xref: /sqlite-3.40.0/src/wal.c (revision 944d85df)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.  The values are:
165 **
166 **   HASHTABLE_NPAGE      4096
167 **   HASHTABLE_NPAGE_ONE  4062
168 **
169 ** Each index block contains two sections, a page-mapping that contains the
170 ** database page number associated with each wal frame, and a hash-table
171 ** that allows readers to query an index block for a specific page number.
172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
173 ** for the first index block) 32-bit page numbers. The first entry in the
174 ** first index-block contains the database page number corresponding to the
175 ** first frame in the WAL file. The first entry in the second index block
176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
177 ** the log, and so on.
178 **
179 ** The last index block in a wal-index usually contains less than the full
180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
181 ** depending on the contents of the WAL file. This does not change the
182 ** allocated size of the page-mapping array - the page-mapping array merely
183 ** contains unused entries.
184 **
185 ** Even without using the hash table, the last frame for page P
186 ** can be found by scanning the page-mapping sections of each index block
187 ** starting with the last index block and moving toward the first, and
188 ** within each index block, starting at the end and moving toward the
189 ** beginning.  The first entry that equals P corresponds to the frame
190 ** holding the content for that page.
191 **
192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
194 ** hash table for each page number in the mapping section, so the hash
195 ** table is never more than half full.  The expected number of collisions
196 ** prior to finding a match is 1.  Each entry of the hash table is an
197 ** 1-based index of an entry in the mapping section of the same
198 ** index block.   Let K be the 1-based index of the largest entry in
199 ** the mapping section.  (For index blocks other than the last, K will
200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
201 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
202 ** contain a value of 0.
203 **
204 ** To look for page P in the hash table, first compute a hash iKey on
205 ** P as follows:
206 **
207 **      iKey = (P * 383) % HASHTABLE_NSLOT
208 **
209 ** Then start scanning entries of the hash table, starting with iKey
210 ** (wrapping around to the beginning when the end of the hash table is
211 ** reached) until an unused hash slot is found. Let the first unused slot
212 ** be at index iUnused.  (iUnused might be less than iKey if there was
213 ** wrap-around.) Because the hash table is never more than half full,
214 ** the search is guaranteed to eventually hit an unused entry.  Let
215 ** iMax be the value between iKey and iUnused, closest to iUnused,
216 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
217 ** no hash slot such that aHash[i]==p) then page P is not in the
218 ** current index block.  Otherwise the iMax-th mapping entry of the
219 ** current index block corresponds to the last entry that references
220 ** page P.
221 **
222 ** A hash search begins with the last index block and moves toward the
223 ** first index block, looking for entries corresponding to page P.  On
224 ** average, only two or three slots in each index block need to be
225 ** examined in order to either find the last entry for page P, or to
226 ** establish that no such entry exists in the block.  Each index block
227 ** holds over 4000 entries.  So two or three index blocks are sufficient
228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
229 ** comparisons (on average) suffice to either locate a frame in the
230 ** WAL or to establish that the frame does not exist in the WAL.  This
231 ** is much faster than scanning the entire 10MB WAL.
232 **
233 ** Note that entries are added in order of increasing K.  Hence, one
234 ** reader might be using some value K0 and a second reader that started
235 ** at a later time (after additional transactions were added to the WAL
236 ** and to the wal-index) might be using a different value K1, where K1>K0.
237 ** Both readers can use the same hash table and mapping section to get
238 ** the correct result.  There may be entries in the hash table with
239 ** K>K0 but to the first reader, those entries will appear to be unused
240 ** slots in the hash table and so the first reader will get an answer as
241 ** if no values greater than K0 had ever been inserted into the hash table
242 ** in the first place - which is what reader one wants.  Meanwhile, the
243 ** second reader using K1 will see additional values that were inserted
244 ** later, which is exactly what reader two wants.
245 **
246 ** When a rollback occurs, the value of K is decreased. Hash table entries
247 ** that correspond to frames greater than the new K value are removed
248 ** from the hash table at this point.
249 */
250 #ifndef SQLITE_OMIT_WAL
251 
252 #include "wal.h"
253 
254 /*
255 ** Trace output macros
256 */
257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
258 int sqlite3WalTrace = 0;
259 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
260 #else
261 # define WALTRACE(X)
262 #endif
263 
264 /*
265 ** The maximum (and only) versions of the wal and wal-index formats
266 ** that may be interpreted by this version of SQLite.
267 **
268 ** If a client begins recovering a WAL file and finds that (a) the checksum
269 ** values in the wal-header are correct and (b) the version field is not
270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
271 **
272 ** Similarly, if a client successfully reads a wal-index header (i.e. the
273 ** checksum test is successful) and finds that the version field is not
274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
275 ** returns SQLITE_CANTOPEN.
276 */
277 #define WAL_MAX_VERSION      3007000
278 #define WALINDEX_MAX_VERSION 3007000
279 
280 /*
281 ** Index numbers for various locking bytes.   WAL_NREADER is the number
282 ** of available reader locks and should be at least 3.  The default
283 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
284 **
285 ** Technically, the various VFSes are free to implement these locks however
286 ** they see fit.  However, compatibility is encouraged so that VFSes can
287 ** interoperate.  The standard implemention used on both unix and windows
288 ** is for the index number to indicate a byte offset into the
289 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
290 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
291 ** should be 120) is the location in the shm file for the first locking
292 ** byte.
293 */
294 #define WAL_WRITE_LOCK         0
295 #define WAL_ALL_BUT_WRITE      1
296 #define WAL_CKPT_LOCK          1
297 #define WAL_RECOVER_LOCK       2
298 #define WAL_READ_LOCK(I)       (3+(I))
299 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
300 
301 
302 /* Object declarations */
303 typedef struct WalIndexHdr WalIndexHdr;
304 typedef struct WalIterator WalIterator;
305 typedef struct WalCkptInfo WalCkptInfo;
306 
307 
308 /*
309 ** The following object holds a copy of the wal-index header content.
310 **
311 ** The actual header in the wal-index consists of two copies of this
312 ** object followed by one instance of the WalCkptInfo object.
313 ** For all versions of SQLite through 3.10.0 and probably beyond,
314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
315 ** the total header size is 136 bytes.
316 **
317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
318 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
319 ** added in 3.7.1 when support for 64K pages was added.
320 */
321 struct WalIndexHdr {
322   u32 iVersion;                   /* Wal-index version */
323   u32 unused;                     /* Unused (padding) field */
324   u32 iChange;                    /* Counter incremented each transaction */
325   u8 isInit;                      /* 1 when initialized */
326   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
327   u16 szPage;                     /* Database page size in bytes. 1==64K */
328   u32 mxFrame;                    /* Index of last valid frame in the WAL */
329   u32 nPage;                      /* Size of database in pages */
330   u32 aFrameCksum[2];             /* Checksum of last frame in log */
331   u32 aSalt[2];                   /* Two salt values copied from WAL header */
332   u32 aCksum[2];                  /* Checksum over all prior fields */
333 };
334 
335 /*
336 ** A copy of the following object occurs in the wal-index immediately
337 ** following the second copy of the WalIndexHdr.  This object stores
338 ** information used by checkpoint.
339 **
340 ** nBackfill is the number of frames in the WAL that have been written
341 ** back into the database. (We call the act of moving content from WAL to
342 ** database "backfilling".)  The nBackfill number is never greater than
343 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
346 ** mxFrame back to zero when the WAL is reset.
347 **
348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
349 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
350 ** the nBackfillAttempted is set before any backfilling is done and the
351 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
352 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
354 **
355 ** The aLock[] field is a set of bytes used for locking.  These bytes should
356 ** never be read or written.
357 **
358 ** There is one entry in aReadMark[] for each reader lock.  If a reader
359 ** holds read-lock K, then the value in aReadMark[K] is no greater than
360 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
361 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
362 ** a special case; its value is never used and it exists as a place-holder
363 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
365 ** directly from the database.
366 **
367 ** The value of aReadMark[K] may only be changed by a thread that
368 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
369 ** aReadMark[K] cannot changed while there is a reader is using that mark
370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
371 **
372 ** The checkpointer may only transfer frames from WAL to database where
373 ** the frame numbers are less than or equal to every aReadMark[] that is
374 ** in use (that is, every aReadMark[j] for which there is a corresponding
375 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
376 ** largest value and will increase an unused aReadMark[] to mxFrame if there
377 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
379 ** in the WAL has been backfilled into the database) then new readers
380 ** will choose aReadMark[0] which has value 0 and hence such reader will
381 ** get all their all content directly from the database file and ignore
382 ** the WAL.
383 **
384 ** Writers normally append new frames to the end of the WAL.  However,
385 ** if nBackfill equals mxFrame (meaning that all WAL content has been
386 ** written back into the database) and if no readers are using the WAL
387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
388 ** the writer will first "reset" the WAL back to the beginning and start
389 ** writing new content beginning at frame 1.
390 **
391 ** We assume that 32-bit loads are atomic and so no locks are needed in
392 ** order to read from any aReadMark[] entries.
393 */
394 struct WalCkptInfo {
395   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
396   u32 aReadMark[WAL_NREADER];     /* Reader marks */
397   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
398   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
399   u32 notUsed0;                   /* Available for future enhancements */
400 };
401 #define READMARK_NOT_USED  0xffffffff
402 
403 
404 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
405 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
406 ** only support mandatory file-locks, we do not read or write data
407 ** from the region of the file on which locks are applied.
408 */
409 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
410 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
411 
412 /* Size of header before each frame in wal */
413 #define WAL_FRAME_HDRSIZE 24
414 
415 /* Size of write ahead log header, including checksum. */
416 #define WAL_HDRSIZE 32
417 
418 /* WAL magic value. Either this value, or the same value with the least
419 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
420 ** big-endian format in the first 4 bytes of a WAL file.
421 **
422 ** If the LSB is set, then the checksums for each frame within the WAL
423 ** file are calculated by treating all data as an array of 32-bit
424 ** big-endian words. Otherwise, they are calculated by interpreting
425 ** all data as 32-bit little-endian words.
426 */
427 #define WAL_MAGIC 0x377f0682
428 
429 /*
430 ** Return the offset of frame iFrame in the write-ahead log file,
431 ** assuming a database page size of szPage bytes. The offset returned
432 ** is to the start of the write-ahead log frame-header.
433 */
434 #define walFrameOffset(iFrame, szPage) (                               \
435   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
436 )
437 
438 /*
439 ** An open write-ahead log file is represented by an instance of the
440 ** following object.
441 */
442 struct Wal {
443   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
444   sqlite3_file *pDbFd;       /* File handle for the database file */
445   sqlite3_file *pWalFd;      /* File handle for WAL file */
446   u32 iCallback;             /* Value to pass to log callback (or 0) */
447   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
448   int nWiData;               /* Size of array apWiData */
449   int szFirstBlock;          /* Size of first block written to WAL file */
450   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
451   u32 szPage;                /* Database page size */
452   i16 readLock;              /* Which read lock is being held.  -1 for none */
453   u8 syncFlags;              /* Flags to use to sync header writes */
454   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
455   u8 writeLock;              /* True if in a write transaction */
456   u8 ckptLock;               /* True if holding a checkpoint lock */
457   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
458   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
459   u8 syncHeader;             /* Fsync the WAL header if true */
460   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
461   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
462   WalIndexHdr hdr;           /* Wal-index header for current transaction */
463   u32 minFrame;              /* Ignore wal frames before this one */
464   u32 iReCksum;              /* On commit, recalculate checksums from here */
465   const char *zWalName;      /* Name of WAL file */
466   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
467 #ifdef SQLITE_DEBUG
468   u8 lockError;              /* True if a locking error has occurred */
469 #endif
470 #ifdef SQLITE_ENABLE_SNAPSHOT
471   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
472 #endif
473 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
474   sqlite3 *db;
475 #endif
476 };
477 
478 /*
479 ** Candidate values for Wal.exclusiveMode.
480 */
481 #define WAL_NORMAL_MODE     0
482 #define WAL_EXCLUSIVE_MODE  1
483 #define WAL_HEAPMEMORY_MODE 2
484 
485 /*
486 ** Possible values for WAL.readOnly
487 */
488 #define WAL_RDWR        0    /* Normal read/write connection */
489 #define WAL_RDONLY      1    /* The WAL file is readonly */
490 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
491 
492 /*
493 ** Each page of the wal-index mapping contains a hash-table made up of
494 ** an array of HASHTABLE_NSLOT elements of the following type.
495 */
496 typedef u16 ht_slot;
497 
498 /*
499 ** This structure is used to implement an iterator that loops through
500 ** all frames in the WAL in database page order. Where two or more frames
501 ** correspond to the same database page, the iterator visits only the
502 ** frame most recently written to the WAL (in other words, the frame with
503 ** the largest index).
504 **
505 ** The internals of this structure are only accessed by:
506 **
507 **   walIteratorInit() - Create a new iterator,
508 **   walIteratorNext() - Step an iterator,
509 **   walIteratorFree() - Free an iterator.
510 **
511 ** This functionality is used by the checkpoint code (see walCheckpoint()).
512 */
513 struct WalIterator {
514   u32 iPrior;                     /* Last result returned from the iterator */
515   int nSegment;                   /* Number of entries in aSegment[] */
516   struct WalSegment {
517     int iNext;                    /* Next slot in aIndex[] not yet returned */
518     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
519     u32 *aPgno;                   /* Array of page numbers. */
520     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
521     int iZero;                    /* Frame number associated with aPgno[0] */
522   } aSegment[1];                  /* One for every 32KB page in the wal-index */
523 };
524 
525 /*
526 ** Define the parameters of the hash tables in the wal-index file. There
527 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
528 ** wal-index.
529 **
530 ** Changing any of these constants will alter the wal-index format and
531 ** create incompatibilities.
532 */
533 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
534 #define HASHTABLE_HASH_1     383                  /* Should be prime */
535 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
536 
537 /*
538 ** The block of page numbers associated with the first hash-table in a
539 ** wal-index is smaller than usual. This is so that there is a complete
540 ** hash-table on each aligned 32KB page of the wal-index.
541 */
542 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
543 
544 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
545 #define WALINDEX_PGSZ   (                                         \
546     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
547 )
548 
549 /*
550 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
551 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
552 ** numbered from zero.
553 **
554 ** If the wal-index is currently smaller the iPage pages then the size
555 ** of the wal-index might be increased, but only if it is safe to do
556 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
557 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
558 **
559 ** If this call is successful, *ppPage is set to point to the wal-index
560 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
561 ** then an SQLite error code is returned and *ppPage is set to 0.
562 */
563 static SQLITE_NOINLINE int walIndexPageRealloc(
564   Wal *pWal,               /* The WAL context */
565   int iPage,               /* The page we seek */
566   volatile u32 **ppPage    /* Write the page pointer here */
567 ){
568   int rc = SQLITE_OK;
569 
570   /* Enlarge the pWal->apWiData[] array if required */
571   if( pWal->nWiData<=iPage ){
572     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
573     volatile u32 **apNew;
574     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
575     if( !apNew ){
576       *ppPage = 0;
577       return SQLITE_NOMEM_BKPT;
578     }
579     memset((void*)&apNew[pWal->nWiData], 0,
580            sizeof(u32*)*(iPage+1-pWal->nWiData));
581     pWal->apWiData = apNew;
582     pWal->nWiData = iPage+1;
583   }
584 
585   /* Request a pointer to the required page from the VFS */
586   assert( pWal->apWiData[iPage]==0 );
587   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
588     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
589     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
590   }else{
591     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
592         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
593     );
594     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
595     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
596     if( rc==SQLITE_OK ){
597       if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
598     }else if( (rc&0xff)==SQLITE_READONLY ){
599       pWal->readOnly |= WAL_SHM_RDONLY;
600       if( rc==SQLITE_READONLY ){
601         rc = SQLITE_OK;
602       }
603     }
604   }
605 
606   *ppPage = pWal->apWiData[iPage];
607   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
608   return rc;
609 }
610 static int walIndexPage(
611   Wal *pWal,               /* The WAL context */
612   int iPage,               /* The page we seek */
613   volatile u32 **ppPage    /* Write the page pointer here */
614 ){
615   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
616     return walIndexPageRealloc(pWal, iPage, ppPage);
617   }
618   return SQLITE_OK;
619 }
620 
621 /*
622 ** Return a pointer to the WalCkptInfo structure in the wal-index.
623 */
624 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
625   assert( pWal->nWiData>0 && pWal->apWiData[0] );
626   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
627 }
628 
629 /*
630 ** Return a pointer to the WalIndexHdr structure in the wal-index.
631 */
632 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
633   assert( pWal->nWiData>0 && pWal->apWiData[0] );
634   return (volatile WalIndexHdr*)pWal->apWiData[0];
635 }
636 
637 /*
638 ** The argument to this macro must be of type u32. On a little-endian
639 ** architecture, it returns the u32 value that results from interpreting
640 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
641 ** returns the value that would be produced by interpreting the 4 bytes
642 ** of the input value as a little-endian integer.
643 */
644 #define BYTESWAP32(x) ( \
645     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
646   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
647 )
648 
649 /*
650 ** Generate or extend an 8 byte checksum based on the data in
651 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
652 ** initial values of 0 and 0 if aIn==NULL).
653 **
654 ** The checksum is written back into aOut[] before returning.
655 **
656 ** nByte must be a positive multiple of 8.
657 */
658 static void walChecksumBytes(
659   int nativeCksum, /* True for native byte-order, false for non-native */
660   u8 *a,           /* Content to be checksummed */
661   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
662   const u32 *aIn,  /* Initial checksum value input */
663   u32 *aOut        /* OUT: Final checksum value output */
664 ){
665   u32 s1, s2;
666   u32 *aData = (u32 *)a;
667   u32 *aEnd = (u32 *)&a[nByte];
668 
669   if( aIn ){
670     s1 = aIn[0];
671     s2 = aIn[1];
672   }else{
673     s1 = s2 = 0;
674   }
675 
676   assert( nByte>=8 );
677   assert( (nByte&0x00000007)==0 );
678   assert( nByte<=65536 );
679 
680   if( nativeCksum ){
681     do {
682       s1 += *aData++ + s2;
683       s2 += *aData++ + s1;
684     }while( aData<aEnd );
685   }else{
686     do {
687       s1 += BYTESWAP32(aData[0]) + s2;
688       s2 += BYTESWAP32(aData[1]) + s1;
689       aData += 2;
690     }while( aData<aEnd );
691   }
692 
693   aOut[0] = s1;
694   aOut[1] = s2;
695 }
696 
697 /*
698 ** If there is the possibility of concurrent access to the SHM file
699 ** from multiple threads and/or processes, then do a memory barrier.
700 */
701 static void walShmBarrier(Wal *pWal){
702   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703     sqlite3OsShmBarrier(pWal->pDbFd);
704   }
705 }
706 
707 /*
708 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
709 ** definition as a hint that the function contains constructs that
710 ** might give false-positive TSAN warnings.
711 **
712 ** See tag-20200519-1.
713 */
714 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
715 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
716 #else
717 # define SQLITE_NO_TSAN
718 #endif
719 
720 /*
721 ** Write the header information in pWal->hdr into the wal-index.
722 **
723 ** The checksum on pWal->hdr is updated before it is written.
724 */
725 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
726   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
727   const int nCksum = offsetof(WalIndexHdr, aCksum);
728 
729   assert( pWal->writeLock );
730   pWal->hdr.isInit = 1;
731   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
732   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
733   /* Possible TSAN false-positive.  See tag-20200519-1 */
734   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
735   walShmBarrier(pWal);
736   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
737 }
738 
739 /*
740 ** This function encodes a single frame header and writes it to a buffer
741 ** supplied by the caller. A frame-header is made up of a series of
742 ** 4-byte big-endian integers, as follows:
743 **
744 **     0: Page number.
745 **     4: For commit records, the size of the database image in pages
746 **        after the commit. For all other records, zero.
747 **     8: Salt-1 (copied from the wal-header)
748 **    12: Salt-2 (copied from the wal-header)
749 **    16: Checksum-1.
750 **    20: Checksum-2.
751 */
752 static void walEncodeFrame(
753   Wal *pWal,                      /* The write-ahead log */
754   u32 iPage,                      /* Database page number for frame */
755   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
756   u8 *aData,                      /* Pointer to page data */
757   u8 *aFrame                      /* OUT: Write encoded frame here */
758 ){
759   int nativeCksum;                /* True for native byte-order checksums */
760   u32 *aCksum = pWal->hdr.aFrameCksum;
761   assert( WAL_FRAME_HDRSIZE==24 );
762   sqlite3Put4byte(&aFrame[0], iPage);
763   sqlite3Put4byte(&aFrame[4], nTruncate);
764   if( pWal->iReCksum==0 ){
765     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
766 
767     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
768     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
769     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
770 
771     sqlite3Put4byte(&aFrame[16], aCksum[0]);
772     sqlite3Put4byte(&aFrame[20], aCksum[1]);
773   }else{
774     memset(&aFrame[8], 0, 16);
775   }
776 }
777 
778 /*
779 ** Check to see if the frame with header in aFrame[] and content
780 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
781 ** *pnTruncate and return true.  Return if the frame is not valid.
782 */
783 static int walDecodeFrame(
784   Wal *pWal,                      /* The write-ahead log */
785   u32 *piPage,                    /* OUT: Database page number for frame */
786   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
787   u8 *aData,                      /* Pointer to page data (for checksum) */
788   u8 *aFrame                      /* Frame data */
789 ){
790   int nativeCksum;                /* True for native byte-order checksums */
791   u32 *aCksum = pWal->hdr.aFrameCksum;
792   u32 pgno;                       /* Page number of the frame */
793   assert( WAL_FRAME_HDRSIZE==24 );
794 
795   /* A frame is only valid if the salt values in the frame-header
796   ** match the salt values in the wal-header.
797   */
798   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
799     return 0;
800   }
801 
802   /* A frame is only valid if the page number is creater than zero.
803   */
804   pgno = sqlite3Get4byte(&aFrame[0]);
805   if( pgno==0 ){
806     return 0;
807   }
808 
809   /* A frame is only valid if a checksum of the WAL header,
810   ** all prior frams, the first 16 bytes of this frame-header,
811   ** and the frame-data matches the checksum in the last 8
812   ** bytes of this frame-header.
813   */
814   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
815   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
816   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
817   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
818    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
819   ){
820     /* Checksum failed. */
821     return 0;
822   }
823 
824   /* If we reach this point, the frame is valid.  Return the page number
825   ** and the new database size.
826   */
827   *piPage = pgno;
828   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
829   return 1;
830 }
831 
832 
833 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
834 /*
835 ** Names of locks.  This routine is used to provide debugging output and is not
836 ** a part of an ordinary build.
837 */
838 static const char *walLockName(int lockIdx){
839   if( lockIdx==WAL_WRITE_LOCK ){
840     return "WRITE-LOCK";
841   }else if( lockIdx==WAL_CKPT_LOCK ){
842     return "CKPT-LOCK";
843   }else if( lockIdx==WAL_RECOVER_LOCK ){
844     return "RECOVER-LOCK";
845   }else{
846     static char zName[15];
847     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
848                      lockIdx-WAL_READ_LOCK(0));
849     return zName;
850   }
851 }
852 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
853 
854 
855 /*
856 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
857 ** A lock cannot be moved directly between shared and exclusive - it must go
858 ** through the unlocked state first.
859 **
860 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
861 */
862 static int walLockShared(Wal *pWal, int lockIdx){
863   int rc;
864   if( pWal->exclusiveMode ) return SQLITE_OK;
865   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
866                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
867   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
868             walLockName(lockIdx), rc ? "failed" : "ok"));
869   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
870   return rc;
871 }
872 static void walUnlockShared(Wal *pWal, int lockIdx){
873   if( pWal->exclusiveMode ) return;
874   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
875                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
876   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
877 }
878 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
879   int rc;
880   if( pWal->exclusiveMode ) return SQLITE_OK;
881   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
882                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
883   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
884             walLockName(lockIdx), n, rc ? "failed" : "ok"));
885   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
886   return rc;
887 }
888 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
889   if( pWal->exclusiveMode ) return;
890   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
891                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
892   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
893              walLockName(lockIdx), n));
894 }
895 
896 /*
897 ** Compute a hash on a page number.  The resulting hash value must land
898 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
899 ** the hash to the next value in the event of a collision.
900 */
901 static int walHash(u32 iPage){
902   assert( iPage>0 );
903   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
904   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
905 }
906 static int walNextHash(int iPriorHash){
907   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
908 }
909 
910 /*
911 ** An instance of the WalHashLoc object is used to describe the location
912 ** of a page hash table in the wal-index.  This becomes the return value
913 ** from walHashGet().
914 */
915 typedef struct WalHashLoc WalHashLoc;
916 struct WalHashLoc {
917   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
918   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
919   u32 iZero;                /* One less than the frame number of first indexed*/
920 };
921 
922 /*
923 ** Return pointers to the hash table and page number array stored on
924 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
925 ** numbered starting from 0.
926 **
927 ** Set output variable pLoc->aHash to point to the start of the hash table
928 ** in the wal-index file. Set pLoc->iZero to one less than the frame
929 ** number of the first frame indexed by this hash table. If a
930 ** slot in the hash table is set to N, it refers to frame number
931 ** (pLoc->iZero+N) in the log.
932 **
933 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
934 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
935 */
936 static int walHashGet(
937   Wal *pWal,                      /* WAL handle */
938   int iHash,                      /* Find the iHash'th table */
939   WalHashLoc *pLoc                /* OUT: Hash table location */
940 ){
941   int rc;                         /* Return code */
942 
943   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
944   assert( rc==SQLITE_OK || iHash>0 );
945 
946   if( rc==SQLITE_OK ){
947     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
948     if( iHash==0 ){
949       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
950       pLoc->iZero = 0;
951     }else{
952       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
953     }
954     pLoc->aPgno = &pLoc->aPgno[-1];
955   }
956   return rc;
957 }
958 
959 /*
960 ** Return the number of the wal-index page that contains the hash-table
961 ** and page-number array that contain entries corresponding to WAL frame
962 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
963 ** are numbered starting from 0.
964 */
965 static int walFramePage(u32 iFrame){
966   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
967   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
968        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
969        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
970        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
971        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
972   );
973   assert( iHash>=0 );
974   return iHash;
975 }
976 
977 /*
978 ** Return the page number associated with frame iFrame in this WAL.
979 */
980 static u32 walFramePgno(Wal *pWal, u32 iFrame){
981   int iHash = walFramePage(iFrame);
982   if( iHash==0 ){
983     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
984   }
985   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
986 }
987 
988 /*
989 ** Remove entries from the hash table that point to WAL slots greater
990 ** than pWal->hdr.mxFrame.
991 **
992 ** This function is called whenever pWal->hdr.mxFrame is decreased due
993 ** to a rollback or savepoint.
994 **
995 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
996 ** updated.  Any later hash tables will be automatically cleared when
997 ** pWal->hdr.mxFrame advances to the point where those hash tables are
998 ** actually needed.
999 */
1000 static void walCleanupHash(Wal *pWal){
1001   WalHashLoc sLoc;                /* Hash table location */
1002   int iLimit = 0;                 /* Zero values greater than this */
1003   int nByte;                      /* Number of bytes to zero in aPgno[] */
1004   int i;                          /* Used to iterate through aHash[] */
1005 
1006   assert( pWal->writeLock );
1007   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1008   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1009   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1010 
1011   if( pWal->hdr.mxFrame==0 ) return;
1012 
1013   /* Obtain pointers to the hash-table and page-number array containing
1014   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1015   ** that the page said hash-table and array reside on is already mapped.(1)
1016   */
1017   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1018   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1019   i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1020   if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
1021 
1022   /* Zero all hash-table entries that correspond to frame numbers greater
1023   ** than pWal->hdr.mxFrame.
1024   */
1025   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1026   assert( iLimit>0 );
1027   for(i=0; i<HASHTABLE_NSLOT; i++){
1028     if( sLoc.aHash[i]>iLimit ){
1029       sLoc.aHash[i] = 0;
1030     }
1031   }
1032 
1033   /* Zero the entries in the aPgno array that correspond to frames with
1034   ** frame numbers greater than pWal->hdr.mxFrame.
1035   */
1036   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1037   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1038 
1039 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1040   /* Verify that the every entry in the mapping region is still reachable
1041   ** via the hash table even after the cleanup.
1042   */
1043   if( iLimit ){
1044     int j;           /* Loop counter */
1045     int iKey;        /* Hash key */
1046     for(j=1; j<=iLimit; j++){
1047       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1048         if( sLoc.aHash[iKey]==j ) break;
1049       }
1050       assert( sLoc.aHash[iKey]==j );
1051     }
1052   }
1053 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1054 }
1055 
1056 
1057 /*
1058 ** Set an entry in the wal-index that will map database page number
1059 ** pPage into WAL frame iFrame.
1060 */
1061 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1062   int rc;                         /* Return code */
1063   WalHashLoc sLoc;                /* Wal-index hash table location */
1064 
1065   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1066 
1067   /* Assuming the wal-index file was successfully mapped, populate the
1068   ** page number array and hash table entry.
1069   */
1070   if( rc==SQLITE_OK ){
1071     int iKey;                     /* Hash table key */
1072     int idx;                      /* Value to write to hash-table slot */
1073     int nCollide;                 /* Number of hash collisions */
1074 
1075     idx = iFrame - sLoc.iZero;
1076     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1077 
1078     /* If this is the first entry to be added to this hash-table, zero the
1079     ** entire hash table and aPgno[] array before proceeding.
1080     */
1081     if( idx==1 ){
1082       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1083                                - (u8 *)&sLoc.aPgno[1]);
1084       memset((void*)&sLoc.aPgno[1], 0, nByte);
1085     }
1086 
1087     /* If the entry in aPgno[] is already set, then the previous writer
1088     ** must have exited unexpectedly in the middle of a transaction (after
1089     ** writing one or more dirty pages to the WAL to free up memory).
1090     ** Remove the remnants of that writers uncommitted transaction from
1091     ** the hash-table before writing any new entries.
1092     */
1093     if( sLoc.aPgno[idx] ){
1094       walCleanupHash(pWal);
1095       assert( !sLoc.aPgno[idx] );
1096     }
1097 
1098     /* Write the aPgno[] array entry and the hash-table slot. */
1099     nCollide = idx;
1100     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1101       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1102     }
1103     sLoc.aPgno[idx] = iPage;
1104     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1105 
1106 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1107     /* Verify that the number of entries in the hash table exactly equals
1108     ** the number of entries in the mapping region.
1109     */
1110     {
1111       int i;           /* Loop counter */
1112       int nEntry = 0;  /* Number of entries in the hash table */
1113       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1114       assert( nEntry==idx );
1115     }
1116 
1117     /* Verify that the every entry in the mapping region is reachable
1118     ** via the hash table.  This turns out to be a really, really expensive
1119     ** thing to check, so only do this occasionally - not on every
1120     ** iteration.
1121     */
1122     if( (idx&0x3ff)==0 ){
1123       int i;           /* Loop counter */
1124       for(i=1; i<=idx; i++){
1125         for(iKey=walHash(sLoc.aPgno[i]);
1126             sLoc.aHash[iKey];
1127             iKey=walNextHash(iKey)){
1128           if( sLoc.aHash[iKey]==i ) break;
1129         }
1130         assert( sLoc.aHash[iKey]==i );
1131       }
1132     }
1133 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1134   }
1135 
1136 
1137   return rc;
1138 }
1139 
1140 
1141 /*
1142 ** Recover the wal-index by reading the write-ahead log file.
1143 **
1144 ** This routine first tries to establish an exclusive lock on the
1145 ** wal-index to prevent other threads/processes from doing anything
1146 ** with the WAL or wal-index while recovery is running.  The
1147 ** WAL_RECOVER_LOCK is also held so that other threads will know
1148 ** that this thread is running recovery.  If unable to establish
1149 ** the necessary locks, this routine returns SQLITE_BUSY.
1150 */
1151 static int walIndexRecover(Wal *pWal){
1152   int rc;                         /* Return Code */
1153   i64 nSize;                      /* Size of log file */
1154   u32 aFrameCksum[2] = {0, 0};
1155   int iLock;                      /* Lock offset to lock for checkpoint */
1156 
1157   /* Obtain an exclusive lock on all byte in the locking range not already
1158   ** locked by the caller. The caller is guaranteed to have locked the
1159   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1160   ** If successful, the same bytes that are locked here are unlocked before
1161   ** this function returns.
1162   */
1163   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1164   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1165   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1166   assert( pWal->writeLock );
1167   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1168   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1169   if( rc ){
1170     return rc;
1171   }
1172 
1173   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1174 
1175   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1176 
1177   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1178   if( rc!=SQLITE_OK ){
1179     goto recovery_error;
1180   }
1181 
1182   if( nSize>WAL_HDRSIZE ){
1183     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1184     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1185     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1186     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1187     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1188     int szPage;                   /* Page size according to the log */
1189     u32 magic;                    /* Magic value read from WAL header */
1190     u32 version;                  /* Magic value read from WAL header */
1191     int isValid;                  /* True if this frame is valid */
1192     u32 iPg;                      /* Current 32KB wal-index page */
1193     u32 iLastFrame;               /* Last frame in wal, based on nSize alone */
1194 
1195     /* Read in the WAL header. */
1196     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1197     if( rc!=SQLITE_OK ){
1198       goto recovery_error;
1199     }
1200 
1201     /* If the database page size is not a power of two, or is greater than
1202     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1203     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1204     ** WAL file.
1205     */
1206     magic = sqlite3Get4byte(&aBuf[0]);
1207     szPage = sqlite3Get4byte(&aBuf[8]);
1208     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1209      || szPage&(szPage-1)
1210      || szPage>SQLITE_MAX_PAGE_SIZE
1211      || szPage<512
1212     ){
1213       goto finished;
1214     }
1215     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1216     pWal->szPage = szPage;
1217     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1218     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1219 
1220     /* Verify that the WAL header checksum is correct */
1221     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1222         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1223     );
1224     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1225      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1226     ){
1227       goto finished;
1228     }
1229 
1230     /* Verify that the version number on the WAL format is one that
1231     ** are able to understand */
1232     version = sqlite3Get4byte(&aBuf[4]);
1233     if( version!=WAL_MAX_VERSION ){
1234       rc = SQLITE_CANTOPEN_BKPT;
1235       goto finished;
1236     }
1237 
1238     /* Malloc a buffer to read frames into. */
1239     szFrame = szPage + WAL_FRAME_HDRSIZE;
1240     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1241     if( !aFrame ){
1242       rc = SQLITE_NOMEM_BKPT;
1243       goto recovery_error;
1244     }
1245     aData = &aFrame[WAL_FRAME_HDRSIZE];
1246     aPrivate = (u32*)&aData[szPage];
1247 
1248     /* Read all frames from the log file. */
1249     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1250     for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1251       u32 *aShare;
1252       u32 iFrame;                 /* Index of last frame read */
1253       u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1254       u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1255       u32 nHdr, nHdr32;
1256       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1257       if( rc ) break;
1258       pWal->apWiData[iPg] = aPrivate;
1259 
1260       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1261         i64 iOffset = walFrameOffset(iFrame, szPage);
1262         u32 pgno;                 /* Database page number for frame */
1263         u32 nTruncate;            /* dbsize field from frame header */
1264 
1265         /* Read and decode the next log frame. */
1266         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1267         if( rc!=SQLITE_OK ) break;
1268         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1269         if( !isValid ) break;
1270         rc = walIndexAppend(pWal, iFrame, pgno);
1271         if( NEVER(rc!=SQLITE_OK) ) break;
1272 
1273         /* If nTruncate is non-zero, this is a commit record. */
1274         if( nTruncate ){
1275           pWal->hdr.mxFrame = iFrame;
1276           pWal->hdr.nPage = nTruncate;
1277           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1278           testcase( szPage<=32768 );
1279           testcase( szPage>=65536 );
1280           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1281           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1282         }
1283       }
1284       pWal->apWiData[iPg] = aShare;
1285       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1286       nHdr32 = nHdr / sizeof(u32);
1287 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1288       /* Memcpy() should work fine here, on all reasonable implementations.
1289       ** Technically, memcpy() might change the destination to some
1290       ** intermediate value before setting to the final value, and that might
1291       ** cause a concurrent reader to malfunction.  Memcpy() is allowed to
1292       ** do that, according to the spec, but no memcpy() implementation that
1293       ** we know of actually does that, which is why we say that memcpy()
1294       ** is safe for this.  Memcpy() is certainly a lot faster.
1295       */
1296       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1297 #else
1298       /* In the event that some platform is found for which memcpy()
1299       ** changes the destination to some intermediate value before
1300       ** setting the final value, this alternative copy routine is
1301       ** provided.
1302       */
1303       {
1304         int i;
1305         for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1306           if( aShare[i]!=aPrivate[i] ){
1307             /* Atomic memory operations are not required here because if
1308             ** the value needs to be changed, that means it is not being
1309             ** accessed concurrently. */
1310             aShare[i] = aPrivate[i];
1311           }
1312         }
1313       }
1314 #endif
1315       if( iFrame<=iLast ) break;
1316     }
1317 
1318     sqlite3_free(aFrame);
1319   }
1320 
1321 finished:
1322   if( rc==SQLITE_OK ){
1323     volatile WalCkptInfo *pInfo;
1324     int i;
1325     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1326     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1327     walIndexWriteHdr(pWal);
1328 
1329     /* Reset the checkpoint-header. This is safe because this thread is
1330     ** currently holding locks that exclude all other writers and
1331     ** checkpointers. Then set the values of read-mark slots 1 through N.
1332     */
1333     pInfo = walCkptInfo(pWal);
1334     pInfo->nBackfill = 0;
1335     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1336     pInfo->aReadMark[0] = 0;
1337     for(i=1; i<WAL_NREADER; i++){
1338       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1339       if( rc==SQLITE_OK ){
1340         if( i==1 && pWal->hdr.mxFrame ){
1341           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1342         }else{
1343           pInfo->aReadMark[i] = READMARK_NOT_USED;
1344         }
1345         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1346       }else if( rc!=SQLITE_BUSY ){
1347         goto recovery_error;
1348       }
1349     }
1350 
1351     /* If more than one frame was recovered from the log file, report an
1352     ** event via sqlite3_log(). This is to help with identifying performance
1353     ** problems caused by applications routinely shutting down without
1354     ** checkpointing the log file.
1355     */
1356     if( pWal->hdr.nPage ){
1357       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1358           "recovered %d frames from WAL file %s",
1359           pWal->hdr.mxFrame, pWal->zWalName
1360       );
1361     }
1362   }
1363 
1364 recovery_error:
1365   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1366   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1367   return rc;
1368 }
1369 
1370 /*
1371 ** Close an open wal-index.
1372 */
1373 static void walIndexClose(Wal *pWal, int isDelete){
1374   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1375     int i;
1376     for(i=0; i<pWal->nWiData; i++){
1377       sqlite3_free((void *)pWal->apWiData[i]);
1378       pWal->apWiData[i] = 0;
1379     }
1380   }
1381   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1382     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1383   }
1384 }
1385 
1386 /*
1387 ** Open a connection to the WAL file zWalName. The database file must
1388 ** already be opened on connection pDbFd. The buffer that zWalName points
1389 ** to must remain valid for the lifetime of the returned Wal* handle.
1390 **
1391 ** A SHARED lock should be held on the database file when this function
1392 ** is called. The purpose of this SHARED lock is to prevent any other
1393 ** client from unlinking the WAL or wal-index file. If another process
1394 ** were to do this just after this client opened one of these files, the
1395 ** system would be badly broken.
1396 **
1397 ** If the log file is successfully opened, SQLITE_OK is returned and
1398 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1399 ** an SQLite error code is returned and *ppWal is left unmodified.
1400 */
1401 int sqlite3WalOpen(
1402   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1403   sqlite3_file *pDbFd,            /* The open database file */
1404   const char *zWalName,           /* Name of the WAL file */
1405   int bNoShm,                     /* True to run in heap-memory mode */
1406   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1407   Wal **ppWal                     /* OUT: Allocated Wal handle */
1408 ){
1409   int rc;                         /* Return Code */
1410   Wal *pRet;                      /* Object to allocate and return */
1411   int flags;                      /* Flags passed to OsOpen() */
1412 
1413   assert( zWalName && zWalName[0] );
1414   assert( pDbFd );
1415 
1416   /* Verify the values of various constants.  Any changes to the values
1417   ** of these constants would result in an incompatible on-disk format
1418   ** for the -shm file.  Any change that causes one of these asserts to
1419   ** fail is a backward compatibility problem, even if the change otherwise
1420   ** works.
1421   **
1422   ** This table also serves as a helpful cross-reference when trying to
1423   ** interpret hex dumps of the -shm file.
1424   */
1425   assert(    48 ==  sizeof(WalIndexHdr)  );
1426   assert(    40 ==  sizeof(WalCkptInfo)  );
1427   assert(   120 ==  WALINDEX_LOCK_OFFSET );
1428   assert(   136 ==  WALINDEX_HDR_SIZE    );
1429   assert(  4096 ==  HASHTABLE_NPAGE      );
1430   assert(  4062 ==  HASHTABLE_NPAGE_ONE  );
1431   assert(  8192 ==  HASHTABLE_NSLOT      );
1432   assert(   383 ==  HASHTABLE_HASH_1     );
1433   assert( 32768 ==  WALINDEX_PGSZ        );
1434   assert(     8 ==  SQLITE_SHM_NLOCK     );
1435   assert(     5 ==  WAL_NREADER          );
1436   assert(    24 ==  WAL_FRAME_HDRSIZE    );
1437   assert(    32 ==  WAL_HDRSIZE          );
1438   assert(   120 ==  WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK   );
1439   assert(   121 ==  WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK    );
1440   assert(   122 ==  WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
1441   assert(   123 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
1442   assert(   124 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
1443   assert(   125 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
1444   assert(   126 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
1445   assert(   127 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
1446 
1447   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1448   ** this source file.  Verify that the #defines of the locking byte offsets
1449   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1450   ** For that matter, if the lock offset ever changes from its initial design
1451   ** value of 120, we need to know that so there is an assert() to check it.
1452   */
1453 #ifdef WIN_SHM_BASE
1454   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1455 #endif
1456 #ifdef UNIX_SHM_BASE
1457   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1458 #endif
1459 
1460 
1461   /* Allocate an instance of struct Wal to return. */
1462   *ppWal = 0;
1463   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1464   if( !pRet ){
1465     return SQLITE_NOMEM_BKPT;
1466   }
1467 
1468   pRet->pVfs = pVfs;
1469   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1470   pRet->pDbFd = pDbFd;
1471   pRet->readLock = -1;
1472   pRet->mxWalSize = mxWalSize;
1473   pRet->zWalName = zWalName;
1474   pRet->syncHeader = 1;
1475   pRet->padToSectorBoundary = 1;
1476   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1477 
1478   /* Open file handle on the write-ahead log file. */
1479   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1480   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1481   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1482     pRet->readOnly = WAL_RDONLY;
1483   }
1484 
1485   if( rc!=SQLITE_OK ){
1486     walIndexClose(pRet, 0);
1487     sqlite3OsClose(pRet->pWalFd);
1488     sqlite3_free(pRet);
1489   }else{
1490     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1491     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1492     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1493       pRet->padToSectorBoundary = 0;
1494     }
1495     *ppWal = pRet;
1496     WALTRACE(("WAL%d: opened\n", pRet));
1497   }
1498   return rc;
1499 }
1500 
1501 /*
1502 ** Change the size to which the WAL file is trucated on each reset.
1503 */
1504 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1505   if( pWal ) pWal->mxWalSize = iLimit;
1506 }
1507 
1508 /*
1509 ** Find the smallest page number out of all pages held in the WAL that
1510 ** has not been returned by any prior invocation of this method on the
1511 ** same WalIterator object.   Write into *piFrame the frame index where
1512 ** that page was last written into the WAL.  Write into *piPage the page
1513 ** number.
1514 **
1515 ** Return 0 on success.  If there are no pages in the WAL with a page
1516 ** number larger than *piPage, then return 1.
1517 */
1518 static int walIteratorNext(
1519   WalIterator *p,               /* Iterator */
1520   u32 *piPage,                  /* OUT: The page number of the next page */
1521   u32 *piFrame                  /* OUT: Wal frame index of next page */
1522 ){
1523   u32 iMin;                     /* Result pgno must be greater than iMin */
1524   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1525   int i;                        /* For looping through segments */
1526 
1527   iMin = p->iPrior;
1528   assert( iMin<0xffffffff );
1529   for(i=p->nSegment-1; i>=0; i--){
1530     struct WalSegment *pSegment = &p->aSegment[i];
1531     while( pSegment->iNext<pSegment->nEntry ){
1532       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1533       if( iPg>iMin ){
1534         if( iPg<iRet ){
1535           iRet = iPg;
1536           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1537         }
1538         break;
1539       }
1540       pSegment->iNext++;
1541     }
1542   }
1543 
1544   *piPage = p->iPrior = iRet;
1545   return (iRet==0xFFFFFFFF);
1546 }
1547 
1548 /*
1549 ** This function merges two sorted lists into a single sorted list.
1550 **
1551 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1552 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1553 ** is guaranteed for all J<K:
1554 **
1555 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1556 **        aContent[aRight[J]] < aContent[aRight[K]]
1557 **
1558 ** This routine overwrites aRight[] with a new (probably longer) sequence
1559 ** of indices such that the aRight[] contains every index that appears in
1560 ** either aLeft[] or the old aRight[] and such that the second condition
1561 ** above is still met.
1562 **
1563 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1564 ** aContent[aRight[X]] values will be unique too.  But there might be
1565 ** one or more combinations of X and Y such that
1566 **
1567 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1568 **
1569 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1570 */
1571 static void walMerge(
1572   const u32 *aContent,            /* Pages in wal - keys for the sort */
1573   ht_slot *aLeft,                 /* IN: Left hand input list */
1574   int nLeft,                      /* IN: Elements in array *paLeft */
1575   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1576   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1577   ht_slot *aTmp                   /* Temporary buffer */
1578 ){
1579   int iLeft = 0;                  /* Current index in aLeft */
1580   int iRight = 0;                 /* Current index in aRight */
1581   int iOut = 0;                   /* Current index in output buffer */
1582   int nRight = *pnRight;
1583   ht_slot *aRight = *paRight;
1584 
1585   assert( nLeft>0 && nRight>0 );
1586   while( iRight<nRight || iLeft<nLeft ){
1587     ht_slot logpage;
1588     Pgno dbpage;
1589 
1590     if( (iLeft<nLeft)
1591      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1592     ){
1593       logpage = aLeft[iLeft++];
1594     }else{
1595       logpage = aRight[iRight++];
1596     }
1597     dbpage = aContent[logpage];
1598 
1599     aTmp[iOut++] = logpage;
1600     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1601 
1602     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1603     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1604   }
1605 
1606   *paRight = aLeft;
1607   *pnRight = iOut;
1608   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1609 }
1610 
1611 /*
1612 ** Sort the elements in list aList using aContent[] as the sort key.
1613 ** Remove elements with duplicate keys, preferring to keep the
1614 ** larger aList[] values.
1615 **
1616 ** The aList[] entries are indices into aContent[].  The values in
1617 ** aList[] are to be sorted so that for all J<K:
1618 **
1619 **      aContent[aList[J]] < aContent[aList[K]]
1620 **
1621 ** For any X and Y such that
1622 **
1623 **      aContent[aList[X]] == aContent[aList[Y]]
1624 **
1625 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1626 ** the smaller.
1627 */
1628 static void walMergesort(
1629   const u32 *aContent,            /* Pages in wal */
1630   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1631   ht_slot *aList,                 /* IN/OUT: List to sort */
1632   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1633 ){
1634   struct Sublist {
1635     int nList;                    /* Number of elements in aList */
1636     ht_slot *aList;               /* Pointer to sub-list content */
1637   };
1638 
1639   const int nList = *pnList;      /* Size of input list */
1640   int nMerge = 0;                 /* Number of elements in list aMerge */
1641   ht_slot *aMerge = 0;            /* List to be merged */
1642   int iList;                      /* Index into input list */
1643   u32 iSub = 0;                   /* Index into aSub array */
1644   struct Sublist aSub[13];        /* Array of sub-lists */
1645 
1646   memset(aSub, 0, sizeof(aSub));
1647   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1648   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1649 
1650   for(iList=0; iList<nList; iList++){
1651     nMerge = 1;
1652     aMerge = &aList[iList];
1653     for(iSub=0; iList & (1<<iSub); iSub++){
1654       struct Sublist *p;
1655       assert( iSub<ArraySize(aSub) );
1656       p = &aSub[iSub];
1657       assert( p->aList && p->nList<=(1<<iSub) );
1658       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1659       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1660     }
1661     aSub[iSub].aList = aMerge;
1662     aSub[iSub].nList = nMerge;
1663   }
1664 
1665   for(iSub++; iSub<ArraySize(aSub); iSub++){
1666     if( nList & (1<<iSub) ){
1667       struct Sublist *p;
1668       assert( iSub<ArraySize(aSub) );
1669       p = &aSub[iSub];
1670       assert( p->nList<=(1<<iSub) );
1671       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1672       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1673     }
1674   }
1675   assert( aMerge==aList );
1676   *pnList = nMerge;
1677 
1678 #ifdef SQLITE_DEBUG
1679   {
1680     int i;
1681     for(i=1; i<*pnList; i++){
1682       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1683     }
1684   }
1685 #endif
1686 }
1687 
1688 /*
1689 ** Free an iterator allocated by walIteratorInit().
1690 */
1691 static void walIteratorFree(WalIterator *p){
1692   sqlite3_free(p);
1693 }
1694 
1695 /*
1696 ** Construct a WalInterator object that can be used to loop over all
1697 ** pages in the WAL following frame nBackfill in ascending order. Frames
1698 ** nBackfill or earlier may be included - excluding them is an optimization
1699 ** only. The caller must hold the checkpoint lock.
1700 **
1701 ** On success, make *pp point to the newly allocated WalInterator object
1702 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1703 ** returns an error, the value of *pp is undefined.
1704 **
1705 ** The calling routine should invoke walIteratorFree() to destroy the
1706 ** WalIterator object when it has finished with it.
1707 */
1708 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1709   WalIterator *p;                 /* Return value */
1710   int nSegment;                   /* Number of segments to merge */
1711   u32 iLast;                      /* Last frame in log */
1712   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1713   int i;                          /* Iterator variable */
1714   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1715   int rc = SQLITE_OK;             /* Return Code */
1716 
1717   /* This routine only runs while holding the checkpoint lock. And
1718   ** it only runs if there is actually content in the log (mxFrame>0).
1719   */
1720   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1721   iLast = pWal->hdr.mxFrame;
1722 
1723   /* Allocate space for the WalIterator object. */
1724   nSegment = walFramePage(iLast) + 1;
1725   nByte = sizeof(WalIterator)
1726         + (nSegment-1)*sizeof(struct WalSegment)
1727         + iLast*sizeof(ht_slot);
1728   p = (WalIterator *)sqlite3_malloc64(nByte);
1729   if( !p ){
1730     return SQLITE_NOMEM_BKPT;
1731   }
1732   memset(p, 0, nByte);
1733   p->nSegment = nSegment;
1734 
1735   /* Allocate temporary space used by the merge-sort routine. This block
1736   ** of memory will be freed before this function returns.
1737   */
1738   aTmp = (ht_slot *)sqlite3_malloc64(
1739       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1740   );
1741   if( !aTmp ){
1742     rc = SQLITE_NOMEM_BKPT;
1743   }
1744 
1745   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1746     WalHashLoc sLoc;
1747 
1748     rc = walHashGet(pWal, i, &sLoc);
1749     if( rc==SQLITE_OK ){
1750       int j;                      /* Counter variable */
1751       int nEntry;                 /* Number of entries in this segment */
1752       ht_slot *aIndex;            /* Sorted index for this segment */
1753 
1754       sLoc.aPgno++;
1755       if( (i+1)==nSegment ){
1756         nEntry = (int)(iLast - sLoc.iZero);
1757       }else{
1758         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1759       }
1760       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1761       sLoc.iZero++;
1762 
1763       for(j=0; j<nEntry; j++){
1764         aIndex[j] = (ht_slot)j;
1765       }
1766       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1767       p->aSegment[i].iZero = sLoc.iZero;
1768       p->aSegment[i].nEntry = nEntry;
1769       p->aSegment[i].aIndex = aIndex;
1770       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1771     }
1772   }
1773   sqlite3_free(aTmp);
1774 
1775   if( rc!=SQLITE_OK ){
1776     walIteratorFree(p);
1777     p = 0;
1778   }
1779   *pp = p;
1780   return rc;
1781 }
1782 
1783 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1784 /*
1785 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1786 ** they are supported by the VFS, and (b) the database handle is configured
1787 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1788 ** or 0 otherwise.
1789 */
1790 static int walEnableBlocking(Wal *pWal){
1791   int res = 0;
1792   if( pWal->db ){
1793     int tmout = pWal->db->busyTimeout;
1794     if( tmout ){
1795       int rc;
1796       rc = sqlite3OsFileControl(
1797           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1798       );
1799       res = (rc==SQLITE_OK);
1800     }
1801   }
1802   return res;
1803 }
1804 
1805 /*
1806 ** Disable blocking locks.
1807 */
1808 static void walDisableBlocking(Wal *pWal){
1809   int tmout = 0;
1810   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1811 }
1812 
1813 /*
1814 ** If parameter bLock is true, attempt to enable blocking locks, take
1815 ** the WRITER lock, and then disable blocking locks. If blocking locks
1816 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1817 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1818 ** an error if blocking locks can not be enabled.
1819 **
1820 ** If the bLock parameter is false and the WRITER lock is held, release it.
1821 */
1822 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1823   int rc = SQLITE_OK;
1824   assert( pWal->readLock<0 || bLock==0 );
1825   if( bLock ){
1826     assert( pWal->db );
1827     if( walEnableBlocking(pWal) ){
1828       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1829       if( rc==SQLITE_OK ){
1830         pWal->writeLock = 1;
1831       }
1832       walDisableBlocking(pWal);
1833     }
1834   }else if( pWal->writeLock ){
1835     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1836     pWal->writeLock = 0;
1837   }
1838   return rc;
1839 }
1840 
1841 /*
1842 ** Set the database handle used to determine if blocking locks are required.
1843 */
1844 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1845   pWal->db = db;
1846 }
1847 
1848 /*
1849 ** Take an exclusive WRITE lock. Blocking if so configured.
1850 */
1851 static int walLockWriter(Wal *pWal){
1852   int rc;
1853   walEnableBlocking(pWal);
1854   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1855   walDisableBlocking(pWal);
1856   return rc;
1857 }
1858 #else
1859 # define walEnableBlocking(x) 0
1860 # define walDisableBlocking(x)
1861 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1862 # define sqlite3WalDb(pWal, db)
1863 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1864 
1865 
1866 /*
1867 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1868 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1869 ** busy-handler function. Invoke it and retry the lock until either the
1870 ** lock is successfully obtained or the busy-handler returns 0.
1871 */
1872 static int walBusyLock(
1873   Wal *pWal,                      /* WAL connection */
1874   int (*xBusy)(void*),            /* Function to call when busy */
1875   void *pBusyArg,                 /* Context argument for xBusyHandler */
1876   int lockIdx,                    /* Offset of first byte to lock */
1877   int n                           /* Number of bytes to lock */
1878 ){
1879   int rc;
1880   do {
1881     rc = walLockExclusive(pWal, lockIdx, n);
1882   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1883 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1884   if( rc==SQLITE_BUSY_TIMEOUT ){
1885     walDisableBlocking(pWal);
1886     rc = SQLITE_BUSY;
1887   }
1888 #endif
1889   return rc;
1890 }
1891 
1892 /*
1893 ** The cache of the wal-index header must be valid to call this function.
1894 ** Return the page-size in bytes used by the database.
1895 */
1896 static int walPagesize(Wal *pWal){
1897   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1898 }
1899 
1900 /*
1901 ** The following is guaranteed when this function is called:
1902 **
1903 **   a) the WRITER lock is held,
1904 **   b) the entire log file has been checkpointed, and
1905 **   c) any existing readers are reading exclusively from the database
1906 **      file - there are no readers that may attempt to read a frame from
1907 **      the log file.
1908 **
1909 ** This function updates the shared-memory structures so that the next
1910 ** client to write to the database (which may be this one) does so by
1911 ** writing frames into the start of the log file.
1912 **
1913 ** The value of parameter salt1 is used as the aSalt[1] value in the
1914 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1915 ** one obtained from sqlite3_randomness()).
1916 */
1917 static void walRestartHdr(Wal *pWal, u32 salt1){
1918   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1919   int i;                          /* Loop counter */
1920   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1921   pWal->nCkpt++;
1922   pWal->hdr.mxFrame = 0;
1923   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1924   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1925   walIndexWriteHdr(pWal);
1926   AtomicStore(&pInfo->nBackfill, 0);
1927   pInfo->nBackfillAttempted = 0;
1928   pInfo->aReadMark[1] = 0;
1929   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1930   assert( pInfo->aReadMark[0]==0 );
1931 }
1932 
1933 /*
1934 ** Copy as much content as we can from the WAL back into the database file
1935 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1936 **
1937 ** The amount of information copies from WAL to database might be limited
1938 ** by active readers.  This routine will never overwrite a database page
1939 ** that a concurrent reader might be using.
1940 **
1941 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1942 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1943 ** checkpoints are always run by a background thread or background
1944 ** process, foreground threads will never block on a lengthy fsync call.
1945 **
1946 ** Fsync is called on the WAL before writing content out of the WAL and
1947 ** into the database.  This ensures that if the new content is persistent
1948 ** in the WAL and can be recovered following a power-loss or hard reset.
1949 **
1950 ** Fsync is also called on the database file if (and only if) the entire
1951 ** WAL content is copied into the database file.  This second fsync makes
1952 ** it safe to delete the WAL since the new content will persist in the
1953 ** database file.
1954 **
1955 ** This routine uses and updates the nBackfill field of the wal-index header.
1956 ** This is the only routine that will increase the value of nBackfill.
1957 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1958 ** its value.)
1959 **
1960 ** The caller must be holding sufficient locks to ensure that no other
1961 ** checkpoint is running (in any other thread or process) at the same
1962 ** time.
1963 */
1964 static int walCheckpoint(
1965   Wal *pWal,                      /* Wal connection */
1966   sqlite3 *db,                    /* Check for interrupts on this handle */
1967   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1968   int (*xBusy)(void*),            /* Function to call when busy */
1969   void *pBusyArg,                 /* Context argument for xBusyHandler */
1970   int sync_flags,                 /* Flags for OsSync() (or 0) */
1971   u8 *zBuf                        /* Temporary buffer to use */
1972 ){
1973   int rc = SQLITE_OK;             /* Return code */
1974   int szPage;                     /* Database page-size */
1975   WalIterator *pIter = 0;         /* Wal iterator context */
1976   u32 iDbpage = 0;                /* Next database page to write */
1977   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1978   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1979   u32 mxPage;                     /* Max database page to write */
1980   int i;                          /* Loop counter */
1981   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1982 
1983   szPage = walPagesize(pWal);
1984   testcase( szPage<=32768 );
1985   testcase( szPage>=65536 );
1986   pInfo = walCkptInfo(pWal);
1987   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1988 
1989     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1990     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1991     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1992 
1993     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1994     ** safe to write into the database.  Frames beyond mxSafeFrame might
1995     ** overwrite database pages that are in use by active readers and thus
1996     ** cannot be backfilled from the WAL.
1997     */
1998     mxSafeFrame = pWal->hdr.mxFrame;
1999     mxPage = pWal->hdr.nPage;
2000     for(i=1; i<WAL_NREADER; i++){
2001       u32 y = AtomicLoad(pInfo->aReadMark+i);
2002       if( mxSafeFrame>y ){
2003         assert( y<=pWal->hdr.mxFrame );
2004         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
2005         if( rc==SQLITE_OK ){
2006           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
2007           AtomicStore(pInfo->aReadMark+i, iMark);
2008           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2009         }else if( rc==SQLITE_BUSY ){
2010           mxSafeFrame = y;
2011           xBusy = 0;
2012         }else{
2013           goto walcheckpoint_out;
2014         }
2015       }
2016     }
2017 
2018     /* Allocate the iterator */
2019     if( pInfo->nBackfill<mxSafeFrame ){
2020       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
2021       assert( rc==SQLITE_OK || pIter==0 );
2022     }
2023 
2024     if( pIter
2025      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
2026     ){
2027       u32 nBackfill = pInfo->nBackfill;
2028 
2029       pInfo->nBackfillAttempted = mxSafeFrame;
2030 
2031       /* Sync the WAL to disk */
2032       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2033 
2034       /* If the database may grow as a result of this checkpoint, hint
2035       ** about the eventual size of the db file to the VFS layer.
2036       */
2037       if( rc==SQLITE_OK ){
2038         i64 nReq = ((i64)mxPage * szPage);
2039         i64 nSize;                    /* Current size of database file */
2040         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2041         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2042         if( rc==SQLITE_OK && nSize<nReq ){
2043           if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2044             /* If the size of the final database is larger than the current
2045             ** database plus the amount of data in the wal file, plus the
2046             ** maximum size of the pending-byte page (65536 bytes), then
2047             ** must be corruption somewhere.  */
2048             rc = SQLITE_CORRUPT_BKPT;
2049           }else{
2050             sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2051           }
2052         }
2053 
2054       }
2055 
2056       /* Iterate through the contents of the WAL, copying data to the db file */
2057       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2058         i64 iOffset;
2059         assert( walFramePgno(pWal, iFrame)==iDbpage );
2060         if( AtomicLoad(&db->u1.isInterrupted) ){
2061           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2062           break;
2063         }
2064         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2065           continue;
2066         }
2067         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2068         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2069         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2070         if( rc!=SQLITE_OK ) break;
2071         iOffset = (iDbpage-1)*(i64)szPage;
2072         testcase( IS_BIG_INT(iOffset) );
2073         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2074         if( rc!=SQLITE_OK ) break;
2075       }
2076       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2077 
2078       /* If work was actually accomplished... */
2079       if( rc==SQLITE_OK ){
2080         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2081           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2082           testcase( IS_BIG_INT(szDb) );
2083           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2084           if( rc==SQLITE_OK ){
2085             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2086           }
2087         }
2088         if( rc==SQLITE_OK ){
2089           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2090         }
2091       }
2092 
2093       /* Release the reader lock held while backfilling */
2094       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2095     }
2096 
2097     if( rc==SQLITE_BUSY ){
2098       /* Reset the return code so as not to report a checkpoint failure
2099       ** just because there are active readers.  */
2100       rc = SQLITE_OK;
2101     }
2102   }
2103 
2104   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2105   ** entire wal file has been copied into the database file, then block
2106   ** until all readers have finished using the wal file. This ensures that
2107   ** the next process to write to the database restarts the wal file.
2108   */
2109   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2110     assert( pWal->writeLock );
2111     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2112       rc = SQLITE_BUSY;
2113     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2114       u32 salt1;
2115       sqlite3_randomness(4, &salt1);
2116       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2117       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2118       if( rc==SQLITE_OK ){
2119         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2120           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2121           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2122           ** truncates the log file to zero bytes just prior to a
2123           ** successful return.
2124           **
2125           ** In theory, it might be safe to do this without updating the
2126           ** wal-index header in shared memory, as all subsequent reader or
2127           ** writer clients should see that the entire log file has been
2128           ** checkpointed and behave accordingly. This seems unsafe though,
2129           ** as it would leave the system in a state where the contents of
2130           ** the wal-index header do not match the contents of the
2131           ** file-system. To avoid this, update the wal-index header to
2132           ** indicate that the log file contains zero valid frames.  */
2133           walRestartHdr(pWal, salt1);
2134           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2135         }
2136         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2137       }
2138     }
2139   }
2140 
2141  walcheckpoint_out:
2142   walIteratorFree(pIter);
2143   return rc;
2144 }
2145 
2146 /*
2147 ** If the WAL file is currently larger than nMax bytes in size, truncate
2148 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2149 */
2150 static void walLimitSize(Wal *pWal, i64 nMax){
2151   i64 sz;
2152   int rx;
2153   sqlite3BeginBenignMalloc();
2154   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2155   if( rx==SQLITE_OK && (sz > nMax ) ){
2156     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2157   }
2158   sqlite3EndBenignMalloc();
2159   if( rx ){
2160     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2161   }
2162 }
2163 
2164 /*
2165 ** Close a connection to a log file.
2166 */
2167 int sqlite3WalClose(
2168   Wal *pWal,                      /* Wal to close */
2169   sqlite3 *db,                    /* For interrupt flag */
2170   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2171   int nBuf,
2172   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2173 ){
2174   int rc = SQLITE_OK;
2175   if( pWal ){
2176     int isDelete = 0;             /* True to unlink wal and wal-index files */
2177 
2178     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2179     ** ordinary, rollback-mode locking methods, this guarantees that the
2180     ** connection associated with this log file is the only connection to
2181     ** the database. In this case checkpoint the database and unlink both
2182     ** the wal and wal-index files.
2183     **
2184     ** The EXCLUSIVE lock is not released before returning.
2185     */
2186     if( zBuf!=0
2187      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2188     ){
2189       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2190         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2191       }
2192       rc = sqlite3WalCheckpoint(pWal, db,
2193           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2194       );
2195       if( rc==SQLITE_OK ){
2196         int bPersist = -1;
2197         sqlite3OsFileControlHint(
2198             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2199         );
2200         if( bPersist!=1 ){
2201           /* Try to delete the WAL file if the checkpoint completed and
2202           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2203           ** mode (!bPersist) */
2204           isDelete = 1;
2205         }else if( pWal->mxWalSize>=0 ){
2206           /* Try to truncate the WAL file to zero bytes if the checkpoint
2207           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2208           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2209           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2210           ** to zero bytes as truncating to the journal_size_limit might
2211           ** leave a corrupt WAL file on disk. */
2212           walLimitSize(pWal, 0);
2213         }
2214       }
2215     }
2216 
2217     walIndexClose(pWal, isDelete);
2218     sqlite3OsClose(pWal->pWalFd);
2219     if( isDelete ){
2220       sqlite3BeginBenignMalloc();
2221       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2222       sqlite3EndBenignMalloc();
2223     }
2224     WALTRACE(("WAL%p: closed\n", pWal));
2225     sqlite3_free((void *)pWal->apWiData);
2226     sqlite3_free(pWal);
2227   }
2228   return rc;
2229 }
2230 
2231 /*
2232 ** Try to read the wal-index header.  Return 0 on success and 1 if
2233 ** there is a problem.
2234 **
2235 ** The wal-index is in shared memory.  Another thread or process might
2236 ** be writing the header at the same time this procedure is trying to
2237 ** read it, which might result in inconsistency.  A dirty read is detected
2238 ** by verifying that both copies of the header are the same and also by
2239 ** a checksum on the header.
2240 **
2241 ** If and only if the read is consistent and the header is different from
2242 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2243 ** and *pChanged is set to 1.
2244 **
2245 ** If the checksum cannot be verified return non-zero. If the header
2246 ** is read successfully and the checksum verified, return zero.
2247 */
2248 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2249   u32 aCksum[2];                  /* Checksum on the header content */
2250   WalIndexHdr h1, h2;             /* Two copies of the header content */
2251   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2252 
2253   /* The first page of the wal-index must be mapped at this point. */
2254   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2255 
2256   /* Read the header. This might happen concurrently with a write to the
2257   ** same area of shared memory on a different CPU in a SMP,
2258   ** meaning it is possible that an inconsistent snapshot is read
2259   ** from the file. If this happens, return non-zero.
2260   **
2261   ** tag-20200519-1:
2262   ** There are two copies of the header at the beginning of the wal-index.
2263   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2264   ** Memory barriers are used to prevent the compiler or the hardware from
2265   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2266   ** give false-positive warnings about these accesses because the tools do not
2267   ** account for the double-read and the memory barrier. The use of mutexes
2268   ** here would be problematic as the memory being accessed is potentially
2269   ** shared among multiple processes and not all mutex implementions work
2270   ** reliably in that environment.
2271   */
2272   aHdr = walIndexHdr(pWal);
2273   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2274   walShmBarrier(pWal);
2275   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2276 
2277   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2278     return 1;   /* Dirty read */
2279   }
2280   if( h1.isInit==0 ){
2281     return 1;   /* Malformed header - probably all zeros */
2282   }
2283   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2284   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2285     return 1;   /* Checksum does not match */
2286   }
2287 
2288   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2289     *pChanged = 1;
2290     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2291     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2292     testcase( pWal->szPage<=32768 );
2293     testcase( pWal->szPage>=65536 );
2294   }
2295 
2296   /* The header was successfully read. Return zero. */
2297   return 0;
2298 }
2299 
2300 /*
2301 ** This is the value that walTryBeginRead returns when it needs to
2302 ** be retried.
2303 */
2304 #define WAL_RETRY  (-1)
2305 
2306 /*
2307 ** Read the wal-index header from the wal-index and into pWal->hdr.
2308 ** If the wal-header appears to be corrupt, try to reconstruct the
2309 ** wal-index from the WAL before returning.
2310 **
2311 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2312 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2313 ** to 0.
2314 **
2315 ** If the wal-index header is successfully read, return SQLITE_OK.
2316 ** Otherwise an SQLite error code.
2317 */
2318 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2319   int rc;                         /* Return code */
2320   int badHdr;                     /* True if a header read failed */
2321   volatile u32 *page0;            /* Chunk of wal-index containing header */
2322 
2323   /* Ensure that page 0 of the wal-index (the page that contains the
2324   ** wal-index header) is mapped. Return early if an error occurs here.
2325   */
2326   assert( pChanged );
2327   rc = walIndexPage(pWal, 0, &page0);
2328   if( rc!=SQLITE_OK ){
2329     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2330     if( rc==SQLITE_READONLY_CANTINIT ){
2331       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2332       ** was openable but is not writable, and this thread is unable to
2333       ** confirm that another write-capable connection has the shared-memory
2334       ** open, and hence the content of the shared-memory is unreliable,
2335       ** since the shared-memory might be inconsistent with the WAL file
2336       ** and there is no writer on hand to fix it. */
2337       assert( page0==0 );
2338       assert( pWal->writeLock==0 );
2339       assert( pWal->readOnly & WAL_SHM_RDONLY );
2340       pWal->bShmUnreliable = 1;
2341       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2342       *pChanged = 1;
2343     }else{
2344       return rc; /* Any other non-OK return is just an error */
2345     }
2346   }else{
2347     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2348     ** is zero, which prevents the SHM from growing */
2349     testcase( page0!=0 );
2350   }
2351   assert( page0!=0 || pWal->writeLock==0 );
2352 
2353   /* If the first page of the wal-index has been mapped, try to read the
2354   ** wal-index header immediately, without holding any lock. This usually
2355   ** works, but may fail if the wal-index header is corrupt or currently
2356   ** being modified by another thread or process.
2357   */
2358   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2359 
2360   /* If the first attempt failed, it might have been due to a race
2361   ** with a writer.  So get a WRITE lock and try again.
2362   */
2363   if( badHdr ){
2364     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2365       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2366         walUnlockShared(pWal, WAL_WRITE_LOCK);
2367         rc = SQLITE_READONLY_RECOVERY;
2368       }
2369     }else{
2370       int bWriteLock = pWal->writeLock;
2371       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2372         pWal->writeLock = 1;
2373         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2374           badHdr = walIndexTryHdr(pWal, pChanged);
2375           if( badHdr ){
2376             /* If the wal-index header is still malformed even while holding
2377             ** a WRITE lock, it can only mean that the header is corrupted and
2378             ** needs to be reconstructed.  So run recovery to do exactly that.
2379             */
2380             rc = walIndexRecover(pWal);
2381             *pChanged = 1;
2382           }
2383         }
2384         if( bWriteLock==0 ){
2385           pWal->writeLock = 0;
2386           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2387         }
2388       }
2389     }
2390   }
2391 
2392   /* If the header is read successfully, check the version number to make
2393   ** sure the wal-index was not constructed with some future format that
2394   ** this version of SQLite cannot understand.
2395   */
2396   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2397     rc = SQLITE_CANTOPEN_BKPT;
2398   }
2399   if( pWal->bShmUnreliable ){
2400     if( rc!=SQLITE_OK ){
2401       walIndexClose(pWal, 0);
2402       pWal->bShmUnreliable = 0;
2403       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2404       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2405       ** writer truncated the WAL out from under it.  If that happens, it
2406       ** indicates that a writer has fixed the SHM file for us, so retry */
2407       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2408     }
2409     pWal->exclusiveMode = WAL_NORMAL_MODE;
2410   }
2411 
2412   return rc;
2413 }
2414 
2415 /*
2416 ** Open a transaction in a connection where the shared-memory is read-only
2417 ** and where we cannot verify that there is a separate write-capable connection
2418 ** on hand to keep the shared-memory up-to-date with the WAL file.
2419 **
2420 ** This can happen, for example, when the shared-memory is implemented by
2421 ** memory-mapping a *-shm file, where a prior writer has shut down and
2422 ** left the *-shm file on disk, and now the present connection is trying
2423 ** to use that database but lacks write permission on the *-shm file.
2424 ** Other scenarios are also possible, depending on the VFS implementation.
2425 **
2426 ** Precondition:
2427 **
2428 **    The *-wal file has been read and an appropriate wal-index has been
2429 **    constructed in pWal->apWiData[] using heap memory instead of shared
2430 **    memory.
2431 **
2432 ** If this function returns SQLITE_OK, then the read transaction has
2433 ** been successfully opened. In this case output variable (*pChanged)
2434 ** is set to true before returning if the caller should discard the
2435 ** contents of the page cache before proceeding. Or, if it returns
2436 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2437 ** the caller should retry opening the read transaction from the
2438 ** beginning (including attempting to map the *-shm file).
2439 **
2440 ** If an error occurs, an SQLite error code is returned.
2441 */
2442 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2443   i64 szWal;                      /* Size of wal file on disk in bytes */
2444   i64 iOffset;                    /* Current offset when reading wal file */
2445   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2446   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2447   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2448   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2449   volatile void *pDummy;          /* Dummy argument for xShmMap */
2450   int rc;                         /* Return code */
2451   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2452 
2453   assert( pWal->bShmUnreliable );
2454   assert( pWal->readOnly & WAL_SHM_RDONLY );
2455   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2456 
2457   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2458   ** writers from running a checkpoint, but does not stop them
2459   ** from running recovery.  */
2460   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2461   if( rc!=SQLITE_OK ){
2462     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2463     goto begin_unreliable_shm_out;
2464   }
2465   pWal->readLock = 0;
2466 
2467   /* Check to see if a separate writer has attached to the shared-memory area,
2468   ** thus making the shared-memory "reliable" again.  Do this by invoking
2469   ** the xShmMap() routine of the VFS and looking to see if the return
2470   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2471   **
2472   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2473   ** cause the heap-memory WAL-index to be discarded and the actual
2474   ** shared memory to be used in its place.
2475   **
2476   ** This step is important because, even though this connection is holding
2477   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2478   ** have already checkpointed the WAL file and, while the current
2479   ** is active, wrap the WAL and start overwriting frames that this
2480   ** process wants to use.
2481   **
2482   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2483   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2484   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2485   ** even if some external agent does a "chmod" to make the shared-memory
2486   ** writable by us, until sqlite3OsShmUnmap() has been called.
2487   ** This is a requirement on the VFS implementation.
2488    */
2489   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2490   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2491   if( rc!=SQLITE_READONLY_CANTINIT ){
2492     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2493     goto begin_unreliable_shm_out;
2494   }
2495 
2496   /* We reach this point only if the real shared-memory is still unreliable.
2497   ** Assume the in-memory WAL-index substitute is correct and load it
2498   ** into pWal->hdr.
2499   */
2500   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2501 
2502   /* Make sure some writer hasn't come in and changed the WAL file out
2503   ** from under us, then disconnected, while we were not looking.
2504   */
2505   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2506   if( rc!=SQLITE_OK ){
2507     goto begin_unreliable_shm_out;
2508   }
2509   if( szWal<WAL_HDRSIZE ){
2510     /* If the wal file is too small to contain a wal-header and the
2511     ** wal-index header has mxFrame==0, then it must be safe to proceed
2512     ** reading the database file only. However, the page cache cannot
2513     ** be trusted, as a read/write connection may have connected, written
2514     ** the db, run a checkpoint, truncated the wal file and disconnected
2515     ** since this client's last read transaction.  */
2516     *pChanged = 1;
2517     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2518     goto begin_unreliable_shm_out;
2519   }
2520 
2521   /* Check the salt keys at the start of the wal file still match. */
2522   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2523   if( rc!=SQLITE_OK ){
2524     goto begin_unreliable_shm_out;
2525   }
2526   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2527     /* Some writer has wrapped the WAL file while we were not looking.
2528     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2529     ** rebuilt. */
2530     rc = WAL_RETRY;
2531     goto begin_unreliable_shm_out;
2532   }
2533 
2534   /* Allocate a buffer to read frames into */
2535   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2536   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2537   if( aFrame==0 ){
2538     rc = SQLITE_NOMEM_BKPT;
2539     goto begin_unreliable_shm_out;
2540   }
2541   aData = &aFrame[WAL_FRAME_HDRSIZE];
2542 
2543   /* Check to see if a complete transaction has been appended to the
2544   ** wal file since the heap-memory wal-index was created. If so, the
2545   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2546   ** the caller.  */
2547   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2548   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2549   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2550       iOffset+szFrame<=szWal;
2551       iOffset+=szFrame
2552   ){
2553     u32 pgno;                   /* Database page number for frame */
2554     u32 nTruncate;              /* dbsize field from frame header */
2555 
2556     /* Read and decode the next log frame. */
2557     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2558     if( rc!=SQLITE_OK ) break;
2559     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2560 
2561     /* If nTruncate is non-zero, then a complete transaction has been
2562     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2563     ** the loop.  */
2564     if( nTruncate ){
2565       rc = WAL_RETRY;
2566       break;
2567     }
2568   }
2569   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2570   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2571 
2572  begin_unreliable_shm_out:
2573   sqlite3_free(aFrame);
2574   if( rc!=SQLITE_OK ){
2575     int i;
2576     for(i=0; i<pWal->nWiData; i++){
2577       sqlite3_free((void*)pWal->apWiData[i]);
2578       pWal->apWiData[i] = 0;
2579     }
2580     pWal->bShmUnreliable = 0;
2581     sqlite3WalEndReadTransaction(pWal);
2582     *pChanged = 1;
2583   }
2584   return rc;
2585 }
2586 
2587 /*
2588 ** Attempt to start a read transaction.  This might fail due to a race or
2589 ** other transient condition.  When that happens, it returns WAL_RETRY to
2590 ** indicate to the caller that it is safe to retry immediately.
2591 **
2592 ** On success return SQLITE_OK.  On a permanent failure (such an
2593 ** I/O error or an SQLITE_BUSY because another process is running
2594 ** recovery) return a positive error code.
2595 **
2596 ** The useWal parameter is true to force the use of the WAL and disable
2597 ** the case where the WAL is bypassed because it has been completely
2598 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2599 ** to make a copy of the wal-index header into pWal->hdr.  If the
2600 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2601 ** to the caller that the local page cache is obsolete and needs to be
2602 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2603 ** be loaded and the pChanged parameter is unused.
2604 **
2605 ** The caller must set the cnt parameter to the number of prior calls to
2606 ** this routine during the current read attempt that returned WAL_RETRY.
2607 ** This routine will start taking more aggressive measures to clear the
2608 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2609 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2610 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2611 ** and is not honoring the locking protocol.  There is a vanishingly small
2612 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2613 ** bad luck when there is lots of contention for the wal-index, but that
2614 ** possibility is so small that it can be safely neglected, we believe.
2615 **
2616 ** On success, this routine obtains a read lock on
2617 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2618 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2619 ** that means the Wal does not hold any read lock.  The reader must not
2620 ** access any database page that is modified by a WAL frame up to and
2621 ** including frame number aReadMark[pWal->readLock].  The reader will
2622 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2623 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2624 ** completely and get all content directly from the database file.
2625 ** If the useWal parameter is 1 then the WAL will never be ignored and
2626 ** this routine will always set pWal->readLock>0 on success.
2627 ** When the read transaction is completed, the caller must release the
2628 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2629 **
2630 ** This routine uses the nBackfill and aReadMark[] fields of the header
2631 ** to select a particular WAL_READ_LOCK() that strives to let the
2632 ** checkpoint process do as much work as possible.  This routine might
2633 ** update values of the aReadMark[] array in the header, but if it does
2634 ** so it takes care to hold an exclusive lock on the corresponding
2635 ** WAL_READ_LOCK() while changing values.
2636 */
2637 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2638   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2639   u32 mxReadMark;                 /* Largest aReadMark[] value */
2640   int mxI;                        /* Index of largest aReadMark[] value */
2641   int i;                          /* Loop counter */
2642   int rc = SQLITE_OK;             /* Return code  */
2643   u32 mxFrame;                    /* Wal frame to lock to */
2644 
2645   assert( pWal->readLock<0 );     /* Not currently locked */
2646 
2647   /* useWal may only be set for read/write connections */
2648   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2649 
2650   /* Take steps to avoid spinning forever if there is a protocol error.
2651   **
2652   ** Circumstances that cause a RETRY should only last for the briefest
2653   ** instances of time.  No I/O or other system calls are done while the
2654   ** locks are held, so the locks should not be held for very long. But
2655   ** if we are unlucky, another process that is holding a lock might get
2656   ** paged out or take a page-fault that is time-consuming to resolve,
2657   ** during the few nanoseconds that it is holding the lock.  In that case,
2658   ** it might take longer than normal for the lock to free.
2659   **
2660   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2661   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2662   ** is more of a scheduler yield than an actual delay.  But on the 10th
2663   ** an subsequent retries, the delays start becoming longer and longer,
2664   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2665   ** The total delay time before giving up is less than 10 seconds.
2666   */
2667   if( cnt>5 ){
2668     int nDelay = 1;                      /* Pause time in microseconds */
2669     if( cnt>100 ){
2670       VVA_ONLY( pWal->lockError = 1; )
2671       return SQLITE_PROTOCOL;
2672     }
2673     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2674     sqlite3OsSleep(pWal->pVfs, nDelay);
2675   }
2676 
2677   if( !useWal ){
2678     assert( rc==SQLITE_OK );
2679     if( pWal->bShmUnreliable==0 ){
2680       rc = walIndexReadHdr(pWal, pChanged);
2681     }
2682     if( rc==SQLITE_BUSY ){
2683       /* If there is not a recovery running in another thread or process
2684       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2685       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2686       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2687       ** would be technically correct.  But the race is benign since with
2688       ** WAL_RETRY this routine will be called again and will probably be
2689       ** right on the second iteration.
2690       */
2691       if( pWal->apWiData[0]==0 ){
2692         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2693         ** We assume this is a transient condition, so return WAL_RETRY. The
2694         ** xShmMap() implementation used by the default unix and win32 VFS
2695         ** modules may return SQLITE_BUSY due to a race condition in the
2696         ** code that determines whether or not the shared-memory region
2697         ** must be zeroed before the requested page is returned.
2698         */
2699         rc = WAL_RETRY;
2700       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2701         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2702         rc = WAL_RETRY;
2703       }else if( rc==SQLITE_BUSY ){
2704         rc = SQLITE_BUSY_RECOVERY;
2705       }
2706     }
2707     if( rc!=SQLITE_OK ){
2708       return rc;
2709     }
2710     else if( pWal->bShmUnreliable ){
2711       return walBeginShmUnreliable(pWal, pChanged);
2712     }
2713   }
2714 
2715   assert( pWal->nWiData>0 );
2716   assert( pWal->apWiData[0]!=0 );
2717   pInfo = walCkptInfo(pWal);
2718   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2719 #ifdef SQLITE_ENABLE_SNAPSHOT
2720    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2721 #endif
2722   ){
2723     /* The WAL has been completely backfilled (or it is empty).
2724     ** and can be safely ignored.
2725     */
2726     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2727     walShmBarrier(pWal);
2728     if( rc==SQLITE_OK ){
2729       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2730         /* It is not safe to allow the reader to continue here if frames
2731         ** may have been appended to the log before READ_LOCK(0) was obtained.
2732         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2733         ** which implies that the database file contains a trustworthy
2734         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2735         ** happening, this is usually correct.
2736         **
2737         ** However, if frames have been appended to the log (or if the log
2738         ** is wrapped and written for that matter) before the READ_LOCK(0)
2739         ** is obtained, that is not necessarily true. A checkpointer may
2740         ** have started to backfill the appended frames but crashed before
2741         ** it finished. Leaving a corrupt image in the database file.
2742         */
2743         walUnlockShared(pWal, WAL_READ_LOCK(0));
2744         return WAL_RETRY;
2745       }
2746       pWal->readLock = 0;
2747       return SQLITE_OK;
2748     }else if( rc!=SQLITE_BUSY ){
2749       return rc;
2750     }
2751   }
2752 
2753   /* If we get this far, it means that the reader will want to use
2754   ** the WAL to get at content from recent commits.  The job now is
2755   ** to select one of the aReadMark[] entries that is closest to
2756   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2757   */
2758   mxReadMark = 0;
2759   mxI = 0;
2760   mxFrame = pWal->hdr.mxFrame;
2761 #ifdef SQLITE_ENABLE_SNAPSHOT
2762   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2763     mxFrame = pWal->pSnapshot->mxFrame;
2764   }
2765 #endif
2766   for(i=1; i<WAL_NREADER; i++){
2767     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2768     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2769       assert( thisMark!=READMARK_NOT_USED );
2770       mxReadMark = thisMark;
2771       mxI = i;
2772     }
2773   }
2774   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2775    && (mxReadMark<mxFrame || mxI==0)
2776   ){
2777     for(i=1; i<WAL_NREADER; i++){
2778       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2779       if( rc==SQLITE_OK ){
2780         AtomicStore(pInfo->aReadMark+i,mxFrame);
2781         mxReadMark = mxFrame;
2782         mxI = i;
2783         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2784         break;
2785       }else if( rc!=SQLITE_BUSY ){
2786         return rc;
2787       }
2788     }
2789   }
2790   if( mxI==0 ){
2791     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2792     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2793   }
2794 
2795   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2796   if( rc ){
2797     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2798   }
2799   /* Now that the read-lock has been obtained, check that neither the
2800   ** value in the aReadMark[] array or the contents of the wal-index
2801   ** header have changed.
2802   **
2803   ** It is necessary to check that the wal-index header did not change
2804   ** between the time it was read and when the shared-lock was obtained
2805   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2806   ** that the log file may have been wrapped by a writer, or that frames
2807   ** that occur later in the log than pWal->hdr.mxFrame may have been
2808   ** copied into the database by a checkpointer. If either of these things
2809   ** happened, then reading the database with the current value of
2810   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2811   ** instead.
2812   **
2813   ** Before checking that the live wal-index header has not changed
2814   ** since it was read, set Wal.minFrame to the first frame in the wal
2815   ** file that has not yet been checkpointed. This client will not need
2816   ** to read any frames earlier than minFrame from the wal file - they
2817   ** can be safely read directly from the database file.
2818   **
2819   ** Because a ShmBarrier() call is made between taking the copy of
2820   ** nBackfill and checking that the wal-header in shared-memory still
2821   ** matches the one cached in pWal->hdr, it is guaranteed that the
2822   ** checkpointer that set nBackfill was not working with a wal-index
2823   ** header newer than that cached in pWal->hdr. If it were, that could
2824   ** cause a problem. The checkpointer could omit to checkpoint
2825   ** a version of page X that lies before pWal->minFrame (call that version
2826   ** A) on the basis that there is a newer version (version B) of the same
2827   ** page later in the wal file. But if version B happens to like past
2828   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2829   ** that it can read version A from the database file. However, since
2830   ** we can guarantee that the checkpointer that set nBackfill could not
2831   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2832   */
2833   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2834   walShmBarrier(pWal);
2835   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2836    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2837   ){
2838     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2839     return WAL_RETRY;
2840   }else{
2841     assert( mxReadMark<=pWal->hdr.mxFrame );
2842     pWal->readLock = (i16)mxI;
2843   }
2844   return rc;
2845 }
2846 
2847 #ifdef SQLITE_ENABLE_SNAPSHOT
2848 /*
2849 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2850 ** variable so that older snapshots can be accessed. To do this, loop
2851 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2852 ** comparing their content to the corresponding page with the database
2853 ** file, if any. Set nBackfillAttempted to the frame number of the
2854 ** first frame for which the wal file content matches the db file.
2855 **
2856 ** This is only really safe if the file-system is such that any page
2857 ** writes made by earlier checkpointers were atomic operations, which
2858 ** is not always true. It is also possible that nBackfillAttempted
2859 ** may be left set to a value larger than expected, if a wal frame
2860 ** contains content that duplicate of an earlier version of the same
2861 ** page.
2862 **
2863 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2864 ** error occurs. It is not an error if nBackfillAttempted cannot be
2865 ** decreased at all.
2866 */
2867 int sqlite3WalSnapshotRecover(Wal *pWal){
2868   int rc;
2869 
2870   assert( pWal->readLock>=0 );
2871   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2872   if( rc==SQLITE_OK ){
2873     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2874     int szPage = (int)pWal->szPage;
2875     i64 szDb;                   /* Size of db file in bytes */
2876 
2877     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2878     if( rc==SQLITE_OK ){
2879       void *pBuf1 = sqlite3_malloc(szPage);
2880       void *pBuf2 = sqlite3_malloc(szPage);
2881       if( pBuf1==0 || pBuf2==0 ){
2882         rc = SQLITE_NOMEM;
2883       }else{
2884         u32 i = pInfo->nBackfillAttempted;
2885         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2886           WalHashLoc sLoc;          /* Hash table location */
2887           u32 pgno;                 /* Page number in db file */
2888           i64 iDbOff;               /* Offset of db file entry */
2889           i64 iWalOff;              /* Offset of wal file entry */
2890 
2891           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2892           if( rc!=SQLITE_OK ) break;
2893           pgno = sLoc.aPgno[i-sLoc.iZero];
2894           iDbOff = (i64)(pgno-1) * szPage;
2895 
2896           if( iDbOff+szPage<=szDb ){
2897             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2898             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2899 
2900             if( rc==SQLITE_OK ){
2901               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2902             }
2903 
2904             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2905               break;
2906             }
2907           }
2908 
2909           pInfo->nBackfillAttempted = i-1;
2910         }
2911       }
2912 
2913       sqlite3_free(pBuf1);
2914       sqlite3_free(pBuf2);
2915     }
2916     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2917   }
2918 
2919   return rc;
2920 }
2921 #endif /* SQLITE_ENABLE_SNAPSHOT */
2922 
2923 /*
2924 ** Begin a read transaction on the database.
2925 **
2926 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2927 ** it takes a snapshot of the state of the WAL and wal-index for the current
2928 ** instant in time.  The current thread will continue to use this snapshot.
2929 ** Other threads might append new content to the WAL and wal-index but
2930 ** that extra content is ignored by the current thread.
2931 **
2932 ** If the database contents have changes since the previous read
2933 ** transaction, then *pChanged is set to 1 before returning.  The
2934 ** Pager layer will use this to know that its cache is stale and
2935 ** needs to be flushed.
2936 */
2937 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2938   int rc;                         /* Return code */
2939   int cnt = 0;                    /* Number of TryBeginRead attempts */
2940 #ifdef SQLITE_ENABLE_SNAPSHOT
2941   int bChanged = 0;
2942   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2943 #endif
2944 
2945   assert( pWal->ckptLock==0 );
2946 
2947 #ifdef SQLITE_ENABLE_SNAPSHOT
2948   if( pSnapshot ){
2949     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2950       bChanged = 1;
2951     }
2952 
2953     /* It is possible that there is a checkpointer thread running
2954     ** concurrent with this code. If this is the case, it may be that the
2955     ** checkpointer has already determined that it will checkpoint
2956     ** snapshot X, where X is later in the wal file than pSnapshot, but
2957     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2958     ** its intent. To avoid the race condition this leads to, ensure that
2959     ** there is no checkpointer process by taking a shared CKPT lock
2960     ** before checking pInfo->nBackfillAttempted.  */
2961     (void)walEnableBlocking(pWal);
2962     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2963     walDisableBlocking(pWal);
2964 
2965     if( rc!=SQLITE_OK ){
2966       return rc;
2967     }
2968     pWal->ckptLock = 1;
2969   }
2970 #endif
2971 
2972   do{
2973     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2974   }while( rc==WAL_RETRY );
2975   testcase( (rc&0xff)==SQLITE_BUSY );
2976   testcase( (rc&0xff)==SQLITE_IOERR );
2977   testcase( rc==SQLITE_PROTOCOL );
2978   testcase( rc==SQLITE_OK );
2979 
2980 #ifdef SQLITE_ENABLE_SNAPSHOT
2981   if( rc==SQLITE_OK ){
2982     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2983       /* At this point the client has a lock on an aReadMark[] slot holding
2984       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2985       ** is populated with the wal-index header corresponding to the head
2986       ** of the wal file. Verify that pSnapshot is still valid before
2987       ** continuing.  Reasons why pSnapshot might no longer be valid:
2988       **
2989       **    (1)  The WAL file has been reset since the snapshot was taken.
2990       **         In this case, the salt will have changed.
2991       **
2992       **    (2)  A checkpoint as been attempted that wrote frames past
2993       **         pSnapshot->mxFrame into the database file.  Note that the
2994       **         checkpoint need not have completed for this to cause problems.
2995       */
2996       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2997 
2998       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2999       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
3000 
3001       /* Check that the wal file has not been wrapped. Assuming that it has
3002       ** not, also check that no checkpointer has attempted to checkpoint any
3003       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
3004       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
3005       ** with *pSnapshot and set *pChanged as appropriate for opening the
3006       ** snapshot.  */
3007       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3008        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
3009       ){
3010         assert( pWal->readLock>0 );
3011         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
3012         *pChanged = bChanged;
3013       }else{
3014         rc = SQLITE_ERROR_SNAPSHOT;
3015       }
3016 
3017       /* A client using a non-current snapshot may not ignore any frames
3018       ** from the start of the wal file. This is because, for a system
3019       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3020       ** have omitted to checkpoint a frame earlier than minFrame in
3021       ** the file because there exists a frame after iSnapshot that
3022       ** is the same database page.  */
3023       pWal->minFrame = 1;
3024 
3025       if( rc!=SQLITE_OK ){
3026         sqlite3WalEndReadTransaction(pWal);
3027       }
3028     }
3029   }
3030 
3031   /* Release the shared CKPT lock obtained above. */
3032   if( pWal->ckptLock ){
3033     assert( pSnapshot );
3034     walUnlockShared(pWal, WAL_CKPT_LOCK);
3035     pWal->ckptLock = 0;
3036   }
3037 #endif
3038   return rc;
3039 }
3040 
3041 /*
3042 ** Finish with a read transaction.  All this does is release the
3043 ** read-lock.
3044 */
3045 void sqlite3WalEndReadTransaction(Wal *pWal){
3046   sqlite3WalEndWriteTransaction(pWal);
3047   if( pWal->readLock>=0 ){
3048     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3049     pWal->readLock = -1;
3050   }
3051 }
3052 
3053 /*
3054 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3055 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3056 ** to zero.
3057 **
3058 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3059 ** error does occur, the final value of *piRead is undefined.
3060 */
3061 int sqlite3WalFindFrame(
3062   Wal *pWal,                      /* WAL handle */
3063   Pgno pgno,                      /* Database page number to read data for */
3064   u32 *piRead                     /* OUT: Frame number (or zero) */
3065 ){
3066   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
3067   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
3068   int iHash;                      /* Used to loop through N hash tables */
3069   int iMinHash;
3070 
3071   /* This routine is only be called from within a read transaction. */
3072   assert( pWal->readLock>=0 || pWal->lockError );
3073 
3074   /* If the "last page" field of the wal-index header snapshot is 0, then
3075   ** no data will be read from the wal under any circumstances. Return early
3076   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3077   ** then the WAL is ignored by the reader so return early, as if the
3078   ** WAL were empty.
3079   */
3080   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3081     *piRead = 0;
3082     return SQLITE_OK;
3083   }
3084 
3085   /* Search the hash table or tables for an entry matching page number
3086   ** pgno. Each iteration of the following for() loop searches one
3087   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3088   **
3089   ** This code might run concurrently to the code in walIndexAppend()
3090   ** that adds entries to the wal-index (and possibly to this hash
3091   ** table). This means the value just read from the hash
3092   ** slot (aHash[iKey]) may have been added before or after the
3093   ** current read transaction was opened. Values added after the
3094   ** read transaction was opened may have been written incorrectly -
3095   ** i.e. these slots may contain garbage data. However, we assume
3096   ** that any slots written before the current read transaction was
3097   ** opened remain unmodified.
3098   **
3099   ** For the reasons above, the if(...) condition featured in the inner
3100   ** loop of the following block is more stringent that would be required
3101   ** if we had exclusive access to the hash-table:
3102   **
3103   **   (aPgno[iFrame]==pgno):
3104   **     This condition filters out normal hash-table collisions.
3105   **
3106   **   (iFrame<=iLast):
3107   **     This condition filters out entries that were added to the hash
3108   **     table after the current read-transaction had started.
3109   */
3110   iMinHash = walFramePage(pWal->minFrame);
3111   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3112     WalHashLoc sLoc;              /* Hash table location */
3113     int iKey;                     /* Hash slot index */
3114     int nCollide;                 /* Number of hash collisions remaining */
3115     int rc;                       /* Error code */
3116     u32 iH;
3117 
3118     rc = walHashGet(pWal, iHash, &sLoc);
3119     if( rc!=SQLITE_OK ){
3120       return rc;
3121     }
3122     nCollide = HASHTABLE_NSLOT;
3123     iKey = walHash(pgno);
3124     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3125       u32 iFrame = iH + sLoc.iZero;
3126       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3127         assert( iFrame>iRead || CORRUPT_DB );
3128         iRead = iFrame;
3129       }
3130       if( (nCollide--)==0 ){
3131         return SQLITE_CORRUPT_BKPT;
3132       }
3133       iKey = walNextHash(iKey);
3134     }
3135     if( iRead ) break;
3136   }
3137 
3138 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3139   /* If expensive assert() statements are available, do a linear search
3140   ** of the wal-index file content. Make sure the results agree with the
3141   ** result obtained using the hash indexes above.  */
3142   {
3143     u32 iRead2 = 0;
3144     u32 iTest;
3145     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3146     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3147       if( walFramePgno(pWal, iTest)==pgno ){
3148         iRead2 = iTest;
3149         break;
3150       }
3151     }
3152     assert( iRead==iRead2 );
3153   }
3154 #endif
3155 
3156   *piRead = iRead;
3157   return SQLITE_OK;
3158 }
3159 
3160 /*
3161 ** Read the contents of frame iRead from the wal file into buffer pOut
3162 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3163 ** error code otherwise.
3164 */
3165 int sqlite3WalReadFrame(
3166   Wal *pWal,                      /* WAL handle */
3167   u32 iRead,                      /* Frame to read */
3168   int nOut,                       /* Size of buffer pOut in bytes */
3169   u8 *pOut                        /* Buffer to write page data to */
3170 ){
3171   int sz;
3172   i64 iOffset;
3173   sz = pWal->hdr.szPage;
3174   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3175   testcase( sz<=32768 );
3176   testcase( sz>=65536 );
3177   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3178   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3179   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3180 }
3181 
3182 /*
3183 ** Return the size of the database in pages (or zero, if unknown).
3184 */
3185 Pgno sqlite3WalDbsize(Wal *pWal){
3186   if( pWal && ALWAYS(pWal->readLock>=0) ){
3187     return pWal->hdr.nPage;
3188   }
3189   return 0;
3190 }
3191 
3192 
3193 /*
3194 ** This function starts a write transaction on the WAL.
3195 **
3196 ** A read transaction must have already been started by a prior call
3197 ** to sqlite3WalBeginReadTransaction().
3198 **
3199 ** If another thread or process has written into the database since
3200 ** the read transaction was started, then it is not possible for this
3201 ** thread to write as doing so would cause a fork.  So this routine
3202 ** returns SQLITE_BUSY in that case and no write transaction is started.
3203 **
3204 ** There can only be a single writer active at a time.
3205 */
3206 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3207   int rc;
3208 
3209 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3210   /* If the write-lock is already held, then it was obtained before the
3211   ** read-transaction was even opened, making this call a no-op.
3212   ** Return early. */
3213   if( pWal->writeLock ){
3214     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3215     return SQLITE_OK;
3216   }
3217 #endif
3218 
3219   /* Cannot start a write transaction without first holding a read
3220   ** transaction. */
3221   assert( pWal->readLock>=0 );
3222   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3223 
3224   if( pWal->readOnly ){
3225     return SQLITE_READONLY;
3226   }
3227 
3228   /* Only one writer allowed at a time.  Get the write lock.  Return
3229   ** SQLITE_BUSY if unable.
3230   */
3231   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3232   if( rc ){
3233     return rc;
3234   }
3235   pWal->writeLock = 1;
3236 
3237   /* If another connection has written to the database file since the
3238   ** time the read transaction on this connection was started, then
3239   ** the write is disallowed.
3240   */
3241   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3242     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3243     pWal->writeLock = 0;
3244     rc = SQLITE_BUSY_SNAPSHOT;
3245   }
3246 
3247   return rc;
3248 }
3249 
3250 /*
3251 ** End a write transaction.  The commit has already been done.  This
3252 ** routine merely releases the lock.
3253 */
3254 int sqlite3WalEndWriteTransaction(Wal *pWal){
3255   if( pWal->writeLock ){
3256     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3257     pWal->writeLock = 0;
3258     pWal->iReCksum = 0;
3259     pWal->truncateOnCommit = 0;
3260   }
3261   return SQLITE_OK;
3262 }
3263 
3264 /*
3265 ** If any data has been written (but not committed) to the log file, this
3266 ** function moves the write-pointer back to the start of the transaction.
3267 **
3268 ** Additionally, the callback function is invoked for each frame written
3269 ** to the WAL since the start of the transaction. If the callback returns
3270 ** other than SQLITE_OK, it is not invoked again and the error code is
3271 ** returned to the caller.
3272 **
3273 ** Otherwise, if the callback function does not return an error, this
3274 ** function returns SQLITE_OK.
3275 */
3276 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3277   int rc = SQLITE_OK;
3278   if( ALWAYS(pWal->writeLock) ){
3279     Pgno iMax = pWal->hdr.mxFrame;
3280     Pgno iFrame;
3281 
3282     /* Restore the clients cache of the wal-index header to the state it
3283     ** was in before the client began writing to the database.
3284     */
3285     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3286 
3287     for(iFrame=pWal->hdr.mxFrame+1;
3288         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3289         iFrame++
3290     ){
3291       /* This call cannot fail. Unless the page for which the page number
3292       ** is passed as the second argument is (a) in the cache and
3293       ** (b) has an outstanding reference, then xUndo is either a no-op
3294       ** (if (a) is false) or simply expels the page from the cache (if (b)
3295       ** is false).
3296       **
3297       ** If the upper layer is doing a rollback, it is guaranteed that there
3298       ** are no outstanding references to any page other than page 1. And
3299       ** page 1 is never written to the log until the transaction is
3300       ** committed. As a result, the call to xUndo may not fail.
3301       */
3302       assert( walFramePgno(pWal, iFrame)!=1 );
3303       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3304     }
3305     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3306   }
3307   return rc;
3308 }
3309 
3310 /*
3311 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3312 ** values. This function populates the array with values required to
3313 ** "rollback" the write position of the WAL handle back to the current
3314 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3315 */
3316 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3317   assert( pWal->writeLock );
3318   aWalData[0] = pWal->hdr.mxFrame;
3319   aWalData[1] = pWal->hdr.aFrameCksum[0];
3320   aWalData[2] = pWal->hdr.aFrameCksum[1];
3321   aWalData[3] = pWal->nCkpt;
3322 }
3323 
3324 /*
3325 ** Move the write position of the WAL back to the point identified by
3326 ** the values in the aWalData[] array. aWalData must point to an array
3327 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3328 ** by a call to WalSavepoint().
3329 */
3330 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3331   int rc = SQLITE_OK;
3332 
3333   assert( pWal->writeLock );
3334   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3335 
3336   if( aWalData[3]!=pWal->nCkpt ){
3337     /* This savepoint was opened immediately after the write-transaction
3338     ** was started. Right after that, the writer decided to wrap around
3339     ** to the start of the log. Update the savepoint values to match.
3340     */
3341     aWalData[0] = 0;
3342     aWalData[3] = pWal->nCkpt;
3343   }
3344 
3345   if( aWalData[0]<pWal->hdr.mxFrame ){
3346     pWal->hdr.mxFrame = aWalData[0];
3347     pWal->hdr.aFrameCksum[0] = aWalData[1];
3348     pWal->hdr.aFrameCksum[1] = aWalData[2];
3349     walCleanupHash(pWal);
3350   }
3351 
3352   return rc;
3353 }
3354 
3355 /*
3356 ** This function is called just before writing a set of frames to the log
3357 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3358 ** to the current log file, it is possible to overwrite the start of the
3359 ** existing log file with the new frames (i.e. "reset" the log). If so,
3360 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3361 ** unchanged.
3362 **
3363 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3364 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3365 ** if an error occurs.
3366 */
3367 static int walRestartLog(Wal *pWal){
3368   int rc = SQLITE_OK;
3369   int cnt;
3370 
3371   if( pWal->readLock==0 ){
3372     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3373     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3374     if( pInfo->nBackfill>0 ){
3375       u32 salt1;
3376       sqlite3_randomness(4, &salt1);
3377       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3378       if( rc==SQLITE_OK ){
3379         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3380         ** readers are currently using the WAL), then the transactions
3381         ** frames will overwrite the start of the existing log. Update the
3382         ** wal-index header to reflect this.
3383         **
3384         ** In theory it would be Ok to update the cache of the header only
3385         ** at this point. But updating the actual wal-index header is also
3386         ** safe and means there is no special case for sqlite3WalUndo()
3387         ** to handle if this transaction is rolled back.  */
3388         walRestartHdr(pWal, salt1);
3389         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3390       }else if( rc!=SQLITE_BUSY ){
3391         return rc;
3392       }
3393     }
3394     walUnlockShared(pWal, WAL_READ_LOCK(0));
3395     pWal->readLock = -1;
3396     cnt = 0;
3397     do{
3398       int notUsed;
3399       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3400     }while( rc==WAL_RETRY );
3401     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3402     testcase( (rc&0xff)==SQLITE_IOERR );
3403     testcase( rc==SQLITE_PROTOCOL );
3404     testcase( rc==SQLITE_OK );
3405   }
3406   return rc;
3407 }
3408 
3409 /*
3410 ** Information about the current state of the WAL file and where
3411 ** the next fsync should occur - passed from sqlite3WalFrames() into
3412 ** walWriteToLog().
3413 */
3414 typedef struct WalWriter {
3415   Wal *pWal;                   /* The complete WAL information */
3416   sqlite3_file *pFd;           /* The WAL file to which we write */
3417   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3418   int syncFlags;               /* Flags for the fsync */
3419   int szPage;                  /* Size of one page */
3420 } WalWriter;
3421 
3422 /*
3423 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3424 ** Do a sync when crossing the p->iSyncPoint boundary.
3425 **
3426 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3427 ** first write the part before iSyncPoint, then sync, then write the
3428 ** rest.
3429 */
3430 static int walWriteToLog(
3431   WalWriter *p,              /* WAL to write to */
3432   void *pContent,            /* Content to be written */
3433   int iAmt,                  /* Number of bytes to write */
3434   sqlite3_int64 iOffset      /* Start writing at this offset */
3435 ){
3436   int rc;
3437   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3438     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3439     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3440     if( rc ) return rc;
3441     iOffset += iFirstAmt;
3442     iAmt -= iFirstAmt;
3443     pContent = (void*)(iFirstAmt + (char*)pContent);
3444     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3445     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3446     if( iAmt==0 || rc ) return rc;
3447   }
3448   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3449   return rc;
3450 }
3451 
3452 /*
3453 ** Write out a single frame of the WAL
3454 */
3455 static int walWriteOneFrame(
3456   WalWriter *p,               /* Where to write the frame */
3457   PgHdr *pPage,               /* The page of the frame to be written */
3458   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3459   sqlite3_int64 iOffset       /* Byte offset at which to write */
3460 ){
3461   int rc;                         /* Result code from subfunctions */
3462   void *pData;                    /* Data actually written */
3463   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3464   pData = pPage->pData;
3465   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3466   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3467   if( rc ) return rc;
3468   /* Write the page data */
3469   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3470   return rc;
3471 }
3472 
3473 /*
3474 ** This function is called as part of committing a transaction within which
3475 ** one or more frames have been overwritten. It updates the checksums for
3476 ** all frames written to the wal file by the current transaction starting
3477 ** with the earliest to have been overwritten.
3478 **
3479 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3480 */
3481 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3482   const int szPage = pWal->szPage;/* Database page size */
3483   int rc = SQLITE_OK;             /* Return code */
3484   u8 *aBuf;                       /* Buffer to load data from wal file into */
3485   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3486   u32 iRead;                      /* Next frame to read from wal file */
3487   i64 iCksumOff;
3488 
3489   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3490   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3491 
3492   /* Find the checksum values to use as input for the recalculating the
3493   ** first checksum. If the first frame is frame 1 (implying that the current
3494   ** transaction restarted the wal file), these values must be read from the
3495   ** wal-file header. Otherwise, read them from the frame header of the
3496   ** previous frame.  */
3497   assert( pWal->iReCksum>0 );
3498   if( pWal->iReCksum==1 ){
3499     iCksumOff = 24;
3500   }else{
3501     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3502   }
3503   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3504   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3505   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3506 
3507   iRead = pWal->iReCksum;
3508   pWal->iReCksum = 0;
3509   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3510     i64 iOff = walFrameOffset(iRead, szPage);
3511     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3512     if( rc==SQLITE_OK ){
3513       u32 iPgno, nDbSize;
3514       iPgno = sqlite3Get4byte(aBuf);
3515       nDbSize = sqlite3Get4byte(&aBuf[4]);
3516 
3517       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3518       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3519     }
3520   }
3521 
3522   sqlite3_free(aBuf);
3523   return rc;
3524 }
3525 
3526 /*
3527 ** Write a set of frames to the log. The caller must hold the write-lock
3528 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3529 */
3530 int sqlite3WalFrames(
3531   Wal *pWal,                      /* Wal handle to write to */
3532   int szPage,                     /* Database page-size in bytes */
3533   PgHdr *pList,                   /* List of dirty pages to write */
3534   Pgno nTruncate,                 /* Database size after this commit */
3535   int isCommit,                   /* True if this is a commit */
3536   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3537 ){
3538   int rc;                         /* Used to catch return codes */
3539   u32 iFrame;                     /* Next frame address */
3540   PgHdr *p;                       /* Iterator to run through pList with. */
3541   PgHdr *pLast = 0;               /* Last frame in list */
3542   int nExtra = 0;                 /* Number of extra copies of last page */
3543   int szFrame;                    /* The size of a single frame */
3544   i64 iOffset;                    /* Next byte to write in WAL file */
3545   WalWriter w;                    /* The writer */
3546   u32 iFirst = 0;                 /* First frame that may be overwritten */
3547   WalIndexHdr *pLive;             /* Pointer to shared header */
3548 
3549   assert( pList );
3550   assert( pWal->writeLock );
3551 
3552   /* If this frame set completes a transaction, then nTruncate>0.  If
3553   ** nTruncate==0 then this frame set does not complete the transaction. */
3554   assert( (isCommit!=0)==(nTruncate!=0) );
3555 
3556 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3557   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3558     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3559               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3560   }
3561 #endif
3562 
3563   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3564   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3565     iFirst = pLive->mxFrame+1;
3566   }
3567 
3568   /* See if it is possible to write these frames into the start of the
3569   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3570   */
3571   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3572     return rc;
3573   }
3574 
3575   /* If this is the first frame written into the log, write the WAL
3576   ** header to the start of the WAL file. See comments at the top of
3577   ** this source file for a description of the WAL header format.
3578   */
3579   iFrame = pWal->hdr.mxFrame;
3580   if( iFrame==0 ){
3581     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3582     u32 aCksum[2];                /* Checksum for wal-header */
3583 
3584     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3585     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3586     sqlite3Put4byte(&aWalHdr[8], szPage);
3587     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3588     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3589     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3590     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3591     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3592     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3593 
3594     pWal->szPage = szPage;
3595     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3596     pWal->hdr.aFrameCksum[0] = aCksum[0];
3597     pWal->hdr.aFrameCksum[1] = aCksum[1];
3598     pWal->truncateOnCommit = 1;
3599 
3600     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3601     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3602     if( rc!=SQLITE_OK ){
3603       return rc;
3604     }
3605 
3606     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3607     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3608     ** an out-of-order write following a WAL restart could result in
3609     ** database corruption.  See the ticket:
3610     **
3611     **     https://sqlite.org/src/info/ff5be73dee
3612     */
3613     if( pWal->syncHeader ){
3614       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3615       if( rc ) return rc;
3616     }
3617   }
3618   assert( (int)pWal->szPage==szPage );
3619 
3620   /* Setup information needed to write frames into the WAL */
3621   w.pWal = pWal;
3622   w.pFd = pWal->pWalFd;
3623   w.iSyncPoint = 0;
3624   w.syncFlags = sync_flags;
3625   w.szPage = szPage;
3626   iOffset = walFrameOffset(iFrame+1, szPage);
3627   szFrame = szPage + WAL_FRAME_HDRSIZE;
3628 
3629   /* Write all frames into the log file exactly once */
3630   for(p=pList; p; p=p->pDirty){
3631     int nDbSize;   /* 0 normally.  Positive == commit flag */
3632 
3633     /* Check if this page has already been written into the wal file by
3634     ** the current transaction. If so, overwrite the existing frame and
3635     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3636     ** checksums must be recomputed when the transaction is committed.  */
3637     if( iFirst && (p->pDirty || isCommit==0) ){
3638       u32 iWrite = 0;
3639       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3640       assert( rc==SQLITE_OK || iWrite==0 );
3641       if( iWrite>=iFirst ){
3642         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3643         void *pData;
3644         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3645           pWal->iReCksum = iWrite;
3646         }
3647         pData = p->pData;
3648         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3649         if( rc ) return rc;
3650         p->flags &= ~PGHDR_WAL_APPEND;
3651         continue;
3652       }
3653     }
3654 
3655     iFrame++;
3656     assert( iOffset==walFrameOffset(iFrame, szPage) );
3657     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3658     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3659     if( rc ) return rc;
3660     pLast = p;
3661     iOffset += szFrame;
3662     p->flags |= PGHDR_WAL_APPEND;
3663   }
3664 
3665   /* Recalculate checksums within the wal file if required. */
3666   if( isCommit && pWal->iReCksum ){
3667     rc = walRewriteChecksums(pWal, iFrame);
3668     if( rc ) return rc;
3669   }
3670 
3671   /* If this is the end of a transaction, then we might need to pad
3672   ** the transaction and/or sync the WAL file.
3673   **
3674   ** Padding and syncing only occur if this set of frames complete a
3675   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3676   ** or synchronous==OFF, then no padding or syncing are needed.
3677   **
3678   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3679   ** needed and only the sync is done.  If padding is needed, then the
3680   ** final frame is repeated (with its commit mark) until the next sector
3681   ** boundary is crossed.  Only the part of the WAL prior to the last
3682   ** sector boundary is synced; the part of the last frame that extends
3683   ** past the sector boundary is written after the sync.
3684   */
3685   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3686     int bSync = 1;
3687     if( pWal->padToSectorBoundary ){
3688       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3689       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3690       bSync = (w.iSyncPoint==iOffset);
3691       testcase( bSync );
3692       while( iOffset<w.iSyncPoint ){
3693         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3694         if( rc ) return rc;
3695         iOffset += szFrame;
3696         nExtra++;
3697         assert( pLast!=0 );
3698       }
3699     }
3700     if( bSync ){
3701       assert( rc==SQLITE_OK );
3702       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3703     }
3704   }
3705 
3706   /* If this frame set completes the first transaction in the WAL and
3707   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3708   ** journal size limit, if possible.
3709   */
3710   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3711     i64 sz = pWal->mxWalSize;
3712     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3713       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3714     }
3715     walLimitSize(pWal, sz);
3716     pWal->truncateOnCommit = 0;
3717   }
3718 
3719   /* Append data to the wal-index. It is not necessary to lock the
3720   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3721   ** guarantees that there are no other writers, and no data that may
3722   ** be in use by existing readers is being overwritten.
3723   */
3724   iFrame = pWal->hdr.mxFrame;
3725   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3726     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3727     iFrame++;
3728     rc = walIndexAppend(pWal, iFrame, p->pgno);
3729   }
3730   assert( pLast!=0 || nExtra==0 );
3731   while( rc==SQLITE_OK && nExtra>0 ){
3732     iFrame++;
3733     nExtra--;
3734     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3735   }
3736 
3737   if( rc==SQLITE_OK ){
3738     /* Update the private copy of the header. */
3739     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3740     testcase( szPage<=32768 );
3741     testcase( szPage>=65536 );
3742     pWal->hdr.mxFrame = iFrame;
3743     if( isCommit ){
3744       pWal->hdr.iChange++;
3745       pWal->hdr.nPage = nTruncate;
3746     }
3747     /* If this is a commit, update the wal-index header too. */
3748     if( isCommit ){
3749       walIndexWriteHdr(pWal);
3750       pWal->iCallback = iFrame;
3751     }
3752   }
3753 
3754   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3755   return rc;
3756 }
3757 
3758 /*
3759 ** This routine is called to implement sqlite3_wal_checkpoint() and
3760 ** related interfaces.
3761 **
3762 ** Obtain a CHECKPOINT lock and then backfill as much information as
3763 ** we can from WAL into the database.
3764 **
3765 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3766 ** callback. In this case this function runs a blocking checkpoint.
3767 */
3768 int sqlite3WalCheckpoint(
3769   Wal *pWal,                      /* Wal connection */
3770   sqlite3 *db,                    /* Check this handle's interrupt flag */
3771   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3772   int (*xBusy)(void*),            /* Function to call when busy */
3773   void *pBusyArg,                 /* Context argument for xBusyHandler */
3774   int sync_flags,                 /* Flags to sync db file with (or 0) */
3775   int nBuf,                       /* Size of temporary buffer */
3776   u8 *zBuf,                       /* Temporary buffer to use */
3777   int *pnLog,                     /* OUT: Number of frames in WAL */
3778   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3779 ){
3780   int rc;                         /* Return code */
3781   int isChanged = 0;              /* True if a new wal-index header is loaded */
3782   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3783   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3784 
3785   assert( pWal->ckptLock==0 );
3786   assert( pWal->writeLock==0 );
3787 
3788   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3789   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3790   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3791 
3792   if( pWal->readOnly ) return SQLITE_READONLY;
3793   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3794 
3795   /* Enable blocking locks, if possible. If blocking locks are successfully
3796   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3797   sqlite3WalDb(pWal, db);
3798   (void)walEnableBlocking(pWal);
3799 
3800   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3801   ** "checkpoint" lock on the database file.
3802   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3803   ** checkpoint operation at the same time, the lock cannot be obtained and
3804   ** SQLITE_BUSY is returned.
3805   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3806   ** it will not be invoked in this case.
3807   */
3808   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3809   testcase( rc==SQLITE_BUSY );
3810   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3811   if( rc==SQLITE_OK ){
3812     pWal->ckptLock = 1;
3813 
3814     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3815     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3816     ** file.
3817     **
3818     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3819     ** immediately, and a busy-handler is configured, it is invoked and the
3820     ** writer lock retried until either the busy-handler returns 0 or the
3821     ** lock is successfully obtained.
3822     */
3823     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3824       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3825       if( rc==SQLITE_OK ){
3826         pWal->writeLock = 1;
3827       }else if( rc==SQLITE_BUSY ){
3828         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3829         xBusy2 = 0;
3830         rc = SQLITE_OK;
3831       }
3832     }
3833   }
3834 
3835 
3836   /* Read the wal-index header. */
3837   if( rc==SQLITE_OK ){
3838     walDisableBlocking(pWal);
3839     rc = walIndexReadHdr(pWal, &isChanged);
3840     (void)walEnableBlocking(pWal);
3841     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3842       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3843     }
3844   }
3845 
3846   /* Copy data from the log to the database file. */
3847   if( rc==SQLITE_OK ){
3848 
3849     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3850       rc = SQLITE_CORRUPT_BKPT;
3851     }else{
3852       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3853     }
3854 
3855     /* If no error occurred, set the output variables. */
3856     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3857       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3858       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3859     }
3860   }
3861 
3862   if( isChanged ){
3863     /* If a new wal-index header was loaded before the checkpoint was
3864     ** performed, then the pager-cache associated with pWal is now
3865     ** out of date. So zero the cached wal-index header to ensure that
3866     ** next time the pager opens a snapshot on this database it knows that
3867     ** the cache needs to be reset.
3868     */
3869     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3870   }
3871 
3872   walDisableBlocking(pWal);
3873   sqlite3WalDb(pWal, 0);
3874 
3875   /* Release the locks. */
3876   sqlite3WalEndWriteTransaction(pWal);
3877   if( pWal->ckptLock ){
3878     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3879     pWal->ckptLock = 0;
3880   }
3881   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3882 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3883   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3884 #endif
3885   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3886 }
3887 
3888 /* Return the value to pass to a sqlite3_wal_hook callback, the
3889 ** number of frames in the WAL at the point of the last commit since
3890 ** sqlite3WalCallback() was called.  If no commits have occurred since
3891 ** the last call, then return 0.
3892 */
3893 int sqlite3WalCallback(Wal *pWal){
3894   u32 ret = 0;
3895   if( pWal ){
3896     ret = pWal->iCallback;
3897     pWal->iCallback = 0;
3898   }
3899   return (int)ret;
3900 }
3901 
3902 /*
3903 ** This function is called to change the WAL subsystem into or out
3904 ** of locking_mode=EXCLUSIVE.
3905 **
3906 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3907 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3908 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3909 ** or if the acquisition of the lock fails, then return 0.  If the
3910 ** transition out of exclusive-mode is successful, return 1.  This
3911 ** operation must occur while the pager is still holding the exclusive
3912 ** lock on the main database file.
3913 **
3914 ** If op is one, then change from locking_mode=NORMAL into
3915 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3916 ** be released.  Return 1 if the transition is made and 0 if the
3917 ** WAL is already in exclusive-locking mode - meaning that this
3918 ** routine is a no-op.  The pager must already hold the exclusive lock
3919 ** on the main database file before invoking this operation.
3920 **
3921 ** If op is negative, then do a dry-run of the op==1 case but do
3922 ** not actually change anything. The pager uses this to see if it
3923 ** should acquire the database exclusive lock prior to invoking
3924 ** the op==1 case.
3925 */
3926 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3927   int rc;
3928   assert( pWal->writeLock==0 );
3929   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3930 
3931   /* pWal->readLock is usually set, but might be -1 if there was a
3932   ** prior error while attempting to acquire are read-lock. This cannot
3933   ** happen if the connection is actually in exclusive mode (as no xShmLock
3934   ** locks are taken in this case). Nor should the pager attempt to
3935   ** upgrade to exclusive-mode following such an error.
3936   */
3937   assert( pWal->readLock>=0 || pWal->lockError );
3938   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3939 
3940   if( op==0 ){
3941     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3942       pWal->exclusiveMode = WAL_NORMAL_MODE;
3943       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3944         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3945       }
3946       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3947     }else{
3948       /* Already in locking_mode=NORMAL */
3949       rc = 0;
3950     }
3951   }else if( op>0 ){
3952     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3953     assert( pWal->readLock>=0 );
3954     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3955     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3956     rc = 1;
3957   }else{
3958     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3959   }
3960   return rc;
3961 }
3962 
3963 /*
3964 ** Return true if the argument is non-NULL and the WAL module is using
3965 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3966 ** WAL module is using shared-memory, return false.
3967 */
3968 int sqlite3WalHeapMemory(Wal *pWal){
3969   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3970 }
3971 
3972 #ifdef SQLITE_ENABLE_SNAPSHOT
3973 /* Create a snapshot object.  The content of a snapshot is opaque to
3974 ** every other subsystem, so the WAL module can put whatever it needs
3975 ** in the object.
3976 */
3977 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3978   int rc = SQLITE_OK;
3979   WalIndexHdr *pRet;
3980   static const u32 aZero[4] = { 0, 0, 0, 0 };
3981 
3982   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3983 
3984   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3985     *ppSnapshot = 0;
3986     return SQLITE_ERROR;
3987   }
3988   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3989   if( pRet==0 ){
3990     rc = SQLITE_NOMEM_BKPT;
3991   }else{
3992     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3993     *ppSnapshot = (sqlite3_snapshot*)pRet;
3994   }
3995 
3996   return rc;
3997 }
3998 
3999 /* Try to open on pSnapshot when the next read-transaction starts
4000 */
4001 void sqlite3WalSnapshotOpen(
4002   Wal *pWal,
4003   sqlite3_snapshot *pSnapshot
4004 ){
4005   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4006 }
4007 
4008 /*
4009 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4010 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4011 */
4012 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4013   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4014   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4015 
4016   /* aSalt[0] is a copy of the value stored in the wal file header. It
4017   ** is incremented each time the wal file is restarted.  */
4018   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4019   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4020   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4021   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4022   return 0;
4023 }
4024 
4025 /*
4026 ** The caller currently has a read transaction open on the database.
4027 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4028 ** checks if the snapshot passed as the second argument is still
4029 ** available. If so, SQLITE_OK is returned.
4030 **
4031 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4032 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4033 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4034 ** lock is released before returning.
4035 */
4036 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4037   int rc;
4038   rc = walLockShared(pWal, WAL_CKPT_LOCK);
4039   if( rc==SQLITE_OK ){
4040     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4041     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4042      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4043     ){
4044       rc = SQLITE_ERROR_SNAPSHOT;
4045       walUnlockShared(pWal, WAL_CKPT_LOCK);
4046     }
4047   }
4048   return rc;
4049 }
4050 
4051 /*
4052 ** Release a lock obtained by an earlier successful call to
4053 ** sqlite3WalSnapshotCheck().
4054 */
4055 void sqlite3WalSnapshotUnlock(Wal *pWal){
4056   assert( pWal );
4057   walUnlockShared(pWal, WAL_CKPT_LOCK);
4058 }
4059 
4060 
4061 #endif /* SQLITE_ENABLE_SNAPSHOT */
4062 
4063 #ifdef SQLITE_ENABLE_ZIPVFS
4064 /*
4065 ** If the argument is not NULL, it points to a Wal object that holds a
4066 ** read-lock. This function returns the database page-size if it is known,
4067 ** or zero if it is not (or if pWal is NULL).
4068 */
4069 int sqlite3WalFramesize(Wal *pWal){
4070   assert( pWal==0 || pWal->readLock>=0 );
4071   return (pWal ? pWal->szPage : 0);
4072 }
4073 #endif
4074 
4075 /* Return the sqlite3_file object for the WAL file
4076 */
4077 sqlite3_file *sqlite3WalFile(Wal *pWal){
4078   return pWal->pWalFd;
4079 }
4080 
4081 #endif /* #ifndef SQLITE_OMIT_WAL */
4082