITE_OK; 867 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 868 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 869 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 870 walLockName(lockIdx), n, rc ? "failed" : "ok")); 871 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 872 return rc; 873 } 874 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 875 if( pWal->exclusiveMode ) return; 876 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 877 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 878 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 879 walLockName(lockIdx), n)); 880 } 881 882 /* 883 ** Compute a hash on a page number. The resulting hash value must land 884 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 885 ** the hash to the next value in the event of a collision. 886 */ 887 static int walHash(u32 iPage){ 888 assert( iPage>0 ); 889 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 890 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 891 } 892 static int walNextHash(int iPriorHash){ 893 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 894 } 895 896 /* 897 ** An instance of the WalHashLoc object is used to describe the location 898 ** of a page hash table in the wal-index. This becomes the return value 899 ** from walHashGet(). 900 */ 901 typedef struct WalHashLoc WalHashLoc; 902 struct WalHashLoc { 903 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 904 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 905 u32 iZero; /* One less than the frame number of first indexed*/ 906 }; 907 908 /* 909 ** Return pointers to the hash table and page number array stored on 910 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 911 ** numbered starting from 0. 912 ** 913 ** Set output variable pLoc->aHash to point to the start of the hash table 914 ** in the wal-index file. Set pLoc->iZero to one less than the frame 915 ** number of the first frame indexed by this hash table. If a 916 ** slot in the hash table is set to N, it refers to frame number 917 ** (pLoc->iZero+N) in the log. 918 ** 919 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 920 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 921 */ 922 static int walHashGet( 923 Wal *pWal, /* WAL handle */ 924 int iHash, /* Find the iHash'th table */ 925 WalHashLoc *pLoc /* OUT: Hash table location */ 926 ){ 927 int rc; /* Return code */ 928 929 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 930 assert( rc==SQLITE_OK || iHash>0 ); 931 932 if( rc==SQLITE_OK ){ 933 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 934 if( iHash==0 ){ 935 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 936 pLoc->iZero = 0; 937 }else{ 938 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 939 } 940 pLoc->aPgno = &pLoc->aPgno[-1]; 941 } 942 return rc; 943 } 944 945 /* 946 ** Return the number of the wal-index page that contains the hash-table 947 ** and page-number array that contain entries corresponding to WAL frame 948 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 949 ** are numbered starting from 0. 950 */ 951 static int walFramePage(u32 iFrame){ 952 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 953 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 954 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 955 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 956 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 957 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 958 ); 959 return iHash; 960 } 961 962 /* 963 ** Return the page number associated with frame iFrame in this WAL. 964 */ 965 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 966 int iHash = walFramePage(iFrame); 967 if( iHash==0 ){ 968 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 969 } 970 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 971 } 972 973 /* 974 ** Remove entries from the hash table that point to WAL slots greater 975 ** than pWal->hdr.mxFrame. 976 ** 977 ** This function is called whenever pWal->hdr.mxFrame is decreased due 978 ** to a rollback or savepoint. 979 ** 980 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 981 ** updated. Any later hash tables will be automatically cleared when 982 ** pWal->hdr.mxFrame advances to the point where those hash tables are 983 ** actually needed. 984 */ 985 static void walCleanupHash(Wal *pWal){ 986 WalHashLoc sLoc; /* Hash table location */ 987 int iLimit = 0; /* Zero values greater than this */ 988 int nByte; /* Number of bytes to zero in aPgno[] */ 989 int i; /* Used to iterate through aHash[] */ 990 int rc; /* Return code form walHashGet() */ 991 992 assert( pWal->writeLock ); 993 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 994 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 995 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 996 997 if( pWal->hdr.mxFrame==0 ) return; 998 999 /* Obtain pointers to the hash-table and page-number array containing 1000 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1001 ** that the page said hash-table and array reside on is already mapped.(1) 1002 */ 1003 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1004 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1005 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1006 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1007 1008 /* Zero all hash-table entries that correspond to frame numbers greater 1009 ** than pWal->hdr.mxFrame. 1010 */ 1011 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1012 assert( iLimit>0 ); 1013 for(i=0; i<HASHTABLE_NSLOT; i++){ 1014 if( sLoc.aHash[i]>iLimit ){ 1015 sLoc.aHash[i] = 0; 1016 } 1017 } 1018 1019 /* Zero the entries in the aPgno array that correspond to frames with 1020 ** frame numbers greater than pWal->hdr.mxFrame. 1021 */ 1022 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1023 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1024 1025 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1026 /* Verify that the every entry in the mapping region is still reachable 1027 ** via the hash table even after the cleanup. 1028 */ 1029 if( iLimit ){ 1030 int j; /* Loop counter */ 1031 int iKey; /* Hash key */ 1032 for(j=1; j<=iLimit; j++){ 1033 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1034 if( sLoc.aHash[iKey]==j ) break; 1035 } 1036 assert( sLoc.aHash[iKey]==j ); 1037 } 1038 } 1039 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1040 } 1041 1042 1043 /* 1044 ** Set an entry in the wal-index that will map database page number 1045 ** pPage into WAL frame iFrame. 1046 */ 1047 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1048 int rc; /* Return code */ 1049 WalHashLoc sLoc; /* Wal-index hash table location */ 1050 1051 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1052 1053 /* Assuming the wal-index file was successfully mapped, populate the 1054 ** page number array and hash table entry. 1055 */ 1056 if( rc==SQLITE_OK ){ 1057 int iKey; /* Hash table key */ 1058 int idx; /* Value to write to hash-table slot */ 1059 int nCollide; /* Number of hash collisions */ 1060 1061 idx = iFrame - sLoc.iZero; 1062 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1063 1064 /* If this is the first entry to be added to this hash-table, zero the 1065 ** entire hash table and aPgno[] array before proceeding. 1066 */ 1067 if( idx==1 ){ 1068 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1069 - (u8 *)&sLoc.aPgno[1]); 1070 memset((void*)&sLoc.aPgno[1], 0, nByte); 1071 } 1072 1073 /* If the entry in aPgno[] is already set, then the previous writer 1074 ** must have exited unexpectedly in the middle of a transaction (after 1075 ** writing one or more dirty pages to the WAL to free up memory). 1076 ** Remove the remnants of that writers uncommitted transaction from 1077 ** the hash-table before writing any new entries. 1078 */ 1079 if( sLoc.aPgno[idx] ){ 1080 walCleanupHash(pWal); 1081 assert( !sLoc.aPgno[idx] ); 1082 } 1083 1084 /* Write the aPgno[] array entry and the hash-table slot. */ 1085 nCollide = idx; 1086 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1087 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1088 } 1089 sLoc.aPgno[idx] = iPage; 1090 sLoc.aHash[iKey] = (ht_slot)idx; 1091 1092 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1093 /* Verify that the number of entries in the hash table exactly equals 1094 ** the number of entries in the mapping region. 1095 */ 1096 { 1097 int i; /* Loop counter */ 1098 int nEntry = 0; /* Number of entries in the hash table */ 1099 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1100 assert( nEntry==idx ); 1101 } 1102 1103 /* Verify that the every entry in the mapping region is reachable 1104 ** via the hash table. This turns out to be a really, really expensive 1105 ** thing to check, so only do this occasionally - not on every 1106 ** iteration. 1107 */ 1108 if( (idx&0x3ff)==0 ){ 1109 int i; /* Loop counter */ 1110 for(i=1; i<=idx; i++){ 1111 for(iKey=walHash(sLoc.aPgno[i]); 1112 sLoc.aHash[iKey]; 1113 iKey=walNextHash(iKey)){ 1114 if( sLoc.aHash[iKey]==i ) break; 1115 } 1116 assert( sLoc.aHash[iKey]==i ); 1117 } 1118 } 1119 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1120 } 1121 1122 1123 return rc; 1124 } 1125 1126 1127 /* 1128 ** Recover the wal-index by reading the write-ahead log file. 1129 ** 1130 ** This routine first tries to establish an exclusive lock on the 1131 ** wal-index to prevent other threads/processes from doing anything 1132 ** with the WAL or wal-index while recovery is running. The 1133 ** WAL_RECOVER_LOCK is also held so that other threads will know 1134 ** that this thread is running recovery. If unable to establish 1135 ** the necessary locks, this routine returns SQLITE_BUSY. 1136 */ 1137 static int walIndexRecover(Wal *pWal){ 1138 int rc; /* Return Code */ 1139 i64 nSize; /* Size of log file */ 1140 u32 aFrameCksum[2] = {0, 0}; 1141 int iLock; /* Lock offset to lock for checkpoint */ 1142 1143 /* Obtain an exclusive lock on all byte in the locking range not already 1144 ** locked by the caller. The caller is guaranteed to have locked the 1145 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1146 ** If successful, the same bytes that are locked here are unlocked before 1147 ** this function returns. 1148 */ 1149 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1150 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1151 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1152 assert( pWal->writeLock ); 1153 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1154 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1155 if( rc==SQLITE_OK ){ 1156 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1157 if( rc!=SQLITE_OK ){ 1158 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1159 } 1160 } 1161 if( rc ){ 1162 return rc; 1163 } 1164 1165 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1166 1167 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1168 1169 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1170 if( rc!=SQLITE_OK ){ 1171 goto recovery_error; 1172 } 1173 1174 if( nSize>WAL_HDRSIZE ){ 1175 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1176 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1177 int szFrame; /* Number of bytes in buffer aFrame[] */ 1178 u8 *aData; /* Pointer to data part of aFrame buffer */ 1179 int iFrame; /* Index of last frame read */ 1180 i64 iOffset; /* Next offset to read from log file */ 1181 int szPage; /* Page size according to the log */ 1182 u32 magic; /* Magic value read from WAL header */ 1183 u32 version; /* Magic value read from WAL header */ 1184 int isValid; /* True if this frame is valid */ 1185 1186 /* Read in the WAL header. */ 1187 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1188 if( rc!=SQLITE_OK ){ 1189 goto recovery_error; 1190 } 1191 1192 /* If the database page size is not a power of two, or is greater than 1193 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1194 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1195 ** WAL file. 1196 */ 1197 magic = sqlite3Get4byte(&aBuf[0]); 1198 szPage = sqlite3Get4byte(&aBuf[8]); 1199 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1200 || szPage&(szPage-1) 1201 || szPage>SQLITE_MAX_PAGE_SIZE 1202 || szPage<512 1203 ){ 1204 goto finished; 1205 } 1206 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1207 pWal->szPage = szPage; 1208 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1209 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1210 1211 /* Verify that the WAL header checksum is correct */ 1212 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1213 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1214 ); 1215 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1216 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1217 ){ 1218 goto finished; 1219 } 1220 1221 /* Verify that the version number on the WAL format is one that 1222 ** are able to understand */ 1223 version = sqlite3Get4byte(&aBuf[4]); 1224 if( version!=WAL_MAX_VERSION ){ 1225 rc = SQLITE_CANTOPEN_BKPT; 1226 goto finished; 1227 } 1228 1229 /* Malloc a buffer to read frames into. */ 1230 szFrame = szPage + WAL_FRAME_HDRSIZE; 1231 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1232 if( !aFrame ){ 1233 rc = SQLITE_NOMEM_BKPT; 1234 goto recovery_error; 1235 } 1236 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1237 1238 /* Read all frames from the log file. */ 1239 iFrame = 0; 1240 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1241 u32 pgno; /* Database page number for frame */ 1242 u32 nTruncate; /* dbsize field from frame header */ 1243 1244 /* Read and decode the next log frame. */ 1245 iFrame++; 1246 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1247 if( rc!=SQLITE_OK ) break; 1248 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1249 if( !isValid ) break; 1250 rc = walIndexAppend(pWal, iFrame, pgno); 1251 if( rc!=SQLITE_OK ) break; 1252 1253 /* If nTruncate is non-zero, this is a commit record. */ 1254 if( nTruncate ){ 1255 pWal->hdr.mxFrame = iFrame; 1256 pWal->hdr.nPage = nTruncate; 1257 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1258 testcase( szPage<=32768 ); 1259 testcase( szPage>=65536 ); 1260 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1261 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1262 } 1263 } 1264 1265 sqlite3_free(aFrame); 1266 } 1267 1268 finished: 1269 if( rc==SQLITE_OK ){ 1270 volatile WalCkptInfo *pInfo; 1271 int i; 1272 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1273 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1274 walIndexWriteHdr(pWal); 1275 1276 /* Reset the checkpoint-header. This is safe because this thread is 1277 ** currently holding locks that exclude all other readers, writers and 1278 ** checkpointers. 1279 */ 1280 pInfo = walCkptInfo(pWal); 1281 pInfo->nBackfill = 0; 1282 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1283 pInfo->aReadMark[0] = 0; 1284 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1285 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1286 1287 /* If more than one frame was recovered from the log file, report an 1288 ** event via sqlite3_log(). This is to help with identifying performance 1289 ** problems caused by applications routinely shutting down without 1290 ** checkpointing the log file. 1291 */ 1292 if( pWal->hdr.nPage ){ 1293 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1294 "recovered %d frames from WAL file %s", 1295 pWal->hdr.mxFrame, pWal->zWalName 1296 ); 1297 } 1298 } 1299 1300 recovery_error: 1301 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1302 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1303 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1304 return rc; 1305 } 1306 1307 /* 1308 ** Close an open wal-index. 1309 */ 1310 static void walIndexClose(Wal *pWal, int isDelete){ 1311 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1312 int i; 1313 for(i=0; i<pWal->nWiData; i++){ 1314 sqlite3_free((void *)pWal->apWiData[i]); 1315 pWal->apWiData[i] = 0; 1316 } 1317 } 1318 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1319 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1320 } 1321 } 1322 1323 /* 1324 ** Open a connection to the WAL file zWalName. The database file must 1325 ** already be opened on connection pDbFd. The buffer that zWalName points 1326 ** to must remain valid for the lifetime of the returned Wal* handle. 1327 ** 1328 ** A SHARED lock should be held on the database file when this function 1329 ** is called. The purpose of this SHARED lock is to prevent any other 1330 ** client from unlinking the WAL or wal-index file. If another process 1331 ** were to do this just after this client opened one of these files, the 1332 ** system would be badly broken. 1333 ** 1334 ** If the log file is successfully opened, SQLITE_OK is returned and 1335 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1336 ** an SQLite error code is returned and *ppWal is left unmodified. 1337 */ 1338 int sqlite3WalOpen( 1339 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1340 sqlite3_file *pDbFd, /* The open database file */ 1341 const char *zWalName, /* Name of the WAL file */ 1342 int bNoShm, /* True to run in heap-memory mode */ 1343 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1344 Wal **ppWal /* OUT: Allocated Wal handle */ 1345 ){ 1346 int rc; /* Return Code */ 1347 Wal *pRet; /* Object to allocate and return */ 1348 int flags; /* Flags passed to OsOpen() */ 1349 1350 assert( zWalName && zWalName[0] ); 1351 assert( pDbFd ); 1352 1353 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1354 ** this source file. Verify that the #defines of the locking byte offsets 1355 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1356 ** For that matter, if the lock offset ever changes from its initial design 1357 ** value of 120, we need to know that so there is an assert() to check it. 1358 */ 1359 assert( 120==WALINDEX_LOCK_OFFSET ); 1360 assert( 136==WALINDEX_HDR_SIZE ); 1361 #ifdef WIN_SHM_BASE 1362 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1363 #endif 1364 #ifdef UNIX_SHM_BASE 1365 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1366 #endif 1367 1368 1369 /* Allocate an instance of struct Wal to return. */ 1370 *ppWal = 0; 1371 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1372 if( !pRet ){ 1373 return SQLITE_NOMEM_BKPT; 1374 } 1375 1376 pRet->pVfs = pVfs; 1377 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1378 pRet->pDbFd = pDbFd; 1379 pRet->readLock = -1; 1380 pRet->mxWalSize = mxWalSize; 1381 pRet->zWalName = zWalName; 1382 pRet->syncHeader = 1; 1383 pRet->padToSectorBoundary = 1; 1384 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1385 1386 /* Open file handle on the write-ahead log file. */ 1387 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1388 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1389 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1390 pRet->readOnly = WAL_RDONLY; 1391 } 1392 1393 if( rc!=SQLITE_OK ){ 1394 walIndexClose(pRet, 0); 1395 sqlite3OsClose(pRet->pWalFd); 1396 sqlite3_free(pRet); 1397 }else{ 1398 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1399 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1400 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1401 pRet->padToSectorBoundary = 0; 1402 } 1403 *ppWal = pRet; 1404 WALTRACE(("WAL%d: opened\n", pRet)); 1405 } 1406 return rc; 1407 } 1408 1409 /* 1410 ** Change the size to which the WAL file is trucated on each reset. 1411 */ 1412 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1413 if( pWal ) pWal->mxWalSize = iLimit; 1414 } 1415 1416 /* 1417 ** Find the smallest page number out of all pages held in the WAL that 1418 ** has not been returned by any prior invocation of this method on the 1419 ** same WalIterator object. Write into *piFrame the frame index where 1420 ** that page was last written into the WAL. Write into *piPage the page 1421 ** number. 1422 ** 1423 ** Return 0 on success. If there are no pages in the WAL with a page 1424 ** number larger than *piPage, then return 1. 1425 */ 1426 static int walIteratorNext( 1427 WalIterator *p, /* Iterator */ 1428 u32 *piPage, /* OUT: The page number of the next page */ 1429 u32 *piFrame /* OUT: Wal frame index of next page */ 1430 ){ 1431 u32 iMin; /* Result pgno must be greater than iMin */ 1432 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1433 int i; /* For looping through segments */ 1434 1435 iMin = p->iPrior; 1436 assert( iMin<0xffffffff ); 1437 for(i=p->nSegment-1; i>=0; i--){ 1438 struct WalSegment *pSegment = &p->aSegment[i]; 1439 while( pSegment->iNext<pSegment->nEntry ){ 1440 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1441 if( iPg>iMin ){ 1442 if( iPg<iRet ){ 1443 iRet = iPg; 1444 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1445 } 1446 break; 1447 } 1448 pSegment->iNext++; 1449 } 1450 } 1451 1452 *piPage = p->iPrior = iRet; 1453 return (iRet==0xFFFFFFFF); 1454 } 1455 1456 /* 1457 ** This function merges two sorted lists into a single sorted list. 1458 ** 1459 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1460 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1461 ** is guaranteed for all J<K: 1462 ** 1463 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1464 ** aContent[aRight[J]] < aContent[aRight[K]] 1465 ** 1466 ** This routine overwrites aRight[] with a new (probably longer) sequence 1467 ** of indices such that the aRight[] contains every index that appears in 1468 ** either aLeft[] or the old aRight[] and such that the second condition 1469 ** above is still met. 1470 ** 1471 ** The aContent[aLeft[X]] values will be unique for all X. And the 1472 ** aContent[aRight[X]] values will be unique too. But there might be 1473 ** one or more combinations of X and Y such that 1474 ** 1475 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1476 ** 1477 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1478 */ 1479 static void walMerge( 1480 const u32 *aContent, /* Pages in wal - keys for the sort */ 1481 ht_slot *aLeft, /* IN: Left hand input list */ 1482 int nLeft, /* IN: Elements in array *paLeft */ 1483 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1484 int *pnRight, /* IN/OUT: Elements in *paRight */ 1485 ht_slot *aTmp /* Temporary buffer */ 1486 ){ 1487 int iLeft = 0; /* Current index in aLeft */ 1488 int iRight = 0; /* Current index in aRight */ 1489 int iOut = 0; /* Current index in output buffer */ 1490 int nRight = *pnRight; 1491 ht_slot *aRight = *paRight; 1492 1493 assert( nLeft>0 && nRight>0 ); 1494 while( iRight<nRight || iLeft<nLeft ){ 1495 ht_slot logpage; 1496 Pgno dbpage; 1497 1498 if( (iLeft<nLeft) 1499 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1500 ){ 1501 logpage = aLeft[iLeft++]; 1502 }else{ 1503 logpage = aRight[iRight++]; 1504 } 1505 dbpage = aContent[logpage]; 1506 1507 aTmp[iOut++] = logpage; 1508 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1509 1510 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1511 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1512 } 1513 1514 *paRight = aLeft; 1515 *pnRight = iOut; 1516 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1517 } 1518 1519 /* 1520 ** Sort the elements in list aList using aContent[] as the sort key. 1521 ** Remove elements with duplicate keys, preferring to keep the 1522 ** larger aList[] values. 1523 ** 1524 ** The aList[] entries are indices into aContent[]. The values in 1525 ** aList[] are to be sorted so that for all J<K: 1526 ** 1527 ** aContent[aList[J]] < aContent[aList[K]] 1528 ** 1529 ** For any X and Y such that 1530 ** 1531 ** aContent[aList[X]] == aContent[aList[Y]] 1532 ** 1533 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1534 ** the smaller. 1535 */ 1536 static void walMergesort( 1537 const u32 *aContent, /* Pages in wal */ 1538 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1539 ht_slot *aList, /* IN/OUT: List to sort */ 1540 int *pnList /* IN/OUT: Number of elements in aList[] */ 1541 ){ 1542 struct Sublist { 1543 int nList; /* Number of elements in aList */ 1544 ht_slot *aList; /* Pointer to sub-list content */ 1545 }; 1546 1547 const int nList = *pnList; /* Size of input list */ 1548 int nMerge = 0; /* Number of elements in list aMerge */ 1549 ht_slot *aMerge = 0; /* List to be merged */ 1550 int iList; /* Index into input list */ 1551 u32 iSub = 0; /* Index into aSub array */ 1552 struct Sublist aSub[13]; /* Array of sub-lists */ 1553 1554 memset(aSub, 0, sizeof(aSub)); 1555 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1556 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1557 1558 for(iList=0; iList<nList; iList++){ 1559 nMerge = 1; 1560 aMerge = &aList[iList]; 1561 for(iSub=0; iList & (1<<iSub); iSub++){ 1562 struct Sublist *p; 1563 assert( iSub<ArraySize(aSub) ); 1564 p = &aSub[iSub]; 1565 assert( p->aList && p->nList<=(1<<iSub) ); 1566 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1567 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1568 } 1569 aSub[iSub].aList = aMerge; 1570 aSub[iSub].nList = nMerge; 1571 } 1572 1573 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1574 if( nList & (1<<iSub) ){ 1575 struct Sublist *p; 1576 assert( iSub<ArraySize(aSub) ); 1577 p = &aSub[iSub]; 1578 assert( p->nList<=(1<<iSub) ); 1579 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1580 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1581 } 1582 } 1583 assert( aMerge==aList ); 1584 *pnList = nMerge; 1585 1586 #ifdef SQLITE_DEBUG 1587 { 1588 int i; 1589 for(i=1; i<*pnList; i++){ 1590 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1591 } 1592 } 1593 #endif 1594 } 1595 1596 /* 1597 ** Free an iterator allocated by walIteratorInit(). 1598 */ 1599 static void walIteratorFree(WalIterator *p){ 1600 sqlite3_free(p); 1601 } 1602 1603 /* 1604 ** Construct a WalInterator object that can be used to loop over all 1605 ** pages in the WAL following frame nBackfill in ascending order. Frames 1606 ** nBackfill or earlier may be included - excluding them is an optimization 1607 ** only. The caller must hold the checkpoint lock. 1608 ** 1609 ** On success, make *pp point to the newly allocated WalInterator object 1610 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1611 ** returns an error, the value of *pp is undefined. 1612 ** 1613 ** The calling routine should invoke walIteratorFree() to destroy the 1614 ** WalIterator object when it has finished with it. 1615 */ 1616 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1617 WalIterator *p; /* Return value */ 1618 int nSegment; /* Number of segments to merge */ 1619 u32 iLast; /* Last frame in log */ 1620 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1621 int i; /* Iterator variable */ 1622 ht_slot *aTmp; /* Temp space used by merge-sort */ 1623 int rc = SQLITE_OK; /* Return Code */ 1624 1625 /* This routine only runs while holding the checkpoint lock. And 1626 ** it only runs if there is actually content in the log (mxFrame>0). 1627 */ 1628 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1629 iLast = pWal->hdr.mxFrame; 1630 1631 /* Allocate space for the WalIterator object. */ 1632 nSegment = walFramePage(iLast) + 1; 1633 nByte = sizeof(WalIterator) 1634 + (nSegment-1)*sizeof(struct WalSegment) 1635 + iLast*sizeof(ht_slot); 1636 p = (WalIterator *)sqlite3_malloc64(nByte); 1637 if( !p ){ 1638 return SQLITE_NOMEM_BKPT; 1639 } 1640 memset(p, 0, nByte); 1641 p->nSegment = nSegment; 1642 1643 /* Allocate temporary space used by the merge-sort routine. This block 1644 ** of memory will be freed before this function returns. 1645 */ 1646 aTmp = (ht_slot *)sqlite3_malloc64( 1647 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1648 ); 1649 if( !aTmp ){ 1650 rc = SQLITE_NOMEM_BKPT; 1651 } 1652 1653 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1654 WalHashLoc sLoc; 1655 1656 rc = walHashGet(pWal, i, &sLoc); 1657 if( rc==SQLITE_OK ){ 1658 int j; /* Counter variable */ 1659 int nEntry; /* Number of entries in this segment */ 1660 ht_slot *aIndex; /* Sorted index for this segment */ 1661 1662 sLoc.aPgno++; 1663 if( (i+1)==nSegment ){ 1664 nEntry = (int)(iLast - sLoc.iZero); 1665 }else{ 1666 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1667 } 1668 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1669 sLoc.iZero++; 1670 1671 for(j=0; j<nEntry; j++){ 1672 aIndex[j] = (ht_slot)j; 1673 } 1674 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1675 p->aSegment[i].iZero = sLoc.iZero; 1676 p->aSegment[i].nEntry = nEntry; 1677 p->aSegment[i].aIndex = aIndex; 1678 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1679 } 1680 } 1681 sqlite3_free(aTmp); 1682 1683 if( rc!=SQLITE_OK ){ 1684 walIteratorFree(p); 1685 p = 0; 1686 } 1687 *pp = p; 1688 return rc; 1689 } 1690 1691 /* 1692 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1693 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1694 ** busy-handler function. Invoke it and retry the lock until either the 1695 ** lock is successfully obtained or the busy-handler returns 0. 1696 */ 1697 static int walBusyLock( 1698 Wal *pWal, /* WAL connection */ 1699 int (*xBusy)(void*), /* Function to call when busy */ 1700 void *pBusyArg, /* Context argument for xBusyHandler */ 1701 int lockIdx, /* Offset of first byte to lock */ 1702 int n /* Number of bytes to lock */ 1703 ){ 1704 int rc; 1705 do { 1706 rc = walLockExclusive(pWal, lockIdx, n); 1707 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1708 return rc; 1709 } 1710 1711 /* 1712 ** The cache of the wal-index header must be valid to call this function. 1713 ** Return the page-size in bytes used by the database. 1714 */ 1715 static int walPagesize(Wal *pWal){ 1716 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1717 } 1718 1719 /* 1720 ** The following is guaranteed when this function is called: 1721 ** 1722 ** a) the WRITER lock is held, 1723 ** b) the entire log file has been checkpointed, and 1724 ** c) any existing readers are reading exclusively from the database 1725 ** file - there are no readers that may attempt to read a frame from 1726 ** the log file. 1727 ** 1728 ** This function updates the shared-memory structures so that the next 1729 ** client to write to the database (which may be this one) does so by 1730 ** writing frames into the start of the log file. 1731 ** 1732 ** The value of parameter salt1 is used as the aSalt[1] value in the 1733 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1734 ** one obtained from sqlite3_randomness()). 1735 */ 1736 static void walRestartHdr(Wal *pWal, u32 salt1){ 1737 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1738 int i; /* Loop counter */ 1739 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1740 pWal->nCkpt++; 1741 pWal->hdr.mxFrame = 0; 1742 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1743 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1744 walIndexWriteHdr(pWal); 1745 pInfo->nBackfill = 0; 1746 pInfo->nBackfillAttempted = 0; 1747 pInfo->aReadMark[1] = 0; 1748 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1749 assert( pInfo->aReadMark[0]==0 ); 1750 } 1751 1752 /* 1753 ** Copy as much content as we can from the WAL back into the database file 1754 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1755 ** 1756 ** The amount of information copies from WAL to database might be limited 1757 ** by active readers. This routine will never overwrite a database page 1758 ** that a concurrent reader might be using. 1759 ** 1760 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1761 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1762 ** checkpoints are always run by a background thread or background 1763 ** process, foreground threads will never block on a lengthy fsync call. 1764 ** 1765 ** Fsync is called on the WAL before writing content out of the WAL and 1766 ** into the database. This ensures that if the new content is persistent 1767 ** in the WAL and can be recovered following a power-loss or hard reset. 1768 ** 1769 ** Fsync is also called on the database file if (and only if) the entire 1770 ** WAL content is copied into the database file. This second fsync makes 1771 ** it safe to delete the WAL since the new content will persist in the 1772 ** database file. 1773 ** 1774 ** This routine uses and updates the nBackfill field of the wal-index header. 1775 ** This is the only routine that will increase the value of nBackfill. 1776 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1777 ** its value.) 1778 ** 1779 ** The caller must be holding sufficient locks to ensure that no other 1780 ** checkpoint is running (in any other thread or process) at the same 1781 ** time. 1782 */ 1783 static int walCheckpoint( 1784 Wal *pWal, /* Wal connection */ 1785 sqlite3 *db, /* Check for interrupts on this handle */ 1786 int eMode, /* One of PASSIVE, FULL or RESTART */ 1787 int (*xBusy)(void*), /* Function to call when busy */ 1788 void *pBusyArg, /* Context argument for xBusyHandler */ 1789 int sync_flags, /* Flags for OsSync() (or 0) */ 1790 u8 *zBuf /* Temporary buffer to use */ 1791 ){ 1792 int rc = SQLITE_OK; /* Return code */ 1793 int szPage; /* Database page-size */ 1794 WalIterator *pIter = 0; /* Wal iterator context */ 1795 u32 iDbpage = 0; /* Next database page to write */ 1796 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1797 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1798 u32 mxPage; /* Max database page to write */ 1799 int i; /* Loop counter */ 1800 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1801 1802 szPage = walPagesize(pWal); 1803 testcase( szPage<=32768 ); 1804 testcase( szPage>=65536 ); 1805 pInfo = walCkptInfo(pWal); 1806 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1807 1808 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1809 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1810 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1811 1812 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1813 ** safe to write into the database. Frames beyond mxSafeFrame might 1814 ** overwrite database pages that are in use by active readers and thus 1815 ** cannot be backfilled from the WAL. 1816 */ 1817 mxSafeFrame = pWal->hdr.mxFrame; 1818 mxPage = pWal->hdr.nPage; 1819 for(i=1; i<WAL_NREADER; i++){ 1820 /* Thread-sanitizer reports that the following is an unsafe read, 1821 ** as some other thread may be in the process of updating the value 1822 ** of the aReadMark[] slot. The assumption here is that if that is 1823 ** happening, the other client may only be increasing the value, 1824 ** not decreasing it. So assuming either that either the "old" or 1825 ** "new" version of the value is read, and not some arbitrary value 1826 ** that would never be written by a real client, things are still 1827 ** safe. 1828 ** 1829 ** Astute readers have pointed out that the assumption stated in the 1830 ** last sentence of the previous paragraph is not guaranteed to be 1831 ** true for all conforming systems. However, the assumption is true 1832 ** for all compilers and architectures in common use today (circa 1833 ** 2019-11-27) and the alternatives are both slow and complex, and 1834 ** so we will continue to go with the current design for now. If this 1835 ** bothers you, or if you really are running on a system where aligned 1836 ** 32-bit reads and writes are not atomic, then you can simply avoid 1837 ** the use of WAL mode, or only use WAL mode together with 1838 ** PRAGMA locking_mode=EXCLUSIVE and all will be well. 1839 */ 1840 u32 y = pInfo->aReadMark[i]; 1841 if( mxSafeFrame>y ){ 1842 assert( y<=pWal->hdr.mxFrame ); 1843 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1844 if( rc==SQLITE_OK ){ 1845 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1846 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1847 }else if( rc==SQLITE_BUSY ){ 1848 mxSafeFrame = y; 1849 xBusy = 0; 1850 }else{ 1851 goto walcheckpoint_out; 1852 } 1853 } 1854 } 1855 1856 /* Allocate the iterator */ 1857 if( pInfo->nBackfill<mxSafeFrame ){ 1858 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1859 assert( rc==SQLITE_OK || pIter==0 ); 1860 } 1861 1862 if( pIter 1863 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1864 ){ 1865 u32 nBackfill = pInfo->nBackfill; 1866 1867 pInfo->nBackfillAttempted = mxSafeFrame; 1868 1869 /* Sync the WAL to disk */ 1870 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1871 1872 /* If the database may grow as a result of this checkpoint, hint 1873 ** about the eventual size of the db file to the VFS layer. 1874 */ 1875 if( rc==SQLITE_OK ){ 1876 i64 nReq = ((i64)mxPage * szPage); 1877 i64 nSize; /* Current size of database file */ 1878 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1879 if( rc==SQLITE_OK && nSize<nReq ){ 1880 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1881 } 1882 } 1883 1884 1885 /* Iterate through the contents of the WAL, copying data to the db file */ 1886 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1887 i64 iOffset; 1888 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1889 if( db->u1.isInterrupted ){ 1890 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1891 break; 1892 } 1893 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1894 continue; 1895 } 1896 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1897 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1898 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1899 if( rc!=SQLITE_OK ) break; 1900 iOffset = (iDbpage-1)*(i64)szPage; 1901 testcase( IS_BIG_INT(iOffset) ); 1902 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1903 if( rc!=SQLITE_OK ) break; 1904 } 1905 1906 /* If work was actually accomplished... */ 1907 if( rc==SQLITE_OK ){ 1908 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1909 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1910 testcase( IS_BIG_INT(szDb) ); 1911 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1912 if( rc==SQLITE_OK ){ 1913 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1914 } 1915 } 1916 if( rc==SQLITE_OK ){ 1917 pInfo->nBackfill = mxSafeFrame; 1918 } 1919 } 1920 1921 /* Release the reader lock held while backfilling */ 1922 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1923 } 1924 1925 if( rc==SQLITE_BUSY ){ 1926 /* Reset the return code so as not to report a checkpoint failure 1927 ** just because there are active readers. */ 1928 rc = SQLITE_OK; 1929 } 1930 } 1931 1932 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1933 ** entire wal file has been copied into the database file, then block 1934 ** until all readers have finished using the wal file. This ensures that 1935 ** the next process to write to the database restarts the wal file. 1936 */ 1937 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1938 assert( pWal->writeLock ); 1939 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1940 rc = SQLITE_BUSY; 1941 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1942 u32 salt1; 1943 sqlite3_randomness(4, &salt1); 1944 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1945 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1946 if( rc==SQLITE_OK ){ 1947 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1948 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1949 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1950 ** truncates the log file to zero bytes just prior to a 1951 ** successful return. 1952 ** 1953 ** In theory, it might be safe to do this without updating the 1954 ** wal-index header in shared memory, as all subsequent reader or 1955 ** writer clients should see that the entire log file has been 1956 ** checkpointed and behave accordingly. This seems unsafe though, 1957 ** as it would leave the system in a state where the contents of 1958 ** the wal-index header do not match the contents of the 1959 ** file-system. To avoid this, update the wal-index header to 1960 ** indicate that the log file contains zero valid frames. */ 1961 walRestartHdr(pWal, salt1); 1962 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1963 } 1964 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1965 } 1966 } 1967 } 1968 1969 walcheckpoint_out: 1970 walIteratorFree(pIter); 1971 return rc; 1972 } 1973 1974 /* 1975 ** If the WAL file is currently larger than nMax bytes in size, truncate 1976 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1977 */ 1978 static void walLimitSize(Wal *pWal, i64 nMax){ 1979 i64 sz; 1980 int rx; 1981 sqlite3BeginBenignMalloc(); 1982 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1983 if( rx==SQLITE_OK && (sz > nMax ) ){ 1984 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1985 } 1986 sqlite3EndBenignMalloc(); 1987 if( rx ){ 1988 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1989 } 1990 } 1991 1992 /* 1993 ** Close a connection to a log file. 1994 */ 1995 int sqlite3WalClose( 1996 Wal *pWal, /* Wal to close */ 1997 sqlite3 *db, /* For interrupt flag */ 1998 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1999 int nBuf, 2000 u8 *zBuf /* Buffer of at least nBuf bytes */ 2001 ){ 2002 int rc = SQLITE_OK; 2003 if( pWal ){ 2004 int isDelete = 0; /* True to unlink wal and wal-index files */ 2005 2006 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2007 ** ordinary, rollback-mode locking methods, this guarantees that the 2008 ** connection associated with this log file is the only connection to 2009 ** the database. In this case checkpoint the database and unlink both 2010 ** the wal and wal-index files. 2011 ** 2012 ** The EXCLUSIVE lock is not released before returning. 2013 */ 2014 if( zBuf!=0 2015 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2016 ){ 2017 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2018 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2019 } 2020 rc = sqlite3WalCheckpoint(pWal, db, 2021 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2022 ); 2023 if( rc==SQLITE_OK ){ 2024 int bPersist = -1; 2025 sqlite3OsFileControlHint( 2026 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2027 ); 2028 if( bPersist!=1 ){ 2029 /* Try to delete the WAL file if the checkpoint completed and 2030 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2031 ** mode (!bPersist) */ 2032 isDelete = 1; 2033 }else if( pWal->mxWalSize>=0 ){ 2034 /* Try to truncate the WAL file to zero bytes if the checkpoint 2035 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2036 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2037 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2038 ** to zero bytes as truncating to the journal_size_limit might 2039 ** leave a corrupt WAL file on disk. */ 2040 walLimitSize(pWal, 0); 2041 } 2042 } 2043 } 2044 2045 walIndexClose(pWal, isDelete); 2046 sqlite3OsClose(pWal->pWalFd); 2047 if( isDelete ){ 2048 sqlite3BeginBenignMalloc(); 2049 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2050 sqlite3EndBenignMalloc(); 2051 } 2052 WALTRACE(("WAL%p: closed\n", pWal)); 2053 sqlite3_free((void *)pWal->apWiData); 2054 sqlite3_free(pWal); 2055 } 2056 return rc; 2057 } 2058 2059 /* 2060 ** Try to read the wal-index header. Return 0 on success and 1 if 2061 ** there is a problem. 2062 ** 2063 ** The wal-index is in shared memory. Another thread or process might 2064 ** be writing the header at the same time this procedure is trying to 2065 ** read it, which might result in inconsistency. A dirty read is detected 2066 ** by verifying that both copies of the header are the same and also by 2067 ** a checksum on the header. 2068 ** 2069 ** If and only if the read is consistent and the header is different from 2070 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2071 ** and *pChanged is set to 1. 2072 ** 2073 ** If the checksum cannot be verified return non-zero. If the header 2074 ** is read successfully and the checksum verified, return zero. 2075 */ 2076 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2077 u32 aCksum[2]; /* Checksum on the header content */ 2078 WalIndexHdr h1, h2; /* Two copies of the header content */ 2079 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2080 2081 /* The first page of the wal-index must be mapped at this point. */ 2082 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2083 2084 /* Read the header. This might happen concurrently with a write to the 2085 ** same area of shared memory on a different CPU in a SMP, 2086 ** meaning it is possible that an inconsistent snapshot is read 2087 ** from the file. If this happens, return non-zero. 2088 ** 2089 ** There are two copies of the header at the beginning of the wal-index. 2090 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2091 ** Memory barriers are used to prevent the compiler or the hardware from 2092 ** reordering the reads and writes. 2093 */ 2094 aHdr = walIndexHdr(pWal); 2095 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2096 walShmBarrier(pWal); 2097 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2098 2099 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2100 return 1; /* Dirty read */ 2101 } 2102 if( h1.isInit==0 ){ 2103 return 1; /* Malformed header - probably all zeros */ 2104 } 2105 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2106 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2107 return 1; /* Checksum does not match */ 2108 } 2109 2110 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2111 *pChanged = 1; 2112 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2113 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2114 testcase( pWal->szPage<=32768 ); 2115 testcase( pWal->szPage>=65536 ); 2116 } 2117 2118 /* The header was successfully read. Return zero. */ 2119 return 0; 2120 } 2121 2122 /* 2123 ** This is the value that walTryBeginRead returns when it needs to 2124 ** be retried. 2125 */ 2126 #define WAL_RETRY (-1) 2127 2128 /* 2129 ** Read the wal-index header from the wal-index and into pWal->hdr. 2130 ** If the wal-header appears to be corrupt, try to reconstruct the 2131 ** wal-index from the WAL before returning. 2132 ** 2133 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2134 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2135 ** to 0. 2136 ** 2137 ** If the wal-index header is successfully read, return SQLITE_OK. 2138 ** Otherwise an SQLite error code. 2139 */ 2140 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2141 int rc; /* Return code */ 2142 int badHdr; /* True if a header read failed */ 2143 volatile u32 *page0; /* Chunk of wal-index containing header */ 2144 2145 /* Ensure that page 0 of the wal-index (the page that contains the 2146 ** wal-index header) is mapped. Return early if an error occurs here. 2147 */ 2148 assert( pChanged ); 2149 rc = walIndexPage(pWal, 0, &page0); 2150 if( rc!=SQLITE_OK ){ 2151 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2152 if( rc==SQLITE_READONLY_CANTINIT ){ 2153 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2154 ** was openable but is not writable, and this thread is unable to 2155 ** confirm that another write-capable connection has the shared-memory 2156 ** open, and hence the content of the shared-memory is unreliable, 2157 ** since the shared-memory might be inconsistent with the WAL file 2158 ** and there is no writer on hand to fix it. */ 2159 assert( page0==0 ); 2160 assert( pWal->writeLock==0 ); 2161 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2162 pWal->bShmUnreliable = 1; 2163 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2164 *pChanged = 1; 2165 }else{ 2166 return rc; /* Any other non-OK return is just an error */ 2167 } 2168 }else{ 2169 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2170 ** is zero, which prevents the SHM from growing */ 2171 testcase( page0!=0 ); 2172 } 2173 assert( page0!=0 || pWal->writeLock==0 ); 2174 2175 /* If the first page of the wal-index has been mapped, try to read the 2176 ** wal-index header immediately, without holding any lock. This usually 2177 ** works, but may fail if the wal-index header is corrupt or currently 2178 ** being modified by another thread or process. 2179 */ 2180 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2181 2182 /* If the first attempt failed, it might have been due to a race 2183 ** with a writer. So get a WRITE lock and try again. 2184 */ 2185 assert( badHdr==0 || pWal->writeLock==0 ); 2186 if( badHdr ){ 2187 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2188 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2189 walUnlockShared(pWal, WAL_WRITE_LOCK); 2190 rc = SQLITE_READONLY_RECOVERY; 2191 } 2192 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2193 pWal->writeLock = 1; 2194 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2195 badHdr = walIndexTryHdr(pWal, pChanged); 2196 if( badHdr ){ 2197 /* If the wal-index header is still malformed even while holding 2198 ** a WRITE lock, it can only mean that the header is corrupted and 2199 ** needs to be reconstructed. So run recovery to do exactly that. 2200 */ 2201 rc = walIndexRecover(pWal); 2202 *pChanged = 1; 2203 } 2204 } 2205 pWal->writeLock = 0; 2206 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2207 } 2208 } 2209 2210 /* If the header is read successfully, check the version number to make 2211 ** sure the wal-index was not constructed with some future format that 2212 ** this version of SQLite cannot understand. 2213 */ 2214 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2215 rc = SQLITE_CANTOPEN_BKPT; 2216 } 2217 if( pWal->bShmUnreliable ){ 2218 if( rc!=SQLITE_OK ){ 2219 walIndexClose(pWal, 0); 2220 pWal->bShmUnreliable = 0; 2221 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2222 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2223 ** writer truncated the WAL out from under it. If that happens, it 2224 ** indicates that a writer has fixed the SHM file for us, so retry */ 2225 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2226 } 2227 pWal->exclusiveMode = WAL_NORMAL_MODE; 2228 } 2229 2230 return rc; 2231 } 2232 2233 /* 2234 ** Open a transaction in a connection where the shared-memory is read-only 2235 ** and where we cannot verify that there is a separate write-capable connection 2236 ** on hand to keep the shared-memory up-to-date with the WAL file. 2237 ** 2238 ** This can happen, for example, when the shared-memory is implemented by 2239 ** memory-mapping a *-shm file, where a prior writer has shut down and 2240 ** left the *-shm file on disk, and now the present connection is trying 2241 ** to use that database but lacks write permission on the *-shm file. 2242 ** Other scenarios are also possible, depending on the VFS implementation. 2243 ** 2244 ** Precondition: 2245 ** 2246 ** The *-wal file has been read and an appropriate wal-index has been 2247 ** constructed in pWal->apWiData[] using heap memory instead of shared 2248 ** memory. 2249 ** 2250 ** If this function returns SQLITE_OK, then the read transaction has 2251 ** been successfully opened. In this case output variable (*pChanged) 2252 ** is set to true before returning if the caller should discard the 2253 ** contents of the page cache before proceeding. Or, if it returns 2254 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2255 ** the caller should retry opening the read transaction from the 2256 ** beginning (including attempting to map the *-shm file). 2257 ** 2258 ** If an error occurs, an SQLite error code is returned. 2259 */ 2260 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2261 i64 szWal; /* Size of wal file on disk in bytes */ 2262 i64 iOffset; /* Current offset when reading wal file */ 2263 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2264 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2265 int szFrame; /* Number of bytes in buffer aFrame[] */ 2266 u8 *aData; /* Pointer to data part of aFrame buffer */ 2267 volatile void *pDummy; /* Dummy argument for xShmMap */ 2268 int rc; /* Return code */ 2269 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2270 2271 assert( pWal->bShmUnreliable ); 2272 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2273 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2274 2275 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2276 ** writers from running a checkpoint, but does not stop them 2277 ** from running recovery. */ 2278 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2279 if( rc!=SQLITE_OK ){ 2280 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2281 goto begin_unreliable_shm_out; 2282 } 2283 pWal->readLock = 0; 2284 2285 /* Check to see if a separate writer has attached to the shared-memory area, 2286 ** thus making the shared-memory "reliable" again. Do this by invoking 2287 ** the xShmMap() routine of the VFS and looking to see if the return 2288 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2289 ** 2290 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2291 ** cause the heap-memory WAL-index to be discarded and the actual 2292 ** shared memory to be used in its place. 2293 ** 2294 ** This step is important because, even though this connection is holding 2295 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2296 ** have already checkpointed the WAL file and, while the current 2297 ** is active, wrap the WAL and start overwriting frames that this 2298 ** process wants to use. 2299 ** 2300 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2301 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2302 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2303 ** even if some external agent does a "chmod" to make the shared-memory 2304 ** writable by us, until sqlite3OsShmUnmap() has been called. 2305 ** This is a requirement on the VFS implementation. 2306 */ 2307 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2308 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2309 if( rc!=SQLITE_READONLY_CANTINIT ){ 2310 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2311 goto begin_unreliable_shm_out; 2312 } 2313 2314 /* We reach this point only if the real shared-memory is still unreliable. 2315 ** Assume the in-memory WAL-index substitute is correct and load it 2316 ** into pWal->hdr. 2317 */ 2318 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2319 2320 /* Make sure some writer hasn't come in and changed the WAL file out 2321 ** from under us, then disconnected, while we were not looking. 2322 */ 2323 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2324 if( rc!=SQLITE_OK ){ 2325 goto begin_unreliable_shm_out; 2326 } 2327 if( szWal<WAL_HDRSIZE ){ 2328 /* If the wal file is too small to contain a wal-header and the 2329 ** wal-index header has mxFrame==0, then it must be safe to proceed 2330 ** reading the database file only. However, the page cache cannot 2331 ** be trusted, as a read/write connection may have connected, written 2332 ** the db, run a checkpoint, truncated the wal file and disconnected 2333 ** since this client's last read transaction. */ 2334 *pChanged = 1; 2335 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2336 goto begin_unreliable_shm_out; 2337 } 2338 2339 /* Check the salt keys at the start of the wal file still match. */ 2340 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2341 if( rc!=SQLITE_OK ){ 2342 goto begin_unreliable_shm_out; 2343 } 2344 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2345 /* Some writer has wrapped the WAL file while we were not looking. 2346 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2347 ** rebuilt. */ 2348 rc = WAL_RETRY; 2349 goto begin_unreliable_shm_out; 2350 } 2351 2352 /* Allocate a buffer to read frames into */ 2353 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2354 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2355 if( aFrame==0 ){ 2356 rc = SQLITE_NOMEM_BKPT; 2357 goto begin_unreliable_shm_out; 2358 } 2359 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2360 2361 /* Check to see if a complete transaction has been appended to the 2362 ** wal file since the heap-memory wal-index was created. If so, the 2363 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2364 ** the caller. */ 2365 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2366 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2367 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2368 iOffset+szFrame<=szWal; 2369 iOffset+=szFrame 2370 ){ 2371 u32 pgno; /* Database page number for frame */ 2372 u32 nTruncate; /* dbsize field from frame header */ 2373 2374 /* Read and decode the next log frame. */ 2375 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2376 if( rc!=SQLITE_OK ) break; 2377 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2378 2379 /* If nTruncate is non-zero, then a complete transaction has been 2380 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2381 ** the loop. */ 2382 if( nTruncate ){ 2383 rc = WAL_RETRY; 2384 break; 2385 } 2386 } 2387 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2388 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2389 2390 begin_unreliable_shm_out: 2391 sqlite3_free(aFrame); 2392 if( rc!=SQLITE_OK ){ 2393 int i; 2394 for(i=0; i<pWal->nWiData; i++){ 2395 sqlite3_free((void*)pWal->apWiData[i]); 2396 pWal->apWiData[i] = 0; 2397 } 2398 pWal->bShmUnreliable = 0; 2399 sqlite3WalEndReadTransaction(pWal); 2400 *pChanged = 1; 2401 } 2402 return rc; 2403 } 2404 2405 /* 2406 ** Attempt to start a read transaction. This might fail due to a race or 2407 ** other transient condition. When that happens, it returns WAL_RETRY to 2408 ** indicate to the caller that it is safe to retry immediately. 2409 ** 2410 ** On success return SQLITE_OK. On a permanent failure (such an 2411 ** I/O error or an SQLITE_BUSY because another process is running 2412 ** recovery) return a positive error code. 2413 ** 2414 ** The useWal parameter is true to force the use of the WAL and disable 2415 ** the case where the WAL is bypassed because it has been completely 2416 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2417 ** to make a copy of the wal-index header into pWal->hdr. If the 2418 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2419 ** to the caller that the local page cache is obsolete and needs to be 2420 ** flushed.) When useWal==1, the wal-index header is assumed to already 2421 ** be loaded and the pChanged parameter is unused. 2422 ** 2423 ** The caller must set the cnt parameter to the number of prior calls to 2424 ** this routine during the current read attempt that returned WAL_RETRY. 2425 ** This routine will start taking more aggressive measures to clear the 2426 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2427 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2428 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2429 ** and is not honoring the locking protocol. There is a vanishingly small 2430 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2431 ** bad luck when there is lots of contention for the wal-index, but that 2432 ** possibility is so small that it can be safely neglected, we believe. 2433 ** 2434 ** On success, this routine obtains a read lock on 2435 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2436 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2437 ** that means the Wal does not hold any read lock. The reader must not 2438 ** access any database page that is modified by a WAL frame up to and 2439 ** including frame number aReadMark[pWal->readLock]. The reader will 2440 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2441 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2442 ** completely and get all content directly from the database file. 2443 ** If the useWal parameter is 1 then the WAL will never be ignored and 2444 ** this routine will always set pWal->readLock>0 on success. 2445 ** When the read transaction is completed, the caller must release the 2446 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2447 ** 2448 ** This routine uses the nBackfill and aReadMark[] fields of the header 2449 ** to select a particular WAL_READ_LOCK() that strives to let the 2450 ** checkpoint process do as much work as possible. This routine might 2451 ** update values of the aReadMark[] array in the header, but if it does 2452 ** so it takes care to hold an exclusive lock on the corresponding 2453 ** WAL_READ_LOCK() while changing values. 2454 */ 2455 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2456 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2457 u32 mxReadMark; /* Largest aReadMark[] value */ 2458 int mxI; /* Index of largest aReadMark[] value */ 2459 int i; /* Loop counter */ 2460 int rc = SQLITE_OK; /* Return code */ 2461 u32 mxFrame; /* Wal frame to lock to */ 2462 2463 assert( pWal->readLock<0 ); /* Not currently locked */ 2464 2465 /* useWal may only be set for read/write connections */ 2466 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2467 2468 /* Take steps to avoid spinning forever if there is a protocol error. 2469 ** 2470 ** Circumstances that cause a RETRY should only last for the briefest 2471 ** instances of time. No I/O or other system calls are done while the 2472 ** locks are held, so the locks should not be held for very long. But 2473 ** if we are unlucky, another process that is holding a lock might get 2474 ** paged out or take a page-fault that is time-consuming to resolve, 2475 ** during the few nanoseconds that it is holding the lock. In that case, 2476 ** it might take longer than normal for the lock to free. 2477 ** 2478 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2479 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2480 ** is more of a scheduler yield than an actual delay. But on the 10th 2481 ** an subsequent retries, the delays start becoming longer and longer, 2482 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2483 ** The total delay time before giving up is less than 10 seconds. 2484 */ 2485 if( cnt>5 ){ 2486 int nDelay = 1; /* Pause time in microseconds */ 2487 if( cnt>100 ){ 2488 VVA_ONLY( pWal->lockError = 1; ) 2489 return SQLITE_PROTOCOL; 2490 } 2491 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2492 sqlite3OsSleep(pWal->pVfs, nDelay); 2493 } 2494 2495 if( !useWal ){ 2496 assert( rc==SQLITE_OK ); 2497 if( pWal->bShmUnreliable==0 ){ 2498 rc = walIndexReadHdr(pWal, pChanged); 2499 } 2500 if( rc==SQLITE_BUSY ){ 2501 /* If there is not a recovery running in another thread or process 2502 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2503 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2504 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2505 ** would be technically correct. But the race is benign since with 2506 ** WAL_RETRY this routine will be called again and will probably be 2507 ** right on the second iteration. 2508 */ 2509 if( pWal->apWiData[0]==0 ){ 2510 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2511 ** We assume this is a transient condition, so return WAL_RETRY. The 2512 ** xShmMap() implementation used by the default unix and win32 VFS 2513 ** modules may return SQLITE_BUSY due to a race condition in the 2514 ** code that determines whether or not the shared-memory region 2515 ** must be zeroed before the requested page is returned. 2516 */ 2517 rc = WAL_RETRY; 2518 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2519 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2520 rc = WAL_RETRY; 2521 }else if( rc==SQLITE_BUSY ){ 2522 rc = SQLITE_BUSY_RECOVERY; 2523 } 2524 } 2525 if( rc!=SQLITE_OK ){ 2526 return rc; 2527 } 2528 else if( pWal->bShmUnreliable ){ 2529 return walBeginShmUnreliable(pWal, pChanged); 2530 } 2531 } 2532 2533 assert( pWal->nWiData>0 ); 2534 assert( pWal->apWiData[0]!=0 ); 2535 pInfo = walCkptInfo(pWal); 2536 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2537 #ifdef SQLITE_ENABLE_SNAPSHOT 2538 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2539 #endif 2540 ){ 2541 /* The WAL has been completely backfilled (or it is empty). 2542 ** and can be safely ignored. 2543 */ 2544 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2545 walShmBarrier(pWal); 2546 if( rc==SQLITE_OK ){ 2547 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2548 /* It is not safe to allow the reader to continue here if frames 2549 ** may have been appended to the log before READ_LOCK(0) was obtained. 2550 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2551 ** which implies that the database file contains a trustworthy 2552 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2553 ** happening, this is usually correct. 2554 ** 2555 ** However, if frames have been appended to the log (or if the log 2556 ** is wrapped and written for that matter) before the READ_LOCK(0) 2557 ** is obtained, that is not necessarily true. A checkpointer may 2558 ** have started to backfill the appended frames but crashed before 2559 ** it finished. Leaving a corrupt image in the database file. 2560 */ 2561 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2562 return WAL_RETRY; 2563 } 2564 pWal->readLock = 0; 2565 return SQLITE_OK; 2566 }else if( rc!=SQLITE_BUSY ){ 2567 return rc; 2568 } 2569 } 2570 2571 /* If we get this far, it means that the reader will want to use 2572 ** the WAL to get at content from recent commits. The job now is 2573 ** to select one of the aReadMark[] entries that is closest to 2574 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2575 */ 2576 mxReadMark = 0; 2577 mxI = 0; 2578 mxFrame = pWal->hdr.mxFrame; 2579 #ifdef SQLITE_ENABLE_SNAPSHOT 2580 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2581 mxFrame = pWal->pSnapshot->mxFrame; 2582 } 2583 #endif 2584 for(i=1; i<WAL_NREADER; i++){ 2585 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2586 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2587 assert( thisMark!=READMARK_NOT_USED ); 2588 mxReadMark = thisMark; 2589 mxI = i; 2590 } 2591 } 2592 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2593 && (mxReadMark<mxFrame || mxI==0) 2594 ){ 2595 for(i=1; i<WAL_NREADER; i++){ 2596 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2597 if( rc==SQLITE_OK ){ 2598 mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame); 2599 mxI = i; 2600 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2601 break; 2602 }else if( rc!=SQLITE_BUSY ){ 2603 return rc; 2604 } 2605 } 2606 } 2607 if( mxI==0 ){ 2608 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2609 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2610 } 2611 2612 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2613 if( rc ){ 2614 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2615 } 2616 /* Now that the read-lock has been obtained, check that neither the 2617 ** value in the aReadMark[] array or the contents of the wal-index 2618 ** header have changed. 2619 ** 2620 ** It is necessary to check that the wal-index header did not change 2621 ** between the time it was read and when the shared-lock was obtained 2622 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2623 ** that the log file may have been wrapped by a writer, or that frames 2624 ** that occur later in the log than pWal->hdr.mxFrame may have been 2625 ** copied into the database by a checkpointer. If either of these things 2626 ** happened, then reading the database with the current value of 2627 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2628 ** instead. 2629 ** 2630 ** Before checking that the live wal-index header has not changed 2631 ** since it was read, set Wal.minFrame to the first frame in the wal 2632 ** file that has not yet been checkpointed. This client will not need 2633 ** to read any frames earlier than minFrame from the wal file - they 2634 ** can be safely read directly from the database file. 2635 ** 2636 ** Because a ShmBarrier() call is made between taking the copy of 2637 ** nBackfill and checking that the wal-header in shared-memory still 2638 ** matches the one cached in pWal->hdr, it is guaranteed that the 2639 ** checkpointer that set nBackfill was not working with a wal-index 2640 ** header newer than that cached in pWal->hdr. If it were, that could 2641 ** cause a problem. The checkpointer could omit to checkpoint 2642 ** a version of page X that lies before pWal->minFrame (call that version 2643 ** A) on the basis that there is a newer version (version B) of the same 2644 ** page later in the wal file. But if version B happens to like past 2645 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2646 ** that it can read version A from the database file. However, since 2647 ** we can guarantee that the checkpointer that set nBackfill could not 2648 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2649 */ 2650 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2651 walShmBarrier(pWal); 2652 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2653 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2654 ){ 2655 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2656 return WAL_RETRY; 2657 }else{ 2658 assert( mxReadMark<=pWal->hdr.mxFrame ); 2659 pWal->readLock = (i16)mxI; 2660 } 2661 return rc; 2662 } 2663 2664 #ifdef SQLITE_ENABLE_SNAPSHOT 2665 /* 2666 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2667 ** variable so that older snapshots can be accessed. To do this, loop 2668 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2669 ** comparing their content to the corresponding page with the database 2670 ** file, if any. Set nBackfillAttempted to the frame number of the 2671 ** first frame for which the wal file content matches the db file. 2672 ** 2673 ** This is only really safe if the file-system is such that any page 2674 ** writes made by earlier checkpointers were atomic operations, which 2675 ** is not always true. It is also possible that nBackfillAttempted 2676 ** may be left set to a value larger than expected, if a wal frame 2677 ** contains content that duplicate of an earlier version of the same 2678 ** page. 2679 ** 2680 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2681 ** error occurs. It is not an error if nBackfillAttempted cannot be 2682 ** decreased at all. 2683 */ 2684 int sqlite3WalSnapshotRecover(Wal *pWal){ 2685 int rc; 2686 2687 assert( pWal->readLock>=0 ); 2688 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2689 if( rc==SQLITE_OK ){ 2690 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2691 int szPage = (int)pWal->szPage; 2692 i64 szDb; /* Size of db file in bytes */ 2693 2694 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2695 if( rc==SQLITE_OK ){ 2696 void *pBuf1 = sqlite3_malloc(szPage); 2697 void *pBuf2 = sqlite3_malloc(szPage); 2698 if( pBuf1==0 || pBuf2==0 ){ 2699 rc = SQLITE_NOMEM; 2700 }else{ 2701 u32 i = pInfo->nBackfillAttempted; 2702 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ 2703 WalHashLoc sLoc; /* Hash table location */ 2704 u32 pgno; /* Page number in db file */ 2705 i64 iDbOff; /* Offset of db file entry */ 2706 i64 iWalOff; /* Offset of wal file entry */ 2707 2708 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2709 if( rc!=SQLITE_OK ) break; 2710 pgno = sLoc.aPgno[i-sLoc.iZero]; 2711 iDbOff = (i64)(pgno-1) * szPage; 2712 2713 if( iDbOff+szPage<=szDb ){ 2714 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2715 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2716 2717 if( rc==SQLITE_OK ){ 2718 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2719 } 2720 2721 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2722 break; 2723 } 2724 } 2725 2726 pInfo->nBackfillAttempted = i-1; 2727 } 2728 } 2729 2730 sqlite3_free(pBuf1); 2731 sqlite3_free(pBuf2); 2732 } 2733 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2734 } 2735 2736 return rc; 2737 } 2738 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2739 2740 /* 2741 ** Begin a read transaction on the database. 2742 ** 2743 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2744 ** it takes a snapshot of the state of the WAL and wal-index for the current 2745 ** instant in time. The current thread will continue to use this snapshot. 2746 ** Other threads might append new content to the WAL and wal-index but 2747 ** that extra content is ignored by the current thread. 2748 ** 2749 ** If the database contents have changes since the previous read 2750 ** transaction, then *pChanged is set to 1 before returning. The 2751 ** Pager layer will use this to know that its cache is stale and 2752 ** needs to be flushed. 2753 */ 2754 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2755 int rc; /* Return code */ 2756 int cnt = 0; /* Number of TryBeginRead attempts */ 2757 2758 #ifdef SQLITE_ENABLE_SNAPSHOT 2759 int bChanged = 0; 2760 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2761 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2762 bChanged = 1; 2763 } 2764 #endif 2765 2766 do{ 2767 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2768 }while( rc==WAL_RETRY ); 2769 testcase( (rc&0xff)==SQLITE_BUSY ); 2770 testcase( (rc&0xff)==SQLITE_IOERR ); 2771 testcase( rc==SQLITE_PROTOCOL ); 2772 testcase( rc==SQLITE_OK ); 2773 2774 #ifdef SQLITE_ENABLE_SNAPSHOT 2775 if( rc==SQLITE_OK ){ 2776 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2777 /* At this point the client has a lock on an aReadMark[] slot holding 2778 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2779 ** is populated with the wal-index header corresponding to the head 2780 ** of the wal file. Verify that pSnapshot is still valid before 2781 ** continuing. Reasons why pSnapshot might no longer be valid: 2782 ** 2783 ** (1) The WAL file has been reset since the snapshot was taken. 2784 ** In this case, the salt will have changed. 2785 ** 2786 ** (2) A checkpoint as been attempted that wrote frames past 2787 ** pSnapshot->mxFrame into the database file. Note that the 2788 ** checkpoint need not have completed for this to cause problems. 2789 */ 2790 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2791 2792 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2793 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2794 2795 /* It is possible that there is a checkpointer thread running 2796 ** concurrent with this code. If this is the case, it may be that the 2797 ** checkpointer has already determined that it will checkpoint 2798 ** snapshot X, where X is later in the wal file than pSnapshot, but 2799 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2800 ** its intent. To avoid the race condition this leads to, ensure that 2801 ** there is no checkpointer process by taking a shared CKPT lock 2802 ** before checking pInfo->nBackfillAttempted. 2803 ** 2804 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing 2805 ** this already? 2806 */ 2807 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2808 2809 if( rc==SQLITE_OK ){ 2810 /* Check that the wal file has not been wrapped. Assuming that it has 2811 ** not, also check that no checkpointer has attempted to checkpoint any 2812 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2813 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2814 ** with *pSnapshot and set *pChanged as appropriate for opening the 2815 ** snapshot. */ 2816 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2817 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2818 ){ 2819 assert( pWal->readLock>0 ); 2820 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2821 *pChanged = bChanged; 2822 }else{ 2823 rc = SQLITE_ERROR_SNAPSHOT; 2824 } 2825 2826 /* Release the shared CKPT lock obtained above. */ 2827 walUnlockShared(pWal, WAL_CKPT_LOCK); 2828 pWal->minFrame = 1; 2829 } 2830 2831 2832 if( rc!=SQLITE_OK ){ 2833 sqlite3WalEndReadTransaction(pWal); 2834 } 2835 } 2836 } 2837 #endif 2838 return rc; 2839 } 2840 2841 /* 2842 ** Finish with a read transaction. All this does is release the 2843 ** read-lock. 2844 */ 2845 void sqlite3WalEndReadTransaction(Wal *pWal){ 2846 sqlite3WalEndWriteTransaction(pWal); 2847 if( pWal->readLock>=0 ){ 2848 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2849 pWal->readLock = -1; 2850 } 2851 } 2852 2853 /* 2854 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2855 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2856 ** to zero. 2857 ** 2858 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2859 ** error does occur, the final value of *piRead is undefined. 2860 */ 2861 int sqlite3WalFindFrame( 2862 Wal *pWal, /* WAL handle */ 2863 Pgno pgno, /* Database page number to read data for */ 2864 u32 *piRead /* OUT: Frame number (or zero) */ 2865 ){ 2866 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2867 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2868 int iHash; /* Used to loop through N hash tables */ 2869 int iMinHash; 2870 2871 /* This routine is only be called from within a read transaction. */ 2872 assert( pWal->readLock>=0 || pWal->lockError ); 2873 2874 /* If the "last page" field of the wal-index header snapshot is 0, then 2875 ** no data will be read from the wal under any circumstances. Return early 2876 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2877 ** then the WAL is ignored by the reader so return early, as if the 2878 ** WAL were empty. 2879 */ 2880 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2881 *piRead = 0; 2882 return SQLITE_OK; 2883 } 2884 2885 /* Search the hash table or tables for an entry matching page number 2886 ** pgno. Each iteration of the following for() loop searches one 2887 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2888 ** 2889 ** This code might run concurrently to the code in walIndexAppend() 2890 ** that adds entries to the wal-index (and possibly to this hash 2891 ** table). This means the value just read from the hash 2892 ** slot (aHash[iKey]) may have been added before or after the 2893 ** current read transaction was opened. Values added after the 2894 ** read transaction was opened may have been written incorrectly - 2895 ** i.e. these slots may contain garbage data. However, we assume 2896 ** that any slots written before the current read transaction was 2897 ** opened remain unmodified. 2898 ** 2899 ** For the reasons above, the if(...) condition featured in the inner 2900 ** loop of the following block is more stringent that would be required 2901 ** if we had exclusive access to the hash-table: 2902 ** 2903 ** (aPgno[iFrame]==pgno): 2904 ** This condition filters out normal hash-table collisions. 2905 ** 2906 ** (iFrame<=iLast): 2907 ** This condition filters out entries that were added to the hash 2908 ** table after the current read-transaction had started. 2909 */ 2910 iMinHash = walFramePage(pWal->minFrame); 2911 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 2912 WalHashLoc sLoc; /* Hash table location */ 2913 int iKey; /* Hash slot index */ 2914 int nCollide; /* Number of hash collisions remaining */ 2915 int rc; /* Error code */ 2916 2917 rc = walHashGet(pWal, iHash, &sLoc); 2918 if( rc!=SQLITE_OK ){ 2919 return rc; 2920 } 2921 nCollide = HASHTABLE_NSLOT; 2922 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 2923 u32 iH = sLoc.aHash[iKey]; 2924 u32 iFrame = iH + sLoc.iZero; 2925 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 2926 assert( iFrame>iRead || CORRUPT_DB ); 2927 iRead = iFrame; 2928 } 2929 if( (nCollide--)==0 ){ 2930 return SQLITE_CORRUPT_BKPT; 2931 } 2932 } 2933 if( iRead ) break; 2934 } 2935 2936 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2937 /* If expensive assert() statements are available, do a linear search 2938 ** of the wal-index file content. Make sure the results agree with the 2939 ** result obtained using the hash indexes above. */ 2940 { 2941 u32 iRead2 = 0; 2942 u32 iTest; 2943 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 2944 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 2945 if( walFramePgno(pWal, iTest)==pgno ){ 2946 iRead2 = iTest; 2947 break; 2948 } 2949 } 2950 assert( iRead==iRead2 ); 2951 } 2952 #endif 2953 2954 *piRead = iRead; 2955 return SQLITE_OK; 2956 } 2957 2958 /* 2959 ** Read the contents of frame iRead from the wal file into buffer pOut 2960 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2961 ** error code otherwise. 2962 */ 2963 int sqlite3WalReadFrame( 2964 Wal *pWal, /* WAL handle */ 2965 u32 iRead, /* Frame to read */ 2966 int nOut, /* Size of buffer pOut in bytes */ 2967 u8 *pOut /* Buffer to write page data to */ 2968 ){ 2969 int sz; 2970 i64 iOffset; 2971 sz = pWal->hdr.szPage; 2972 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2973 testcase( sz<=32768 ); 2974 testcase( sz>=65536 ); 2975 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2976 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2977 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2978 } 2979 2980 /* 2981 ** Return the size of the database in pages (or zero, if unknown). 2982 */ 2983 Pgno sqlite3WalDbsize(Wal *pWal){ 2984 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2985 return pWal->hdr.nPage; 2986 } 2987 return 0; 2988 } 2989 2990 2991 /* 2992 ** This function starts a write transaction on the WAL. 2993 ** 2994 ** A read transaction must have already been started by a prior call 2995 ** to sqlite3WalBeginReadTransaction(). 2996 ** 2997 ** If another thread or process has written into the database since 2998 ** the read transaction was started, then it is not possible for this 2999 ** thread to write as doing so would cause a fork. So this routine 3000 ** returns SQLITE_BUSY in that case and no write transaction is started. 3001 ** 3002 ** There can only be a single writer active at a time. 3003 */ 3004 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3005 int rc; 3006 3007 /* Cannot start a write transaction without first holding a read 3008 ** transaction. */ 3009 assert( pWal->readLock>=0 ); 3010 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3011 3012 if( pWal->readOnly ){ 3013 return SQLITE_READONLY; 3014 } 3015 3016 /* Only one writer allowed at a time. Get the write lock. Return 3017 ** SQLITE_BUSY if unable. 3018 */ 3019 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3020 if( rc ){ 3021 return rc; 3022 } 3023 pWal->writeLock = 1; 3024 3025 /* If another connection has written to the database file since the 3026 ** time the read transaction on this connection was started, then 3027 ** the write is disallowed. 3028 */ 3029 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3030 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3031 pWal->writeLock = 0; 3032 rc = SQLITE_BUSY_SNAPSHOT; 3033 } 3034 3035 return rc; 3036 } 3037 3038 /* 3039 ** End a write transaction. The commit has already been done. This 3040 ** routine merely releases the lock. 3041 */ 3042 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3043 if( pWal->writeLock ){ 3044 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3045 pWal->writeLock = 0; 3046 pWal->iReCksum = 0; 3047 pWal->truncateOnCommit = 0; 3048 } 3049 return SQLITE_OK; 3050 } 3051 3052 /* 3053 ** If any data has been written (but not committed) to the log file, this 3054 ** function moves the write-pointer back to the start of the transaction. 3055 ** 3056 ** Additionally, the callback function is invoked for each frame written 3057 ** to the WAL since the start of the transaction. If the callback returns 3058 ** other than SQLITE_OK, it is not invoked again and the error code is 3059 ** returned to the caller. 3060 ** 3061 ** Otherwise, if the callback function does not return an error, this 3062 ** function returns SQLITE_OK. 3063 */ 3064 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3065 int rc = SQLITE_OK; 3066 if( ALWAYS(pWal->writeLock) ){ 3067 Pgno iMax = pWal->hdr.mxFrame; 3068 Pgno iFrame; 3069 3070 /* Restore the clients cache of the wal-index header to the state it 3071 ** was in before the client began writing to the database. 3072 */ 3073 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3074 3075 for(iFrame=pWal->hdr.mxFrame+1; 3076 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3077 iFrame++ 3078 ){ 3079 /* This call cannot fail. Unless the page for which the page number 3080 ** is passed as the second argument is (a) in the cache and 3081 ** (b) has an outstanding reference, then xUndo is either a no-op 3082 ** (if (a) is false) or simply expels the page from the cache (if (b) 3083 ** is false). 3084 ** 3085 ** If the upper layer is doing a rollback, it is guaranteed that there 3086 ** are no outstanding references to any page other than page 1. And 3087 ** page 1 is never written to the log until the transaction is 3088 ** committed. As a result, the call to xUndo may not fail. 3089 */ 3090 assert( walFramePgno(pWal, iFrame)!=1 ); 3091 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3092 } 3093 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3094 } 3095 return rc; 3096 } 3097 3098 /* 3099 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3100 ** values. This function populates the array with values required to 3101 ** "rollback" the write position of the WAL handle back to the current 3102 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3103 */ 3104 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3105 assert( pWal->writeLock ); 3106 aWalData[0] = pWal->hdr.mxFrame; 3107 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3108 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3109 aWalData[3] = pWal->nCkpt; 3110 } 3111 3112 /* 3113 ** Move the write position of the WAL back to the point identified by 3114 ** the values in the aWalData[] array. aWalData must point to an array 3115 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3116 ** by a call to WalSavepoint(). 3117 */ 3118 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3119 int rc = SQLITE_OK; 3120 3121 assert( pWal->writeLock ); 3122 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3123 3124 if( aWalData[3]!=pWal->nCkpt ){ 3125 /* This savepoint was opened immediately after the write-transaction 3126 ** was started. Right after that, the writer decided to wrap around 3127 ** to the start of the log. Update the savepoint values to match. 3128 */ 3129 aWalData[0] = 0; 3130 aWalData[3] = pWal->nCkpt; 3131 } 3132 3133 if( aWalData[0]<pWal->hdr.mxFrame ){ 3134 pWal->hdr.mxFrame = aWalData[0]; 3135 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3136 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3137 walCleanupHash(pWal); 3138 } 3139 3140 return rc; 3141 } 3142 3143 /* 3144 ** This function is called just before writing a set of frames to the log 3145 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3146 ** to the current log file, it is possible to overwrite the start of the 3147 ** existing log file with the new frames (i.e. "reset" the log). If so, 3148 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3149 ** unchanged. 3150 ** 3151 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3152 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3153 ** if an error occurs. 3154 */ 3155 static int walRestartLog(Wal *pWal){ 3156 int rc = SQLITE_OK; 3157 int cnt; 3158 3159 if( pWal->readLock==0 ){ 3160 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3161 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3162 if( pInfo->nBackfill>0 ){ 3163 u32 salt1; 3164 sqlite3_randomness(4, &salt1); 3165 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3166 if( rc==SQLITE_OK ){ 3167 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3168 ** readers are currently using the WAL), then the transactions 3169 ** frames will overwrite the start of the existing log. Update the 3170 ** wal-index header to reflect this. 3171 ** 3172 ** In theory it would be Ok to update the cache of the header only 3173 ** at this point. But updating the actual wal-index header is also 3174 ** safe and means there is no special case for sqlite3WalUndo() 3175 ** to handle if this transaction is rolled back. */ 3176 walRestartHdr(pWal, salt1); 3177 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3178 }else if( rc!=SQLITE_BUSY ){ 3179 return rc; 3180 } 3181 } 3182 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3183 pWal->readLock = -1; 3184 cnt = 0; 3185 do{ 3186 int notUsed; 3187 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3188 }while( rc==WAL_RETRY ); 3189 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3190 testcase( (rc&0xff)==SQLITE_IOERR ); 3191 testcase( rc==SQLITE_PROTOCOL ); 3192 testcase( rc==SQLITE_OK ); 3193 } 3194 return rc; 3195 } 3196 3197 /* 3198 ** Information about the current state of the WAL file and where 3199 ** the next fsync should occur - passed from sqlite3WalFrames() into 3200 ** walWriteToLog(). 3201 */ 3202 typedef struct WalWriter { 3203 Wal *pWal; /* The complete WAL information */ 3204 sqlite3_file *pFd; /* The WAL file to which we write */ 3205 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3206 int syncFlags; /* Flags for the fsync */ 3207 int szPage; /* Size of one page */ 3208 } WalWriter; 3209 3210 /* 3211 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3212 ** Do a sync when crossing the p->iSyncPoint boundary. 3213 ** 3214 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3215 ** first write the part before iSyncPoint, then sync, then write the 3216 ** rest. 3217 */ 3218 static int walWriteToLog( 3219 WalWriter *p, /* WAL to write to */ 3220 void *pContent, /* Content to be written */ 3221 int iAmt, /* Number of bytes to write */ 3222 sqlite3_int64 iOffset /* Start writing at this offset */ 3223 ){ 3224 int rc; 3225 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3226 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3227 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3228 if( rc ) return rc; 3229 iOffset += iFirstAmt; 3230 iAmt -= iFirstAmt; 3231 pContent = (void*)(iFirstAmt + (char*)pContent); 3232 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3233 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3234 if( iAmt==0 || rc ) return rc; 3235 } 3236 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3237 return rc; 3238 } 3239 3240 /* 3241 ** Write out a single frame of the WAL 3242 */ 3243 static int walWriteOneFrame( 3244 WalWriter *p, /* Where to write the frame */ 3245 PgHdr *pPage, /* The page of the frame to be written */ 3246 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3247 sqlite3_int64 iOffset /* Byte offset at which to write */ 3248 ){ 3249 int rc; /* Result code from subfunctions */ 3250 void *pData; /* Data actually written */ 3251 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3252 #if defined(SQLITE_HAS_CODEC) 3253 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; 3254 #else 3255 pData = pPage->pData; 3256 #endif 3257 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3258 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3259 if( rc ) return rc; 3260 /* Write the page data */ 3261 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3262 return rc; 3263 } 3264 3265 /* 3266 ** This function is called as part of committing a transaction within which 3267 ** one or more frames have been overwritten. It updates the checksums for 3268 ** all frames written to the wal file by the current transaction starting 3269 ** with the earliest to have been overwritten. 3270 ** 3271 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3272 */ 3273 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3274 const int szPage = pWal->szPage;/* Database page size */ 3275 int rc = SQLITE_OK; /* Return code */ 3276 u8 *aBuf; /* Buffer to load data from wal file into */ 3277 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3278 u32 iRead; /* Next frame to read from wal file */ 3279 i64 iCksumOff; 3280 3281 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3282 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3283 3284 /* Find the checksum values to use as input for the recalculating the 3285 ** first checksum. If the first frame is frame 1 (implying that the current 3286 ** transaction restarted the wal file), these values must be read from the 3287 ** wal-file header. Otherwise, read them from the frame header of the 3288 ** previous frame. */ 3289 assert( pWal->iReCksum>0 ); 3290 if( pWal->iReCksum==1 ){ 3291 iCksumOff = 24; 3292 }else{ 3293 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3294 } 3295 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3296 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3297 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3298 3299 iRead = pWal->iReCksum; 3300 pWal->iReCksum = 0; 3301 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3302 i64 iOff = walFrameOffset(iRead, szPage); 3303 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3304 if( rc==SQLITE_OK ){ 3305 u32 iPgno, nDbSize; 3306 iPgno = sqlite3Get4byte(aBuf); 3307 nDbSize = sqlite3Get4byte(&aBuf[4]); 3308 3309 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3310 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3311 } 3312 } 3313 3314 sqlite3_free(aBuf); 3315 return rc; 3316 } 3317 3318 /* 3319 ** Write a set of frames to the log. The caller must hold the write-lock 3320 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3321 */ 3322 int sqlite3WalFrames( 3323 Wal *pWal, /* Wal handle to write to */ 3324 int szPage, /* Database page-size in bytes */ 3325 PgHdr *pList, /* List of dirty pages to write */ 3326 Pgno nTruncate, /* Database size after this commit */ 3327 int isCommit, /* True if this is a commit */ 3328 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3329 ){ 3330 int rc; /* Used to catch return codes */ 3331 u32 iFrame; /* Next frame address */ 3332 PgHdr *p; /* Iterator to run through pList with. */ 3333 PgHdr *pLast = 0; /* Last frame in list */ 3334 int nExtra = 0; /* Number of extra copies of last page */ 3335 int szFrame; /* The size of a single frame */ 3336 i64 iOffset; /* Next byte to write in WAL file */ 3337 WalWriter w; /* The writer */ 3338 u32 iFirst = 0; /* First frame that may be overwritten */ 3339 WalIndexHdr *pLive; /* Pointer to shared header */ 3340 3341 assert( pList ); 3342 assert( pWal->writeLock ); 3343 3344 /* If this frame set completes a transaction, then nTruncate>0. If 3345 ** nTruncate==0 then this frame set does not complete the transaction. */ 3346 assert( (isCommit!=0)==(nTruncate!=0) ); 3347 3348 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3349 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3350 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3351 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3352 } 3353 #endif 3354 3355 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3356 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3357 iFirst = pLive->mxFrame+1; 3358 } 3359 3360 /* See if it is possible to write these frames into the start of the 3361 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3362 */ 3363 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3364 return rc; 3365 } 3366 3367 /* If this is the first frame written into the log, write the WAL 3368 ** header to the start of the WAL file. See comments at the top of 3369 ** this source file for a description of the WAL header format. 3370 */ 3371 iFrame = pWal->hdr.mxFrame; 3372 if( iFrame==0 ){ 3373 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3374 u32 aCksum[2]; /* Checksum for wal-header */ 3375 3376 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3377 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3378 sqlite3Put4byte(&aWalHdr[8], szPage); 3379 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3380 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3381 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3382 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3383 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3384 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3385 3386 pWal->szPage = szPage; 3387 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3388 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3389 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3390 pWal->truncateOnCommit = 1; 3391 3392 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3393 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3394 if( rc!=SQLITE_OK ){ 3395 return rc; 3396 } 3397 3398 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3399 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3400 ** an out-of-order write following a WAL restart could result in 3401 ** database corruption. See the ticket: 3402 ** 3403 ** https://sqlite.org/src/info/ff5be73dee 3404 */ 3405 if( pWal->syncHeader ){ 3406 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3407 if( rc ) return rc; 3408 } 3409 } 3410 assert( (int)pWal->szPage==szPage ); 3411 3412 /* Setup information needed to write frames into the WAL */ 3413 w.pWal = pWal; 3414 w.pFd = pWal->pWalFd; 3415 w.iSyncPoint = 0; 3416 w.syncFlags = sync_flags; 3417 w.szPage = szPage; 3418 iOffset = walFrameOffset(iFrame+1, szPage); 3419 szFrame = szPage + WAL_FRAME_HDRSIZE; 3420 3421 /* Write all frames into the log file exactly once */ 3422 for(p=pList; p; p=p->pDirty){ 3423 int nDbSize; /* 0 normally. Positive == commit flag */ 3424 3425 /* Check if this page has already been written into the wal file by 3426 ** the current transaction. If so, overwrite the existing frame and 3427 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3428 ** checksums must be recomputed when the transaction is committed. */ 3429 if( iFirst && (p->pDirty || isCommit==0) ){ 3430 u32 iWrite = 0; 3431 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3432 assert( rc==SQLITE_OK || iWrite==0 ); 3433 if( iWrite>=iFirst ){ 3434 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3435 void *pData; 3436 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3437 pWal->iReCksum = iWrite; 3438 } 3439 #if defined(SQLITE_HAS_CODEC) 3440 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 3441 #else 3442 pData = p->pData; 3443 #endif 3444 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3445 if( rc ) return rc; 3446 p->flags &= ~PGHDR_WAL_APPEND; 3447 continue; 3448 } 3449 } 3450 3451 iFrame++; 3452 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3453 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3454 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3455 if( rc ) return rc; 3456 pLast = p; 3457 iOffset += szFrame; 3458 p->flags |= PGHDR_WAL_APPEND; 3459 } 3460 3461 /* Recalculate checksums within the wal file if required. */ 3462 if( isCommit && pWal->iReCksum ){ 3463 rc = walRewriteChecksums(pWal, iFrame); 3464 if( rc ) return rc; 3465 } 3466 3467 /* If this is the end of a transaction, then we might need to pad 3468 ** the transaction and/or sync the WAL file. 3469 ** 3470 ** Padding and syncing only occur if this set of frames complete a 3471 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3472 ** or synchronous==OFF, then no padding or syncing are needed. 3473 ** 3474 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3475 ** needed and only the sync is done. If padding is needed, then the 3476 ** final frame is repeated (with its commit mark) until the next sector 3477 ** boundary is crossed. Only the part of the WAL prior to the last 3478 ** sector boundary is synced; the part of the last frame that extends 3479 ** past the sector boundary is written after the sync. 3480 */ 3481 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3482 int bSync = 1; 3483 if( pWal->padToSectorBoundary ){ 3484 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3485 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3486 bSync = (w.iSyncPoint==iOffset); 3487 testcase( bSync ); 3488 while( iOffset<w.iSyncPoint ){ 3489 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3490 if( rc ) return rc; 3491 iOffset += szFrame; 3492 nExtra++; 3493 assert( pLast!=0 ); 3494 } 3495 } 3496 if( bSync ){ 3497 assert( rc==SQLITE_OK ); 3498 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3499 } 3500 } 3501 3502 /* If this frame set completes the first transaction in the WAL and 3503 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3504 ** journal size limit, if possible. 3505 */ 3506 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3507 i64 sz = pWal->mxWalSize; 3508 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3509 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3510 } 3511 walLimitSize(pWal, sz); 3512 pWal->truncateOnCommit = 0; 3513 } 3514 3515 /* Append data to the wal-index. It is not necessary to lock the 3516 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3517 ** guarantees that there are no other writers, and no data that may 3518 ** be in use by existing readers is being overwritten. 3519 */ 3520 iFrame = pWal->hdr.mxFrame; 3521 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3522 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3523 iFrame++; 3524 rc = walIndexAppend(pWal, iFrame, p->pgno); 3525 } 3526 assert( pLast!=0 || nExtra==0 ); 3527 while( rc==SQLITE_OK && nExtra>0 ){ 3528 iFrame++; 3529 nExtra--; 3530 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3531 } 3532 3533 if( rc==SQLITE_OK ){ 3534 /* Update the private copy of the header. */ 3535 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3536 testcase( szPage<=32768 ); 3537 testcase( szPage>=65536 ); 3538 pWal->hdr.mxFrame = iFrame; 3539 if( isCommit ){ 3540 pWal->hdr.iChange++; 3541 pWal->hdr.nPage = nTruncate; 3542 } 3543 /* If this is a commit, update the wal-index header too. */ 3544 if( isCommit ){ 3545 walIndexWriteHdr(pWal); 3546 pWal->iCallback = iFrame; 3547 } 3548 } 3549 3550 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3551 return rc; 3552 } 3553 3554 /* 3555 ** This routine is called to implement sqlite3_wal_checkpoint() and 3556 ** related interfaces. 3557 ** 3558 ** Obtain a CHECKPOINT lock and then backfill as much information as 3559 ** we can from WAL into the database. 3560 ** 3561 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3562 ** callback. In this case this function runs a blocking checkpoint. 3563 */ 3564 int sqlite3WalCheckpoint( 3565 Wal *pWal, /* Wal connection */ 3566 sqlite3 *db, /* Check this handle's interrupt flag */ 3567 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3568 int (*xBusy)(void*), /* Function to call when busy */ 3569 void *pBusyArg, /* Context argument for xBusyHandler */ 3570 int sync_flags, /* Flags to sync db file with (or 0) */ 3571 int nBuf, /* Size of temporary buffer */ 3572 u8 *zBuf, /* Temporary buffer to use */ 3573 int *pnLog, /* OUT: Number of frames in WAL */ 3574 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3575 ){ 3576 int rc; /* Return code */ 3577 int isChanged = 0; /* True if a new wal-index header is loaded */ 3578 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3579 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3580 3581 assert( pWal->ckptLock==0 ); 3582 assert( pWal->writeLock==0 ); 3583 3584 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3585 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3586 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3587 3588 if( pWal->readOnly ) return SQLITE_READONLY; 3589 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3590 3591 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3592 ** "checkpoint" lock on the database file. */ 3593 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3594 if( rc ){ 3595 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3596 ** checkpoint operation at the same time, the lock cannot be obtained and 3597 ** SQLITE_BUSY is returned. 3598 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3599 ** it will not be invoked in this case. 3600 */ 3601 testcase( rc==SQLITE_BUSY ); 3602 testcase( xBusy!=0 ); 3603 return rc; 3604 } 3605 pWal->ckptLock = 1; 3606 3607 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3608 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3609 ** file. 3610 ** 3611 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3612 ** immediately, and a busy-handler is configured, it is invoked and the 3613 ** writer lock retried until either the busy-handler returns 0 or the 3614 ** lock is successfully obtained. 3615 */ 3616 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3617 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3618 if( rc==SQLITE_OK ){ 3619 pWal->writeLock = 1; 3620 }else if( rc==SQLITE_BUSY ){ 3621 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3622 xBusy2 = 0; 3623 rc = SQLITE_OK; 3624 } 3625 } 3626 3627 /* Read the wal-index header. */ 3628 if( rc==SQLITE_OK ){ 3629 rc = walIndexReadHdr(pWal, &isChanged); 3630 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3631 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3632 } 3633 } 3634 3635 /* Copy data from the log to the database file. */ 3636 if( rc==SQLITE_OK ){ 3637 3638 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3639 rc = SQLITE_CORRUPT_BKPT; 3640 }else{ 3641 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3642 } 3643 3644 /* If no error occurred, set the output variables. */ 3645 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3646 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3647 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3648 } 3649 } 3650 3651 if( isChanged ){ 3652 /* If a new wal-index header was loaded before the checkpoint was 3653 ** performed, then the pager-cache associated with pWal is now 3654 ** out of date. So zero the cached wal-index header to ensure that 3655 ** next time the pager opens a snapshot on this database it knows that 3656 ** the cache needs to be reset. 3657 */ 3658 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3659 } 3660 3661 /* Release the locks. */ 3662 sqlite3WalEndWriteTransaction(pWal); 3663 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3664 pWal->ckptLock = 0; 3665 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3666 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3667 } 3668 3669 /* Return the value to pass to a sqlite3_wal_hook callback, the 3670 ** number of frames in the WAL at the point of the last commit since 3671 ** sqlite3WalCallback() was called. If no commits have occurred since 3672 ** the last call, then return 0. 3673 */ 3674 int sqlite3WalCallback(Wal *pWal){ 3675 u32 ret = 0; 3676 if( pWal ){ 3677 ret = pWal->iCallback; 3678 pWal->iCallback = 0; 3679 } 3680 return (int)ret; 3681 } 3682 3683 /* 3684 ** This function is called to change the WAL subsystem into or out 3685 ** of locking_mode=EXCLUSIVE. 3686 ** 3687 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3688 ** into locking_mode=NORMAL. This means that we must acquire a lock 3689 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3690 ** or if the acquisition of the lock fails, then return 0. If the 3691 ** transition out of exclusive-mode is successful, return 1. This 3692 ** operation must occur while the pager is still holding the exclusive 3693 ** lock on the main database file. 3694 ** 3695 ** If op is one, then change from locking_mode=NORMAL into 3696 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3697 ** be released. Return 1 if the transition is made and 0 if the 3698 ** WAL is already in exclusive-locking mode - meaning that this 3699 ** routine is a no-op. The pager must already hold the exclusive lock 3700 ** on the main database file before invoking this operation. 3701 ** 3702 ** If op is negative, then do a dry-run of the op==1 case but do 3703 ** not actually change anything. The pager uses this to see if it 3704 ** should acquire the database exclusive lock prior to invoking 3705 ** the op==1 case. 3706 */ 3707 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3708 int rc; 3709 assert( pWal->writeLock==0 ); 3710 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3711 3712 /* pWal->readLock is usually set, but might be -1 if there was a 3713 ** prior error while attempting to acquire are read-lock. This cannot 3714 ** happen if the connection is actually in exclusive mode (as no xShmLock 3715 ** locks are taken in this case). Nor should the pager attempt to 3716 ** upgrade to exclusive-mode following such an error. 3717 */ 3718 assert( pWal->readLock>=0 || pWal->lockError ); 3719 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3720 3721 if( op==0 ){ 3722 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3723 pWal->exclusiveMode = WAL_NORMAL_MODE; 3724 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3725 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3726 } 3727 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3728 }else{ 3729 /* Already in locking_mode=NORMAL */ 3730 rc = 0; 3731 } 3732 }else if( op>0 ){ 3733 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3734 assert( pWal->readLock>=0 ); 3735 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3736 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3737 rc = 1; 3738 }else{ 3739 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3740 } 3741 return rc; 3742 } 3743 3744 /* 3745 ** Return true if the argument is non-NULL and the WAL module is using 3746 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3747 ** WAL module is using shared-memory, return false. 3748 */ 3749 int sqlite3WalHeapMemory(Wal *pWal){ 3750 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3751 } 3752 3753 #ifdef SQLITE_ENABLE_SNAPSHOT 3754 /* Create a snapshot object. The content of a snapshot is opaque to 3755 ** every other subsystem, so the WAL module can put whatever it needs 3756 ** in the object. 3757 */ 3758 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3759 int rc = SQLITE_OK; 3760 WalIndexHdr *pRet; 3761 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3762 3763 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3764 3765 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3766 *ppSnapshot = 0; 3767 return SQLITE_ERROR; 3768 } 3769 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3770 if( pRet==0 ){ 3771 rc = SQLITE_NOMEM_BKPT; 3772 }else{ 3773 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3774 *ppSnapshot = (sqlite3_snapshot*)pRet; 3775 } 3776 3777 return rc; 3778 } 3779 3780 /* Try to open on pSnapshot when the next read-transaction starts 3781 */ 3782 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3783 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3784 } 3785 3786 /* 3787 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3788 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3789 */ 3790 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3791 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3792 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3793 3794 /* aSalt[0] is a copy of the value stored in the wal file header. It 3795 ** is incremented each time the wal file is restarted. */ 3796 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3797 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3798 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3799 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3800 return 0; 3801 } 3802 3803 /* 3804 ** The caller currently has a read transaction open on the database. 3805 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3806 ** checks if the snapshot passed as the second argument is still 3807 ** available. If so, SQLITE_OK is returned. 3808 ** 3809 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3810 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3811 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3812 ** lock is released before returning. 3813 */ 3814 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3815 int rc; 3816 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3817 if( rc==SQLITE_OK ){ 3818 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3819 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3820 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3821 ){ 3822 rc = SQLITE_ERROR_SNAPSHOT; 3823 walUnlockShared(pWal, WAL_CKPT_LOCK); 3824 } 3825 } 3826 return rc; 3827 } 3828 3829 /* 3830 ** Release a lock obtained by an earlier successful call to 3831 ** sqlite3WalSnapshotCheck(). 3832 */ 3833 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3834 assert( pWal ); 3835 walUnlockShared(pWal, WAL_CKPT_LOCK); 3836 } 3837 3838 3839 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3840 3841 #ifdef SQLITE_ENABLE_ZIPVFS 3842 /* 3843 ** If the argument is not NULL, it points to a Wal object that holds a 3844 ** read-lock. This function returns the database page-size if it is known, 3845 ** or zero if it is not (or if pWal is NULL). 3846 */ 3847 int sqlite3WalFramesize(Wal *pWal){ 3848 assert( pWal==0 || pWal->readLock>=0 ); 3849 return (pWal ? pWal->szPage : 0); 3850 } 3851 #endif 3852 3853 /* Return the sqlite3_file object for the WAL file 3854 */ 3855 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3856 return pWal->pWalFd; 3857 } 3858 3859 #endif /* #ifndef SQLITE_OMIT_WAL */ 3860