1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 471 sqlite3 *db; 472 #endif 473 }; 474 475 /* 476 ** Candidate values for Wal.exclusiveMode. 477 */ 478 #define WAL_NORMAL_MODE 0 479 #define WAL_EXCLUSIVE_MODE 1 480 #define WAL_HEAPMEMORY_MODE 2 481 482 /* 483 ** Possible values for WAL.readOnly 484 */ 485 #define WAL_RDWR 0 /* Normal read/write connection */ 486 #define WAL_RDONLY 1 /* The WAL file is readonly */ 487 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 488 489 /* 490 ** Each page of the wal-index mapping contains a hash-table made up of 491 ** an array of HASHTABLE_NSLOT elements of the following type. 492 */ 493 typedef u16 ht_slot; 494 495 /* 496 ** This structure is used to implement an iterator that loops through 497 ** all frames in the WAL in database page order. Where two or more frames 498 ** correspond to the same database page, the iterator visits only the 499 ** frame most recently written to the WAL (in other words, the frame with 500 ** the largest index). 501 ** 502 ** The internals of this structure are only accessed by: 503 ** 504 ** walIteratorInit() - Create a new iterator, 505 ** walIteratorNext() - Step an iterator, 506 ** walIteratorFree() - Free an iterator. 507 ** 508 ** This functionality is used by the checkpoint code (see walCheckpoint()). 509 */ 510 struct WalIterator { 511 int iPrior; /* Last result returned from the iterator */ 512 int nSegment; /* Number of entries in aSegment[] */ 513 struct WalSegment { 514 int iNext; /* Next slot in aIndex[] not yet returned */ 515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 516 u32 *aPgno; /* Array of page numbers. */ 517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 518 int iZero; /* Frame number associated with aPgno[0] */ 519 } aSegment[1]; /* One for every 32KB page in the wal-index */ 520 }; 521 522 /* 523 ** Define the parameters of the hash tables in the wal-index file. There 524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 525 ** wal-index. 526 ** 527 ** Changing any of these constants will alter the wal-index format and 528 ** create incompatibilities. 529 */ 530 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 531 #define HASHTABLE_HASH_1 383 /* Should be prime */ 532 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 533 534 /* 535 ** The block of page numbers associated with the first hash-table in a 536 ** wal-index is smaller than usual. This is so that there is a complete 537 ** hash-table on each aligned 32KB page of the wal-index. 538 */ 539 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 540 541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 542 #define WALINDEX_PGSZ ( \ 543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 544 ) 545 546 /* 547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 549 ** numbered from zero. 550 ** 551 ** If the wal-index is currently smaller the iPage pages then the size 552 ** of the wal-index might be increased, but only if it is safe to do 553 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 555 ** 556 ** If this call is successful, *ppPage is set to point to the wal-index 557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 558 ** then an SQLite error code is returned and *ppPage is set to 0. 559 */ 560 static SQLITE_NOINLINE int walIndexPageRealloc( 561 Wal *pWal, /* The WAL context */ 562 int iPage, /* The page we seek */ 563 volatile u32 **ppPage /* Write the page pointer here */ 564 ){ 565 int rc = SQLITE_OK; 566 567 /* Enlarge the pWal->apWiData[] array if required */ 568 if( pWal->nWiData<=iPage ){ 569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 570 volatile u32 **apNew; 571 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 572 if( !apNew ){ 573 *ppPage = 0; 574 return SQLITE_NOMEM_BKPT; 575 } 576 memset((void*)&apNew[pWal->nWiData], 0, 577 sizeof(u32*)*(iPage+1-pWal->nWiData)); 578 pWal->apWiData = apNew; 579 pWal->nWiData = iPage+1; 580 } 581 582 /* Request a pointer to the required page from the VFS */ 583 assert( pWal->apWiData[iPage]==0 ); 584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 587 }else{ 588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 590 ); 591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 593 if( (rc&0xff)==SQLITE_READONLY ){ 594 pWal->readOnly |= WAL_SHM_RDONLY; 595 if( rc==SQLITE_READONLY ){ 596 rc = SQLITE_OK; 597 } 598 } 599 } 600 601 *ppPage = pWal->apWiData[iPage]; 602 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 603 return rc; 604 } 605 static int walIndexPage( 606 Wal *pWal, /* The WAL context */ 607 int iPage, /* The page we seek */ 608 volatile u32 **ppPage /* Write the page pointer here */ 609 ){ 610 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 611 return walIndexPageRealloc(pWal, iPage, ppPage); 612 } 613 return SQLITE_OK; 614 } 615 616 /* 617 ** Return a pointer to the WalCkptInfo structure in the wal-index. 618 */ 619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 620 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 621 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 622 } 623 624 /* 625 ** Return a pointer to the WalIndexHdr structure in the wal-index. 626 */ 627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 628 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 629 return (volatile WalIndexHdr*)pWal->apWiData[0]; 630 } 631 632 /* 633 ** The argument to this macro must be of type u32. On a little-endian 634 ** architecture, it returns the u32 value that results from interpreting 635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 636 ** returns the value that would be produced by interpreting the 4 bytes 637 ** of the input value as a little-endian integer. 638 */ 639 #define BYTESWAP32(x) ( \ 640 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 641 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 642 ) 643 644 /* 645 ** Generate or extend an 8 byte checksum based on the data in 646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 647 ** initial values of 0 and 0 if aIn==NULL). 648 ** 649 ** The checksum is written back into aOut[] before returning. 650 ** 651 ** nByte must be a positive multiple of 8. 652 */ 653 static void walChecksumBytes( 654 int nativeCksum, /* True for native byte-order, false for non-native */ 655 u8 *a, /* Content to be checksummed */ 656 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 657 const u32 *aIn, /* Initial checksum value input */ 658 u32 *aOut /* OUT: Final checksum value output */ 659 ){ 660 u32 s1, s2; 661 u32 *aData = (u32 *)a; 662 u32 *aEnd = (u32 *)&a[nByte]; 663 664 if( aIn ){ 665 s1 = aIn[0]; 666 s2 = aIn[1]; 667 }else{ 668 s1 = s2 = 0; 669 } 670 671 assert( nByte>=8 ); 672 assert( (nByte&0x00000007)==0 ); 673 assert( nByte<=65536 ); 674 675 if( nativeCksum ){ 676 do { 677 s1 += *aData++ + s2; 678 s2 += *aData++ + s1; 679 }while( aData<aEnd ); 680 }else{ 681 do { 682 s1 += BYTESWAP32(aData[0]) + s2; 683 s2 += BYTESWAP32(aData[1]) + s1; 684 aData += 2; 685 }while( aData<aEnd ); 686 } 687 688 aOut[0] = s1; 689 aOut[1] = s2; 690 } 691 692 static void walShmBarrier(Wal *pWal){ 693 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 694 sqlite3OsShmBarrier(pWal->pDbFd); 695 } 696 } 697 698 /* 699 ** Write the header information in pWal->hdr into the wal-index. 700 ** 701 ** The checksum on pWal->hdr is updated before it is written. 702 */ 703 static void walIndexWriteHdr(Wal *pWal){ 704 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 705 const int nCksum = offsetof(WalIndexHdr, aCksum); 706 707 assert( pWal->writeLock ); 708 pWal->hdr.isInit = 1; 709 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 710 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 711 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 712 walShmBarrier(pWal); 713 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 714 } 715 716 /* 717 ** This function encodes a single frame header and writes it to a buffer 718 ** supplied by the caller. A frame-header is made up of a series of 719 ** 4-byte big-endian integers, as follows: 720 ** 721 ** 0: Page number. 722 ** 4: For commit records, the size of the database image in pages 723 ** after the commit. For all other records, zero. 724 ** 8: Salt-1 (copied from the wal-header) 725 ** 12: Salt-2 (copied from the wal-header) 726 ** 16: Checksum-1. 727 ** 20: Checksum-2. 728 */ 729 static void walEncodeFrame( 730 Wal *pWal, /* The write-ahead log */ 731 u32 iPage, /* Database page number for frame */ 732 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 733 u8 *aData, /* Pointer to page data */ 734 u8 *aFrame /* OUT: Write encoded frame here */ 735 ){ 736 int nativeCksum; /* True for native byte-order checksums */ 737 u32 *aCksum = pWal->hdr.aFrameCksum; 738 assert( WAL_FRAME_HDRSIZE==24 ); 739 sqlite3Put4byte(&aFrame[0], iPage); 740 sqlite3Put4byte(&aFrame[4], nTruncate); 741 if( pWal->iReCksum==0 ){ 742 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 743 744 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 745 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 746 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 747 748 sqlite3Put4byte(&aFrame[16], aCksum[0]); 749 sqlite3Put4byte(&aFrame[20], aCksum[1]); 750 }else{ 751 memset(&aFrame[8], 0, 16); 752 } 753 } 754 755 /* 756 ** Check to see if the frame with header in aFrame[] and content 757 ** in aData[] is valid. If it is a valid frame, fill *piPage and 758 ** *pnTruncate and return true. Return if the frame is not valid. 759 */ 760 static int walDecodeFrame( 761 Wal *pWal, /* The write-ahead log */ 762 u32 *piPage, /* OUT: Database page number for frame */ 763 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 764 u8 *aData, /* Pointer to page data (for checksum) */ 765 u8 *aFrame /* Frame data */ 766 ){ 767 int nativeCksum; /* True for native byte-order checksums */ 768 u32 *aCksum = pWal->hdr.aFrameCksum; 769 u32 pgno; /* Page number of the frame */ 770 assert( WAL_FRAME_HDRSIZE==24 ); 771 772 /* A frame is only valid if the salt values in the frame-header 773 ** match the salt values in the wal-header. 774 */ 775 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 776 return 0; 777 } 778 779 /* A frame is only valid if the page number is creater than zero. 780 */ 781 pgno = sqlite3Get4byte(&aFrame[0]); 782 if( pgno==0 ){ 783 return 0; 784 } 785 786 /* A frame is only valid if a checksum of the WAL header, 787 ** all prior frams, the first 16 bytes of this frame-header, 788 ** and the frame-data matches the checksum in the last 8 789 ** bytes of this frame-header. 790 */ 791 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 792 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 793 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 794 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 795 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 796 ){ 797 /* Checksum failed. */ 798 return 0; 799 } 800 801 /* If we reach this point, the frame is valid. Return the page number 802 ** and the new database size. 803 */ 804 *piPage = pgno; 805 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 806 return 1; 807 } 808 809 810 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 811 /* 812 ** Names of locks. This routine is used to provide debugging output and is not 813 ** a part of an ordinary build. 814 */ 815 static const char *walLockName(int lockIdx){ 816 if( lockIdx==WAL_WRITE_LOCK ){ 817 return "WRITE-LOCK"; 818 }else if( lockIdx==WAL_CKPT_LOCK ){ 819 return "CKPT-LOCK"; 820 }else if( lockIdx==WAL_RECOVER_LOCK ){ 821 return "RECOVER-LOCK"; 822 }else{ 823 static char zName[15]; 824 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 825 lockIdx-WAL_READ_LOCK(0)); 826 return zName; 827 } 828 } 829 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 830 831 832 /* 833 ** Set or release locks on the WAL. Locks are either shared or exclusive. 834 ** A lock cannot be moved directly between shared and exclusive - it must go 835 ** through the unlocked state first. 836 ** 837 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 838 */ 839 static int walLockShared(Wal *pWal, int lockIdx){ 840 int rc; 841 if( pWal->exclusiveMode ) return SQLITE_OK; 842 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 843 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 844 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 845 walLockName(lockIdx), rc ? "failed" : "ok")); 846 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 847 return rc; 848 } 849 static void walUnlockShared(Wal *pWal, int lockIdx){ 850 if( pWal->exclusiveMode ) return; 851 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 852 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 853 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 854 } 855 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 856 int rc; 857 if( pWal->exclusiveMode ) return SQLITE_OK; 858 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 859 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 860 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 861 walLockName(lockIdx), n, rc ? "failed" : "ok")); 862 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 863 return rc; 864 } 865 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 866 if( pWal->exclusiveMode ) return; 867 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 868 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 869 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 870 walLockName(lockIdx), n)); 871 } 872 873 /* 874 ** Compute a hash on a page number. The resulting hash value must land 875 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 876 ** the hash to the next value in the event of a collision. 877 */ 878 static int walHash(u32 iPage){ 879 assert( iPage>0 ); 880 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 881 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 882 } 883 static int walNextHash(int iPriorHash){ 884 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 885 } 886 887 /* 888 ** An instance of the WalHashLoc object is used to describe the location 889 ** of a page hash table in the wal-index. This becomes the return value 890 ** from walHashGet(). 891 */ 892 typedef struct WalHashLoc WalHashLoc; 893 struct WalHashLoc { 894 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 895 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 896 u32 iZero; /* One less than the frame number of first indexed*/ 897 }; 898 899 /* 900 ** Return pointers to the hash table and page number array stored on 901 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 902 ** numbered starting from 0. 903 ** 904 ** Set output variable pLoc->aHash to point to the start of the hash table 905 ** in the wal-index file. Set pLoc->iZero to one less than the frame 906 ** number of the first frame indexed by this hash table. If a 907 ** slot in the hash table is set to N, it refers to frame number 908 ** (pLoc->iZero+N) in the log. 909 ** 910 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 911 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 912 */ 913 static int walHashGet( 914 Wal *pWal, /* WAL handle */ 915 int iHash, /* Find the iHash'th table */ 916 WalHashLoc *pLoc /* OUT: Hash table location */ 917 ){ 918 int rc; /* Return code */ 919 920 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 921 assert( rc==SQLITE_OK || iHash>0 ); 922 923 if( rc==SQLITE_OK ){ 924 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 925 if( iHash==0 ){ 926 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 927 pLoc->iZero = 0; 928 }else{ 929 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 930 } 931 pLoc->aPgno = &pLoc->aPgno[-1]; 932 } 933 return rc; 934 } 935 936 /* 937 ** Return the number of the wal-index page that contains the hash-table 938 ** and page-number array that contain entries corresponding to WAL frame 939 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 940 ** are numbered starting from 0. 941 */ 942 static int walFramePage(u32 iFrame){ 943 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 944 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 945 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 946 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 947 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 948 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 949 ); 950 return iHash; 951 } 952 953 /* 954 ** Return the page number associated with frame iFrame in this WAL. 955 */ 956 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 957 int iHash = walFramePage(iFrame); 958 if( iHash==0 ){ 959 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 960 } 961 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 962 } 963 964 /* 965 ** Remove entries from the hash table that point to WAL slots greater 966 ** than pWal->hdr.mxFrame. 967 ** 968 ** This function is called whenever pWal->hdr.mxFrame is decreased due 969 ** to a rollback or savepoint. 970 ** 971 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 972 ** updated. Any later hash tables will be automatically cleared when 973 ** pWal->hdr.mxFrame advances to the point where those hash tables are 974 ** actually needed. 975 */ 976 static void walCleanupHash(Wal *pWal){ 977 WalHashLoc sLoc; /* Hash table location */ 978 int iLimit = 0; /* Zero values greater than this */ 979 int nByte; /* Number of bytes to zero in aPgno[] */ 980 int i; /* Used to iterate through aHash[] */ 981 int rc; /* Return code form walHashGet() */ 982 983 assert( pWal->writeLock ); 984 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 985 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 986 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 987 988 if( pWal->hdr.mxFrame==0 ) return; 989 990 /* Obtain pointers to the hash-table and page-number array containing 991 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 992 ** that the page said hash-table and array reside on is already mapped.(1) 993 */ 994 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 995 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 996 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 997 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */ 998 999 /* Zero all hash-table entries that correspond to frame numbers greater 1000 ** than pWal->hdr.mxFrame. 1001 */ 1002 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1003 assert( iLimit>0 ); 1004 for(i=0; i<HASHTABLE_NSLOT; i++){ 1005 if( sLoc.aHash[i]>iLimit ){ 1006 sLoc.aHash[i] = 0; 1007 } 1008 } 1009 1010 /* Zero the entries in the aPgno array that correspond to frames with 1011 ** frame numbers greater than pWal->hdr.mxFrame. 1012 */ 1013 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1014 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1015 1016 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1017 /* Verify that the every entry in the mapping region is still reachable 1018 ** via the hash table even after the cleanup. 1019 */ 1020 if( iLimit ){ 1021 int j; /* Loop counter */ 1022 int iKey; /* Hash key */ 1023 for(j=1; j<=iLimit; j++){ 1024 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1025 if( sLoc.aHash[iKey]==j ) break; 1026 } 1027 assert( sLoc.aHash[iKey]==j ); 1028 } 1029 } 1030 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1031 } 1032 1033 1034 /* 1035 ** Set an entry in the wal-index that will map database page number 1036 ** pPage into WAL frame iFrame. 1037 */ 1038 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1039 int rc; /* Return code */ 1040 WalHashLoc sLoc; /* Wal-index hash table location */ 1041 1042 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1043 1044 /* Assuming the wal-index file was successfully mapped, populate the 1045 ** page number array and hash table entry. 1046 */ 1047 if( rc==SQLITE_OK ){ 1048 int iKey; /* Hash table key */ 1049 int idx; /* Value to write to hash-table slot */ 1050 int nCollide; /* Number of hash collisions */ 1051 1052 idx = iFrame - sLoc.iZero; 1053 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1054 1055 /* If this is the first entry to be added to this hash-table, zero the 1056 ** entire hash table and aPgno[] array before proceeding. 1057 */ 1058 if( idx==1 ){ 1059 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1060 - (u8 *)&sLoc.aPgno[1]); 1061 memset((void*)&sLoc.aPgno[1], 0, nByte); 1062 } 1063 1064 /* If the entry in aPgno[] is already set, then the previous writer 1065 ** must have exited unexpectedly in the middle of a transaction (after 1066 ** writing one or more dirty pages to the WAL to free up memory). 1067 ** Remove the remnants of that writers uncommitted transaction from 1068 ** the hash-table before writing any new entries. 1069 */ 1070 if( sLoc.aPgno[idx] ){ 1071 walCleanupHash(pWal); 1072 assert( !sLoc.aPgno[idx] ); 1073 } 1074 1075 /* Write the aPgno[] array entry and the hash-table slot. */ 1076 nCollide = idx; 1077 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1078 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1079 } 1080 sLoc.aPgno[idx] = iPage; 1081 sLoc.aHash[iKey] = (ht_slot)idx; 1082 1083 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1084 /* Verify that the number of entries in the hash table exactly equals 1085 ** the number of entries in the mapping region. 1086 */ 1087 { 1088 int i; /* Loop counter */ 1089 int nEntry = 0; /* Number of entries in the hash table */ 1090 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1091 assert( nEntry==idx ); 1092 } 1093 1094 /* Verify that the every entry in the mapping region is reachable 1095 ** via the hash table. This turns out to be a really, really expensive 1096 ** thing to check, so only do this occasionally - not on every 1097 ** iteration. 1098 */ 1099 if( (idx&0x3ff)==0 ){ 1100 int i; /* Loop counter */ 1101 for(i=1; i<=idx; i++){ 1102 for(iKey=walHash(sLoc.aPgno[i]); 1103 sLoc.aHash[iKey]; 1104 iKey=walNextHash(iKey)){ 1105 if( sLoc.aHash[iKey]==i ) break; 1106 } 1107 assert( sLoc.aHash[iKey]==i ); 1108 } 1109 } 1110 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1111 } 1112 1113 1114 return rc; 1115 } 1116 1117 1118 /* 1119 ** Recover the wal-index by reading the write-ahead log file. 1120 ** 1121 ** This routine first tries to establish an exclusive lock on the 1122 ** wal-index to prevent other threads/processes from doing anything 1123 ** with the WAL or wal-index while recovery is running. The 1124 ** WAL_RECOVER_LOCK is also held so that other threads will know 1125 ** that this thread is running recovery. If unable to establish 1126 ** the necessary locks, this routine returns SQLITE_BUSY. 1127 */ 1128 static int walIndexRecover(Wal *pWal){ 1129 int rc; /* Return Code */ 1130 i64 nSize; /* Size of log file */ 1131 u32 aFrameCksum[2] = {0, 0}; 1132 int iLock; /* Lock offset to lock for checkpoint */ 1133 1134 /* Obtain an exclusive lock on all byte in the locking range not already 1135 ** locked by the caller. The caller is guaranteed to have locked the 1136 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1137 ** If successful, the same bytes that are locked here are unlocked before 1138 ** this function returns. 1139 */ 1140 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1141 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1142 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1143 assert( pWal->writeLock ); 1144 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1145 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1146 if( rc==SQLITE_OK ){ 1147 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1148 if( rc!=SQLITE_OK ){ 1149 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1150 } 1151 } 1152 if( rc ){ 1153 return rc; 1154 } 1155 1156 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1157 1158 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1159 1160 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1161 if( rc!=SQLITE_OK ){ 1162 goto recovery_error; 1163 } 1164 1165 if( nSize>WAL_HDRSIZE ){ 1166 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1167 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1168 int szFrame; /* Number of bytes in buffer aFrame[] */ 1169 u8 *aData; /* Pointer to data part of aFrame buffer */ 1170 int iFrame; /* Index of last frame read */ 1171 i64 iOffset; /* Next offset to read from log file */ 1172 int szPage; /* Page size according to the log */ 1173 u32 magic; /* Magic value read from WAL header */ 1174 u32 version; /* Magic value read from WAL header */ 1175 int isValid; /* True if this frame is valid */ 1176 1177 /* Read in the WAL header. */ 1178 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1179 if( rc!=SQLITE_OK ){ 1180 goto recovery_error; 1181 } 1182 1183 /* If the database page size is not a power of two, or is greater than 1184 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1185 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1186 ** WAL file. 1187 */ 1188 magic = sqlite3Get4byte(&aBuf[0]); 1189 szPage = sqlite3Get4byte(&aBuf[8]); 1190 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1191 || szPage&(szPage-1) 1192 || szPage>SQLITE_MAX_PAGE_SIZE 1193 || szPage<512 1194 ){ 1195 goto finished; 1196 } 1197 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1198 pWal->szPage = szPage; 1199 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1200 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1201 1202 /* Verify that the WAL header checksum is correct */ 1203 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1204 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1205 ); 1206 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1207 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1208 ){ 1209 goto finished; 1210 } 1211 1212 /* Verify that the version number on the WAL format is one that 1213 ** are able to understand */ 1214 version = sqlite3Get4byte(&aBuf[4]); 1215 if( version!=WAL_MAX_VERSION ){ 1216 rc = SQLITE_CANTOPEN_BKPT; 1217 goto finished; 1218 } 1219 1220 /* Malloc a buffer to read frames into. */ 1221 szFrame = szPage + WAL_FRAME_HDRSIZE; 1222 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1223 if( !aFrame ){ 1224 rc = SQLITE_NOMEM_BKPT; 1225 goto recovery_error; 1226 } 1227 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1228 1229 /* Read all frames from the log file. */ 1230 iFrame = 0; 1231 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1232 u32 pgno; /* Database page number for frame */ 1233 u32 nTruncate; /* dbsize field from frame header */ 1234 1235 /* Read and decode the next log frame. */ 1236 iFrame++; 1237 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1238 if( rc!=SQLITE_OK ) break; 1239 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1240 if( !isValid ) break; 1241 rc = walIndexAppend(pWal, iFrame, pgno); 1242 if( rc!=SQLITE_OK ) break; 1243 1244 /* If nTruncate is non-zero, this is a commit record. */ 1245 if( nTruncate ){ 1246 pWal->hdr.mxFrame = iFrame; 1247 pWal->hdr.nPage = nTruncate; 1248 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1249 testcase( szPage<=32768 ); 1250 testcase( szPage>=65536 ); 1251 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1252 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1253 } 1254 } 1255 1256 sqlite3_free(aFrame); 1257 } 1258 1259 finished: 1260 if( rc==SQLITE_OK ){ 1261 volatile WalCkptInfo *pInfo; 1262 int i; 1263 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1264 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1265 walIndexWriteHdr(pWal); 1266 1267 /* Reset the checkpoint-header. This is safe because this thread is 1268 ** currently holding locks that exclude all other readers, writers and 1269 ** checkpointers. 1270 */ 1271 pInfo = walCkptInfo(pWal); 1272 pInfo->nBackfill = 0; 1273 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1274 pInfo->aReadMark[0] = 0; 1275 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1276 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1277 1278 /* If more than one frame was recovered from the log file, report an 1279 ** event via sqlite3_log(). This is to help with identifying performance 1280 ** problems caused by applications routinely shutting down without 1281 ** checkpointing the log file. 1282 */ 1283 if( pWal->hdr.nPage ){ 1284 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1285 "recovered %d frames from WAL file %s", 1286 pWal->hdr.mxFrame, pWal->zWalName 1287 ); 1288 } 1289 } 1290 1291 recovery_error: 1292 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1293 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1294 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1295 return rc; 1296 } 1297 1298 /* 1299 ** Close an open wal-index. 1300 */ 1301 static void walIndexClose(Wal *pWal, int isDelete){ 1302 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1303 int i; 1304 for(i=0; i<pWal->nWiData; i++){ 1305 sqlite3_free((void *)pWal->apWiData[i]); 1306 pWal->apWiData[i] = 0; 1307 } 1308 } 1309 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1310 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1311 } 1312 } 1313 1314 /* 1315 ** Open a connection to the WAL file zWalName. The database file must 1316 ** already be opened on connection pDbFd. The buffer that zWalName points 1317 ** to must remain valid for the lifetime of the returned Wal* handle. 1318 ** 1319 ** A SHARED lock should be held on the database file when this function 1320 ** is called. The purpose of this SHARED lock is to prevent any other 1321 ** client from unlinking the WAL or wal-index file. If another process 1322 ** were to do this just after this client opened one of these files, the 1323 ** system would be badly broken. 1324 ** 1325 ** If the log file is successfully opened, SQLITE_OK is returned and 1326 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1327 ** an SQLite error code is returned and *ppWal is left unmodified. 1328 */ 1329 int sqlite3WalOpen( 1330 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1331 sqlite3_file *pDbFd, /* The open database file */ 1332 const char *zWalName, /* Name of the WAL file */ 1333 int bNoShm, /* True to run in heap-memory mode */ 1334 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1335 Wal **ppWal /* OUT: Allocated Wal handle */ 1336 ){ 1337 int rc; /* Return Code */ 1338 Wal *pRet; /* Object to allocate and return */ 1339 int flags; /* Flags passed to OsOpen() */ 1340 1341 assert( zWalName && zWalName[0] ); 1342 assert( pDbFd ); 1343 1344 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1345 ** this source file. Verify that the #defines of the locking byte offsets 1346 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1347 ** For that matter, if the lock offset ever changes from its initial design 1348 ** value of 120, we need to know that so there is an assert() to check it. 1349 */ 1350 assert( 120==WALINDEX_LOCK_OFFSET ); 1351 assert( 136==WALINDEX_HDR_SIZE ); 1352 #ifdef WIN_SHM_BASE 1353 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1354 #endif 1355 #ifdef UNIX_SHM_BASE 1356 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1357 #endif 1358 1359 1360 /* Allocate an instance of struct Wal to return. */ 1361 *ppWal = 0; 1362 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1363 if( !pRet ){ 1364 return SQLITE_NOMEM_BKPT; 1365 } 1366 1367 pRet->pVfs = pVfs; 1368 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1369 pRet->pDbFd = pDbFd; 1370 pRet->readLock = -1; 1371 pRet->mxWalSize = mxWalSize; 1372 pRet->zWalName = zWalName; 1373 pRet->syncHeader = 1; 1374 pRet->padToSectorBoundary = 1; 1375 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1376 1377 /* Open file handle on the write-ahead log file. */ 1378 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1379 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1380 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1381 pRet->readOnly = WAL_RDONLY; 1382 } 1383 1384 if( rc!=SQLITE_OK ){ 1385 walIndexClose(pRet, 0); 1386 sqlite3OsClose(pRet->pWalFd); 1387 sqlite3_free(pRet); 1388 }else{ 1389 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1390 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1391 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1392 pRet->padToSectorBoundary = 0; 1393 } 1394 *ppWal = pRet; 1395 WALTRACE(("WAL%d: opened\n", pRet)); 1396 } 1397 return rc; 1398 } 1399 1400 /* 1401 ** Change the size to which the WAL file is trucated on each reset. 1402 */ 1403 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1404 if( pWal ) pWal->mxWalSize = iLimit; 1405 } 1406 1407 /* 1408 ** Find the smallest page number out of all pages held in the WAL that 1409 ** has not been returned by any prior invocation of this method on the 1410 ** same WalIterator object. Write into *piFrame the frame index where 1411 ** that page was last written into the WAL. Write into *piPage the page 1412 ** number. 1413 ** 1414 ** Return 0 on success. If there are no pages in the WAL with a page 1415 ** number larger than *piPage, then return 1. 1416 */ 1417 static int walIteratorNext( 1418 WalIterator *p, /* Iterator */ 1419 u32 *piPage, /* OUT: The page number of the next page */ 1420 u32 *piFrame /* OUT: Wal frame index of next page */ 1421 ){ 1422 u32 iMin; /* Result pgno must be greater than iMin */ 1423 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1424 int i; /* For looping through segments */ 1425 1426 iMin = p->iPrior; 1427 assert( iMin<0xffffffff ); 1428 for(i=p->nSegment-1; i>=0; i--){ 1429 struct WalSegment *pSegment = &p->aSegment[i]; 1430 while( pSegment->iNext<pSegment->nEntry ){ 1431 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1432 if( iPg>iMin ){ 1433 if( iPg<iRet ){ 1434 iRet = iPg; 1435 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1436 } 1437 break; 1438 } 1439 pSegment->iNext++; 1440 } 1441 } 1442 1443 *piPage = p->iPrior = iRet; 1444 return (iRet==0xFFFFFFFF); 1445 } 1446 1447 /* 1448 ** This function merges two sorted lists into a single sorted list. 1449 ** 1450 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1451 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1452 ** is guaranteed for all J<K: 1453 ** 1454 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1455 ** aContent[aRight[J]] < aContent[aRight[K]] 1456 ** 1457 ** This routine overwrites aRight[] with a new (probably longer) sequence 1458 ** of indices such that the aRight[] contains every index that appears in 1459 ** either aLeft[] or the old aRight[] and such that the second condition 1460 ** above is still met. 1461 ** 1462 ** The aContent[aLeft[X]] values will be unique for all X. And the 1463 ** aContent[aRight[X]] values will be unique too. But there might be 1464 ** one or more combinations of X and Y such that 1465 ** 1466 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1467 ** 1468 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1469 */ 1470 static void walMerge( 1471 const u32 *aContent, /* Pages in wal - keys for the sort */ 1472 ht_slot *aLeft, /* IN: Left hand input list */ 1473 int nLeft, /* IN: Elements in array *paLeft */ 1474 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1475 int *pnRight, /* IN/OUT: Elements in *paRight */ 1476 ht_slot *aTmp /* Temporary buffer */ 1477 ){ 1478 int iLeft = 0; /* Current index in aLeft */ 1479 int iRight = 0; /* Current index in aRight */ 1480 int iOut = 0; /* Current index in output buffer */ 1481 int nRight = *pnRight; 1482 ht_slot *aRight = *paRight; 1483 1484 assert( nLeft>0 && nRight>0 ); 1485 while( iRight<nRight || iLeft<nLeft ){ 1486 ht_slot logpage; 1487 Pgno dbpage; 1488 1489 if( (iLeft<nLeft) 1490 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1491 ){ 1492 logpage = aLeft[iLeft++]; 1493 }else{ 1494 logpage = aRight[iRight++]; 1495 } 1496 dbpage = aContent[logpage]; 1497 1498 aTmp[iOut++] = logpage; 1499 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1500 1501 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1502 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1503 } 1504 1505 *paRight = aLeft; 1506 *pnRight = iOut; 1507 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1508 } 1509 1510 /* 1511 ** Sort the elements in list aList using aContent[] as the sort key. 1512 ** Remove elements with duplicate keys, preferring to keep the 1513 ** larger aList[] values. 1514 ** 1515 ** The aList[] entries are indices into aContent[]. The values in 1516 ** aList[] are to be sorted so that for all J<K: 1517 ** 1518 ** aContent[aList[J]] < aContent[aList[K]] 1519 ** 1520 ** For any X and Y such that 1521 ** 1522 ** aContent[aList[X]] == aContent[aList[Y]] 1523 ** 1524 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1525 ** the smaller. 1526 */ 1527 static void walMergesort( 1528 const u32 *aContent, /* Pages in wal */ 1529 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1530 ht_slot *aList, /* IN/OUT: List to sort */ 1531 int *pnList /* IN/OUT: Number of elements in aList[] */ 1532 ){ 1533 struct Sublist { 1534 int nList; /* Number of elements in aList */ 1535 ht_slot *aList; /* Pointer to sub-list content */ 1536 }; 1537 1538 const int nList = *pnList; /* Size of input list */ 1539 int nMerge = 0; /* Number of elements in list aMerge */ 1540 ht_slot *aMerge = 0; /* List to be merged */ 1541 int iList; /* Index into input list */ 1542 u32 iSub = 0; /* Index into aSub array */ 1543 struct Sublist aSub[13]; /* Array of sub-lists */ 1544 1545 memset(aSub, 0, sizeof(aSub)); 1546 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1547 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1548 1549 for(iList=0; iList<nList; iList++){ 1550 nMerge = 1; 1551 aMerge = &aList[iList]; 1552 for(iSub=0; iList & (1<<iSub); iSub++){ 1553 struct Sublist *p; 1554 assert( iSub<ArraySize(aSub) ); 1555 p = &aSub[iSub]; 1556 assert( p->aList && p->nList<=(1<<iSub) ); 1557 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1558 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1559 } 1560 aSub[iSub].aList = aMerge; 1561 aSub[iSub].nList = nMerge; 1562 } 1563 1564 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1565 if( nList & (1<<iSub) ){ 1566 struct Sublist *p; 1567 assert( iSub<ArraySize(aSub) ); 1568 p = &aSub[iSub]; 1569 assert( p->nList<=(1<<iSub) ); 1570 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1571 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1572 } 1573 } 1574 assert( aMerge==aList ); 1575 *pnList = nMerge; 1576 1577 #ifdef SQLITE_DEBUG 1578 { 1579 int i; 1580 for(i=1; i<*pnList; i++){ 1581 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1582 } 1583 } 1584 #endif 1585 } 1586 1587 /* 1588 ** Free an iterator allocated by walIteratorInit(). 1589 */ 1590 static void walIteratorFree(WalIterator *p){ 1591 sqlite3_free(p); 1592 } 1593 1594 /* 1595 ** Construct a WalInterator object that can be used to loop over all 1596 ** pages in the WAL following frame nBackfill in ascending order. Frames 1597 ** nBackfill or earlier may be included - excluding them is an optimization 1598 ** only. The caller must hold the checkpoint lock. 1599 ** 1600 ** On success, make *pp point to the newly allocated WalInterator object 1601 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1602 ** returns an error, the value of *pp is undefined. 1603 ** 1604 ** The calling routine should invoke walIteratorFree() to destroy the 1605 ** WalIterator object when it has finished with it. 1606 */ 1607 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1608 WalIterator *p; /* Return value */ 1609 int nSegment; /* Number of segments to merge */ 1610 u32 iLast; /* Last frame in log */ 1611 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1612 int i; /* Iterator variable */ 1613 ht_slot *aTmp; /* Temp space used by merge-sort */ 1614 int rc = SQLITE_OK; /* Return Code */ 1615 1616 /* This routine only runs while holding the checkpoint lock. And 1617 ** it only runs if there is actually content in the log (mxFrame>0). 1618 */ 1619 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1620 iLast = pWal->hdr.mxFrame; 1621 1622 /* Allocate space for the WalIterator object. */ 1623 nSegment = walFramePage(iLast) + 1; 1624 nByte = sizeof(WalIterator) 1625 + (nSegment-1)*sizeof(struct WalSegment) 1626 + iLast*sizeof(ht_slot); 1627 p = (WalIterator *)sqlite3_malloc64(nByte); 1628 if( !p ){ 1629 return SQLITE_NOMEM_BKPT; 1630 } 1631 memset(p, 0, nByte); 1632 p->nSegment = nSegment; 1633 1634 /* Allocate temporary space used by the merge-sort routine. This block 1635 ** of memory will be freed before this function returns. 1636 */ 1637 aTmp = (ht_slot *)sqlite3_malloc64( 1638 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1639 ); 1640 if( !aTmp ){ 1641 rc = SQLITE_NOMEM_BKPT; 1642 } 1643 1644 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1645 WalHashLoc sLoc; 1646 1647 rc = walHashGet(pWal, i, &sLoc); 1648 if( rc==SQLITE_OK ){ 1649 int j; /* Counter variable */ 1650 int nEntry; /* Number of entries in this segment */ 1651 ht_slot *aIndex; /* Sorted index for this segment */ 1652 1653 sLoc.aPgno++; 1654 if( (i+1)==nSegment ){ 1655 nEntry = (int)(iLast - sLoc.iZero); 1656 }else{ 1657 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1658 } 1659 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1660 sLoc.iZero++; 1661 1662 for(j=0; j<nEntry; j++){ 1663 aIndex[j] = (ht_slot)j; 1664 } 1665 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1666 p->aSegment[i].iZero = sLoc.iZero; 1667 p->aSegment[i].nEntry = nEntry; 1668 p->aSegment[i].aIndex = aIndex; 1669 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1670 } 1671 } 1672 sqlite3_free(aTmp); 1673 1674 if( rc!=SQLITE_OK ){ 1675 walIteratorFree(p); 1676 p = 0; 1677 } 1678 *pp = p; 1679 return rc; 1680 } 1681 1682 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1683 /* 1684 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1685 ** they are supported by the VFS, and (b) the database handle is configured 1686 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1687 ** or 0 otherwise. 1688 */ 1689 static int walEnableBlocking(Wal *pWal){ 1690 int res = 0; 1691 if( pWal->db ){ 1692 int tmout = pWal->db->busyTimeout; 1693 if( tmout ){ 1694 int rc; 1695 rc = sqlite3OsFileControl( 1696 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1697 ); 1698 res = (rc==SQLITE_OK); 1699 } 1700 } 1701 return res; 1702 } 1703 1704 /* 1705 ** Disable blocking locks. 1706 */ 1707 static void walDisableBlocking(Wal *pWal){ 1708 int tmout = 0; 1709 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1710 } 1711 1712 /* 1713 ** If parameter bLock is true, attempt to enable blocking locks, take 1714 ** the WRITER lock, and then disable blocking locks. If blocking locks 1715 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1716 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1717 ** an error if blocking locks can not be enabled. 1718 ** 1719 ** If the bLock parameter is false and the WRITER lock is held, release it. 1720 */ 1721 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1722 int rc = SQLITE_OK; 1723 assert( pWal->readLock<0 || bLock==0 ); 1724 if( bLock ){ 1725 assert( pWal->db ); 1726 if( walEnableBlocking(pWal) ){ 1727 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1728 if( rc==SQLITE_OK ){ 1729 pWal->writeLock = 1; 1730 } 1731 walDisableBlocking(pWal); 1732 } 1733 }else if( pWal->writeLock ){ 1734 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1735 pWal->writeLock = 0; 1736 } 1737 return rc; 1738 } 1739 1740 /* 1741 ** Set the database handle used to determine if blocking locks are required. 1742 */ 1743 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1744 pWal->db = db; 1745 } 1746 1747 /* 1748 ** Take an exclusive WRITE lock. Blocking if so configured. 1749 */ 1750 static int walLockWriter(Wal *pWal){ 1751 int rc; 1752 walEnableBlocking(pWal); 1753 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1754 walDisableBlocking(pWal); 1755 return rc; 1756 } 1757 #else 1758 # define walEnableBlocking(x) 0 1759 # define walDisableBlocking(x) 1760 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1761 # define sqlite3WalDb(pWal, db) 1762 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1763 1764 1765 /* 1766 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1767 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1768 ** busy-handler function. Invoke it and retry the lock until either the 1769 ** lock is successfully obtained or the busy-handler returns 0. 1770 */ 1771 static int walBusyLock( 1772 Wal *pWal, /* WAL connection */ 1773 int (*xBusy)(void*), /* Function to call when busy */ 1774 void *pBusyArg, /* Context argument for xBusyHandler */ 1775 int lockIdx, /* Offset of first byte to lock */ 1776 int n /* Number of bytes to lock */ 1777 ){ 1778 int rc; 1779 do { 1780 rc = walLockExclusive(pWal, lockIdx, n); 1781 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1783 if( rc==SQLITE_BUSY_TIMEOUT ){ 1784 walDisableBlocking(pWal); 1785 rc = SQLITE_BUSY; 1786 } 1787 #endif 1788 return rc; 1789 } 1790 1791 /* 1792 ** The cache of the wal-index header must be valid to call this function. 1793 ** Return the page-size in bytes used by the database. 1794 */ 1795 static int walPagesize(Wal *pWal){ 1796 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1797 } 1798 1799 /* 1800 ** The following is guaranteed when this function is called: 1801 ** 1802 ** a) the WRITER lock is held, 1803 ** b) the entire log file has been checkpointed, and 1804 ** c) any existing readers are reading exclusively from the database 1805 ** file - there are no readers that may attempt to read a frame from 1806 ** the log file. 1807 ** 1808 ** This function updates the shared-memory structures so that the next 1809 ** client to write to the database (which may be this one) does so by 1810 ** writing frames into the start of the log file. 1811 ** 1812 ** The value of parameter salt1 is used as the aSalt[1] value in the 1813 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1814 ** one obtained from sqlite3_randomness()). 1815 */ 1816 static void walRestartHdr(Wal *pWal, u32 salt1){ 1817 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1818 int i; /* Loop counter */ 1819 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1820 pWal->nCkpt++; 1821 pWal->hdr.mxFrame = 0; 1822 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1823 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1824 walIndexWriteHdr(pWal); 1825 AtomicStore(&pInfo->nBackfill, 0); 1826 pInfo->nBackfillAttempted = 0; 1827 pInfo->aReadMark[1] = 0; 1828 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1829 assert( pInfo->aReadMark[0]==0 ); 1830 } 1831 1832 /* 1833 ** Copy as much content as we can from the WAL back into the database file 1834 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1835 ** 1836 ** The amount of information copies from WAL to database might be limited 1837 ** by active readers. This routine will never overwrite a database page 1838 ** that a concurrent reader might be using. 1839 ** 1840 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1841 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1842 ** checkpoints are always run by a background thread or background 1843 ** process, foreground threads will never block on a lengthy fsync call. 1844 ** 1845 ** Fsync is called on the WAL before writing content out of the WAL and 1846 ** into the database. This ensures that if the new content is persistent 1847 ** in the WAL and can be recovered following a power-loss or hard reset. 1848 ** 1849 ** Fsync is also called on the database file if (and only if) the entire 1850 ** WAL content is copied into the database file. This second fsync makes 1851 ** it safe to delete the WAL since the new content will persist in the 1852 ** database file. 1853 ** 1854 ** This routine uses and updates the nBackfill field of the wal-index header. 1855 ** This is the only routine that will increase the value of nBackfill. 1856 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1857 ** its value.) 1858 ** 1859 ** The caller must be holding sufficient locks to ensure that no other 1860 ** checkpoint is running (in any other thread or process) at the same 1861 ** time. 1862 */ 1863 static int walCheckpoint( 1864 Wal *pWal, /* Wal connection */ 1865 sqlite3 *db, /* Check for interrupts on this handle */ 1866 int eMode, /* One of PASSIVE, FULL or RESTART */ 1867 int (*xBusy)(void*), /* Function to call when busy */ 1868 void *pBusyArg, /* Context argument for xBusyHandler */ 1869 int sync_flags, /* Flags for OsSync() (or 0) */ 1870 u8 *zBuf /* Temporary buffer to use */ 1871 ){ 1872 int rc = SQLITE_OK; /* Return code */ 1873 int szPage; /* Database page-size */ 1874 WalIterator *pIter = 0; /* Wal iterator context */ 1875 u32 iDbpage = 0; /* Next database page to write */ 1876 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1877 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1878 u32 mxPage; /* Max database page to write */ 1879 int i; /* Loop counter */ 1880 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1881 1882 szPage = walPagesize(pWal); 1883 testcase( szPage<=32768 ); 1884 testcase( szPage>=65536 ); 1885 pInfo = walCkptInfo(pWal); 1886 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1887 1888 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1889 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1890 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1891 1892 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1893 ** safe to write into the database. Frames beyond mxSafeFrame might 1894 ** overwrite database pages that are in use by active readers and thus 1895 ** cannot be backfilled from the WAL. 1896 */ 1897 mxSafeFrame = pWal->hdr.mxFrame; 1898 mxPage = pWal->hdr.nPage; 1899 for(i=1; i<WAL_NREADER; i++){ 1900 /* Thread-sanitizer reports that the following is an unsafe read, 1901 ** as some other thread may be in the process of updating the value 1902 ** of the aReadMark[] slot. The assumption here is that if that is 1903 ** happening, the other client may only be increasing the value, 1904 ** not decreasing it. So assuming either that either the "old" or 1905 ** "new" version of the value is read, and not some arbitrary value 1906 ** that would never be written by a real client, things are still 1907 ** safe. 1908 ** 1909 ** Astute readers have pointed out that the assumption stated in the 1910 ** last sentence of the previous paragraph is not guaranteed to be 1911 ** true for all conforming systems. However, the assumption is true 1912 ** for all compilers and architectures in common use today (circa 1913 ** 2019-11-27) and the alternatives are both slow and complex, and 1914 ** so we will continue to go with the current design for now. If this 1915 ** bothers you, or if you really are running on a system where aligned 1916 ** 32-bit reads and writes are not atomic, then you can simply avoid 1917 ** the use of WAL mode, or only use WAL mode together with 1918 ** PRAGMA locking_mode=EXCLUSIVE and all will be well. 1919 */ 1920 u32 y = pInfo->aReadMark[i]; 1921 if( mxSafeFrame>y ){ 1922 assert( y<=pWal->hdr.mxFrame ); 1923 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1924 if( rc==SQLITE_OK ){ 1925 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1926 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1927 }else if( rc==SQLITE_BUSY ){ 1928 mxSafeFrame = y; 1929 xBusy = 0; 1930 }else{ 1931 goto walcheckpoint_out; 1932 } 1933 } 1934 } 1935 1936 /* Allocate the iterator */ 1937 if( pInfo->nBackfill<mxSafeFrame ){ 1938 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1939 assert( rc==SQLITE_OK || pIter==0 ); 1940 } 1941 1942 if( pIter 1943 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1944 ){ 1945 u32 nBackfill = pInfo->nBackfill; 1946 1947 pInfo->nBackfillAttempted = mxSafeFrame; 1948 1949 /* Sync the WAL to disk */ 1950 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1951 1952 /* If the database may grow as a result of this checkpoint, hint 1953 ** about the eventual size of the db file to the VFS layer. 1954 */ 1955 if( rc==SQLITE_OK ){ 1956 i64 nReq = ((i64)mxPage * szPage); 1957 i64 nSize; /* Current size of database file */ 1958 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 1959 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1960 if( rc==SQLITE_OK && nSize<nReq ){ 1961 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1962 } 1963 } 1964 1965 1966 /* Iterate through the contents of the WAL, copying data to the db file */ 1967 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1968 i64 iOffset; 1969 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1970 if( AtomicLoad(&db->u1.isInterrupted) ){ 1971 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1972 break; 1973 } 1974 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1975 continue; 1976 } 1977 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1978 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1979 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1980 if( rc!=SQLITE_OK ) break; 1981 iOffset = (iDbpage-1)*(i64)szPage; 1982 testcase( IS_BIG_INT(iOffset) ); 1983 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1984 if( rc!=SQLITE_OK ) break; 1985 } 1986 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 1987 1988 /* If work was actually accomplished... */ 1989 if( rc==SQLITE_OK ){ 1990 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1991 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1992 testcase( IS_BIG_INT(szDb) ); 1993 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1994 if( rc==SQLITE_OK ){ 1995 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1996 } 1997 } 1998 if( rc==SQLITE_OK ){ 1999 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2000 } 2001 } 2002 2003 /* Release the reader lock held while backfilling */ 2004 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2005 } 2006 2007 if( rc==SQLITE_BUSY ){ 2008 /* Reset the return code so as not to report a checkpoint failure 2009 ** just because there are active readers. */ 2010 rc = SQLITE_OK; 2011 } 2012 } 2013 2014 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2015 ** entire wal file has been copied into the database file, then block 2016 ** until all readers have finished using the wal file. This ensures that 2017 ** the next process to write to the database restarts the wal file. 2018 */ 2019 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2020 assert( pWal->writeLock ); 2021 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2022 rc = SQLITE_BUSY; 2023 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2024 u32 salt1; 2025 sqlite3_randomness(4, &salt1); 2026 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2027 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2028 if( rc==SQLITE_OK ){ 2029 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2030 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2031 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2032 ** truncates the log file to zero bytes just prior to a 2033 ** successful return. 2034 ** 2035 ** In theory, it might be safe to do this without updating the 2036 ** wal-index header in shared memory, as all subsequent reader or 2037 ** writer clients should see that the entire log file has been 2038 ** checkpointed and behave accordingly. This seems unsafe though, 2039 ** as it would leave the system in a state where the contents of 2040 ** the wal-index header do not match the contents of the 2041 ** file-system. To avoid this, update the wal-index header to 2042 ** indicate that the log file contains zero valid frames. */ 2043 walRestartHdr(pWal, salt1); 2044 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2045 } 2046 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2047 } 2048 } 2049 } 2050 2051 walcheckpoint_out: 2052 walIteratorFree(pIter); 2053 return rc; 2054 } 2055 2056 /* 2057 ** If the WAL file is currently larger than nMax bytes in size, truncate 2058 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2059 */ 2060 static void walLimitSize(Wal *pWal, i64 nMax){ 2061 i64 sz; 2062 int rx; 2063 sqlite3BeginBenignMalloc(); 2064 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2065 if( rx==SQLITE_OK && (sz > nMax ) ){ 2066 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2067 } 2068 sqlite3EndBenignMalloc(); 2069 if( rx ){ 2070 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2071 } 2072 } 2073 2074 /* 2075 ** Close a connection to a log file. 2076 */ 2077 int sqlite3WalClose( 2078 Wal *pWal, /* Wal to close */ 2079 sqlite3 *db, /* For interrupt flag */ 2080 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2081 int nBuf, 2082 u8 *zBuf /* Buffer of at least nBuf bytes */ 2083 ){ 2084 int rc = SQLITE_OK; 2085 if( pWal ){ 2086 int isDelete = 0; /* True to unlink wal and wal-index files */ 2087 2088 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2089 ** ordinary, rollback-mode locking methods, this guarantees that the 2090 ** connection associated with this log file is the only connection to 2091 ** the database. In this case checkpoint the database and unlink both 2092 ** the wal and wal-index files. 2093 ** 2094 ** The EXCLUSIVE lock is not released before returning. 2095 */ 2096 if( zBuf!=0 2097 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2098 ){ 2099 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2100 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2101 } 2102 rc = sqlite3WalCheckpoint(pWal, db, 2103 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2104 ); 2105 if( rc==SQLITE_OK ){ 2106 int bPersist = -1; 2107 sqlite3OsFileControlHint( 2108 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2109 ); 2110 if( bPersist!=1 ){ 2111 /* Try to delete the WAL file if the checkpoint completed and 2112 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2113 ** mode (!bPersist) */ 2114 isDelete = 1; 2115 }else if( pWal->mxWalSize>=0 ){ 2116 /* Try to truncate the WAL file to zero bytes if the checkpoint 2117 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2118 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2119 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2120 ** to zero bytes as truncating to the journal_size_limit might 2121 ** leave a corrupt WAL file on disk. */ 2122 walLimitSize(pWal, 0); 2123 } 2124 } 2125 } 2126 2127 walIndexClose(pWal, isDelete); 2128 sqlite3OsClose(pWal->pWalFd); 2129 if( isDelete ){ 2130 sqlite3BeginBenignMalloc(); 2131 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2132 sqlite3EndBenignMalloc(); 2133 } 2134 WALTRACE(("WAL%p: closed\n", pWal)); 2135 sqlite3_free((void *)pWal->apWiData); 2136 sqlite3_free(pWal); 2137 } 2138 return rc; 2139 } 2140 2141 /* 2142 ** Try to read the wal-index header. Return 0 on success and 1 if 2143 ** there is a problem. 2144 ** 2145 ** The wal-index is in shared memory. Another thread or process might 2146 ** be writing the header at the same time this procedure is trying to 2147 ** read it, which might result in inconsistency. A dirty read is detected 2148 ** by verifying that both copies of the header are the same and also by 2149 ** a checksum on the header. 2150 ** 2151 ** If and only if the read is consistent and the header is different from 2152 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2153 ** and *pChanged is set to 1. 2154 ** 2155 ** If the checksum cannot be verified return non-zero. If the header 2156 ** is read successfully and the checksum verified, return zero. 2157 */ 2158 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2159 u32 aCksum[2]; /* Checksum on the header content */ 2160 WalIndexHdr h1, h2; /* Two copies of the header content */ 2161 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2162 2163 /* The first page of the wal-index must be mapped at this point. */ 2164 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2165 2166 /* Read the header. This might happen concurrently with a write to the 2167 ** same area of shared memory on a different CPU in a SMP, 2168 ** meaning it is possible that an inconsistent snapshot is read 2169 ** from the file. If this happens, return non-zero. 2170 ** 2171 ** There are two copies of the header at the beginning of the wal-index. 2172 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2173 ** Memory barriers are used to prevent the compiler or the hardware from 2174 ** reordering the reads and writes. 2175 */ 2176 aHdr = walIndexHdr(pWal); 2177 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2178 walShmBarrier(pWal); 2179 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2180 2181 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2182 return 1; /* Dirty read */ 2183 } 2184 if( h1.isInit==0 ){ 2185 return 1; /* Malformed header - probably all zeros */ 2186 } 2187 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2188 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2189 return 1; /* Checksum does not match */ 2190 } 2191 2192 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2193 *pChanged = 1; 2194 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2195 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2196 testcase( pWal->szPage<=32768 ); 2197 testcase( pWal->szPage>=65536 ); 2198 } 2199 2200 /* The header was successfully read. Return zero. */ 2201 return 0; 2202 } 2203 2204 /* 2205 ** This is the value that walTryBeginRead returns when it needs to 2206 ** be retried. 2207 */ 2208 #define WAL_RETRY (-1) 2209 2210 /* 2211 ** Read the wal-index header from the wal-index and into pWal->hdr. 2212 ** If the wal-header appears to be corrupt, try to reconstruct the 2213 ** wal-index from the WAL before returning. 2214 ** 2215 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2216 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2217 ** to 0. 2218 ** 2219 ** If the wal-index header is successfully read, return SQLITE_OK. 2220 ** Otherwise an SQLite error code. 2221 */ 2222 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2223 int rc; /* Return code */ 2224 int badHdr; /* True if a header read failed */ 2225 volatile u32 *page0; /* Chunk of wal-index containing header */ 2226 2227 /* Ensure that page 0 of the wal-index (the page that contains the 2228 ** wal-index header) is mapped. Return early if an error occurs here. 2229 */ 2230 assert( pChanged ); 2231 rc = walIndexPage(pWal, 0, &page0); 2232 if( rc!=SQLITE_OK ){ 2233 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2234 if( rc==SQLITE_READONLY_CANTINIT ){ 2235 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2236 ** was openable but is not writable, and this thread is unable to 2237 ** confirm that another write-capable connection has the shared-memory 2238 ** open, and hence the content of the shared-memory is unreliable, 2239 ** since the shared-memory might be inconsistent with the WAL file 2240 ** and there is no writer on hand to fix it. */ 2241 assert( page0==0 ); 2242 assert( pWal->writeLock==0 ); 2243 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2244 pWal->bShmUnreliable = 1; 2245 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2246 *pChanged = 1; 2247 }else{ 2248 return rc; /* Any other non-OK return is just an error */ 2249 } 2250 }else{ 2251 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2252 ** is zero, which prevents the SHM from growing */ 2253 testcase( page0!=0 ); 2254 } 2255 assert( page0!=0 || pWal->writeLock==0 ); 2256 2257 /* If the first page of the wal-index has been mapped, try to read the 2258 ** wal-index header immediately, without holding any lock. This usually 2259 ** works, but may fail if the wal-index header is corrupt or currently 2260 ** being modified by another thread or process. 2261 */ 2262 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2263 2264 /* If the first attempt failed, it might have been due to a race 2265 ** with a writer. So get a WRITE lock and try again. 2266 */ 2267 if( badHdr ){ 2268 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2269 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2270 walUnlockShared(pWal, WAL_WRITE_LOCK); 2271 rc = SQLITE_READONLY_RECOVERY; 2272 } 2273 }else{ 2274 int bWriteLock = pWal->writeLock; 2275 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2276 pWal->writeLock = 1; 2277 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2278 badHdr = walIndexTryHdr(pWal, pChanged); 2279 if( badHdr ){ 2280 /* If the wal-index header is still malformed even while holding 2281 ** a WRITE lock, it can only mean that the header is corrupted and 2282 ** needs to be reconstructed. So run recovery to do exactly that. 2283 */ 2284 rc = walIndexRecover(pWal); 2285 *pChanged = 1; 2286 } 2287 } 2288 if( bWriteLock==0 ){ 2289 pWal->writeLock = 0; 2290 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2291 } 2292 } 2293 } 2294 } 2295 2296 /* If the header is read successfully, check the version number to make 2297 ** sure the wal-index was not constructed with some future format that 2298 ** this version of SQLite cannot understand. 2299 */ 2300 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2301 rc = SQLITE_CANTOPEN_BKPT; 2302 } 2303 if( pWal->bShmUnreliable ){ 2304 if( rc!=SQLITE_OK ){ 2305 walIndexClose(pWal, 0); 2306 pWal->bShmUnreliable = 0; 2307 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2308 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2309 ** writer truncated the WAL out from under it. If that happens, it 2310 ** indicates that a writer has fixed the SHM file for us, so retry */ 2311 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2312 } 2313 pWal->exclusiveMode = WAL_NORMAL_MODE; 2314 } 2315 2316 return rc; 2317 } 2318 2319 /* 2320 ** Open a transaction in a connection where the shared-memory is read-only 2321 ** and where we cannot verify that there is a separate write-capable connection 2322 ** on hand to keep the shared-memory up-to-date with the WAL file. 2323 ** 2324 ** This can happen, for example, when the shared-memory is implemented by 2325 ** memory-mapping a *-shm file, where a prior writer has shut down and 2326 ** left the *-shm file on disk, and now the present connection is trying 2327 ** to use that database but lacks write permission on the *-shm file. 2328 ** Other scenarios are also possible, depending on the VFS implementation. 2329 ** 2330 ** Precondition: 2331 ** 2332 ** The *-wal file has been read and an appropriate wal-index has been 2333 ** constructed in pWal->apWiData[] using heap memory instead of shared 2334 ** memory. 2335 ** 2336 ** If this function returns SQLITE_OK, then the read transaction has 2337 ** been successfully opened. In this case output variable (*pChanged) 2338 ** is set to true before returning if the caller should discard the 2339 ** contents of the page cache before proceeding. Or, if it returns 2340 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2341 ** the caller should retry opening the read transaction from the 2342 ** beginning (including attempting to map the *-shm file). 2343 ** 2344 ** If an error occurs, an SQLite error code is returned. 2345 */ 2346 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2347 i64 szWal; /* Size of wal file on disk in bytes */ 2348 i64 iOffset; /* Current offset when reading wal file */ 2349 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2350 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2351 int szFrame; /* Number of bytes in buffer aFrame[] */ 2352 u8 *aData; /* Pointer to data part of aFrame buffer */ 2353 volatile void *pDummy; /* Dummy argument for xShmMap */ 2354 int rc; /* Return code */ 2355 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2356 2357 assert( pWal->bShmUnreliable ); 2358 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2359 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2360 2361 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2362 ** writers from running a checkpoint, but does not stop them 2363 ** from running recovery. */ 2364 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2365 if( rc!=SQLITE_OK ){ 2366 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2367 goto begin_unreliable_shm_out; 2368 } 2369 pWal->readLock = 0; 2370 2371 /* Check to see if a separate writer has attached to the shared-memory area, 2372 ** thus making the shared-memory "reliable" again. Do this by invoking 2373 ** the xShmMap() routine of the VFS and looking to see if the return 2374 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2375 ** 2376 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2377 ** cause the heap-memory WAL-index to be discarded and the actual 2378 ** shared memory to be used in its place. 2379 ** 2380 ** This step is important because, even though this connection is holding 2381 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2382 ** have already checkpointed the WAL file and, while the current 2383 ** is active, wrap the WAL and start overwriting frames that this 2384 ** process wants to use. 2385 ** 2386 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2387 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2388 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2389 ** even if some external agent does a "chmod" to make the shared-memory 2390 ** writable by us, until sqlite3OsShmUnmap() has been called. 2391 ** This is a requirement on the VFS implementation. 2392 */ 2393 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2394 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2395 if( rc!=SQLITE_READONLY_CANTINIT ){ 2396 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2397 goto begin_unreliable_shm_out; 2398 } 2399 2400 /* We reach this point only if the real shared-memory is still unreliable. 2401 ** Assume the in-memory WAL-index substitute is correct and load it 2402 ** into pWal->hdr. 2403 */ 2404 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2405 2406 /* Make sure some writer hasn't come in and changed the WAL file out 2407 ** from under us, then disconnected, while we were not looking. 2408 */ 2409 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2410 if( rc!=SQLITE_OK ){ 2411 goto begin_unreliable_shm_out; 2412 } 2413 if( szWal<WAL_HDRSIZE ){ 2414 /* If the wal file is too small to contain a wal-header and the 2415 ** wal-index header has mxFrame==0, then it must be safe to proceed 2416 ** reading the database file only. However, the page cache cannot 2417 ** be trusted, as a read/write connection may have connected, written 2418 ** the db, run a checkpoint, truncated the wal file and disconnected 2419 ** since this client's last read transaction. */ 2420 *pChanged = 1; 2421 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2422 goto begin_unreliable_shm_out; 2423 } 2424 2425 /* Check the salt keys at the start of the wal file still match. */ 2426 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2427 if( rc!=SQLITE_OK ){ 2428 goto begin_unreliable_shm_out; 2429 } 2430 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2431 /* Some writer has wrapped the WAL file while we were not looking. 2432 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2433 ** rebuilt. */ 2434 rc = WAL_RETRY; 2435 goto begin_unreliable_shm_out; 2436 } 2437 2438 /* Allocate a buffer to read frames into */ 2439 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2440 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2441 if( aFrame==0 ){ 2442 rc = SQLITE_NOMEM_BKPT; 2443 goto begin_unreliable_shm_out; 2444 } 2445 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2446 2447 /* Check to see if a complete transaction has been appended to the 2448 ** wal file since the heap-memory wal-index was created. If so, the 2449 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2450 ** the caller. */ 2451 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2452 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2453 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2454 iOffset+szFrame<=szWal; 2455 iOffset+=szFrame 2456 ){ 2457 u32 pgno; /* Database page number for frame */ 2458 u32 nTruncate; /* dbsize field from frame header */ 2459 2460 /* Read and decode the next log frame. */ 2461 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2462 if( rc!=SQLITE_OK ) break; 2463 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2464 2465 /* If nTruncate is non-zero, then a complete transaction has been 2466 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2467 ** the loop. */ 2468 if( nTruncate ){ 2469 rc = WAL_RETRY; 2470 break; 2471 } 2472 } 2473 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2474 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2475 2476 begin_unreliable_shm_out: 2477 sqlite3_free(aFrame); 2478 if( rc!=SQLITE_OK ){ 2479 int i; 2480 for(i=0; i<pWal->nWiData; i++){ 2481 sqlite3_free((void*)pWal->apWiData[i]); 2482 pWal->apWiData[i] = 0; 2483 } 2484 pWal->bShmUnreliable = 0; 2485 sqlite3WalEndReadTransaction(pWal); 2486 *pChanged = 1; 2487 } 2488 return rc; 2489 } 2490 2491 /* 2492 ** Attempt to start a read transaction. This might fail due to a race or 2493 ** other transient condition. When that happens, it returns WAL_RETRY to 2494 ** indicate to the caller that it is safe to retry immediately. 2495 ** 2496 ** On success return SQLITE_OK. On a permanent failure (such an 2497 ** I/O error or an SQLITE_BUSY because another process is running 2498 ** recovery) return a positive error code. 2499 ** 2500 ** The useWal parameter is true to force the use of the WAL and disable 2501 ** the case where the WAL is bypassed because it has been completely 2502 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2503 ** to make a copy of the wal-index header into pWal->hdr. If the 2504 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2505 ** to the caller that the local page cache is obsolete and needs to be 2506 ** flushed.) When useWal==1, the wal-index header is assumed to already 2507 ** be loaded and the pChanged parameter is unused. 2508 ** 2509 ** The caller must set the cnt parameter to the number of prior calls to 2510 ** this routine during the current read attempt that returned WAL_RETRY. 2511 ** This routine will start taking more aggressive measures to clear the 2512 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2513 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2514 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2515 ** and is not honoring the locking protocol. There is a vanishingly small 2516 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2517 ** bad luck when there is lots of contention for the wal-index, but that 2518 ** possibility is so small that it can be safely neglected, we believe. 2519 ** 2520 ** On success, this routine obtains a read lock on 2521 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2522 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2523 ** that means the Wal does not hold any read lock. The reader must not 2524 ** access any database page that is modified by a WAL frame up to and 2525 ** including frame number aReadMark[pWal->readLock]. The reader will 2526 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2527 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2528 ** completely and get all content directly from the database file. 2529 ** If the useWal parameter is 1 then the WAL will never be ignored and 2530 ** this routine will always set pWal->readLock>0 on success. 2531 ** When the read transaction is completed, the caller must release the 2532 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2533 ** 2534 ** This routine uses the nBackfill and aReadMark[] fields of the header 2535 ** to select a particular WAL_READ_LOCK() that strives to let the 2536 ** checkpoint process do as much work as possible. This routine might 2537 ** update values of the aReadMark[] array in the header, but if it does 2538 ** so it takes care to hold an exclusive lock on the corresponding 2539 ** WAL_READ_LOCK() while changing values. 2540 */ 2541 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2542 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2543 u32 mxReadMark; /* Largest aReadMark[] value */ 2544 int mxI; /* Index of largest aReadMark[] value */ 2545 int i; /* Loop counter */ 2546 int rc = SQLITE_OK; /* Return code */ 2547 u32 mxFrame; /* Wal frame to lock to */ 2548 2549 assert( pWal->readLock<0 ); /* Not currently locked */ 2550 2551 /* useWal may only be set for read/write connections */ 2552 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2553 2554 /* Take steps to avoid spinning forever if there is a protocol error. 2555 ** 2556 ** Circumstances that cause a RETRY should only last for the briefest 2557 ** instances of time. No I/O or other system calls are done while the 2558 ** locks are held, so the locks should not be held for very long. But 2559 ** if we are unlucky, another process that is holding a lock might get 2560 ** paged out or take a page-fault that is time-consuming to resolve, 2561 ** during the few nanoseconds that it is holding the lock. In that case, 2562 ** it might take longer than normal for the lock to free. 2563 ** 2564 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2565 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2566 ** is more of a scheduler yield than an actual delay. But on the 10th 2567 ** an subsequent retries, the delays start becoming longer and longer, 2568 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2569 ** The total delay time before giving up is less than 10 seconds. 2570 */ 2571 if( cnt>5 ){ 2572 int nDelay = 1; /* Pause time in microseconds */ 2573 if( cnt>100 ){ 2574 VVA_ONLY( pWal->lockError = 1; ) 2575 return SQLITE_PROTOCOL; 2576 } 2577 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2578 sqlite3OsSleep(pWal->pVfs, nDelay); 2579 } 2580 2581 if( !useWal ){ 2582 assert( rc==SQLITE_OK ); 2583 if( pWal->bShmUnreliable==0 ){ 2584 rc = walIndexReadHdr(pWal, pChanged); 2585 } 2586 if( rc==SQLITE_BUSY ){ 2587 /* If there is not a recovery running in another thread or process 2588 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2589 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2590 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2591 ** would be technically correct. But the race is benign since with 2592 ** WAL_RETRY this routine will be called again and will probably be 2593 ** right on the second iteration. 2594 */ 2595 if( pWal->apWiData[0]==0 ){ 2596 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2597 ** We assume this is a transient condition, so return WAL_RETRY. The 2598 ** xShmMap() implementation used by the default unix and win32 VFS 2599 ** modules may return SQLITE_BUSY due to a race condition in the 2600 ** code that determines whether or not the shared-memory region 2601 ** must be zeroed before the requested page is returned. 2602 */ 2603 rc = WAL_RETRY; 2604 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2605 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2606 rc = WAL_RETRY; 2607 }else if( rc==SQLITE_BUSY ){ 2608 rc = SQLITE_BUSY_RECOVERY; 2609 } 2610 } 2611 if( rc!=SQLITE_OK ){ 2612 return rc; 2613 } 2614 else if( pWal->bShmUnreliable ){ 2615 return walBeginShmUnreliable(pWal, pChanged); 2616 } 2617 } 2618 2619 assert( pWal->nWiData>0 ); 2620 assert( pWal->apWiData[0]!=0 ); 2621 pInfo = walCkptInfo(pWal); 2622 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2623 #ifdef SQLITE_ENABLE_SNAPSHOT 2624 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2625 #endif 2626 ){ 2627 /* The WAL has been completely backfilled (or it is empty). 2628 ** and can be safely ignored. 2629 */ 2630 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2631 walShmBarrier(pWal); 2632 if( rc==SQLITE_OK ){ 2633 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2634 /* It is not safe to allow the reader to continue here if frames 2635 ** may have been appended to the log before READ_LOCK(0) was obtained. 2636 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2637 ** which implies that the database file contains a trustworthy 2638 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2639 ** happening, this is usually correct. 2640 ** 2641 ** However, if frames have been appended to the log (or if the log 2642 ** is wrapped and written for that matter) before the READ_LOCK(0) 2643 ** is obtained, that is not necessarily true. A checkpointer may 2644 ** have started to backfill the appended frames but crashed before 2645 ** it finished. Leaving a corrupt image in the database file. 2646 */ 2647 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2648 return WAL_RETRY; 2649 } 2650 pWal->readLock = 0; 2651 return SQLITE_OK; 2652 }else if( rc!=SQLITE_BUSY ){ 2653 return rc; 2654 } 2655 } 2656 2657 /* If we get this far, it means that the reader will want to use 2658 ** the WAL to get at content from recent commits. The job now is 2659 ** to select one of the aReadMark[] entries that is closest to 2660 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2661 */ 2662 mxReadMark = 0; 2663 mxI = 0; 2664 mxFrame = pWal->hdr.mxFrame; 2665 #ifdef SQLITE_ENABLE_SNAPSHOT 2666 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2667 mxFrame = pWal->pSnapshot->mxFrame; 2668 } 2669 #endif 2670 for(i=1; i<WAL_NREADER; i++){ 2671 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2672 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2673 assert( thisMark!=READMARK_NOT_USED ); 2674 mxReadMark = thisMark; 2675 mxI = i; 2676 } 2677 } 2678 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2679 && (mxReadMark<mxFrame || mxI==0) 2680 ){ 2681 for(i=1; i<WAL_NREADER; i++){ 2682 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2683 if( rc==SQLITE_OK ){ 2684 AtomicStore(pInfo->aReadMark+i,mxFrame); 2685 mxReadMark = mxFrame; 2686 mxI = i; 2687 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2688 break; 2689 }else if( rc!=SQLITE_BUSY ){ 2690 return rc; 2691 } 2692 } 2693 } 2694 if( mxI==0 ){ 2695 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2696 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2697 } 2698 2699 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2700 if( rc ){ 2701 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2702 } 2703 /* Now that the read-lock has been obtained, check that neither the 2704 ** value in the aReadMark[] array or the contents of the wal-index 2705 ** header have changed. 2706 ** 2707 ** It is necessary to check that the wal-index header did not change 2708 ** between the time it was read and when the shared-lock was obtained 2709 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2710 ** that the log file may have been wrapped by a writer, or that frames 2711 ** that occur later in the log than pWal->hdr.mxFrame may have been 2712 ** copied into the database by a checkpointer. If either of these things 2713 ** happened, then reading the database with the current value of 2714 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2715 ** instead. 2716 ** 2717 ** Before checking that the live wal-index header has not changed 2718 ** since it was read, set Wal.minFrame to the first frame in the wal 2719 ** file that has not yet been checkpointed. This client will not need 2720 ** to read any frames earlier than minFrame from the wal file - they 2721 ** can be safely read directly from the database file. 2722 ** 2723 ** Because a ShmBarrier() call is made between taking the copy of 2724 ** nBackfill and checking that the wal-header in shared-memory still 2725 ** matches the one cached in pWal->hdr, it is guaranteed that the 2726 ** checkpointer that set nBackfill was not working with a wal-index 2727 ** header newer than that cached in pWal->hdr. If it were, that could 2728 ** cause a problem. The checkpointer could omit to checkpoint 2729 ** a version of page X that lies before pWal->minFrame (call that version 2730 ** A) on the basis that there is a newer version (version B) of the same 2731 ** page later in the wal file. But if version B happens to like past 2732 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2733 ** that it can read version A from the database file. However, since 2734 ** we can guarantee that the checkpointer that set nBackfill could not 2735 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2736 */ 2737 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2738 walShmBarrier(pWal); 2739 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2740 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2741 ){ 2742 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2743 return WAL_RETRY; 2744 }else{ 2745 assert( mxReadMark<=pWal->hdr.mxFrame ); 2746 pWal->readLock = (i16)mxI; 2747 } 2748 return rc; 2749 } 2750 2751 #ifdef SQLITE_ENABLE_SNAPSHOT 2752 /* 2753 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2754 ** variable so that older snapshots can be accessed. To do this, loop 2755 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2756 ** comparing their content to the corresponding page with the database 2757 ** file, if any. Set nBackfillAttempted to the frame number of the 2758 ** first frame for which the wal file content matches the db file. 2759 ** 2760 ** This is only really safe if the file-system is such that any page 2761 ** writes made by earlier checkpointers were atomic operations, which 2762 ** is not always true. It is also possible that nBackfillAttempted 2763 ** may be left set to a value larger than expected, if a wal frame 2764 ** contains content that duplicate of an earlier version of the same 2765 ** page. 2766 ** 2767 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2768 ** error occurs. It is not an error if nBackfillAttempted cannot be 2769 ** decreased at all. 2770 */ 2771 int sqlite3WalSnapshotRecover(Wal *pWal){ 2772 int rc; 2773 2774 assert( pWal->readLock>=0 ); 2775 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2776 if( rc==SQLITE_OK ){ 2777 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2778 int szPage = (int)pWal->szPage; 2779 i64 szDb; /* Size of db file in bytes */ 2780 2781 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2782 if( rc==SQLITE_OK ){ 2783 void *pBuf1 = sqlite3_malloc(szPage); 2784 void *pBuf2 = sqlite3_malloc(szPage); 2785 if( pBuf1==0 || pBuf2==0 ){ 2786 rc = SQLITE_NOMEM; 2787 }else{ 2788 u32 i = pInfo->nBackfillAttempted; 2789 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2790 WalHashLoc sLoc; /* Hash table location */ 2791 u32 pgno; /* Page number in db file */ 2792 i64 iDbOff; /* Offset of db file entry */ 2793 i64 iWalOff; /* Offset of wal file entry */ 2794 2795 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2796 if( rc!=SQLITE_OK ) break; 2797 pgno = sLoc.aPgno[i-sLoc.iZero]; 2798 iDbOff = (i64)(pgno-1) * szPage; 2799 2800 if( iDbOff+szPage<=szDb ){ 2801 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2802 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2803 2804 if( rc==SQLITE_OK ){ 2805 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2806 } 2807 2808 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2809 break; 2810 } 2811 } 2812 2813 pInfo->nBackfillAttempted = i-1; 2814 } 2815 } 2816 2817 sqlite3_free(pBuf1); 2818 sqlite3_free(pBuf2); 2819 } 2820 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2821 } 2822 2823 return rc; 2824 } 2825 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2826 2827 /* 2828 ** Begin a read transaction on the database. 2829 ** 2830 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2831 ** it takes a snapshot of the state of the WAL and wal-index for the current 2832 ** instant in time. The current thread will continue to use this snapshot. 2833 ** Other threads might append new content to the WAL and wal-index but 2834 ** that extra content is ignored by the current thread. 2835 ** 2836 ** If the database contents have changes since the previous read 2837 ** transaction, then *pChanged is set to 1 before returning. The 2838 ** Pager layer will use this to know that its cache is stale and 2839 ** needs to be flushed. 2840 */ 2841 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2842 int rc; /* Return code */ 2843 int cnt = 0; /* Number of TryBeginRead attempts */ 2844 2845 assert( pWal->ckptLock==0 ); 2846 2847 #ifdef SQLITE_ENABLE_SNAPSHOT 2848 int bChanged = 0; 2849 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2850 if( pSnapshot ){ 2851 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2852 bChanged = 1; 2853 } 2854 2855 /* It is possible that there is a checkpointer thread running 2856 ** concurrent with this code. If this is the case, it may be that the 2857 ** checkpointer has already determined that it will checkpoint 2858 ** snapshot X, where X is later in the wal file than pSnapshot, but 2859 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2860 ** its intent. To avoid the race condition this leads to, ensure that 2861 ** there is no checkpointer process by taking a shared CKPT lock 2862 ** before checking pInfo->nBackfillAttempted. */ 2863 (void)walEnableBlocking(pWal); 2864 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2865 walDisableBlocking(pWal); 2866 2867 if( rc!=SQLITE_OK ){ 2868 return rc; 2869 } 2870 pWal->ckptLock = 1; 2871 } 2872 #endif 2873 2874 do{ 2875 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2876 }while( rc==WAL_RETRY ); 2877 testcase( (rc&0xff)==SQLITE_BUSY ); 2878 testcase( (rc&0xff)==SQLITE_IOERR ); 2879 testcase( rc==SQLITE_PROTOCOL ); 2880 testcase( rc==SQLITE_OK ); 2881 2882 #ifdef SQLITE_ENABLE_SNAPSHOT 2883 if( rc==SQLITE_OK ){ 2884 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2885 /* At this point the client has a lock on an aReadMark[] slot holding 2886 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2887 ** is populated with the wal-index header corresponding to the head 2888 ** of the wal file. Verify that pSnapshot is still valid before 2889 ** continuing. Reasons why pSnapshot might no longer be valid: 2890 ** 2891 ** (1) The WAL file has been reset since the snapshot was taken. 2892 ** In this case, the salt will have changed. 2893 ** 2894 ** (2) A checkpoint as been attempted that wrote frames past 2895 ** pSnapshot->mxFrame into the database file. Note that the 2896 ** checkpoint need not have completed for this to cause problems. 2897 */ 2898 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2899 2900 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2901 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2902 2903 /* Check that the wal file has not been wrapped. Assuming that it has 2904 ** not, also check that no checkpointer has attempted to checkpoint any 2905 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2906 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2907 ** with *pSnapshot and set *pChanged as appropriate for opening the 2908 ** snapshot. */ 2909 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2910 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2911 ){ 2912 assert( pWal->readLock>0 ); 2913 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2914 *pChanged = bChanged; 2915 }else{ 2916 rc = SQLITE_ERROR_SNAPSHOT; 2917 } 2918 2919 /* A client using a non-current snapshot may not ignore any frames 2920 ** from the start of the wal file. This is because, for a system 2921 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 2922 ** have omitted to checkpoint a frame earlier than minFrame in 2923 ** the file because there exists a frame after iSnapshot that 2924 ** is the same database page. */ 2925 pWal->minFrame = 1; 2926 2927 if( rc!=SQLITE_OK ){ 2928 sqlite3WalEndReadTransaction(pWal); 2929 } 2930 } 2931 } 2932 2933 /* Release the shared CKPT lock obtained above. */ 2934 if( pWal->ckptLock ){ 2935 assert( pSnapshot ); 2936 walUnlockShared(pWal, WAL_CKPT_LOCK); 2937 pWal->ckptLock = 0; 2938 } 2939 #endif 2940 return rc; 2941 } 2942 2943 /* 2944 ** Finish with a read transaction. All this does is release the 2945 ** read-lock. 2946 */ 2947 void sqlite3WalEndReadTransaction(Wal *pWal){ 2948 sqlite3WalEndWriteTransaction(pWal); 2949 if( pWal->readLock>=0 ){ 2950 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2951 pWal->readLock = -1; 2952 } 2953 } 2954 2955 /* 2956 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2957 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2958 ** to zero. 2959 ** 2960 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2961 ** error does occur, the final value of *piRead is undefined. 2962 */ 2963 int sqlite3WalFindFrame( 2964 Wal *pWal, /* WAL handle */ 2965 Pgno pgno, /* Database page number to read data for */ 2966 u32 *piRead /* OUT: Frame number (or zero) */ 2967 ){ 2968 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2969 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2970 int iHash; /* Used to loop through N hash tables */ 2971 int iMinHash; 2972 2973 /* This routine is only be called from within a read transaction. */ 2974 assert( pWal->readLock>=0 || pWal->lockError ); 2975 2976 /* If the "last page" field of the wal-index header snapshot is 0, then 2977 ** no data will be read from the wal under any circumstances. Return early 2978 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2979 ** then the WAL is ignored by the reader so return early, as if the 2980 ** WAL were empty. 2981 */ 2982 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2983 *piRead = 0; 2984 return SQLITE_OK; 2985 } 2986 2987 /* Search the hash table or tables for an entry matching page number 2988 ** pgno. Each iteration of the following for() loop searches one 2989 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2990 ** 2991 ** This code might run concurrently to the code in walIndexAppend() 2992 ** that adds entries to the wal-index (and possibly to this hash 2993 ** table). This means the value just read from the hash 2994 ** slot (aHash[iKey]) may have been added before or after the 2995 ** current read transaction was opened. Values added after the 2996 ** read transaction was opened may have been written incorrectly - 2997 ** i.e. these slots may contain garbage data. However, we assume 2998 ** that any slots written before the current read transaction was 2999 ** opened remain unmodified. 3000 ** 3001 ** For the reasons above, the if(...) condition featured in the inner 3002 ** loop of the following block is more stringent that would be required 3003 ** if we had exclusive access to the hash-table: 3004 ** 3005 ** (aPgno[iFrame]==pgno): 3006 ** This condition filters out normal hash-table collisions. 3007 ** 3008 ** (iFrame<=iLast): 3009 ** This condition filters out entries that were added to the hash 3010 ** table after the current read-transaction had started. 3011 */ 3012 iMinHash = walFramePage(pWal->minFrame); 3013 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3014 WalHashLoc sLoc; /* Hash table location */ 3015 int iKey; /* Hash slot index */ 3016 int nCollide; /* Number of hash collisions remaining */ 3017 int rc; /* Error code */ 3018 3019 rc = walHashGet(pWal, iHash, &sLoc); 3020 if( rc!=SQLITE_OK ){ 3021 return rc; 3022 } 3023 nCollide = HASHTABLE_NSLOT; 3024 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 3025 u32 iH = sLoc.aHash[iKey]; 3026 u32 iFrame = iH + sLoc.iZero; 3027 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3028 assert( iFrame>iRead || CORRUPT_DB ); 3029 iRead = iFrame; 3030 } 3031 if( (nCollide--)==0 ){ 3032 return SQLITE_CORRUPT_BKPT; 3033 } 3034 } 3035 if( iRead ) break; 3036 } 3037 3038 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3039 /* If expensive assert() statements are available, do a linear search 3040 ** of the wal-index file content. Make sure the results agree with the 3041 ** result obtained using the hash indexes above. */ 3042 { 3043 u32 iRead2 = 0; 3044 u32 iTest; 3045 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3046 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3047 if( walFramePgno(pWal, iTest)==pgno ){ 3048 iRead2 = iTest; 3049 break; 3050 } 3051 } 3052 assert( iRead==iRead2 ); 3053 } 3054 #endif 3055 3056 *piRead = iRead; 3057 return SQLITE_OK; 3058 } 3059 3060 /* 3061 ** Read the contents of frame iRead from the wal file into buffer pOut 3062 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3063 ** error code otherwise. 3064 */ 3065 int sqlite3WalReadFrame( 3066 Wal *pWal, /* WAL handle */ 3067 u32 iRead, /* Frame to read */ 3068 int nOut, /* Size of buffer pOut in bytes */ 3069 u8 *pOut /* Buffer to write page data to */ 3070 ){ 3071 int sz; 3072 i64 iOffset; 3073 sz = pWal->hdr.szPage; 3074 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3075 testcase( sz<=32768 ); 3076 testcase( sz>=65536 ); 3077 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3078 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3079 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3080 } 3081 3082 /* 3083 ** Return the size of the database in pages (or zero, if unknown). 3084 */ 3085 Pgno sqlite3WalDbsize(Wal *pWal){ 3086 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3087 return pWal->hdr.nPage; 3088 } 3089 return 0; 3090 } 3091 3092 3093 /* 3094 ** This function starts a write transaction on the WAL. 3095 ** 3096 ** A read transaction must have already been started by a prior call 3097 ** to sqlite3WalBeginReadTransaction(). 3098 ** 3099 ** If another thread or process has written into the database since 3100 ** the read transaction was started, then it is not possible for this 3101 ** thread to write as doing so would cause a fork. So this routine 3102 ** returns SQLITE_BUSY in that case and no write transaction is started. 3103 ** 3104 ** There can only be a single writer active at a time. 3105 */ 3106 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3107 int rc; 3108 3109 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3110 /* If the write-lock is already held, then it was obtained before the 3111 ** read-transaction was even opened, making this call a no-op. 3112 ** Return early. */ 3113 if( pWal->writeLock ){ 3114 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3115 return SQLITE_OK; 3116 } 3117 #endif 3118 3119 /* Cannot start a write transaction without first holding a read 3120 ** transaction. */ 3121 assert( pWal->readLock>=0 ); 3122 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3123 3124 if( pWal->readOnly ){ 3125 return SQLITE_READONLY; 3126 } 3127 3128 /* Only one writer allowed at a time. Get the write lock. Return 3129 ** SQLITE_BUSY if unable. 3130 */ 3131 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3132 if( rc ){ 3133 return rc; 3134 } 3135 pWal->writeLock = 1; 3136 3137 /* If another connection has written to the database file since the 3138 ** time the read transaction on this connection was started, then 3139 ** the write is disallowed. 3140 */ 3141 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3142 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3143 pWal->writeLock = 0; 3144 rc = SQLITE_BUSY_SNAPSHOT; 3145 } 3146 3147 return rc; 3148 } 3149 3150 /* 3151 ** End a write transaction. The commit has already been done. This 3152 ** routine merely releases the lock. 3153 */ 3154 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3155 if( pWal->writeLock ){ 3156 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3157 pWal->writeLock = 0; 3158 pWal->iReCksum = 0; 3159 pWal->truncateOnCommit = 0; 3160 } 3161 return SQLITE_OK; 3162 } 3163 3164 /* 3165 ** If any data has been written (but not committed) to the log file, this 3166 ** function moves the write-pointer back to the start of the transaction. 3167 ** 3168 ** Additionally, the callback function is invoked for each frame written 3169 ** to the WAL since the start of the transaction. If the callback returns 3170 ** other than SQLITE_OK, it is not invoked again and the error code is 3171 ** returned to the caller. 3172 ** 3173 ** Otherwise, if the callback function does not return an error, this 3174 ** function returns SQLITE_OK. 3175 */ 3176 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3177 int rc = SQLITE_OK; 3178 if( ALWAYS(pWal->writeLock) ){ 3179 Pgno iMax = pWal->hdr.mxFrame; 3180 Pgno iFrame; 3181 3182 /* Restore the clients cache of the wal-index header to the state it 3183 ** was in before the client began writing to the database. 3184 */ 3185 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3186 3187 for(iFrame=pWal->hdr.mxFrame+1; 3188 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3189 iFrame++ 3190 ){ 3191 /* This call cannot fail. Unless the page for which the page number 3192 ** is passed as the second argument is (a) in the cache and 3193 ** (b) has an outstanding reference, then xUndo is either a no-op 3194 ** (if (a) is false) or simply expels the page from the cache (if (b) 3195 ** is false). 3196 ** 3197 ** If the upper layer is doing a rollback, it is guaranteed that there 3198 ** are no outstanding references to any page other than page 1. And 3199 ** page 1 is never written to the log until the transaction is 3200 ** committed. As a result, the call to xUndo may not fail. 3201 */ 3202 assert( walFramePgno(pWal, iFrame)!=1 ); 3203 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3204 } 3205 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3206 } 3207 return rc; 3208 } 3209 3210 /* 3211 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3212 ** values. This function populates the array with values required to 3213 ** "rollback" the write position of the WAL handle back to the current 3214 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3215 */ 3216 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3217 assert( pWal->writeLock ); 3218 aWalData[0] = pWal->hdr.mxFrame; 3219 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3220 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3221 aWalData[3] = pWal->nCkpt; 3222 } 3223 3224 /* 3225 ** Move the write position of the WAL back to the point identified by 3226 ** the values in the aWalData[] array. aWalData must point to an array 3227 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3228 ** by a call to WalSavepoint(). 3229 */ 3230 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3231 int rc = SQLITE_OK; 3232 3233 assert( pWal->writeLock ); 3234 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3235 3236 if( aWalData[3]!=pWal->nCkpt ){ 3237 /* This savepoint was opened immediately after the write-transaction 3238 ** was started. Right after that, the writer decided to wrap around 3239 ** to the start of the log. Update the savepoint values to match. 3240 */ 3241 aWalData[0] = 0; 3242 aWalData[3] = pWal->nCkpt; 3243 } 3244 3245 if( aWalData[0]<pWal->hdr.mxFrame ){ 3246 pWal->hdr.mxFrame = aWalData[0]; 3247 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3248 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3249 walCleanupHash(pWal); 3250 } 3251 3252 return rc; 3253 } 3254 3255 /* 3256 ** This function is called just before writing a set of frames to the log 3257 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3258 ** to the current log file, it is possible to overwrite the start of the 3259 ** existing log file with the new frames (i.e. "reset" the log). If so, 3260 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3261 ** unchanged. 3262 ** 3263 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3264 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3265 ** if an error occurs. 3266 */ 3267 static int walRestartLog(Wal *pWal){ 3268 int rc = SQLITE_OK; 3269 int cnt; 3270 3271 if( pWal->readLock==0 ){ 3272 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3273 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3274 if( pInfo->nBackfill>0 ){ 3275 u32 salt1; 3276 sqlite3_randomness(4, &salt1); 3277 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3278 if( rc==SQLITE_OK ){ 3279 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3280 ** readers are currently using the WAL), then the transactions 3281 ** frames will overwrite the start of the existing log. Update the 3282 ** wal-index header to reflect this. 3283 ** 3284 ** In theory it would be Ok to update the cache of the header only 3285 ** at this point. But updating the actual wal-index header is also 3286 ** safe and means there is no special case for sqlite3WalUndo() 3287 ** to handle if this transaction is rolled back. */ 3288 walRestartHdr(pWal, salt1); 3289 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3290 }else if( rc!=SQLITE_BUSY ){ 3291 return rc; 3292 } 3293 } 3294 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3295 pWal->readLock = -1; 3296 cnt = 0; 3297 do{ 3298 int notUsed; 3299 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3300 }while( rc==WAL_RETRY ); 3301 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3302 testcase( (rc&0xff)==SQLITE_IOERR ); 3303 testcase( rc==SQLITE_PROTOCOL ); 3304 testcase( rc==SQLITE_OK ); 3305 } 3306 return rc; 3307 } 3308 3309 /* 3310 ** Information about the current state of the WAL file and where 3311 ** the next fsync should occur - passed from sqlite3WalFrames() into 3312 ** walWriteToLog(). 3313 */ 3314 typedef struct WalWriter { 3315 Wal *pWal; /* The complete WAL information */ 3316 sqlite3_file *pFd; /* The WAL file to which we write */ 3317 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3318 int syncFlags; /* Flags for the fsync */ 3319 int szPage; /* Size of one page */ 3320 } WalWriter; 3321 3322 /* 3323 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3324 ** Do a sync when crossing the p->iSyncPoint boundary. 3325 ** 3326 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3327 ** first write the part before iSyncPoint, then sync, then write the 3328 ** rest. 3329 */ 3330 static int walWriteToLog( 3331 WalWriter *p, /* WAL to write to */ 3332 void *pContent, /* Content to be written */ 3333 int iAmt, /* Number of bytes to write */ 3334 sqlite3_int64 iOffset /* Start writing at this offset */ 3335 ){ 3336 int rc; 3337 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3338 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3339 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3340 if( rc ) return rc; 3341 iOffset += iFirstAmt; 3342 iAmt -= iFirstAmt; 3343 pContent = (void*)(iFirstAmt + (char*)pContent); 3344 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3345 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3346 if( iAmt==0 || rc ) return rc; 3347 } 3348 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3349 return rc; 3350 } 3351 3352 /* 3353 ** Write out a single frame of the WAL 3354 */ 3355 static int walWriteOneFrame( 3356 WalWriter *p, /* Where to write the frame */ 3357 PgHdr *pPage, /* The page of the frame to be written */ 3358 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3359 sqlite3_int64 iOffset /* Byte offset at which to write */ 3360 ){ 3361 int rc; /* Result code from subfunctions */ 3362 void *pData; /* Data actually written */ 3363 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3364 pData = pPage->pData; 3365 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3366 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3367 if( rc ) return rc; 3368 /* Write the page data */ 3369 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3370 return rc; 3371 } 3372 3373 /* 3374 ** This function is called as part of committing a transaction within which 3375 ** one or more frames have been overwritten. It updates the checksums for 3376 ** all frames written to the wal file by the current transaction starting 3377 ** with the earliest to have been overwritten. 3378 ** 3379 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3380 */ 3381 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3382 const int szPage = pWal->szPage;/* Database page size */ 3383 int rc = SQLITE_OK; /* Return code */ 3384 u8 *aBuf; /* Buffer to load data from wal file into */ 3385 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3386 u32 iRead; /* Next frame to read from wal file */ 3387 i64 iCksumOff; 3388 3389 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3390 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3391 3392 /* Find the checksum values to use as input for the recalculating the 3393 ** first checksum. If the first frame is frame 1 (implying that the current 3394 ** transaction restarted the wal file), these values must be read from the 3395 ** wal-file header. Otherwise, read them from the frame header of the 3396 ** previous frame. */ 3397 assert( pWal->iReCksum>0 ); 3398 if( pWal->iReCksum==1 ){ 3399 iCksumOff = 24; 3400 }else{ 3401 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3402 } 3403 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3404 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3405 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3406 3407 iRead = pWal->iReCksum; 3408 pWal->iReCksum = 0; 3409 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3410 i64 iOff = walFrameOffset(iRead, szPage); 3411 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3412 if( rc==SQLITE_OK ){ 3413 u32 iPgno, nDbSize; 3414 iPgno = sqlite3Get4byte(aBuf); 3415 nDbSize = sqlite3Get4byte(&aBuf[4]); 3416 3417 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3418 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3419 } 3420 } 3421 3422 sqlite3_free(aBuf); 3423 return rc; 3424 } 3425 3426 /* 3427 ** Write a set of frames to the log. The caller must hold the write-lock 3428 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3429 */ 3430 int sqlite3WalFrames( 3431 Wal *pWal, /* Wal handle to write to */ 3432 int szPage, /* Database page-size in bytes */ 3433 PgHdr *pList, /* List of dirty pages to write */ 3434 Pgno nTruncate, /* Database size after this commit */ 3435 int isCommit, /* True if this is a commit */ 3436 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3437 ){ 3438 int rc; /* Used to catch return codes */ 3439 u32 iFrame; /* Next frame address */ 3440 PgHdr *p; /* Iterator to run through pList with. */ 3441 PgHdr *pLast = 0; /* Last frame in list */ 3442 int nExtra = 0; /* Number of extra copies of last page */ 3443 int szFrame; /* The size of a single frame */ 3444 i64 iOffset; /* Next byte to write in WAL file */ 3445 WalWriter w; /* The writer */ 3446 u32 iFirst = 0; /* First frame that may be overwritten */ 3447 WalIndexHdr *pLive; /* Pointer to shared header */ 3448 3449 assert( pList ); 3450 assert( pWal->writeLock ); 3451 3452 /* If this frame set completes a transaction, then nTruncate>0. If 3453 ** nTruncate==0 then this frame set does not complete the transaction. */ 3454 assert( (isCommit!=0)==(nTruncate!=0) ); 3455 3456 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3457 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3458 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3459 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3460 } 3461 #endif 3462 3463 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3464 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3465 iFirst = pLive->mxFrame+1; 3466 } 3467 3468 /* See if it is possible to write these frames into the start of the 3469 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3470 */ 3471 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3472 return rc; 3473 } 3474 3475 /* If this is the first frame written into the log, write the WAL 3476 ** header to the start of the WAL file. See comments at the top of 3477 ** this source file for a description of the WAL header format. 3478 */ 3479 iFrame = pWal->hdr.mxFrame; 3480 if( iFrame==0 ){ 3481 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3482 u32 aCksum[2]; /* Checksum for wal-header */ 3483 3484 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3485 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3486 sqlite3Put4byte(&aWalHdr[8], szPage); 3487 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3488 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3489 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3490 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3491 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3492 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3493 3494 pWal->szPage = szPage; 3495 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3496 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3497 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3498 pWal->truncateOnCommit = 1; 3499 3500 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3501 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3502 if( rc!=SQLITE_OK ){ 3503 return rc; 3504 } 3505 3506 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3507 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3508 ** an out-of-order write following a WAL restart could result in 3509 ** database corruption. See the ticket: 3510 ** 3511 ** https://sqlite.org/src/info/ff5be73dee 3512 */ 3513 if( pWal->syncHeader ){ 3514 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3515 if( rc ) return rc; 3516 } 3517 } 3518 assert( (int)pWal->szPage==szPage ); 3519 3520 /* Setup information needed to write frames into the WAL */ 3521 w.pWal = pWal; 3522 w.pFd = pWal->pWalFd; 3523 w.iSyncPoint = 0; 3524 w.syncFlags = sync_flags; 3525 w.szPage = szPage; 3526 iOffset = walFrameOffset(iFrame+1, szPage); 3527 szFrame = szPage + WAL_FRAME_HDRSIZE; 3528 3529 /* Write all frames into the log file exactly once */ 3530 for(p=pList; p; p=p->pDirty){ 3531 int nDbSize; /* 0 normally. Positive == commit flag */ 3532 3533 /* Check if this page has already been written into the wal file by 3534 ** the current transaction. If so, overwrite the existing frame and 3535 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3536 ** checksums must be recomputed when the transaction is committed. */ 3537 if( iFirst && (p->pDirty || isCommit==0) ){ 3538 u32 iWrite = 0; 3539 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3540 assert( rc==SQLITE_OK || iWrite==0 ); 3541 if( iWrite>=iFirst ){ 3542 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3543 void *pData; 3544 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3545 pWal->iReCksum = iWrite; 3546 } 3547 pData = p->pData; 3548 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3549 if( rc ) return rc; 3550 p->flags &= ~PGHDR_WAL_APPEND; 3551 continue; 3552 } 3553 } 3554 3555 iFrame++; 3556 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3557 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3558 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3559 if( rc ) return rc; 3560 pLast = p; 3561 iOffset += szFrame; 3562 p->flags |= PGHDR_WAL_APPEND; 3563 } 3564 3565 /* Recalculate checksums within the wal file if required. */ 3566 if( isCommit && pWal->iReCksum ){ 3567 rc = walRewriteChecksums(pWal, iFrame); 3568 if( rc ) return rc; 3569 } 3570 3571 /* If this is the end of a transaction, then we might need to pad 3572 ** the transaction and/or sync the WAL file. 3573 ** 3574 ** Padding and syncing only occur if this set of frames complete a 3575 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3576 ** or synchronous==OFF, then no padding or syncing are needed. 3577 ** 3578 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3579 ** needed and only the sync is done. If padding is needed, then the 3580 ** final frame is repeated (with its commit mark) until the next sector 3581 ** boundary is crossed. Only the part of the WAL prior to the last 3582 ** sector boundary is synced; the part of the last frame that extends 3583 ** past the sector boundary is written after the sync. 3584 */ 3585 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3586 int bSync = 1; 3587 if( pWal->padToSectorBoundary ){ 3588 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3589 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3590 bSync = (w.iSyncPoint==iOffset); 3591 testcase( bSync ); 3592 while( iOffset<w.iSyncPoint ){ 3593 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3594 if( rc ) return rc; 3595 iOffset += szFrame; 3596 nExtra++; 3597 assert( pLast!=0 ); 3598 } 3599 } 3600 if( bSync ){ 3601 assert( rc==SQLITE_OK ); 3602 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3603 } 3604 } 3605 3606 /* If this frame set completes the first transaction in the WAL and 3607 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3608 ** journal size limit, if possible. 3609 */ 3610 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3611 i64 sz = pWal->mxWalSize; 3612 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3613 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3614 } 3615 walLimitSize(pWal, sz); 3616 pWal->truncateOnCommit = 0; 3617 } 3618 3619 /* Append data to the wal-index. It is not necessary to lock the 3620 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3621 ** guarantees that there are no other writers, and no data that may 3622 ** be in use by existing readers is being overwritten. 3623 */ 3624 iFrame = pWal->hdr.mxFrame; 3625 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3626 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3627 iFrame++; 3628 rc = walIndexAppend(pWal, iFrame, p->pgno); 3629 } 3630 assert( pLast!=0 || nExtra==0 ); 3631 while( rc==SQLITE_OK && nExtra>0 ){ 3632 iFrame++; 3633 nExtra--; 3634 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3635 } 3636 3637 if( rc==SQLITE_OK ){ 3638 /* Update the private copy of the header. */ 3639 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3640 testcase( szPage<=32768 ); 3641 testcase( szPage>=65536 ); 3642 pWal->hdr.mxFrame = iFrame; 3643 if( isCommit ){ 3644 pWal->hdr.iChange++; 3645 pWal->hdr.nPage = nTruncate; 3646 } 3647 /* If this is a commit, update the wal-index header too. */ 3648 if( isCommit ){ 3649 walIndexWriteHdr(pWal); 3650 pWal->iCallback = iFrame; 3651 } 3652 } 3653 3654 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3655 return rc; 3656 } 3657 3658 /* 3659 ** This routine is called to implement sqlite3_wal_checkpoint() and 3660 ** related interfaces. 3661 ** 3662 ** Obtain a CHECKPOINT lock and then backfill as much information as 3663 ** we can from WAL into the database. 3664 ** 3665 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3666 ** callback. In this case this function runs a blocking checkpoint. 3667 */ 3668 int sqlite3WalCheckpoint( 3669 Wal *pWal, /* Wal connection */ 3670 sqlite3 *db, /* Check this handle's interrupt flag */ 3671 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3672 int (*xBusy)(void*), /* Function to call when busy */ 3673 void *pBusyArg, /* Context argument for xBusyHandler */ 3674 int sync_flags, /* Flags to sync db file with (or 0) */ 3675 int nBuf, /* Size of temporary buffer */ 3676 u8 *zBuf, /* Temporary buffer to use */ 3677 int *pnLog, /* OUT: Number of frames in WAL */ 3678 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3679 ){ 3680 int rc; /* Return code */ 3681 int isChanged = 0; /* True if a new wal-index header is loaded */ 3682 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3683 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3684 3685 assert( pWal->ckptLock==0 ); 3686 assert( pWal->writeLock==0 ); 3687 3688 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3689 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3690 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3691 3692 if( pWal->readOnly ) return SQLITE_READONLY; 3693 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3694 3695 /* Enable blocking locks, if possible. If blocking locks are successfully 3696 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3697 sqlite3WalDb(pWal, db); 3698 (void)walEnableBlocking(pWal); 3699 3700 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3701 ** "checkpoint" lock on the database file. 3702 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3703 ** checkpoint operation at the same time, the lock cannot be obtained and 3704 ** SQLITE_BUSY is returned. 3705 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3706 ** it will not be invoked in this case. 3707 */ 3708 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3709 testcase( rc==SQLITE_BUSY ); 3710 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3711 if( rc==SQLITE_OK ){ 3712 pWal->ckptLock = 1; 3713 3714 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3715 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3716 ** file. 3717 ** 3718 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3719 ** immediately, and a busy-handler is configured, it is invoked and the 3720 ** writer lock retried until either the busy-handler returns 0 or the 3721 ** lock is successfully obtained. 3722 */ 3723 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3724 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3725 if( rc==SQLITE_OK ){ 3726 pWal->writeLock = 1; 3727 }else if( rc==SQLITE_BUSY ){ 3728 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3729 xBusy2 = 0; 3730 rc = SQLITE_OK; 3731 } 3732 } 3733 } 3734 3735 3736 /* Read the wal-index header. */ 3737 if( rc==SQLITE_OK ){ 3738 walDisableBlocking(pWal); 3739 rc = walIndexReadHdr(pWal, &isChanged); 3740 (void)walEnableBlocking(pWal); 3741 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3742 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3743 } 3744 } 3745 3746 /* Copy data from the log to the database file. */ 3747 if( rc==SQLITE_OK ){ 3748 3749 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3750 rc = SQLITE_CORRUPT_BKPT; 3751 }else{ 3752 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3753 } 3754 3755 /* If no error occurred, set the output variables. */ 3756 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3757 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3758 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3759 } 3760 } 3761 3762 if( isChanged ){ 3763 /* If a new wal-index header was loaded before the checkpoint was 3764 ** performed, then the pager-cache associated with pWal is now 3765 ** out of date. So zero the cached wal-index header to ensure that 3766 ** next time the pager opens a snapshot on this database it knows that 3767 ** the cache needs to be reset. 3768 */ 3769 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3770 } 3771 3772 walDisableBlocking(pWal); 3773 sqlite3WalDb(pWal, 0); 3774 3775 /* Release the locks. */ 3776 sqlite3WalEndWriteTransaction(pWal); 3777 if( pWal->ckptLock ){ 3778 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3779 pWal->ckptLock = 0; 3780 } 3781 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3783 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3784 #endif 3785 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3786 } 3787 3788 /* Return the value to pass to a sqlite3_wal_hook callback, the 3789 ** number of frames in the WAL at the point of the last commit since 3790 ** sqlite3WalCallback() was called. If no commits have occurred since 3791 ** the last call, then return 0. 3792 */ 3793 int sqlite3WalCallback(Wal *pWal){ 3794 u32 ret = 0; 3795 if( pWal ){ 3796 ret = pWal->iCallback; 3797 pWal->iCallback = 0; 3798 } 3799 return (int)ret; 3800 } 3801 3802 /* 3803 ** This function is called to change the WAL subsystem into or out 3804 ** of locking_mode=EXCLUSIVE. 3805 ** 3806 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3807 ** into locking_mode=NORMAL. This means that we must acquire a lock 3808 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3809 ** or if the acquisition of the lock fails, then return 0. If the 3810 ** transition out of exclusive-mode is successful, return 1. This 3811 ** operation must occur while the pager is still holding the exclusive 3812 ** lock on the main database file. 3813 ** 3814 ** If op is one, then change from locking_mode=NORMAL into 3815 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3816 ** be released. Return 1 if the transition is made and 0 if the 3817 ** WAL is already in exclusive-locking mode - meaning that this 3818 ** routine is a no-op. The pager must already hold the exclusive lock 3819 ** on the main database file before invoking this operation. 3820 ** 3821 ** If op is negative, then do a dry-run of the op==1 case but do 3822 ** not actually change anything. The pager uses this to see if it 3823 ** should acquire the database exclusive lock prior to invoking 3824 ** the op==1 case. 3825 */ 3826 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3827 int rc; 3828 assert( pWal->writeLock==0 ); 3829 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3830 3831 /* pWal->readLock is usually set, but might be -1 if there was a 3832 ** prior error while attempting to acquire are read-lock. This cannot 3833 ** happen if the connection is actually in exclusive mode (as no xShmLock 3834 ** locks are taken in this case). Nor should the pager attempt to 3835 ** upgrade to exclusive-mode following such an error. 3836 */ 3837 assert( pWal->readLock>=0 || pWal->lockError ); 3838 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3839 3840 if( op==0 ){ 3841 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3842 pWal->exclusiveMode = WAL_NORMAL_MODE; 3843 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3844 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3845 } 3846 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3847 }else{ 3848 /* Already in locking_mode=NORMAL */ 3849 rc = 0; 3850 } 3851 }else if( op>0 ){ 3852 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3853 assert( pWal->readLock>=0 ); 3854 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3855 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3856 rc = 1; 3857 }else{ 3858 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3859 } 3860 return rc; 3861 } 3862 3863 /* 3864 ** Return true if the argument is non-NULL and the WAL module is using 3865 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3866 ** WAL module is using shared-memory, return false. 3867 */ 3868 int sqlite3WalHeapMemory(Wal *pWal){ 3869 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3870 } 3871 3872 #ifdef SQLITE_ENABLE_SNAPSHOT 3873 /* Create a snapshot object. The content of a snapshot is opaque to 3874 ** every other subsystem, so the WAL module can put whatever it needs 3875 ** in the object. 3876 */ 3877 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3878 int rc = SQLITE_OK; 3879 WalIndexHdr *pRet; 3880 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3881 3882 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3883 3884 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3885 *ppSnapshot = 0; 3886 return SQLITE_ERROR; 3887 } 3888 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3889 if( pRet==0 ){ 3890 rc = SQLITE_NOMEM_BKPT; 3891 }else{ 3892 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3893 *ppSnapshot = (sqlite3_snapshot*)pRet; 3894 } 3895 3896 return rc; 3897 } 3898 3899 /* Try to open on pSnapshot when the next read-transaction starts 3900 */ 3901 void sqlite3WalSnapshotOpen( 3902 Wal *pWal, 3903 sqlite3_snapshot *pSnapshot 3904 ){ 3905 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3906 } 3907 3908 /* 3909 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3910 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3911 */ 3912 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3913 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3914 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3915 3916 /* aSalt[0] is a copy of the value stored in the wal file header. It 3917 ** is incremented each time the wal file is restarted. */ 3918 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3919 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3920 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3921 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3922 return 0; 3923 } 3924 3925 /* 3926 ** The caller currently has a read transaction open on the database. 3927 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3928 ** checks if the snapshot passed as the second argument is still 3929 ** available. If so, SQLITE_OK is returned. 3930 ** 3931 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3932 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3933 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3934 ** lock is released before returning. 3935 */ 3936 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3937 int rc; 3938 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3939 if( rc==SQLITE_OK ){ 3940 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3941 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3942 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3943 ){ 3944 rc = SQLITE_ERROR_SNAPSHOT; 3945 walUnlockShared(pWal, WAL_CKPT_LOCK); 3946 } 3947 } 3948 return rc; 3949 } 3950 3951 /* 3952 ** Release a lock obtained by an earlier successful call to 3953 ** sqlite3WalSnapshotCheck(). 3954 */ 3955 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3956 assert( pWal ); 3957 walUnlockShared(pWal, WAL_CKPT_LOCK); 3958 } 3959 3960 3961 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3962 3963 #ifdef SQLITE_ENABLE_ZIPVFS 3964 /* 3965 ** If the argument is not NULL, it points to a Wal object that holds a 3966 ** read-lock. This function returns the database page-size if it is known, 3967 ** or zero if it is not (or if pWal is NULL). 3968 */ 3969 int sqlite3WalFramesize(Wal *pWal){ 3970 assert( pWal==0 || pWal->readLock>=0 ); 3971 return (pWal ? pWal->szPage : 0); 3972 } 3973 #endif 3974 3975 /* Return the sqlite3_file object for the WAL file 3976 */ 3977 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3978 return pWal->pWalFd; 3979 } 3980 3981 #endif /* #ifndef SQLITE_OMIT_WAL */ 3982