1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P and a maximum frame index M, return the index of the 146 ** last frame in the wal before frame M for page P in the WAL, or return 147 ** NULL if there are no frames for page P in the WAL prior to M. 148 ** 149 ** The wal-index consists of a header region, followed by an one or 150 ** more index blocks. 151 ** 152 ** The wal-index header contains the total number of frames within the WAL 153 ** in the mxFrame field. 154 ** 155 ** Each index block except for the first contains information on 156 ** HASHTABLE_NPAGE frames. The first index block contains information on 157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 159 ** first index block are the same size as all other index blocks in the 160 ** wal-index. 161 ** 162 ** Each index block contains two sections, a page-mapping that contains the 163 ** database page number associated with each wal frame, and a hash-table 164 ** that allows readers to query an index block for a specific page number. 165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 166 ** for the first index block) 32-bit page numbers. The first entry in the 167 ** first index-block contains the database page number corresponding to the 168 ** first frame in the WAL file. The first entry in the second index block 169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 170 ** the log, and so on. 171 ** 172 ** The last index block in a wal-index usually contains less than the full 173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 174 ** depending on the contents of the WAL file. This does not change the 175 ** allocated size of the page-mapping array - the page-mapping array merely 176 ** contains unused entries. 177 ** 178 ** Even without using the hash table, the last frame for page P 179 ** can be found by scanning the page-mapping sections of each index block 180 ** starting with the last index block and moving toward the first, and 181 ** within each index block, starting at the end and moving toward the 182 ** beginning. The first entry that equals P corresponds to the frame 183 ** holding the content for that page. 184 ** 185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 187 ** hash table for each page number in the mapping section, so the hash 188 ** table is never more than half full. The expected number of collisions 189 ** prior to finding a match is 1. Each entry of the hash table is an 190 ** 1-based index of an entry in the mapping section of the same 191 ** index block. Let K be the 1-based index of the largest entry in 192 ** the mapping section. (For index blocks other than the last, K will 193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 195 ** contain a value of 0. 196 ** 197 ** To look for page P in the hash table, first compute a hash iKey on 198 ** P as follows: 199 ** 200 ** iKey = (P * 383) % HASHTABLE_NSLOT 201 ** 202 ** Then start scanning entries of the hash table, starting with iKey 203 ** (wrapping around to the beginning when the end of the hash table is 204 ** reached) until an unused hash slot is found. Let the first unused slot 205 ** be at index iUnused. (iUnused might be less than iKey if there was 206 ** wrap-around.) Because the hash table is never more than half full, 207 ** the search is guaranteed to eventually hit an unused entry. Let 208 ** iMax be the value between iKey and iUnused, closest to iUnused, 209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 210 ** no hash slot such that aHash[i]==p) then page P is not in the 211 ** current index block. Otherwise the iMax-th mapping entry of the 212 ** current index block corresponds to the last entry that references 213 ** page P. 214 ** 215 ** A hash search begins with the last index block and moves toward the 216 ** first index block, looking for entries corresponding to page P. On 217 ** average, only two or three slots in each index block need to be 218 ** examined in order to either find the last entry for page P, or to 219 ** establish that no such entry exists in the block. Each index block 220 ** holds over 4000 entries. So two or three index blocks are sufficient 221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 222 ** comparisons (on average) suffice to either locate a frame in the 223 ** WAL or to establish that the frame does not exist in the WAL. This 224 ** is much faster than scanning the entire 10MB WAL. 225 ** 226 ** Note that entries are added in order of increasing K. Hence, one 227 ** reader might be using some value K0 and a second reader that started 228 ** at a later time (after additional transactions were added to the WAL 229 ** and to the wal-index) might be using a different value K1, where K1>K0. 230 ** Both readers can use the same hash table and mapping section to get 231 ** the correct result. There may be entries in the hash table with 232 ** K>K0 but to the first reader, those entries will appear to be unused 233 ** slots in the hash table and so the first reader will get an answer as 234 ** if no values greater than K0 had ever been inserted into the hash table 235 ** in the first place - which is what reader one wants. Meanwhile, the 236 ** second reader using K1 will see additional values that were inserted 237 ** later, which is exactly what reader two wants. 238 ** 239 ** When a rollback occurs, the value of K is decreased. Hash table entries 240 ** that correspond to frames greater than the new K value are removed 241 ** from the hash table at this point. 242 */ 243 #ifndef SQLITE_OMIT_WAL 244 245 #include "wal.h" 246 247 /* 248 ** Trace output macros 249 */ 250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 251 int sqlite3WalTrace = 0; 252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 253 #else 254 # define WALTRACE(X) 255 #endif 256 257 /* 258 ** The maximum (and only) versions of the wal and wal-index formats 259 ** that may be interpreted by this version of SQLite. 260 ** 261 ** If a client begins recovering a WAL file and finds that (a) the checksum 262 ** values in the wal-header are correct and (b) the version field is not 263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 264 ** 265 ** Similarly, if a client successfully reads a wal-index header (i.e. the 266 ** checksum test is successful) and finds that the version field is not 267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 268 ** returns SQLITE_CANTOPEN. 269 */ 270 #define WAL_MAX_VERSION 3007000 271 #define WALINDEX_MAX_VERSION 3007000 272 273 /* 274 ** Indices of various locking bytes. WAL_NREADER is the number 275 ** of available reader locks and should be at least 3. 276 */ 277 #define WAL_WRITE_LOCK 0 278 #define WAL_ALL_BUT_WRITE 1 279 #define WAL_CKPT_LOCK 1 280 #define WAL_RECOVER_LOCK 2 281 #define WAL_READ_LOCK(I) (3+(I)) 282 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 283 284 285 /* Object declarations */ 286 typedef struct WalIndexHdr WalIndexHdr; 287 typedef struct WalIterator WalIterator; 288 typedef struct WalCkptInfo WalCkptInfo; 289 290 291 /* 292 ** The following object holds a copy of the wal-index header content. 293 ** 294 ** The actual header in the wal-index consists of two copies of this 295 ** object. 296 ** 297 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 298 ** Or it can be 1 to represent a 65536-byte page. The latter case was 299 ** added in 3.7.1 when support for 64K pages was added. 300 */ 301 struct WalIndexHdr { 302 u32 iVersion; /* Wal-index version */ 303 u32 unused; /* Unused (padding) field */ 304 u32 iChange; /* Counter incremented each transaction */ 305 u8 isInit; /* 1 when initialized */ 306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 307 u16 szPage; /* Database page size in bytes. 1==64K */ 308 u32 mxFrame; /* Index of last valid frame in the WAL */ 309 u32 nPage; /* Size of database in pages */ 310 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 311 u32 aSalt[2]; /* Two salt values copied from WAL header */ 312 u32 aCksum[2]; /* Checksum over all prior fields */ 313 }; 314 315 /* 316 ** A copy of the following object occurs in the wal-index immediately 317 ** following the second copy of the WalIndexHdr. This object stores 318 ** information used by checkpoint. 319 ** 320 ** nBackfill is the number of frames in the WAL that have been written 321 ** back into the database. (We call the act of moving content from WAL to 322 ** database "backfilling".) The nBackfill number is never greater than 323 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 324 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 325 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 326 ** mxFrame back to zero when the WAL is reset. 327 ** 328 ** There is one entry in aReadMark[] for each reader lock. If a reader 329 ** holds read-lock K, then the value in aReadMark[K] is no greater than 330 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 331 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 332 ** a special case; its value is never used and it exists as a place-holder 333 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 334 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 335 ** directly from the database. 336 ** 337 ** The value of aReadMark[K] may only be changed by a thread that 338 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 339 ** aReadMark[K] cannot changed while there is a reader is using that mark 340 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 341 ** 342 ** The checkpointer may only transfer frames from WAL to database where 343 ** the frame numbers are less than or equal to every aReadMark[] that is 344 ** in use (that is, every aReadMark[j] for which there is a corresponding 345 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 346 ** largest value and will increase an unused aReadMark[] to mxFrame if there 347 ** is not already an aReadMark[] equal to mxFrame. The exception to the 348 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 349 ** in the WAL has been backfilled into the database) then new readers 350 ** will choose aReadMark[0] which has value 0 and hence such reader will 351 ** get all their all content directly from the database file and ignore 352 ** the WAL. 353 ** 354 ** Writers normally append new frames to the end of the WAL. However, 355 ** if nBackfill equals mxFrame (meaning that all WAL content has been 356 ** written back into the database) and if no readers are using the WAL 357 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 358 ** the writer will first "reset" the WAL back to the beginning and start 359 ** writing new content beginning at frame 1. 360 ** 361 ** We assume that 32-bit loads are atomic and so no locks are needed in 362 ** order to read from any aReadMark[] entries. 363 */ 364 struct WalCkptInfo { 365 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 366 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 367 }; 368 #define READMARK_NOT_USED 0xffffffff 369 370 371 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 372 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 373 ** only support mandatory file-locks, we do not read or write data 374 ** from the region of the file on which locks are applied. 375 */ 376 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) 377 #define WALINDEX_LOCK_RESERVED 16 378 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) 379 380 /* Size of header before each frame in wal */ 381 #define WAL_FRAME_HDRSIZE 24 382 383 /* Size of write ahead log header, including checksum. */ 384 /* #define WAL_HDRSIZE 24 */ 385 #define WAL_HDRSIZE 32 386 387 /* WAL magic value. Either this value, or the same value with the least 388 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 389 ** big-endian format in the first 4 bytes of a WAL file. 390 ** 391 ** If the LSB is set, then the checksums for each frame within the WAL 392 ** file are calculated by treating all data as an array of 32-bit 393 ** big-endian words. Otherwise, they are calculated by interpreting 394 ** all data as 32-bit little-endian words. 395 */ 396 #define WAL_MAGIC 0x377f0682 397 398 /* 399 ** Return the offset of frame iFrame in the write-ahead log file, 400 ** assuming a database page size of szPage bytes. The offset returned 401 ** is to the start of the write-ahead log frame-header. 402 */ 403 #define walFrameOffset(iFrame, szPage) ( \ 404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 405 ) 406 407 /* 408 ** An open write-ahead log file is represented by an instance of the 409 ** following object. 410 */ 411 struct Wal { 412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 413 sqlite3_file *pDbFd; /* File handle for the database file */ 414 sqlite3_file *pWalFd; /* File handle for WAL file */ 415 u32 iCallback; /* Value to pass to log callback (or 0) */ 416 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 417 int nWiData; /* Size of array apWiData */ 418 int szFirstBlock; /* Size of first block written to WAL file */ 419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 420 u32 szPage; /* Database page size */ 421 i16 readLock; /* Which read lock is being held. -1 for none */ 422 u8 syncFlags; /* Flags to use to sync header writes */ 423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 424 u8 writeLock; /* True if in a write transaction */ 425 u8 ckptLock; /* True if holding a checkpoint lock */ 426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 427 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 428 u8 syncHeader; /* Fsync the WAL header if true */ 429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 430 WalIndexHdr hdr; /* Wal-index header for current transaction */ 431 const char *zWalName; /* Name of WAL file */ 432 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 433 #ifdef SQLITE_DEBUG 434 u8 lockError; /* True if a locking error has occurred */ 435 #endif 436 }; 437 438 /* 439 ** Candidate values for Wal.exclusiveMode. 440 */ 441 #define WAL_NORMAL_MODE 0 442 #define WAL_EXCLUSIVE_MODE 1 443 #define WAL_HEAPMEMORY_MODE 2 444 445 /* 446 ** Possible values for WAL.readOnly 447 */ 448 #define WAL_RDWR 0 /* Normal read/write connection */ 449 #define WAL_RDONLY 1 /* The WAL file is readonly */ 450 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 451 452 /* 453 ** Each page of the wal-index mapping contains a hash-table made up of 454 ** an array of HASHTABLE_NSLOT elements of the following type. 455 */ 456 typedef u16 ht_slot; 457 458 /* 459 ** This structure is used to implement an iterator that loops through 460 ** all frames in the WAL in database page order. Where two or more frames 461 ** correspond to the same database page, the iterator visits only the 462 ** frame most recently written to the WAL (in other words, the frame with 463 ** the largest index). 464 ** 465 ** The internals of this structure are only accessed by: 466 ** 467 ** walIteratorInit() - Create a new iterator, 468 ** walIteratorNext() - Step an iterator, 469 ** walIteratorFree() - Free an iterator. 470 ** 471 ** This functionality is used by the checkpoint code (see walCheckpoint()). 472 */ 473 struct WalIterator { 474 int iPrior; /* Last result returned from the iterator */ 475 int nSegment; /* Number of entries in aSegment[] */ 476 struct WalSegment { 477 int iNext; /* Next slot in aIndex[] not yet returned */ 478 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 479 u32 *aPgno; /* Array of page numbers. */ 480 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 481 int iZero; /* Frame number associated with aPgno[0] */ 482 } aSegment[1]; /* One for every 32KB page in the wal-index */ 483 }; 484 485 /* 486 ** Define the parameters of the hash tables in the wal-index file. There 487 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 488 ** wal-index. 489 ** 490 ** Changing any of these constants will alter the wal-index format and 491 ** create incompatibilities. 492 */ 493 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 494 #define HASHTABLE_HASH_1 383 /* Should be prime */ 495 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 496 497 /* 498 ** The block of page numbers associated with the first hash-table in a 499 ** wal-index is smaller than usual. This is so that there is a complete 500 ** hash-table on each aligned 32KB page of the wal-index. 501 */ 502 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 503 504 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 505 #define WALINDEX_PGSZ ( \ 506 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 507 ) 508 509 /* 510 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 511 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 512 ** numbered from zero. 513 ** 514 ** If this call is successful, *ppPage is set to point to the wal-index 515 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 516 ** then an SQLite error code is returned and *ppPage is set to 0. 517 */ 518 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 519 int rc = SQLITE_OK; 520 521 /* Enlarge the pWal->apWiData[] array if required */ 522 if( pWal->nWiData<=iPage ){ 523 int nByte = sizeof(u32*)*(iPage+1); 524 volatile u32 **apNew; 525 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 526 if( !apNew ){ 527 *ppPage = 0; 528 return SQLITE_NOMEM; 529 } 530 memset((void*)&apNew[pWal->nWiData], 0, 531 sizeof(u32*)*(iPage+1-pWal->nWiData)); 532 pWal->apWiData = apNew; 533 pWal->nWiData = iPage+1; 534 } 535 536 /* Request a pointer to the required page from the VFS */ 537 if( pWal->apWiData[iPage]==0 ){ 538 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 539 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 540 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; 541 }else{ 542 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 543 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 544 ); 545 if( rc==SQLITE_READONLY ){ 546 pWal->readOnly |= WAL_SHM_RDONLY; 547 rc = SQLITE_OK; 548 } 549 } 550 } 551 552 *ppPage = pWal->apWiData[iPage]; 553 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 554 return rc; 555 } 556 557 /* 558 ** Return a pointer to the WalCkptInfo structure in the wal-index. 559 */ 560 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 561 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 562 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 563 } 564 565 /* 566 ** Return a pointer to the WalIndexHdr structure in the wal-index. 567 */ 568 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 569 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 570 return (volatile WalIndexHdr*)pWal->apWiData[0]; 571 } 572 573 /* 574 ** The argument to this macro must be of type u32. On a little-endian 575 ** architecture, it returns the u32 value that results from interpreting 576 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 577 ** returns the value that would be produced by interpreting the 4 bytes 578 ** of the input value as a little-endian integer. 579 */ 580 #define BYTESWAP32(x) ( \ 581 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 582 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 583 ) 584 585 /* 586 ** Generate or extend an 8 byte checksum based on the data in 587 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 588 ** initial values of 0 and 0 if aIn==NULL). 589 ** 590 ** The checksum is written back into aOut[] before returning. 591 ** 592 ** nByte must be a positive multiple of 8. 593 */ 594 static void walChecksumBytes( 595 int nativeCksum, /* True for native byte-order, false for non-native */ 596 u8 *a, /* Content to be checksummed */ 597 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 598 const u32 *aIn, /* Initial checksum value input */ 599 u32 *aOut /* OUT: Final checksum value output */ 600 ){ 601 u32 s1, s2; 602 u32 *aData = (u32 *)a; 603 u32 *aEnd = (u32 *)&a[nByte]; 604 605 if( aIn ){ 606 s1 = aIn[0]; 607 s2 = aIn[1]; 608 }else{ 609 s1 = s2 = 0; 610 } 611 612 assert( nByte>=8 ); 613 assert( (nByte&0x00000007)==0 ); 614 615 if( nativeCksum ){ 616 do { 617 s1 += *aData++ + s2; 618 s2 += *aData++ + s1; 619 }while( aData<aEnd ); 620 }else{ 621 do { 622 s1 += BYTESWAP32(aData[0]) + s2; 623 s2 += BYTESWAP32(aData[1]) + s1; 624 aData += 2; 625 }while( aData<aEnd ); 626 } 627 628 aOut[0] = s1; 629 aOut[1] = s2; 630 } 631 632 static void walShmBarrier(Wal *pWal){ 633 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 634 sqlite3OsShmBarrier(pWal->pDbFd); 635 } 636 } 637 638 /* 639 ** Write the header information in pWal->hdr into the wal-index. 640 ** 641 ** The checksum on pWal->hdr is updated before it is written. 642 */ 643 static void walIndexWriteHdr(Wal *pWal){ 644 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 645 const int nCksum = offsetof(WalIndexHdr, aCksum); 646 647 assert( pWal->writeLock ); 648 pWal->hdr.isInit = 1; 649 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 650 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 651 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 652 walShmBarrier(pWal); 653 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 654 } 655 656 /* 657 ** This function encodes a single frame header and writes it to a buffer 658 ** supplied by the caller. A frame-header is made up of a series of 659 ** 4-byte big-endian integers, as follows: 660 ** 661 ** 0: Page number. 662 ** 4: For commit records, the size of the database image in pages 663 ** after the commit. For all other records, zero. 664 ** 8: Salt-1 (copied from the wal-header) 665 ** 12: Salt-2 (copied from the wal-header) 666 ** 16: Checksum-1. 667 ** 20: Checksum-2. 668 */ 669 static void walEncodeFrame( 670 Wal *pWal, /* The write-ahead log */ 671 u32 iPage, /* Database page number for frame */ 672 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 673 u8 *aData, /* Pointer to page data */ 674 u8 *aFrame /* OUT: Write encoded frame here */ 675 ){ 676 int nativeCksum; /* True for native byte-order checksums */ 677 u32 *aCksum = pWal->hdr.aFrameCksum; 678 assert( WAL_FRAME_HDRSIZE==24 ); 679 sqlite3Put4byte(&aFrame[0], iPage); 680 sqlite3Put4byte(&aFrame[4], nTruncate); 681 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 682 683 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 684 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 685 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 686 687 sqlite3Put4byte(&aFrame[16], aCksum[0]); 688 sqlite3Put4byte(&aFrame[20], aCksum[1]); 689 } 690 691 /* 692 ** Check to see if the frame with header in aFrame[] and content 693 ** in aData[] is valid. If it is a valid frame, fill *piPage and 694 ** *pnTruncate and return true. Return if the frame is not valid. 695 */ 696 static int walDecodeFrame( 697 Wal *pWal, /* The write-ahead log */ 698 u32 *piPage, /* OUT: Database page number for frame */ 699 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 700 u8 *aData, /* Pointer to page data (for checksum) */ 701 u8 *aFrame /* Frame data */ 702 ){ 703 int nativeCksum; /* True for native byte-order checksums */ 704 u32 *aCksum = pWal->hdr.aFrameCksum; 705 u32 pgno; /* Page number of the frame */ 706 assert( WAL_FRAME_HDRSIZE==24 ); 707 708 /* A frame is only valid if the salt values in the frame-header 709 ** match the salt values in the wal-header. 710 */ 711 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 712 return 0; 713 } 714 715 /* A frame is only valid if the page number is creater than zero. 716 */ 717 pgno = sqlite3Get4byte(&aFrame[0]); 718 if( pgno==0 ){ 719 return 0; 720 } 721 722 /* A frame is only valid if a checksum of the WAL header, 723 ** all prior frams, the first 16 bytes of this frame-header, 724 ** and the frame-data matches the checksum in the last 8 725 ** bytes of this frame-header. 726 */ 727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 730 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 731 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 732 ){ 733 /* Checksum failed. */ 734 return 0; 735 } 736 737 /* If we reach this point, the frame is valid. Return the page number 738 ** and the new database size. 739 */ 740 *piPage = pgno; 741 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 742 return 1; 743 } 744 745 746 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 747 /* 748 ** Names of locks. This routine is used to provide debugging output and is not 749 ** a part of an ordinary build. 750 */ 751 static const char *walLockName(int lockIdx){ 752 if( lockIdx==WAL_WRITE_LOCK ){ 753 return "WRITE-LOCK"; 754 }else if( lockIdx==WAL_CKPT_LOCK ){ 755 return "CKPT-LOCK"; 756 }else if( lockIdx==WAL_RECOVER_LOCK ){ 757 return "RECOVER-LOCK"; 758 }else{ 759 static char zName[15]; 760 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 761 lockIdx-WAL_READ_LOCK(0)); 762 return zName; 763 } 764 } 765 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 766 767 768 /* 769 ** Set or release locks on the WAL. Locks are either shared or exclusive. 770 ** A lock cannot be moved directly between shared and exclusive - it must go 771 ** through the unlocked state first. 772 ** 773 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 774 */ 775 static int walLockShared(Wal *pWal, int lockIdx){ 776 int rc; 777 if( pWal->exclusiveMode ) return SQLITE_OK; 778 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 779 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 780 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 781 walLockName(lockIdx), rc ? "failed" : "ok")); 782 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 783 return rc; 784 } 785 static void walUnlockShared(Wal *pWal, int lockIdx){ 786 if( pWal->exclusiveMode ) return; 787 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 788 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 789 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 790 } 791 static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){ 792 int rc; 793 if( pWal->exclusiveMode ) return SQLITE_OK; 794 if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0); 795 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 796 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 797 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 798 walLockName(lockIdx), n, rc ? "failed" : "ok")); 799 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 800 return rc; 801 } 802 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 803 if( pWal->exclusiveMode ) return; 804 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 805 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 806 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 807 walLockName(lockIdx), n)); 808 } 809 810 /* 811 ** Compute a hash on a page number. The resulting hash value must land 812 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 813 ** the hash to the next value in the event of a collision. 814 */ 815 static int walHash(u32 iPage){ 816 assert( iPage>0 ); 817 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 818 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 819 } 820 static int walNextHash(int iPriorHash){ 821 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 822 } 823 824 /* 825 ** Return pointers to the hash table and page number array stored on 826 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 827 ** numbered starting from 0. 828 ** 829 ** Set output variable *paHash to point to the start of the hash table 830 ** in the wal-index file. Set *piZero to one less than the frame 831 ** number of the first frame indexed by this hash table. If a 832 ** slot in the hash table is set to N, it refers to frame number 833 ** (*piZero+N) in the log. 834 ** 835 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 836 ** first frame indexed by the hash table, frame (*piZero+1). 837 */ 838 static int walHashGet( 839 Wal *pWal, /* WAL handle */ 840 int iHash, /* Find the iHash'th table */ 841 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 842 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 843 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 844 ){ 845 int rc; /* Return code */ 846 volatile u32 *aPgno; 847 848 rc = walIndexPage(pWal, iHash, &aPgno); 849 assert( rc==SQLITE_OK || iHash>0 ); 850 851 if( rc==SQLITE_OK ){ 852 u32 iZero; 853 volatile ht_slot *aHash; 854 855 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 856 if( iHash==0 ){ 857 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 858 iZero = 0; 859 }else{ 860 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 861 } 862 863 *paPgno = &aPgno[-1]; 864 *paHash = aHash; 865 *piZero = iZero; 866 } 867 return rc; 868 } 869 870 /* 871 ** Return the number of the wal-index page that contains the hash-table 872 ** and page-number array that contain entries corresponding to WAL frame 873 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 874 ** are numbered starting from 0. 875 */ 876 static int walFramePage(u32 iFrame){ 877 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 878 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 879 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 880 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 881 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 882 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 883 ); 884 return iHash; 885 } 886 887 /* 888 ** Return the page number associated with frame iFrame in this WAL. 889 */ 890 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 891 int iHash = walFramePage(iFrame); 892 if( iHash==0 ){ 893 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 894 } 895 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 896 } 897 898 /* 899 ** Remove entries from the hash table that point to WAL slots greater 900 ** than pWal->hdr.mxFrame. 901 ** 902 ** This function is called whenever pWal->hdr.mxFrame is decreased due 903 ** to a rollback or savepoint. 904 ** 905 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 906 ** updated. Any later hash tables will be automatically cleared when 907 ** pWal->hdr.mxFrame advances to the point where those hash tables are 908 ** actually needed. 909 */ 910 static void walCleanupHash(Wal *pWal){ 911 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 912 volatile u32 *aPgno = 0; /* Page number array for hash table */ 913 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 914 int iLimit = 0; /* Zero values greater than this */ 915 int nByte; /* Number of bytes to zero in aPgno[] */ 916 int i; /* Used to iterate through aHash[] */ 917 918 assert( pWal->writeLock ); 919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 921 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 922 923 if( pWal->hdr.mxFrame==0 ) return; 924 925 /* Obtain pointers to the hash-table and page-number array containing 926 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 927 ** that the page said hash-table and array reside on is already mapped. 928 */ 929 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 930 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 931 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 932 933 /* Zero all hash-table entries that correspond to frame numbers greater 934 ** than pWal->hdr.mxFrame. 935 */ 936 iLimit = pWal->hdr.mxFrame - iZero; 937 assert( iLimit>0 ); 938 for(i=0; i<HASHTABLE_NSLOT; i++){ 939 if( aHash[i]>iLimit ){ 940 aHash[i] = 0; 941 } 942 } 943 944 /* Zero the entries in the aPgno array that correspond to frames with 945 ** frame numbers greater than pWal->hdr.mxFrame. 946 */ 947 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 948 memset((void *)&aPgno[iLimit+1], 0, nByte); 949 950 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 951 /* Verify that the every entry in the mapping region is still reachable 952 ** via the hash table even after the cleanup. 953 */ 954 if( iLimit ){ 955 int i; /* Loop counter */ 956 int iKey; /* Hash key */ 957 for(i=1; i<=iLimit; i++){ 958 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 959 if( aHash[iKey]==i ) break; 960 } 961 assert( aHash[iKey]==i ); 962 } 963 } 964 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 965 } 966 967 968 /* 969 ** Set an entry in the wal-index that will map database page number 970 ** pPage into WAL frame iFrame. 971 */ 972 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 973 int rc; /* Return code */ 974 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 975 volatile u32 *aPgno = 0; /* Page number array */ 976 volatile ht_slot *aHash = 0; /* Hash table */ 977 978 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 979 980 /* Assuming the wal-index file was successfully mapped, populate the 981 ** page number array and hash table entry. 982 */ 983 if( rc==SQLITE_OK ){ 984 int iKey; /* Hash table key */ 985 int idx; /* Value to write to hash-table slot */ 986 int nCollide; /* Number of hash collisions */ 987 988 idx = iFrame - iZero; 989 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 990 991 /* If this is the first entry to be added to this hash-table, zero the 992 ** entire hash table and aPgno[] array before proceeding. 993 */ 994 if( idx==1 ){ 995 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 996 memset((void*)&aPgno[1], 0, nByte); 997 } 998 999 /* If the entry in aPgno[] is already set, then the previous writer 1000 ** must have exited unexpectedly in the middle of a transaction (after 1001 ** writing one or more dirty pages to the WAL to free up memory). 1002 ** Remove the remnants of that writers uncommitted transaction from 1003 ** the hash-table before writing any new entries. 1004 */ 1005 if( aPgno[idx] ){ 1006 walCleanupHash(pWal); 1007 assert( !aPgno[idx] ); 1008 } 1009 1010 /* Write the aPgno[] array entry and the hash-table slot. */ 1011 nCollide = idx; 1012 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1013 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1014 } 1015 aPgno[idx] = iPage; 1016 aHash[iKey] = (ht_slot)idx; 1017 1018 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1019 /* Verify that the number of entries in the hash table exactly equals 1020 ** the number of entries in the mapping region. 1021 */ 1022 { 1023 int i; /* Loop counter */ 1024 int nEntry = 0; /* Number of entries in the hash table */ 1025 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1026 assert( nEntry==idx ); 1027 } 1028 1029 /* Verify that the every entry in the mapping region is reachable 1030 ** via the hash table. This turns out to be a really, really expensive 1031 ** thing to check, so only do this occasionally - not on every 1032 ** iteration. 1033 */ 1034 if( (idx&0x3ff)==0 ){ 1035 int i; /* Loop counter */ 1036 for(i=1; i<=idx; i++){ 1037 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1038 if( aHash[iKey]==i ) break; 1039 } 1040 assert( aHash[iKey]==i ); 1041 } 1042 } 1043 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1044 } 1045 1046 1047 return rc; 1048 } 1049 1050 1051 /* 1052 ** Recover the wal-index by reading the write-ahead log file. 1053 ** 1054 ** This routine first tries to establish an exclusive lock on the 1055 ** wal-index to prevent other threads/processes from doing anything 1056 ** with the WAL or wal-index while recovery is running. The 1057 ** WAL_RECOVER_LOCK is also held so that other threads will know 1058 ** that this thread is running recovery. If unable to establish 1059 ** the necessary locks, this routine returns SQLITE_BUSY. 1060 */ 1061 static int walIndexRecover(Wal *pWal){ 1062 int rc; /* Return Code */ 1063 i64 nSize; /* Size of log file */ 1064 u32 aFrameCksum[2] = {0, 0}; 1065 int iLock; /* Lock offset to lock for checkpoint */ 1066 int nLock; /* Number of locks to hold */ 1067 1068 /* Obtain an exclusive lock on all byte in the locking range not already 1069 ** locked by the caller. The caller is guaranteed to have locked the 1070 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1071 ** If successful, the same bytes that are locked here are unlocked before 1072 ** this function returns. 1073 */ 1074 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1075 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1076 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1077 assert( pWal->writeLock ); 1078 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1079 nLock = SQLITE_SHM_NLOCK - iLock; 1080 rc = walLockExclusive(pWal, iLock, nLock, 0); 1081 if( rc ){ 1082 return rc; 1083 } 1084 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1085 1086 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1087 1088 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1089 if( rc!=SQLITE_OK ){ 1090 goto recovery_error; 1091 } 1092 1093 if( nSize>WAL_HDRSIZE ){ 1094 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1095 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1096 int szFrame; /* Number of bytes in buffer aFrame[] */ 1097 u8 *aData; /* Pointer to data part of aFrame buffer */ 1098 int iFrame; /* Index of last frame read */ 1099 i64 iOffset; /* Next offset to read from log file */ 1100 int szPage; /* Page size according to the log */ 1101 u32 magic; /* Magic value read from WAL header */ 1102 u32 version; /* Magic value read from WAL header */ 1103 int isValid; /* True if this frame is valid */ 1104 1105 /* Read in the WAL header. */ 1106 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1107 if( rc!=SQLITE_OK ){ 1108 goto recovery_error; 1109 } 1110 1111 /* If the database page size is not a power of two, or is greater than 1112 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1113 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1114 ** WAL file. 1115 */ 1116 magic = sqlite3Get4byte(&aBuf[0]); 1117 szPage = sqlite3Get4byte(&aBuf[8]); 1118 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1119 || szPage&(szPage-1) 1120 || szPage>SQLITE_MAX_PAGE_SIZE 1121 || szPage<512 1122 ){ 1123 goto finished; 1124 } 1125 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1126 pWal->szPage = szPage; 1127 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1128 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1129 1130 /* Verify that the WAL header checksum is correct */ 1131 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1132 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1133 ); 1134 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1135 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1136 ){ 1137 goto finished; 1138 } 1139 1140 /* Verify that the version number on the WAL format is one that 1141 ** are able to understand */ 1142 version = sqlite3Get4byte(&aBuf[4]); 1143 if( version!=WAL_MAX_VERSION ){ 1144 rc = SQLITE_CANTOPEN_BKPT; 1145 goto finished; 1146 } 1147 1148 /* Malloc a buffer to read frames into. */ 1149 szFrame = szPage + WAL_FRAME_HDRSIZE; 1150 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1151 if( !aFrame ){ 1152 rc = SQLITE_NOMEM; 1153 goto recovery_error; 1154 } 1155 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1156 1157 /* Read all frames from the log file. */ 1158 iFrame = 0; 1159 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1160 u32 pgno; /* Database page number for frame */ 1161 u32 nTruncate; /* dbsize field from frame header */ 1162 1163 /* Read and decode the next log frame. */ 1164 iFrame++; 1165 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1166 if( rc!=SQLITE_OK ) break; 1167 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1168 if( !isValid ) break; 1169 rc = walIndexAppend(pWal, iFrame, pgno); 1170 if( rc!=SQLITE_OK ) break; 1171 1172 /* If nTruncate is non-zero, this is a commit record. */ 1173 if( nTruncate ){ 1174 pWal->hdr.mxFrame = iFrame; 1175 pWal->hdr.nPage = nTruncate; 1176 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1177 testcase( szPage<=32768 ); 1178 testcase( szPage>=65536 ); 1179 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1180 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1181 } 1182 } 1183 1184 sqlite3_free(aFrame); 1185 } 1186 1187 finished: 1188 if( rc==SQLITE_OK ){ 1189 volatile WalCkptInfo *pInfo; 1190 int i; 1191 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1192 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1193 walIndexWriteHdr(pWal); 1194 1195 /* Reset the checkpoint-header. This is safe because this thread is 1196 ** currently holding locks that exclude all other readers, writers and 1197 ** checkpointers. 1198 */ 1199 pInfo = walCkptInfo(pWal); 1200 pInfo->nBackfill = 0; 1201 pInfo->aReadMark[0] = 0; 1202 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1203 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1204 1205 /* If more than one frame was recovered from the log file, report an 1206 ** event via sqlite3_log(). This is to help with identifying performance 1207 ** problems caused by applications routinely shutting down without 1208 ** checkpointing the log file. 1209 */ 1210 if( pWal->hdr.nPage ){ 1211 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1212 "recovered %d frames from WAL file %s", 1213 pWal->hdr.mxFrame, pWal->zWalName 1214 ); 1215 } 1216 } 1217 1218 recovery_error: 1219 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1220 walUnlockExclusive(pWal, iLock, nLock); 1221 return rc; 1222 } 1223 1224 /* 1225 ** Close an open wal-index. 1226 */ 1227 static void walIndexClose(Wal *pWal, int isDelete){ 1228 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 1229 int i; 1230 for(i=0; i<pWal->nWiData; i++){ 1231 sqlite3_free((void *)pWal->apWiData[i]); 1232 pWal->apWiData[i] = 0; 1233 } 1234 }else{ 1235 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1236 } 1237 } 1238 1239 /* 1240 ** Open a connection to the WAL file zWalName. The database file must 1241 ** already be opened on connection pDbFd. The buffer that zWalName points 1242 ** to must remain valid for the lifetime of the returned Wal* handle. 1243 ** 1244 ** A SHARED lock should be held on the database file when this function 1245 ** is called. The purpose of this SHARED lock is to prevent any other 1246 ** client from unlinking the WAL or wal-index file. If another process 1247 ** were to do this just after this client opened one of these files, the 1248 ** system would be badly broken. 1249 ** 1250 ** If the log file is successfully opened, SQLITE_OK is returned and 1251 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1252 ** an SQLite error code is returned and *ppWal is left unmodified. 1253 */ 1254 int sqlite3WalOpen( 1255 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1256 sqlite3_file *pDbFd, /* The open database file */ 1257 const char *zWalName, /* Name of the WAL file */ 1258 int bNoShm, /* True to run in heap-memory mode */ 1259 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1260 Wal **ppWal /* OUT: Allocated Wal handle */ 1261 ){ 1262 int rc; /* Return Code */ 1263 Wal *pRet; /* Object to allocate and return */ 1264 int flags; /* Flags passed to OsOpen() */ 1265 1266 assert( zWalName && zWalName[0] ); 1267 assert( pDbFd ); 1268 1269 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1270 ** this source file. Verify that the #defines of the locking byte offsets 1271 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1272 */ 1273 #ifdef WIN_SHM_BASE 1274 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1275 #endif 1276 #ifdef UNIX_SHM_BASE 1277 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1278 #endif 1279 1280 1281 /* Allocate an instance of struct Wal to return. */ 1282 *ppWal = 0; 1283 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1284 if( !pRet ){ 1285 return SQLITE_NOMEM; 1286 } 1287 1288 pRet->pVfs = pVfs; 1289 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1290 pRet->pDbFd = pDbFd; 1291 pRet->readLock = -1; 1292 pRet->mxWalSize = mxWalSize; 1293 pRet->zWalName = zWalName; 1294 pRet->syncHeader = 1; 1295 pRet->padToSectorBoundary = 1; 1296 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1297 1298 /* Open file handle on the write-ahead log file. */ 1299 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1300 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1301 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1302 pRet->readOnly = WAL_RDONLY; 1303 } 1304 1305 if( rc!=SQLITE_OK ){ 1306 walIndexClose(pRet, 0); 1307 sqlite3OsClose(pRet->pWalFd); 1308 sqlite3_free(pRet); 1309 }else{ 1310 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1311 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1312 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1313 pRet->padToSectorBoundary = 0; 1314 } 1315 *ppWal = pRet; 1316 WALTRACE(("WAL%d: opened\n", pRet)); 1317 } 1318 return rc; 1319 } 1320 1321 /* 1322 ** Change the size to which the WAL file is trucated on each reset. 1323 */ 1324 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1325 if( pWal ) pWal->mxWalSize = iLimit; 1326 } 1327 1328 /* 1329 ** Find the smallest page number out of all pages held in the WAL that 1330 ** has not been returned by any prior invocation of this method on the 1331 ** same WalIterator object. Write into *piFrame the frame index where 1332 ** that page was last written into the WAL. Write into *piPage the page 1333 ** number. 1334 ** 1335 ** Return 0 on success. If there are no pages in the WAL with a page 1336 ** number larger than *piPage, then return 1. 1337 */ 1338 static int walIteratorNext( 1339 WalIterator *p, /* Iterator */ 1340 u32 *piPage, /* OUT: The page number of the next page */ 1341 u32 *piFrame /* OUT: Wal frame index of next page */ 1342 ){ 1343 u32 iMin; /* Result pgno must be greater than iMin */ 1344 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1345 int i; /* For looping through segments */ 1346 1347 iMin = p->iPrior; 1348 assert( iMin<0xffffffff ); 1349 for(i=p->nSegment-1; i>=0; i--){ 1350 struct WalSegment *pSegment = &p->aSegment[i]; 1351 while( pSegment->iNext<pSegment->nEntry ){ 1352 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1353 if( iPg>iMin ){ 1354 if( iPg<iRet ){ 1355 iRet = iPg; 1356 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1357 } 1358 break; 1359 } 1360 pSegment->iNext++; 1361 } 1362 } 1363 1364 *piPage = p->iPrior = iRet; 1365 return (iRet==0xFFFFFFFF); 1366 } 1367 1368 /* 1369 ** This function merges two sorted lists into a single sorted list. 1370 ** 1371 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1372 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1373 ** is guaranteed for all J<K: 1374 ** 1375 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1376 ** aContent[aRight[J]] < aContent[aRight[K]] 1377 ** 1378 ** This routine overwrites aRight[] with a new (probably longer) sequence 1379 ** of indices such that the aRight[] contains every index that appears in 1380 ** either aLeft[] or the old aRight[] and such that the second condition 1381 ** above is still met. 1382 ** 1383 ** The aContent[aLeft[X]] values will be unique for all X. And the 1384 ** aContent[aRight[X]] values will be unique too. But there might be 1385 ** one or more combinations of X and Y such that 1386 ** 1387 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1388 ** 1389 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1390 */ 1391 static void walMerge( 1392 const u32 *aContent, /* Pages in wal - keys for the sort */ 1393 ht_slot *aLeft, /* IN: Left hand input list */ 1394 int nLeft, /* IN: Elements in array *paLeft */ 1395 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1396 int *pnRight, /* IN/OUT: Elements in *paRight */ 1397 ht_slot *aTmp /* Temporary buffer */ 1398 ){ 1399 int iLeft = 0; /* Current index in aLeft */ 1400 int iRight = 0; /* Current index in aRight */ 1401 int iOut = 0; /* Current index in output buffer */ 1402 int nRight = *pnRight; 1403 ht_slot *aRight = *paRight; 1404 1405 assert( nLeft>0 && nRight>0 ); 1406 while( iRight<nRight || iLeft<nLeft ){ 1407 ht_slot logpage; 1408 Pgno dbpage; 1409 1410 if( (iLeft<nLeft) 1411 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1412 ){ 1413 logpage = aLeft[iLeft++]; 1414 }else{ 1415 logpage = aRight[iRight++]; 1416 } 1417 dbpage = aContent[logpage]; 1418 1419 aTmp[iOut++] = logpage; 1420 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1421 1422 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1423 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1424 } 1425 1426 *paRight = aLeft; 1427 *pnRight = iOut; 1428 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1429 } 1430 1431 /* 1432 ** Sort the elements in list aList using aContent[] as the sort key. 1433 ** Remove elements with duplicate keys, preferring to keep the 1434 ** larger aList[] values. 1435 ** 1436 ** The aList[] entries are indices into aContent[]. The values in 1437 ** aList[] are to be sorted so that for all J<K: 1438 ** 1439 ** aContent[aList[J]] < aContent[aList[K]] 1440 ** 1441 ** For any X and Y such that 1442 ** 1443 ** aContent[aList[X]] == aContent[aList[Y]] 1444 ** 1445 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1446 ** the smaller. 1447 */ 1448 static void walMergesort( 1449 const u32 *aContent, /* Pages in wal */ 1450 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1451 ht_slot *aList, /* IN/OUT: List to sort */ 1452 int *pnList /* IN/OUT: Number of elements in aList[] */ 1453 ){ 1454 struct Sublist { 1455 int nList; /* Number of elements in aList */ 1456 ht_slot *aList; /* Pointer to sub-list content */ 1457 }; 1458 1459 const int nList = *pnList; /* Size of input list */ 1460 int nMerge = 0; /* Number of elements in list aMerge */ 1461 ht_slot *aMerge = 0; /* List to be merged */ 1462 int iList; /* Index into input list */ 1463 u32 iSub = 0; /* Index into aSub array */ 1464 struct Sublist aSub[13]; /* Array of sub-lists */ 1465 1466 memset(aSub, 0, sizeof(aSub)); 1467 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1468 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1469 1470 for(iList=0; iList<nList; iList++){ 1471 nMerge = 1; 1472 aMerge = &aList[iList]; 1473 for(iSub=0; iList & (1<<iSub); iSub++){ 1474 struct Sublist *p; 1475 assert( iSub<ArraySize(aSub) ); 1476 p = &aSub[iSub]; 1477 assert( p->aList && p->nList<=(1<<iSub) ); 1478 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1479 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1480 } 1481 aSub[iSub].aList = aMerge; 1482 aSub[iSub].nList = nMerge; 1483 } 1484 1485 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1486 if( nList & (1<<iSub) ){ 1487 struct Sublist *p; 1488 assert( iSub<ArraySize(aSub) ); 1489 p = &aSub[iSub]; 1490 assert( p->nList<=(1<<iSub) ); 1491 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1492 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1493 } 1494 } 1495 assert( aMerge==aList ); 1496 *pnList = nMerge; 1497 1498 #ifdef SQLITE_DEBUG 1499 { 1500 int i; 1501 for(i=1; i<*pnList; i++){ 1502 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1503 } 1504 } 1505 #endif 1506 } 1507 1508 /* 1509 ** Free an iterator allocated by walIteratorInit(). 1510 */ 1511 static void walIteratorFree(WalIterator *p){ 1512 sqlite3_free(p); 1513 } 1514 1515 /* 1516 ** Construct a WalInterator object that can be used to loop over all 1517 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1518 ** lock. 1519 ** 1520 ** On success, make *pp point to the newly allocated WalInterator object 1521 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1522 ** returns an error, the value of *pp is undefined. 1523 ** 1524 ** The calling routine should invoke walIteratorFree() to destroy the 1525 ** WalIterator object when it has finished with it. 1526 */ 1527 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1528 WalIterator *p; /* Return value */ 1529 int nSegment; /* Number of segments to merge */ 1530 u32 iLast; /* Last frame in log */ 1531 int nByte; /* Number of bytes to allocate */ 1532 int i; /* Iterator variable */ 1533 ht_slot *aTmp; /* Temp space used by merge-sort */ 1534 int rc = SQLITE_OK; /* Return Code */ 1535 1536 /* This routine only runs while holding the checkpoint lock. And 1537 ** it only runs if there is actually content in the log (mxFrame>0). 1538 */ 1539 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1540 iLast = pWal->hdr.mxFrame; 1541 1542 /* Allocate space for the WalIterator object. */ 1543 nSegment = walFramePage(iLast) + 1; 1544 nByte = sizeof(WalIterator) 1545 + (nSegment-1)*sizeof(struct WalSegment) 1546 + iLast*sizeof(ht_slot); 1547 p = (WalIterator *)sqlite3_malloc64(nByte); 1548 if( !p ){ 1549 return SQLITE_NOMEM; 1550 } 1551 memset(p, 0, nByte); 1552 p->nSegment = nSegment; 1553 1554 /* Allocate temporary space used by the merge-sort routine. This block 1555 ** of memory will be freed before this function returns. 1556 */ 1557 aTmp = (ht_slot *)sqlite3_malloc64( 1558 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1559 ); 1560 if( !aTmp ){ 1561 rc = SQLITE_NOMEM; 1562 } 1563 1564 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1565 volatile ht_slot *aHash; 1566 u32 iZero; 1567 volatile u32 *aPgno; 1568 1569 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1570 if( rc==SQLITE_OK ){ 1571 int j; /* Counter variable */ 1572 int nEntry; /* Number of entries in this segment */ 1573 ht_slot *aIndex; /* Sorted index for this segment */ 1574 1575 aPgno++; 1576 if( (i+1)==nSegment ){ 1577 nEntry = (int)(iLast - iZero); 1578 }else{ 1579 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1580 } 1581 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1582 iZero++; 1583 1584 for(j=0; j<nEntry; j++){ 1585 aIndex[j] = (ht_slot)j; 1586 } 1587 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1588 p->aSegment[i].iZero = iZero; 1589 p->aSegment[i].nEntry = nEntry; 1590 p->aSegment[i].aIndex = aIndex; 1591 p->aSegment[i].aPgno = (u32 *)aPgno; 1592 } 1593 } 1594 sqlite3_free(aTmp); 1595 1596 if( rc!=SQLITE_OK ){ 1597 walIteratorFree(p); 1598 } 1599 *pp = p; 1600 return rc; 1601 } 1602 1603 /* 1604 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1605 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1606 ** busy-handler function. Invoke it and retry the lock until either the 1607 ** lock is successfully obtained or the busy-handler returns 0. 1608 */ 1609 static int walBusyLock( 1610 Wal *pWal, /* WAL connection */ 1611 int (*xBusy)(void*), /* Function to call when busy */ 1612 void *pBusyArg, /* Context argument for xBusyHandler */ 1613 int lockIdx, /* Offset of first byte to lock */ 1614 int n /* Number of bytes to lock */ 1615 ){ 1616 int rc; 1617 do { 1618 rc = walLockExclusive(pWal, lockIdx, n, 0); 1619 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1620 return rc; 1621 } 1622 1623 /* 1624 ** The cache of the wal-index header must be valid to call this function. 1625 ** Return the page-size in bytes used by the database. 1626 */ 1627 static int walPagesize(Wal *pWal){ 1628 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1629 } 1630 1631 /* 1632 ** The following is guaranteed when this function is called: 1633 ** 1634 ** a) the WRITER lock is held, 1635 ** b) the entire log file has been checkpointed, and 1636 ** c) any existing readers are reading exclusively from the database 1637 ** file - there are no readers that may attempt to read a frame from 1638 ** the log file. 1639 ** 1640 ** This function updates the shared-memory structures so that the next 1641 ** client to write to the database (which may be this one) does so by 1642 ** writing frames into the start of the log file. 1643 ** 1644 ** The value of parameter salt1 is used as the aSalt[1] value in the 1645 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1646 ** one obtained from sqlite3_randomness()). 1647 */ 1648 static void walRestartHdr(Wal *pWal, u32 salt1){ 1649 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1650 int i; /* Loop counter */ 1651 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1652 pWal->nCkpt++; 1653 pWal->hdr.mxFrame = 0; 1654 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1655 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1656 walIndexWriteHdr(pWal); 1657 pInfo->nBackfill = 0; 1658 pInfo->aReadMark[1] = 0; 1659 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1660 assert( pInfo->aReadMark[0]==0 ); 1661 } 1662 1663 /* 1664 ** Copy as much content as we can from the WAL back into the database file 1665 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1666 ** 1667 ** The amount of information copies from WAL to database might be limited 1668 ** by active readers. This routine will never overwrite a database page 1669 ** that a concurrent reader might be using. 1670 ** 1671 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1672 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1673 ** checkpoints are always run by a background thread or background 1674 ** process, foreground threads will never block on a lengthy fsync call. 1675 ** 1676 ** Fsync is called on the WAL before writing content out of the WAL and 1677 ** into the database. This ensures that if the new content is persistent 1678 ** in the WAL and can be recovered following a power-loss or hard reset. 1679 ** 1680 ** Fsync is also called on the database file if (and only if) the entire 1681 ** WAL content is copied into the database file. This second fsync makes 1682 ** it safe to delete the WAL since the new content will persist in the 1683 ** database file. 1684 ** 1685 ** This routine uses and updates the nBackfill field of the wal-index header. 1686 ** This is the only routine that will increase the value of nBackfill. 1687 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1688 ** its value.) 1689 ** 1690 ** The caller must be holding sufficient locks to ensure that no other 1691 ** checkpoint is running (in any other thread or process) at the same 1692 ** time. 1693 */ 1694 static int walCheckpoint( 1695 Wal *pWal, /* Wal connection */ 1696 int eMode, /* One of PASSIVE, FULL or RESTART */ 1697 int (*xBusy)(void*), /* Function to call when busy */ 1698 void *pBusyArg, /* Context argument for xBusyHandler */ 1699 int sync_flags, /* Flags for OsSync() (or 0) */ 1700 u8 *zBuf /* Temporary buffer to use */ 1701 ){ 1702 int rc = SQLITE_OK; /* Return code */ 1703 int szPage; /* Database page-size */ 1704 WalIterator *pIter = 0; /* Wal iterator context */ 1705 u32 iDbpage = 0; /* Next database page to write */ 1706 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1707 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1708 u32 mxPage; /* Max database page to write */ 1709 int i; /* Loop counter */ 1710 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1711 1712 szPage = walPagesize(pWal); 1713 testcase( szPage<=32768 ); 1714 testcase( szPage>=65536 ); 1715 pInfo = walCkptInfo(pWal); 1716 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1717 1718 /* Allocate the iterator */ 1719 rc = walIteratorInit(pWal, &pIter); 1720 if( rc!=SQLITE_OK ){ 1721 return rc; 1722 } 1723 assert( pIter ); 1724 1725 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1726 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1727 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1728 1729 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1730 ** safe to write into the database. Frames beyond mxSafeFrame might 1731 ** overwrite database pages that are in use by active readers and thus 1732 ** cannot be backfilled from the WAL. 1733 */ 1734 mxSafeFrame = pWal->hdr.mxFrame; 1735 mxPage = pWal->hdr.nPage; 1736 for(i=1; i<WAL_NREADER; i++){ 1737 /* Thread-sanitizer reports that the following is an unsafe read, 1738 ** as some other thread may be in the process of updating the value 1739 ** of the aReadMark[] slot. The assumption here is that if that is 1740 ** happening, the other client may only be increasing the value, 1741 ** not decreasing it. So assuming either that either the "old" or 1742 ** "new" version of the value is read, and not some arbitrary value 1743 ** that would never be written by a real client, things are still 1744 ** safe. */ 1745 u32 y = pInfo->aReadMark[i]; 1746 if( mxSafeFrame>y ){ 1747 assert( y<=pWal->hdr.mxFrame ); 1748 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1749 if( rc==SQLITE_OK ){ 1750 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1751 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1752 }else if( rc==SQLITE_BUSY ){ 1753 mxSafeFrame = y; 1754 xBusy = 0; 1755 }else{ 1756 goto walcheckpoint_out; 1757 } 1758 } 1759 } 1760 1761 if( pInfo->nBackfill<mxSafeFrame 1762 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1763 ){ 1764 i64 nSize; /* Current size of database file */ 1765 u32 nBackfill = pInfo->nBackfill; 1766 1767 /* Sync the WAL to disk */ 1768 if( sync_flags ){ 1769 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1770 } 1771 1772 /* If the database may grow as a result of this checkpoint, hint 1773 ** about the eventual size of the db file to the VFS layer. 1774 */ 1775 if( rc==SQLITE_OK ){ 1776 i64 nReq = ((i64)mxPage * szPage); 1777 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1778 if( rc==SQLITE_OK && nSize<nReq ){ 1779 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1780 } 1781 } 1782 1783 1784 /* Iterate through the contents of the WAL, copying data to the db file */ 1785 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1786 i64 iOffset; 1787 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1788 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1789 continue; 1790 } 1791 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1792 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1793 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1794 if( rc!=SQLITE_OK ) break; 1795 iOffset = (iDbpage-1)*(i64)szPage; 1796 testcase( IS_BIG_INT(iOffset) ); 1797 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1798 if( rc!=SQLITE_OK ) break; 1799 } 1800 1801 /* If work was actually accomplished... */ 1802 if( rc==SQLITE_OK ){ 1803 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1804 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1805 testcase( IS_BIG_INT(szDb) ); 1806 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1807 if( rc==SQLITE_OK && sync_flags ){ 1808 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1809 } 1810 } 1811 if( rc==SQLITE_OK ){ 1812 pInfo->nBackfill = mxSafeFrame; 1813 } 1814 } 1815 1816 /* Release the reader lock held while backfilling */ 1817 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1818 } 1819 1820 if( rc==SQLITE_BUSY ){ 1821 /* Reset the return code so as not to report a checkpoint failure 1822 ** just because there are active readers. */ 1823 rc = SQLITE_OK; 1824 } 1825 } 1826 1827 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1828 ** entire wal file has been copied into the database file, then block 1829 ** until all readers have finished using the wal file. This ensures that 1830 ** the next process to write to the database restarts the wal file. 1831 */ 1832 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1833 assert( pWal->writeLock ); 1834 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1835 rc = SQLITE_BUSY; 1836 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1837 u32 salt1; 1838 sqlite3_randomness(4, &salt1); 1839 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1840 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1841 if( rc==SQLITE_OK ){ 1842 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1843 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1844 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1845 ** truncates the log file to zero bytes just prior to a 1846 ** successful return. 1847 ** 1848 ** In theory, it might be safe to do this without updating the 1849 ** wal-index header in shared memory, as all subsequent reader or 1850 ** writer clients should see that the entire log file has been 1851 ** checkpointed and behave accordingly. This seems unsafe though, 1852 ** as it would leave the system in a state where the contents of 1853 ** the wal-index header do not match the contents of the 1854 ** file-system. To avoid this, update the wal-index header to 1855 ** indicate that the log file contains zero valid frames. */ 1856 walRestartHdr(pWal, salt1); 1857 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1858 } 1859 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1860 } 1861 } 1862 } 1863 1864 walcheckpoint_out: 1865 walIteratorFree(pIter); 1866 return rc; 1867 } 1868 1869 /* 1870 ** If the WAL file is currently larger than nMax bytes in size, truncate 1871 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1872 */ 1873 static void walLimitSize(Wal *pWal, i64 nMax){ 1874 i64 sz; 1875 int rx; 1876 sqlite3BeginBenignMalloc(); 1877 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1878 if( rx==SQLITE_OK && (sz > nMax ) ){ 1879 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1880 } 1881 sqlite3EndBenignMalloc(); 1882 if( rx ){ 1883 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1884 } 1885 } 1886 1887 /* 1888 ** Close a connection to a log file. 1889 */ 1890 int sqlite3WalClose( 1891 Wal *pWal, /* Wal to close */ 1892 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1893 int nBuf, 1894 u8 *zBuf /* Buffer of at least nBuf bytes */ 1895 ){ 1896 int rc = SQLITE_OK; 1897 if( pWal ){ 1898 int isDelete = 0; /* True to unlink wal and wal-index files */ 1899 1900 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1901 ** ordinary, rollback-mode locking methods, this guarantees that the 1902 ** connection associated with this log file is the only connection to 1903 ** the database. In this case checkpoint the database and unlink both 1904 ** the wal and wal-index files. 1905 ** 1906 ** The EXCLUSIVE lock is not released before returning. 1907 */ 1908 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1909 if( rc==SQLITE_OK ){ 1910 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1911 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1912 } 1913 rc = sqlite3WalCheckpoint( 1914 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1915 ); 1916 if( rc==SQLITE_OK ){ 1917 int bPersist = -1; 1918 sqlite3OsFileControlHint( 1919 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1920 ); 1921 if( bPersist!=1 ){ 1922 /* Try to delete the WAL file if the checkpoint completed and 1923 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1924 ** mode (!bPersist) */ 1925 isDelete = 1; 1926 }else if( pWal->mxWalSize>=0 ){ 1927 /* Try to truncate the WAL file to zero bytes if the checkpoint 1928 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1929 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1930 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1931 ** to zero bytes as truncating to the journal_size_limit might 1932 ** leave a corrupt WAL file on disk. */ 1933 walLimitSize(pWal, 0); 1934 } 1935 } 1936 } 1937 1938 walIndexClose(pWal, isDelete); 1939 sqlite3OsClose(pWal->pWalFd); 1940 if( isDelete ){ 1941 sqlite3BeginBenignMalloc(); 1942 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1943 sqlite3EndBenignMalloc(); 1944 } 1945 WALTRACE(("WAL%p: closed\n", pWal)); 1946 sqlite3_free((void *)pWal->apWiData); 1947 sqlite3_free(pWal); 1948 } 1949 return rc; 1950 } 1951 1952 /* 1953 ** Try to read the wal-index header. Return 0 on success and 1 if 1954 ** there is a problem. 1955 ** 1956 ** The wal-index is in shared memory. Another thread or process might 1957 ** be writing the header at the same time this procedure is trying to 1958 ** read it, which might result in inconsistency. A dirty read is detected 1959 ** by verifying that both copies of the header are the same and also by 1960 ** a checksum on the header. 1961 ** 1962 ** If and only if the read is consistent and the header is different from 1963 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1964 ** and *pChanged is set to 1. 1965 ** 1966 ** If the checksum cannot be verified return non-zero. If the header 1967 ** is read successfully and the checksum verified, return zero. 1968 */ 1969 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 1970 u32 aCksum[2]; /* Checksum on the header content */ 1971 WalIndexHdr h1, h2; /* Two copies of the header content */ 1972 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 1973 1974 /* The first page of the wal-index must be mapped at this point. */ 1975 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 1976 1977 /* Read the header. This might happen concurrently with a write to the 1978 ** same area of shared memory on a different CPU in a SMP, 1979 ** meaning it is possible that an inconsistent snapshot is read 1980 ** from the file. If this happens, return non-zero. 1981 ** 1982 ** There are two copies of the header at the beginning of the wal-index. 1983 ** When reading, read [0] first then [1]. Writes are in the reverse order. 1984 ** Memory barriers are used to prevent the compiler or the hardware from 1985 ** reordering the reads and writes. 1986 */ 1987 aHdr = walIndexHdr(pWal); 1988 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 1989 walShmBarrier(pWal); 1990 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 1991 1992 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 1993 return 1; /* Dirty read */ 1994 } 1995 if( h1.isInit==0 ){ 1996 return 1; /* Malformed header - probably all zeros */ 1997 } 1998 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 1999 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2000 return 1; /* Checksum does not match */ 2001 } 2002 2003 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2004 *pChanged = 1; 2005 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2006 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2007 testcase( pWal->szPage<=32768 ); 2008 testcase( pWal->szPage>=65536 ); 2009 } 2010 2011 /* The header was successfully read. Return zero. */ 2012 return 0; 2013 } 2014 2015 /* 2016 ** Read the wal-index header from the wal-index and into pWal->hdr. 2017 ** If the wal-header appears to be corrupt, try to reconstruct the 2018 ** wal-index from the WAL before returning. 2019 ** 2020 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2021 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2022 ** to 0. 2023 ** 2024 ** If the wal-index header is successfully read, return SQLITE_OK. 2025 ** Otherwise an SQLite error code. 2026 */ 2027 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2028 int rc; /* Return code */ 2029 int badHdr; /* True if a header read failed */ 2030 volatile u32 *page0; /* Chunk of wal-index containing header */ 2031 2032 /* Ensure that page 0 of the wal-index (the page that contains the 2033 ** wal-index header) is mapped. Return early if an error occurs here. 2034 */ 2035 assert( pChanged ); 2036 rc = walIndexPage(pWal, 0, &page0); 2037 if( rc!=SQLITE_OK ){ 2038 return rc; 2039 }; 2040 assert( page0 || pWal->writeLock==0 ); 2041 2042 /* If the first page of the wal-index has been mapped, try to read the 2043 ** wal-index header immediately, without holding any lock. This usually 2044 ** works, but may fail if the wal-index header is corrupt or currently 2045 ** being modified by another thread or process. 2046 */ 2047 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2048 2049 /* If the first attempt failed, it might have been due to a race 2050 ** with a writer. So get a WRITE lock and try again. 2051 */ 2052 assert( badHdr==0 || pWal->writeLock==0 ); 2053 if( badHdr ){ 2054 if( pWal->readOnly & WAL_SHM_RDONLY ){ 2055 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2056 walUnlockShared(pWal, WAL_WRITE_LOCK); 2057 rc = SQLITE_READONLY_RECOVERY; 2058 } 2059 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){ 2060 pWal->writeLock = 1; 2061 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2062 badHdr = walIndexTryHdr(pWal, pChanged); 2063 if( badHdr ){ 2064 /* If the wal-index header is still malformed even while holding 2065 ** a WRITE lock, it can only mean that the header is corrupted and 2066 ** needs to be reconstructed. So run recovery to do exactly that. 2067 */ 2068 rc = walIndexRecover(pWal); 2069 *pChanged = 1; 2070 } 2071 } 2072 pWal->writeLock = 0; 2073 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2074 } 2075 } 2076 2077 /* If the header is read successfully, check the version number to make 2078 ** sure the wal-index was not constructed with some future format that 2079 ** this version of SQLite cannot understand. 2080 */ 2081 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2082 rc = SQLITE_CANTOPEN_BKPT; 2083 } 2084 2085 return rc; 2086 } 2087 2088 /* 2089 ** This is the value that walTryBeginRead returns when it needs to 2090 ** be retried. 2091 */ 2092 #define WAL_RETRY (-1) 2093 2094 /* 2095 ** Attempt to start a read transaction. This might fail due to a race or 2096 ** other transient condition. When that happens, it returns WAL_RETRY to 2097 ** indicate to the caller that it is safe to retry immediately. 2098 ** 2099 ** On success return SQLITE_OK. On a permanent failure (such an 2100 ** I/O error or an SQLITE_BUSY because another process is running 2101 ** recovery) return a positive error code. 2102 ** 2103 ** The useWal parameter is true to force the use of the WAL and disable 2104 ** the case where the WAL is bypassed because it has been completely 2105 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2106 ** to make a copy of the wal-index header into pWal->hdr. If the 2107 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2108 ** to the caller that the local paget cache is obsolete and needs to be 2109 ** flushed.) When useWal==1, the wal-index header is assumed to already 2110 ** be loaded and the pChanged parameter is unused. 2111 ** 2112 ** The caller must set the cnt parameter to the number of prior calls to 2113 ** this routine during the current read attempt that returned WAL_RETRY. 2114 ** This routine will start taking more aggressive measures to clear the 2115 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2116 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2117 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2118 ** and is not honoring the locking protocol. There is a vanishingly small 2119 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2120 ** bad luck when there is lots of contention for the wal-index, but that 2121 ** possibility is so small that it can be safely neglected, we believe. 2122 ** 2123 ** On success, this routine obtains a read lock on 2124 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2125 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2126 ** that means the Wal does not hold any read lock. The reader must not 2127 ** access any database page that is modified by a WAL frame up to and 2128 ** including frame number aReadMark[pWal->readLock]. The reader will 2129 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2130 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2131 ** completely and get all content directly from the database file. 2132 ** If the useWal parameter is 1 then the WAL will never be ignored and 2133 ** this routine will always set pWal->readLock>0 on success. 2134 ** When the read transaction is completed, the caller must release the 2135 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2136 ** 2137 ** This routine uses the nBackfill and aReadMark[] fields of the header 2138 ** to select a particular WAL_READ_LOCK() that strives to let the 2139 ** checkpoint process do as much work as possible. This routine might 2140 ** update values of the aReadMark[] array in the header, but if it does 2141 ** so it takes care to hold an exclusive lock on the corresponding 2142 ** WAL_READ_LOCK() while changing values. 2143 */ 2144 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2145 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2146 u32 mxReadMark; /* Largest aReadMark[] value */ 2147 int mxI; /* Index of largest aReadMark[] value */ 2148 int i; /* Loop counter */ 2149 int rc = SQLITE_OK; /* Return code */ 2150 2151 assert( pWal->readLock<0 ); /* Not currently locked */ 2152 2153 /* Take steps to avoid spinning forever if there is a protocol error. 2154 ** 2155 ** Circumstances that cause a RETRY should only last for the briefest 2156 ** instances of time. No I/O or other system calls are done while the 2157 ** locks are held, so the locks should not be held for very long. But 2158 ** if we are unlucky, another process that is holding a lock might get 2159 ** paged out or take a page-fault that is time-consuming to resolve, 2160 ** during the few nanoseconds that it is holding the lock. In that case, 2161 ** it might take longer than normal for the lock to free. 2162 ** 2163 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2164 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2165 ** is more of a scheduler yield than an actual delay. But on the 10th 2166 ** an subsequent retries, the delays start becoming longer and longer, 2167 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2168 ** The total delay time before giving up is less than 10 seconds. 2169 */ 2170 if( cnt>5 ){ 2171 int nDelay = 1; /* Pause time in microseconds */ 2172 if( cnt>100 ){ 2173 VVA_ONLY( pWal->lockError = 1; ) 2174 return SQLITE_PROTOCOL; 2175 } 2176 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2177 sqlite3OsSleep(pWal->pVfs, nDelay); 2178 } 2179 2180 if( !useWal ){ 2181 rc = walIndexReadHdr(pWal, pChanged); 2182 if( rc==SQLITE_BUSY ){ 2183 /* If there is not a recovery running in another thread or process 2184 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2185 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2186 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2187 ** would be technically correct. But the race is benign since with 2188 ** WAL_RETRY this routine will be called again and will probably be 2189 ** right on the second iteration. 2190 */ 2191 if( pWal->apWiData[0]==0 ){ 2192 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2193 ** We assume this is a transient condition, so return WAL_RETRY. The 2194 ** xShmMap() implementation used by the default unix and win32 VFS 2195 ** modules may return SQLITE_BUSY due to a race condition in the 2196 ** code that determines whether or not the shared-memory region 2197 ** must be zeroed before the requested page is returned. 2198 */ 2199 rc = WAL_RETRY; 2200 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2201 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2202 rc = WAL_RETRY; 2203 }else if( rc==SQLITE_BUSY ){ 2204 rc = SQLITE_BUSY_RECOVERY; 2205 } 2206 } 2207 if( rc!=SQLITE_OK ){ 2208 return rc; 2209 } 2210 } 2211 2212 pInfo = walCkptInfo(pWal); 2213 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ 2214 /* The WAL has been completely backfilled (or it is empty). 2215 ** and can be safely ignored. 2216 */ 2217 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2218 walShmBarrier(pWal); 2219 if( rc==SQLITE_OK ){ 2220 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2221 /* It is not safe to allow the reader to continue here if frames 2222 ** may have been appended to the log before READ_LOCK(0) was obtained. 2223 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2224 ** which implies that the database file contains a trustworthy 2225 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2226 ** happening, this is usually correct. 2227 ** 2228 ** However, if frames have been appended to the log (or if the log 2229 ** is wrapped and written for that matter) before the READ_LOCK(0) 2230 ** is obtained, that is not necessarily true. A checkpointer may 2231 ** have started to backfill the appended frames but crashed before 2232 ** it finished. Leaving a corrupt image in the database file. 2233 */ 2234 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2235 return WAL_RETRY; 2236 } 2237 pWal->readLock = 0; 2238 return SQLITE_OK; 2239 }else if( rc!=SQLITE_BUSY ){ 2240 return rc; 2241 } 2242 } 2243 2244 /* If we get this far, it means that the reader will want to use 2245 ** the WAL to get at content from recent commits. The job now is 2246 ** to select one of the aReadMark[] entries that is closest to 2247 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2248 */ 2249 mxReadMark = 0; 2250 mxI = 0; 2251 for(i=1; i<WAL_NREADER; i++){ 2252 u32 thisMark = pInfo->aReadMark[i]; 2253 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ 2254 assert( thisMark!=READMARK_NOT_USED ); 2255 mxReadMark = thisMark; 2256 mxI = i; 2257 } 2258 } 2259 /* There was once an "if" here. The extra "{" is to preserve indentation. */ 2260 { 2261 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2262 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) 2263 ){ 2264 for(i=1; i<WAL_NREADER; i++){ 2265 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0); 2266 if( rc==SQLITE_OK ){ 2267 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; 2268 mxI = i; 2269 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2270 break; 2271 }else if( rc!=SQLITE_BUSY ){ 2272 return rc; 2273 } 2274 } 2275 } 2276 if( mxI==0 ){ 2277 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2278 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 2279 } 2280 2281 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2282 if( rc ){ 2283 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2284 } 2285 /* Now that the read-lock has been obtained, check that neither the 2286 ** value in the aReadMark[] array or the contents of the wal-index 2287 ** header have changed. 2288 ** 2289 ** It is necessary to check that the wal-index header did not change 2290 ** between the time it was read and when the shared-lock was obtained 2291 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2292 ** that the log file may have been wrapped by a writer, or that frames 2293 ** that occur later in the log than pWal->hdr.mxFrame may have been 2294 ** copied into the database by a checkpointer. If either of these things 2295 ** happened, then reading the database with the current value of 2296 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2297 ** instead. 2298 ** 2299 ** This does not guarantee that the copy of the wal-index header is up to 2300 ** date before proceeding. That would not be possible without somehow 2301 ** blocking writers. It only guarantees that a dangerous checkpoint or 2302 ** log-wrap (either of which would require an exclusive lock on 2303 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. 2304 */ 2305 walShmBarrier(pWal); 2306 if( pInfo->aReadMark[mxI]!=mxReadMark 2307 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2308 ){ 2309 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2310 return WAL_RETRY; 2311 }else{ 2312 assert( mxReadMark<=pWal->hdr.mxFrame ); 2313 pWal->readLock = (i16)mxI; 2314 } 2315 } 2316 return rc; 2317 } 2318 2319 /* 2320 ** Begin a read transaction on the database. 2321 ** 2322 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2323 ** it takes a snapshot of the state of the WAL and wal-index for the current 2324 ** instant in time. The current thread will continue to use this snapshot. 2325 ** Other threads might append new content to the WAL and wal-index but 2326 ** that extra content is ignored by the current thread. 2327 ** 2328 ** If the database contents have changes since the previous read 2329 ** transaction, then *pChanged is set to 1 before returning. The 2330 ** Pager layer will use this to know that is cache is stale and 2331 ** needs to be flushed. 2332 */ 2333 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2334 int rc; /* Return code */ 2335 int cnt = 0; /* Number of TryBeginRead attempts */ 2336 2337 do{ 2338 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2339 }while( rc==WAL_RETRY ); 2340 testcase( (rc&0xff)==SQLITE_BUSY ); 2341 testcase( (rc&0xff)==SQLITE_IOERR ); 2342 testcase( rc==SQLITE_PROTOCOL ); 2343 testcase( rc==SQLITE_OK ); 2344 return rc; 2345 } 2346 2347 /* 2348 ** Finish with a read transaction. All this does is release the 2349 ** read-lock. 2350 */ 2351 void sqlite3WalEndReadTransaction(Wal *pWal){ 2352 sqlite3WalEndWriteTransaction(pWal); 2353 if( pWal->readLock>=0 ){ 2354 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2355 pWal->readLock = -1; 2356 } 2357 } 2358 2359 /* 2360 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2361 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2362 ** to zero. 2363 ** 2364 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2365 ** error does occur, the final value of *piRead is undefined. 2366 */ 2367 int sqlite3WalFindFrame( 2368 Wal *pWal, /* WAL handle */ 2369 Pgno pgno, /* Database page number to read data for */ 2370 u32 *piRead /* OUT: Frame number (or zero) */ 2371 ){ 2372 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2373 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2374 int iHash; /* Used to loop through N hash tables */ 2375 2376 /* This routine is only be called from within a read transaction. */ 2377 assert( pWal->readLock>=0 || pWal->lockError ); 2378 2379 /* If the "last page" field of the wal-index header snapshot is 0, then 2380 ** no data will be read from the wal under any circumstances. Return early 2381 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2382 ** then the WAL is ignored by the reader so return early, as if the 2383 ** WAL were empty. 2384 */ 2385 if( iLast==0 || pWal->readLock==0 ){ 2386 *piRead = 0; 2387 return SQLITE_OK; 2388 } 2389 2390 /* Search the hash table or tables for an entry matching page number 2391 ** pgno. Each iteration of the following for() loop searches one 2392 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2393 ** 2394 ** This code might run concurrently to the code in walIndexAppend() 2395 ** that adds entries to the wal-index (and possibly to this hash 2396 ** table). This means the value just read from the hash 2397 ** slot (aHash[iKey]) may have been added before or after the 2398 ** current read transaction was opened. Values added after the 2399 ** read transaction was opened may have been written incorrectly - 2400 ** i.e. these slots may contain garbage data. However, we assume 2401 ** that any slots written before the current read transaction was 2402 ** opened remain unmodified. 2403 ** 2404 ** For the reasons above, the if(...) condition featured in the inner 2405 ** loop of the following block is more stringent that would be required 2406 ** if we had exclusive access to the hash-table: 2407 ** 2408 ** (aPgno[iFrame]==pgno): 2409 ** This condition filters out normal hash-table collisions. 2410 ** 2411 ** (iFrame<=iLast): 2412 ** This condition filters out entries that were added to the hash 2413 ** table after the current read-transaction had started. 2414 */ 2415 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ 2416 volatile ht_slot *aHash; /* Pointer to hash table */ 2417 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2418 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2419 int iKey; /* Hash slot index */ 2420 int nCollide; /* Number of hash collisions remaining */ 2421 int rc; /* Error code */ 2422 2423 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2424 if( rc!=SQLITE_OK ){ 2425 return rc; 2426 } 2427 nCollide = HASHTABLE_NSLOT; 2428 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2429 u32 iFrame = aHash[iKey] + iZero; 2430 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ 2431 assert( iFrame>iRead || CORRUPT_DB ); 2432 iRead = iFrame; 2433 } 2434 if( (nCollide--)==0 ){ 2435 return SQLITE_CORRUPT_BKPT; 2436 } 2437 } 2438 } 2439 2440 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2441 /* If expensive assert() statements are available, do a linear search 2442 ** of the wal-index file content. Make sure the results agree with the 2443 ** result obtained using the hash indexes above. */ 2444 { 2445 u32 iRead2 = 0; 2446 u32 iTest; 2447 for(iTest=iLast; iTest>0; iTest--){ 2448 if( walFramePgno(pWal, iTest)==pgno ){ 2449 iRead2 = iTest; 2450 break; 2451 } 2452 } 2453 assert( iRead==iRead2 ); 2454 } 2455 #endif 2456 2457 *piRead = iRead; 2458 return SQLITE_OK; 2459 } 2460 2461 /* 2462 ** Read the contents of frame iRead from the wal file into buffer pOut 2463 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2464 ** error code otherwise. 2465 */ 2466 int sqlite3WalReadFrame( 2467 Wal *pWal, /* WAL handle */ 2468 u32 iRead, /* Frame to read */ 2469 int nOut, /* Size of buffer pOut in bytes */ 2470 u8 *pOut /* Buffer to write page data to */ 2471 ){ 2472 int sz; 2473 i64 iOffset; 2474 sz = pWal->hdr.szPage; 2475 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2476 testcase( sz<=32768 ); 2477 testcase( sz>=65536 ); 2478 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2479 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2480 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2481 } 2482 2483 /* 2484 ** Return the size of the database in pages (or zero, if unknown). 2485 */ 2486 Pgno sqlite3WalDbsize(Wal *pWal){ 2487 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2488 return pWal->hdr.nPage; 2489 } 2490 return 0; 2491 } 2492 2493 2494 /* 2495 ** This function starts a write transaction on the WAL. 2496 ** 2497 ** A read transaction must have already been started by a prior call 2498 ** to sqlite3WalBeginReadTransaction(). 2499 ** 2500 ** If another thread or process has written into the database since 2501 ** the read transaction was started, then it is not possible for this 2502 ** thread to write as doing so would cause a fork. So this routine 2503 ** returns SQLITE_BUSY in that case and no write transaction is started. 2504 ** 2505 ** There can only be a single writer active at a time. 2506 */ 2507 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2508 int rc; 2509 2510 /* Cannot start a write transaction without first holding a read 2511 ** transaction. */ 2512 assert( pWal->readLock>=0 ); 2513 2514 if( pWal->readOnly ){ 2515 return SQLITE_READONLY; 2516 } 2517 2518 /* Only one writer allowed at a time. Get the write lock. Return 2519 ** SQLITE_BUSY if unable. 2520 */ 2521 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0); 2522 if( rc ){ 2523 return rc; 2524 } 2525 pWal->writeLock = 1; 2526 2527 /* If another connection has written to the database file since the 2528 ** time the read transaction on this connection was started, then 2529 ** the write is disallowed. 2530 */ 2531 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2532 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2533 pWal->writeLock = 0; 2534 rc = SQLITE_BUSY_SNAPSHOT; 2535 } 2536 2537 return rc; 2538 } 2539 2540 /* 2541 ** End a write transaction. The commit has already been done. This 2542 ** routine merely releases the lock. 2543 */ 2544 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2545 if( pWal->writeLock ){ 2546 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2547 pWal->writeLock = 0; 2548 pWal->truncateOnCommit = 0; 2549 } 2550 return SQLITE_OK; 2551 } 2552 2553 /* 2554 ** If any data has been written (but not committed) to the log file, this 2555 ** function moves the write-pointer back to the start of the transaction. 2556 ** 2557 ** Additionally, the callback function is invoked for each frame written 2558 ** to the WAL since the start of the transaction. If the callback returns 2559 ** other than SQLITE_OK, it is not invoked again and the error code is 2560 ** returned to the caller. 2561 ** 2562 ** Otherwise, if the callback function does not return an error, this 2563 ** function returns SQLITE_OK. 2564 */ 2565 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2566 int rc = SQLITE_OK; 2567 if( ALWAYS(pWal->writeLock) ){ 2568 Pgno iMax = pWal->hdr.mxFrame; 2569 Pgno iFrame; 2570 2571 /* Restore the clients cache of the wal-index header to the state it 2572 ** was in before the client began writing to the database. 2573 */ 2574 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2575 2576 for(iFrame=pWal->hdr.mxFrame+1; 2577 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2578 iFrame++ 2579 ){ 2580 /* This call cannot fail. Unless the page for which the page number 2581 ** is passed as the second argument is (a) in the cache and 2582 ** (b) has an outstanding reference, then xUndo is either a no-op 2583 ** (if (a) is false) or simply expels the page from the cache (if (b) 2584 ** is false). 2585 ** 2586 ** If the upper layer is doing a rollback, it is guaranteed that there 2587 ** are no outstanding references to any page other than page 1. And 2588 ** page 1 is never written to the log until the transaction is 2589 ** committed. As a result, the call to xUndo may not fail. 2590 */ 2591 assert( walFramePgno(pWal, iFrame)!=1 ); 2592 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2593 } 2594 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 2595 } 2596 return rc; 2597 } 2598 2599 /* 2600 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2601 ** values. This function populates the array with values required to 2602 ** "rollback" the write position of the WAL handle back to the current 2603 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2604 */ 2605 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2606 assert( pWal->writeLock ); 2607 aWalData[0] = pWal->hdr.mxFrame; 2608 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2609 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2610 aWalData[3] = pWal->nCkpt; 2611 } 2612 2613 /* 2614 ** Move the write position of the WAL back to the point identified by 2615 ** the values in the aWalData[] array. aWalData must point to an array 2616 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2617 ** by a call to WalSavepoint(). 2618 */ 2619 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2620 int rc = SQLITE_OK; 2621 2622 assert( pWal->writeLock ); 2623 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2624 2625 if( aWalData[3]!=pWal->nCkpt ){ 2626 /* This savepoint was opened immediately after the write-transaction 2627 ** was started. Right after that, the writer decided to wrap around 2628 ** to the start of the log. Update the savepoint values to match. 2629 */ 2630 aWalData[0] = 0; 2631 aWalData[3] = pWal->nCkpt; 2632 } 2633 2634 if( aWalData[0]<pWal->hdr.mxFrame ){ 2635 pWal->hdr.mxFrame = aWalData[0]; 2636 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2637 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2638 walCleanupHash(pWal); 2639 } 2640 2641 return rc; 2642 } 2643 2644 /* 2645 ** This function is called just before writing a set of frames to the log 2646 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2647 ** to the current log file, it is possible to overwrite the start of the 2648 ** existing log file with the new frames (i.e. "reset" the log). If so, 2649 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2650 ** unchanged. 2651 ** 2652 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2653 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2654 ** if an error occurs. 2655 */ 2656 static int walRestartLog(Wal *pWal){ 2657 int rc = SQLITE_OK; 2658 int cnt; 2659 2660 if( pWal->readLock==0 ){ 2661 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2662 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2663 if( pInfo->nBackfill>0 ){ 2664 u32 salt1; 2665 sqlite3_randomness(4, &salt1); 2666 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0); 2667 if( rc==SQLITE_OK ){ 2668 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2669 ** readers are currently using the WAL), then the transactions 2670 ** frames will overwrite the start of the existing log. Update the 2671 ** wal-index header to reflect this. 2672 ** 2673 ** In theory it would be Ok to update the cache of the header only 2674 ** at this point. But updating the actual wal-index header is also 2675 ** safe and means there is no special case for sqlite3WalUndo() 2676 ** to handle if this transaction is rolled back. */ 2677 walRestartHdr(pWal, salt1); 2678 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2679 }else if( rc!=SQLITE_BUSY ){ 2680 return rc; 2681 } 2682 } 2683 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2684 pWal->readLock = -1; 2685 cnt = 0; 2686 do{ 2687 int notUsed; 2688 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2689 }while( rc==WAL_RETRY ); 2690 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 2691 testcase( (rc&0xff)==SQLITE_IOERR ); 2692 testcase( rc==SQLITE_PROTOCOL ); 2693 testcase( rc==SQLITE_OK ); 2694 } 2695 return rc; 2696 } 2697 2698 /* 2699 ** Information about the current state of the WAL file and where 2700 ** the next fsync should occur - passed from sqlite3WalFrames() into 2701 ** walWriteToLog(). 2702 */ 2703 typedef struct WalWriter { 2704 Wal *pWal; /* The complete WAL information */ 2705 sqlite3_file *pFd; /* The WAL file to which we write */ 2706 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 2707 int syncFlags; /* Flags for the fsync */ 2708 int szPage; /* Size of one page */ 2709 } WalWriter; 2710 2711 /* 2712 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 2713 ** Do a sync when crossing the p->iSyncPoint boundary. 2714 ** 2715 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 2716 ** first write the part before iSyncPoint, then sync, then write the 2717 ** rest. 2718 */ 2719 static int walWriteToLog( 2720 WalWriter *p, /* WAL to write to */ 2721 void *pContent, /* Content to be written */ 2722 int iAmt, /* Number of bytes to write */ 2723 sqlite3_int64 iOffset /* Start writing at this offset */ 2724 ){ 2725 int rc; 2726 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 2727 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 2728 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 2729 if( rc ) return rc; 2730 iOffset += iFirstAmt; 2731 iAmt -= iFirstAmt; 2732 pContent = (void*)(iFirstAmt + (char*)pContent); 2733 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 2734 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); 2735 if( iAmt==0 || rc ) return rc; 2736 } 2737 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 2738 return rc; 2739 } 2740 2741 /* 2742 ** Write out a single frame of the WAL 2743 */ 2744 static int walWriteOneFrame( 2745 WalWriter *p, /* Where to write the frame */ 2746 PgHdr *pPage, /* The page of the frame to be written */ 2747 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 2748 sqlite3_int64 iOffset /* Byte offset at which to write */ 2749 ){ 2750 int rc; /* Result code from subfunctions */ 2751 void *pData; /* Data actually written */ 2752 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2753 #if defined(SQLITE_HAS_CODEC) 2754 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; 2755 #else 2756 pData = pPage->pData; 2757 #endif 2758 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 2759 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 2760 if( rc ) return rc; 2761 /* Write the page data */ 2762 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 2763 return rc; 2764 } 2765 2766 /* 2767 ** Write a set of frames to the log. The caller must hold the write-lock 2768 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2769 */ 2770 int sqlite3WalFrames( 2771 Wal *pWal, /* Wal handle to write to */ 2772 int szPage, /* Database page-size in bytes */ 2773 PgHdr *pList, /* List of dirty pages to write */ 2774 Pgno nTruncate, /* Database size after this commit */ 2775 int isCommit, /* True if this is a commit */ 2776 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2777 ){ 2778 int rc; /* Used to catch return codes */ 2779 u32 iFrame; /* Next frame address */ 2780 PgHdr *p; /* Iterator to run through pList with. */ 2781 PgHdr *pLast = 0; /* Last frame in list */ 2782 int nExtra = 0; /* Number of extra copies of last page */ 2783 int szFrame; /* The size of a single frame */ 2784 i64 iOffset; /* Next byte to write in WAL file */ 2785 WalWriter w; /* The writer */ 2786 2787 assert( pList ); 2788 assert( pWal->writeLock ); 2789 2790 /* If this frame set completes a transaction, then nTruncate>0. If 2791 ** nTruncate==0 then this frame set does not complete the transaction. */ 2792 assert( (isCommit!=0)==(nTruncate!=0) ); 2793 2794 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2795 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2796 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2797 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2798 } 2799 #endif 2800 2801 /* See if it is possible to write these frames into the start of the 2802 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2803 */ 2804 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2805 return rc; 2806 } 2807 2808 /* If this is the first frame written into the log, write the WAL 2809 ** header to the start of the WAL file. See comments at the top of 2810 ** this source file for a description of the WAL header format. 2811 */ 2812 iFrame = pWal->hdr.mxFrame; 2813 if( iFrame==0 ){ 2814 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 2815 u32 aCksum[2]; /* Checksum for wal-header */ 2816 2817 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 2818 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 2819 sqlite3Put4byte(&aWalHdr[8], szPage); 2820 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 2821 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 2822 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 2823 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 2824 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 2825 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 2826 2827 pWal->szPage = szPage; 2828 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 2829 pWal->hdr.aFrameCksum[0] = aCksum[0]; 2830 pWal->hdr.aFrameCksum[1] = aCksum[1]; 2831 pWal->truncateOnCommit = 1; 2832 2833 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 2834 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 2835 if( rc!=SQLITE_OK ){ 2836 return rc; 2837 } 2838 2839 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 2840 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 2841 ** an out-of-order write following a WAL restart could result in 2842 ** database corruption. See the ticket: 2843 ** 2844 ** http://localhost:591/sqlite/info/ff5be73dee 2845 */ 2846 if( pWal->syncHeader && sync_flags ){ 2847 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 2848 if( rc ) return rc; 2849 } 2850 } 2851 assert( (int)pWal->szPage==szPage ); 2852 2853 /* Setup information needed to write frames into the WAL */ 2854 w.pWal = pWal; 2855 w.pFd = pWal->pWalFd; 2856 w.iSyncPoint = 0; 2857 w.syncFlags = sync_flags; 2858 w.szPage = szPage; 2859 iOffset = walFrameOffset(iFrame+1, szPage); 2860 szFrame = szPage + WAL_FRAME_HDRSIZE; 2861 2862 /* Write all frames into the log file exactly once */ 2863 for(p=pList; p; p=p->pDirty){ 2864 int nDbSize; /* 0 normally. Positive == commit flag */ 2865 iFrame++; 2866 assert( iOffset==walFrameOffset(iFrame, szPage) ); 2867 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 2868 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 2869 if( rc ) return rc; 2870 pLast = p; 2871 iOffset += szFrame; 2872 } 2873 2874 /* If this is the end of a transaction, then we might need to pad 2875 ** the transaction and/or sync the WAL file. 2876 ** 2877 ** Padding and syncing only occur if this set of frames complete a 2878 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 2879 ** or synchronous==OFF, then no padding or syncing are needed. 2880 ** 2881 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 2882 ** needed and only the sync is done. If padding is needed, then the 2883 ** final frame is repeated (with its commit mark) until the next sector 2884 ** boundary is crossed. Only the part of the WAL prior to the last 2885 ** sector boundary is synced; the part of the last frame that extends 2886 ** past the sector boundary is written after the sync. 2887 */ 2888 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 2889 if( pWal->padToSectorBoundary ){ 2890 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 2891 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 2892 while( iOffset<w.iSyncPoint ){ 2893 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 2894 if( rc ) return rc; 2895 iOffset += szFrame; 2896 nExtra++; 2897 } 2898 }else{ 2899 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 2900 } 2901 } 2902 2903 /* If this frame set completes the first transaction in the WAL and 2904 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 2905 ** journal size limit, if possible. 2906 */ 2907 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 2908 i64 sz = pWal->mxWalSize; 2909 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 2910 sz = walFrameOffset(iFrame+nExtra+1, szPage); 2911 } 2912 walLimitSize(pWal, sz); 2913 pWal->truncateOnCommit = 0; 2914 } 2915 2916 /* Append data to the wal-index. It is not necessary to lock the 2917 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 2918 ** guarantees that there are no other writers, and no data that may 2919 ** be in use by existing readers is being overwritten. 2920 */ 2921 iFrame = pWal->hdr.mxFrame; 2922 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 2923 iFrame++; 2924 rc = walIndexAppend(pWal, iFrame, p->pgno); 2925 } 2926 while( rc==SQLITE_OK && nExtra>0 ){ 2927 iFrame++; 2928 nExtra--; 2929 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 2930 } 2931 2932 if( rc==SQLITE_OK ){ 2933 /* Update the private copy of the header. */ 2934 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 2935 testcase( szPage<=32768 ); 2936 testcase( szPage>=65536 ); 2937 pWal->hdr.mxFrame = iFrame; 2938 if( isCommit ){ 2939 pWal->hdr.iChange++; 2940 pWal->hdr.nPage = nTruncate; 2941 } 2942 /* If this is a commit, update the wal-index header too. */ 2943 if( isCommit ){ 2944 walIndexWriteHdr(pWal); 2945 pWal->iCallback = iFrame; 2946 } 2947 } 2948 2949 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 2950 return rc; 2951 } 2952 2953 /* 2954 ** This routine is called to implement sqlite3_wal_checkpoint() and 2955 ** related interfaces. 2956 ** 2957 ** Obtain a CHECKPOINT lock and then backfill as much information as 2958 ** we can from WAL into the database. 2959 ** 2960 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 2961 ** callback. In this case this function runs a blocking checkpoint. 2962 */ 2963 int sqlite3WalCheckpoint( 2964 Wal *pWal, /* Wal connection */ 2965 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 2966 int (*xBusy)(void*), /* Function to call when busy */ 2967 void *pBusyArg, /* Context argument for xBusyHandler */ 2968 int sync_flags, /* Flags to sync db file with (or 0) */ 2969 int nBuf, /* Size of temporary buffer */ 2970 u8 *zBuf, /* Temporary buffer to use */ 2971 int *pnLog, /* OUT: Number of frames in WAL */ 2972 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 2973 ){ 2974 int rc; /* Return code */ 2975 int isChanged = 0; /* True if a new wal-index header is loaded */ 2976 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 2977 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 2978 2979 assert( pWal->ckptLock==0 ); 2980 assert( pWal->writeLock==0 ); 2981 2982 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 2983 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 2984 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 2985 2986 if( pWal->readOnly ) return SQLITE_READONLY; 2987 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 2988 2989 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 2990 ** "checkpoint" lock on the database file. */ 2991 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0); 2992 if( rc ){ 2993 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 2994 ** checkpoint operation at the same time, the lock cannot be obtained and 2995 ** SQLITE_BUSY is returned. 2996 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 2997 ** it will not be invoked in this case. 2998 */ 2999 testcase( rc==SQLITE_BUSY ); 3000 testcase( xBusy!=0 ); 3001 return rc; 3002 } 3003 pWal->ckptLock = 1; 3004 3005 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3006 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3007 ** file. 3008 ** 3009 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3010 ** immediately, and a busy-handler is configured, it is invoked and the 3011 ** writer lock retried until either the busy-handler returns 0 or the 3012 ** lock is successfully obtained. 3013 */ 3014 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3015 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3016 if( rc==SQLITE_OK ){ 3017 pWal->writeLock = 1; 3018 }else if( rc==SQLITE_BUSY ){ 3019 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3020 xBusy2 = 0; 3021 rc = SQLITE_OK; 3022 } 3023 } 3024 3025 /* Read the wal-index header. */ 3026 if( rc==SQLITE_OK ){ 3027 rc = walIndexReadHdr(pWal, &isChanged); 3028 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3029 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3030 } 3031 } 3032 3033 /* Copy data from the log to the database file. */ 3034 if( rc==SQLITE_OK ){ 3035 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3036 rc = SQLITE_CORRUPT_BKPT; 3037 }else{ 3038 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3039 } 3040 3041 /* If no error occurred, set the output variables. */ 3042 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3043 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3044 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3045 } 3046 } 3047 3048 if( isChanged ){ 3049 /* If a new wal-index header was loaded before the checkpoint was 3050 ** performed, then the pager-cache associated with pWal is now 3051 ** out of date. So zero the cached wal-index header to ensure that 3052 ** next time the pager opens a snapshot on this database it knows that 3053 ** the cache needs to be reset. 3054 */ 3055 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3056 } 3057 3058 /* Release the locks. */ 3059 sqlite3WalEndWriteTransaction(pWal); 3060 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3061 pWal->ckptLock = 0; 3062 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3063 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3064 } 3065 3066 /* Return the value to pass to a sqlite3_wal_hook callback, the 3067 ** number of frames in the WAL at the point of the last commit since 3068 ** sqlite3WalCallback() was called. If no commits have occurred since 3069 ** the last call, then return 0. 3070 */ 3071 int sqlite3WalCallback(Wal *pWal){ 3072 u32 ret = 0; 3073 if( pWal ){ 3074 ret = pWal->iCallback; 3075 pWal->iCallback = 0; 3076 } 3077 return (int)ret; 3078 } 3079 3080 /* 3081 ** This function is called to change the WAL subsystem into or out 3082 ** of locking_mode=EXCLUSIVE. 3083 ** 3084 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3085 ** into locking_mode=NORMAL. This means that we must acquire a lock 3086 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3087 ** or if the acquisition of the lock fails, then return 0. If the 3088 ** transition out of exclusive-mode is successful, return 1. This 3089 ** operation must occur while the pager is still holding the exclusive 3090 ** lock on the main database file. 3091 ** 3092 ** If op is one, then change from locking_mode=NORMAL into 3093 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3094 ** be released. Return 1 if the transition is made and 0 if the 3095 ** WAL is already in exclusive-locking mode - meaning that this 3096 ** routine is a no-op. The pager must already hold the exclusive lock 3097 ** on the main database file before invoking this operation. 3098 ** 3099 ** If op is negative, then do a dry-run of the op==1 case but do 3100 ** not actually change anything. The pager uses this to see if it 3101 ** should acquire the database exclusive lock prior to invoking 3102 ** the op==1 case. 3103 */ 3104 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3105 int rc; 3106 assert( pWal->writeLock==0 ); 3107 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3108 3109 /* pWal->readLock is usually set, but might be -1 if there was a 3110 ** prior error while attempting to acquire are read-lock. This cannot 3111 ** happen if the connection is actually in exclusive mode (as no xShmLock 3112 ** locks are taken in this case). Nor should the pager attempt to 3113 ** upgrade to exclusive-mode following such an error. 3114 */ 3115 assert( pWal->readLock>=0 || pWal->lockError ); 3116 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3117 3118 if( op==0 ){ 3119 if( pWal->exclusiveMode ){ 3120 pWal->exclusiveMode = 0; 3121 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3122 pWal->exclusiveMode = 1; 3123 } 3124 rc = pWal->exclusiveMode==0; 3125 }else{ 3126 /* Already in locking_mode=NORMAL */ 3127 rc = 0; 3128 } 3129 }else if( op>0 ){ 3130 assert( pWal->exclusiveMode==0 ); 3131 assert( pWal->readLock>=0 ); 3132 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3133 pWal->exclusiveMode = 1; 3134 rc = 1; 3135 }else{ 3136 rc = pWal->exclusiveMode==0; 3137 } 3138 return rc; 3139 } 3140 3141 /* 3142 ** Return true if the argument is non-NULL and the WAL module is using 3143 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3144 ** WAL module is using shared-memory, return false. 3145 */ 3146 int sqlite3WalHeapMemory(Wal *pWal){ 3147 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3148 } 3149 3150 #ifdef SQLITE_ENABLE_ZIPVFS 3151 /* 3152 ** If the argument is not NULL, it points to a Wal object that holds a 3153 ** read-lock. This function returns the database page-size if it is known, 3154 ** or zero if it is not (or if pWal is NULL). 3155 */ 3156 int sqlite3WalFramesize(Wal *pWal){ 3157 assert( pWal==0 || pWal->readLock>=0 ); 3158 return (pWal ? pWal->szPage : 0); 3159 } 3160 #endif 3161 3162 #endif /* #ifndef SQLITE_OMIT_WAL */ 3163