1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. The values are: 165 ** 166 ** HASHTABLE_NPAGE 4096 167 ** HASHTABLE_NPAGE_ONE 4062 168 ** 169 ** Each index block contains two sections, a page-mapping that contains the 170 ** database page number associated with each wal frame, and a hash-table 171 ** that allows readers to query an index block for a specific page number. 172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 173 ** for the first index block) 32-bit page numbers. The first entry in the 174 ** first index-block contains the database page number corresponding to the 175 ** first frame in the WAL file. The first entry in the second index block 176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 177 ** the log, and so on. 178 ** 179 ** The last index block in a wal-index usually contains less than the full 180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 181 ** depending on the contents of the WAL file. This does not change the 182 ** allocated size of the page-mapping array - the page-mapping array merely 183 ** contains unused entries. 184 ** 185 ** Even without using the hash table, the last frame for page P 186 ** can be found by scanning the page-mapping sections of each index block 187 ** starting with the last index block and moving toward the first, and 188 ** within each index block, starting at the end and moving toward the 189 ** beginning. The first entry that equals P corresponds to the frame 190 ** holding the content for that page. 191 ** 192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 194 ** hash table for each page number in the mapping section, so the hash 195 ** table is never more than half full. The expected number of collisions 196 ** prior to finding a match is 1. Each entry of the hash table is an 197 ** 1-based index of an entry in the mapping section of the same 198 ** index block. Let K be the 1-based index of the largest entry in 199 ** the mapping section. (For index blocks other than the last, K will 200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 202 ** contain a value of 0. 203 ** 204 ** To look for page P in the hash table, first compute a hash iKey on 205 ** P as follows: 206 ** 207 ** iKey = (P * 383) % HASHTABLE_NSLOT 208 ** 209 ** Then start scanning entries of the hash table, starting with iKey 210 ** (wrapping around to the beginning when the end of the hash table is 211 ** reached) until an unused hash slot is found. Let the first unused slot 212 ** be at index iUnused. (iUnused might be less than iKey if there was 213 ** wrap-around.) Because the hash table is never more than half full, 214 ** the search is guaranteed to eventually hit an unused entry. Let 215 ** iMax be the value between iKey and iUnused, closest to iUnused, 216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 217 ** no hash slot such that aHash[i]==p) then page P is not in the 218 ** current index block. Otherwise the iMax-th mapping entry of the 219 ** current index block corresponds to the last entry that references 220 ** page P. 221 ** 222 ** A hash search begins with the last index block and moves toward the 223 ** first index block, looking for entries corresponding to page P. On 224 ** average, only two or three slots in each index block need to be 225 ** examined in order to either find the last entry for page P, or to 226 ** establish that no such entry exists in the block. Each index block 227 ** holds over 4000 entries. So two or three index blocks are sufficient 228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 229 ** comparisons (on average) suffice to either locate a frame in the 230 ** WAL or to establish that the frame does not exist in the WAL. This 231 ** is much faster than scanning the entire 10MB WAL. 232 ** 233 ** Note that entries are added in order of increasing K. Hence, one 234 ** reader might be using some value K0 and a second reader that started 235 ** at a later time (after additional transactions were added to the WAL 236 ** and to the wal-index) might be using a different value K1, where K1>K0. 237 ** Both readers can use the same hash table and mapping section to get 238 ** the correct result. There may be entries in the hash table with 239 ** K>K0 but to the first reader, those entries will appear to be unused 240 ** slots in the hash table and so the first reader will get an answer as 241 ** if no values greater than K0 had ever been inserted into the hash table 242 ** in the first place - which is what reader one wants. Meanwhile, the 243 ** second reader using K1 will see additional values that were inserted 244 ** later, which is exactly what reader two wants. 245 ** 246 ** When a rollback occurs, the value of K is decreased. Hash table entries 247 ** that correspond to frames greater than the new K value are removed 248 ** from the hash table at this point. 249 */ 250 #ifndef SQLITE_OMIT_WAL 251 252 #include "wal.h" 253 254 /* 255 ** Trace output macros 256 */ 257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 258 int sqlite3WalTrace = 0; 259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 260 #else 261 # define WALTRACE(X) 262 #endif 263 264 /* 265 ** The maximum (and only) versions of the wal and wal-index formats 266 ** that may be interpreted by this version of SQLite. 267 ** 268 ** If a client begins recovering a WAL file and finds that (a) the checksum 269 ** values in the wal-header are correct and (b) the version field is not 270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 271 ** 272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 273 ** checksum test is successful) and finds that the version field is not 274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 275 ** returns SQLITE_CANTOPEN. 276 */ 277 #define WAL_MAX_VERSION 3007000 278 #define WALINDEX_MAX_VERSION 3007000 279 280 /* 281 ** Index numbers for various locking bytes. WAL_NREADER is the number 282 ** of available reader locks and should be at least 3. The default 283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 284 ** 285 ** Technically, the various VFSes are free to implement these locks however 286 ** they see fit. However, compatibility is encouraged so that VFSes can 287 ** interoperate. The standard implemention used on both unix and windows 288 ** is for the index number to indicate a byte offset into the 289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 291 ** should be 120) is the location in the shm file for the first locking 292 ** byte. 293 */ 294 #define WAL_WRITE_LOCK 0 295 #define WAL_ALL_BUT_WRITE 1 296 #define WAL_CKPT_LOCK 1 297 #define WAL_RECOVER_LOCK 2 298 #define WAL_READ_LOCK(I) (3+(I)) 299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 300 301 302 /* Object declarations */ 303 typedef struct WalIndexHdr WalIndexHdr; 304 typedef struct WalIterator WalIterator; 305 typedef struct WalCkptInfo WalCkptInfo; 306 307 308 /* 309 ** The following object holds a copy of the wal-index header content. 310 ** 311 ** The actual header in the wal-index consists of two copies of this 312 ** object followed by one instance of the WalCkptInfo object. 313 ** For all versions of SQLite through 3.10.0 and probably beyond, 314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 315 ** the total header size is 136 bytes. 316 ** 317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 319 ** added in 3.7.1 when support for 64K pages was added. 320 */ 321 struct WalIndexHdr { 322 u32 iVersion; /* Wal-index version */ 323 u32 unused; /* Unused (padding) field */ 324 u32 iChange; /* Counter incremented each transaction */ 325 u8 isInit; /* 1 when initialized */ 326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 327 u16 szPage; /* Database page size in bytes. 1==64K */ 328 u32 mxFrame; /* Index of last valid frame in the WAL */ 329 u32 nPage; /* Size of database in pages */ 330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 332 u32 aCksum[2]; /* Checksum over all prior fields */ 333 }; 334 335 /* 336 ** A copy of the following object occurs in the wal-index immediately 337 ** following the second copy of the WalIndexHdr. This object stores 338 ** information used by checkpoint. 339 ** 340 ** nBackfill is the number of frames in the WAL that have been written 341 ** back into the database. (We call the act of moving content from WAL to 342 ** database "backfilling".) The nBackfill number is never greater than 343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 346 ** mxFrame back to zero when the WAL is reset. 347 ** 348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 350 ** the nBackfillAttempted is set before any backfilling is done and the 351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 354 ** 355 ** The aLock[] field is a set of bytes used for locking. These bytes should 356 ** never be read or written. 357 ** 358 ** There is one entry in aReadMark[] for each reader lock. If a reader 359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 362 ** a special case; its value is never used and it exists as a place-holder 363 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 365 ** directly from the database. 366 ** 367 ** The value of aReadMark[K] may only be changed by a thread that 368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 369 ** aReadMark[K] cannot changed while there is a reader is using that mark 370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 371 ** 372 ** The checkpointer may only transfer frames from WAL to database where 373 ** the frame numbers are less than or equal to every aReadMark[] that is 374 ** in use (that is, every aReadMark[j] for which there is a corresponding 375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 379 ** in the WAL has been backfilled into the database) then new readers 380 ** will choose aReadMark[0] which has value 0 and hence such reader will 381 ** get all their all content directly from the database file and ignore 382 ** the WAL. 383 ** 384 ** Writers normally append new frames to the end of the WAL. However, 385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 386 ** written back into the database) and if no readers are using the WAL 387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 388 ** the writer will first "reset" the WAL back to the beginning and start 389 ** writing new content beginning at frame 1. 390 ** 391 ** We assume that 32-bit loads are atomic and so no locks are needed in 392 ** order to read from any aReadMark[] entries. 393 */ 394 struct WalCkptInfo { 395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 399 u32 notUsed0; /* Available for future enhancements */ 400 }; 401 #define READMARK_NOT_USED 0xffffffff 402 403 404 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 405 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 406 ** only support mandatory file-locks, we do not read or write data 407 ** from the region of the file on which locks are applied. 408 */ 409 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 410 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 411 412 /* Size of header before each frame in wal */ 413 #define WAL_FRAME_HDRSIZE 24 414 415 /* Size of write ahead log header, including checksum. */ 416 #define WAL_HDRSIZE 32 417 418 /* WAL magic value. Either this value, or the same value with the least 419 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 420 ** big-endian format in the first 4 bytes of a WAL file. 421 ** 422 ** If the LSB is set, then the checksums for each frame within the WAL 423 ** file are calculated by treating all data as an array of 32-bit 424 ** big-endian words. Otherwise, they are calculated by interpreting 425 ** all data as 32-bit little-endian words. 426 */ 427 #define WAL_MAGIC 0x377f0682 428 429 /* 430 ** Return the offset of frame iFrame in the write-ahead log file, 431 ** assuming a database page size of szPage bytes. The offset returned 432 ** is to the start of the write-ahead log frame-header. 433 */ 434 #define walFrameOffset(iFrame, szPage) ( \ 435 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 436 ) 437 438 /* 439 ** An open write-ahead log file is represented by an instance of the 440 ** following object. 441 */ 442 struct Wal { 443 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 444 sqlite3_file *pDbFd; /* File handle for the database file */ 445 sqlite3_file *pWalFd; /* File handle for WAL file */ 446 u32 iCallback; /* Value to pass to log callback (or 0) */ 447 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 448 int nWiData; /* Size of array apWiData */ 449 int szFirstBlock; /* Size of first block written to WAL file */ 450 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 451 u32 szPage; /* Database page size */ 452 i16 readLock; /* Which read lock is being held. -1 for none */ 453 u8 syncFlags; /* Flags to use to sync header writes */ 454 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 455 u8 writeLock; /* True if in a write transaction */ 456 u8 ckptLock; /* True if holding a checkpoint lock */ 457 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 458 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 459 u8 syncHeader; /* Fsync the WAL header if true */ 460 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 461 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 462 WalIndexHdr hdr; /* Wal-index header for current transaction */ 463 u32 minFrame; /* Ignore wal frames before this one */ 464 u32 iReCksum; /* On commit, recalculate checksums from here */ 465 const char *zWalName; /* Name of WAL file */ 466 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 467 #ifdef SQLITE_DEBUG 468 u8 lockError; /* True if a locking error has occurred */ 469 #endif 470 #ifdef SQLITE_ENABLE_SNAPSHOT 471 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 472 #endif 473 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 474 sqlite3 *db; 475 #endif 476 }; 477 478 /* 479 ** Candidate values for Wal.exclusiveMode. 480 */ 481 #define WAL_NORMAL_MODE 0 482 #define WAL_EXCLUSIVE_MODE 1 483 #define WAL_HEAPMEMORY_MODE 2 484 485 /* 486 ** Possible values for WAL.readOnly 487 */ 488 #define WAL_RDWR 0 /* Normal read/write connection */ 489 #define WAL_RDONLY 1 /* The WAL file is readonly */ 490 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 491 492 /* 493 ** Each page of the wal-index mapping contains a hash-table made up of 494 ** an array of HASHTABLE_NSLOT elements of the following type. 495 */ 496 typedef u16 ht_slot; 497 498 /* 499 ** This structure is used to implement an iterator that loops through 500 ** all frames in the WAL in database page order. Where two or more frames 501 ** correspond to the same database page, the iterator visits only the 502 ** frame most recently written to the WAL (in other words, the frame with 503 ** the largest index). 504 ** 505 ** The internals of this structure are only accessed by: 506 ** 507 ** walIteratorInit() - Create a new iterator, 508 ** walIteratorNext() - Step an iterator, 509 ** walIteratorFree() - Free an iterator. 510 ** 511 ** This functionality is used by the checkpoint code (see walCheckpoint()). 512 */ 513 struct WalIterator { 514 u32 iPrior; /* Last result returned from the iterator */ 515 int nSegment; /* Number of entries in aSegment[] */ 516 struct WalSegment { 517 int iNext; /* Next slot in aIndex[] not yet returned */ 518 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 519 u32 *aPgno; /* Array of page numbers. */ 520 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 521 int iZero; /* Frame number associated with aPgno[0] */ 522 } aSegment[1]; /* One for every 32KB page in the wal-index */ 523 }; 524 525 /* 526 ** Define the parameters of the hash tables in the wal-index file. There 527 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 528 ** wal-index. 529 ** 530 ** Changing any of these constants will alter the wal-index format and 531 ** create incompatibilities. 532 */ 533 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 534 #define HASHTABLE_HASH_1 383 /* Should be prime */ 535 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 536 537 /* 538 ** The block of page numbers associated with the first hash-table in a 539 ** wal-index is smaller than usual. This is so that there is a complete 540 ** hash-table on each aligned 32KB page of the wal-index. 541 */ 542 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 543 544 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 545 #define WALINDEX_PGSZ ( \ 546 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 547 ) 548 549 /* 550 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 551 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 552 ** numbered from zero. 553 ** 554 ** If the wal-index is currently smaller the iPage pages then the size 555 ** of the wal-index might be increased, but only if it is safe to do 556 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 557 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 558 ** 559 ** If this call is successful, *ppPage is set to point to the wal-index 560 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 561 ** then an SQLite error code is returned and *ppPage is set to 0. 562 */ 563 static SQLITE_NOINLINE int walIndexPageRealloc( 564 Wal *pWal, /* The WAL context */ 565 int iPage, /* The page we seek */ 566 volatile u32 **ppPage /* Write the page pointer here */ 567 ){ 568 int rc = SQLITE_OK; 569 570 /* Enlarge the pWal->apWiData[] array if required */ 571 if( pWal->nWiData<=iPage ){ 572 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 573 volatile u32 **apNew; 574 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 575 if( !apNew ){ 576 *ppPage = 0; 577 return SQLITE_NOMEM_BKPT; 578 } 579 memset((void*)&apNew[pWal->nWiData], 0, 580 sizeof(u32*)*(iPage+1-pWal->nWiData)); 581 pWal->apWiData = apNew; 582 pWal->nWiData = iPage+1; 583 } 584 585 /* Request a pointer to the required page from the VFS */ 586 assert( pWal->apWiData[iPage]==0 ); 587 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 588 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 589 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 590 }else{ 591 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 592 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 593 ); 594 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 595 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 596 if( rc==SQLITE_OK ){ 597 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 598 }else if( (rc&0xff)==SQLITE_READONLY ){ 599 pWal->readOnly |= WAL_SHM_RDONLY; 600 if( rc==SQLITE_READONLY ){ 601 rc = SQLITE_OK; 602 } 603 } 604 } 605 606 *ppPage = pWal->apWiData[iPage]; 607 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 608 return rc; 609 } 610 static int walIndexPage( 611 Wal *pWal, /* The WAL context */ 612 int iPage, /* The page we seek */ 613 volatile u32 **ppPage /* Write the page pointer here */ 614 ){ 615 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 616 return walIndexPageRealloc(pWal, iPage, ppPage); 617 } 618 return SQLITE_OK; 619 } 620 621 /* 622 ** Return a pointer to the WalCkptInfo structure in the wal-index. 623 */ 624 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 625 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 626 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 627 } 628 629 /* 630 ** Return a pointer to the WalIndexHdr structure in the wal-index. 631 */ 632 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 633 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 634 return (volatile WalIndexHdr*)pWal->apWiData[0]; 635 } 636 637 /* 638 ** The argument to this macro must be of type u32. On a little-endian 639 ** architecture, it returns the u32 value that results from interpreting 640 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 641 ** returns the value that would be produced by interpreting the 4 bytes 642 ** of the input value as a little-endian integer. 643 */ 644 #define BYTESWAP32(x) ( \ 645 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 646 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 647 ) 648 649 /* 650 ** Generate or extend an 8 byte checksum based on the data in 651 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 652 ** initial values of 0 and 0 if aIn==NULL). 653 ** 654 ** The checksum is written back into aOut[] before returning. 655 ** 656 ** nByte must be a positive multiple of 8. 657 */ 658 static void walChecksumBytes( 659 int nativeCksum, /* True for native byte-order, false for non-native */ 660 u8 *a, /* Content to be checksummed */ 661 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 662 const u32 *aIn, /* Initial checksum value input */ 663 u32 *aOut /* OUT: Final checksum value output */ 664 ){ 665 u32 s1, s2; 666 u32 *aData = (u32 *)a; 667 u32 *aEnd = (u32 *)&a[nByte]; 668 669 if( aIn ){ 670 s1 = aIn[0]; 671 s2 = aIn[1]; 672 }else{ 673 s1 = s2 = 0; 674 } 675 676 assert( nByte>=8 ); 677 assert( (nByte&0x00000007)==0 ); 678 assert( nByte<=65536 ); 679 680 if( nativeCksum ){ 681 do { 682 s1 += *aData++ + s2; 683 s2 += *aData++ + s1; 684 }while( aData<aEnd ); 685 }else{ 686 do { 687 s1 += BYTESWAP32(aData[0]) + s2; 688 s2 += BYTESWAP32(aData[1]) + s1; 689 aData += 2; 690 }while( aData<aEnd ); 691 } 692 693 aOut[0] = s1; 694 aOut[1] = s2; 695 } 696 697 /* 698 ** If there is the possibility of concurrent access to the SHM file 699 ** from multiple threads and/or processes, then do a memory barrier. 700 */ 701 static void walShmBarrier(Wal *pWal){ 702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 703 sqlite3OsShmBarrier(pWal->pDbFd); 704 } 705 } 706 707 /* 708 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 709 ** definition as a hint that the function contains constructs that 710 ** might give false-positive TSAN warnings. 711 ** 712 ** See tag-20200519-1. 713 */ 714 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 715 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 716 #else 717 # define SQLITE_NO_TSAN 718 #endif 719 720 /* 721 ** Write the header information in pWal->hdr into the wal-index. 722 ** 723 ** The checksum on pWal->hdr is updated before it is written. 724 */ 725 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 726 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 727 const int nCksum = offsetof(WalIndexHdr, aCksum); 728 729 assert( pWal->writeLock ); 730 pWal->hdr.isInit = 1; 731 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 732 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 733 /* Possible TSAN false-positive. See tag-20200519-1 */ 734 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 735 walShmBarrier(pWal); 736 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 737 } 738 739 /* 740 ** This function encodes a single frame header and writes it to a buffer 741 ** supplied by the caller. A frame-header is made up of a series of 742 ** 4-byte big-endian integers, as follows: 743 ** 744 ** 0: Page number. 745 ** 4: For commit records, the size of the database image in pages 746 ** after the commit. For all other records, zero. 747 ** 8: Salt-1 (copied from the wal-header) 748 ** 12: Salt-2 (copied from the wal-header) 749 ** 16: Checksum-1. 750 ** 20: Checksum-2. 751 */ 752 static void walEncodeFrame( 753 Wal *pWal, /* The write-ahead log */ 754 u32 iPage, /* Database page number for frame */ 755 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 756 u8 *aData, /* Pointer to page data */ 757 u8 *aFrame /* OUT: Write encoded frame here */ 758 ){ 759 int nativeCksum; /* True for native byte-order checksums */ 760 u32 *aCksum = pWal->hdr.aFrameCksum; 761 assert( WAL_FRAME_HDRSIZE==24 ); 762 sqlite3Put4byte(&aFrame[0], iPage); 763 sqlite3Put4byte(&aFrame[4], nTruncate); 764 if( pWal->iReCksum==0 ){ 765 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 766 767 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 768 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 769 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 770 771 sqlite3Put4byte(&aFrame[16], aCksum[0]); 772 sqlite3Put4byte(&aFrame[20], aCksum[1]); 773 }else{ 774 memset(&aFrame[8], 0, 16); 775 } 776 } 777 778 /* 779 ** Check to see if the frame with header in aFrame[] and content 780 ** in aData[] is valid. If it is a valid frame, fill *piPage and 781 ** *pnTruncate and return true. Return if the frame is not valid. 782 */ 783 static int walDecodeFrame( 784 Wal *pWal, /* The write-ahead log */ 785 u32 *piPage, /* OUT: Database page number for frame */ 786 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 787 u8 *aData, /* Pointer to page data (for checksum) */ 788 u8 *aFrame /* Frame data */ 789 ){ 790 int nativeCksum; /* True for native byte-order checksums */ 791 u32 *aCksum = pWal->hdr.aFrameCksum; 792 u32 pgno; /* Page number of the frame */ 793 assert( WAL_FRAME_HDRSIZE==24 ); 794 795 /* A frame is only valid if the salt values in the frame-header 796 ** match the salt values in the wal-header. 797 */ 798 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 799 return 0; 800 } 801 802 /* A frame is only valid if the page number is creater than zero. 803 */ 804 pgno = sqlite3Get4byte(&aFrame[0]); 805 if( pgno==0 ){ 806 return 0; 807 } 808 809 /* A frame is only valid if a checksum of the WAL header, 810 ** all prior frams, the first 16 bytes of this frame-header, 811 ** and the frame-data matches the checksum in the last 8 812 ** bytes of this frame-header. 813 */ 814 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 815 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 816 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 817 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 818 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 819 ){ 820 /* Checksum failed. */ 821 return 0; 822 } 823 824 /* If we reach this point, the frame is valid. Return the page number 825 ** and the new database size. 826 */ 827 *piPage = pgno; 828 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 829 return 1; 830 } 831 832 833 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 834 /* 835 ** Names of locks. This routine is used to provide debugging output and is not 836 ** a part of an ordinary build. 837 */ 838 static const char *walLockName(int lockIdx){ 839 if( lockIdx==WAL_WRITE_LOCK ){ 840 return "WRITE-LOCK"; 841 }else if( lockIdx==WAL_CKPT_LOCK ){ 842 return "CKPT-LOCK"; 843 }else if( lockIdx==WAL_RECOVER_LOCK ){ 844 return "RECOVER-LOCK"; 845 }else{ 846 static char zName[15]; 847 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 848 lockIdx-WAL_READ_LOCK(0)); 849 return zName; 850 } 851 } 852 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 853 854 855 /* 856 ** Set or release locks on the WAL. Locks are either shared or exclusive. 857 ** A lock cannot be moved directly between shared and exclusive - it must go 858 ** through the unlocked state first. 859 ** 860 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 861 */ 862 static int walLockShared(Wal *pWal, int lockIdx){ 863 int rc; 864 if( pWal->exclusiveMode ) return SQLITE_OK; 865 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 866 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 867 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 868 walLockName(lockIdx), rc ? "failed" : "ok")); 869 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 870 return rc; 871 } 872 static void walUnlockShared(Wal *pWal, int lockIdx){ 873 if( pWal->exclusiveMode ) return; 874 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 875 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 876 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 877 } 878 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 879 int rc; 880 if( pWal->exclusiveMode ) return SQLITE_OK; 881 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 882 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 883 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 884 walLockName(lockIdx), n, rc ? "failed" : "ok")); 885 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 886 return rc; 887 } 888 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 889 if( pWal->exclusiveMode ) return; 890 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 891 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 892 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 893 walLockName(lockIdx), n)); 894 } 895 896 /* 897 ** Compute a hash on a page number. The resulting hash value must land 898 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 899 ** the hash to the next value in the event of a collision. 900 */ 901 static int walHash(u32 iPage){ 902 assert( iPage>0 ); 903 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 904 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 905 } 906 static int walNextHash(int iPriorHash){ 907 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 908 } 909 910 /* 911 ** An instance of the WalHashLoc object is used to describe the location 912 ** of a page hash table in the wal-index. This becomes the return value 913 ** from walHashGet(). 914 */ 915 typedef struct WalHashLoc WalHashLoc; 916 struct WalHashLoc { 917 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 918 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 919 u32 iZero; /* One less than the frame number of first indexed*/ 920 }; 921 922 /* 923 ** Return pointers to the hash table and page number array stored on 924 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 925 ** numbered starting from 0. 926 ** 927 ** Set output variable pLoc->aHash to point to the start of the hash table 928 ** in the wal-index file. Set pLoc->iZero to one less than the frame 929 ** number of the first frame indexed by this hash table. If a 930 ** slot in the hash table is set to N, it refers to frame number 931 ** (pLoc->iZero+N) in the log. 932 ** 933 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 934 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 935 */ 936 static int walHashGet( 937 Wal *pWal, /* WAL handle */ 938 int iHash, /* Find the iHash'th table */ 939 WalHashLoc *pLoc /* OUT: Hash table location */ 940 ){ 941 int rc; /* Return code */ 942 943 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 944 assert( rc==SQLITE_OK || iHash>0 ); 945 946 if( rc==SQLITE_OK ){ 947 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 948 if( iHash==0 ){ 949 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 950 pLoc->iZero = 0; 951 }else{ 952 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 953 } 954 pLoc->aPgno = &pLoc->aPgno[-1]; 955 } 956 return rc; 957 } 958 959 /* 960 ** Return the number of the wal-index page that contains the hash-table 961 ** and page-number array that contain entries corresponding to WAL frame 962 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 963 ** are numbered starting from 0. 964 */ 965 static int walFramePage(u32 iFrame){ 966 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 967 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 968 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 969 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 970 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 971 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 972 ); 973 assert( iHash>=0 ); 974 return iHash; 975 } 976 977 /* 978 ** Return the page number associated with frame iFrame in this WAL. 979 */ 980 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 981 int iHash = walFramePage(iFrame); 982 if( iHash==0 ){ 983 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 984 } 985 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 986 } 987 988 /* 989 ** Remove entries from the hash table that point to WAL slots greater 990 ** than pWal->hdr.mxFrame. 991 ** 992 ** This function is called whenever pWal->hdr.mxFrame is decreased due 993 ** to a rollback or savepoint. 994 ** 995 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 996 ** updated. Any later hash tables will be automatically cleared when 997 ** pWal->hdr.mxFrame advances to the point where those hash tables are 998 ** actually needed. 999 */ 1000 static void walCleanupHash(Wal *pWal){ 1001 WalHashLoc sLoc; /* Hash table location */ 1002 int iLimit = 0; /* Zero values greater than this */ 1003 int nByte; /* Number of bytes to zero in aPgno[] */ 1004 int i; /* Used to iterate through aHash[] */ 1005 1006 assert( pWal->writeLock ); 1007 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1008 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1009 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1010 1011 if( pWal->hdr.mxFrame==0 ) return; 1012 1013 /* Obtain pointers to the hash-table and page-number array containing 1014 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1015 ** that the page said hash-table and array reside on is already mapped.(1) 1016 */ 1017 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1018 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1019 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1020 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1021 1022 /* Zero all hash-table entries that correspond to frame numbers greater 1023 ** than pWal->hdr.mxFrame. 1024 */ 1025 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1026 assert( iLimit>0 ); 1027 for(i=0; i<HASHTABLE_NSLOT; i++){ 1028 if( sLoc.aHash[i]>iLimit ){ 1029 sLoc.aHash[i] = 0; 1030 } 1031 } 1032 1033 /* Zero the entries in the aPgno array that correspond to frames with 1034 ** frame numbers greater than pWal->hdr.mxFrame. 1035 */ 1036 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1037 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1038 1039 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1040 /* Verify that the every entry in the mapping region is still reachable 1041 ** via the hash table even after the cleanup. 1042 */ 1043 if( iLimit ){ 1044 int j; /* Loop counter */ 1045 int iKey; /* Hash key */ 1046 for(j=1; j<=iLimit; j++){ 1047 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1048 if( sLoc.aHash[iKey]==j ) break; 1049 } 1050 assert( sLoc.aHash[iKey]==j ); 1051 } 1052 } 1053 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1054 } 1055 1056 1057 /* 1058 ** Set an entry in the wal-index that will map database page number 1059 ** pPage into WAL frame iFrame. 1060 */ 1061 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1062 int rc; /* Return code */ 1063 WalHashLoc sLoc; /* Wal-index hash table location */ 1064 1065 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1066 1067 /* Assuming the wal-index file was successfully mapped, populate the 1068 ** page number array and hash table entry. 1069 */ 1070 if( rc==SQLITE_OK ){ 1071 int iKey; /* Hash table key */ 1072 int idx; /* Value to write to hash-table slot */ 1073 int nCollide; /* Number of hash collisions */ 1074 1075 idx = iFrame - sLoc.iZero; 1076 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1077 1078 /* If this is the first entry to be added to this hash-table, zero the 1079 ** entire hash table and aPgno[] array before proceeding. 1080 */ 1081 if( idx==1 ){ 1082 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1083 - (u8 *)&sLoc.aPgno[1]); 1084 memset((void*)&sLoc.aPgno[1], 0, nByte); 1085 } 1086 1087 /* If the entry in aPgno[] is already set, then the previous writer 1088 ** must have exited unexpectedly in the middle of a transaction (after 1089 ** writing one or more dirty pages to the WAL to free up memory). 1090 ** Remove the remnants of that writers uncommitted transaction from 1091 ** the hash-table before writing any new entries. 1092 */ 1093 if( sLoc.aPgno[idx] ){ 1094 walCleanupHash(pWal); 1095 assert( !sLoc.aPgno[idx] ); 1096 } 1097 1098 /* Write the aPgno[] array entry and the hash-table slot. */ 1099 nCollide = idx; 1100 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1101 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1102 } 1103 sLoc.aPgno[idx] = iPage; 1104 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1105 1106 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1107 /* Verify that the number of entries in the hash table exactly equals 1108 ** the number of entries in the mapping region. 1109 */ 1110 { 1111 int i; /* Loop counter */ 1112 int nEntry = 0; /* Number of entries in the hash table */ 1113 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1114 assert( nEntry==idx ); 1115 } 1116 1117 /* Verify that the every entry in the mapping region is reachable 1118 ** via the hash table. This turns out to be a really, really expensive 1119 ** thing to check, so only do this occasionally - not on every 1120 ** iteration. 1121 */ 1122 if( (idx&0x3ff)==0 ){ 1123 int i; /* Loop counter */ 1124 for(i=1; i<=idx; i++){ 1125 for(iKey=walHash(sLoc.aPgno[i]); 1126 sLoc.aHash[iKey]; 1127 iKey=walNextHash(iKey)){ 1128 if( sLoc.aHash[iKey]==i ) break; 1129 } 1130 assert( sLoc.aHash[iKey]==i ); 1131 } 1132 } 1133 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1134 } 1135 1136 1137 return rc; 1138 } 1139 1140 1141 /* 1142 ** Recover the wal-index by reading the write-ahead log file. 1143 ** 1144 ** This routine first tries to establish an exclusive lock on the 1145 ** wal-index to prevent other threads/processes from doing anything 1146 ** with the WAL or wal-index while recovery is running. The 1147 ** WAL_RECOVER_LOCK is also held so that other threads will know 1148 ** that this thread is running recovery. If unable to establish 1149 ** the necessary locks, this routine returns SQLITE_BUSY. 1150 */ 1151 static int walIndexRecover(Wal *pWal){ 1152 int rc; /* Return Code */ 1153 i64 nSize; /* Size of log file */ 1154 u32 aFrameCksum[2] = {0, 0}; 1155 int iLock; /* Lock offset to lock for checkpoint */ 1156 1157 /* Obtain an exclusive lock on all byte in the locking range not already 1158 ** locked by the caller. The caller is guaranteed to have locked the 1159 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1160 ** If successful, the same bytes that are locked here are unlocked before 1161 ** this function returns. 1162 */ 1163 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1164 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1165 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1166 assert( pWal->writeLock ); 1167 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1168 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1169 if( rc ){ 1170 return rc; 1171 } 1172 1173 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1174 1175 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1176 1177 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1178 if( rc!=SQLITE_OK ){ 1179 goto recovery_error; 1180 } 1181 1182 if( nSize>WAL_HDRSIZE ){ 1183 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1184 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1185 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1186 int szFrame; /* Number of bytes in buffer aFrame[] */ 1187 u8 *aData; /* Pointer to data part of aFrame buffer */ 1188 int szPage; /* Page size according to the log */ 1189 u32 magic; /* Magic value read from WAL header */ 1190 u32 version; /* Magic value read from WAL header */ 1191 int isValid; /* True if this frame is valid */ 1192 u32 iPg; /* Current 32KB wal-index page */ 1193 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 1194 1195 /* Read in the WAL header. */ 1196 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1197 if( rc!=SQLITE_OK ){ 1198 goto recovery_error; 1199 } 1200 1201 /* If the database page size is not a power of two, or is greater than 1202 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1203 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1204 ** WAL file. 1205 */ 1206 magic = sqlite3Get4byte(&aBuf[0]); 1207 szPage = sqlite3Get4byte(&aBuf[8]); 1208 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1209 || szPage&(szPage-1) 1210 || szPage>SQLITE_MAX_PAGE_SIZE 1211 || szPage<512 1212 ){ 1213 goto finished; 1214 } 1215 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1216 pWal->szPage = szPage; 1217 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1218 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1219 1220 /* Verify that the WAL header checksum is correct */ 1221 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1222 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1223 ); 1224 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1225 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1226 ){ 1227 goto finished; 1228 } 1229 1230 /* Verify that the version number on the WAL format is one that 1231 ** are able to understand */ 1232 version = sqlite3Get4byte(&aBuf[4]); 1233 if( version!=WAL_MAX_VERSION ){ 1234 rc = SQLITE_CANTOPEN_BKPT; 1235 goto finished; 1236 } 1237 1238 /* Malloc a buffer to read frames into. */ 1239 szFrame = szPage + WAL_FRAME_HDRSIZE; 1240 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1241 if( !aFrame ){ 1242 rc = SQLITE_NOMEM_BKPT; 1243 goto recovery_error; 1244 } 1245 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1246 aPrivate = (u32*)&aData[szPage]; 1247 1248 /* Read all frames from the log file. */ 1249 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1250 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 1251 u32 *aShare; 1252 u32 iFrame; /* Index of last frame read */ 1253 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1254 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1255 u32 nHdr, nHdr32; 1256 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1257 if( rc ) break; 1258 pWal->apWiData[iPg] = aPrivate; 1259 1260 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1261 i64 iOffset = walFrameOffset(iFrame, szPage); 1262 u32 pgno; /* Database page number for frame */ 1263 u32 nTruncate; /* dbsize field from frame header */ 1264 1265 /* Read and decode the next log frame. */ 1266 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1267 if( rc!=SQLITE_OK ) break; 1268 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1269 if( !isValid ) break; 1270 rc = walIndexAppend(pWal, iFrame, pgno); 1271 if( NEVER(rc!=SQLITE_OK) ) break; 1272 1273 /* If nTruncate is non-zero, this is a commit record. */ 1274 if( nTruncate ){ 1275 pWal->hdr.mxFrame = iFrame; 1276 pWal->hdr.nPage = nTruncate; 1277 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1278 testcase( szPage<=32768 ); 1279 testcase( szPage>=65536 ); 1280 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1281 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1282 } 1283 } 1284 pWal->apWiData[iPg] = aShare; 1285 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1286 nHdr32 = nHdr / sizeof(u32); 1287 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 1288 /* Memcpy() should work fine here, on all reasonable implementations. 1289 ** Technically, memcpy() might change the destination to some 1290 ** intermediate value before setting to the final value, and that might 1291 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 1292 ** do that, according to the spec, but no memcpy() implementation that 1293 ** we know of actually does that, which is why we say that memcpy() 1294 ** is safe for this. Memcpy() is certainly a lot faster. 1295 */ 1296 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1297 #else 1298 /* In the event that some platform is found for which memcpy() 1299 ** changes the destination to some intermediate value before 1300 ** setting the final value, this alternative copy routine is 1301 ** provided. 1302 */ 1303 { 1304 int i; 1305 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 1306 if( aShare[i]!=aPrivate[i] ){ 1307 /* Atomic memory operations are not required here because if 1308 ** the value needs to be changed, that means it is not being 1309 ** accessed concurrently. */ 1310 aShare[i] = aPrivate[i]; 1311 } 1312 } 1313 } 1314 #endif 1315 if( iFrame<=iLast ) break; 1316 } 1317 1318 sqlite3_free(aFrame); 1319 } 1320 1321 finished: 1322 if( rc==SQLITE_OK ){ 1323 volatile WalCkptInfo *pInfo; 1324 int i; 1325 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1326 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1327 walIndexWriteHdr(pWal); 1328 1329 /* Reset the checkpoint-header. This is safe because this thread is 1330 ** currently holding locks that exclude all other writers and 1331 ** checkpointers. Then set the values of read-mark slots 1 through N. 1332 */ 1333 pInfo = walCkptInfo(pWal); 1334 pInfo->nBackfill = 0; 1335 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1336 pInfo->aReadMark[0] = 0; 1337 for(i=1; i<WAL_NREADER; i++){ 1338 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1339 if( rc==SQLITE_OK ){ 1340 if( i==1 && pWal->hdr.mxFrame ){ 1341 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1342 }else{ 1343 pInfo->aReadMark[i] = READMARK_NOT_USED; 1344 } 1345 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1346 }else if( rc!=SQLITE_BUSY ){ 1347 goto recovery_error; 1348 } 1349 } 1350 1351 /* If more than one frame was recovered from the log file, report an 1352 ** event via sqlite3_log(). This is to help with identifying performance 1353 ** problems caused by applications routinely shutting down without 1354 ** checkpointing the log file. 1355 */ 1356 if( pWal->hdr.nPage ){ 1357 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1358 "recovered %d frames from WAL file %s", 1359 pWal->hdr.mxFrame, pWal->zWalName 1360 ); 1361 } 1362 } 1363 1364 recovery_error: 1365 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1366 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1367 return rc; 1368 } 1369 1370 /* 1371 ** Close an open wal-index. 1372 */ 1373 static void walIndexClose(Wal *pWal, int isDelete){ 1374 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1375 int i; 1376 for(i=0; i<pWal->nWiData; i++){ 1377 sqlite3_free((void *)pWal->apWiData[i]); 1378 pWal->apWiData[i] = 0; 1379 } 1380 } 1381 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1382 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1383 } 1384 } 1385 1386 /* 1387 ** Open a connection to the WAL file zWalName. The database file must 1388 ** already be opened on connection pDbFd. The buffer that zWalName points 1389 ** to must remain valid for the lifetime of the returned Wal* handle. 1390 ** 1391 ** A SHARED lock should be held on the database file when this function 1392 ** is called. The purpose of this SHARED lock is to prevent any other 1393 ** client from unlinking the WAL or wal-index file. If another process 1394 ** were to do this just after this client opened one of these files, the 1395 ** system would be badly broken. 1396 ** 1397 ** If the log file is successfully opened, SQLITE_OK is returned and 1398 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1399 ** an SQLite error code is returned and *ppWal is left unmodified. 1400 */ 1401 int sqlite3WalOpen( 1402 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1403 sqlite3_file *pDbFd, /* The open database file */ 1404 const char *zWalName, /* Name of the WAL file */ 1405 int bNoShm, /* True to run in heap-memory mode */ 1406 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1407 Wal **ppWal /* OUT: Allocated Wal handle */ 1408 ){ 1409 int rc; /* Return Code */ 1410 Wal *pRet; /* Object to allocate and return */ 1411 int flags; /* Flags passed to OsOpen() */ 1412 1413 assert( zWalName && zWalName[0] ); 1414 assert( pDbFd ); 1415 1416 /* Verify the values of various constants. Any changes to the values 1417 ** of these constants would result in an incompatible on-disk format 1418 ** for the -shm file. Any change that causes one of these asserts to 1419 ** fail is a backward compatibility problem, even if the change otherwise 1420 ** works. 1421 ** 1422 ** This table also serves as a helpful cross-reference when trying to 1423 ** interpret hex dumps of the -shm file. 1424 */ 1425 assert( 48 == sizeof(WalIndexHdr) ); 1426 assert( 40 == sizeof(WalCkptInfo) ); 1427 assert( 120 == WALINDEX_LOCK_OFFSET ); 1428 assert( 136 == WALINDEX_HDR_SIZE ); 1429 assert( 4096 == HASHTABLE_NPAGE ); 1430 assert( 4062 == HASHTABLE_NPAGE_ONE ); 1431 assert( 8192 == HASHTABLE_NSLOT ); 1432 assert( 383 == HASHTABLE_HASH_1 ); 1433 assert( 32768 == WALINDEX_PGSZ ); 1434 assert( 8 == SQLITE_SHM_NLOCK ); 1435 assert( 5 == WAL_NREADER ); 1436 assert( 24 == WAL_FRAME_HDRSIZE ); 1437 assert( 32 == WAL_HDRSIZE ); 1438 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 1439 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 1440 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 1441 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 1442 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 1443 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 1444 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 1445 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 1446 1447 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1448 ** this source file. Verify that the #defines of the locking byte offsets 1449 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1450 ** For that matter, if the lock offset ever changes from its initial design 1451 ** value of 120, we need to know that so there is an assert() to check it. 1452 */ 1453 #ifdef WIN_SHM_BASE 1454 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1455 #endif 1456 #ifdef UNIX_SHM_BASE 1457 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1458 #endif 1459 1460 1461 /* Allocate an instance of struct Wal to return. */ 1462 *ppWal = 0; 1463 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1464 if( !pRet ){ 1465 return SQLITE_NOMEM_BKPT; 1466 } 1467 1468 pRet->pVfs = pVfs; 1469 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1470 pRet->pDbFd = pDbFd; 1471 pRet->readLock = -1; 1472 pRet->mxWalSize = mxWalSize; 1473 pRet->zWalName = zWalName; 1474 pRet->syncHeader = 1; 1475 pRet->padToSectorBoundary = 1; 1476 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1477 1478 /* Open file handle on the write-ahead log file. */ 1479 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1480 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1481 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1482 pRet->readOnly = WAL_RDONLY; 1483 } 1484 1485 if( rc!=SQLITE_OK ){ 1486 walIndexClose(pRet, 0); 1487 sqlite3OsClose(pRet->pWalFd); 1488 sqlite3_free(pRet); 1489 }else{ 1490 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1491 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1492 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1493 pRet->padToSectorBoundary = 0; 1494 } 1495 *ppWal = pRet; 1496 WALTRACE(("WAL%d: opened\n", pRet)); 1497 } 1498 return rc; 1499 } 1500 1501 /* 1502 ** Change the size to which the WAL file is trucated on each reset. 1503 */ 1504 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1505 if( pWal ) pWal->mxWalSize = iLimit; 1506 } 1507 1508 /* 1509 ** Find the smallest page number out of all pages held in the WAL that 1510 ** has not been returned by any prior invocation of this method on the 1511 ** same WalIterator object. Write into *piFrame the frame index where 1512 ** that page was last written into the WAL. Write into *piPage the page 1513 ** number. 1514 ** 1515 ** Return 0 on success. If there are no pages in the WAL with a page 1516 ** number larger than *piPage, then return 1. 1517 */ 1518 static int walIteratorNext( 1519 WalIterator *p, /* Iterator */ 1520 u32 *piPage, /* OUT: The page number of the next page */ 1521 u32 *piFrame /* OUT: Wal frame index of next page */ 1522 ){ 1523 u32 iMin; /* Result pgno must be greater than iMin */ 1524 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1525 int i; /* For looping through segments */ 1526 1527 iMin = p->iPrior; 1528 assert( iMin<0xffffffff ); 1529 for(i=p->nSegment-1; i>=0; i--){ 1530 struct WalSegment *pSegment = &p->aSegment[i]; 1531 while( pSegment->iNext<pSegment->nEntry ){ 1532 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1533 if( iPg>iMin ){ 1534 if( iPg<iRet ){ 1535 iRet = iPg; 1536 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1537 } 1538 break; 1539 } 1540 pSegment->iNext++; 1541 } 1542 } 1543 1544 *piPage = p->iPrior = iRet; 1545 return (iRet==0xFFFFFFFF); 1546 } 1547 1548 /* 1549 ** This function merges two sorted lists into a single sorted list. 1550 ** 1551 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1552 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1553 ** is guaranteed for all J<K: 1554 ** 1555 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1556 ** aContent[aRight[J]] < aContent[aRight[K]] 1557 ** 1558 ** This routine overwrites aRight[] with a new (probably longer) sequence 1559 ** of indices such that the aRight[] contains every index that appears in 1560 ** either aLeft[] or the old aRight[] and such that the second condition 1561 ** above is still met. 1562 ** 1563 ** The aContent[aLeft[X]] values will be unique for all X. And the 1564 ** aContent[aRight[X]] values will be unique too. But there might be 1565 ** one or more combinations of X and Y such that 1566 ** 1567 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1568 ** 1569 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1570 */ 1571 static void walMerge( 1572 const u32 *aContent, /* Pages in wal - keys for the sort */ 1573 ht_slot *aLeft, /* IN: Left hand input list */ 1574 int nLeft, /* IN: Elements in array *paLeft */ 1575 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1576 int *pnRight, /* IN/OUT: Elements in *paRight */ 1577 ht_slot *aTmp /* Temporary buffer */ 1578 ){ 1579 int iLeft = 0; /* Current index in aLeft */ 1580 int iRight = 0; /* Current index in aRight */ 1581 int iOut = 0; /* Current index in output buffer */ 1582 int nRight = *pnRight; 1583 ht_slot *aRight = *paRight; 1584 1585 assert( nLeft>0 && nRight>0 ); 1586 while( iRight<nRight || iLeft<nLeft ){ 1587 ht_slot logpage; 1588 Pgno dbpage; 1589 1590 if( (iLeft<nLeft) 1591 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1592 ){ 1593 logpage = aLeft[iLeft++]; 1594 }else{ 1595 logpage = aRight[iRight++]; 1596 } 1597 dbpage = aContent[logpage]; 1598 1599 aTmp[iOut++] = logpage; 1600 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1601 1602 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1603 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1604 } 1605 1606 *paRight = aLeft; 1607 *pnRight = iOut; 1608 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1609 } 1610 1611 /* 1612 ** Sort the elements in list aList using aContent[] as the sort key. 1613 ** Remove elements with duplicate keys, preferring to keep the 1614 ** larger aList[] values. 1615 ** 1616 ** The aList[] entries are indices into aContent[]. The values in 1617 ** aList[] are to be sorted so that for all J<K: 1618 ** 1619 ** aContent[aList[J]] < aContent[aList[K]] 1620 ** 1621 ** For any X and Y such that 1622 ** 1623 ** aContent[aList[X]] == aContent[aList[Y]] 1624 ** 1625 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1626 ** the smaller. 1627 */ 1628 static void walMergesort( 1629 const u32 *aContent, /* Pages in wal */ 1630 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1631 ht_slot *aList, /* IN/OUT: List to sort */ 1632 int *pnList /* IN/OUT: Number of elements in aList[] */ 1633 ){ 1634 struct Sublist { 1635 int nList; /* Number of elements in aList */ 1636 ht_slot *aList; /* Pointer to sub-list content */ 1637 }; 1638 1639 const int nList = *pnList; /* Size of input list */ 1640 int nMerge = 0; /* Number of elements in list aMerge */ 1641 ht_slot *aMerge = 0; /* List to be merged */ 1642 int iList; /* Index into input list */ 1643 u32 iSub = 0; /* Index into aSub array */ 1644 struct Sublist aSub[13]; /* Array of sub-lists */ 1645 1646 memset(aSub, 0, sizeof(aSub)); 1647 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1648 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1649 1650 for(iList=0; iList<nList; iList++){ 1651 nMerge = 1; 1652 aMerge = &aList[iList]; 1653 for(iSub=0; iList & (1<<iSub); iSub++){ 1654 struct Sublist *p; 1655 assert( iSub<ArraySize(aSub) ); 1656 p = &aSub[iSub]; 1657 assert( p->aList && p->nList<=(1<<iSub) ); 1658 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1659 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1660 } 1661 aSub[iSub].aList = aMerge; 1662 aSub[iSub].nList = nMerge; 1663 } 1664 1665 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1666 if( nList & (1<<iSub) ){ 1667 struct Sublist *p; 1668 assert( iSub<ArraySize(aSub) ); 1669 p = &aSub[iSub]; 1670 assert( p->nList<=(1<<iSub) ); 1671 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1672 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1673 } 1674 } 1675 assert( aMerge==aList ); 1676 *pnList = nMerge; 1677 1678 #ifdef SQLITE_DEBUG 1679 { 1680 int i; 1681 for(i=1; i<*pnList; i++){ 1682 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1683 } 1684 } 1685 #endif 1686 } 1687 1688 /* 1689 ** Free an iterator allocated by walIteratorInit(). 1690 */ 1691 static void walIteratorFree(WalIterator *p){ 1692 sqlite3_free(p); 1693 } 1694 1695 /* 1696 ** Construct a WalInterator object that can be used to loop over all 1697 ** pages in the WAL following frame nBackfill in ascending order. Frames 1698 ** nBackfill or earlier may be included - excluding them is an optimization 1699 ** only. The caller must hold the checkpoint lock. 1700 ** 1701 ** On success, make *pp point to the newly allocated WalInterator object 1702 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1703 ** returns an error, the value of *pp is undefined. 1704 ** 1705 ** The calling routine should invoke walIteratorFree() to destroy the 1706 ** WalIterator object when it has finished with it. 1707 */ 1708 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1709 WalIterator *p; /* Return value */ 1710 int nSegment; /* Number of segments to merge */ 1711 u32 iLast; /* Last frame in log */ 1712 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1713 int i; /* Iterator variable */ 1714 ht_slot *aTmp; /* Temp space used by merge-sort */ 1715 int rc = SQLITE_OK; /* Return Code */ 1716 1717 /* This routine only runs while holding the checkpoint lock. And 1718 ** it only runs if there is actually content in the log (mxFrame>0). 1719 */ 1720 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1721 iLast = pWal->hdr.mxFrame; 1722 1723 /* Allocate space for the WalIterator object. */ 1724 nSegment = walFramePage(iLast) + 1; 1725 nByte = sizeof(WalIterator) 1726 + (nSegment-1)*sizeof(struct WalSegment) 1727 + iLast*sizeof(ht_slot); 1728 p = (WalIterator *)sqlite3_malloc64(nByte); 1729 if( !p ){ 1730 return SQLITE_NOMEM_BKPT; 1731 } 1732 memset(p, 0, nByte); 1733 p->nSegment = nSegment; 1734 1735 /* Allocate temporary space used by the merge-sort routine. This block 1736 ** of memory will be freed before this function returns. 1737 */ 1738 aTmp = (ht_slot *)sqlite3_malloc64( 1739 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1740 ); 1741 if( !aTmp ){ 1742 rc = SQLITE_NOMEM_BKPT; 1743 } 1744 1745 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1746 WalHashLoc sLoc; 1747 1748 rc = walHashGet(pWal, i, &sLoc); 1749 if( rc==SQLITE_OK ){ 1750 int j; /* Counter variable */ 1751 int nEntry; /* Number of entries in this segment */ 1752 ht_slot *aIndex; /* Sorted index for this segment */ 1753 1754 sLoc.aPgno++; 1755 if( (i+1)==nSegment ){ 1756 nEntry = (int)(iLast - sLoc.iZero); 1757 }else{ 1758 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1759 } 1760 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1761 sLoc.iZero++; 1762 1763 for(j=0; j<nEntry; j++){ 1764 aIndex[j] = (ht_slot)j; 1765 } 1766 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1767 p->aSegment[i].iZero = sLoc.iZero; 1768 p->aSegment[i].nEntry = nEntry; 1769 p->aSegment[i].aIndex = aIndex; 1770 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1771 } 1772 } 1773 sqlite3_free(aTmp); 1774 1775 if( rc!=SQLITE_OK ){ 1776 walIteratorFree(p); 1777 p = 0; 1778 } 1779 *pp = p; 1780 return rc; 1781 } 1782 1783 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1784 /* 1785 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1786 ** they are supported by the VFS, and (b) the database handle is configured 1787 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1788 ** or 0 otherwise. 1789 */ 1790 static int walEnableBlocking(Wal *pWal){ 1791 int res = 0; 1792 if( pWal->db ){ 1793 int tmout = pWal->db->busyTimeout; 1794 if( tmout ){ 1795 int rc; 1796 rc = sqlite3OsFileControl( 1797 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1798 ); 1799 res = (rc==SQLITE_OK); 1800 } 1801 } 1802 return res; 1803 } 1804 1805 /* 1806 ** Disable blocking locks. 1807 */ 1808 static void walDisableBlocking(Wal *pWal){ 1809 int tmout = 0; 1810 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1811 } 1812 1813 /* 1814 ** If parameter bLock is true, attempt to enable blocking locks, take 1815 ** the WRITER lock, and then disable blocking locks. If blocking locks 1816 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1817 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1818 ** an error if blocking locks can not be enabled. 1819 ** 1820 ** If the bLock parameter is false and the WRITER lock is held, release it. 1821 */ 1822 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1823 int rc = SQLITE_OK; 1824 assert( pWal->readLock<0 || bLock==0 ); 1825 if( bLock ){ 1826 assert( pWal->db ); 1827 if( walEnableBlocking(pWal) ){ 1828 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1829 if( rc==SQLITE_OK ){ 1830 pWal->writeLock = 1; 1831 } 1832 walDisableBlocking(pWal); 1833 } 1834 }else if( pWal->writeLock ){ 1835 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1836 pWal->writeLock = 0; 1837 } 1838 return rc; 1839 } 1840 1841 /* 1842 ** Set the database handle used to determine if blocking locks are required. 1843 */ 1844 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1845 pWal->db = db; 1846 } 1847 1848 /* 1849 ** Take an exclusive WRITE lock. Blocking if so configured. 1850 */ 1851 static int walLockWriter(Wal *pWal){ 1852 int rc; 1853 walEnableBlocking(pWal); 1854 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1855 walDisableBlocking(pWal); 1856 return rc; 1857 } 1858 #else 1859 # define walEnableBlocking(x) 0 1860 # define walDisableBlocking(x) 1861 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1862 # define sqlite3WalDb(pWal, db) 1863 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1864 1865 1866 /* 1867 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1868 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1869 ** busy-handler function. Invoke it and retry the lock until either the 1870 ** lock is successfully obtained or the busy-handler returns 0. 1871 */ 1872 static int walBusyLock( 1873 Wal *pWal, /* WAL connection */ 1874 int (*xBusy)(void*), /* Function to call when busy */ 1875 void *pBusyArg, /* Context argument for xBusyHandler */ 1876 int lockIdx, /* Offset of first byte to lock */ 1877 int n /* Number of bytes to lock */ 1878 ){ 1879 int rc; 1880 do { 1881 rc = walLockExclusive(pWal, lockIdx, n); 1882 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1883 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1884 if( rc==SQLITE_BUSY_TIMEOUT ){ 1885 walDisableBlocking(pWal); 1886 rc = SQLITE_BUSY; 1887 } 1888 #endif 1889 return rc; 1890 } 1891 1892 /* 1893 ** The cache of the wal-index header must be valid to call this function. 1894 ** Return the page-size in bytes used by the database. 1895 */ 1896 static int walPagesize(Wal *pWal){ 1897 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1898 } 1899 1900 /* 1901 ** The following is guaranteed when this function is called: 1902 ** 1903 ** a) the WRITER lock is held, 1904 ** b) the entire log file has been checkpointed, and 1905 ** c) any existing readers are reading exclusively from the database 1906 ** file - there are no readers that may attempt to read a frame from 1907 ** the log file. 1908 ** 1909 ** This function updates the shared-memory structures so that the next 1910 ** client to write to the database (which may be this one) does so by 1911 ** writing frames into the start of the log file. 1912 ** 1913 ** The value of parameter salt1 is used as the aSalt[1] value in the 1914 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1915 ** one obtained from sqlite3_randomness()). 1916 */ 1917 static void walRestartHdr(Wal *pWal, u32 salt1){ 1918 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1919 int i; /* Loop counter */ 1920 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1921 pWal->nCkpt++; 1922 pWal->hdr.mxFrame = 0; 1923 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1924 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1925 walIndexWriteHdr(pWal); 1926 AtomicStore(&pInfo->nBackfill, 0); 1927 pInfo->nBackfillAttempted = 0; 1928 pInfo->aReadMark[1] = 0; 1929 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1930 assert( pInfo->aReadMark[0]==0 ); 1931 } 1932 1933 /* 1934 ** Copy as much content as we can from the WAL back into the database file 1935 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1936 ** 1937 ** The amount of information copies from WAL to database might be limited 1938 ** by active readers. This routine will never overwrite a database page 1939 ** that a concurrent reader might be using. 1940 ** 1941 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1942 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1943 ** checkpoints are always run by a background thread or background 1944 ** process, foreground threads will never block on a lengthy fsync call. 1945 ** 1946 ** Fsync is called on the WAL before writing content out of the WAL and 1947 ** into the database. This ensures that if the new content is persistent 1948 ** in the WAL and can be recovered following a power-loss or hard reset. 1949 ** 1950 ** Fsync is also called on the database file if (and only if) the entire 1951 ** WAL content is copied into the database file. This second fsync makes 1952 ** it safe to delete the WAL since the new content will persist in the 1953 ** database file. 1954 ** 1955 ** This routine uses and updates the nBackfill field of the wal-index header. 1956 ** This is the only routine that will increase the value of nBackfill. 1957 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1958 ** its value.) 1959 ** 1960 ** The caller must be holding sufficient locks to ensure that no other 1961 ** checkpoint is running (in any other thread or process) at the same 1962 ** time. 1963 */ 1964 static int walCheckpoint( 1965 Wal *pWal, /* Wal connection */ 1966 sqlite3 *db, /* Check for interrupts on this handle */ 1967 int eMode, /* One of PASSIVE, FULL or RESTART */ 1968 int (*xBusy)(void*), /* Function to call when busy */ 1969 void *pBusyArg, /* Context argument for xBusyHandler */ 1970 int sync_flags, /* Flags for OsSync() (or 0) */ 1971 u8 *zBuf /* Temporary buffer to use */ 1972 ){ 1973 int rc = SQLITE_OK; /* Return code */ 1974 int szPage; /* Database page-size */ 1975 WalIterator *pIter = 0; /* Wal iterator context */ 1976 u32 iDbpage = 0; /* Next database page to write */ 1977 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1978 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1979 u32 mxPage; /* Max database page to write */ 1980 int i; /* Loop counter */ 1981 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1982 1983 szPage = walPagesize(pWal); 1984 testcase( szPage<=32768 ); 1985 testcase( szPage>=65536 ); 1986 pInfo = walCkptInfo(pWal); 1987 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1988 1989 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1990 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1991 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1992 1993 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1994 ** safe to write into the database. Frames beyond mxSafeFrame might 1995 ** overwrite database pages that are in use by active readers and thus 1996 ** cannot be backfilled from the WAL. 1997 */ 1998 mxSafeFrame = pWal->hdr.mxFrame; 1999 mxPage = pWal->hdr.nPage; 2000 for(i=1; i<WAL_NREADER; i++){ 2001 u32 y = AtomicLoad(pInfo->aReadMark+i); 2002 if( mxSafeFrame>y ){ 2003 assert( y<=pWal->hdr.mxFrame ); 2004 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 2005 if( rc==SQLITE_OK ){ 2006 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 2007 AtomicStore(pInfo->aReadMark+i, iMark); 2008 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2009 }else if( rc==SQLITE_BUSY ){ 2010 mxSafeFrame = y; 2011 xBusy = 0; 2012 }else{ 2013 goto walcheckpoint_out; 2014 } 2015 } 2016 } 2017 2018 /* Allocate the iterator */ 2019 if( pInfo->nBackfill<mxSafeFrame ){ 2020 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 2021 assert( rc==SQLITE_OK || pIter==0 ); 2022 } 2023 2024 if( pIter 2025 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 2026 ){ 2027 u32 nBackfill = pInfo->nBackfill; 2028 2029 pInfo->nBackfillAttempted = mxSafeFrame; 2030 2031 /* Sync the WAL to disk */ 2032 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 2033 2034 /* If the database may grow as a result of this checkpoint, hint 2035 ** about the eventual size of the db file to the VFS layer. 2036 */ 2037 if( rc==SQLITE_OK ){ 2038 i64 nReq = ((i64)mxPage * szPage); 2039 i64 nSize; /* Current size of database file */ 2040 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 2041 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 2042 if( rc==SQLITE_OK && nSize<nReq ){ 2043 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 2044 /* If the size of the final database is larger than the current 2045 ** database plus the amount of data in the wal file, plus the 2046 ** maximum size of the pending-byte page (65536 bytes), then 2047 ** must be corruption somewhere. */ 2048 rc = SQLITE_CORRUPT_BKPT; 2049 }else{ 2050 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 2051 } 2052 } 2053 2054 } 2055 2056 /* Iterate through the contents of the WAL, copying data to the db file */ 2057 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 2058 i64 iOffset; 2059 assert( walFramePgno(pWal, iFrame)==iDbpage ); 2060 if( AtomicLoad(&db->u1.isInterrupted) ){ 2061 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 2062 break; 2063 } 2064 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 2065 continue; 2066 } 2067 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 2068 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2069 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2070 if( rc!=SQLITE_OK ) break; 2071 iOffset = (iDbpage-1)*(i64)szPage; 2072 testcase( IS_BIG_INT(iOffset) ); 2073 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2074 if( rc!=SQLITE_OK ) break; 2075 } 2076 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2077 2078 /* If work was actually accomplished... */ 2079 if( rc==SQLITE_OK ){ 2080 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2081 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2082 testcase( IS_BIG_INT(szDb) ); 2083 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2084 if( rc==SQLITE_OK ){ 2085 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2086 } 2087 } 2088 if( rc==SQLITE_OK ){ 2089 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2090 } 2091 } 2092 2093 /* Release the reader lock held while backfilling */ 2094 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2095 } 2096 2097 if( rc==SQLITE_BUSY ){ 2098 /* Reset the return code so as not to report a checkpoint failure 2099 ** just because there are active readers. */ 2100 rc = SQLITE_OK; 2101 } 2102 } 2103 2104 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2105 ** entire wal file has been copied into the database file, then block 2106 ** until all readers have finished using the wal file. This ensures that 2107 ** the next process to write to the database restarts the wal file. 2108 */ 2109 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2110 assert( pWal->writeLock ); 2111 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2112 rc = SQLITE_BUSY; 2113 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2114 u32 salt1; 2115 sqlite3_randomness(4, &salt1); 2116 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2117 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2118 if( rc==SQLITE_OK ){ 2119 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2120 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2121 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2122 ** truncates the log file to zero bytes just prior to a 2123 ** successful return. 2124 ** 2125 ** In theory, it might be safe to do this without updating the 2126 ** wal-index header in shared memory, as all subsequent reader or 2127 ** writer clients should see that the entire log file has been 2128 ** checkpointed and behave accordingly. This seems unsafe though, 2129 ** as it would leave the system in a state where the contents of 2130 ** the wal-index header do not match the contents of the 2131 ** file-system. To avoid this, update the wal-index header to 2132 ** indicate that the log file contains zero valid frames. */ 2133 walRestartHdr(pWal, salt1); 2134 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2135 } 2136 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2137 } 2138 } 2139 } 2140 2141 walcheckpoint_out: 2142 walIteratorFree(pIter); 2143 return rc; 2144 } 2145 2146 /* 2147 ** If the WAL file is currently larger than nMax bytes in size, truncate 2148 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2149 */ 2150 static void walLimitSize(Wal *pWal, i64 nMax){ 2151 i64 sz; 2152 int rx; 2153 sqlite3BeginBenignMalloc(); 2154 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2155 if( rx==SQLITE_OK && (sz > nMax ) ){ 2156 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2157 } 2158 sqlite3EndBenignMalloc(); 2159 if( rx ){ 2160 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2161 } 2162 } 2163 2164 /* 2165 ** Close a connection to a log file. 2166 */ 2167 int sqlite3WalClose( 2168 Wal *pWal, /* Wal to close */ 2169 sqlite3 *db, /* For interrupt flag */ 2170 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2171 int nBuf, 2172 u8 *zBuf /* Buffer of at least nBuf bytes */ 2173 ){ 2174 int rc = SQLITE_OK; 2175 if( pWal ){ 2176 int isDelete = 0; /* True to unlink wal and wal-index files */ 2177 2178 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2179 ** ordinary, rollback-mode locking methods, this guarantees that the 2180 ** connection associated with this log file is the only connection to 2181 ** the database. In this case checkpoint the database and unlink both 2182 ** the wal and wal-index files. 2183 ** 2184 ** The EXCLUSIVE lock is not released before returning. 2185 */ 2186 if( zBuf!=0 2187 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2188 ){ 2189 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2190 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2191 } 2192 rc = sqlite3WalCheckpoint(pWal, db, 2193 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2194 ); 2195 if( rc==SQLITE_OK ){ 2196 int bPersist = -1; 2197 sqlite3OsFileControlHint( 2198 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2199 ); 2200 if( bPersist!=1 ){ 2201 /* Try to delete the WAL file if the checkpoint completed and 2202 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2203 ** mode (!bPersist) */ 2204 isDelete = 1; 2205 }else if( pWal->mxWalSize>=0 ){ 2206 /* Try to truncate the WAL file to zero bytes if the checkpoint 2207 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2208 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2209 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2210 ** to zero bytes as truncating to the journal_size_limit might 2211 ** leave a corrupt WAL file on disk. */ 2212 walLimitSize(pWal, 0); 2213 } 2214 } 2215 } 2216 2217 walIndexClose(pWal, isDelete); 2218 sqlite3OsClose(pWal->pWalFd); 2219 if( isDelete ){ 2220 sqlite3BeginBenignMalloc(); 2221 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2222 sqlite3EndBenignMalloc(); 2223 } 2224 WALTRACE(("WAL%p: closed\n", pWal)); 2225 sqlite3_free((void *)pWal->apWiData); 2226 sqlite3_free(pWal); 2227 } 2228 return rc; 2229 } 2230 2231 /* 2232 ** Try to read the wal-index header. Return 0 on success and 1 if 2233 ** there is a problem. 2234 ** 2235 ** The wal-index is in shared memory. Another thread or process might 2236 ** be writing the header at the same time this procedure is trying to 2237 ** read it, which might result in inconsistency. A dirty read is detected 2238 ** by verifying that both copies of the header are the same and also by 2239 ** a checksum on the header. 2240 ** 2241 ** If and only if the read is consistent and the header is different from 2242 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2243 ** and *pChanged is set to 1. 2244 ** 2245 ** If the checksum cannot be verified return non-zero. If the header 2246 ** is read successfully and the checksum verified, return zero. 2247 */ 2248 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2249 u32 aCksum[2]; /* Checksum on the header content */ 2250 WalIndexHdr h1, h2; /* Two copies of the header content */ 2251 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2252 2253 /* The first page of the wal-index must be mapped at this point. */ 2254 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2255 2256 /* Read the header. This might happen concurrently with a write to the 2257 ** same area of shared memory on a different CPU in a SMP, 2258 ** meaning it is possible that an inconsistent snapshot is read 2259 ** from the file. If this happens, return non-zero. 2260 ** 2261 ** tag-20200519-1: 2262 ** There are two copies of the header at the beginning of the wal-index. 2263 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2264 ** Memory barriers are used to prevent the compiler or the hardware from 2265 ** reordering the reads and writes. TSAN and similar tools can sometimes 2266 ** give false-positive warnings about these accesses because the tools do not 2267 ** account for the double-read and the memory barrier. The use of mutexes 2268 ** here would be problematic as the memory being accessed is potentially 2269 ** shared among multiple processes and not all mutex implementions work 2270 ** reliably in that environment. 2271 */ 2272 aHdr = walIndexHdr(pWal); 2273 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2274 walShmBarrier(pWal); 2275 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2276 2277 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2278 return 1; /* Dirty read */ 2279 } 2280 if( h1.isInit==0 ){ 2281 return 1; /* Malformed header - probably all zeros */ 2282 } 2283 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2284 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2285 return 1; /* Checksum does not match */ 2286 } 2287 2288 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2289 *pChanged = 1; 2290 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2291 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2292 testcase( pWal->szPage<=32768 ); 2293 testcase( pWal->szPage>=65536 ); 2294 } 2295 2296 /* The header was successfully read. Return zero. */ 2297 return 0; 2298 } 2299 2300 /* 2301 ** This is the value that walTryBeginRead returns when it needs to 2302 ** be retried. 2303 */ 2304 #define WAL_RETRY (-1) 2305 2306 /* 2307 ** Read the wal-index header from the wal-index and into pWal->hdr. 2308 ** If the wal-header appears to be corrupt, try to reconstruct the 2309 ** wal-index from the WAL before returning. 2310 ** 2311 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2312 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2313 ** to 0. 2314 ** 2315 ** If the wal-index header is successfully read, return SQLITE_OK. 2316 ** Otherwise an SQLite error code. 2317 */ 2318 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2319 int rc; /* Return code */ 2320 int badHdr; /* True if a header read failed */ 2321 volatile u32 *page0; /* Chunk of wal-index containing header */ 2322 2323 /* Ensure that page 0 of the wal-index (the page that contains the 2324 ** wal-index header) is mapped. Return early if an error occurs here. 2325 */ 2326 assert( pChanged ); 2327 rc = walIndexPage(pWal, 0, &page0); 2328 if( rc!=SQLITE_OK ){ 2329 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2330 if( rc==SQLITE_READONLY_CANTINIT ){ 2331 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2332 ** was openable but is not writable, and this thread is unable to 2333 ** confirm that another write-capable connection has the shared-memory 2334 ** open, and hence the content of the shared-memory is unreliable, 2335 ** since the shared-memory might be inconsistent with the WAL file 2336 ** and there is no writer on hand to fix it. */ 2337 assert( page0==0 ); 2338 assert( pWal->writeLock==0 ); 2339 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2340 pWal->bShmUnreliable = 1; 2341 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2342 *pChanged = 1; 2343 }else{ 2344 return rc; /* Any other non-OK return is just an error */ 2345 } 2346 }else{ 2347 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2348 ** is zero, which prevents the SHM from growing */ 2349 testcase( page0!=0 ); 2350 } 2351 assert( page0!=0 || pWal->writeLock==0 ); 2352 2353 /* If the first page of the wal-index has been mapped, try to read the 2354 ** wal-index header immediately, without holding any lock. This usually 2355 ** works, but may fail if the wal-index header is corrupt or currently 2356 ** being modified by another thread or process. 2357 */ 2358 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2359 2360 /* If the first attempt failed, it might have been due to a race 2361 ** with a writer. So get a WRITE lock and try again. 2362 */ 2363 if( badHdr ){ 2364 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2365 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2366 walUnlockShared(pWal, WAL_WRITE_LOCK); 2367 rc = SQLITE_READONLY_RECOVERY; 2368 } 2369 }else{ 2370 int bWriteLock = pWal->writeLock; 2371 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2372 pWal->writeLock = 1; 2373 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2374 badHdr = walIndexTryHdr(pWal, pChanged); 2375 if( badHdr ){ 2376 /* If the wal-index header is still malformed even while holding 2377 ** a WRITE lock, it can only mean that the header is corrupted and 2378 ** needs to be reconstructed. So run recovery to do exactly that. 2379 */ 2380 rc = walIndexRecover(pWal); 2381 *pChanged = 1; 2382 } 2383 } 2384 if( bWriteLock==0 ){ 2385 pWal->writeLock = 0; 2386 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2387 } 2388 } 2389 } 2390 } 2391 2392 /* If the header is read successfully, check the version number to make 2393 ** sure the wal-index was not constructed with some future format that 2394 ** this version of SQLite cannot understand. 2395 */ 2396 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2397 rc = SQLITE_CANTOPEN_BKPT; 2398 } 2399 if( pWal->bShmUnreliable ){ 2400 if( rc!=SQLITE_OK ){ 2401 walIndexClose(pWal, 0); 2402 pWal->bShmUnreliable = 0; 2403 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2404 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2405 ** writer truncated the WAL out from under it. If that happens, it 2406 ** indicates that a writer has fixed the SHM file for us, so retry */ 2407 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2408 } 2409 pWal->exclusiveMode = WAL_NORMAL_MODE; 2410 } 2411 2412 return rc; 2413 } 2414 2415 /* 2416 ** Open a transaction in a connection where the shared-memory is read-only 2417 ** and where we cannot verify that there is a separate write-capable connection 2418 ** on hand to keep the shared-memory up-to-date with the WAL file. 2419 ** 2420 ** This can happen, for example, when the shared-memory is implemented by 2421 ** memory-mapping a *-shm file, where a prior writer has shut down and 2422 ** left the *-shm file on disk, and now the present connection is trying 2423 ** to use that database but lacks write permission on the *-shm file. 2424 ** Other scenarios are also possible, depending on the VFS implementation. 2425 ** 2426 ** Precondition: 2427 ** 2428 ** The *-wal file has been read and an appropriate wal-index has been 2429 ** constructed in pWal->apWiData[] using heap memory instead of shared 2430 ** memory. 2431 ** 2432 ** If this function returns SQLITE_OK, then the read transaction has 2433 ** been successfully opened. In this case output variable (*pChanged) 2434 ** is set to true before returning if the caller should discard the 2435 ** contents of the page cache before proceeding. Or, if it returns 2436 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2437 ** the caller should retry opening the read transaction from the 2438 ** beginning (including attempting to map the *-shm file). 2439 ** 2440 ** If an error occurs, an SQLite error code is returned. 2441 */ 2442 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2443 i64 szWal; /* Size of wal file on disk in bytes */ 2444 i64 iOffset; /* Current offset when reading wal file */ 2445 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2446 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2447 int szFrame; /* Number of bytes in buffer aFrame[] */ 2448 u8 *aData; /* Pointer to data part of aFrame buffer */ 2449 volatile void *pDummy; /* Dummy argument for xShmMap */ 2450 int rc; /* Return code */ 2451 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2452 2453 assert( pWal->bShmUnreliable ); 2454 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2455 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2456 2457 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2458 ** writers from running a checkpoint, but does not stop them 2459 ** from running recovery. */ 2460 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2461 if( rc!=SQLITE_OK ){ 2462 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2463 goto begin_unreliable_shm_out; 2464 } 2465 pWal->readLock = 0; 2466 2467 /* Check to see if a separate writer has attached to the shared-memory area, 2468 ** thus making the shared-memory "reliable" again. Do this by invoking 2469 ** the xShmMap() routine of the VFS and looking to see if the return 2470 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2471 ** 2472 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2473 ** cause the heap-memory WAL-index to be discarded and the actual 2474 ** shared memory to be used in its place. 2475 ** 2476 ** This step is important because, even though this connection is holding 2477 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2478 ** have already checkpointed the WAL file and, while the current 2479 ** is active, wrap the WAL and start overwriting frames that this 2480 ** process wants to use. 2481 ** 2482 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2483 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2484 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2485 ** even if some external agent does a "chmod" to make the shared-memory 2486 ** writable by us, until sqlite3OsShmUnmap() has been called. 2487 ** This is a requirement on the VFS implementation. 2488 */ 2489 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2490 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2491 if( rc!=SQLITE_READONLY_CANTINIT ){ 2492 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2493 goto begin_unreliable_shm_out; 2494 } 2495 2496 /* We reach this point only if the real shared-memory is still unreliable. 2497 ** Assume the in-memory WAL-index substitute is correct and load it 2498 ** into pWal->hdr. 2499 */ 2500 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2501 2502 /* Make sure some writer hasn't come in and changed the WAL file out 2503 ** from under us, then disconnected, while we were not looking. 2504 */ 2505 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2506 if( rc!=SQLITE_OK ){ 2507 goto begin_unreliable_shm_out; 2508 } 2509 if( szWal<WAL_HDRSIZE ){ 2510 /* If the wal file is too small to contain a wal-header and the 2511 ** wal-index header has mxFrame==0, then it must be safe to proceed 2512 ** reading the database file only. However, the page cache cannot 2513 ** be trusted, as a read/write connection may have connected, written 2514 ** the db, run a checkpoint, truncated the wal file and disconnected 2515 ** since this client's last read transaction. */ 2516 *pChanged = 1; 2517 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2518 goto begin_unreliable_shm_out; 2519 } 2520 2521 /* Check the salt keys at the start of the wal file still match. */ 2522 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2523 if( rc!=SQLITE_OK ){ 2524 goto begin_unreliable_shm_out; 2525 } 2526 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2527 /* Some writer has wrapped the WAL file while we were not looking. 2528 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2529 ** rebuilt. */ 2530 rc = WAL_RETRY; 2531 goto begin_unreliable_shm_out; 2532 } 2533 2534 /* Allocate a buffer to read frames into */ 2535 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2536 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2537 if( aFrame==0 ){ 2538 rc = SQLITE_NOMEM_BKPT; 2539 goto begin_unreliable_shm_out; 2540 } 2541 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2542 2543 /* Check to see if a complete transaction has been appended to the 2544 ** wal file since the heap-memory wal-index was created. If so, the 2545 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2546 ** the caller. */ 2547 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2548 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2549 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2550 iOffset+szFrame<=szWal; 2551 iOffset+=szFrame 2552 ){ 2553 u32 pgno; /* Database page number for frame */ 2554 u32 nTruncate; /* dbsize field from frame header */ 2555 2556 /* Read and decode the next log frame. */ 2557 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2558 if( rc!=SQLITE_OK ) break; 2559 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2560 2561 /* If nTruncate is non-zero, then a complete transaction has been 2562 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2563 ** the loop. */ 2564 if( nTruncate ){ 2565 rc = WAL_RETRY; 2566 break; 2567 } 2568 } 2569 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2570 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2571 2572 begin_unreliable_shm_out: 2573 sqlite3_free(aFrame); 2574 if( rc!=SQLITE_OK ){ 2575 int i; 2576 for(i=0; i<pWal->nWiData; i++){ 2577 sqlite3_free((void*)pWal->apWiData[i]); 2578 pWal->apWiData[i] = 0; 2579 } 2580 pWal->bShmUnreliable = 0; 2581 sqlite3WalEndReadTransaction(pWal); 2582 *pChanged = 1; 2583 } 2584 return rc; 2585 } 2586 2587 /* 2588 ** Attempt to start a read transaction. This might fail due to a race or 2589 ** other transient condition. When that happens, it returns WAL_RETRY to 2590 ** indicate to the caller that it is safe to retry immediately. 2591 ** 2592 ** On success return SQLITE_OK. On a permanent failure (such an 2593 ** I/O error or an SQLITE_BUSY because another process is running 2594 ** recovery) return a positive error code. 2595 ** 2596 ** The useWal parameter is true to force the use of the WAL and disable 2597 ** the case where the WAL is bypassed because it has been completely 2598 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2599 ** to make a copy of the wal-index header into pWal->hdr. If the 2600 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2601 ** to the caller that the local page cache is obsolete and needs to be 2602 ** flushed.) When useWal==1, the wal-index header is assumed to already 2603 ** be loaded and the pChanged parameter is unused. 2604 ** 2605 ** The caller must set the cnt parameter to the number of prior calls to 2606 ** this routine during the current read attempt that returned WAL_RETRY. 2607 ** This routine will start taking more aggressive measures to clear the 2608 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2609 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2610 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2611 ** and is not honoring the locking protocol. There is a vanishingly small 2612 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2613 ** bad luck when there is lots of contention for the wal-index, but that 2614 ** possibility is so small that it can be safely neglected, we believe. 2615 ** 2616 ** On success, this routine obtains a read lock on 2617 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2618 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2619 ** that means the Wal does not hold any read lock. The reader must not 2620 ** access any database page that is modified by a WAL frame up to and 2621 ** including frame number aReadMark[pWal->readLock]. The reader will 2622 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2623 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2624 ** completely and get all content directly from the database file. 2625 ** If the useWal parameter is 1 then the WAL will never be ignored and 2626 ** this routine will always set pWal->readLock>0 on success. 2627 ** When the read transaction is completed, the caller must release the 2628 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2629 ** 2630 ** This routine uses the nBackfill and aReadMark[] fields of the header 2631 ** to select a particular WAL_READ_LOCK() that strives to let the 2632 ** checkpoint process do as much work as possible. This routine might 2633 ** update values of the aReadMark[] array in the header, but if it does 2634 ** so it takes care to hold an exclusive lock on the corresponding 2635 ** WAL_READ_LOCK() while changing values. 2636 */ 2637 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2638 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2639 u32 mxReadMark; /* Largest aReadMark[] value */ 2640 int mxI; /* Index of largest aReadMark[] value */ 2641 int i; /* Loop counter */ 2642 int rc = SQLITE_OK; /* Return code */ 2643 u32 mxFrame; /* Wal frame to lock to */ 2644 2645 assert( pWal->readLock<0 ); /* Not currently locked */ 2646 2647 /* useWal may only be set for read/write connections */ 2648 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2649 2650 /* Take steps to avoid spinning forever if there is a protocol error. 2651 ** 2652 ** Circumstances that cause a RETRY should only last for the briefest 2653 ** instances of time. No I/O or other system calls are done while the 2654 ** locks are held, so the locks should not be held for very long. But 2655 ** if we are unlucky, another process that is holding a lock might get 2656 ** paged out or take a page-fault that is time-consuming to resolve, 2657 ** during the few nanoseconds that it is holding the lock. In that case, 2658 ** it might take longer than normal for the lock to free. 2659 ** 2660 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2661 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2662 ** is more of a scheduler yield than an actual delay. But on the 10th 2663 ** an subsequent retries, the delays start becoming longer and longer, 2664 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2665 ** The total delay time before giving up is less than 10 seconds. 2666 */ 2667 if( cnt>5 ){ 2668 int nDelay = 1; /* Pause time in microseconds */ 2669 if( cnt>100 ){ 2670 VVA_ONLY( pWal->lockError = 1; ) 2671 return SQLITE_PROTOCOL; 2672 } 2673 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2674 sqlite3OsSleep(pWal->pVfs, nDelay); 2675 } 2676 2677 if( !useWal ){ 2678 assert( rc==SQLITE_OK ); 2679 if( pWal->bShmUnreliable==0 ){ 2680 rc = walIndexReadHdr(pWal, pChanged); 2681 } 2682 if( rc==SQLITE_BUSY ){ 2683 /* If there is not a recovery running in another thread or process 2684 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2685 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2686 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2687 ** would be technically correct. But the race is benign since with 2688 ** WAL_RETRY this routine will be called again and will probably be 2689 ** right on the second iteration. 2690 */ 2691 if( pWal->apWiData[0]==0 ){ 2692 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2693 ** We assume this is a transient condition, so return WAL_RETRY. The 2694 ** xShmMap() implementation used by the default unix and win32 VFS 2695 ** modules may return SQLITE_BUSY due to a race condition in the 2696 ** code that determines whether or not the shared-memory region 2697 ** must be zeroed before the requested page is returned. 2698 */ 2699 rc = WAL_RETRY; 2700 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2701 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2702 rc = WAL_RETRY; 2703 }else if( rc==SQLITE_BUSY ){ 2704 rc = SQLITE_BUSY_RECOVERY; 2705 } 2706 } 2707 if( rc!=SQLITE_OK ){ 2708 return rc; 2709 } 2710 else if( pWal->bShmUnreliable ){ 2711 return walBeginShmUnreliable(pWal, pChanged); 2712 } 2713 } 2714 2715 assert( pWal->nWiData>0 ); 2716 assert( pWal->apWiData[0]!=0 ); 2717 pInfo = walCkptInfo(pWal); 2718 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2719 #ifdef SQLITE_ENABLE_SNAPSHOT 2720 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2721 #endif 2722 ){ 2723 /* The WAL has been completely backfilled (or it is empty). 2724 ** and can be safely ignored. 2725 */ 2726 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2727 walShmBarrier(pWal); 2728 if( rc==SQLITE_OK ){ 2729 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2730 /* It is not safe to allow the reader to continue here if frames 2731 ** may have been appended to the log before READ_LOCK(0) was obtained. 2732 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2733 ** which implies that the database file contains a trustworthy 2734 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2735 ** happening, this is usually correct. 2736 ** 2737 ** However, if frames have been appended to the log (or if the log 2738 ** is wrapped and written for that matter) before the READ_LOCK(0) 2739 ** is obtained, that is not necessarily true. A checkpointer may 2740 ** have started to backfill the appended frames but crashed before 2741 ** it finished. Leaving a corrupt image in the database file. 2742 */ 2743 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2744 return WAL_RETRY; 2745 } 2746 pWal->readLock = 0; 2747 return SQLITE_OK; 2748 }else if( rc!=SQLITE_BUSY ){ 2749 return rc; 2750 } 2751 } 2752 2753 /* If we get this far, it means that the reader will want to use 2754 ** the WAL to get at content from recent commits. The job now is 2755 ** to select one of the aReadMark[] entries that is closest to 2756 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2757 */ 2758 mxReadMark = 0; 2759 mxI = 0; 2760 mxFrame = pWal->hdr.mxFrame; 2761 #ifdef SQLITE_ENABLE_SNAPSHOT 2762 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2763 mxFrame = pWal->pSnapshot->mxFrame; 2764 } 2765 #endif 2766 for(i=1; i<WAL_NREADER; i++){ 2767 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2768 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2769 assert( thisMark!=READMARK_NOT_USED ); 2770 mxReadMark = thisMark; 2771 mxI = i; 2772 } 2773 } 2774 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2775 && (mxReadMark<mxFrame || mxI==0) 2776 ){ 2777 for(i=1; i<WAL_NREADER; i++){ 2778 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2779 if( rc==SQLITE_OK ){ 2780 AtomicStore(pInfo->aReadMark+i,mxFrame); 2781 mxReadMark = mxFrame; 2782 mxI = i; 2783 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2784 break; 2785 }else if( rc!=SQLITE_BUSY ){ 2786 return rc; 2787 } 2788 } 2789 } 2790 if( mxI==0 ){ 2791 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2792 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2793 } 2794 2795 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2796 if( rc ){ 2797 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2798 } 2799 /* Now that the read-lock has been obtained, check that neither the 2800 ** value in the aReadMark[] array or the contents of the wal-index 2801 ** header have changed. 2802 ** 2803 ** It is necessary to check that the wal-index header did not change 2804 ** between the time it was read and when the shared-lock was obtained 2805 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2806 ** that the log file may have been wrapped by a writer, or that frames 2807 ** that occur later in the log than pWal->hdr.mxFrame may have been 2808 ** copied into the database by a checkpointer. If either of these things 2809 ** happened, then reading the database with the current value of 2810 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2811 ** instead. 2812 ** 2813 ** Before checking that the live wal-index header has not changed 2814 ** since it was read, set Wal.minFrame to the first frame in the wal 2815 ** file that has not yet been checkpointed. This client will not need 2816 ** to read any frames earlier than minFrame from the wal file - they 2817 ** can be safely read directly from the database file. 2818 ** 2819 ** Because a ShmBarrier() call is made between taking the copy of 2820 ** nBackfill and checking that the wal-header in shared-memory still 2821 ** matches the one cached in pWal->hdr, it is guaranteed that the 2822 ** checkpointer that set nBackfill was not working with a wal-index 2823 ** header newer than that cached in pWal->hdr. If it were, that could 2824 ** cause a problem. The checkpointer could omit to checkpoint 2825 ** a version of page X that lies before pWal->minFrame (call that version 2826 ** A) on the basis that there is a newer version (version B) of the same 2827 ** page later in the wal file. But if version B happens to like past 2828 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2829 ** that it can read version A from the database file. However, since 2830 ** we can guarantee that the checkpointer that set nBackfill could not 2831 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2832 */ 2833 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2834 walShmBarrier(pWal); 2835 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2836 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2837 ){ 2838 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2839 return WAL_RETRY; 2840 }else{ 2841 assert( mxReadMark<=pWal->hdr.mxFrame ); 2842 pWal->readLock = (i16)mxI; 2843 } 2844 return rc; 2845 } 2846 2847 #ifdef SQLITE_ENABLE_SNAPSHOT 2848 /* 2849 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2850 ** variable so that older snapshots can be accessed. To do this, loop 2851 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2852 ** comparing their content to the corresponding page with the database 2853 ** file, if any. Set nBackfillAttempted to the frame number of the 2854 ** first frame for which the wal file content matches the db file. 2855 ** 2856 ** This is only really safe if the file-system is such that any page 2857 ** writes made by earlier checkpointers were atomic operations, which 2858 ** is not always true. It is also possible that nBackfillAttempted 2859 ** may be left set to a value larger than expected, if a wal frame 2860 ** contains content that duplicate of an earlier version of the same 2861 ** page. 2862 ** 2863 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2864 ** error occurs. It is not an error if nBackfillAttempted cannot be 2865 ** decreased at all. 2866 */ 2867 int sqlite3WalSnapshotRecover(Wal *pWal){ 2868 int rc; 2869 2870 assert( pWal->readLock>=0 ); 2871 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2872 if( rc==SQLITE_OK ){ 2873 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2874 int szPage = (int)pWal->szPage; 2875 i64 szDb; /* Size of db file in bytes */ 2876 2877 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2878 if( rc==SQLITE_OK ){ 2879 void *pBuf1 = sqlite3_malloc(szPage); 2880 void *pBuf2 = sqlite3_malloc(szPage); 2881 if( pBuf1==0 || pBuf2==0 ){ 2882 rc = SQLITE_NOMEM; 2883 }else{ 2884 u32 i = pInfo->nBackfillAttempted; 2885 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2886 WalHashLoc sLoc; /* Hash table location */ 2887 u32 pgno; /* Page number in db file */ 2888 i64 iDbOff; /* Offset of db file entry */ 2889 i64 iWalOff; /* Offset of wal file entry */ 2890 2891 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2892 if( rc!=SQLITE_OK ) break; 2893 pgno = sLoc.aPgno[i-sLoc.iZero]; 2894 iDbOff = (i64)(pgno-1) * szPage; 2895 2896 if( iDbOff+szPage<=szDb ){ 2897 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2898 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2899 2900 if( rc==SQLITE_OK ){ 2901 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2902 } 2903 2904 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2905 break; 2906 } 2907 } 2908 2909 pInfo->nBackfillAttempted = i-1; 2910 } 2911 } 2912 2913 sqlite3_free(pBuf1); 2914 sqlite3_free(pBuf2); 2915 } 2916 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2917 } 2918 2919 return rc; 2920 } 2921 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2922 2923 /* 2924 ** Begin a read transaction on the database. 2925 ** 2926 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2927 ** it takes a snapshot of the state of the WAL and wal-index for the current 2928 ** instant in time. The current thread will continue to use this snapshot. 2929 ** Other threads might append new content to the WAL and wal-index but 2930 ** that extra content is ignored by the current thread. 2931 ** 2932 ** If the database contents have changes since the previous read 2933 ** transaction, then *pChanged is set to 1 before returning. The 2934 ** Pager layer will use this to know that its cache is stale and 2935 ** needs to be flushed. 2936 */ 2937 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2938 int rc; /* Return code */ 2939 int cnt = 0; /* Number of TryBeginRead attempts */ 2940 #ifdef SQLITE_ENABLE_SNAPSHOT 2941 int bChanged = 0; 2942 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2943 #endif 2944 2945 assert( pWal->ckptLock==0 ); 2946 2947 #ifdef SQLITE_ENABLE_SNAPSHOT 2948 if( pSnapshot ){ 2949 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2950 bChanged = 1; 2951 } 2952 2953 /* It is possible that there is a checkpointer thread running 2954 ** concurrent with this code. If this is the case, it may be that the 2955 ** checkpointer has already determined that it will checkpoint 2956 ** snapshot X, where X is later in the wal file than pSnapshot, but 2957 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2958 ** its intent. To avoid the race condition this leads to, ensure that 2959 ** there is no checkpointer process by taking a shared CKPT lock 2960 ** before checking pInfo->nBackfillAttempted. */ 2961 (void)walEnableBlocking(pWal); 2962 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2963 walDisableBlocking(pWal); 2964 2965 if( rc!=SQLITE_OK ){ 2966 return rc; 2967 } 2968 pWal->ckptLock = 1; 2969 } 2970 #endif 2971 2972 do{ 2973 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2974 }while( rc==WAL_RETRY ); 2975 testcase( (rc&0xff)==SQLITE_BUSY ); 2976 testcase( (rc&0xff)==SQLITE_IOERR ); 2977 testcase( rc==SQLITE_PROTOCOL ); 2978 testcase( rc==SQLITE_OK ); 2979 2980 #ifdef SQLITE_ENABLE_SNAPSHOT 2981 if( rc==SQLITE_OK ){ 2982 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2983 /* At this point the client has a lock on an aReadMark[] slot holding 2984 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2985 ** is populated with the wal-index header corresponding to the head 2986 ** of the wal file. Verify that pSnapshot is still valid before 2987 ** continuing. Reasons why pSnapshot might no longer be valid: 2988 ** 2989 ** (1) The WAL file has been reset since the snapshot was taken. 2990 ** In this case, the salt will have changed. 2991 ** 2992 ** (2) A checkpoint as been attempted that wrote frames past 2993 ** pSnapshot->mxFrame into the database file. Note that the 2994 ** checkpoint need not have completed for this to cause problems. 2995 */ 2996 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2997 2998 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2999 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 3000 3001 /* Check that the wal file has not been wrapped. Assuming that it has 3002 ** not, also check that no checkpointer has attempted to checkpoint any 3003 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 3004 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 3005 ** with *pSnapshot and set *pChanged as appropriate for opening the 3006 ** snapshot. */ 3007 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3008 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 3009 ){ 3010 assert( pWal->readLock>0 ); 3011 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 3012 *pChanged = bChanged; 3013 }else{ 3014 rc = SQLITE_ERROR_SNAPSHOT; 3015 } 3016 3017 /* A client using a non-current snapshot may not ignore any frames 3018 ** from the start of the wal file. This is because, for a system 3019 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 3020 ** have omitted to checkpoint a frame earlier than minFrame in 3021 ** the file because there exists a frame after iSnapshot that 3022 ** is the same database page. */ 3023 pWal->minFrame = 1; 3024 3025 if( rc!=SQLITE_OK ){ 3026 sqlite3WalEndReadTransaction(pWal); 3027 } 3028 } 3029 } 3030 3031 /* Release the shared CKPT lock obtained above. */ 3032 if( pWal->ckptLock ){ 3033 assert( pSnapshot ); 3034 walUnlockShared(pWal, WAL_CKPT_LOCK); 3035 pWal->ckptLock = 0; 3036 } 3037 #endif 3038 return rc; 3039 } 3040 3041 /* 3042 ** Finish with a read transaction. All this does is release the 3043 ** read-lock. 3044 */ 3045 void sqlite3WalEndReadTransaction(Wal *pWal){ 3046 sqlite3WalEndWriteTransaction(pWal); 3047 if( pWal->readLock>=0 ){ 3048 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3049 pWal->readLock = -1; 3050 } 3051 } 3052 3053 /* 3054 ** Search the wal file for page pgno. If found, set *piRead to the frame that 3055 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 3056 ** to zero. 3057 ** 3058 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 3059 ** error does occur, the final value of *piRead is undefined. 3060 */ 3061 int sqlite3WalFindFrame( 3062 Wal *pWal, /* WAL handle */ 3063 Pgno pgno, /* Database page number to read data for */ 3064 u32 *piRead /* OUT: Frame number (or zero) */ 3065 ){ 3066 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 3067 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 3068 int iHash; /* Used to loop through N hash tables */ 3069 int iMinHash; 3070 3071 /* This routine is only be called from within a read transaction. */ 3072 assert( pWal->readLock>=0 || pWal->lockError ); 3073 3074 /* If the "last page" field of the wal-index header snapshot is 0, then 3075 ** no data will be read from the wal under any circumstances. Return early 3076 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3077 ** then the WAL is ignored by the reader so return early, as if the 3078 ** WAL were empty. 3079 */ 3080 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3081 *piRead = 0; 3082 return SQLITE_OK; 3083 } 3084 3085 /* Search the hash table or tables for an entry matching page number 3086 ** pgno. Each iteration of the following for() loop searches one 3087 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3088 ** 3089 ** This code might run concurrently to the code in walIndexAppend() 3090 ** that adds entries to the wal-index (and possibly to this hash 3091 ** table). This means the value just read from the hash 3092 ** slot (aHash[iKey]) may have been added before or after the 3093 ** current read transaction was opened. Values added after the 3094 ** read transaction was opened may have been written incorrectly - 3095 ** i.e. these slots may contain garbage data. However, we assume 3096 ** that any slots written before the current read transaction was 3097 ** opened remain unmodified. 3098 ** 3099 ** For the reasons above, the if(...) condition featured in the inner 3100 ** loop of the following block is more stringent that would be required 3101 ** if we had exclusive access to the hash-table: 3102 ** 3103 ** (aPgno[iFrame]==pgno): 3104 ** This condition filters out normal hash-table collisions. 3105 ** 3106 ** (iFrame<=iLast): 3107 ** This condition filters out entries that were added to the hash 3108 ** table after the current read-transaction had started. 3109 */ 3110 iMinHash = walFramePage(pWal->minFrame); 3111 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3112 WalHashLoc sLoc; /* Hash table location */ 3113 int iKey; /* Hash slot index */ 3114 int nCollide; /* Number of hash collisions remaining */ 3115 int rc; /* Error code */ 3116 u32 iH; 3117 3118 rc = walHashGet(pWal, iHash, &sLoc); 3119 if( rc!=SQLITE_OK ){ 3120 return rc; 3121 } 3122 nCollide = HASHTABLE_NSLOT; 3123 iKey = walHash(pgno); 3124 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3125 u32 iFrame = iH + sLoc.iZero; 3126 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3127 assert( iFrame>iRead || CORRUPT_DB ); 3128 iRead = iFrame; 3129 } 3130 if( (nCollide--)==0 ){ 3131 return SQLITE_CORRUPT_BKPT; 3132 } 3133 iKey = walNextHash(iKey); 3134 } 3135 if( iRead ) break; 3136 } 3137 3138 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3139 /* If expensive assert() statements are available, do a linear search 3140 ** of the wal-index file content. Make sure the results agree with the 3141 ** result obtained using the hash indexes above. */ 3142 { 3143 u32 iRead2 = 0; 3144 u32 iTest; 3145 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3146 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3147 if( walFramePgno(pWal, iTest)==pgno ){ 3148 iRead2 = iTest; 3149 break; 3150 } 3151 } 3152 assert( iRead==iRead2 ); 3153 } 3154 #endif 3155 3156 *piRead = iRead; 3157 return SQLITE_OK; 3158 } 3159 3160 /* 3161 ** Read the contents of frame iRead from the wal file into buffer pOut 3162 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3163 ** error code otherwise. 3164 */ 3165 int sqlite3WalReadFrame( 3166 Wal *pWal, /* WAL handle */ 3167 u32 iRead, /* Frame to read */ 3168 int nOut, /* Size of buffer pOut in bytes */ 3169 u8 *pOut /* Buffer to write page data to */ 3170 ){ 3171 int sz; 3172 i64 iOffset; 3173 sz = pWal->hdr.szPage; 3174 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3175 testcase( sz<=32768 ); 3176 testcase( sz>=65536 ); 3177 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3178 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3179 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3180 } 3181 3182 /* 3183 ** Return the size of the database in pages (or zero, if unknown). 3184 */ 3185 Pgno sqlite3WalDbsize(Wal *pWal){ 3186 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3187 return pWal->hdr.nPage; 3188 } 3189 return 0; 3190 } 3191 3192 3193 /* 3194 ** This function starts a write transaction on the WAL. 3195 ** 3196 ** A read transaction must have already been started by a prior call 3197 ** to sqlite3WalBeginReadTransaction(). 3198 ** 3199 ** If another thread or process has written into the database since 3200 ** the read transaction was started, then it is not possible for this 3201 ** thread to write as doing so would cause a fork. So this routine 3202 ** returns SQLITE_BUSY in that case and no write transaction is started. 3203 ** 3204 ** There can only be a single writer active at a time. 3205 */ 3206 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3207 int rc; 3208 3209 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3210 /* If the write-lock is already held, then it was obtained before the 3211 ** read-transaction was even opened, making this call a no-op. 3212 ** Return early. */ 3213 if( pWal->writeLock ){ 3214 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3215 return SQLITE_OK; 3216 } 3217 #endif 3218 3219 /* Cannot start a write transaction without first holding a read 3220 ** transaction. */ 3221 assert( pWal->readLock>=0 ); 3222 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3223 3224 if( pWal->readOnly ){ 3225 return SQLITE_READONLY; 3226 } 3227 3228 /* Only one writer allowed at a time. Get the write lock. Return 3229 ** SQLITE_BUSY if unable. 3230 */ 3231 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3232 if( rc ){ 3233 return rc; 3234 } 3235 pWal->writeLock = 1; 3236 3237 /* If another connection has written to the database file since the 3238 ** time the read transaction on this connection was started, then 3239 ** the write is disallowed. 3240 */ 3241 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3242 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3243 pWal->writeLock = 0; 3244 rc = SQLITE_BUSY_SNAPSHOT; 3245 } 3246 3247 return rc; 3248 } 3249 3250 /* 3251 ** End a write transaction. The commit has already been done. This 3252 ** routine merely releases the lock. 3253 */ 3254 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3255 if( pWal->writeLock ){ 3256 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3257 pWal->writeLock = 0; 3258 pWal->iReCksum = 0; 3259 pWal->truncateOnCommit = 0; 3260 } 3261 return SQLITE_OK; 3262 } 3263 3264 /* 3265 ** If any data has been written (but not committed) to the log file, this 3266 ** function moves the write-pointer back to the start of the transaction. 3267 ** 3268 ** Additionally, the callback function is invoked for each frame written 3269 ** to the WAL since the start of the transaction. If the callback returns 3270 ** other than SQLITE_OK, it is not invoked again and the error code is 3271 ** returned to the caller. 3272 ** 3273 ** Otherwise, if the callback function does not return an error, this 3274 ** function returns SQLITE_OK. 3275 */ 3276 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3277 int rc = SQLITE_OK; 3278 if( ALWAYS(pWal->writeLock) ){ 3279 Pgno iMax = pWal->hdr.mxFrame; 3280 Pgno iFrame; 3281 3282 /* Restore the clients cache of the wal-index header to the state it 3283 ** was in before the client began writing to the database. 3284 */ 3285 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3286 3287 for(iFrame=pWal->hdr.mxFrame+1; 3288 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3289 iFrame++ 3290 ){ 3291 /* This call cannot fail. Unless the page for which the page number 3292 ** is passed as the second argument is (a) in the cache and 3293 ** (b) has an outstanding reference, then xUndo is either a no-op 3294 ** (if (a) is false) or simply expels the page from the cache (if (b) 3295 ** is false). 3296 ** 3297 ** If the upper layer is doing a rollback, it is guaranteed that there 3298 ** are no outstanding references to any page other than page 1. And 3299 ** page 1 is never written to the log until the transaction is 3300 ** committed. As a result, the call to xUndo may not fail. 3301 */ 3302 assert( walFramePgno(pWal, iFrame)!=1 ); 3303 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3304 } 3305 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3306 } 3307 return rc; 3308 } 3309 3310 /* 3311 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3312 ** values. This function populates the array with values required to 3313 ** "rollback" the write position of the WAL handle back to the current 3314 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3315 */ 3316 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3317 assert( pWal->writeLock ); 3318 aWalData[0] = pWal->hdr.mxFrame; 3319 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3320 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3321 aWalData[3] = pWal->nCkpt; 3322 } 3323 3324 /* 3325 ** Move the write position of the WAL back to the point identified by 3326 ** the values in the aWalData[] array. aWalData must point to an array 3327 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3328 ** by a call to WalSavepoint(). 3329 */ 3330 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3331 int rc = SQLITE_OK; 3332 3333 assert( pWal->writeLock ); 3334 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3335 3336 if( aWalData[3]!=pWal->nCkpt ){ 3337 /* This savepoint was opened immediately after the write-transaction 3338 ** was started. Right after that, the writer decided to wrap around 3339 ** to the start of the log. Update the savepoint values to match. 3340 */ 3341 aWalData[0] = 0; 3342 aWalData[3] = pWal->nCkpt; 3343 } 3344 3345 if( aWalData[0]<pWal->hdr.mxFrame ){ 3346 pWal->hdr.mxFrame = aWalData[0]; 3347 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3348 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3349 walCleanupHash(pWal); 3350 } 3351 3352 return rc; 3353 } 3354 3355 /* 3356 ** This function is called just before writing a set of frames to the log 3357 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3358 ** to the current log file, it is possible to overwrite the start of the 3359 ** existing log file with the new frames (i.e. "reset" the log). If so, 3360 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3361 ** unchanged. 3362 ** 3363 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3364 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3365 ** if an error occurs. 3366 */ 3367 static int walRestartLog(Wal *pWal){ 3368 int rc = SQLITE_OK; 3369 int cnt; 3370 3371 if( pWal->readLock==0 ){ 3372 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3373 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3374 if( pInfo->nBackfill>0 ){ 3375 u32 salt1; 3376 sqlite3_randomness(4, &salt1); 3377 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3378 if( rc==SQLITE_OK ){ 3379 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3380 ** readers are currently using the WAL), then the transactions 3381 ** frames will overwrite the start of the existing log. Update the 3382 ** wal-index header to reflect this. 3383 ** 3384 ** In theory it would be Ok to update the cache of the header only 3385 ** at this point. But updating the actual wal-index header is also 3386 ** safe and means there is no special case for sqlite3WalUndo() 3387 ** to handle if this transaction is rolled back. */ 3388 walRestartHdr(pWal, salt1); 3389 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3390 }else if( rc!=SQLITE_BUSY ){ 3391 return rc; 3392 } 3393 } 3394 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3395 pWal->readLock = -1; 3396 cnt = 0; 3397 do{ 3398 int notUsed; 3399 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3400 }while( rc==WAL_RETRY ); 3401 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3402 testcase( (rc&0xff)==SQLITE_IOERR ); 3403 testcase( rc==SQLITE_PROTOCOL ); 3404 testcase( rc==SQLITE_OK ); 3405 } 3406 return rc; 3407 } 3408 3409 /* 3410 ** Information about the current state of the WAL file and where 3411 ** the next fsync should occur - passed from sqlite3WalFrames() into 3412 ** walWriteToLog(). 3413 */ 3414 typedef struct WalWriter { 3415 Wal *pWal; /* The complete WAL information */ 3416 sqlite3_file *pFd; /* The WAL file to which we write */ 3417 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3418 int syncFlags; /* Flags for the fsync */ 3419 int szPage; /* Size of one page */ 3420 } WalWriter; 3421 3422 /* 3423 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3424 ** Do a sync when crossing the p->iSyncPoint boundary. 3425 ** 3426 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3427 ** first write the part before iSyncPoint, then sync, then write the 3428 ** rest. 3429 */ 3430 static int walWriteToLog( 3431 WalWriter *p, /* WAL to write to */ 3432 void *pContent, /* Content to be written */ 3433 int iAmt, /* Number of bytes to write */ 3434 sqlite3_int64 iOffset /* Start writing at this offset */ 3435 ){ 3436 int rc; 3437 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3438 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3439 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3440 if( rc ) return rc; 3441 iOffset += iFirstAmt; 3442 iAmt -= iFirstAmt; 3443 pContent = (void*)(iFirstAmt + (char*)pContent); 3444 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3445 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3446 if( iAmt==0 || rc ) return rc; 3447 } 3448 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3449 return rc; 3450 } 3451 3452 /* 3453 ** Write out a single frame of the WAL 3454 */ 3455 static int walWriteOneFrame( 3456 WalWriter *p, /* Where to write the frame */ 3457 PgHdr *pPage, /* The page of the frame to be written */ 3458 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3459 sqlite3_int64 iOffset /* Byte offset at which to write */ 3460 ){ 3461 int rc; /* Result code from subfunctions */ 3462 void *pData; /* Data actually written */ 3463 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3464 pData = pPage->pData; 3465 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3466 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3467 if( rc ) return rc; 3468 /* Write the page data */ 3469 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3470 return rc; 3471 } 3472 3473 /* 3474 ** This function is called as part of committing a transaction within which 3475 ** one or more frames have been overwritten. It updates the checksums for 3476 ** all frames written to the wal file by the current transaction starting 3477 ** with the earliest to have been overwritten. 3478 ** 3479 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3480 */ 3481 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3482 const int szPage = pWal->szPage;/* Database page size */ 3483 int rc = SQLITE_OK; /* Return code */ 3484 u8 *aBuf; /* Buffer to load data from wal file into */ 3485 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3486 u32 iRead; /* Next frame to read from wal file */ 3487 i64 iCksumOff; 3488 3489 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3490 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3491 3492 /* Find the checksum values to use as input for the recalculating the 3493 ** first checksum. If the first frame is frame 1 (implying that the current 3494 ** transaction restarted the wal file), these values must be read from the 3495 ** wal-file header. Otherwise, read them from the frame header of the 3496 ** previous frame. */ 3497 assert( pWal->iReCksum>0 ); 3498 if( pWal->iReCksum==1 ){ 3499 iCksumOff = 24; 3500 }else{ 3501 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3502 } 3503 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3504 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3505 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3506 3507 iRead = pWal->iReCksum; 3508 pWal->iReCksum = 0; 3509 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3510 i64 iOff = walFrameOffset(iRead, szPage); 3511 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3512 if( rc==SQLITE_OK ){ 3513 u32 iPgno, nDbSize; 3514 iPgno = sqlite3Get4byte(aBuf); 3515 nDbSize = sqlite3Get4byte(&aBuf[4]); 3516 3517 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3518 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3519 } 3520 } 3521 3522 sqlite3_free(aBuf); 3523 return rc; 3524 } 3525 3526 /* 3527 ** Write a set of frames to the log. The caller must hold the write-lock 3528 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3529 */ 3530 int sqlite3WalFrames( 3531 Wal *pWal, /* Wal handle to write to */ 3532 int szPage, /* Database page-size in bytes */ 3533 PgHdr *pList, /* List of dirty pages to write */ 3534 Pgno nTruncate, /* Database size after this commit */ 3535 int isCommit, /* True if this is a commit */ 3536 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3537 ){ 3538 int rc; /* Used to catch return codes */ 3539 u32 iFrame; /* Next frame address */ 3540 PgHdr *p; /* Iterator to run through pList with. */ 3541 PgHdr *pLast = 0; /* Last frame in list */ 3542 int nExtra = 0; /* Number of extra copies of last page */ 3543 int szFrame; /* The size of a single frame */ 3544 i64 iOffset; /* Next byte to write in WAL file */ 3545 WalWriter w; /* The writer */ 3546 u32 iFirst = 0; /* First frame that may be overwritten */ 3547 WalIndexHdr *pLive; /* Pointer to shared header */ 3548 3549 assert( pList ); 3550 assert( pWal->writeLock ); 3551 3552 /* If this frame set completes a transaction, then nTruncate>0. If 3553 ** nTruncate==0 then this frame set does not complete the transaction. */ 3554 assert( (isCommit!=0)==(nTruncate!=0) ); 3555 3556 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3557 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3558 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3559 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3560 } 3561 #endif 3562 3563 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3564 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3565 iFirst = pLive->mxFrame+1; 3566 } 3567 3568 /* See if it is possible to write these frames into the start of the 3569 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3570 */ 3571 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3572 return rc; 3573 } 3574 3575 /* If this is the first frame written into the log, write the WAL 3576 ** header to the start of the WAL file. See comments at the top of 3577 ** this source file for a description of the WAL header format. 3578 */ 3579 iFrame = pWal->hdr.mxFrame; 3580 if( iFrame==0 ){ 3581 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3582 u32 aCksum[2]; /* Checksum for wal-header */ 3583 3584 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3585 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3586 sqlite3Put4byte(&aWalHdr[8], szPage); 3587 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3588 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3589 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3590 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3591 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3592 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3593 3594 pWal->szPage = szPage; 3595 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3596 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3597 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3598 pWal->truncateOnCommit = 1; 3599 3600 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3601 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3602 if( rc!=SQLITE_OK ){ 3603 return rc; 3604 } 3605 3606 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3607 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3608 ** an out-of-order write following a WAL restart could result in 3609 ** database corruption. See the ticket: 3610 ** 3611 ** https://sqlite.org/src/info/ff5be73dee 3612 */ 3613 if( pWal->syncHeader ){ 3614 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3615 if( rc ) return rc; 3616 } 3617 } 3618 assert( (int)pWal->szPage==szPage ); 3619 3620 /* Setup information needed to write frames into the WAL */ 3621 w.pWal = pWal; 3622 w.pFd = pWal->pWalFd; 3623 w.iSyncPoint = 0; 3624 w.syncFlags = sync_flags; 3625 w.szPage = szPage; 3626 iOffset = walFrameOffset(iFrame+1, szPage); 3627 szFrame = szPage + WAL_FRAME_HDRSIZE; 3628 3629 /* Write all frames into the log file exactly once */ 3630 for(p=pList; p; p=p->pDirty){ 3631 int nDbSize; /* 0 normally. Positive == commit flag */ 3632 3633 /* Check if this page has already been written into the wal file by 3634 ** the current transaction. If so, overwrite the existing frame and 3635 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3636 ** checksums must be recomputed when the transaction is committed. */ 3637 if( iFirst && (p->pDirty || isCommit==0) ){ 3638 u32 iWrite = 0; 3639 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3640 assert( rc==SQLITE_OK || iWrite==0 ); 3641 if( iWrite>=iFirst ){ 3642 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3643 void *pData; 3644 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3645 pWal->iReCksum = iWrite; 3646 } 3647 pData = p->pData; 3648 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3649 if( rc ) return rc; 3650 p->flags &= ~PGHDR_WAL_APPEND; 3651 continue; 3652 } 3653 } 3654 3655 iFrame++; 3656 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3657 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3658 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3659 if( rc ) return rc; 3660 pLast = p; 3661 iOffset += szFrame; 3662 p->flags |= PGHDR_WAL_APPEND; 3663 } 3664 3665 /* Recalculate checksums within the wal file if required. */ 3666 if( isCommit && pWal->iReCksum ){ 3667 rc = walRewriteChecksums(pWal, iFrame); 3668 if( rc ) return rc; 3669 } 3670 3671 /* If this is the end of a transaction, then we might need to pad 3672 ** the transaction and/or sync the WAL file. 3673 ** 3674 ** Padding and syncing only occur if this set of frames complete a 3675 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3676 ** or synchronous==OFF, then no padding or syncing are needed. 3677 ** 3678 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3679 ** needed and only the sync is done. If padding is needed, then the 3680 ** final frame is repeated (with its commit mark) until the next sector 3681 ** boundary is crossed. Only the part of the WAL prior to the last 3682 ** sector boundary is synced; the part of the last frame that extends 3683 ** past the sector boundary is written after the sync. 3684 */ 3685 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3686 int bSync = 1; 3687 if( pWal->padToSectorBoundary ){ 3688 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3689 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3690 bSync = (w.iSyncPoint==iOffset); 3691 testcase( bSync ); 3692 while( iOffset<w.iSyncPoint ){ 3693 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3694 if( rc ) return rc; 3695 iOffset += szFrame; 3696 nExtra++; 3697 assert( pLast!=0 ); 3698 } 3699 } 3700 if( bSync ){ 3701 assert( rc==SQLITE_OK ); 3702 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3703 } 3704 } 3705 3706 /* If this frame set completes the first transaction in the WAL and 3707 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3708 ** journal size limit, if possible. 3709 */ 3710 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3711 i64 sz = pWal->mxWalSize; 3712 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3713 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3714 } 3715 walLimitSize(pWal, sz); 3716 pWal->truncateOnCommit = 0; 3717 } 3718 3719 /* Append data to the wal-index. It is not necessary to lock the 3720 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3721 ** guarantees that there are no other writers, and no data that may 3722 ** be in use by existing readers is being overwritten. 3723 */ 3724 iFrame = pWal->hdr.mxFrame; 3725 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3726 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3727 iFrame++; 3728 rc = walIndexAppend(pWal, iFrame, p->pgno); 3729 } 3730 assert( pLast!=0 || nExtra==0 ); 3731 while( rc==SQLITE_OK && nExtra>0 ){ 3732 iFrame++; 3733 nExtra--; 3734 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3735 } 3736 3737 if( rc==SQLITE_OK ){ 3738 /* Update the private copy of the header. */ 3739 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3740 testcase( szPage<=32768 ); 3741 testcase( szPage>=65536 ); 3742 pWal->hdr.mxFrame = iFrame; 3743 if( isCommit ){ 3744 pWal->hdr.iChange++; 3745 pWal->hdr.nPage = nTruncate; 3746 } 3747 /* If this is a commit, update the wal-index header too. */ 3748 if( isCommit ){ 3749 walIndexWriteHdr(pWal); 3750 pWal->iCallback = iFrame; 3751 } 3752 } 3753 3754 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3755 return rc; 3756 } 3757 3758 /* 3759 ** This routine is called to implement sqlite3_wal_checkpoint() and 3760 ** related interfaces. 3761 ** 3762 ** Obtain a CHECKPOINT lock and then backfill as much information as 3763 ** we can from WAL into the database. 3764 ** 3765 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3766 ** callback. In this case this function runs a blocking checkpoint. 3767 */ 3768 int sqlite3WalCheckpoint( 3769 Wal *pWal, /* Wal connection */ 3770 sqlite3 *db, /* Check this handle's interrupt flag */ 3771 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3772 int (*xBusy)(void*), /* Function to call when busy */ 3773 void *pBusyArg, /* Context argument for xBusyHandler */ 3774 int sync_flags, /* Flags to sync db file with (or 0) */ 3775 int nBuf, /* Size of temporary buffer */ 3776 u8 *zBuf, /* Temporary buffer to use */ 3777 int *pnLog, /* OUT: Number of frames in WAL */ 3778 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3779 ){ 3780 int rc; /* Return code */ 3781 int isChanged = 0; /* True if a new wal-index header is loaded */ 3782 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3783 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3784 3785 assert( pWal->ckptLock==0 ); 3786 assert( pWal->writeLock==0 ); 3787 3788 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3789 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3790 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3791 3792 if( pWal->readOnly ) return SQLITE_READONLY; 3793 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3794 3795 /* Enable blocking locks, if possible. If blocking locks are successfully 3796 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3797 sqlite3WalDb(pWal, db); 3798 (void)walEnableBlocking(pWal); 3799 3800 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3801 ** "checkpoint" lock on the database file. 3802 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3803 ** checkpoint operation at the same time, the lock cannot be obtained and 3804 ** SQLITE_BUSY is returned. 3805 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3806 ** it will not be invoked in this case. 3807 */ 3808 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3809 testcase( rc==SQLITE_BUSY ); 3810 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3811 if( rc==SQLITE_OK ){ 3812 pWal->ckptLock = 1; 3813 3814 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3815 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3816 ** file. 3817 ** 3818 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3819 ** immediately, and a busy-handler is configured, it is invoked and the 3820 ** writer lock retried until either the busy-handler returns 0 or the 3821 ** lock is successfully obtained. 3822 */ 3823 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3824 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3825 if( rc==SQLITE_OK ){ 3826 pWal->writeLock = 1; 3827 }else if( rc==SQLITE_BUSY ){ 3828 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3829 xBusy2 = 0; 3830 rc = SQLITE_OK; 3831 } 3832 } 3833 } 3834 3835 3836 /* Read the wal-index header. */ 3837 if( rc==SQLITE_OK ){ 3838 walDisableBlocking(pWal); 3839 rc = walIndexReadHdr(pWal, &isChanged); 3840 (void)walEnableBlocking(pWal); 3841 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3842 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3843 } 3844 } 3845 3846 /* Copy data from the log to the database file. */ 3847 if( rc==SQLITE_OK ){ 3848 3849 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3850 rc = SQLITE_CORRUPT_BKPT; 3851 }else{ 3852 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3853 } 3854 3855 /* If no error occurred, set the output variables. */ 3856 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3857 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3858 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3859 } 3860 } 3861 3862 if( isChanged ){ 3863 /* If a new wal-index header was loaded before the checkpoint was 3864 ** performed, then the pager-cache associated with pWal is now 3865 ** out of date. So zero the cached wal-index header to ensure that 3866 ** next time the pager opens a snapshot on this database it knows that 3867 ** the cache needs to be reset. 3868 */ 3869 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3870 } 3871 3872 walDisableBlocking(pWal); 3873 sqlite3WalDb(pWal, 0); 3874 3875 /* Release the locks. */ 3876 sqlite3WalEndWriteTransaction(pWal); 3877 if( pWal->ckptLock ){ 3878 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3879 pWal->ckptLock = 0; 3880 } 3881 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3882 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3883 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3884 #endif 3885 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3886 } 3887 3888 /* Return the value to pass to a sqlite3_wal_hook callback, the 3889 ** number of frames in the WAL at the point of the last commit since 3890 ** sqlite3WalCallback() was called. If no commits have occurred since 3891 ** the last call, then return 0. 3892 */ 3893 int sqlite3WalCallback(Wal *pWal){ 3894 u32 ret = 0; 3895 if( pWal ){ 3896 ret = pWal->iCallback; 3897 pWal->iCallback = 0; 3898 } 3899 return (int)ret; 3900 } 3901 3902 /* 3903 ** This function is called to change the WAL subsystem into or out 3904 ** of locking_mode=EXCLUSIVE. 3905 ** 3906 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3907 ** into locking_mode=NORMAL. This means that we must acquire a lock 3908 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3909 ** or if the acquisition of the lock fails, then return 0. If the 3910 ** transition out of exclusive-mode is successful, return 1. This 3911 ** operation must occur while the pager is still holding the exclusive 3912 ** lock on the main database file. 3913 ** 3914 ** If op is one, then change from locking_mode=NORMAL into 3915 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3916 ** be released. Return 1 if the transition is made and 0 if the 3917 ** WAL is already in exclusive-locking mode - meaning that this 3918 ** routine is a no-op. The pager must already hold the exclusive lock 3919 ** on the main database file before invoking this operation. 3920 ** 3921 ** If op is negative, then do a dry-run of the op==1 case but do 3922 ** not actually change anything. The pager uses this to see if it 3923 ** should acquire the database exclusive lock prior to invoking 3924 ** the op==1 case. 3925 */ 3926 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3927 int rc; 3928 assert( pWal->writeLock==0 ); 3929 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3930 3931 /* pWal->readLock is usually set, but might be -1 if there was a 3932 ** prior error while attempting to acquire are read-lock. This cannot 3933 ** happen if the connection is actually in exclusive mode (as no xShmLock 3934 ** locks are taken in this case). Nor should the pager attempt to 3935 ** upgrade to exclusive-mode following such an error. 3936 */ 3937 assert( pWal->readLock>=0 || pWal->lockError ); 3938 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3939 3940 if( op==0 ){ 3941 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3942 pWal->exclusiveMode = WAL_NORMAL_MODE; 3943 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3944 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3945 } 3946 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3947 }else{ 3948 /* Already in locking_mode=NORMAL */ 3949 rc = 0; 3950 } 3951 }else if( op>0 ){ 3952 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3953 assert( pWal->readLock>=0 ); 3954 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3955 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3956 rc = 1; 3957 }else{ 3958 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3959 } 3960 return rc; 3961 } 3962 3963 /* 3964 ** Return true if the argument is non-NULL and the WAL module is using 3965 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3966 ** WAL module is using shared-memory, return false. 3967 */ 3968 int sqlite3WalHeapMemory(Wal *pWal){ 3969 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3970 } 3971 3972 #ifdef SQLITE_ENABLE_SNAPSHOT 3973 /* Create a snapshot object. The content of a snapshot is opaque to 3974 ** every other subsystem, so the WAL module can put whatever it needs 3975 ** in the object. 3976 */ 3977 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3978 int rc = SQLITE_OK; 3979 WalIndexHdr *pRet; 3980 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3981 3982 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3983 3984 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3985 *ppSnapshot = 0; 3986 return SQLITE_ERROR; 3987 } 3988 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3989 if( pRet==0 ){ 3990 rc = SQLITE_NOMEM_BKPT; 3991 }else{ 3992 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3993 *ppSnapshot = (sqlite3_snapshot*)pRet; 3994 } 3995 3996 return rc; 3997 } 3998 3999 /* Try to open on pSnapshot when the next read-transaction starts 4000 */ 4001 void sqlite3WalSnapshotOpen( 4002 Wal *pWal, 4003 sqlite3_snapshot *pSnapshot 4004 ){ 4005 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 4006 } 4007 4008 /* 4009 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 4010 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 4011 */ 4012 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 4013 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 4014 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 4015 4016 /* aSalt[0] is a copy of the value stored in the wal file header. It 4017 ** is incremented each time the wal file is restarted. */ 4018 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 4019 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 4020 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 4021 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 4022 return 0; 4023 } 4024 4025 /* 4026 ** The caller currently has a read transaction open on the database. 4027 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 4028 ** checks if the snapshot passed as the second argument is still 4029 ** available. If so, SQLITE_OK is returned. 4030 ** 4031 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 4032 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 4033 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 4034 ** lock is released before returning. 4035 */ 4036 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 4037 int rc; 4038 rc = walLockShared(pWal, WAL_CKPT_LOCK); 4039 if( rc==SQLITE_OK ){ 4040 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 4041 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 4042 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 4043 ){ 4044 rc = SQLITE_ERROR_SNAPSHOT; 4045 walUnlockShared(pWal, WAL_CKPT_LOCK); 4046 } 4047 } 4048 return rc; 4049 } 4050 4051 /* 4052 ** Release a lock obtained by an earlier successful call to 4053 ** sqlite3WalSnapshotCheck(). 4054 */ 4055 void sqlite3WalSnapshotUnlock(Wal *pWal){ 4056 assert( pWal ); 4057 walUnlockShared(pWal, WAL_CKPT_LOCK); 4058 } 4059 4060 4061 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4062 4063 #ifdef SQLITE_ENABLE_ZIPVFS 4064 /* 4065 ** If the argument is not NULL, it points to a Wal object that holds a 4066 ** read-lock. This function returns the database page-size if it is known, 4067 ** or zero if it is not (or if pWal is NULL). 4068 */ 4069 int sqlite3WalFramesize(Wal *pWal){ 4070 assert( pWal==0 || pWal->readLock>=0 ); 4071 return (pWal ? pWal->szPage : 0); 4072 } 4073 #endif 4074 4075 /* Return the sqlite3_file object for the WAL file 4076 */ 4077 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4078 return pWal->pWalFd; 4079 } 4080 4081 #endif /* #ifndef SQLITE_OMIT_WAL */ 4082