xref: /sqlite-3.40.0/src/wal.c (revision a8e41eca)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471   sqlite3 *db;
472 #endif
473 };
474 
475 /*
476 ** Candidate values for Wal.exclusiveMode.
477 */
478 #define WAL_NORMAL_MODE     0
479 #define WAL_EXCLUSIVE_MODE  1
480 #define WAL_HEAPMEMORY_MODE 2
481 
482 /*
483 ** Possible values for WAL.readOnly
484 */
485 #define WAL_RDWR        0    /* Normal read/write connection */
486 #define WAL_RDONLY      1    /* The WAL file is readonly */
487 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
488 
489 /*
490 ** Each page of the wal-index mapping contains a hash-table made up of
491 ** an array of HASHTABLE_NSLOT elements of the following type.
492 */
493 typedef u16 ht_slot;
494 
495 /*
496 ** This structure is used to implement an iterator that loops through
497 ** all frames in the WAL in database page order. Where two or more frames
498 ** correspond to the same database page, the iterator visits only the
499 ** frame most recently written to the WAL (in other words, the frame with
500 ** the largest index).
501 **
502 ** The internals of this structure are only accessed by:
503 **
504 **   walIteratorInit() - Create a new iterator,
505 **   walIteratorNext() - Step an iterator,
506 **   walIteratorFree() - Free an iterator.
507 **
508 ** This functionality is used by the checkpoint code (see walCheckpoint()).
509 */
510 struct WalIterator {
511   int iPrior;                     /* Last result returned from the iterator */
512   int nSegment;                   /* Number of entries in aSegment[] */
513   struct WalSegment {
514     int iNext;                    /* Next slot in aIndex[] not yet returned */
515     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
516     u32 *aPgno;                   /* Array of page numbers. */
517     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
518     int iZero;                    /* Frame number associated with aPgno[0] */
519   } aSegment[1];                  /* One for every 32KB page in the wal-index */
520 };
521 
522 /*
523 ** Define the parameters of the hash tables in the wal-index file. There
524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525 ** wal-index.
526 **
527 ** Changing any of these constants will alter the wal-index format and
528 ** create incompatibilities.
529 */
530 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
531 #define HASHTABLE_HASH_1     383                  /* Should be prime */
532 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
533 
534 /*
535 ** The block of page numbers associated with the first hash-table in a
536 ** wal-index is smaller than usual. This is so that there is a complete
537 ** hash-table on each aligned 32KB page of the wal-index.
538 */
539 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
540 
541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542 #define WALINDEX_PGSZ   (                                         \
543     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544 )
545 
546 /*
547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
549 ** numbered from zero.
550 **
551 ** If the wal-index is currently smaller the iPage pages then the size
552 ** of the wal-index might be increased, but only if it is safe to do
553 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555 **
556 ** If this call is successful, *ppPage is set to point to the wal-index
557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558 ** then an SQLite error code is returned and *ppPage is set to 0.
559 */
560 static SQLITE_NOINLINE int walIndexPageRealloc(
561   Wal *pWal,               /* The WAL context */
562   int iPage,               /* The page we seek */
563   volatile u32 **ppPage    /* Write the page pointer here */
564 ){
565   int rc = SQLITE_OK;
566 
567   /* Enlarge the pWal->apWiData[] array if required */
568   if( pWal->nWiData<=iPage ){
569     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
570     volatile u32 **apNew;
571     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
572     if( !apNew ){
573       *ppPage = 0;
574       return SQLITE_NOMEM_BKPT;
575     }
576     memset((void*)&apNew[pWal->nWiData], 0,
577            sizeof(u32*)*(iPage+1-pWal->nWiData));
578     pWal->apWiData = apNew;
579     pWal->nWiData = iPage+1;
580   }
581 
582   /* Request a pointer to the required page from the VFS */
583   assert( pWal->apWiData[iPage]==0 );
584   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587   }else{
588     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590     );
591     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
593     if( (rc&0xff)==SQLITE_READONLY ){
594       pWal->readOnly |= WAL_SHM_RDONLY;
595       if( rc==SQLITE_READONLY ){
596         rc = SQLITE_OK;
597       }
598     }
599   }
600 
601   *ppPage = pWal->apWiData[iPage];
602   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
603   return rc;
604 }
605 static int walIndexPage(
606   Wal *pWal,               /* The WAL context */
607   int iPage,               /* The page we seek */
608   volatile u32 **ppPage    /* Write the page pointer here */
609 ){
610   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
611     return walIndexPageRealloc(pWal, iPage, ppPage);
612   }
613   return SQLITE_OK;
614 }
615 
616 /*
617 ** Return a pointer to the WalCkptInfo structure in the wal-index.
618 */
619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
620   assert( pWal->nWiData>0 && pWal->apWiData[0] );
621   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
622 }
623 
624 /*
625 ** Return a pointer to the WalIndexHdr structure in the wal-index.
626 */
627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
628   assert( pWal->nWiData>0 && pWal->apWiData[0] );
629   return (volatile WalIndexHdr*)pWal->apWiData[0];
630 }
631 
632 /*
633 ** The argument to this macro must be of type u32. On a little-endian
634 ** architecture, it returns the u32 value that results from interpreting
635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
636 ** returns the value that would be produced by interpreting the 4 bytes
637 ** of the input value as a little-endian integer.
638 */
639 #define BYTESWAP32(x) ( \
640     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
641   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
642 )
643 
644 /*
645 ** Generate or extend an 8 byte checksum based on the data in
646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
647 ** initial values of 0 and 0 if aIn==NULL).
648 **
649 ** The checksum is written back into aOut[] before returning.
650 **
651 ** nByte must be a positive multiple of 8.
652 */
653 static void walChecksumBytes(
654   int nativeCksum, /* True for native byte-order, false for non-native */
655   u8 *a,           /* Content to be checksummed */
656   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
657   const u32 *aIn,  /* Initial checksum value input */
658   u32 *aOut        /* OUT: Final checksum value output */
659 ){
660   u32 s1, s2;
661   u32 *aData = (u32 *)a;
662   u32 *aEnd = (u32 *)&a[nByte];
663 
664   if( aIn ){
665     s1 = aIn[0];
666     s2 = aIn[1];
667   }else{
668     s1 = s2 = 0;
669   }
670 
671   assert( nByte>=8 );
672   assert( (nByte&0x00000007)==0 );
673   assert( nByte<=65536 );
674 
675   if( nativeCksum ){
676     do {
677       s1 += *aData++ + s2;
678       s2 += *aData++ + s1;
679     }while( aData<aEnd );
680   }else{
681     do {
682       s1 += BYTESWAP32(aData[0]) + s2;
683       s2 += BYTESWAP32(aData[1]) + s1;
684       aData += 2;
685     }while( aData<aEnd );
686   }
687 
688   aOut[0] = s1;
689   aOut[1] = s2;
690 }
691 
692 static void walShmBarrier(Wal *pWal){
693   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
694     sqlite3OsShmBarrier(pWal->pDbFd);
695   }
696 }
697 
698 /*
699 ** Write the header information in pWal->hdr into the wal-index.
700 **
701 ** The checksum on pWal->hdr is updated before it is written.
702 */
703 static void walIndexWriteHdr(Wal *pWal){
704   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
705   const int nCksum = offsetof(WalIndexHdr, aCksum);
706 
707   assert( pWal->writeLock );
708   pWal->hdr.isInit = 1;
709   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
710   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
711   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
712   walShmBarrier(pWal);
713   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
714 }
715 
716 /*
717 ** This function encodes a single frame header and writes it to a buffer
718 ** supplied by the caller. A frame-header is made up of a series of
719 ** 4-byte big-endian integers, as follows:
720 **
721 **     0: Page number.
722 **     4: For commit records, the size of the database image in pages
723 **        after the commit. For all other records, zero.
724 **     8: Salt-1 (copied from the wal-header)
725 **    12: Salt-2 (copied from the wal-header)
726 **    16: Checksum-1.
727 **    20: Checksum-2.
728 */
729 static void walEncodeFrame(
730   Wal *pWal,                      /* The write-ahead log */
731   u32 iPage,                      /* Database page number for frame */
732   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
733   u8 *aData,                      /* Pointer to page data */
734   u8 *aFrame                      /* OUT: Write encoded frame here */
735 ){
736   int nativeCksum;                /* True for native byte-order checksums */
737   u32 *aCksum = pWal->hdr.aFrameCksum;
738   assert( WAL_FRAME_HDRSIZE==24 );
739   sqlite3Put4byte(&aFrame[0], iPage);
740   sqlite3Put4byte(&aFrame[4], nTruncate);
741   if( pWal->iReCksum==0 ){
742     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
743 
744     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
745     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
746     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
747 
748     sqlite3Put4byte(&aFrame[16], aCksum[0]);
749     sqlite3Put4byte(&aFrame[20], aCksum[1]);
750   }else{
751     memset(&aFrame[8], 0, 16);
752   }
753 }
754 
755 /*
756 ** Check to see if the frame with header in aFrame[] and content
757 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
758 ** *pnTruncate and return true.  Return if the frame is not valid.
759 */
760 static int walDecodeFrame(
761   Wal *pWal,                      /* The write-ahead log */
762   u32 *piPage,                    /* OUT: Database page number for frame */
763   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
764   u8 *aData,                      /* Pointer to page data (for checksum) */
765   u8 *aFrame                      /* Frame data */
766 ){
767   int nativeCksum;                /* True for native byte-order checksums */
768   u32 *aCksum = pWal->hdr.aFrameCksum;
769   u32 pgno;                       /* Page number of the frame */
770   assert( WAL_FRAME_HDRSIZE==24 );
771 
772   /* A frame is only valid if the salt values in the frame-header
773   ** match the salt values in the wal-header.
774   */
775   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
776     return 0;
777   }
778 
779   /* A frame is only valid if the page number is creater than zero.
780   */
781   pgno = sqlite3Get4byte(&aFrame[0]);
782   if( pgno==0 ){
783     return 0;
784   }
785 
786   /* A frame is only valid if a checksum of the WAL header,
787   ** all prior frams, the first 16 bytes of this frame-header,
788   ** and the frame-data matches the checksum in the last 8
789   ** bytes of this frame-header.
790   */
791   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
792   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
793   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
794   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
795    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
796   ){
797     /* Checksum failed. */
798     return 0;
799   }
800 
801   /* If we reach this point, the frame is valid.  Return the page number
802   ** and the new database size.
803   */
804   *piPage = pgno;
805   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
806   return 1;
807 }
808 
809 
810 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
811 /*
812 ** Names of locks.  This routine is used to provide debugging output and is not
813 ** a part of an ordinary build.
814 */
815 static const char *walLockName(int lockIdx){
816   if( lockIdx==WAL_WRITE_LOCK ){
817     return "WRITE-LOCK";
818   }else if( lockIdx==WAL_CKPT_LOCK ){
819     return "CKPT-LOCK";
820   }else if( lockIdx==WAL_RECOVER_LOCK ){
821     return "RECOVER-LOCK";
822   }else{
823     static char zName[15];
824     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
825                      lockIdx-WAL_READ_LOCK(0));
826     return zName;
827   }
828 }
829 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
830 
831 
832 /*
833 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
834 ** A lock cannot be moved directly between shared and exclusive - it must go
835 ** through the unlocked state first.
836 **
837 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
838 */
839 static int walLockShared(Wal *pWal, int lockIdx){
840   int rc;
841   if( pWal->exclusiveMode ) return SQLITE_OK;
842   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
843                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
844   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
845             walLockName(lockIdx), rc ? "failed" : "ok"));
846   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
847   return rc;
848 }
849 static void walUnlockShared(Wal *pWal, int lockIdx){
850   if( pWal->exclusiveMode ) return;
851   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
852                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
853   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
854 }
855 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
856   int rc;
857   if( pWal->exclusiveMode ) return SQLITE_OK;
858   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
859                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
860   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
861             walLockName(lockIdx), n, rc ? "failed" : "ok"));
862   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
863   return rc;
864 }
865 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
866   if( pWal->exclusiveMode ) return;
867   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
868                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
869   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
870              walLockName(lockIdx), n));
871 }
872 
873 /*
874 ** Compute a hash on a page number.  The resulting hash value must land
875 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
876 ** the hash to the next value in the event of a collision.
877 */
878 static int walHash(u32 iPage){
879   assert( iPage>0 );
880   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
881   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
882 }
883 static int walNextHash(int iPriorHash){
884   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
885 }
886 
887 /*
888 ** An instance of the WalHashLoc object is used to describe the location
889 ** of a page hash table in the wal-index.  This becomes the return value
890 ** from walHashGet().
891 */
892 typedef struct WalHashLoc WalHashLoc;
893 struct WalHashLoc {
894   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
895   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
896   u32 iZero;                /* One less than the frame number of first indexed*/
897 };
898 
899 /*
900 ** Return pointers to the hash table and page number array stored on
901 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
902 ** numbered starting from 0.
903 **
904 ** Set output variable pLoc->aHash to point to the start of the hash table
905 ** in the wal-index file. Set pLoc->iZero to one less than the frame
906 ** number of the first frame indexed by this hash table. If a
907 ** slot in the hash table is set to N, it refers to frame number
908 ** (pLoc->iZero+N) in the log.
909 **
910 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
911 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
912 */
913 static int walHashGet(
914   Wal *pWal,                      /* WAL handle */
915   int iHash,                      /* Find the iHash'th table */
916   WalHashLoc *pLoc                /* OUT: Hash table location */
917 ){
918   int rc;                         /* Return code */
919 
920   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
921   assert( rc==SQLITE_OK || iHash>0 );
922 
923   if( rc==SQLITE_OK ){
924     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
925     if( iHash==0 ){
926       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
927       pLoc->iZero = 0;
928     }else{
929       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
930     }
931     pLoc->aPgno = &pLoc->aPgno[-1];
932   }
933   return rc;
934 }
935 
936 /*
937 ** Return the number of the wal-index page that contains the hash-table
938 ** and page-number array that contain entries corresponding to WAL frame
939 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
940 ** are numbered starting from 0.
941 */
942 static int walFramePage(u32 iFrame){
943   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
944   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
945        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
946        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
947        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
948        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
949   );
950   return iHash;
951 }
952 
953 /*
954 ** Return the page number associated with frame iFrame in this WAL.
955 */
956 static u32 walFramePgno(Wal *pWal, u32 iFrame){
957   int iHash = walFramePage(iFrame);
958   if( iHash==0 ){
959     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
960   }
961   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
962 }
963 
964 /*
965 ** Remove entries from the hash table that point to WAL slots greater
966 ** than pWal->hdr.mxFrame.
967 **
968 ** This function is called whenever pWal->hdr.mxFrame is decreased due
969 ** to a rollback or savepoint.
970 **
971 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
972 ** updated.  Any later hash tables will be automatically cleared when
973 ** pWal->hdr.mxFrame advances to the point where those hash tables are
974 ** actually needed.
975 */
976 static void walCleanupHash(Wal *pWal){
977   WalHashLoc sLoc;                /* Hash table location */
978   int iLimit = 0;                 /* Zero values greater than this */
979   int nByte;                      /* Number of bytes to zero in aPgno[] */
980   int i;                          /* Used to iterate through aHash[] */
981   int rc;                         /* Return code form walHashGet() */
982 
983   assert( pWal->writeLock );
984   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
985   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
986   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
987 
988   if( pWal->hdr.mxFrame==0 ) return;
989 
990   /* Obtain pointers to the hash-table and page-number array containing
991   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
992   ** that the page said hash-table and array reside on is already mapped.(1)
993   */
994   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
995   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
996   rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
997   if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
998 
999   /* Zero all hash-table entries that correspond to frame numbers greater
1000   ** than pWal->hdr.mxFrame.
1001   */
1002   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1003   assert( iLimit>0 );
1004   for(i=0; i<HASHTABLE_NSLOT; i++){
1005     if( sLoc.aHash[i]>iLimit ){
1006       sLoc.aHash[i] = 0;
1007     }
1008   }
1009 
1010   /* Zero the entries in the aPgno array that correspond to frames with
1011   ** frame numbers greater than pWal->hdr.mxFrame.
1012   */
1013   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1014   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1015 
1016 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1017   /* Verify that the every entry in the mapping region is still reachable
1018   ** via the hash table even after the cleanup.
1019   */
1020   if( iLimit ){
1021     int j;           /* Loop counter */
1022     int iKey;        /* Hash key */
1023     for(j=1; j<=iLimit; j++){
1024       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1025         if( sLoc.aHash[iKey]==j ) break;
1026       }
1027       assert( sLoc.aHash[iKey]==j );
1028     }
1029   }
1030 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1031 }
1032 
1033 
1034 /*
1035 ** Set an entry in the wal-index that will map database page number
1036 ** pPage into WAL frame iFrame.
1037 */
1038 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1039   int rc;                         /* Return code */
1040   WalHashLoc sLoc;                /* Wal-index hash table location */
1041 
1042   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1043 
1044   /* Assuming the wal-index file was successfully mapped, populate the
1045   ** page number array and hash table entry.
1046   */
1047   if( rc==SQLITE_OK ){
1048     int iKey;                     /* Hash table key */
1049     int idx;                      /* Value to write to hash-table slot */
1050     int nCollide;                 /* Number of hash collisions */
1051 
1052     idx = iFrame - sLoc.iZero;
1053     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1054 
1055     /* If this is the first entry to be added to this hash-table, zero the
1056     ** entire hash table and aPgno[] array before proceeding.
1057     */
1058     if( idx==1 ){
1059       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1060                                - (u8 *)&sLoc.aPgno[1]);
1061       memset((void*)&sLoc.aPgno[1], 0, nByte);
1062     }
1063 
1064     /* If the entry in aPgno[] is already set, then the previous writer
1065     ** must have exited unexpectedly in the middle of a transaction (after
1066     ** writing one or more dirty pages to the WAL to free up memory).
1067     ** Remove the remnants of that writers uncommitted transaction from
1068     ** the hash-table before writing any new entries.
1069     */
1070     if( sLoc.aPgno[idx] ){
1071       walCleanupHash(pWal);
1072       assert( !sLoc.aPgno[idx] );
1073     }
1074 
1075     /* Write the aPgno[] array entry and the hash-table slot. */
1076     nCollide = idx;
1077     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1078       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1079     }
1080     sLoc.aPgno[idx] = iPage;
1081     sLoc.aHash[iKey] = (ht_slot)idx;
1082 
1083 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1084     /* Verify that the number of entries in the hash table exactly equals
1085     ** the number of entries in the mapping region.
1086     */
1087     {
1088       int i;           /* Loop counter */
1089       int nEntry = 0;  /* Number of entries in the hash table */
1090       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1091       assert( nEntry==idx );
1092     }
1093 
1094     /* Verify that the every entry in the mapping region is reachable
1095     ** via the hash table.  This turns out to be a really, really expensive
1096     ** thing to check, so only do this occasionally - not on every
1097     ** iteration.
1098     */
1099     if( (idx&0x3ff)==0 ){
1100       int i;           /* Loop counter */
1101       for(i=1; i<=idx; i++){
1102         for(iKey=walHash(sLoc.aPgno[i]);
1103             sLoc.aHash[iKey];
1104             iKey=walNextHash(iKey)){
1105           if( sLoc.aHash[iKey]==i ) break;
1106         }
1107         assert( sLoc.aHash[iKey]==i );
1108       }
1109     }
1110 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1111   }
1112 
1113 
1114   return rc;
1115 }
1116 
1117 
1118 /*
1119 ** Recover the wal-index by reading the write-ahead log file.
1120 **
1121 ** This routine first tries to establish an exclusive lock on the
1122 ** wal-index to prevent other threads/processes from doing anything
1123 ** with the WAL or wal-index while recovery is running.  The
1124 ** WAL_RECOVER_LOCK is also held so that other threads will know
1125 ** that this thread is running recovery.  If unable to establish
1126 ** the necessary locks, this routine returns SQLITE_BUSY.
1127 */
1128 static int walIndexRecover(Wal *pWal){
1129   int rc;                         /* Return Code */
1130   i64 nSize;                      /* Size of log file */
1131   u32 aFrameCksum[2] = {0, 0};
1132   int iLock;                      /* Lock offset to lock for checkpoint */
1133 
1134   /* Obtain an exclusive lock on all byte in the locking range not already
1135   ** locked by the caller. The caller is guaranteed to have locked the
1136   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1137   ** If successful, the same bytes that are locked here are unlocked before
1138   ** this function returns.
1139   */
1140   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1141   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1142   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1143   assert( pWal->writeLock );
1144   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1145   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1146   if( rc==SQLITE_OK ){
1147     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1148     if( rc!=SQLITE_OK ){
1149       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1150     }
1151   }
1152   if( rc ){
1153     return rc;
1154   }
1155 
1156   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1157 
1158   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1159 
1160   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1161   if( rc!=SQLITE_OK ){
1162     goto recovery_error;
1163   }
1164 
1165   if( nSize>WAL_HDRSIZE ){
1166     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1167     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1168     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1169     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1170     int iFrame;                   /* Index of last frame read */
1171     i64 iOffset;                  /* Next offset to read from log file */
1172     int szPage;                   /* Page size according to the log */
1173     u32 magic;                    /* Magic value read from WAL header */
1174     u32 version;                  /* Magic value read from WAL header */
1175     int isValid;                  /* True if this frame is valid */
1176 
1177     /* Read in the WAL header. */
1178     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1179     if( rc!=SQLITE_OK ){
1180       goto recovery_error;
1181     }
1182 
1183     /* If the database page size is not a power of two, or is greater than
1184     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1185     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1186     ** WAL file.
1187     */
1188     magic = sqlite3Get4byte(&aBuf[0]);
1189     szPage = sqlite3Get4byte(&aBuf[8]);
1190     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1191      || szPage&(szPage-1)
1192      || szPage>SQLITE_MAX_PAGE_SIZE
1193      || szPage<512
1194     ){
1195       goto finished;
1196     }
1197     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1198     pWal->szPage = szPage;
1199     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1200     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1201 
1202     /* Verify that the WAL header checksum is correct */
1203     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1204         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1205     );
1206     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1207      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1208     ){
1209       goto finished;
1210     }
1211 
1212     /* Verify that the version number on the WAL format is one that
1213     ** are able to understand */
1214     version = sqlite3Get4byte(&aBuf[4]);
1215     if( version!=WAL_MAX_VERSION ){
1216       rc = SQLITE_CANTOPEN_BKPT;
1217       goto finished;
1218     }
1219 
1220     /* Malloc a buffer to read frames into. */
1221     szFrame = szPage + WAL_FRAME_HDRSIZE;
1222     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1223     if( !aFrame ){
1224       rc = SQLITE_NOMEM_BKPT;
1225       goto recovery_error;
1226     }
1227     aData = &aFrame[WAL_FRAME_HDRSIZE];
1228 
1229     /* Read all frames from the log file. */
1230     iFrame = 0;
1231     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1232       u32 pgno;                   /* Database page number for frame */
1233       u32 nTruncate;              /* dbsize field from frame header */
1234 
1235       /* Read and decode the next log frame. */
1236       iFrame++;
1237       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1238       if( rc!=SQLITE_OK ) break;
1239       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1240       if( !isValid ) break;
1241       rc = walIndexAppend(pWal, iFrame, pgno);
1242       if( rc!=SQLITE_OK ) break;
1243 
1244       /* If nTruncate is non-zero, this is a commit record. */
1245       if( nTruncate ){
1246         pWal->hdr.mxFrame = iFrame;
1247         pWal->hdr.nPage = nTruncate;
1248         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1249         testcase( szPage<=32768 );
1250         testcase( szPage>=65536 );
1251         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1252         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1253       }
1254     }
1255 
1256     sqlite3_free(aFrame);
1257   }
1258 
1259 finished:
1260   if( rc==SQLITE_OK ){
1261     volatile WalCkptInfo *pInfo;
1262     int i;
1263     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1264     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1265     walIndexWriteHdr(pWal);
1266 
1267     /* Reset the checkpoint-header. This is safe because this thread is
1268     ** currently holding locks that exclude all other readers, writers and
1269     ** checkpointers.
1270     */
1271     pInfo = walCkptInfo(pWal);
1272     pInfo->nBackfill = 0;
1273     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1274     pInfo->aReadMark[0] = 0;
1275     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1276     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1277 
1278     /* If more than one frame was recovered from the log file, report an
1279     ** event via sqlite3_log(). This is to help with identifying performance
1280     ** problems caused by applications routinely shutting down without
1281     ** checkpointing the log file.
1282     */
1283     if( pWal->hdr.nPage ){
1284       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1285           "recovered %d frames from WAL file %s",
1286           pWal->hdr.mxFrame, pWal->zWalName
1287       );
1288     }
1289   }
1290 
1291 recovery_error:
1292   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1293   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1294   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1295   return rc;
1296 }
1297 
1298 /*
1299 ** Close an open wal-index.
1300 */
1301 static void walIndexClose(Wal *pWal, int isDelete){
1302   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1303     int i;
1304     for(i=0; i<pWal->nWiData; i++){
1305       sqlite3_free((void *)pWal->apWiData[i]);
1306       pWal->apWiData[i] = 0;
1307     }
1308   }
1309   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1310     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1311   }
1312 }
1313 
1314 /*
1315 ** Open a connection to the WAL file zWalName. The database file must
1316 ** already be opened on connection pDbFd. The buffer that zWalName points
1317 ** to must remain valid for the lifetime of the returned Wal* handle.
1318 **
1319 ** A SHARED lock should be held on the database file when this function
1320 ** is called. The purpose of this SHARED lock is to prevent any other
1321 ** client from unlinking the WAL or wal-index file. If another process
1322 ** were to do this just after this client opened one of these files, the
1323 ** system would be badly broken.
1324 **
1325 ** If the log file is successfully opened, SQLITE_OK is returned and
1326 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1327 ** an SQLite error code is returned and *ppWal is left unmodified.
1328 */
1329 int sqlite3WalOpen(
1330   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1331   sqlite3_file *pDbFd,            /* The open database file */
1332   const char *zWalName,           /* Name of the WAL file */
1333   int bNoShm,                     /* True to run in heap-memory mode */
1334   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1335   Wal **ppWal                     /* OUT: Allocated Wal handle */
1336 ){
1337   int rc;                         /* Return Code */
1338   Wal *pRet;                      /* Object to allocate and return */
1339   int flags;                      /* Flags passed to OsOpen() */
1340 
1341   assert( zWalName && zWalName[0] );
1342   assert( pDbFd );
1343 
1344   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1345   ** this source file.  Verify that the #defines of the locking byte offsets
1346   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1347   ** For that matter, if the lock offset ever changes from its initial design
1348   ** value of 120, we need to know that so there is an assert() to check it.
1349   */
1350   assert( 120==WALINDEX_LOCK_OFFSET );
1351   assert( 136==WALINDEX_HDR_SIZE );
1352 #ifdef WIN_SHM_BASE
1353   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1354 #endif
1355 #ifdef UNIX_SHM_BASE
1356   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1357 #endif
1358 
1359 
1360   /* Allocate an instance of struct Wal to return. */
1361   *ppWal = 0;
1362   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1363   if( !pRet ){
1364     return SQLITE_NOMEM_BKPT;
1365   }
1366 
1367   pRet->pVfs = pVfs;
1368   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1369   pRet->pDbFd = pDbFd;
1370   pRet->readLock = -1;
1371   pRet->mxWalSize = mxWalSize;
1372   pRet->zWalName = zWalName;
1373   pRet->syncHeader = 1;
1374   pRet->padToSectorBoundary = 1;
1375   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1376 
1377   /* Open file handle on the write-ahead log file. */
1378   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1379   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1380   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1381     pRet->readOnly = WAL_RDONLY;
1382   }
1383 
1384   if( rc!=SQLITE_OK ){
1385     walIndexClose(pRet, 0);
1386     sqlite3OsClose(pRet->pWalFd);
1387     sqlite3_free(pRet);
1388   }else{
1389     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1390     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1391     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1392       pRet->padToSectorBoundary = 0;
1393     }
1394     *ppWal = pRet;
1395     WALTRACE(("WAL%d: opened\n", pRet));
1396   }
1397   return rc;
1398 }
1399 
1400 /*
1401 ** Change the size to which the WAL file is trucated on each reset.
1402 */
1403 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1404   if( pWal ) pWal->mxWalSize = iLimit;
1405 }
1406 
1407 /*
1408 ** Find the smallest page number out of all pages held in the WAL that
1409 ** has not been returned by any prior invocation of this method on the
1410 ** same WalIterator object.   Write into *piFrame the frame index where
1411 ** that page was last written into the WAL.  Write into *piPage the page
1412 ** number.
1413 **
1414 ** Return 0 on success.  If there are no pages in the WAL with a page
1415 ** number larger than *piPage, then return 1.
1416 */
1417 static int walIteratorNext(
1418   WalIterator *p,               /* Iterator */
1419   u32 *piPage,                  /* OUT: The page number of the next page */
1420   u32 *piFrame                  /* OUT: Wal frame index of next page */
1421 ){
1422   u32 iMin;                     /* Result pgno must be greater than iMin */
1423   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1424   int i;                        /* For looping through segments */
1425 
1426   iMin = p->iPrior;
1427   assert( iMin<0xffffffff );
1428   for(i=p->nSegment-1; i>=0; i--){
1429     struct WalSegment *pSegment = &p->aSegment[i];
1430     while( pSegment->iNext<pSegment->nEntry ){
1431       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1432       if( iPg>iMin ){
1433         if( iPg<iRet ){
1434           iRet = iPg;
1435           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1436         }
1437         break;
1438       }
1439       pSegment->iNext++;
1440     }
1441   }
1442 
1443   *piPage = p->iPrior = iRet;
1444   return (iRet==0xFFFFFFFF);
1445 }
1446 
1447 /*
1448 ** This function merges two sorted lists into a single sorted list.
1449 **
1450 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1451 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1452 ** is guaranteed for all J<K:
1453 **
1454 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1455 **        aContent[aRight[J]] < aContent[aRight[K]]
1456 **
1457 ** This routine overwrites aRight[] with a new (probably longer) sequence
1458 ** of indices such that the aRight[] contains every index that appears in
1459 ** either aLeft[] or the old aRight[] and such that the second condition
1460 ** above is still met.
1461 **
1462 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1463 ** aContent[aRight[X]] values will be unique too.  But there might be
1464 ** one or more combinations of X and Y such that
1465 **
1466 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1467 **
1468 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1469 */
1470 static void walMerge(
1471   const u32 *aContent,            /* Pages in wal - keys for the sort */
1472   ht_slot *aLeft,                 /* IN: Left hand input list */
1473   int nLeft,                      /* IN: Elements in array *paLeft */
1474   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1475   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1476   ht_slot *aTmp                   /* Temporary buffer */
1477 ){
1478   int iLeft = 0;                  /* Current index in aLeft */
1479   int iRight = 0;                 /* Current index in aRight */
1480   int iOut = 0;                   /* Current index in output buffer */
1481   int nRight = *pnRight;
1482   ht_slot *aRight = *paRight;
1483 
1484   assert( nLeft>0 && nRight>0 );
1485   while( iRight<nRight || iLeft<nLeft ){
1486     ht_slot logpage;
1487     Pgno dbpage;
1488 
1489     if( (iLeft<nLeft)
1490      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1491     ){
1492       logpage = aLeft[iLeft++];
1493     }else{
1494       logpage = aRight[iRight++];
1495     }
1496     dbpage = aContent[logpage];
1497 
1498     aTmp[iOut++] = logpage;
1499     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1500 
1501     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1502     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1503   }
1504 
1505   *paRight = aLeft;
1506   *pnRight = iOut;
1507   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1508 }
1509 
1510 /*
1511 ** Sort the elements in list aList using aContent[] as the sort key.
1512 ** Remove elements with duplicate keys, preferring to keep the
1513 ** larger aList[] values.
1514 **
1515 ** The aList[] entries are indices into aContent[].  The values in
1516 ** aList[] are to be sorted so that for all J<K:
1517 **
1518 **      aContent[aList[J]] < aContent[aList[K]]
1519 **
1520 ** For any X and Y such that
1521 **
1522 **      aContent[aList[X]] == aContent[aList[Y]]
1523 **
1524 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1525 ** the smaller.
1526 */
1527 static void walMergesort(
1528   const u32 *aContent,            /* Pages in wal */
1529   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1530   ht_slot *aList,                 /* IN/OUT: List to sort */
1531   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1532 ){
1533   struct Sublist {
1534     int nList;                    /* Number of elements in aList */
1535     ht_slot *aList;               /* Pointer to sub-list content */
1536   };
1537 
1538   const int nList = *pnList;      /* Size of input list */
1539   int nMerge = 0;                 /* Number of elements in list aMerge */
1540   ht_slot *aMerge = 0;            /* List to be merged */
1541   int iList;                      /* Index into input list */
1542   u32 iSub = 0;                   /* Index into aSub array */
1543   struct Sublist aSub[13];        /* Array of sub-lists */
1544 
1545   memset(aSub, 0, sizeof(aSub));
1546   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1547   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1548 
1549   for(iList=0; iList<nList; iList++){
1550     nMerge = 1;
1551     aMerge = &aList[iList];
1552     for(iSub=0; iList & (1<<iSub); iSub++){
1553       struct Sublist *p;
1554       assert( iSub<ArraySize(aSub) );
1555       p = &aSub[iSub];
1556       assert( p->aList && p->nList<=(1<<iSub) );
1557       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1558       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1559     }
1560     aSub[iSub].aList = aMerge;
1561     aSub[iSub].nList = nMerge;
1562   }
1563 
1564   for(iSub++; iSub<ArraySize(aSub); iSub++){
1565     if( nList & (1<<iSub) ){
1566       struct Sublist *p;
1567       assert( iSub<ArraySize(aSub) );
1568       p = &aSub[iSub];
1569       assert( p->nList<=(1<<iSub) );
1570       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1571       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1572     }
1573   }
1574   assert( aMerge==aList );
1575   *pnList = nMerge;
1576 
1577 #ifdef SQLITE_DEBUG
1578   {
1579     int i;
1580     for(i=1; i<*pnList; i++){
1581       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1582     }
1583   }
1584 #endif
1585 }
1586 
1587 /*
1588 ** Free an iterator allocated by walIteratorInit().
1589 */
1590 static void walIteratorFree(WalIterator *p){
1591   sqlite3_free(p);
1592 }
1593 
1594 /*
1595 ** Construct a WalInterator object that can be used to loop over all
1596 ** pages in the WAL following frame nBackfill in ascending order. Frames
1597 ** nBackfill or earlier may be included - excluding them is an optimization
1598 ** only. The caller must hold the checkpoint lock.
1599 **
1600 ** On success, make *pp point to the newly allocated WalInterator object
1601 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1602 ** returns an error, the value of *pp is undefined.
1603 **
1604 ** The calling routine should invoke walIteratorFree() to destroy the
1605 ** WalIterator object when it has finished with it.
1606 */
1607 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1608   WalIterator *p;                 /* Return value */
1609   int nSegment;                   /* Number of segments to merge */
1610   u32 iLast;                      /* Last frame in log */
1611   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1612   int i;                          /* Iterator variable */
1613   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1614   int rc = SQLITE_OK;             /* Return Code */
1615 
1616   /* This routine only runs while holding the checkpoint lock. And
1617   ** it only runs if there is actually content in the log (mxFrame>0).
1618   */
1619   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1620   iLast = pWal->hdr.mxFrame;
1621 
1622   /* Allocate space for the WalIterator object. */
1623   nSegment = walFramePage(iLast) + 1;
1624   nByte = sizeof(WalIterator)
1625         + (nSegment-1)*sizeof(struct WalSegment)
1626         + iLast*sizeof(ht_slot);
1627   p = (WalIterator *)sqlite3_malloc64(nByte);
1628   if( !p ){
1629     return SQLITE_NOMEM_BKPT;
1630   }
1631   memset(p, 0, nByte);
1632   p->nSegment = nSegment;
1633 
1634   /* Allocate temporary space used by the merge-sort routine. This block
1635   ** of memory will be freed before this function returns.
1636   */
1637   aTmp = (ht_slot *)sqlite3_malloc64(
1638       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1639   );
1640   if( !aTmp ){
1641     rc = SQLITE_NOMEM_BKPT;
1642   }
1643 
1644   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1645     WalHashLoc sLoc;
1646 
1647     rc = walHashGet(pWal, i, &sLoc);
1648     if( rc==SQLITE_OK ){
1649       int j;                      /* Counter variable */
1650       int nEntry;                 /* Number of entries in this segment */
1651       ht_slot *aIndex;            /* Sorted index for this segment */
1652 
1653       sLoc.aPgno++;
1654       if( (i+1)==nSegment ){
1655         nEntry = (int)(iLast - sLoc.iZero);
1656       }else{
1657         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1658       }
1659       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1660       sLoc.iZero++;
1661 
1662       for(j=0; j<nEntry; j++){
1663         aIndex[j] = (ht_slot)j;
1664       }
1665       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1666       p->aSegment[i].iZero = sLoc.iZero;
1667       p->aSegment[i].nEntry = nEntry;
1668       p->aSegment[i].aIndex = aIndex;
1669       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1670     }
1671   }
1672   sqlite3_free(aTmp);
1673 
1674   if( rc!=SQLITE_OK ){
1675     walIteratorFree(p);
1676     p = 0;
1677   }
1678   *pp = p;
1679   return rc;
1680 }
1681 
1682 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1683 /*
1684 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1685 ** they are supported by the VFS, and (b) the database handle is configured
1686 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1687 ** or 0 otherwise.
1688 */
1689 static int walEnableBlocking(Wal *pWal){
1690   int res = 0;
1691   if( pWal->db ){
1692     int tmout = pWal->db->busyTimeout;
1693     if( tmout ){
1694       int rc;
1695       rc = sqlite3OsFileControl(
1696           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1697       );
1698       res = (rc==SQLITE_OK);
1699     }
1700   }
1701   return res;
1702 }
1703 
1704 /*
1705 ** Disable blocking locks.
1706 */
1707 static void walDisableBlocking(Wal *pWal){
1708   int tmout = 0;
1709   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1710 }
1711 
1712 /*
1713 ** If parameter bLock is true, attempt to enable blocking locks, take
1714 ** the WRITER lock, and then disable blocking locks. If blocking locks
1715 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1716 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1717 ** an error if blocking locks can not be enabled.
1718 **
1719 ** If the bLock parameter is false and the WRITER lock is held, release it.
1720 */
1721 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1722   int rc = SQLITE_OK;
1723   assert( pWal->readLock<0 || bLock==0 );
1724   if( bLock ){
1725     assert( pWal->db );
1726     if( walEnableBlocking(pWal) ){
1727       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1728       if( rc==SQLITE_OK ){
1729         pWal->writeLock = 1;
1730       }
1731       walDisableBlocking(pWal);
1732     }
1733   }else if( pWal->writeLock ){
1734     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1735     pWal->writeLock = 0;
1736   }
1737   return rc;
1738 }
1739 
1740 /*
1741 ** Set the database handle used to determine if blocking locks are required.
1742 */
1743 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1744   pWal->db = db;
1745 }
1746 
1747 /*
1748 ** Take an exclusive WRITE lock. Blocking if so configured.
1749 */
1750 static int walLockWriter(Wal *pWal){
1751   int rc;
1752   walEnableBlocking(pWal);
1753   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1754   walDisableBlocking(pWal);
1755   return rc;
1756 }
1757 #else
1758 # define walEnableBlocking(x) 0
1759 # define walDisableBlocking(x)
1760 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1761 # define sqlite3WalDb(pWal, db)
1762 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1763 
1764 
1765 /*
1766 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1767 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1768 ** busy-handler function. Invoke it and retry the lock until either the
1769 ** lock is successfully obtained or the busy-handler returns 0.
1770 */
1771 static int walBusyLock(
1772   Wal *pWal,                      /* WAL connection */
1773   int (*xBusy)(void*),            /* Function to call when busy */
1774   void *pBusyArg,                 /* Context argument for xBusyHandler */
1775   int lockIdx,                    /* Offset of first byte to lock */
1776   int n                           /* Number of bytes to lock */
1777 ){
1778   int rc;
1779   do {
1780     rc = walLockExclusive(pWal, lockIdx, n);
1781   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1783   if( rc==SQLITE_BUSY_TIMEOUT ){
1784     walDisableBlocking(pWal);
1785     rc = SQLITE_BUSY;
1786   }
1787 #endif
1788   return rc;
1789 }
1790 
1791 /*
1792 ** The cache of the wal-index header must be valid to call this function.
1793 ** Return the page-size in bytes used by the database.
1794 */
1795 static int walPagesize(Wal *pWal){
1796   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1797 }
1798 
1799 /*
1800 ** The following is guaranteed when this function is called:
1801 **
1802 **   a) the WRITER lock is held,
1803 **   b) the entire log file has been checkpointed, and
1804 **   c) any existing readers are reading exclusively from the database
1805 **      file - there are no readers that may attempt to read a frame from
1806 **      the log file.
1807 **
1808 ** This function updates the shared-memory structures so that the next
1809 ** client to write to the database (which may be this one) does so by
1810 ** writing frames into the start of the log file.
1811 **
1812 ** The value of parameter salt1 is used as the aSalt[1] value in the
1813 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1814 ** one obtained from sqlite3_randomness()).
1815 */
1816 static void walRestartHdr(Wal *pWal, u32 salt1){
1817   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1818   int i;                          /* Loop counter */
1819   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1820   pWal->nCkpt++;
1821   pWal->hdr.mxFrame = 0;
1822   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1823   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1824   walIndexWriteHdr(pWal);
1825   AtomicStore(&pInfo->nBackfill, 0);
1826   pInfo->nBackfillAttempted = 0;
1827   pInfo->aReadMark[1] = 0;
1828   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1829   assert( pInfo->aReadMark[0]==0 );
1830 }
1831 
1832 /*
1833 ** Copy as much content as we can from the WAL back into the database file
1834 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1835 **
1836 ** The amount of information copies from WAL to database might be limited
1837 ** by active readers.  This routine will never overwrite a database page
1838 ** that a concurrent reader might be using.
1839 **
1840 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1841 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1842 ** checkpoints are always run by a background thread or background
1843 ** process, foreground threads will never block on a lengthy fsync call.
1844 **
1845 ** Fsync is called on the WAL before writing content out of the WAL and
1846 ** into the database.  This ensures that if the new content is persistent
1847 ** in the WAL and can be recovered following a power-loss or hard reset.
1848 **
1849 ** Fsync is also called on the database file if (and only if) the entire
1850 ** WAL content is copied into the database file.  This second fsync makes
1851 ** it safe to delete the WAL since the new content will persist in the
1852 ** database file.
1853 **
1854 ** This routine uses and updates the nBackfill field of the wal-index header.
1855 ** This is the only routine that will increase the value of nBackfill.
1856 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1857 ** its value.)
1858 **
1859 ** The caller must be holding sufficient locks to ensure that no other
1860 ** checkpoint is running (in any other thread or process) at the same
1861 ** time.
1862 */
1863 static int walCheckpoint(
1864   Wal *pWal,                      /* Wal connection */
1865   sqlite3 *db,                    /* Check for interrupts on this handle */
1866   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1867   int (*xBusy)(void*),            /* Function to call when busy */
1868   void *pBusyArg,                 /* Context argument for xBusyHandler */
1869   int sync_flags,                 /* Flags for OsSync() (or 0) */
1870   u8 *zBuf                        /* Temporary buffer to use */
1871 ){
1872   int rc = SQLITE_OK;             /* Return code */
1873   int szPage;                     /* Database page-size */
1874   WalIterator *pIter = 0;         /* Wal iterator context */
1875   u32 iDbpage = 0;                /* Next database page to write */
1876   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1877   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1878   u32 mxPage;                     /* Max database page to write */
1879   int i;                          /* Loop counter */
1880   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1881 
1882   szPage = walPagesize(pWal);
1883   testcase( szPage<=32768 );
1884   testcase( szPage>=65536 );
1885   pInfo = walCkptInfo(pWal);
1886   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1887 
1888     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1889     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1890     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1891 
1892     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1893     ** safe to write into the database.  Frames beyond mxSafeFrame might
1894     ** overwrite database pages that are in use by active readers and thus
1895     ** cannot be backfilled from the WAL.
1896     */
1897     mxSafeFrame = pWal->hdr.mxFrame;
1898     mxPage = pWal->hdr.nPage;
1899     for(i=1; i<WAL_NREADER; i++){
1900       /* Thread-sanitizer reports that the following is an unsafe read,
1901       ** as some other thread may be in the process of updating the value
1902       ** of the aReadMark[] slot. The assumption here is that if that is
1903       ** happening, the other client may only be increasing the value,
1904       ** not decreasing it. So assuming either that either the "old" or
1905       ** "new" version of the value is read, and not some arbitrary value
1906       ** that would never be written by a real client, things are still
1907       ** safe.
1908       **
1909       ** Astute readers have pointed out that the assumption stated in the
1910       ** last sentence of the previous paragraph is not guaranteed to be
1911       ** true for all conforming systems.  However, the assumption is true
1912       ** for all compilers and architectures in common use today (circa
1913       ** 2019-11-27) and the alternatives are both slow and complex, and
1914       ** so we will continue to go with the current design for now.  If this
1915       ** bothers you, or if you really are running on a system where aligned
1916       ** 32-bit reads and writes are not atomic, then you can simply avoid
1917       ** the use of WAL mode, or only use WAL mode together with
1918       ** PRAGMA locking_mode=EXCLUSIVE and all will be well.
1919       */
1920       u32 y = pInfo->aReadMark[i];
1921       if( mxSafeFrame>y ){
1922         assert( y<=pWal->hdr.mxFrame );
1923         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1924         if( rc==SQLITE_OK ){
1925           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1926           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1927         }else if( rc==SQLITE_BUSY ){
1928           mxSafeFrame = y;
1929           xBusy = 0;
1930         }else{
1931           goto walcheckpoint_out;
1932         }
1933       }
1934     }
1935 
1936     /* Allocate the iterator */
1937     if( pInfo->nBackfill<mxSafeFrame ){
1938       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1939       assert( rc==SQLITE_OK || pIter==0 );
1940     }
1941 
1942     if( pIter
1943      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1944     ){
1945       u32 nBackfill = pInfo->nBackfill;
1946 
1947       pInfo->nBackfillAttempted = mxSafeFrame;
1948 
1949       /* Sync the WAL to disk */
1950       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1951 
1952       /* If the database may grow as a result of this checkpoint, hint
1953       ** about the eventual size of the db file to the VFS layer.
1954       */
1955       if( rc==SQLITE_OK ){
1956         i64 nReq = ((i64)mxPage * szPage);
1957         i64 nSize;                    /* Current size of database file */
1958         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
1959         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1960         if( rc==SQLITE_OK && nSize<nReq ){
1961           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1962         }
1963       }
1964 
1965 
1966       /* Iterate through the contents of the WAL, copying data to the db file */
1967       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1968         i64 iOffset;
1969         assert( walFramePgno(pWal, iFrame)==iDbpage );
1970         if( AtomicLoad(&db->u1.isInterrupted) ){
1971           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1972           break;
1973         }
1974         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1975           continue;
1976         }
1977         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1978         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1979         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1980         if( rc!=SQLITE_OK ) break;
1981         iOffset = (iDbpage-1)*(i64)szPage;
1982         testcase( IS_BIG_INT(iOffset) );
1983         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1984         if( rc!=SQLITE_OK ) break;
1985       }
1986       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
1987 
1988       /* If work was actually accomplished... */
1989       if( rc==SQLITE_OK ){
1990         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1991           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1992           testcase( IS_BIG_INT(szDb) );
1993           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1994           if( rc==SQLITE_OK ){
1995             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1996           }
1997         }
1998         if( rc==SQLITE_OK ){
1999           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2000         }
2001       }
2002 
2003       /* Release the reader lock held while backfilling */
2004       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2005     }
2006 
2007     if( rc==SQLITE_BUSY ){
2008       /* Reset the return code so as not to report a checkpoint failure
2009       ** just because there are active readers.  */
2010       rc = SQLITE_OK;
2011     }
2012   }
2013 
2014   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2015   ** entire wal file has been copied into the database file, then block
2016   ** until all readers have finished using the wal file. This ensures that
2017   ** the next process to write to the database restarts the wal file.
2018   */
2019   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2020     assert( pWal->writeLock );
2021     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2022       rc = SQLITE_BUSY;
2023     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2024       u32 salt1;
2025       sqlite3_randomness(4, &salt1);
2026       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2027       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2028       if( rc==SQLITE_OK ){
2029         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2030           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2031           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2032           ** truncates the log file to zero bytes just prior to a
2033           ** successful return.
2034           **
2035           ** In theory, it might be safe to do this without updating the
2036           ** wal-index header in shared memory, as all subsequent reader or
2037           ** writer clients should see that the entire log file has been
2038           ** checkpointed and behave accordingly. This seems unsafe though,
2039           ** as it would leave the system in a state where the contents of
2040           ** the wal-index header do not match the contents of the
2041           ** file-system. To avoid this, update the wal-index header to
2042           ** indicate that the log file contains zero valid frames.  */
2043           walRestartHdr(pWal, salt1);
2044           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2045         }
2046         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2047       }
2048     }
2049   }
2050 
2051  walcheckpoint_out:
2052   walIteratorFree(pIter);
2053   return rc;
2054 }
2055 
2056 /*
2057 ** If the WAL file is currently larger than nMax bytes in size, truncate
2058 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2059 */
2060 static void walLimitSize(Wal *pWal, i64 nMax){
2061   i64 sz;
2062   int rx;
2063   sqlite3BeginBenignMalloc();
2064   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2065   if( rx==SQLITE_OK && (sz > nMax ) ){
2066     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2067   }
2068   sqlite3EndBenignMalloc();
2069   if( rx ){
2070     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2071   }
2072 }
2073 
2074 /*
2075 ** Close a connection to a log file.
2076 */
2077 int sqlite3WalClose(
2078   Wal *pWal,                      /* Wal to close */
2079   sqlite3 *db,                    /* For interrupt flag */
2080   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2081   int nBuf,
2082   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2083 ){
2084   int rc = SQLITE_OK;
2085   if( pWal ){
2086     int isDelete = 0;             /* True to unlink wal and wal-index files */
2087 
2088     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2089     ** ordinary, rollback-mode locking methods, this guarantees that the
2090     ** connection associated with this log file is the only connection to
2091     ** the database. In this case checkpoint the database and unlink both
2092     ** the wal and wal-index files.
2093     **
2094     ** The EXCLUSIVE lock is not released before returning.
2095     */
2096     if( zBuf!=0
2097      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2098     ){
2099       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2100         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2101       }
2102       rc = sqlite3WalCheckpoint(pWal, db,
2103           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2104       );
2105       if( rc==SQLITE_OK ){
2106         int bPersist = -1;
2107         sqlite3OsFileControlHint(
2108             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2109         );
2110         if( bPersist!=1 ){
2111           /* Try to delete the WAL file if the checkpoint completed and
2112           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2113           ** mode (!bPersist) */
2114           isDelete = 1;
2115         }else if( pWal->mxWalSize>=0 ){
2116           /* Try to truncate the WAL file to zero bytes if the checkpoint
2117           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2118           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2119           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2120           ** to zero bytes as truncating to the journal_size_limit might
2121           ** leave a corrupt WAL file on disk. */
2122           walLimitSize(pWal, 0);
2123         }
2124       }
2125     }
2126 
2127     walIndexClose(pWal, isDelete);
2128     sqlite3OsClose(pWal->pWalFd);
2129     if( isDelete ){
2130       sqlite3BeginBenignMalloc();
2131       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2132       sqlite3EndBenignMalloc();
2133     }
2134     WALTRACE(("WAL%p: closed\n", pWal));
2135     sqlite3_free((void *)pWal->apWiData);
2136     sqlite3_free(pWal);
2137   }
2138   return rc;
2139 }
2140 
2141 /*
2142 ** Try to read the wal-index header.  Return 0 on success and 1 if
2143 ** there is a problem.
2144 **
2145 ** The wal-index is in shared memory.  Another thread or process might
2146 ** be writing the header at the same time this procedure is trying to
2147 ** read it, which might result in inconsistency.  A dirty read is detected
2148 ** by verifying that both copies of the header are the same and also by
2149 ** a checksum on the header.
2150 **
2151 ** If and only if the read is consistent and the header is different from
2152 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2153 ** and *pChanged is set to 1.
2154 **
2155 ** If the checksum cannot be verified return non-zero. If the header
2156 ** is read successfully and the checksum verified, return zero.
2157 */
2158 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2159   u32 aCksum[2];                  /* Checksum on the header content */
2160   WalIndexHdr h1, h2;             /* Two copies of the header content */
2161   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2162 
2163   /* The first page of the wal-index must be mapped at this point. */
2164   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2165 
2166   /* Read the header. This might happen concurrently with a write to the
2167   ** same area of shared memory on a different CPU in a SMP,
2168   ** meaning it is possible that an inconsistent snapshot is read
2169   ** from the file. If this happens, return non-zero.
2170   **
2171   ** There are two copies of the header at the beginning of the wal-index.
2172   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2173   ** Memory barriers are used to prevent the compiler or the hardware from
2174   ** reordering the reads and writes.
2175   */
2176   aHdr = walIndexHdr(pWal);
2177   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2178   walShmBarrier(pWal);
2179   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2180 
2181   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2182     return 1;   /* Dirty read */
2183   }
2184   if( h1.isInit==0 ){
2185     return 1;   /* Malformed header - probably all zeros */
2186   }
2187   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2188   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2189     return 1;   /* Checksum does not match */
2190   }
2191 
2192   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2193     *pChanged = 1;
2194     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2195     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2196     testcase( pWal->szPage<=32768 );
2197     testcase( pWal->szPage>=65536 );
2198   }
2199 
2200   /* The header was successfully read. Return zero. */
2201   return 0;
2202 }
2203 
2204 /*
2205 ** This is the value that walTryBeginRead returns when it needs to
2206 ** be retried.
2207 */
2208 #define WAL_RETRY  (-1)
2209 
2210 /*
2211 ** Read the wal-index header from the wal-index and into pWal->hdr.
2212 ** If the wal-header appears to be corrupt, try to reconstruct the
2213 ** wal-index from the WAL before returning.
2214 **
2215 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2216 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2217 ** to 0.
2218 **
2219 ** If the wal-index header is successfully read, return SQLITE_OK.
2220 ** Otherwise an SQLite error code.
2221 */
2222 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2223   int rc;                         /* Return code */
2224   int badHdr;                     /* True if a header read failed */
2225   volatile u32 *page0;            /* Chunk of wal-index containing header */
2226 
2227   /* Ensure that page 0 of the wal-index (the page that contains the
2228   ** wal-index header) is mapped. Return early if an error occurs here.
2229   */
2230   assert( pChanged );
2231   rc = walIndexPage(pWal, 0, &page0);
2232   if( rc!=SQLITE_OK ){
2233     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2234     if( rc==SQLITE_READONLY_CANTINIT ){
2235       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2236       ** was openable but is not writable, and this thread is unable to
2237       ** confirm that another write-capable connection has the shared-memory
2238       ** open, and hence the content of the shared-memory is unreliable,
2239       ** since the shared-memory might be inconsistent with the WAL file
2240       ** and there is no writer on hand to fix it. */
2241       assert( page0==0 );
2242       assert( pWal->writeLock==0 );
2243       assert( pWal->readOnly & WAL_SHM_RDONLY );
2244       pWal->bShmUnreliable = 1;
2245       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2246       *pChanged = 1;
2247     }else{
2248       return rc; /* Any other non-OK return is just an error */
2249     }
2250   }else{
2251     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2252     ** is zero, which prevents the SHM from growing */
2253     testcase( page0!=0 );
2254   }
2255   assert( page0!=0 || pWal->writeLock==0 );
2256 
2257   /* If the first page of the wal-index has been mapped, try to read the
2258   ** wal-index header immediately, without holding any lock. This usually
2259   ** works, but may fail if the wal-index header is corrupt or currently
2260   ** being modified by another thread or process.
2261   */
2262   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2263 
2264   /* If the first attempt failed, it might have been due to a race
2265   ** with a writer.  So get a WRITE lock and try again.
2266   */
2267   if( badHdr ){
2268     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2269       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2270         walUnlockShared(pWal, WAL_WRITE_LOCK);
2271         rc = SQLITE_READONLY_RECOVERY;
2272       }
2273     }else{
2274       int bWriteLock = pWal->writeLock;
2275       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2276         pWal->writeLock = 1;
2277         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2278           badHdr = walIndexTryHdr(pWal, pChanged);
2279           if( badHdr ){
2280             /* If the wal-index header is still malformed even while holding
2281             ** a WRITE lock, it can only mean that the header is corrupted and
2282             ** needs to be reconstructed.  So run recovery to do exactly that.
2283             */
2284             rc = walIndexRecover(pWal);
2285             *pChanged = 1;
2286           }
2287         }
2288         if( bWriteLock==0 ){
2289           pWal->writeLock = 0;
2290           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2291         }
2292       }
2293     }
2294   }
2295 
2296   /* If the header is read successfully, check the version number to make
2297   ** sure the wal-index was not constructed with some future format that
2298   ** this version of SQLite cannot understand.
2299   */
2300   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2301     rc = SQLITE_CANTOPEN_BKPT;
2302   }
2303   if( pWal->bShmUnreliable ){
2304     if( rc!=SQLITE_OK ){
2305       walIndexClose(pWal, 0);
2306       pWal->bShmUnreliable = 0;
2307       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2308       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2309       ** writer truncated the WAL out from under it.  If that happens, it
2310       ** indicates that a writer has fixed the SHM file for us, so retry */
2311       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2312     }
2313     pWal->exclusiveMode = WAL_NORMAL_MODE;
2314   }
2315 
2316   return rc;
2317 }
2318 
2319 /*
2320 ** Open a transaction in a connection where the shared-memory is read-only
2321 ** and where we cannot verify that there is a separate write-capable connection
2322 ** on hand to keep the shared-memory up-to-date with the WAL file.
2323 **
2324 ** This can happen, for example, when the shared-memory is implemented by
2325 ** memory-mapping a *-shm file, where a prior writer has shut down and
2326 ** left the *-shm file on disk, and now the present connection is trying
2327 ** to use that database but lacks write permission on the *-shm file.
2328 ** Other scenarios are also possible, depending on the VFS implementation.
2329 **
2330 ** Precondition:
2331 **
2332 **    The *-wal file has been read and an appropriate wal-index has been
2333 **    constructed in pWal->apWiData[] using heap memory instead of shared
2334 **    memory.
2335 **
2336 ** If this function returns SQLITE_OK, then the read transaction has
2337 ** been successfully opened. In this case output variable (*pChanged)
2338 ** is set to true before returning if the caller should discard the
2339 ** contents of the page cache before proceeding. Or, if it returns
2340 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2341 ** the caller should retry opening the read transaction from the
2342 ** beginning (including attempting to map the *-shm file).
2343 **
2344 ** If an error occurs, an SQLite error code is returned.
2345 */
2346 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2347   i64 szWal;                      /* Size of wal file on disk in bytes */
2348   i64 iOffset;                    /* Current offset when reading wal file */
2349   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2350   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2351   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2352   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2353   volatile void *pDummy;          /* Dummy argument for xShmMap */
2354   int rc;                         /* Return code */
2355   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2356 
2357   assert( pWal->bShmUnreliable );
2358   assert( pWal->readOnly & WAL_SHM_RDONLY );
2359   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2360 
2361   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2362   ** writers from running a checkpoint, but does not stop them
2363   ** from running recovery.  */
2364   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2365   if( rc!=SQLITE_OK ){
2366     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2367     goto begin_unreliable_shm_out;
2368   }
2369   pWal->readLock = 0;
2370 
2371   /* Check to see if a separate writer has attached to the shared-memory area,
2372   ** thus making the shared-memory "reliable" again.  Do this by invoking
2373   ** the xShmMap() routine of the VFS and looking to see if the return
2374   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2375   **
2376   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2377   ** cause the heap-memory WAL-index to be discarded and the actual
2378   ** shared memory to be used in its place.
2379   **
2380   ** This step is important because, even though this connection is holding
2381   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2382   ** have already checkpointed the WAL file and, while the current
2383   ** is active, wrap the WAL and start overwriting frames that this
2384   ** process wants to use.
2385   **
2386   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2387   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2388   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2389   ** even if some external agent does a "chmod" to make the shared-memory
2390   ** writable by us, until sqlite3OsShmUnmap() has been called.
2391   ** This is a requirement on the VFS implementation.
2392    */
2393   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2394   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2395   if( rc!=SQLITE_READONLY_CANTINIT ){
2396     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2397     goto begin_unreliable_shm_out;
2398   }
2399 
2400   /* We reach this point only if the real shared-memory is still unreliable.
2401   ** Assume the in-memory WAL-index substitute is correct and load it
2402   ** into pWal->hdr.
2403   */
2404   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2405 
2406   /* Make sure some writer hasn't come in and changed the WAL file out
2407   ** from under us, then disconnected, while we were not looking.
2408   */
2409   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2410   if( rc!=SQLITE_OK ){
2411     goto begin_unreliable_shm_out;
2412   }
2413   if( szWal<WAL_HDRSIZE ){
2414     /* If the wal file is too small to contain a wal-header and the
2415     ** wal-index header has mxFrame==0, then it must be safe to proceed
2416     ** reading the database file only. However, the page cache cannot
2417     ** be trusted, as a read/write connection may have connected, written
2418     ** the db, run a checkpoint, truncated the wal file and disconnected
2419     ** since this client's last read transaction.  */
2420     *pChanged = 1;
2421     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2422     goto begin_unreliable_shm_out;
2423   }
2424 
2425   /* Check the salt keys at the start of the wal file still match. */
2426   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2427   if( rc!=SQLITE_OK ){
2428     goto begin_unreliable_shm_out;
2429   }
2430   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2431     /* Some writer has wrapped the WAL file while we were not looking.
2432     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2433     ** rebuilt. */
2434     rc = WAL_RETRY;
2435     goto begin_unreliable_shm_out;
2436   }
2437 
2438   /* Allocate a buffer to read frames into */
2439   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2440   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2441   if( aFrame==0 ){
2442     rc = SQLITE_NOMEM_BKPT;
2443     goto begin_unreliable_shm_out;
2444   }
2445   aData = &aFrame[WAL_FRAME_HDRSIZE];
2446 
2447   /* Check to see if a complete transaction has been appended to the
2448   ** wal file since the heap-memory wal-index was created. If so, the
2449   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2450   ** the caller.  */
2451   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2452   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2453   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2454       iOffset+szFrame<=szWal;
2455       iOffset+=szFrame
2456   ){
2457     u32 pgno;                   /* Database page number for frame */
2458     u32 nTruncate;              /* dbsize field from frame header */
2459 
2460     /* Read and decode the next log frame. */
2461     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2462     if( rc!=SQLITE_OK ) break;
2463     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2464 
2465     /* If nTruncate is non-zero, then a complete transaction has been
2466     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2467     ** the loop.  */
2468     if( nTruncate ){
2469       rc = WAL_RETRY;
2470       break;
2471     }
2472   }
2473   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2474   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2475 
2476  begin_unreliable_shm_out:
2477   sqlite3_free(aFrame);
2478   if( rc!=SQLITE_OK ){
2479     int i;
2480     for(i=0; i<pWal->nWiData; i++){
2481       sqlite3_free((void*)pWal->apWiData[i]);
2482       pWal->apWiData[i] = 0;
2483     }
2484     pWal->bShmUnreliable = 0;
2485     sqlite3WalEndReadTransaction(pWal);
2486     *pChanged = 1;
2487   }
2488   return rc;
2489 }
2490 
2491 /*
2492 ** Attempt to start a read transaction.  This might fail due to a race or
2493 ** other transient condition.  When that happens, it returns WAL_RETRY to
2494 ** indicate to the caller that it is safe to retry immediately.
2495 **
2496 ** On success return SQLITE_OK.  On a permanent failure (such an
2497 ** I/O error or an SQLITE_BUSY because another process is running
2498 ** recovery) return a positive error code.
2499 **
2500 ** The useWal parameter is true to force the use of the WAL and disable
2501 ** the case where the WAL is bypassed because it has been completely
2502 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2503 ** to make a copy of the wal-index header into pWal->hdr.  If the
2504 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2505 ** to the caller that the local page cache is obsolete and needs to be
2506 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2507 ** be loaded and the pChanged parameter is unused.
2508 **
2509 ** The caller must set the cnt parameter to the number of prior calls to
2510 ** this routine during the current read attempt that returned WAL_RETRY.
2511 ** This routine will start taking more aggressive measures to clear the
2512 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2513 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2514 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2515 ** and is not honoring the locking protocol.  There is a vanishingly small
2516 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2517 ** bad luck when there is lots of contention for the wal-index, but that
2518 ** possibility is so small that it can be safely neglected, we believe.
2519 **
2520 ** On success, this routine obtains a read lock on
2521 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2522 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2523 ** that means the Wal does not hold any read lock.  The reader must not
2524 ** access any database page that is modified by a WAL frame up to and
2525 ** including frame number aReadMark[pWal->readLock].  The reader will
2526 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2527 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2528 ** completely and get all content directly from the database file.
2529 ** If the useWal parameter is 1 then the WAL will never be ignored and
2530 ** this routine will always set pWal->readLock>0 on success.
2531 ** When the read transaction is completed, the caller must release the
2532 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2533 **
2534 ** This routine uses the nBackfill and aReadMark[] fields of the header
2535 ** to select a particular WAL_READ_LOCK() that strives to let the
2536 ** checkpoint process do as much work as possible.  This routine might
2537 ** update values of the aReadMark[] array in the header, but if it does
2538 ** so it takes care to hold an exclusive lock on the corresponding
2539 ** WAL_READ_LOCK() while changing values.
2540 */
2541 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2542   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2543   u32 mxReadMark;                 /* Largest aReadMark[] value */
2544   int mxI;                        /* Index of largest aReadMark[] value */
2545   int i;                          /* Loop counter */
2546   int rc = SQLITE_OK;             /* Return code  */
2547   u32 mxFrame;                    /* Wal frame to lock to */
2548 
2549   assert( pWal->readLock<0 );     /* Not currently locked */
2550 
2551   /* useWal may only be set for read/write connections */
2552   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2553 
2554   /* Take steps to avoid spinning forever if there is a protocol error.
2555   **
2556   ** Circumstances that cause a RETRY should only last for the briefest
2557   ** instances of time.  No I/O or other system calls are done while the
2558   ** locks are held, so the locks should not be held for very long. But
2559   ** if we are unlucky, another process that is holding a lock might get
2560   ** paged out or take a page-fault that is time-consuming to resolve,
2561   ** during the few nanoseconds that it is holding the lock.  In that case,
2562   ** it might take longer than normal for the lock to free.
2563   **
2564   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2565   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2566   ** is more of a scheduler yield than an actual delay.  But on the 10th
2567   ** an subsequent retries, the delays start becoming longer and longer,
2568   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2569   ** The total delay time before giving up is less than 10 seconds.
2570   */
2571   if( cnt>5 ){
2572     int nDelay = 1;                      /* Pause time in microseconds */
2573     if( cnt>100 ){
2574       VVA_ONLY( pWal->lockError = 1; )
2575       return SQLITE_PROTOCOL;
2576     }
2577     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2578     sqlite3OsSleep(pWal->pVfs, nDelay);
2579   }
2580 
2581   if( !useWal ){
2582     assert( rc==SQLITE_OK );
2583     if( pWal->bShmUnreliable==0 ){
2584       rc = walIndexReadHdr(pWal, pChanged);
2585     }
2586     if( rc==SQLITE_BUSY ){
2587       /* If there is not a recovery running in another thread or process
2588       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2589       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2590       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2591       ** would be technically correct.  But the race is benign since with
2592       ** WAL_RETRY this routine will be called again and will probably be
2593       ** right on the second iteration.
2594       */
2595       if( pWal->apWiData[0]==0 ){
2596         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2597         ** We assume this is a transient condition, so return WAL_RETRY. The
2598         ** xShmMap() implementation used by the default unix and win32 VFS
2599         ** modules may return SQLITE_BUSY due to a race condition in the
2600         ** code that determines whether or not the shared-memory region
2601         ** must be zeroed before the requested page is returned.
2602         */
2603         rc = WAL_RETRY;
2604       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2605         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2606         rc = WAL_RETRY;
2607       }else if( rc==SQLITE_BUSY ){
2608         rc = SQLITE_BUSY_RECOVERY;
2609       }
2610     }
2611     if( rc!=SQLITE_OK ){
2612       return rc;
2613     }
2614     else if( pWal->bShmUnreliable ){
2615       return walBeginShmUnreliable(pWal, pChanged);
2616     }
2617   }
2618 
2619   assert( pWal->nWiData>0 );
2620   assert( pWal->apWiData[0]!=0 );
2621   pInfo = walCkptInfo(pWal);
2622   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2623 #ifdef SQLITE_ENABLE_SNAPSHOT
2624    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2625 #endif
2626   ){
2627     /* The WAL has been completely backfilled (or it is empty).
2628     ** and can be safely ignored.
2629     */
2630     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2631     walShmBarrier(pWal);
2632     if( rc==SQLITE_OK ){
2633       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2634         /* It is not safe to allow the reader to continue here if frames
2635         ** may have been appended to the log before READ_LOCK(0) was obtained.
2636         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2637         ** which implies that the database file contains a trustworthy
2638         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2639         ** happening, this is usually correct.
2640         **
2641         ** However, if frames have been appended to the log (or if the log
2642         ** is wrapped and written for that matter) before the READ_LOCK(0)
2643         ** is obtained, that is not necessarily true. A checkpointer may
2644         ** have started to backfill the appended frames but crashed before
2645         ** it finished. Leaving a corrupt image in the database file.
2646         */
2647         walUnlockShared(pWal, WAL_READ_LOCK(0));
2648         return WAL_RETRY;
2649       }
2650       pWal->readLock = 0;
2651       return SQLITE_OK;
2652     }else if( rc!=SQLITE_BUSY ){
2653       return rc;
2654     }
2655   }
2656 
2657   /* If we get this far, it means that the reader will want to use
2658   ** the WAL to get at content from recent commits.  The job now is
2659   ** to select one of the aReadMark[] entries that is closest to
2660   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2661   */
2662   mxReadMark = 0;
2663   mxI = 0;
2664   mxFrame = pWal->hdr.mxFrame;
2665 #ifdef SQLITE_ENABLE_SNAPSHOT
2666   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2667     mxFrame = pWal->pSnapshot->mxFrame;
2668   }
2669 #endif
2670   for(i=1; i<WAL_NREADER; i++){
2671     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2672     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2673       assert( thisMark!=READMARK_NOT_USED );
2674       mxReadMark = thisMark;
2675       mxI = i;
2676     }
2677   }
2678   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2679    && (mxReadMark<mxFrame || mxI==0)
2680   ){
2681     for(i=1; i<WAL_NREADER; i++){
2682       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2683       if( rc==SQLITE_OK ){
2684         AtomicStore(pInfo->aReadMark+i,mxFrame);
2685         mxReadMark = mxFrame;
2686         mxI = i;
2687         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2688         break;
2689       }else if( rc!=SQLITE_BUSY ){
2690         return rc;
2691       }
2692     }
2693   }
2694   if( mxI==0 ){
2695     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2696     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2697   }
2698 
2699   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2700   if( rc ){
2701     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2702   }
2703   /* Now that the read-lock has been obtained, check that neither the
2704   ** value in the aReadMark[] array or the contents of the wal-index
2705   ** header have changed.
2706   **
2707   ** It is necessary to check that the wal-index header did not change
2708   ** between the time it was read and when the shared-lock was obtained
2709   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2710   ** that the log file may have been wrapped by a writer, or that frames
2711   ** that occur later in the log than pWal->hdr.mxFrame may have been
2712   ** copied into the database by a checkpointer. If either of these things
2713   ** happened, then reading the database with the current value of
2714   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2715   ** instead.
2716   **
2717   ** Before checking that the live wal-index header has not changed
2718   ** since it was read, set Wal.minFrame to the first frame in the wal
2719   ** file that has not yet been checkpointed. This client will not need
2720   ** to read any frames earlier than minFrame from the wal file - they
2721   ** can be safely read directly from the database file.
2722   **
2723   ** Because a ShmBarrier() call is made between taking the copy of
2724   ** nBackfill and checking that the wal-header in shared-memory still
2725   ** matches the one cached in pWal->hdr, it is guaranteed that the
2726   ** checkpointer that set nBackfill was not working with a wal-index
2727   ** header newer than that cached in pWal->hdr. If it were, that could
2728   ** cause a problem. The checkpointer could omit to checkpoint
2729   ** a version of page X that lies before pWal->minFrame (call that version
2730   ** A) on the basis that there is a newer version (version B) of the same
2731   ** page later in the wal file. But if version B happens to like past
2732   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2733   ** that it can read version A from the database file. However, since
2734   ** we can guarantee that the checkpointer that set nBackfill could not
2735   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2736   */
2737   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2738   walShmBarrier(pWal);
2739   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2740    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2741   ){
2742     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2743     return WAL_RETRY;
2744   }else{
2745     assert( mxReadMark<=pWal->hdr.mxFrame );
2746     pWal->readLock = (i16)mxI;
2747   }
2748   return rc;
2749 }
2750 
2751 #ifdef SQLITE_ENABLE_SNAPSHOT
2752 /*
2753 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2754 ** variable so that older snapshots can be accessed. To do this, loop
2755 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2756 ** comparing their content to the corresponding page with the database
2757 ** file, if any. Set nBackfillAttempted to the frame number of the
2758 ** first frame for which the wal file content matches the db file.
2759 **
2760 ** This is only really safe if the file-system is such that any page
2761 ** writes made by earlier checkpointers were atomic operations, which
2762 ** is not always true. It is also possible that nBackfillAttempted
2763 ** may be left set to a value larger than expected, if a wal frame
2764 ** contains content that duplicate of an earlier version of the same
2765 ** page.
2766 **
2767 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2768 ** error occurs. It is not an error if nBackfillAttempted cannot be
2769 ** decreased at all.
2770 */
2771 int sqlite3WalSnapshotRecover(Wal *pWal){
2772   int rc;
2773 
2774   assert( pWal->readLock>=0 );
2775   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2776   if( rc==SQLITE_OK ){
2777     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2778     int szPage = (int)pWal->szPage;
2779     i64 szDb;                   /* Size of db file in bytes */
2780 
2781     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2782     if( rc==SQLITE_OK ){
2783       void *pBuf1 = sqlite3_malloc(szPage);
2784       void *pBuf2 = sqlite3_malloc(szPage);
2785       if( pBuf1==0 || pBuf2==0 ){
2786         rc = SQLITE_NOMEM;
2787       }else{
2788         u32 i = pInfo->nBackfillAttempted;
2789         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2790           WalHashLoc sLoc;          /* Hash table location */
2791           u32 pgno;                 /* Page number in db file */
2792           i64 iDbOff;               /* Offset of db file entry */
2793           i64 iWalOff;              /* Offset of wal file entry */
2794 
2795           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2796           if( rc!=SQLITE_OK ) break;
2797           pgno = sLoc.aPgno[i-sLoc.iZero];
2798           iDbOff = (i64)(pgno-1) * szPage;
2799 
2800           if( iDbOff+szPage<=szDb ){
2801             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2802             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2803 
2804             if( rc==SQLITE_OK ){
2805               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2806             }
2807 
2808             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2809               break;
2810             }
2811           }
2812 
2813           pInfo->nBackfillAttempted = i-1;
2814         }
2815       }
2816 
2817       sqlite3_free(pBuf1);
2818       sqlite3_free(pBuf2);
2819     }
2820     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2821   }
2822 
2823   return rc;
2824 }
2825 #endif /* SQLITE_ENABLE_SNAPSHOT */
2826 
2827 /*
2828 ** Begin a read transaction on the database.
2829 **
2830 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2831 ** it takes a snapshot of the state of the WAL and wal-index for the current
2832 ** instant in time.  The current thread will continue to use this snapshot.
2833 ** Other threads might append new content to the WAL and wal-index but
2834 ** that extra content is ignored by the current thread.
2835 **
2836 ** If the database contents have changes since the previous read
2837 ** transaction, then *pChanged is set to 1 before returning.  The
2838 ** Pager layer will use this to know that its cache is stale and
2839 ** needs to be flushed.
2840 */
2841 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2842   int rc;                         /* Return code */
2843   int cnt = 0;                    /* Number of TryBeginRead attempts */
2844 
2845   assert( pWal->ckptLock==0 );
2846 
2847 #ifdef SQLITE_ENABLE_SNAPSHOT
2848   int bChanged = 0;
2849   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2850   if( pSnapshot ){
2851     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2852       bChanged = 1;
2853     }
2854 
2855     /* It is possible that there is a checkpointer thread running
2856     ** concurrent with this code. If this is the case, it may be that the
2857     ** checkpointer has already determined that it will checkpoint
2858     ** snapshot X, where X is later in the wal file than pSnapshot, but
2859     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2860     ** its intent. To avoid the race condition this leads to, ensure that
2861     ** there is no checkpointer process by taking a shared CKPT lock
2862     ** before checking pInfo->nBackfillAttempted.  */
2863     (void)walEnableBlocking(pWal);
2864     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2865     walDisableBlocking(pWal);
2866 
2867     if( rc!=SQLITE_OK ){
2868       return rc;
2869     }
2870     pWal->ckptLock = 1;
2871   }
2872 #endif
2873 
2874   do{
2875     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2876   }while( rc==WAL_RETRY );
2877   testcase( (rc&0xff)==SQLITE_BUSY );
2878   testcase( (rc&0xff)==SQLITE_IOERR );
2879   testcase( rc==SQLITE_PROTOCOL );
2880   testcase( rc==SQLITE_OK );
2881 
2882 #ifdef SQLITE_ENABLE_SNAPSHOT
2883   if( rc==SQLITE_OK ){
2884     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2885       /* At this point the client has a lock on an aReadMark[] slot holding
2886       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2887       ** is populated with the wal-index header corresponding to the head
2888       ** of the wal file. Verify that pSnapshot is still valid before
2889       ** continuing.  Reasons why pSnapshot might no longer be valid:
2890       **
2891       **    (1)  The WAL file has been reset since the snapshot was taken.
2892       **         In this case, the salt will have changed.
2893       **
2894       **    (2)  A checkpoint as been attempted that wrote frames past
2895       **         pSnapshot->mxFrame into the database file.  Note that the
2896       **         checkpoint need not have completed for this to cause problems.
2897       */
2898       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2899 
2900       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2901       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2902 
2903       /* Check that the wal file has not been wrapped. Assuming that it has
2904       ** not, also check that no checkpointer has attempted to checkpoint any
2905       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2906       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2907       ** with *pSnapshot and set *pChanged as appropriate for opening the
2908       ** snapshot.  */
2909       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2910        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2911       ){
2912         assert( pWal->readLock>0 );
2913         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2914         *pChanged = bChanged;
2915       }else{
2916         rc = SQLITE_ERROR_SNAPSHOT;
2917       }
2918 
2919       /* A client using a non-current snapshot may not ignore any frames
2920       ** from the start of the wal file. This is because, for a system
2921       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2922       ** have omitted to checkpoint a frame earlier than minFrame in
2923       ** the file because there exists a frame after iSnapshot that
2924       ** is the same database page.  */
2925       pWal->minFrame = 1;
2926 
2927       if( rc!=SQLITE_OK ){
2928         sqlite3WalEndReadTransaction(pWal);
2929       }
2930     }
2931   }
2932 
2933   /* Release the shared CKPT lock obtained above. */
2934   if( pWal->ckptLock ){
2935     assert( pSnapshot );
2936     walUnlockShared(pWal, WAL_CKPT_LOCK);
2937     pWal->ckptLock = 0;
2938   }
2939 #endif
2940   return rc;
2941 }
2942 
2943 /*
2944 ** Finish with a read transaction.  All this does is release the
2945 ** read-lock.
2946 */
2947 void sqlite3WalEndReadTransaction(Wal *pWal){
2948   sqlite3WalEndWriteTransaction(pWal);
2949   if( pWal->readLock>=0 ){
2950     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2951     pWal->readLock = -1;
2952   }
2953 }
2954 
2955 /*
2956 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2957 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2958 ** to zero.
2959 **
2960 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2961 ** error does occur, the final value of *piRead is undefined.
2962 */
2963 int sqlite3WalFindFrame(
2964   Wal *pWal,                      /* WAL handle */
2965   Pgno pgno,                      /* Database page number to read data for */
2966   u32 *piRead                     /* OUT: Frame number (or zero) */
2967 ){
2968   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2969   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2970   int iHash;                      /* Used to loop through N hash tables */
2971   int iMinHash;
2972 
2973   /* This routine is only be called from within a read transaction. */
2974   assert( pWal->readLock>=0 || pWal->lockError );
2975 
2976   /* If the "last page" field of the wal-index header snapshot is 0, then
2977   ** no data will be read from the wal under any circumstances. Return early
2978   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2979   ** then the WAL is ignored by the reader so return early, as if the
2980   ** WAL were empty.
2981   */
2982   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2983     *piRead = 0;
2984     return SQLITE_OK;
2985   }
2986 
2987   /* Search the hash table or tables for an entry matching page number
2988   ** pgno. Each iteration of the following for() loop searches one
2989   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2990   **
2991   ** This code might run concurrently to the code in walIndexAppend()
2992   ** that adds entries to the wal-index (and possibly to this hash
2993   ** table). This means the value just read from the hash
2994   ** slot (aHash[iKey]) may have been added before or after the
2995   ** current read transaction was opened. Values added after the
2996   ** read transaction was opened may have been written incorrectly -
2997   ** i.e. these slots may contain garbage data. However, we assume
2998   ** that any slots written before the current read transaction was
2999   ** opened remain unmodified.
3000   **
3001   ** For the reasons above, the if(...) condition featured in the inner
3002   ** loop of the following block is more stringent that would be required
3003   ** if we had exclusive access to the hash-table:
3004   **
3005   **   (aPgno[iFrame]==pgno):
3006   **     This condition filters out normal hash-table collisions.
3007   **
3008   **   (iFrame<=iLast):
3009   **     This condition filters out entries that were added to the hash
3010   **     table after the current read-transaction had started.
3011   */
3012   iMinHash = walFramePage(pWal->minFrame);
3013   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3014     WalHashLoc sLoc;              /* Hash table location */
3015     int iKey;                     /* Hash slot index */
3016     int nCollide;                 /* Number of hash collisions remaining */
3017     int rc;                       /* Error code */
3018 
3019     rc = walHashGet(pWal, iHash, &sLoc);
3020     if( rc!=SQLITE_OK ){
3021       return rc;
3022     }
3023     nCollide = HASHTABLE_NSLOT;
3024     for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
3025       u32 iH = sLoc.aHash[iKey];
3026       u32 iFrame = iH + sLoc.iZero;
3027       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3028         assert( iFrame>iRead || CORRUPT_DB );
3029         iRead = iFrame;
3030       }
3031       if( (nCollide--)==0 ){
3032         return SQLITE_CORRUPT_BKPT;
3033       }
3034     }
3035     if( iRead ) break;
3036   }
3037 
3038 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3039   /* If expensive assert() statements are available, do a linear search
3040   ** of the wal-index file content. Make sure the results agree with the
3041   ** result obtained using the hash indexes above.  */
3042   {
3043     u32 iRead2 = 0;
3044     u32 iTest;
3045     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3046     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3047       if( walFramePgno(pWal, iTest)==pgno ){
3048         iRead2 = iTest;
3049         break;
3050       }
3051     }
3052     assert( iRead==iRead2 );
3053   }
3054 #endif
3055 
3056   *piRead = iRead;
3057   return SQLITE_OK;
3058 }
3059 
3060 /*
3061 ** Read the contents of frame iRead from the wal file into buffer pOut
3062 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3063 ** error code otherwise.
3064 */
3065 int sqlite3WalReadFrame(
3066   Wal *pWal,                      /* WAL handle */
3067   u32 iRead,                      /* Frame to read */
3068   int nOut,                       /* Size of buffer pOut in bytes */
3069   u8 *pOut                        /* Buffer to write page data to */
3070 ){
3071   int sz;
3072   i64 iOffset;
3073   sz = pWal->hdr.szPage;
3074   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3075   testcase( sz<=32768 );
3076   testcase( sz>=65536 );
3077   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3078   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3079   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3080 }
3081 
3082 /*
3083 ** Return the size of the database in pages (or zero, if unknown).
3084 */
3085 Pgno sqlite3WalDbsize(Wal *pWal){
3086   if( pWal && ALWAYS(pWal->readLock>=0) ){
3087     return pWal->hdr.nPage;
3088   }
3089   return 0;
3090 }
3091 
3092 
3093 /*
3094 ** This function starts a write transaction on the WAL.
3095 **
3096 ** A read transaction must have already been started by a prior call
3097 ** to sqlite3WalBeginReadTransaction().
3098 **
3099 ** If another thread or process has written into the database since
3100 ** the read transaction was started, then it is not possible for this
3101 ** thread to write as doing so would cause a fork.  So this routine
3102 ** returns SQLITE_BUSY in that case and no write transaction is started.
3103 **
3104 ** There can only be a single writer active at a time.
3105 */
3106 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3107   int rc;
3108 
3109 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3110   /* If the write-lock is already held, then it was obtained before the
3111   ** read-transaction was even opened, making this call a no-op.
3112   ** Return early. */
3113   if( pWal->writeLock ){
3114     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3115     return SQLITE_OK;
3116   }
3117 #endif
3118 
3119   /* Cannot start a write transaction without first holding a read
3120   ** transaction. */
3121   assert( pWal->readLock>=0 );
3122   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3123 
3124   if( pWal->readOnly ){
3125     return SQLITE_READONLY;
3126   }
3127 
3128   /* Only one writer allowed at a time.  Get the write lock.  Return
3129   ** SQLITE_BUSY if unable.
3130   */
3131   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3132   if( rc ){
3133     return rc;
3134   }
3135   pWal->writeLock = 1;
3136 
3137   /* If another connection has written to the database file since the
3138   ** time the read transaction on this connection was started, then
3139   ** the write is disallowed.
3140   */
3141   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3142     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3143     pWal->writeLock = 0;
3144     rc = SQLITE_BUSY_SNAPSHOT;
3145   }
3146 
3147   return rc;
3148 }
3149 
3150 /*
3151 ** End a write transaction.  The commit has already been done.  This
3152 ** routine merely releases the lock.
3153 */
3154 int sqlite3WalEndWriteTransaction(Wal *pWal){
3155   if( pWal->writeLock ){
3156     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3157     pWal->writeLock = 0;
3158     pWal->iReCksum = 0;
3159     pWal->truncateOnCommit = 0;
3160   }
3161   return SQLITE_OK;
3162 }
3163 
3164 /*
3165 ** If any data has been written (but not committed) to the log file, this
3166 ** function moves the write-pointer back to the start of the transaction.
3167 **
3168 ** Additionally, the callback function is invoked for each frame written
3169 ** to the WAL since the start of the transaction. If the callback returns
3170 ** other than SQLITE_OK, it is not invoked again and the error code is
3171 ** returned to the caller.
3172 **
3173 ** Otherwise, if the callback function does not return an error, this
3174 ** function returns SQLITE_OK.
3175 */
3176 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3177   int rc = SQLITE_OK;
3178   if( ALWAYS(pWal->writeLock) ){
3179     Pgno iMax = pWal->hdr.mxFrame;
3180     Pgno iFrame;
3181 
3182     /* Restore the clients cache of the wal-index header to the state it
3183     ** was in before the client began writing to the database.
3184     */
3185     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3186 
3187     for(iFrame=pWal->hdr.mxFrame+1;
3188         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3189         iFrame++
3190     ){
3191       /* This call cannot fail. Unless the page for which the page number
3192       ** is passed as the second argument is (a) in the cache and
3193       ** (b) has an outstanding reference, then xUndo is either a no-op
3194       ** (if (a) is false) or simply expels the page from the cache (if (b)
3195       ** is false).
3196       **
3197       ** If the upper layer is doing a rollback, it is guaranteed that there
3198       ** are no outstanding references to any page other than page 1. And
3199       ** page 1 is never written to the log until the transaction is
3200       ** committed. As a result, the call to xUndo may not fail.
3201       */
3202       assert( walFramePgno(pWal, iFrame)!=1 );
3203       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3204     }
3205     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3206   }
3207   return rc;
3208 }
3209 
3210 /*
3211 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3212 ** values. This function populates the array with values required to
3213 ** "rollback" the write position of the WAL handle back to the current
3214 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3215 */
3216 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3217   assert( pWal->writeLock );
3218   aWalData[0] = pWal->hdr.mxFrame;
3219   aWalData[1] = pWal->hdr.aFrameCksum[0];
3220   aWalData[2] = pWal->hdr.aFrameCksum[1];
3221   aWalData[3] = pWal->nCkpt;
3222 }
3223 
3224 /*
3225 ** Move the write position of the WAL back to the point identified by
3226 ** the values in the aWalData[] array. aWalData must point to an array
3227 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3228 ** by a call to WalSavepoint().
3229 */
3230 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3231   int rc = SQLITE_OK;
3232 
3233   assert( pWal->writeLock );
3234   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3235 
3236   if( aWalData[3]!=pWal->nCkpt ){
3237     /* This savepoint was opened immediately after the write-transaction
3238     ** was started. Right after that, the writer decided to wrap around
3239     ** to the start of the log. Update the savepoint values to match.
3240     */
3241     aWalData[0] = 0;
3242     aWalData[3] = pWal->nCkpt;
3243   }
3244 
3245   if( aWalData[0]<pWal->hdr.mxFrame ){
3246     pWal->hdr.mxFrame = aWalData[0];
3247     pWal->hdr.aFrameCksum[0] = aWalData[1];
3248     pWal->hdr.aFrameCksum[1] = aWalData[2];
3249     walCleanupHash(pWal);
3250   }
3251 
3252   return rc;
3253 }
3254 
3255 /*
3256 ** This function is called just before writing a set of frames to the log
3257 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3258 ** to the current log file, it is possible to overwrite the start of the
3259 ** existing log file with the new frames (i.e. "reset" the log). If so,
3260 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3261 ** unchanged.
3262 **
3263 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3264 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3265 ** if an error occurs.
3266 */
3267 static int walRestartLog(Wal *pWal){
3268   int rc = SQLITE_OK;
3269   int cnt;
3270 
3271   if( pWal->readLock==0 ){
3272     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3273     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3274     if( pInfo->nBackfill>0 ){
3275       u32 salt1;
3276       sqlite3_randomness(4, &salt1);
3277       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3278       if( rc==SQLITE_OK ){
3279         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3280         ** readers are currently using the WAL), then the transactions
3281         ** frames will overwrite the start of the existing log. Update the
3282         ** wal-index header to reflect this.
3283         **
3284         ** In theory it would be Ok to update the cache of the header only
3285         ** at this point. But updating the actual wal-index header is also
3286         ** safe and means there is no special case for sqlite3WalUndo()
3287         ** to handle if this transaction is rolled back.  */
3288         walRestartHdr(pWal, salt1);
3289         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3290       }else if( rc!=SQLITE_BUSY ){
3291         return rc;
3292       }
3293     }
3294     walUnlockShared(pWal, WAL_READ_LOCK(0));
3295     pWal->readLock = -1;
3296     cnt = 0;
3297     do{
3298       int notUsed;
3299       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3300     }while( rc==WAL_RETRY );
3301     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3302     testcase( (rc&0xff)==SQLITE_IOERR );
3303     testcase( rc==SQLITE_PROTOCOL );
3304     testcase( rc==SQLITE_OK );
3305   }
3306   return rc;
3307 }
3308 
3309 /*
3310 ** Information about the current state of the WAL file and where
3311 ** the next fsync should occur - passed from sqlite3WalFrames() into
3312 ** walWriteToLog().
3313 */
3314 typedef struct WalWriter {
3315   Wal *pWal;                   /* The complete WAL information */
3316   sqlite3_file *pFd;           /* The WAL file to which we write */
3317   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3318   int syncFlags;               /* Flags for the fsync */
3319   int szPage;                  /* Size of one page */
3320 } WalWriter;
3321 
3322 /*
3323 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3324 ** Do a sync when crossing the p->iSyncPoint boundary.
3325 **
3326 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3327 ** first write the part before iSyncPoint, then sync, then write the
3328 ** rest.
3329 */
3330 static int walWriteToLog(
3331   WalWriter *p,              /* WAL to write to */
3332   void *pContent,            /* Content to be written */
3333   int iAmt,                  /* Number of bytes to write */
3334   sqlite3_int64 iOffset      /* Start writing at this offset */
3335 ){
3336   int rc;
3337   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3338     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3339     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3340     if( rc ) return rc;
3341     iOffset += iFirstAmt;
3342     iAmt -= iFirstAmt;
3343     pContent = (void*)(iFirstAmt + (char*)pContent);
3344     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3345     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3346     if( iAmt==0 || rc ) return rc;
3347   }
3348   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3349   return rc;
3350 }
3351 
3352 /*
3353 ** Write out a single frame of the WAL
3354 */
3355 static int walWriteOneFrame(
3356   WalWriter *p,               /* Where to write the frame */
3357   PgHdr *pPage,               /* The page of the frame to be written */
3358   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3359   sqlite3_int64 iOffset       /* Byte offset at which to write */
3360 ){
3361   int rc;                         /* Result code from subfunctions */
3362   void *pData;                    /* Data actually written */
3363   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3364   pData = pPage->pData;
3365   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3366   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3367   if( rc ) return rc;
3368   /* Write the page data */
3369   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3370   return rc;
3371 }
3372 
3373 /*
3374 ** This function is called as part of committing a transaction within which
3375 ** one or more frames have been overwritten. It updates the checksums for
3376 ** all frames written to the wal file by the current transaction starting
3377 ** with the earliest to have been overwritten.
3378 **
3379 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3380 */
3381 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3382   const int szPage = pWal->szPage;/* Database page size */
3383   int rc = SQLITE_OK;             /* Return code */
3384   u8 *aBuf;                       /* Buffer to load data from wal file into */
3385   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3386   u32 iRead;                      /* Next frame to read from wal file */
3387   i64 iCksumOff;
3388 
3389   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3390   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3391 
3392   /* Find the checksum values to use as input for the recalculating the
3393   ** first checksum. If the first frame is frame 1 (implying that the current
3394   ** transaction restarted the wal file), these values must be read from the
3395   ** wal-file header. Otherwise, read them from the frame header of the
3396   ** previous frame.  */
3397   assert( pWal->iReCksum>0 );
3398   if( pWal->iReCksum==1 ){
3399     iCksumOff = 24;
3400   }else{
3401     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3402   }
3403   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3404   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3405   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3406 
3407   iRead = pWal->iReCksum;
3408   pWal->iReCksum = 0;
3409   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3410     i64 iOff = walFrameOffset(iRead, szPage);
3411     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3412     if( rc==SQLITE_OK ){
3413       u32 iPgno, nDbSize;
3414       iPgno = sqlite3Get4byte(aBuf);
3415       nDbSize = sqlite3Get4byte(&aBuf[4]);
3416 
3417       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3418       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3419     }
3420   }
3421 
3422   sqlite3_free(aBuf);
3423   return rc;
3424 }
3425 
3426 /*
3427 ** Write a set of frames to the log. The caller must hold the write-lock
3428 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3429 */
3430 int sqlite3WalFrames(
3431   Wal *pWal,                      /* Wal handle to write to */
3432   int szPage,                     /* Database page-size in bytes */
3433   PgHdr *pList,                   /* List of dirty pages to write */
3434   Pgno nTruncate,                 /* Database size after this commit */
3435   int isCommit,                   /* True if this is a commit */
3436   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3437 ){
3438   int rc;                         /* Used to catch return codes */
3439   u32 iFrame;                     /* Next frame address */
3440   PgHdr *p;                       /* Iterator to run through pList with. */
3441   PgHdr *pLast = 0;               /* Last frame in list */
3442   int nExtra = 0;                 /* Number of extra copies of last page */
3443   int szFrame;                    /* The size of a single frame */
3444   i64 iOffset;                    /* Next byte to write in WAL file */
3445   WalWriter w;                    /* The writer */
3446   u32 iFirst = 0;                 /* First frame that may be overwritten */
3447   WalIndexHdr *pLive;             /* Pointer to shared header */
3448 
3449   assert( pList );
3450   assert( pWal->writeLock );
3451 
3452   /* If this frame set completes a transaction, then nTruncate>0.  If
3453   ** nTruncate==0 then this frame set does not complete the transaction. */
3454   assert( (isCommit!=0)==(nTruncate!=0) );
3455 
3456 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3457   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3458     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3459               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3460   }
3461 #endif
3462 
3463   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3464   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3465     iFirst = pLive->mxFrame+1;
3466   }
3467 
3468   /* See if it is possible to write these frames into the start of the
3469   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3470   */
3471   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3472     return rc;
3473   }
3474 
3475   /* If this is the first frame written into the log, write the WAL
3476   ** header to the start of the WAL file. See comments at the top of
3477   ** this source file for a description of the WAL header format.
3478   */
3479   iFrame = pWal->hdr.mxFrame;
3480   if( iFrame==0 ){
3481     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3482     u32 aCksum[2];                /* Checksum for wal-header */
3483 
3484     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3485     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3486     sqlite3Put4byte(&aWalHdr[8], szPage);
3487     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3488     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3489     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3490     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3491     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3492     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3493 
3494     pWal->szPage = szPage;
3495     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3496     pWal->hdr.aFrameCksum[0] = aCksum[0];
3497     pWal->hdr.aFrameCksum[1] = aCksum[1];
3498     pWal->truncateOnCommit = 1;
3499 
3500     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3501     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3502     if( rc!=SQLITE_OK ){
3503       return rc;
3504     }
3505 
3506     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3507     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3508     ** an out-of-order write following a WAL restart could result in
3509     ** database corruption.  See the ticket:
3510     **
3511     **     https://sqlite.org/src/info/ff5be73dee
3512     */
3513     if( pWal->syncHeader ){
3514       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3515       if( rc ) return rc;
3516     }
3517   }
3518   assert( (int)pWal->szPage==szPage );
3519 
3520   /* Setup information needed to write frames into the WAL */
3521   w.pWal = pWal;
3522   w.pFd = pWal->pWalFd;
3523   w.iSyncPoint = 0;
3524   w.syncFlags = sync_flags;
3525   w.szPage = szPage;
3526   iOffset = walFrameOffset(iFrame+1, szPage);
3527   szFrame = szPage + WAL_FRAME_HDRSIZE;
3528 
3529   /* Write all frames into the log file exactly once */
3530   for(p=pList; p; p=p->pDirty){
3531     int nDbSize;   /* 0 normally.  Positive == commit flag */
3532 
3533     /* Check if this page has already been written into the wal file by
3534     ** the current transaction. If so, overwrite the existing frame and
3535     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3536     ** checksums must be recomputed when the transaction is committed.  */
3537     if( iFirst && (p->pDirty || isCommit==0) ){
3538       u32 iWrite = 0;
3539       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3540       assert( rc==SQLITE_OK || iWrite==0 );
3541       if( iWrite>=iFirst ){
3542         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3543         void *pData;
3544         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3545           pWal->iReCksum = iWrite;
3546         }
3547         pData = p->pData;
3548         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3549         if( rc ) return rc;
3550         p->flags &= ~PGHDR_WAL_APPEND;
3551         continue;
3552       }
3553     }
3554 
3555     iFrame++;
3556     assert( iOffset==walFrameOffset(iFrame, szPage) );
3557     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3558     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3559     if( rc ) return rc;
3560     pLast = p;
3561     iOffset += szFrame;
3562     p->flags |= PGHDR_WAL_APPEND;
3563   }
3564 
3565   /* Recalculate checksums within the wal file if required. */
3566   if( isCommit && pWal->iReCksum ){
3567     rc = walRewriteChecksums(pWal, iFrame);
3568     if( rc ) return rc;
3569   }
3570 
3571   /* If this is the end of a transaction, then we might need to pad
3572   ** the transaction and/or sync the WAL file.
3573   **
3574   ** Padding and syncing only occur if this set of frames complete a
3575   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3576   ** or synchronous==OFF, then no padding or syncing are needed.
3577   **
3578   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3579   ** needed and only the sync is done.  If padding is needed, then the
3580   ** final frame is repeated (with its commit mark) until the next sector
3581   ** boundary is crossed.  Only the part of the WAL prior to the last
3582   ** sector boundary is synced; the part of the last frame that extends
3583   ** past the sector boundary is written after the sync.
3584   */
3585   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3586     int bSync = 1;
3587     if( pWal->padToSectorBoundary ){
3588       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3589       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3590       bSync = (w.iSyncPoint==iOffset);
3591       testcase( bSync );
3592       while( iOffset<w.iSyncPoint ){
3593         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3594         if( rc ) return rc;
3595         iOffset += szFrame;
3596         nExtra++;
3597         assert( pLast!=0 );
3598       }
3599     }
3600     if( bSync ){
3601       assert( rc==SQLITE_OK );
3602       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3603     }
3604   }
3605 
3606   /* If this frame set completes the first transaction in the WAL and
3607   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3608   ** journal size limit, if possible.
3609   */
3610   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3611     i64 sz = pWal->mxWalSize;
3612     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3613       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3614     }
3615     walLimitSize(pWal, sz);
3616     pWal->truncateOnCommit = 0;
3617   }
3618 
3619   /* Append data to the wal-index. It is not necessary to lock the
3620   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3621   ** guarantees that there are no other writers, and no data that may
3622   ** be in use by existing readers is being overwritten.
3623   */
3624   iFrame = pWal->hdr.mxFrame;
3625   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3626     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3627     iFrame++;
3628     rc = walIndexAppend(pWal, iFrame, p->pgno);
3629   }
3630   assert( pLast!=0 || nExtra==0 );
3631   while( rc==SQLITE_OK && nExtra>0 ){
3632     iFrame++;
3633     nExtra--;
3634     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3635   }
3636 
3637   if( rc==SQLITE_OK ){
3638     /* Update the private copy of the header. */
3639     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3640     testcase( szPage<=32768 );
3641     testcase( szPage>=65536 );
3642     pWal->hdr.mxFrame = iFrame;
3643     if( isCommit ){
3644       pWal->hdr.iChange++;
3645       pWal->hdr.nPage = nTruncate;
3646     }
3647     /* If this is a commit, update the wal-index header too. */
3648     if( isCommit ){
3649       walIndexWriteHdr(pWal);
3650       pWal->iCallback = iFrame;
3651     }
3652   }
3653 
3654   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3655   return rc;
3656 }
3657 
3658 /*
3659 ** This routine is called to implement sqlite3_wal_checkpoint() and
3660 ** related interfaces.
3661 **
3662 ** Obtain a CHECKPOINT lock and then backfill as much information as
3663 ** we can from WAL into the database.
3664 **
3665 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3666 ** callback. In this case this function runs a blocking checkpoint.
3667 */
3668 int sqlite3WalCheckpoint(
3669   Wal *pWal,                      /* Wal connection */
3670   sqlite3 *db,                    /* Check this handle's interrupt flag */
3671   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3672   int (*xBusy)(void*),            /* Function to call when busy */
3673   void *pBusyArg,                 /* Context argument for xBusyHandler */
3674   int sync_flags,                 /* Flags to sync db file with (or 0) */
3675   int nBuf,                       /* Size of temporary buffer */
3676   u8 *zBuf,                       /* Temporary buffer to use */
3677   int *pnLog,                     /* OUT: Number of frames in WAL */
3678   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3679 ){
3680   int rc;                         /* Return code */
3681   int isChanged = 0;              /* True if a new wal-index header is loaded */
3682   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3683   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3684 
3685   assert( pWal->ckptLock==0 );
3686   assert( pWal->writeLock==0 );
3687 
3688   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3689   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3690   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3691 
3692   if( pWal->readOnly ) return SQLITE_READONLY;
3693   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3694 
3695   /* Enable blocking locks, if possible. If blocking locks are successfully
3696   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3697   sqlite3WalDb(pWal, db);
3698   (void)walEnableBlocking(pWal);
3699 
3700   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3701   ** "checkpoint" lock on the database file.
3702   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3703   ** checkpoint operation at the same time, the lock cannot be obtained and
3704   ** SQLITE_BUSY is returned.
3705   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3706   ** it will not be invoked in this case.
3707   */
3708   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3709   testcase( rc==SQLITE_BUSY );
3710   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3711   if( rc==SQLITE_OK ){
3712     pWal->ckptLock = 1;
3713 
3714     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3715     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3716     ** file.
3717     **
3718     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3719     ** immediately, and a busy-handler is configured, it is invoked and the
3720     ** writer lock retried until either the busy-handler returns 0 or the
3721     ** lock is successfully obtained.
3722     */
3723     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3724       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3725       if( rc==SQLITE_OK ){
3726         pWal->writeLock = 1;
3727       }else if( rc==SQLITE_BUSY ){
3728         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3729         xBusy2 = 0;
3730         rc = SQLITE_OK;
3731       }
3732     }
3733   }
3734 
3735 
3736   /* Read the wal-index header. */
3737   if( rc==SQLITE_OK ){
3738     walDisableBlocking(pWal);
3739     rc = walIndexReadHdr(pWal, &isChanged);
3740     (void)walEnableBlocking(pWal);
3741     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3742       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3743     }
3744   }
3745 
3746   /* Copy data from the log to the database file. */
3747   if( rc==SQLITE_OK ){
3748 
3749     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3750       rc = SQLITE_CORRUPT_BKPT;
3751     }else{
3752       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3753     }
3754 
3755     /* If no error occurred, set the output variables. */
3756     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3757       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3758       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3759     }
3760   }
3761 
3762   if( isChanged ){
3763     /* If a new wal-index header was loaded before the checkpoint was
3764     ** performed, then the pager-cache associated with pWal is now
3765     ** out of date. So zero the cached wal-index header to ensure that
3766     ** next time the pager opens a snapshot on this database it knows that
3767     ** the cache needs to be reset.
3768     */
3769     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3770   }
3771 
3772   walDisableBlocking(pWal);
3773   sqlite3WalDb(pWal, 0);
3774 
3775   /* Release the locks. */
3776   sqlite3WalEndWriteTransaction(pWal);
3777   if( pWal->ckptLock ){
3778     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3779     pWal->ckptLock = 0;
3780   }
3781   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3783   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3784 #endif
3785   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3786 }
3787 
3788 /* Return the value to pass to a sqlite3_wal_hook callback, the
3789 ** number of frames in the WAL at the point of the last commit since
3790 ** sqlite3WalCallback() was called.  If no commits have occurred since
3791 ** the last call, then return 0.
3792 */
3793 int sqlite3WalCallback(Wal *pWal){
3794   u32 ret = 0;
3795   if( pWal ){
3796     ret = pWal->iCallback;
3797     pWal->iCallback = 0;
3798   }
3799   return (int)ret;
3800 }
3801 
3802 /*
3803 ** This function is called to change the WAL subsystem into or out
3804 ** of locking_mode=EXCLUSIVE.
3805 **
3806 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3807 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3808 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3809 ** or if the acquisition of the lock fails, then return 0.  If the
3810 ** transition out of exclusive-mode is successful, return 1.  This
3811 ** operation must occur while the pager is still holding the exclusive
3812 ** lock on the main database file.
3813 **
3814 ** If op is one, then change from locking_mode=NORMAL into
3815 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3816 ** be released.  Return 1 if the transition is made and 0 if the
3817 ** WAL is already in exclusive-locking mode - meaning that this
3818 ** routine is a no-op.  The pager must already hold the exclusive lock
3819 ** on the main database file before invoking this operation.
3820 **
3821 ** If op is negative, then do a dry-run of the op==1 case but do
3822 ** not actually change anything. The pager uses this to see if it
3823 ** should acquire the database exclusive lock prior to invoking
3824 ** the op==1 case.
3825 */
3826 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3827   int rc;
3828   assert( pWal->writeLock==0 );
3829   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3830 
3831   /* pWal->readLock is usually set, but might be -1 if there was a
3832   ** prior error while attempting to acquire are read-lock. This cannot
3833   ** happen if the connection is actually in exclusive mode (as no xShmLock
3834   ** locks are taken in this case). Nor should the pager attempt to
3835   ** upgrade to exclusive-mode following such an error.
3836   */
3837   assert( pWal->readLock>=0 || pWal->lockError );
3838   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3839 
3840   if( op==0 ){
3841     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3842       pWal->exclusiveMode = WAL_NORMAL_MODE;
3843       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3844         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3845       }
3846       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3847     }else{
3848       /* Already in locking_mode=NORMAL */
3849       rc = 0;
3850     }
3851   }else if( op>0 ){
3852     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3853     assert( pWal->readLock>=0 );
3854     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3855     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3856     rc = 1;
3857   }else{
3858     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3859   }
3860   return rc;
3861 }
3862 
3863 /*
3864 ** Return true if the argument is non-NULL and the WAL module is using
3865 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3866 ** WAL module is using shared-memory, return false.
3867 */
3868 int sqlite3WalHeapMemory(Wal *pWal){
3869   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3870 }
3871 
3872 #ifdef SQLITE_ENABLE_SNAPSHOT
3873 /* Create a snapshot object.  The content of a snapshot is opaque to
3874 ** every other subsystem, so the WAL module can put whatever it needs
3875 ** in the object.
3876 */
3877 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3878   int rc = SQLITE_OK;
3879   WalIndexHdr *pRet;
3880   static const u32 aZero[4] = { 0, 0, 0, 0 };
3881 
3882   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3883 
3884   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3885     *ppSnapshot = 0;
3886     return SQLITE_ERROR;
3887   }
3888   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3889   if( pRet==0 ){
3890     rc = SQLITE_NOMEM_BKPT;
3891   }else{
3892     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3893     *ppSnapshot = (sqlite3_snapshot*)pRet;
3894   }
3895 
3896   return rc;
3897 }
3898 
3899 /* Try to open on pSnapshot when the next read-transaction starts
3900 */
3901 void sqlite3WalSnapshotOpen(
3902   Wal *pWal,
3903   sqlite3_snapshot *pSnapshot
3904 ){
3905   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3906 }
3907 
3908 /*
3909 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3910 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3911 */
3912 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3913   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3914   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3915 
3916   /* aSalt[0] is a copy of the value stored in the wal file header. It
3917   ** is incremented each time the wal file is restarted.  */
3918   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3919   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3920   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3921   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3922   return 0;
3923 }
3924 
3925 /*
3926 ** The caller currently has a read transaction open on the database.
3927 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3928 ** checks if the snapshot passed as the second argument is still
3929 ** available. If so, SQLITE_OK is returned.
3930 **
3931 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3932 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3933 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3934 ** lock is released before returning.
3935 */
3936 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3937   int rc;
3938   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3939   if( rc==SQLITE_OK ){
3940     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3941     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3942      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3943     ){
3944       rc = SQLITE_ERROR_SNAPSHOT;
3945       walUnlockShared(pWal, WAL_CKPT_LOCK);
3946     }
3947   }
3948   return rc;
3949 }
3950 
3951 /*
3952 ** Release a lock obtained by an earlier successful call to
3953 ** sqlite3WalSnapshotCheck().
3954 */
3955 void sqlite3WalSnapshotUnlock(Wal *pWal){
3956   assert( pWal );
3957   walUnlockShared(pWal, WAL_CKPT_LOCK);
3958 }
3959 
3960 
3961 #endif /* SQLITE_ENABLE_SNAPSHOT */
3962 
3963 #ifdef SQLITE_ENABLE_ZIPVFS
3964 /*
3965 ** If the argument is not NULL, it points to a Wal object that holds a
3966 ** read-lock. This function returns the database page-size if it is known,
3967 ** or zero if it is not (or if pWal is NULL).
3968 */
3969 int sqlite3WalFramesize(Wal *pWal){
3970   assert( pWal==0 || pWal->readLock>=0 );
3971   return (pWal ? pWal->szPage : 0);
3972 }
3973 #endif
3974 
3975 /* Return the sqlite3_file object for the WAL file
3976 */
3977 sqlite3_file *sqlite3WalFile(Wal *pWal){
3978   return pWal->pWalFd;
3979 }
3980 
3981 #endif /* #ifndef SQLITE_OMIT_WAL */
3982