1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P and a maximum frame index M, return the index of the 146 ** last frame in the wal before frame M for page P in the WAL, or return 147 ** NULL if there are no frames for page P in the WAL prior to M. 148 ** 149 ** The wal-index consists of a header region, followed by an one or 150 ** more index blocks. 151 ** 152 ** The wal-index header contains the total number of frames within the WAL 153 ** in the mxFrame field. 154 ** 155 ** Each index block except for the first contains information on 156 ** HASHTABLE_NPAGE frames. The first index block contains information on 157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 159 ** first index block are the same size as all other index blocks in the 160 ** wal-index. 161 ** 162 ** Each index block contains two sections, a page-mapping that contains the 163 ** database page number associated with each wal frame, and a hash-table 164 ** that allows readers to query an index block for a specific page number. 165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 166 ** for the first index block) 32-bit page numbers. The first entry in the 167 ** first index-block contains the database page number corresponding to the 168 ** first frame in the WAL file. The first entry in the second index block 169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 170 ** the log, and so on. 171 ** 172 ** The last index block in a wal-index usually contains less than the full 173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 174 ** depending on the contents of the WAL file. This does not change the 175 ** allocated size of the page-mapping array - the page-mapping array merely 176 ** contains unused entries. 177 ** 178 ** Even without using the hash table, the last frame for page P 179 ** can be found by scanning the page-mapping sections of each index block 180 ** starting with the last index block and moving toward the first, and 181 ** within each index block, starting at the end and moving toward the 182 ** beginning. The first entry that equals P corresponds to the frame 183 ** holding the content for that page. 184 ** 185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 187 ** hash table for each page number in the mapping section, so the hash 188 ** table is never more than half full. The expected number of collisions 189 ** prior to finding a match is 1. Each entry of the hash table is an 190 ** 1-based index of an entry in the mapping section of the same 191 ** index block. Let K be the 1-based index of the largest entry in 192 ** the mapping section. (For index blocks other than the last, K will 193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 195 ** contain a value of 0. 196 ** 197 ** To look for page P in the hash table, first compute a hash iKey on 198 ** P as follows: 199 ** 200 ** iKey = (P * 383) % HASHTABLE_NSLOT 201 ** 202 ** Then start scanning entries of the hash table, starting with iKey 203 ** (wrapping around to the beginning when the end of the hash table is 204 ** reached) until an unused hash slot is found. Let the first unused slot 205 ** be at index iUnused. (iUnused might be less than iKey if there was 206 ** wrap-around.) Because the hash table is never more than half full, 207 ** the search is guaranteed to eventually hit an unused entry. Let 208 ** iMax be the value between iKey and iUnused, closest to iUnused, 209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 210 ** no hash slot such that aHash[i]==p) then page P is not in the 211 ** current index block. Otherwise the iMax-th mapping entry of the 212 ** current index block corresponds to the last entry that references 213 ** page P. 214 ** 215 ** A hash search begins with the last index block and moves toward the 216 ** first index block, looking for entries corresponding to page P. On 217 ** average, only two or three slots in each index block need to be 218 ** examined in order to either find the last entry for page P, or to 219 ** establish that no such entry exists in the block. Each index block 220 ** holds over 4000 entries. So two or three index blocks are sufficient 221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 222 ** comparisons (on average) suffice to either locate a frame in the 223 ** WAL or to establish that the frame does not exist in the WAL. This 224 ** is much faster than scanning the entire 10MB WAL. 225 ** 226 ** Note that entries are added in order of increasing K. Hence, one 227 ** reader might be using some value K0 and a second reader that started 228 ** at a later time (after additional transactions were added to the WAL 229 ** and to the wal-index) might be using a different value K1, where K1>K0. 230 ** Both readers can use the same hash table and mapping section to get 231 ** the correct result. There may be entries in the hash table with 232 ** K>K0 but to the first reader, those entries will appear to be unused 233 ** slots in the hash table and so the first reader will get an answer as 234 ** if no values greater than K0 had ever been inserted into the hash table 235 ** in the first place - which is what reader one wants. Meanwhile, the 236 ** second reader using K1 will see additional values that were inserted 237 ** later, which is exactly what reader two wants. 238 ** 239 ** When a rollback occurs, the value of K is decreased. Hash table entries 240 ** that correspond to frames greater than the new K value are removed 241 ** from the hash table at this point. 242 */ 243 #ifndef SQLITE_OMIT_WAL 244 245 #include "wal.h" 246 247 /* 248 ** Trace output macros 249 */ 250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 251 int sqlite3WalTrace = 0; 252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 253 #else 254 # define WALTRACE(X) 255 #endif 256 257 /* 258 ** The maximum (and only) versions of the wal and wal-index formats 259 ** that may be interpreted by this version of SQLite. 260 ** 261 ** If a client begins recovering a WAL file and finds that (a) the checksum 262 ** values in the wal-header are correct and (b) the version field is not 263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 264 ** 265 ** Similarly, if a client successfully reads a wal-index header (i.e. the 266 ** checksum test is successful) and finds that the version field is not 267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 268 ** returns SQLITE_CANTOPEN. 269 */ 270 #define WAL_MAX_VERSION 3007000 271 #define WALINDEX_MAX_VERSION 3007000 272 273 /* 274 ** Indices of various locking bytes. WAL_NREADER is the number 275 ** of available reader locks and should be at least 3. The default 276 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 277 */ 278 #define WAL_WRITE_LOCK 0 279 #define WAL_ALL_BUT_WRITE 1 280 #define WAL_CKPT_LOCK 1 281 #define WAL_RECOVER_LOCK 2 282 #define WAL_READ_LOCK(I) (3+(I)) 283 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 284 285 286 /* Object declarations */ 287 typedef struct WalIndexHdr WalIndexHdr; 288 typedef struct WalIterator WalIterator; 289 typedef struct WalCkptInfo WalCkptInfo; 290 291 292 /* 293 ** The following object holds a copy of the wal-index header content. 294 ** 295 ** The actual header in the wal-index consists of two copies of this 296 ** object followed by one instance of the WalCkptInfo object. 297 ** For all versions of SQLite through 3.10.0 and probably beyond, 298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 299 ** the total header size is 136 bytes. 300 ** 301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 302 ** Or it can be 1 to represent a 65536-byte page. The latter case was 303 ** added in 3.7.1 when support for 64K pages was added. 304 */ 305 struct WalIndexHdr { 306 u32 iVersion; /* Wal-index version */ 307 u32 unused; /* Unused (padding) field */ 308 u32 iChange; /* Counter incremented each transaction */ 309 u8 isInit; /* 1 when initialized */ 310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 311 u16 szPage; /* Database page size in bytes. 1==64K */ 312 u32 mxFrame; /* Index of last valid frame in the WAL */ 313 u32 nPage; /* Size of database in pages */ 314 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 315 u32 aSalt[2]; /* Two salt values copied from WAL header */ 316 u32 aCksum[2]; /* Checksum over all prior fields */ 317 }; 318 319 /* 320 ** A copy of the following object occurs in the wal-index immediately 321 ** following the second copy of the WalIndexHdr. This object stores 322 ** information used by checkpoint. 323 ** 324 ** nBackfill is the number of frames in the WAL that have been written 325 ** back into the database. (We call the act of moving content from WAL to 326 ** database "backfilling".) The nBackfill number is never greater than 327 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 330 ** mxFrame back to zero when the WAL is reset. 331 ** 332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 333 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 334 ** the nBackfillAttempted is set before any backfilling is done and the 335 ** nBackfill is only set after all backfilling completes. So if a checkpoint 336 ** crashes, nBackfillAttempted might be larger than nBackfill. The 337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 338 ** 339 ** The aLock[] field is a set of bytes used for locking. These bytes should 340 ** never be read or written. 341 ** 342 ** There is one entry in aReadMark[] for each reader lock. If a reader 343 ** holds read-lock K, then the value in aReadMark[K] is no greater than 344 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 345 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 346 ** a special case; its value is never used and it exists as a place-holder 347 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 349 ** directly from the database. 350 ** 351 ** The value of aReadMark[K] may only be changed by a thread that 352 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 353 ** aReadMark[K] cannot changed while there is a reader is using that mark 354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 355 ** 356 ** The checkpointer may only transfer frames from WAL to database where 357 ** the frame numbers are less than or equal to every aReadMark[] that is 358 ** in use (that is, every aReadMark[j] for which there is a corresponding 359 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 360 ** largest value and will increase an unused aReadMark[] to mxFrame if there 361 ** is not already an aReadMark[] equal to mxFrame. The exception to the 362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 363 ** in the WAL has been backfilled into the database) then new readers 364 ** will choose aReadMark[0] which has value 0 and hence such reader will 365 ** get all their all content directly from the database file and ignore 366 ** the WAL. 367 ** 368 ** Writers normally append new frames to the end of the WAL. However, 369 ** if nBackfill equals mxFrame (meaning that all WAL content has been 370 ** written back into the database) and if no readers are using the WAL 371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 372 ** the writer will first "reset" the WAL back to the beginning and start 373 ** writing new content beginning at frame 1. 374 ** 375 ** We assume that 32-bit loads are atomic and so no locks are needed in 376 ** order to read from any aReadMark[] entries. 377 */ 378 struct WalCkptInfo { 379 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 380 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 383 u32 notUsed0; /* Available for future enhancements */ 384 }; 385 #define READMARK_NOT_USED 0xffffffff 386 387 388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 390 ** only support mandatory file-locks, we do not read or write data 391 ** from the region of the file on which locks are applied. 392 */ 393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 394 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 395 396 /* Size of header before each frame in wal */ 397 #define WAL_FRAME_HDRSIZE 24 398 399 /* Size of write ahead log header, including checksum. */ 400 /* #define WAL_HDRSIZE 24 */ 401 #define WAL_HDRSIZE 32 402 403 /* WAL magic value. Either this value, or the same value with the least 404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 405 ** big-endian format in the first 4 bytes of a WAL file. 406 ** 407 ** If the LSB is set, then the checksums for each frame within the WAL 408 ** file are calculated by treating all data as an array of 32-bit 409 ** big-endian words. Otherwise, they are calculated by interpreting 410 ** all data as 32-bit little-endian words. 411 */ 412 #define WAL_MAGIC 0x377f0682 413 414 /* 415 ** Return the offset of frame iFrame in the write-ahead log file, 416 ** assuming a database page size of szPage bytes. The offset returned 417 ** is to the start of the write-ahead log frame-header. 418 */ 419 #define walFrameOffset(iFrame, szPage) ( \ 420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 421 ) 422 423 /* 424 ** An open write-ahead log file is represented by an instance of the 425 ** following object. 426 */ 427 struct Wal { 428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 429 sqlite3_file *pDbFd; /* File handle for the database file */ 430 sqlite3_file *pWalFd; /* File handle for WAL file */ 431 u32 iCallback; /* Value to pass to log callback (or 0) */ 432 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 433 int nWiData; /* Size of array apWiData */ 434 int szFirstBlock; /* Size of first block written to WAL file */ 435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 436 u32 szPage; /* Database page size */ 437 i16 readLock; /* Which read lock is being held. -1 for none */ 438 u8 syncFlags; /* Flags to use to sync header writes */ 439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 440 u8 writeLock; /* True if in a write transaction */ 441 u8 ckptLock; /* True if holding a checkpoint lock */ 442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 443 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 444 u8 syncHeader; /* Fsync the WAL header if true */ 445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 446 WalIndexHdr hdr; /* Wal-index header for current transaction */ 447 u32 minFrame; /* Ignore wal frames before this one */ 448 const char *zWalName; /* Name of WAL file */ 449 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 450 #ifdef SQLITE_DEBUG 451 u8 lockError; /* True if a locking error has occurred */ 452 #endif 453 #ifdef SQLITE_ENABLE_SNAPSHOT 454 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 455 #endif 456 }; 457 458 /* 459 ** Candidate values for Wal.exclusiveMode. 460 */ 461 #define WAL_NORMAL_MODE 0 462 #define WAL_EXCLUSIVE_MODE 1 463 #define WAL_HEAPMEMORY_MODE 2 464 465 /* 466 ** Possible values for WAL.readOnly 467 */ 468 #define WAL_RDWR 0 /* Normal read/write connection */ 469 #define WAL_RDONLY 1 /* The WAL file is readonly */ 470 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 471 472 /* 473 ** Each page of the wal-index mapping contains a hash-table made up of 474 ** an array of HASHTABLE_NSLOT elements of the following type. 475 */ 476 typedef u16 ht_slot; 477 478 /* 479 ** This structure is used to implement an iterator that loops through 480 ** all frames in the WAL in database page order. Where two or more frames 481 ** correspond to the same database page, the iterator visits only the 482 ** frame most recently written to the WAL (in other words, the frame with 483 ** the largest index). 484 ** 485 ** The internals of this structure are only accessed by: 486 ** 487 ** walIteratorInit() - Create a new iterator, 488 ** walIteratorNext() - Step an iterator, 489 ** walIteratorFree() - Free an iterator. 490 ** 491 ** This functionality is used by the checkpoint code (see walCheckpoint()). 492 */ 493 struct WalIterator { 494 int iPrior; /* Last result returned from the iterator */ 495 int nSegment; /* Number of entries in aSegment[] */ 496 struct WalSegment { 497 int iNext; /* Next slot in aIndex[] not yet returned */ 498 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 499 u32 *aPgno; /* Array of page numbers. */ 500 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 501 int iZero; /* Frame number associated with aPgno[0] */ 502 } aSegment[1]; /* One for every 32KB page in the wal-index */ 503 }; 504 505 /* 506 ** Define the parameters of the hash tables in the wal-index file. There 507 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 508 ** wal-index. 509 ** 510 ** Changing any of these constants will alter the wal-index format and 511 ** create incompatibilities. 512 */ 513 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 514 #define HASHTABLE_HASH_1 383 /* Should be prime */ 515 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 516 517 /* 518 ** The block of page numbers associated with the first hash-table in a 519 ** wal-index is smaller than usual. This is so that there is a complete 520 ** hash-table on each aligned 32KB page of the wal-index. 521 */ 522 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 523 524 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 525 #define WALINDEX_PGSZ ( \ 526 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 527 ) 528 529 /* 530 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 531 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 532 ** numbered from zero. 533 ** 534 ** If this call is successful, *ppPage is set to point to the wal-index 535 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 536 ** then an SQLite error code is returned and *ppPage is set to 0. 537 */ 538 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 539 int rc = SQLITE_OK; 540 541 /* Enlarge the pWal->apWiData[] array if required */ 542 if( pWal->nWiData<=iPage ){ 543 int nByte = sizeof(u32*)*(iPage+1); 544 volatile u32 **apNew; 545 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 546 if( !apNew ){ 547 *ppPage = 0; 548 return SQLITE_NOMEM; 549 } 550 memset((void*)&apNew[pWal->nWiData], 0, 551 sizeof(u32*)*(iPage+1-pWal->nWiData)); 552 pWal->apWiData = apNew; 553 pWal->nWiData = iPage+1; 554 } 555 556 /* Request a pointer to the required page from the VFS */ 557 if( pWal->apWiData[iPage]==0 ){ 558 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 559 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 560 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; 561 }else{ 562 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 563 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 564 ); 565 if( rc==SQLITE_READONLY ){ 566 pWal->readOnly |= WAL_SHM_RDONLY; 567 rc = SQLITE_OK; 568 } 569 } 570 } 571 572 *ppPage = pWal->apWiData[iPage]; 573 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 574 return rc; 575 } 576 577 /* 578 ** Return a pointer to the WalCkptInfo structure in the wal-index. 579 */ 580 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 581 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 582 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 583 } 584 585 /* 586 ** Return a pointer to the WalIndexHdr structure in the wal-index. 587 */ 588 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 589 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 590 return (volatile WalIndexHdr*)pWal->apWiData[0]; 591 } 592 593 /* 594 ** The argument to this macro must be of type u32. On a little-endian 595 ** architecture, it returns the u32 value that results from interpreting 596 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 597 ** returns the value that would be produced by interpreting the 4 bytes 598 ** of the input value as a little-endian integer. 599 */ 600 #define BYTESWAP32(x) ( \ 601 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 602 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 603 ) 604 605 /* 606 ** Generate or extend an 8 byte checksum based on the data in 607 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 608 ** initial values of 0 and 0 if aIn==NULL). 609 ** 610 ** The checksum is written back into aOut[] before returning. 611 ** 612 ** nByte must be a positive multiple of 8. 613 */ 614 static void walChecksumBytes( 615 int nativeCksum, /* True for native byte-order, false for non-native */ 616 u8 *a, /* Content to be checksummed */ 617 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 618 const u32 *aIn, /* Initial checksum value input */ 619 u32 *aOut /* OUT: Final checksum value output */ 620 ){ 621 u32 s1, s2; 622 u32 *aData = (u32 *)a; 623 u32 *aEnd = (u32 *)&a[nByte]; 624 625 if( aIn ){ 626 s1 = aIn[0]; 627 s2 = aIn[1]; 628 }else{ 629 s1 = s2 = 0; 630 } 631 632 assert( nByte>=8 ); 633 assert( (nByte&0x00000007)==0 ); 634 635 if( nativeCksum ){ 636 do { 637 s1 += *aData++ + s2; 638 s2 += *aData++ + s1; 639 }while( aData<aEnd ); 640 }else{ 641 do { 642 s1 += BYTESWAP32(aData[0]) + s2; 643 s2 += BYTESWAP32(aData[1]) + s1; 644 aData += 2; 645 }while( aData<aEnd ); 646 } 647 648 aOut[0] = s1; 649 aOut[1] = s2; 650 } 651 652 static void walShmBarrier(Wal *pWal){ 653 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 654 sqlite3OsShmBarrier(pWal->pDbFd); 655 } 656 } 657 658 /* 659 ** Write the header information in pWal->hdr into the wal-index. 660 ** 661 ** The checksum on pWal->hdr is updated before it is written. 662 */ 663 static void walIndexWriteHdr(Wal *pWal){ 664 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 665 const int nCksum = offsetof(WalIndexHdr, aCksum); 666 667 assert( pWal->writeLock ); 668 pWal->hdr.isInit = 1; 669 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 670 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 671 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 672 walShmBarrier(pWal); 673 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 674 } 675 676 /* 677 ** This function encodes a single frame header and writes it to a buffer 678 ** supplied by the caller. A frame-header is made up of a series of 679 ** 4-byte big-endian integers, as follows: 680 ** 681 ** 0: Page number. 682 ** 4: For commit records, the size of the database image in pages 683 ** after the commit. For all other records, zero. 684 ** 8: Salt-1 (copied from the wal-header) 685 ** 12: Salt-2 (copied from the wal-header) 686 ** 16: Checksum-1. 687 ** 20: Checksum-2. 688 */ 689 static void walEncodeFrame( 690 Wal *pWal, /* The write-ahead log */ 691 u32 iPage, /* Database page number for frame */ 692 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 693 u8 *aData, /* Pointer to page data */ 694 u8 *aFrame /* OUT: Write encoded frame here */ 695 ){ 696 int nativeCksum; /* True for native byte-order checksums */ 697 u32 *aCksum = pWal->hdr.aFrameCksum; 698 assert( WAL_FRAME_HDRSIZE==24 ); 699 sqlite3Put4byte(&aFrame[0], iPage); 700 sqlite3Put4byte(&aFrame[4], nTruncate); 701 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 702 703 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 704 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 705 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 706 707 sqlite3Put4byte(&aFrame[16], aCksum[0]); 708 sqlite3Put4byte(&aFrame[20], aCksum[1]); 709 } 710 711 /* 712 ** Check to see if the frame with header in aFrame[] and content 713 ** in aData[] is valid. If it is a valid frame, fill *piPage and 714 ** *pnTruncate and return true. Return if the frame is not valid. 715 */ 716 static int walDecodeFrame( 717 Wal *pWal, /* The write-ahead log */ 718 u32 *piPage, /* OUT: Database page number for frame */ 719 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 720 u8 *aData, /* Pointer to page data (for checksum) */ 721 u8 *aFrame /* Frame data */ 722 ){ 723 int nativeCksum; /* True for native byte-order checksums */ 724 u32 *aCksum = pWal->hdr.aFrameCksum; 725 u32 pgno; /* Page number of the frame */ 726 assert( WAL_FRAME_HDRSIZE==24 ); 727 728 /* A frame is only valid if the salt values in the frame-header 729 ** match the salt values in the wal-header. 730 */ 731 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 732 return 0; 733 } 734 735 /* A frame is only valid if the page number is creater than zero. 736 */ 737 pgno = sqlite3Get4byte(&aFrame[0]); 738 if( pgno==0 ){ 739 return 0; 740 } 741 742 /* A frame is only valid if a checksum of the WAL header, 743 ** all prior frams, the first 16 bytes of this frame-header, 744 ** and the frame-data matches the checksum in the last 8 745 ** bytes of this frame-header. 746 */ 747 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 748 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 749 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 750 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 751 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 752 ){ 753 /* Checksum failed. */ 754 return 0; 755 } 756 757 /* If we reach this point, the frame is valid. Return the page number 758 ** and the new database size. 759 */ 760 *piPage = pgno; 761 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 762 return 1; 763 } 764 765 766 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 767 /* 768 ** Names of locks. This routine is used to provide debugging output and is not 769 ** a part of an ordinary build. 770 */ 771 static const char *walLockName(int lockIdx){ 772 if( lockIdx==WAL_WRITE_LOCK ){ 773 return "WRITE-LOCK"; 774 }else if( lockIdx==WAL_CKPT_LOCK ){ 775 return "CKPT-LOCK"; 776 }else if( lockIdx==WAL_RECOVER_LOCK ){ 777 return "RECOVER-LOCK"; 778 }else{ 779 static char zName[15]; 780 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 781 lockIdx-WAL_READ_LOCK(0)); 782 return zName; 783 } 784 } 785 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 786 787 788 /* 789 ** Set or release locks on the WAL. Locks are either shared or exclusive. 790 ** A lock cannot be moved directly between shared and exclusive - it must go 791 ** through the unlocked state first. 792 ** 793 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 794 */ 795 static int walLockShared(Wal *pWal, int lockIdx){ 796 int rc; 797 if( pWal->exclusiveMode ) return SQLITE_OK; 798 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 799 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 800 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 801 walLockName(lockIdx), rc ? "failed" : "ok")); 802 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 803 return rc; 804 } 805 static void walUnlockShared(Wal *pWal, int lockIdx){ 806 if( pWal->exclusiveMode ) return; 807 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 808 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 809 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 810 } 811 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 812 int rc; 813 if( pWal->exclusiveMode ) return SQLITE_OK; 814 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 815 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 816 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 817 walLockName(lockIdx), n, rc ? "failed" : "ok")); 818 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 819 return rc; 820 } 821 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 822 if( pWal->exclusiveMode ) return; 823 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 824 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 825 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 826 walLockName(lockIdx), n)); 827 } 828 829 /* 830 ** Compute a hash on a page number. The resulting hash value must land 831 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 832 ** the hash to the next value in the event of a collision. 833 */ 834 static int walHash(u32 iPage){ 835 assert( iPage>0 ); 836 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 837 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 838 } 839 static int walNextHash(int iPriorHash){ 840 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 841 } 842 843 /* 844 ** Return pointers to the hash table and page number array stored on 845 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 846 ** numbered starting from 0. 847 ** 848 ** Set output variable *paHash to point to the start of the hash table 849 ** in the wal-index file. Set *piZero to one less than the frame 850 ** number of the first frame indexed by this hash table. If a 851 ** slot in the hash table is set to N, it refers to frame number 852 ** (*piZero+N) in the log. 853 ** 854 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 855 ** first frame indexed by the hash table, frame (*piZero+1). 856 */ 857 static int walHashGet( 858 Wal *pWal, /* WAL handle */ 859 int iHash, /* Find the iHash'th table */ 860 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 861 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 862 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 863 ){ 864 int rc; /* Return code */ 865 volatile u32 *aPgno; 866 867 rc = walIndexPage(pWal, iHash, &aPgno); 868 assert( rc==SQLITE_OK || iHash>0 ); 869 870 if( rc==SQLITE_OK ){ 871 u32 iZero; 872 volatile ht_slot *aHash; 873 874 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 875 if( iHash==0 ){ 876 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 877 iZero = 0; 878 }else{ 879 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 880 } 881 882 *paPgno = &aPgno[-1]; 883 *paHash = aHash; 884 *piZero = iZero; 885 } 886 return rc; 887 } 888 889 /* 890 ** Return the number of the wal-index page that contains the hash-table 891 ** and page-number array that contain entries corresponding to WAL frame 892 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 893 ** are numbered starting from 0. 894 */ 895 static int walFramePage(u32 iFrame){ 896 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 897 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 898 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 899 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 900 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 901 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 902 ); 903 return iHash; 904 } 905 906 /* 907 ** Return the page number associated with frame iFrame in this WAL. 908 */ 909 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 910 int iHash = walFramePage(iFrame); 911 if( iHash==0 ){ 912 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 913 } 914 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 915 } 916 917 /* 918 ** Remove entries from the hash table that point to WAL slots greater 919 ** than pWal->hdr.mxFrame. 920 ** 921 ** This function is called whenever pWal->hdr.mxFrame is decreased due 922 ** to a rollback or savepoint. 923 ** 924 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 925 ** updated. Any later hash tables will be automatically cleared when 926 ** pWal->hdr.mxFrame advances to the point where those hash tables are 927 ** actually needed. 928 */ 929 static void walCleanupHash(Wal *pWal){ 930 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 931 volatile u32 *aPgno = 0; /* Page number array for hash table */ 932 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 933 int iLimit = 0; /* Zero values greater than this */ 934 int nByte; /* Number of bytes to zero in aPgno[] */ 935 int i; /* Used to iterate through aHash[] */ 936 937 assert( pWal->writeLock ); 938 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 939 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 940 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 941 942 if( pWal->hdr.mxFrame==0 ) return; 943 944 /* Obtain pointers to the hash-table and page-number array containing 945 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 946 ** that the page said hash-table and array reside on is already mapped. 947 */ 948 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 949 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 950 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 951 952 /* Zero all hash-table entries that correspond to frame numbers greater 953 ** than pWal->hdr.mxFrame. 954 */ 955 iLimit = pWal->hdr.mxFrame - iZero; 956 assert( iLimit>0 ); 957 for(i=0; i<HASHTABLE_NSLOT; i++){ 958 if( aHash[i]>iLimit ){ 959 aHash[i] = 0; 960 } 961 } 962 963 /* Zero the entries in the aPgno array that correspond to frames with 964 ** frame numbers greater than pWal->hdr.mxFrame. 965 */ 966 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 967 memset((void *)&aPgno[iLimit+1], 0, nByte); 968 969 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 970 /* Verify that the every entry in the mapping region is still reachable 971 ** via the hash table even after the cleanup. 972 */ 973 if( iLimit ){ 974 int j; /* Loop counter */ 975 int iKey; /* Hash key */ 976 for(j=1; j<=iLimit; j++){ 977 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ 978 if( aHash[iKey]==j ) break; 979 } 980 assert( aHash[iKey]==j ); 981 } 982 } 983 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 984 } 985 986 987 /* 988 ** Set an entry in the wal-index that will map database page number 989 ** pPage into WAL frame iFrame. 990 */ 991 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 992 int rc; /* Return code */ 993 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 994 volatile u32 *aPgno = 0; /* Page number array */ 995 volatile ht_slot *aHash = 0; /* Hash table */ 996 997 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 998 999 /* Assuming the wal-index file was successfully mapped, populate the 1000 ** page number array and hash table entry. 1001 */ 1002 if( rc==SQLITE_OK ){ 1003 int iKey; /* Hash table key */ 1004 int idx; /* Value to write to hash-table slot */ 1005 int nCollide; /* Number of hash collisions */ 1006 1007 idx = iFrame - iZero; 1008 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1009 1010 /* If this is the first entry to be added to this hash-table, zero the 1011 ** entire hash table and aPgno[] array before proceeding. 1012 */ 1013 if( idx==1 ){ 1014 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 1015 memset((void*)&aPgno[1], 0, nByte); 1016 } 1017 1018 /* If the entry in aPgno[] is already set, then the previous writer 1019 ** must have exited unexpectedly in the middle of a transaction (after 1020 ** writing one or more dirty pages to the WAL to free up memory). 1021 ** Remove the remnants of that writers uncommitted transaction from 1022 ** the hash-table before writing any new entries. 1023 */ 1024 if( aPgno[idx] ){ 1025 walCleanupHash(pWal); 1026 assert( !aPgno[idx] ); 1027 } 1028 1029 /* Write the aPgno[] array entry and the hash-table slot. */ 1030 nCollide = idx; 1031 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1032 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1033 } 1034 aPgno[idx] = iPage; 1035 aHash[iKey] = (ht_slot)idx; 1036 1037 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1038 /* Verify that the number of entries in the hash table exactly equals 1039 ** the number of entries in the mapping region. 1040 */ 1041 { 1042 int i; /* Loop counter */ 1043 int nEntry = 0; /* Number of entries in the hash table */ 1044 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1045 assert( nEntry==idx ); 1046 } 1047 1048 /* Verify that the every entry in the mapping region is reachable 1049 ** via the hash table. This turns out to be a really, really expensive 1050 ** thing to check, so only do this occasionally - not on every 1051 ** iteration. 1052 */ 1053 if( (idx&0x3ff)==0 ){ 1054 int i; /* Loop counter */ 1055 for(i=1; i<=idx; i++){ 1056 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1057 if( aHash[iKey]==i ) break; 1058 } 1059 assert( aHash[iKey]==i ); 1060 } 1061 } 1062 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1063 } 1064 1065 1066 return rc; 1067 } 1068 1069 1070 /* 1071 ** Recover the wal-index by reading the write-ahead log file. 1072 ** 1073 ** This routine first tries to establish an exclusive lock on the 1074 ** wal-index to prevent other threads/processes from doing anything 1075 ** with the WAL or wal-index while recovery is running. The 1076 ** WAL_RECOVER_LOCK is also held so that other threads will know 1077 ** that this thread is running recovery. If unable to establish 1078 ** the necessary locks, this routine returns SQLITE_BUSY. 1079 */ 1080 static int walIndexRecover(Wal *pWal){ 1081 int rc; /* Return Code */ 1082 i64 nSize; /* Size of log file */ 1083 u32 aFrameCksum[2] = {0, 0}; 1084 int iLock; /* Lock offset to lock for checkpoint */ 1085 int nLock; /* Number of locks to hold */ 1086 1087 /* Obtain an exclusive lock on all byte in the locking range not already 1088 ** locked by the caller. The caller is guaranteed to have locked the 1089 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1090 ** If successful, the same bytes that are locked here are unlocked before 1091 ** this function returns. 1092 */ 1093 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1094 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1095 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1096 assert( pWal->writeLock ); 1097 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1098 nLock = SQLITE_SHM_NLOCK - iLock; 1099 rc = walLockExclusive(pWal, iLock, nLock); 1100 if( rc ){ 1101 return rc; 1102 } 1103 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1104 1105 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1106 1107 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1108 if( rc!=SQLITE_OK ){ 1109 goto recovery_error; 1110 } 1111 1112 if( nSize>WAL_HDRSIZE ){ 1113 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1114 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1115 int szFrame; /* Number of bytes in buffer aFrame[] */ 1116 u8 *aData; /* Pointer to data part of aFrame buffer */ 1117 int iFrame; /* Index of last frame read */ 1118 i64 iOffset; /* Next offset to read from log file */ 1119 int szPage; /* Page size according to the log */ 1120 u32 magic; /* Magic value read from WAL header */ 1121 u32 version; /* Magic value read from WAL header */ 1122 int isValid; /* True if this frame is valid */ 1123 1124 /* Read in the WAL header. */ 1125 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1126 if( rc!=SQLITE_OK ){ 1127 goto recovery_error; 1128 } 1129 1130 /* If the database page size is not a power of two, or is greater than 1131 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1132 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1133 ** WAL file. 1134 */ 1135 magic = sqlite3Get4byte(&aBuf[0]); 1136 szPage = sqlite3Get4byte(&aBuf[8]); 1137 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1138 || szPage&(szPage-1) 1139 || szPage>SQLITE_MAX_PAGE_SIZE 1140 || szPage<512 1141 ){ 1142 goto finished; 1143 } 1144 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1145 pWal->szPage = szPage; 1146 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1147 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1148 1149 /* Verify that the WAL header checksum is correct */ 1150 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1151 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1152 ); 1153 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1154 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1155 ){ 1156 goto finished; 1157 } 1158 1159 /* Verify that the version number on the WAL format is one that 1160 ** are able to understand */ 1161 version = sqlite3Get4byte(&aBuf[4]); 1162 if( version!=WAL_MAX_VERSION ){ 1163 rc = SQLITE_CANTOPEN_BKPT; 1164 goto finished; 1165 } 1166 1167 /* Malloc a buffer to read frames into. */ 1168 szFrame = szPage + WAL_FRAME_HDRSIZE; 1169 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1170 if( !aFrame ){ 1171 rc = SQLITE_NOMEM; 1172 goto recovery_error; 1173 } 1174 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1175 1176 /* Read all frames from the log file. */ 1177 iFrame = 0; 1178 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1179 u32 pgno; /* Database page number for frame */ 1180 u32 nTruncate; /* dbsize field from frame header */ 1181 1182 /* Read and decode the next log frame. */ 1183 iFrame++; 1184 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1185 if( rc!=SQLITE_OK ) break; 1186 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1187 if( !isValid ) break; 1188 rc = walIndexAppend(pWal, iFrame, pgno); 1189 if( rc!=SQLITE_OK ) break; 1190 1191 /* If nTruncate is non-zero, this is a commit record. */ 1192 if( nTruncate ){ 1193 pWal->hdr.mxFrame = iFrame; 1194 pWal->hdr.nPage = nTruncate; 1195 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1196 testcase( szPage<=32768 ); 1197 testcase( szPage>=65536 ); 1198 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1199 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1200 } 1201 } 1202 1203 sqlite3_free(aFrame); 1204 } 1205 1206 finished: 1207 if( rc==SQLITE_OK ){ 1208 volatile WalCkptInfo *pInfo; 1209 int i; 1210 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1211 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1212 walIndexWriteHdr(pWal); 1213 1214 /* Reset the checkpoint-header. This is safe because this thread is 1215 ** currently holding locks that exclude all other readers, writers and 1216 ** checkpointers. 1217 */ 1218 pInfo = walCkptInfo(pWal); 1219 pInfo->nBackfill = 0; 1220 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1221 pInfo->aReadMark[0] = 0; 1222 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1223 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1224 1225 /* If more than one frame was recovered from the log file, report an 1226 ** event via sqlite3_log(). This is to help with identifying performance 1227 ** problems caused by applications routinely shutting down without 1228 ** checkpointing the log file. 1229 */ 1230 if( pWal->hdr.nPage ){ 1231 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1232 "recovered %d frames from WAL file %s", 1233 pWal->hdr.mxFrame, pWal->zWalName 1234 ); 1235 } 1236 } 1237 1238 recovery_error: 1239 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1240 walUnlockExclusive(pWal, iLock, nLock); 1241 return rc; 1242 } 1243 1244 /* 1245 ** Close an open wal-index. 1246 */ 1247 static void walIndexClose(Wal *pWal, int isDelete){ 1248 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 1249 int i; 1250 for(i=0; i<pWal->nWiData; i++){ 1251 sqlite3_free((void *)pWal->apWiData[i]); 1252 pWal->apWiData[i] = 0; 1253 } 1254 }else{ 1255 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1256 } 1257 } 1258 1259 /* 1260 ** Open a connection to the WAL file zWalName. The database file must 1261 ** already be opened on connection pDbFd. The buffer that zWalName points 1262 ** to must remain valid for the lifetime of the returned Wal* handle. 1263 ** 1264 ** A SHARED lock should be held on the database file when this function 1265 ** is called. The purpose of this SHARED lock is to prevent any other 1266 ** client from unlinking the WAL or wal-index file. If another process 1267 ** were to do this just after this client opened one of these files, the 1268 ** system would be badly broken. 1269 ** 1270 ** If the log file is successfully opened, SQLITE_OK is returned and 1271 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1272 ** an SQLite error code is returned and *ppWal is left unmodified. 1273 */ 1274 int sqlite3WalOpen( 1275 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1276 sqlite3_file *pDbFd, /* The open database file */ 1277 const char *zWalName, /* Name of the WAL file */ 1278 int bNoShm, /* True to run in heap-memory mode */ 1279 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1280 Wal **ppWal /* OUT: Allocated Wal handle */ 1281 ){ 1282 int rc; /* Return Code */ 1283 Wal *pRet; /* Object to allocate and return */ 1284 int flags; /* Flags passed to OsOpen() */ 1285 1286 assert( zWalName && zWalName[0] ); 1287 assert( pDbFd ); 1288 1289 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1290 ** this source file. Verify that the #defines of the locking byte offsets 1291 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1292 ** For that matter, if the lock offset ever changes from its initial design 1293 ** value of 120, we need to know that so there is an assert() to check it. 1294 */ 1295 assert( 120==WALINDEX_LOCK_OFFSET ); 1296 assert( 136==WALINDEX_HDR_SIZE ); 1297 #ifdef WIN_SHM_BASE 1298 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1299 #endif 1300 #ifdef UNIX_SHM_BASE 1301 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1302 #endif 1303 1304 1305 /* Allocate an instance of struct Wal to return. */ 1306 *ppWal = 0; 1307 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1308 if( !pRet ){ 1309 return SQLITE_NOMEM; 1310 } 1311 1312 pRet->pVfs = pVfs; 1313 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1314 pRet->pDbFd = pDbFd; 1315 pRet->readLock = -1; 1316 pRet->mxWalSize = mxWalSize; 1317 pRet->zWalName = zWalName; 1318 pRet->syncHeader = 1; 1319 pRet->padToSectorBoundary = 1; 1320 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1321 1322 /* Open file handle on the write-ahead log file. */ 1323 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1324 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1325 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1326 pRet->readOnly = WAL_RDONLY; 1327 } 1328 1329 if( rc!=SQLITE_OK ){ 1330 walIndexClose(pRet, 0); 1331 sqlite3OsClose(pRet->pWalFd); 1332 sqlite3_free(pRet); 1333 }else{ 1334 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1335 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1336 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1337 pRet->padToSectorBoundary = 0; 1338 } 1339 *ppWal = pRet; 1340 WALTRACE(("WAL%d: opened\n", pRet)); 1341 } 1342 return rc; 1343 } 1344 1345 /* 1346 ** Change the size to which the WAL file is trucated on each reset. 1347 */ 1348 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1349 if( pWal ) pWal->mxWalSize = iLimit; 1350 } 1351 1352 /* 1353 ** Find the smallest page number out of all pages held in the WAL that 1354 ** has not been returned by any prior invocation of this method on the 1355 ** same WalIterator object. Write into *piFrame the frame index where 1356 ** that page was last written into the WAL. Write into *piPage the page 1357 ** number. 1358 ** 1359 ** Return 0 on success. If there are no pages in the WAL with a page 1360 ** number larger than *piPage, then return 1. 1361 */ 1362 static int walIteratorNext( 1363 WalIterator *p, /* Iterator */ 1364 u32 *piPage, /* OUT: The page number of the next page */ 1365 u32 *piFrame /* OUT: Wal frame index of next page */ 1366 ){ 1367 u32 iMin; /* Result pgno must be greater than iMin */ 1368 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1369 int i; /* For looping through segments */ 1370 1371 iMin = p->iPrior; 1372 assert( iMin<0xffffffff ); 1373 for(i=p->nSegment-1; i>=0; i--){ 1374 struct WalSegment *pSegment = &p->aSegment[i]; 1375 while( pSegment->iNext<pSegment->nEntry ){ 1376 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1377 if( iPg>iMin ){ 1378 if( iPg<iRet ){ 1379 iRet = iPg; 1380 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1381 } 1382 break; 1383 } 1384 pSegment->iNext++; 1385 } 1386 } 1387 1388 *piPage = p->iPrior = iRet; 1389 return (iRet==0xFFFFFFFF); 1390 } 1391 1392 /* 1393 ** This function merges two sorted lists into a single sorted list. 1394 ** 1395 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1396 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1397 ** is guaranteed for all J<K: 1398 ** 1399 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1400 ** aContent[aRight[J]] < aContent[aRight[K]] 1401 ** 1402 ** This routine overwrites aRight[] with a new (probably longer) sequence 1403 ** of indices such that the aRight[] contains every index that appears in 1404 ** either aLeft[] or the old aRight[] and such that the second condition 1405 ** above is still met. 1406 ** 1407 ** The aContent[aLeft[X]] values will be unique for all X. And the 1408 ** aContent[aRight[X]] values will be unique too. But there might be 1409 ** one or more combinations of X and Y such that 1410 ** 1411 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1412 ** 1413 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1414 */ 1415 static void walMerge( 1416 const u32 *aContent, /* Pages in wal - keys for the sort */ 1417 ht_slot *aLeft, /* IN: Left hand input list */ 1418 int nLeft, /* IN: Elements in array *paLeft */ 1419 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1420 int *pnRight, /* IN/OUT: Elements in *paRight */ 1421 ht_slot *aTmp /* Temporary buffer */ 1422 ){ 1423 int iLeft = 0; /* Current index in aLeft */ 1424 int iRight = 0; /* Current index in aRight */ 1425 int iOut = 0; /* Current index in output buffer */ 1426 int nRight = *pnRight; 1427 ht_slot *aRight = *paRight; 1428 1429 assert( nLeft>0 && nRight>0 ); 1430 while( iRight<nRight || iLeft<nLeft ){ 1431 ht_slot logpage; 1432 Pgno dbpage; 1433 1434 if( (iLeft<nLeft) 1435 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1436 ){ 1437 logpage = aLeft[iLeft++]; 1438 }else{ 1439 logpage = aRight[iRight++]; 1440 } 1441 dbpage = aContent[logpage]; 1442 1443 aTmp[iOut++] = logpage; 1444 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1445 1446 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1447 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1448 } 1449 1450 *paRight = aLeft; 1451 *pnRight = iOut; 1452 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1453 } 1454 1455 /* 1456 ** Sort the elements in list aList using aContent[] as the sort key. 1457 ** Remove elements with duplicate keys, preferring to keep the 1458 ** larger aList[] values. 1459 ** 1460 ** The aList[] entries are indices into aContent[]. The values in 1461 ** aList[] are to be sorted so that for all J<K: 1462 ** 1463 ** aContent[aList[J]] < aContent[aList[K]] 1464 ** 1465 ** For any X and Y such that 1466 ** 1467 ** aContent[aList[X]] == aContent[aList[Y]] 1468 ** 1469 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1470 ** the smaller. 1471 */ 1472 static void walMergesort( 1473 const u32 *aContent, /* Pages in wal */ 1474 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1475 ht_slot *aList, /* IN/OUT: List to sort */ 1476 int *pnList /* IN/OUT: Number of elements in aList[] */ 1477 ){ 1478 struct Sublist { 1479 int nList; /* Number of elements in aList */ 1480 ht_slot *aList; /* Pointer to sub-list content */ 1481 }; 1482 1483 const int nList = *pnList; /* Size of input list */ 1484 int nMerge = 0; /* Number of elements in list aMerge */ 1485 ht_slot *aMerge = 0; /* List to be merged */ 1486 int iList; /* Index into input list */ 1487 u32 iSub = 0; /* Index into aSub array */ 1488 struct Sublist aSub[13]; /* Array of sub-lists */ 1489 1490 memset(aSub, 0, sizeof(aSub)); 1491 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1492 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1493 1494 for(iList=0; iList<nList; iList++){ 1495 nMerge = 1; 1496 aMerge = &aList[iList]; 1497 for(iSub=0; iList & (1<<iSub); iSub++){ 1498 struct Sublist *p; 1499 assert( iSub<ArraySize(aSub) ); 1500 p = &aSub[iSub]; 1501 assert( p->aList && p->nList<=(1<<iSub) ); 1502 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1503 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1504 } 1505 aSub[iSub].aList = aMerge; 1506 aSub[iSub].nList = nMerge; 1507 } 1508 1509 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1510 if( nList & (1<<iSub) ){ 1511 struct Sublist *p; 1512 assert( iSub<ArraySize(aSub) ); 1513 p = &aSub[iSub]; 1514 assert( p->nList<=(1<<iSub) ); 1515 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1516 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1517 } 1518 } 1519 assert( aMerge==aList ); 1520 *pnList = nMerge; 1521 1522 #ifdef SQLITE_DEBUG 1523 { 1524 int i; 1525 for(i=1; i<*pnList; i++){ 1526 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1527 } 1528 } 1529 #endif 1530 } 1531 1532 /* 1533 ** Free an iterator allocated by walIteratorInit(). 1534 */ 1535 static void walIteratorFree(WalIterator *p){ 1536 sqlite3_free(p); 1537 } 1538 1539 /* 1540 ** Construct a WalInterator object that can be used to loop over all 1541 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1542 ** lock. 1543 ** 1544 ** On success, make *pp point to the newly allocated WalInterator object 1545 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1546 ** returns an error, the value of *pp is undefined. 1547 ** 1548 ** The calling routine should invoke walIteratorFree() to destroy the 1549 ** WalIterator object when it has finished with it. 1550 */ 1551 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1552 WalIterator *p; /* Return value */ 1553 int nSegment; /* Number of segments to merge */ 1554 u32 iLast; /* Last frame in log */ 1555 int nByte; /* Number of bytes to allocate */ 1556 int i; /* Iterator variable */ 1557 ht_slot *aTmp; /* Temp space used by merge-sort */ 1558 int rc = SQLITE_OK; /* Return Code */ 1559 1560 /* This routine only runs while holding the checkpoint lock. And 1561 ** it only runs if there is actually content in the log (mxFrame>0). 1562 */ 1563 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1564 iLast = pWal->hdr.mxFrame; 1565 1566 /* Allocate space for the WalIterator object. */ 1567 nSegment = walFramePage(iLast) + 1; 1568 nByte = sizeof(WalIterator) 1569 + (nSegment-1)*sizeof(struct WalSegment) 1570 + iLast*sizeof(ht_slot); 1571 p = (WalIterator *)sqlite3_malloc64(nByte); 1572 if( !p ){ 1573 return SQLITE_NOMEM; 1574 } 1575 memset(p, 0, nByte); 1576 p->nSegment = nSegment; 1577 1578 /* Allocate temporary space used by the merge-sort routine. This block 1579 ** of memory will be freed before this function returns. 1580 */ 1581 aTmp = (ht_slot *)sqlite3_malloc64( 1582 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1583 ); 1584 if( !aTmp ){ 1585 rc = SQLITE_NOMEM; 1586 } 1587 1588 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1589 volatile ht_slot *aHash; 1590 u32 iZero; 1591 volatile u32 *aPgno; 1592 1593 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1594 if( rc==SQLITE_OK ){ 1595 int j; /* Counter variable */ 1596 int nEntry; /* Number of entries in this segment */ 1597 ht_slot *aIndex; /* Sorted index for this segment */ 1598 1599 aPgno++; 1600 if( (i+1)==nSegment ){ 1601 nEntry = (int)(iLast - iZero); 1602 }else{ 1603 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1604 } 1605 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1606 iZero++; 1607 1608 for(j=0; j<nEntry; j++){ 1609 aIndex[j] = (ht_slot)j; 1610 } 1611 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1612 p->aSegment[i].iZero = iZero; 1613 p->aSegment[i].nEntry = nEntry; 1614 p->aSegment[i].aIndex = aIndex; 1615 p->aSegment[i].aPgno = (u32 *)aPgno; 1616 } 1617 } 1618 sqlite3_free(aTmp); 1619 1620 if( rc!=SQLITE_OK ){ 1621 walIteratorFree(p); 1622 } 1623 *pp = p; 1624 return rc; 1625 } 1626 1627 /* 1628 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1629 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1630 ** busy-handler function. Invoke it and retry the lock until either the 1631 ** lock is successfully obtained or the busy-handler returns 0. 1632 */ 1633 static int walBusyLock( 1634 Wal *pWal, /* WAL connection */ 1635 int (*xBusy)(void*), /* Function to call when busy */ 1636 void *pBusyArg, /* Context argument for xBusyHandler */ 1637 int lockIdx, /* Offset of first byte to lock */ 1638 int n /* Number of bytes to lock */ 1639 ){ 1640 int rc; 1641 do { 1642 rc = walLockExclusive(pWal, lockIdx, n); 1643 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1644 return rc; 1645 } 1646 1647 /* 1648 ** The cache of the wal-index header must be valid to call this function. 1649 ** Return the page-size in bytes used by the database. 1650 */ 1651 static int walPagesize(Wal *pWal){ 1652 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1653 } 1654 1655 /* 1656 ** The following is guaranteed when this function is called: 1657 ** 1658 ** a) the WRITER lock is held, 1659 ** b) the entire log file has been checkpointed, and 1660 ** c) any existing readers are reading exclusively from the database 1661 ** file - there are no readers that may attempt to read a frame from 1662 ** the log file. 1663 ** 1664 ** This function updates the shared-memory structures so that the next 1665 ** client to write to the database (which may be this one) does so by 1666 ** writing frames into the start of the log file. 1667 ** 1668 ** The value of parameter salt1 is used as the aSalt[1] value in the 1669 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1670 ** one obtained from sqlite3_randomness()). 1671 */ 1672 static void walRestartHdr(Wal *pWal, u32 salt1){ 1673 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1674 int i; /* Loop counter */ 1675 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1676 pWal->nCkpt++; 1677 pWal->hdr.mxFrame = 0; 1678 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1679 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1680 walIndexWriteHdr(pWal); 1681 pInfo->nBackfill = 0; 1682 pInfo->nBackfillAttempted = 0; 1683 pInfo->aReadMark[1] = 0; 1684 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1685 assert( pInfo->aReadMark[0]==0 ); 1686 } 1687 1688 /* 1689 ** Copy as much content as we can from the WAL back into the database file 1690 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1691 ** 1692 ** The amount of information copies from WAL to database might be limited 1693 ** by active readers. This routine will never overwrite a database page 1694 ** that a concurrent reader might be using. 1695 ** 1696 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1697 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1698 ** checkpoints are always run by a background thread or background 1699 ** process, foreground threads will never block on a lengthy fsync call. 1700 ** 1701 ** Fsync is called on the WAL before writing content out of the WAL and 1702 ** into the database. This ensures that if the new content is persistent 1703 ** in the WAL and can be recovered following a power-loss or hard reset. 1704 ** 1705 ** Fsync is also called on the database file if (and only if) the entire 1706 ** WAL content is copied into the database file. This second fsync makes 1707 ** it safe to delete the WAL since the new content will persist in the 1708 ** database file. 1709 ** 1710 ** This routine uses and updates the nBackfill field of the wal-index header. 1711 ** This is the only routine that will increase the value of nBackfill. 1712 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1713 ** its value.) 1714 ** 1715 ** The caller must be holding sufficient locks to ensure that no other 1716 ** checkpoint is running (in any other thread or process) at the same 1717 ** time. 1718 */ 1719 static int walCheckpoint( 1720 Wal *pWal, /* Wal connection */ 1721 int eMode, /* One of PASSIVE, FULL or RESTART */ 1722 int (*xBusy)(void*), /* Function to call when busy */ 1723 void *pBusyArg, /* Context argument for xBusyHandler */ 1724 int sync_flags, /* Flags for OsSync() (or 0) */ 1725 u8 *zBuf /* Temporary buffer to use */ 1726 ){ 1727 int rc = SQLITE_OK; /* Return code */ 1728 int szPage; /* Database page-size */ 1729 WalIterator *pIter = 0; /* Wal iterator context */ 1730 u32 iDbpage = 0; /* Next database page to write */ 1731 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1732 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1733 u32 mxPage; /* Max database page to write */ 1734 int i; /* Loop counter */ 1735 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1736 1737 szPage = walPagesize(pWal); 1738 testcase( szPage<=32768 ); 1739 testcase( szPage>=65536 ); 1740 pInfo = walCkptInfo(pWal); 1741 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1742 1743 /* Allocate the iterator */ 1744 rc = walIteratorInit(pWal, &pIter); 1745 if( rc!=SQLITE_OK ){ 1746 return rc; 1747 } 1748 assert( pIter ); 1749 1750 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1751 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1752 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1753 1754 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1755 ** safe to write into the database. Frames beyond mxSafeFrame might 1756 ** overwrite database pages that are in use by active readers and thus 1757 ** cannot be backfilled from the WAL. 1758 */ 1759 mxSafeFrame = pWal->hdr.mxFrame; 1760 mxPage = pWal->hdr.nPage; 1761 for(i=1; i<WAL_NREADER; i++){ 1762 /* Thread-sanitizer reports that the following is an unsafe read, 1763 ** as some other thread may be in the process of updating the value 1764 ** of the aReadMark[] slot. The assumption here is that if that is 1765 ** happening, the other client may only be increasing the value, 1766 ** not decreasing it. So assuming either that either the "old" or 1767 ** "new" version of the value is read, and not some arbitrary value 1768 ** that would never be written by a real client, things are still 1769 ** safe. */ 1770 u32 y = pInfo->aReadMark[i]; 1771 if( mxSafeFrame>y ){ 1772 assert( y<=pWal->hdr.mxFrame ); 1773 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1774 if( rc==SQLITE_OK ){ 1775 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1776 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1777 }else if( rc==SQLITE_BUSY ){ 1778 mxSafeFrame = y; 1779 xBusy = 0; 1780 }else{ 1781 goto walcheckpoint_out; 1782 } 1783 } 1784 } 1785 1786 if( pInfo->nBackfill<mxSafeFrame 1787 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 1788 ){ 1789 i64 nSize; /* Current size of database file */ 1790 u32 nBackfill = pInfo->nBackfill; 1791 1792 pInfo->nBackfillAttempted = mxSafeFrame; 1793 1794 /* Sync the WAL to disk */ 1795 if( sync_flags ){ 1796 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1797 } 1798 1799 /* If the database may grow as a result of this checkpoint, hint 1800 ** about the eventual size of the db file to the VFS layer. 1801 */ 1802 if( rc==SQLITE_OK ){ 1803 i64 nReq = ((i64)mxPage * szPage); 1804 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1805 if( rc==SQLITE_OK && nSize<nReq ){ 1806 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1807 } 1808 } 1809 1810 1811 /* Iterate through the contents of the WAL, copying data to the db file */ 1812 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1813 i64 iOffset; 1814 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1815 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1816 continue; 1817 } 1818 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1819 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1820 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1821 if( rc!=SQLITE_OK ) break; 1822 iOffset = (iDbpage-1)*(i64)szPage; 1823 testcase( IS_BIG_INT(iOffset) ); 1824 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1825 if( rc!=SQLITE_OK ) break; 1826 } 1827 1828 /* If work was actually accomplished... */ 1829 if( rc==SQLITE_OK ){ 1830 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1831 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1832 testcase( IS_BIG_INT(szDb) ); 1833 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1834 if( rc==SQLITE_OK && sync_flags ){ 1835 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1836 } 1837 } 1838 if( rc==SQLITE_OK ){ 1839 pInfo->nBackfill = mxSafeFrame; 1840 } 1841 } 1842 1843 /* Release the reader lock held while backfilling */ 1844 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1845 } 1846 1847 if( rc==SQLITE_BUSY ){ 1848 /* Reset the return code so as not to report a checkpoint failure 1849 ** just because there are active readers. */ 1850 rc = SQLITE_OK; 1851 } 1852 } 1853 1854 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 1855 ** entire wal file has been copied into the database file, then block 1856 ** until all readers have finished using the wal file. This ensures that 1857 ** the next process to write to the database restarts the wal file. 1858 */ 1859 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1860 assert( pWal->writeLock ); 1861 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1862 rc = SQLITE_BUSY; 1863 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 1864 u32 salt1; 1865 sqlite3_randomness(4, &salt1); 1866 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 1867 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1868 if( rc==SQLITE_OK ){ 1869 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 1870 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 1871 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 1872 ** truncates the log file to zero bytes just prior to a 1873 ** successful return. 1874 ** 1875 ** In theory, it might be safe to do this without updating the 1876 ** wal-index header in shared memory, as all subsequent reader or 1877 ** writer clients should see that the entire log file has been 1878 ** checkpointed and behave accordingly. This seems unsafe though, 1879 ** as it would leave the system in a state where the contents of 1880 ** the wal-index header do not match the contents of the 1881 ** file-system. To avoid this, update the wal-index header to 1882 ** indicate that the log file contains zero valid frames. */ 1883 walRestartHdr(pWal, salt1); 1884 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 1885 } 1886 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1887 } 1888 } 1889 } 1890 1891 walcheckpoint_out: 1892 walIteratorFree(pIter); 1893 return rc; 1894 } 1895 1896 /* 1897 ** If the WAL file is currently larger than nMax bytes in size, truncate 1898 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1899 */ 1900 static void walLimitSize(Wal *pWal, i64 nMax){ 1901 i64 sz; 1902 int rx; 1903 sqlite3BeginBenignMalloc(); 1904 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1905 if( rx==SQLITE_OK && (sz > nMax ) ){ 1906 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1907 } 1908 sqlite3EndBenignMalloc(); 1909 if( rx ){ 1910 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1911 } 1912 } 1913 1914 /* 1915 ** Close a connection to a log file. 1916 */ 1917 int sqlite3WalClose( 1918 Wal *pWal, /* Wal to close */ 1919 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1920 int nBuf, 1921 u8 *zBuf /* Buffer of at least nBuf bytes */ 1922 ){ 1923 int rc = SQLITE_OK; 1924 if( pWal ){ 1925 int isDelete = 0; /* True to unlink wal and wal-index files */ 1926 1927 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1928 ** ordinary, rollback-mode locking methods, this guarantees that the 1929 ** connection associated with this log file is the only connection to 1930 ** the database. In this case checkpoint the database and unlink both 1931 ** the wal and wal-index files. 1932 ** 1933 ** The EXCLUSIVE lock is not released before returning. 1934 */ 1935 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1936 if( rc==SQLITE_OK ){ 1937 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1938 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1939 } 1940 rc = sqlite3WalCheckpoint( 1941 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1942 ); 1943 if( rc==SQLITE_OK ){ 1944 int bPersist = -1; 1945 sqlite3OsFileControlHint( 1946 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1947 ); 1948 if( bPersist!=1 ){ 1949 /* Try to delete the WAL file if the checkpoint completed and 1950 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1951 ** mode (!bPersist) */ 1952 isDelete = 1; 1953 }else if( pWal->mxWalSize>=0 ){ 1954 /* Try to truncate the WAL file to zero bytes if the checkpoint 1955 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1956 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1957 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1958 ** to zero bytes as truncating to the journal_size_limit might 1959 ** leave a corrupt WAL file on disk. */ 1960 walLimitSize(pWal, 0); 1961 } 1962 } 1963 } 1964 1965 walIndexClose(pWal, isDelete); 1966 sqlite3OsClose(pWal->pWalFd); 1967 if( isDelete ){ 1968 sqlite3BeginBenignMalloc(); 1969 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1970 sqlite3EndBenignMalloc(); 1971 } 1972 WALTRACE(("WAL%p: closed\n", pWal)); 1973 sqlite3_free((void *)pWal->apWiData); 1974 sqlite3_free(pWal); 1975 } 1976 return rc; 1977 } 1978 1979 /* 1980 ** Try to read the wal-index header. Return 0 on success and 1 if 1981 ** there is a problem. 1982 ** 1983 ** The wal-index is in shared memory. Another thread or process might 1984 ** be writing the header at the same time this procedure is trying to 1985 ** read it, which might result in inconsistency. A dirty read is detected 1986 ** by verifying that both copies of the header are the same and also by 1987 ** a checksum on the header. 1988 ** 1989 ** If and only if the read is consistent and the header is different from 1990 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1991 ** and *pChanged is set to 1. 1992 ** 1993 ** If the checksum cannot be verified return non-zero. If the header 1994 ** is read successfully and the checksum verified, return zero. 1995 */ 1996 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 1997 u32 aCksum[2]; /* Checksum on the header content */ 1998 WalIndexHdr h1, h2; /* Two copies of the header content */ 1999 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2000 2001 /* The first page of the wal-index must be mapped at this point. */ 2002 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2003 2004 /* Read the header. This might happen concurrently with a write to the 2005 ** same area of shared memory on a different CPU in a SMP, 2006 ** meaning it is possible that an inconsistent snapshot is read 2007 ** from the file. If this happens, return non-zero. 2008 ** 2009 ** There are two copies of the header at the beginning of the wal-index. 2010 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2011 ** Memory barriers are used to prevent the compiler or the hardware from 2012 ** reordering the reads and writes. 2013 */ 2014 aHdr = walIndexHdr(pWal); 2015 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 2016 walShmBarrier(pWal); 2017 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2018 2019 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2020 return 1; /* Dirty read */ 2021 } 2022 if( h1.isInit==0 ){ 2023 return 1; /* Malformed header - probably all zeros */ 2024 } 2025 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2026 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2027 return 1; /* Checksum does not match */ 2028 } 2029 2030 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2031 *pChanged = 1; 2032 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2033 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2034 testcase( pWal->szPage<=32768 ); 2035 testcase( pWal->szPage>=65536 ); 2036 } 2037 2038 /* The header was successfully read. Return zero. */ 2039 return 0; 2040 } 2041 2042 /* 2043 ** Read the wal-index header from the wal-index and into pWal->hdr. 2044 ** If the wal-header appears to be corrupt, try to reconstruct the 2045 ** wal-index from the WAL before returning. 2046 ** 2047 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2048 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2049 ** to 0. 2050 ** 2051 ** If the wal-index header is successfully read, return SQLITE_OK. 2052 ** Otherwise an SQLite error code. 2053 */ 2054 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2055 int rc; /* Return code */ 2056 int badHdr; /* True if a header read failed */ 2057 volatile u32 *page0; /* Chunk of wal-index containing header */ 2058 2059 /* Ensure that page 0 of the wal-index (the page that contains the 2060 ** wal-index header) is mapped. Return early if an error occurs here. 2061 */ 2062 assert( pChanged ); 2063 rc = walIndexPage(pWal, 0, &page0); 2064 if( rc!=SQLITE_OK ){ 2065 return rc; 2066 }; 2067 assert( page0 || pWal->writeLock==0 ); 2068 2069 /* If the first page of the wal-index has been mapped, try to read the 2070 ** wal-index header immediately, without holding any lock. This usually 2071 ** works, but may fail if the wal-index header is corrupt or currently 2072 ** being modified by another thread or process. 2073 */ 2074 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2075 2076 /* If the first attempt failed, it might have been due to a race 2077 ** with a writer. So get a WRITE lock and try again. 2078 */ 2079 assert( badHdr==0 || pWal->writeLock==0 ); 2080 if( badHdr ){ 2081 if( pWal->readOnly & WAL_SHM_RDONLY ){ 2082 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2083 walUnlockShared(pWal, WAL_WRITE_LOCK); 2084 rc = SQLITE_READONLY_RECOVERY; 2085 } 2086 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 2087 pWal->writeLock = 1; 2088 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2089 badHdr = walIndexTryHdr(pWal, pChanged); 2090 if( badHdr ){ 2091 /* If the wal-index header is still malformed even while holding 2092 ** a WRITE lock, it can only mean that the header is corrupted and 2093 ** needs to be reconstructed. So run recovery to do exactly that. 2094 */ 2095 rc = walIndexRecover(pWal); 2096 *pChanged = 1; 2097 } 2098 } 2099 pWal->writeLock = 0; 2100 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2101 } 2102 } 2103 2104 /* If the header is read successfully, check the version number to make 2105 ** sure the wal-index was not constructed with some future format that 2106 ** this version of SQLite cannot understand. 2107 */ 2108 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2109 rc = SQLITE_CANTOPEN_BKPT; 2110 } 2111 2112 return rc; 2113 } 2114 2115 /* 2116 ** This is the value that walTryBeginRead returns when it needs to 2117 ** be retried. 2118 */ 2119 #define WAL_RETRY (-1) 2120 2121 /* 2122 ** Attempt to start a read transaction. This might fail due to a race or 2123 ** other transient condition. When that happens, it returns WAL_RETRY to 2124 ** indicate to the caller that it is safe to retry immediately. 2125 ** 2126 ** On success return SQLITE_OK. On a permanent failure (such an 2127 ** I/O error or an SQLITE_BUSY because another process is running 2128 ** recovery) return a positive error code. 2129 ** 2130 ** The useWal parameter is true to force the use of the WAL and disable 2131 ** the case where the WAL is bypassed because it has been completely 2132 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2133 ** to make a copy of the wal-index header into pWal->hdr. If the 2134 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2135 ** to the caller that the local paget cache is obsolete and needs to be 2136 ** flushed.) When useWal==1, the wal-index header is assumed to already 2137 ** be loaded and the pChanged parameter is unused. 2138 ** 2139 ** The caller must set the cnt parameter to the number of prior calls to 2140 ** this routine during the current read attempt that returned WAL_RETRY. 2141 ** This routine will start taking more aggressive measures to clear the 2142 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2143 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2144 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2145 ** and is not honoring the locking protocol. There is a vanishingly small 2146 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2147 ** bad luck when there is lots of contention for the wal-index, but that 2148 ** possibility is so small that it can be safely neglected, we believe. 2149 ** 2150 ** On success, this routine obtains a read lock on 2151 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2152 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2153 ** that means the Wal does not hold any read lock. The reader must not 2154 ** access any database page that is modified by a WAL frame up to and 2155 ** including frame number aReadMark[pWal->readLock]. The reader will 2156 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2157 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2158 ** completely and get all content directly from the database file. 2159 ** If the useWal parameter is 1 then the WAL will never be ignored and 2160 ** this routine will always set pWal->readLock>0 on success. 2161 ** When the read transaction is completed, the caller must release the 2162 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2163 ** 2164 ** This routine uses the nBackfill and aReadMark[] fields of the header 2165 ** to select a particular WAL_READ_LOCK() that strives to let the 2166 ** checkpoint process do as much work as possible. This routine might 2167 ** update values of the aReadMark[] array in the header, but if it does 2168 ** so it takes care to hold an exclusive lock on the corresponding 2169 ** WAL_READ_LOCK() while changing values. 2170 */ 2171 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2172 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2173 u32 mxReadMark; /* Largest aReadMark[] value */ 2174 int mxI; /* Index of largest aReadMark[] value */ 2175 int i; /* Loop counter */ 2176 int rc = SQLITE_OK; /* Return code */ 2177 u32 mxFrame; /* Wal frame to lock to */ 2178 2179 assert( pWal->readLock<0 ); /* Not currently locked */ 2180 2181 /* Take steps to avoid spinning forever if there is a protocol error. 2182 ** 2183 ** Circumstances that cause a RETRY should only last for the briefest 2184 ** instances of time. No I/O or other system calls are done while the 2185 ** locks are held, so the locks should not be held for very long. But 2186 ** if we are unlucky, another process that is holding a lock might get 2187 ** paged out or take a page-fault that is time-consuming to resolve, 2188 ** during the few nanoseconds that it is holding the lock. In that case, 2189 ** it might take longer than normal for the lock to free. 2190 ** 2191 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2192 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2193 ** is more of a scheduler yield than an actual delay. But on the 10th 2194 ** an subsequent retries, the delays start becoming longer and longer, 2195 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2196 ** The total delay time before giving up is less than 10 seconds. 2197 */ 2198 if( cnt>5 ){ 2199 int nDelay = 1; /* Pause time in microseconds */ 2200 if( cnt>100 ){ 2201 VVA_ONLY( pWal->lockError = 1; ) 2202 return SQLITE_PROTOCOL; 2203 } 2204 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2205 sqlite3OsSleep(pWal->pVfs, nDelay); 2206 } 2207 2208 if( !useWal ){ 2209 rc = walIndexReadHdr(pWal, pChanged); 2210 if( rc==SQLITE_BUSY ){ 2211 /* If there is not a recovery running in another thread or process 2212 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2213 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2214 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2215 ** would be technically correct. But the race is benign since with 2216 ** WAL_RETRY this routine will be called again and will probably be 2217 ** right on the second iteration. 2218 */ 2219 if( pWal->apWiData[0]==0 ){ 2220 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2221 ** We assume this is a transient condition, so return WAL_RETRY. The 2222 ** xShmMap() implementation used by the default unix and win32 VFS 2223 ** modules may return SQLITE_BUSY due to a race condition in the 2224 ** code that determines whether or not the shared-memory region 2225 ** must be zeroed before the requested page is returned. 2226 */ 2227 rc = WAL_RETRY; 2228 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2229 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2230 rc = WAL_RETRY; 2231 }else if( rc==SQLITE_BUSY ){ 2232 rc = SQLITE_BUSY_RECOVERY; 2233 } 2234 } 2235 if( rc!=SQLITE_OK ){ 2236 return rc; 2237 } 2238 } 2239 2240 pInfo = walCkptInfo(pWal); 2241 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 2242 #ifdef SQLITE_ENABLE_SNAPSHOT 2243 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 2244 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) 2245 #endif 2246 ){ 2247 /* The WAL has been completely backfilled (or it is empty). 2248 ** and can be safely ignored. 2249 */ 2250 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2251 walShmBarrier(pWal); 2252 if( rc==SQLITE_OK ){ 2253 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2254 /* It is not safe to allow the reader to continue here if frames 2255 ** may have been appended to the log before READ_LOCK(0) was obtained. 2256 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2257 ** which implies that the database file contains a trustworthy 2258 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2259 ** happening, this is usually correct. 2260 ** 2261 ** However, if frames have been appended to the log (or if the log 2262 ** is wrapped and written for that matter) before the READ_LOCK(0) 2263 ** is obtained, that is not necessarily true. A checkpointer may 2264 ** have started to backfill the appended frames but crashed before 2265 ** it finished. Leaving a corrupt image in the database file. 2266 */ 2267 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2268 return WAL_RETRY; 2269 } 2270 pWal->readLock = 0; 2271 return SQLITE_OK; 2272 }else if( rc!=SQLITE_BUSY ){ 2273 return rc; 2274 } 2275 } 2276 2277 /* If we get this far, it means that the reader will want to use 2278 ** the WAL to get at content from recent commits. The job now is 2279 ** to select one of the aReadMark[] entries that is closest to 2280 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2281 */ 2282 mxReadMark = 0; 2283 mxI = 0; 2284 mxFrame = pWal->hdr.mxFrame; 2285 #ifdef SQLITE_ENABLE_SNAPSHOT 2286 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2287 mxFrame = pWal->pSnapshot->mxFrame; 2288 } 2289 #endif 2290 for(i=1; i<WAL_NREADER; i++){ 2291 u32 thisMark = pInfo->aReadMark[i]; 2292 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2293 assert( thisMark!=READMARK_NOT_USED ); 2294 mxReadMark = thisMark; 2295 mxI = i; 2296 } 2297 } 2298 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2299 && (mxReadMark<mxFrame || mxI==0) 2300 ){ 2301 for(i=1; i<WAL_NREADER; i++){ 2302 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2303 if( rc==SQLITE_OK ){ 2304 mxReadMark = pInfo->aReadMark[i] = mxFrame; 2305 mxI = i; 2306 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2307 break; 2308 }else if( rc!=SQLITE_BUSY ){ 2309 return rc; 2310 } 2311 } 2312 } 2313 if( mxI==0 ){ 2314 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2315 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 2316 } 2317 2318 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2319 if( rc ){ 2320 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2321 } 2322 /* Now that the read-lock has been obtained, check that neither the 2323 ** value in the aReadMark[] array or the contents of the wal-index 2324 ** header have changed. 2325 ** 2326 ** It is necessary to check that the wal-index header did not change 2327 ** between the time it was read and when the shared-lock was obtained 2328 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2329 ** that the log file may have been wrapped by a writer, or that frames 2330 ** that occur later in the log than pWal->hdr.mxFrame may have been 2331 ** copied into the database by a checkpointer. If either of these things 2332 ** happened, then reading the database with the current value of 2333 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2334 ** instead. 2335 ** 2336 ** Before checking that the live wal-index header has not changed 2337 ** since it was read, set Wal.minFrame to the first frame in the wal 2338 ** file that has not yet been checkpointed. This client will not need 2339 ** to read any frames earlier than minFrame from the wal file - they 2340 ** can be safely read directly from the database file. 2341 ** 2342 ** Because a ShmBarrier() call is made between taking the copy of 2343 ** nBackfill and checking that the wal-header in shared-memory still 2344 ** matches the one cached in pWal->hdr, it is guaranteed that the 2345 ** checkpointer that set nBackfill was not working with a wal-index 2346 ** header newer than that cached in pWal->hdr. If it were, that could 2347 ** cause a problem. The checkpointer could omit to checkpoint 2348 ** a version of page X that lies before pWal->minFrame (call that version 2349 ** A) on the basis that there is a newer version (version B) of the same 2350 ** page later in the wal file. But if version B happens to like past 2351 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2352 ** that it can read version A from the database file. However, since 2353 ** we can guarantee that the checkpointer that set nBackfill could not 2354 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2355 */ 2356 pWal->minFrame = pInfo->nBackfill+1; 2357 walShmBarrier(pWal); 2358 if( pInfo->aReadMark[mxI]!=mxReadMark 2359 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2360 ){ 2361 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2362 return WAL_RETRY; 2363 }else{ 2364 assert( mxReadMark<=pWal->hdr.mxFrame ); 2365 pWal->readLock = (i16)mxI; 2366 } 2367 return rc; 2368 } 2369 2370 /* 2371 ** Begin a read transaction on the database. 2372 ** 2373 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2374 ** it takes a snapshot of the state of the WAL and wal-index for the current 2375 ** instant in time. The current thread will continue to use this snapshot. 2376 ** Other threads might append new content to the WAL and wal-index but 2377 ** that extra content is ignored by the current thread. 2378 ** 2379 ** If the database contents have changes since the previous read 2380 ** transaction, then *pChanged is set to 1 before returning. The 2381 ** Pager layer will use this to know that is cache is stale and 2382 ** needs to be flushed. 2383 */ 2384 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2385 int rc; /* Return code */ 2386 int cnt = 0; /* Number of TryBeginRead attempts */ 2387 2388 #ifdef SQLITE_ENABLE_SNAPSHOT 2389 int bChanged = 0; 2390 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2391 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2392 bChanged = 1; 2393 } 2394 #endif 2395 2396 do{ 2397 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2398 }while( rc==WAL_RETRY ); 2399 testcase( (rc&0xff)==SQLITE_BUSY ); 2400 testcase( (rc&0xff)==SQLITE_IOERR ); 2401 testcase( rc==SQLITE_PROTOCOL ); 2402 testcase( rc==SQLITE_OK ); 2403 2404 #ifdef SQLITE_ENABLE_SNAPSHOT 2405 if( rc==SQLITE_OK ){ 2406 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2407 /* At this point the client has a lock on an aReadMark[] slot holding 2408 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2409 ** is populated with the wal-index header corresponding to the head 2410 ** of the wal file. Verify that pSnapshot is still valid before 2411 ** continuing. Reasons why pSnapshot might no longer be valid: 2412 ** 2413 ** (1) The WAL file has been reset since the snapshot was taken. 2414 ** In this case, the salt will have changed. 2415 ** 2416 ** (2) A checkpoint as been attempted that wrote frames past 2417 ** pSnapshot->mxFrame into the database file. Note that the 2418 ** checkpoint need not have completed for this to cause problems. 2419 */ 2420 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2421 2422 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2423 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2424 2425 /* It is possible that there is a checkpointer thread running 2426 ** concurrent with this code. If this is the case, it may be that the 2427 ** checkpointer has already determined that it will checkpoint 2428 ** snapshot X, where X is later in the wal file than pSnapshot, but 2429 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2430 ** its intent. To avoid the race condition this leads to, ensure that 2431 ** there is no checkpointer process by taking a shared CKPT lock 2432 ** before checking pInfo->nBackfillAttempted. */ 2433 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2434 2435 if( rc==SQLITE_OK ){ 2436 /* Check that the wal file has not been wrapped. Assuming that it has 2437 ** not, also check that no checkpointer has attempted to checkpoint any 2438 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2439 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr 2440 ** with *pSnapshot and set *pChanged as appropriate for opening the 2441 ** snapshot. */ 2442 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2443 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2444 ){ 2445 assert( pWal->readLock>0 ); 2446 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2447 *pChanged = bChanged; 2448 }else{ 2449 rc = SQLITE_BUSY_SNAPSHOT; 2450 } 2451 2452 /* Release the shared CKPT lock obtained above. */ 2453 walUnlockShared(pWal, WAL_CKPT_LOCK); 2454 } 2455 2456 2457 if( rc!=SQLITE_OK ){ 2458 sqlite3WalEndReadTransaction(pWal); 2459 } 2460 } 2461 } 2462 #endif 2463 return rc; 2464 } 2465 2466 /* 2467 ** Finish with a read transaction. All this does is release the 2468 ** read-lock. 2469 */ 2470 void sqlite3WalEndReadTransaction(Wal *pWal){ 2471 sqlite3WalEndWriteTransaction(pWal); 2472 if( pWal->readLock>=0 ){ 2473 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2474 pWal->readLock = -1; 2475 } 2476 } 2477 2478 /* 2479 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2480 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2481 ** to zero. 2482 ** 2483 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2484 ** error does occur, the final value of *piRead is undefined. 2485 */ 2486 int sqlite3WalFindFrame( 2487 Wal *pWal, /* WAL handle */ 2488 Pgno pgno, /* Database page number to read data for */ 2489 u32 *piRead /* OUT: Frame number (or zero) */ 2490 ){ 2491 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2492 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2493 int iHash; /* Used to loop through N hash tables */ 2494 int iMinHash; 2495 2496 /* This routine is only be called from within a read transaction. */ 2497 assert( pWal->readLock>=0 || pWal->lockError ); 2498 2499 /* If the "last page" field of the wal-index header snapshot is 0, then 2500 ** no data will be read from the wal under any circumstances. Return early 2501 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2502 ** then the WAL is ignored by the reader so return early, as if the 2503 ** WAL were empty. 2504 */ 2505 if( iLast==0 || pWal->readLock==0 ){ 2506 *piRead = 0; 2507 return SQLITE_OK; 2508 } 2509 2510 /* Search the hash table or tables for an entry matching page number 2511 ** pgno. Each iteration of the following for() loop searches one 2512 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2513 ** 2514 ** This code might run concurrently to the code in walIndexAppend() 2515 ** that adds entries to the wal-index (and possibly to this hash 2516 ** table). This means the value just read from the hash 2517 ** slot (aHash[iKey]) may have been added before or after the 2518 ** current read transaction was opened. Values added after the 2519 ** read transaction was opened may have been written incorrectly - 2520 ** i.e. these slots may contain garbage data. However, we assume 2521 ** that any slots written before the current read transaction was 2522 ** opened remain unmodified. 2523 ** 2524 ** For the reasons above, the if(...) condition featured in the inner 2525 ** loop of the following block is more stringent that would be required 2526 ** if we had exclusive access to the hash-table: 2527 ** 2528 ** (aPgno[iFrame]==pgno): 2529 ** This condition filters out normal hash-table collisions. 2530 ** 2531 ** (iFrame<=iLast): 2532 ** This condition filters out entries that were added to the hash 2533 ** table after the current read-transaction had started. 2534 */ 2535 iMinHash = walFramePage(pWal->minFrame); 2536 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ 2537 volatile ht_slot *aHash; /* Pointer to hash table */ 2538 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2539 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2540 int iKey; /* Hash slot index */ 2541 int nCollide; /* Number of hash collisions remaining */ 2542 int rc; /* Error code */ 2543 2544 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2545 if( rc!=SQLITE_OK ){ 2546 return rc; 2547 } 2548 nCollide = HASHTABLE_NSLOT; 2549 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2550 u32 iFrame = aHash[iKey] + iZero; 2551 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ 2552 assert( iFrame>iRead || CORRUPT_DB ); 2553 iRead = iFrame; 2554 } 2555 if( (nCollide--)==0 ){ 2556 return SQLITE_CORRUPT_BKPT; 2557 } 2558 } 2559 } 2560 2561 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2562 /* If expensive assert() statements are available, do a linear search 2563 ** of the wal-index file content. Make sure the results agree with the 2564 ** result obtained using the hash indexes above. */ 2565 { 2566 u32 iRead2 = 0; 2567 u32 iTest; 2568 assert( pWal->minFrame>0 ); 2569 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ 2570 if( walFramePgno(pWal, iTest)==pgno ){ 2571 iRead2 = iTest; 2572 break; 2573 } 2574 } 2575 assert( iRead==iRead2 ); 2576 } 2577 #endif 2578 2579 *piRead = iRead; 2580 return SQLITE_OK; 2581 } 2582 2583 /* 2584 ** Read the contents of frame iRead from the wal file into buffer pOut 2585 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 2586 ** error code otherwise. 2587 */ 2588 int sqlite3WalReadFrame( 2589 Wal *pWal, /* WAL handle */ 2590 u32 iRead, /* Frame to read */ 2591 int nOut, /* Size of buffer pOut in bytes */ 2592 u8 *pOut /* Buffer to write page data to */ 2593 ){ 2594 int sz; 2595 i64 iOffset; 2596 sz = pWal->hdr.szPage; 2597 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2598 testcase( sz<=32768 ); 2599 testcase( sz>=65536 ); 2600 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2601 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2602 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2603 } 2604 2605 /* 2606 ** Return the size of the database in pages (or zero, if unknown). 2607 */ 2608 Pgno sqlite3WalDbsize(Wal *pWal){ 2609 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2610 return pWal->hdr.nPage; 2611 } 2612 return 0; 2613 } 2614 2615 2616 /* 2617 ** This function starts a write transaction on the WAL. 2618 ** 2619 ** A read transaction must have already been started by a prior call 2620 ** to sqlite3WalBeginReadTransaction(). 2621 ** 2622 ** If another thread or process has written into the database since 2623 ** the read transaction was started, then it is not possible for this 2624 ** thread to write as doing so would cause a fork. So this routine 2625 ** returns SQLITE_BUSY in that case and no write transaction is started. 2626 ** 2627 ** There can only be a single writer active at a time. 2628 */ 2629 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2630 int rc; 2631 2632 /* Cannot start a write transaction without first holding a read 2633 ** transaction. */ 2634 assert( pWal->readLock>=0 ); 2635 2636 if( pWal->readOnly ){ 2637 return SQLITE_READONLY; 2638 } 2639 2640 /* Only one writer allowed at a time. Get the write lock. Return 2641 ** SQLITE_BUSY if unable. 2642 */ 2643 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2644 if( rc ){ 2645 return rc; 2646 } 2647 pWal->writeLock = 1; 2648 2649 /* If another connection has written to the database file since the 2650 ** time the read transaction on this connection was started, then 2651 ** the write is disallowed. 2652 */ 2653 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2654 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2655 pWal->writeLock = 0; 2656 rc = SQLITE_BUSY_SNAPSHOT; 2657 } 2658 2659 return rc; 2660 } 2661 2662 /* 2663 ** End a write transaction. The commit has already been done. This 2664 ** routine merely releases the lock. 2665 */ 2666 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2667 if( pWal->writeLock ){ 2668 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2669 pWal->writeLock = 0; 2670 pWal->truncateOnCommit = 0; 2671 } 2672 return SQLITE_OK; 2673 } 2674 2675 /* 2676 ** If any data has been written (but not committed) to the log file, this 2677 ** function moves the write-pointer back to the start of the transaction. 2678 ** 2679 ** Additionally, the callback function is invoked for each frame written 2680 ** to the WAL since the start of the transaction. If the callback returns 2681 ** other than SQLITE_OK, it is not invoked again and the error code is 2682 ** returned to the caller. 2683 ** 2684 ** Otherwise, if the callback function does not return an error, this 2685 ** function returns SQLITE_OK. 2686 */ 2687 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2688 int rc = SQLITE_OK; 2689 if( ALWAYS(pWal->writeLock) ){ 2690 Pgno iMax = pWal->hdr.mxFrame; 2691 Pgno iFrame; 2692 2693 /* Restore the clients cache of the wal-index header to the state it 2694 ** was in before the client began writing to the database. 2695 */ 2696 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2697 2698 for(iFrame=pWal->hdr.mxFrame+1; 2699 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2700 iFrame++ 2701 ){ 2702 /* This call cannot fail. Unless the page for which the page number 2703 ** is passed as the second argument is (a) in the cache and 2704 ** (b) has an outstanding reference, then xUndo is either a no-op 2705 ** (if (a) is false) or simply expels the page from the cache (if (b) 2706 ** is false). 2707 ** 2708 ** If the upper layer is doing a rollback, it is guaranteed that there 2709 ** are no outstanding references to any page other than page 1. And 2710 ** page 1 is never written to the log until the transaction is 2711 ** committed. As a result, the call to xUndo may not fail. 2712 */ 2713 assert( walFramePgno(pWal, iFrame)!=1 ); 2714 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2715 } 2716 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 2717 } 2718 return rc; 2719 } 2720 2721 /* 2722 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2723 ** values. This function populates the array with values required to 2724 ** "rollback" the write position of the WAL handle back to the current 2725 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2726 */ 2727 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2728 assert( pWal->writeLock ); 2729 aWalData[0] = pWal->hdr.mxFrame; 2730 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2731 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2732 aWalData[3] = pWal->nCkpt; 2733 } 2734 2735 /* 2736 ** Move the write position of the WAL back to the point identified by 2737 ** the values in the aWalData[] array. aWalData must point to an array 2738 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2739 ** by a call to WalSavepoint(). 2740 */ 2741 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2742 int rc = SQLITE_OK; 2743 2744 assert( pWal->writeLock ); 2745 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2746 2747 if( aWalData[3]!=pWal->nCkpt ){ 2748 /* This savepoint was opened immediately after the write-transaction 2749 ** was started. Right after that, the writer decided to wrap around 2750 ** to the start of the log. Update the savepoint values to match. 2751 */ 2752 aWalData[0] = 0; 2753 aWalData[3] = pWal->nCkpt; 2754 } 2755 2756 if( aWalData[0]<pWal->hdr.mxFrame ){ 2757 pWal->hdr.mxFrame = aWalData[0]; 2758 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2759 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2760 walCleanupHash(pWal); 2761 } 2762 2763 return rc; 2764 } 2765 2766 /* 2767 ** This function is called just before writing a set of frames to the log 2768 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2769 ** to the current log file, it is possible to overwrite the start of the 2770 ** existing log file with the new frames (i.e. "reset" the log). If so, 2771 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2772 ** unchanged. 2773 ** 2774 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2775 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2776 ** if an error occurs. 2777 */ 2778 static int walRestartLog(Wal *pWal){ 2779 int rc = SQLITE_OK; 2780 int cnt; 2781 2782 if( pWal->readLock==0 ){ 2783 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2784 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2785 if( pInfo->nBackfill>0 ){ 2786 u32 salt1; 2787 sqlite3_randomness(4, &salt1); 2788 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2789 if( rc==SQLITE_OK ){ 2790 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2791 ** readers are currently using the WAL), then the transactions 2792 ** frames will overwrite the start of the existing log. Update the 2793 ** wal-index header to reflect this. 2794 ** 2795 ** In theory it would be Ok to update the cache of the header only 2796 ** at this point. But updating the actual wal-index header is also 2797 ** safe and means there is no special case for sqlite3WalUndo() 2798 ** to handle if this transaction is rolled back. */ 2799 walRestartHdr(pWal, salt1); 2800 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2801 }else if( rc!=SQLITE_BUSY ){ 2802 return rc; 2803 } 2804 } 2805 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2806 pWal->readLock = -1; 2807 cnt = 0; 2808 do{ 2809 int notUsed; 2810 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2811 }while( rc==WAL_RETRY ); 2812 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 2813 testcase( (rc&0xff)==SQLITE_IOERR ); 2814 testcase( rc==SQLITE_PROTOCOL ); 2815 testcase( rc==SQLITE_OK ); 2816 } 2817 return rc; 2818 } 2819 2820 /* 2821 ** Information about the current state of the WAL file and where 2822 ** the next fsync should occur - passed from sqlite3WalFrames() into 2823 ** walWriteToLog(). 2824 */ 2825 typedef struct WalWriter { 2826 Wal *pWal; /* The complete WAL information */ 2827 sqlite3_file *pFd; /* The WAL file to which we write */ 2828 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 2829 int syncFlags; /* Flags for the fsync */ 2830 int szPage; /* Size of one page */ 2831 } WalWriter; 2832 2833 /* 2834 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 2835 ** Do a sync when crossing the p->iSyncPoint boundary. 2836 ** 2837 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 2838 ** first write the part before iSyncPoint, then sync, then write the 2839 ** rest. 2840 */ 2841 static int walWriteToLog( 2842 WalWriter *p, /* WAL to write to */ 2843 void *pContent, /* Content to be written */ 2844 int iAmt, /* Number of bytes to write */ 2845 sqlite3_int64 iOffset /* Start writing at this offset */ 2846 ){ 2847 int rc; 2848 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 2849 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 2850 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 2851 if( rc ) return rc; 2852 iOffset += iFirstAmt; 2853 iAmt -= iFirstAmt; 2854 pContent = (void*)(iFirstAmt + (char*)pContent); 2855 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 2856 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); 2857 if( iAmt==0 || rc ) return rc; 2858 } 2859 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 2860 return rc; 2861 } 2862 2863 /* 2864 ** Write out a single frame of the WAL 2865 */ 2866 static int walWriteOneFrame( 2867 WalWriter *p, /* Where to write the frame */ 2868 PgHdr *pPage, /* The page of the frame to be written */ 2869 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 2870 sqlite3_int64 iOffset /* Byte offset at which to write */ 2871 ){ 2872 int rc; /* Result code from subfunctions */ 2873 void *pData; /* Data actually written */ 2874 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2875 #if defined(SQLITE_HAS_CODEC) 2876 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; 2877 #else 2878 pData = pPage->pData; 2879 #endif 2880 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 2881 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 2882 if( rc ) return rc; 2883 /* Write the page data */ 2884 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 2885 return rc; 2886 } 2887 2888 /* 2889 ** Write a set of frames to the log. The caller must hold the write-lock 2890 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2891 */ 2892 int sqlite3WalFrames( 2893 Wal *pWal, /* Wal handle to write to */ 2894 int szPage, /* Database page-size in bytes */ 2895 PgHdr *pList, /* List of dirty pages to write */ 2896 Pgno nTruncate, /* Database size after this commit */ 2897 int isCommit, /* True if this is a commit */ 2898 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2899 ){ 2900 int rc; /* Used to catch return codes */ 2901 u32 iFrame; /* Next frame address */ 2902 PgHdr *p; /* Iterator to run through pList with. */ 2903 PgHdr *pLast = 0; /* Last frame in list */ 2904 int nExtra = 0; /* Number of extra copies of last page */ 2905 int szFrame; /* The size of a single frame */ 2906 i64 iOffset; /* Next byte to write in WAL file */ 2907 WalWriter w; /* The writer */ 2908 2909 assert( pList ); 2910 assert( pWal->writeLock ); 2911 2912 /* If this frame set completes a transaction, then nTruncate>0. If 2913 ** nTruncate==0 then this frame set does not complete the transaction. */ 2914 assert( (isCommit!=0)==(nTruncate!=0) ); 2915 2916 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2917 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2918 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2919 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2920 } 2921 #endif 2922 2923 /* See if it is possible to write these frames into the start of the 2924 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2925 */ 2926 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2927 return rc; 2928 } 2929 2930 /* If this is the first frame written into the log, write the WAL 2931 ** header to the start of the WAL file. See comments at the top of 2932 ** this source file for a description of the WAL header format. 2933 */ 2934 iFrame = pWal->hdr.mxFrame; 2935 if( iFrame==0 ){ 2936 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 2937 u32 aCksum[2]; /* Checksum for wal-header */ 2938 2939 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 2940 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 2941 sqlite3Put4byte(&aWalHdr[8], szPage); 2942 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 2943 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 2944 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 2945 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 2946 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 2947 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 2948 2949 pWal->szPage = szPage; 2950 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 2951 pWal->hdr.aFrameCksum[0] = aCksum[0]; 2952 pWal->hdr.aFrameCksum[1] = aCksum[1]; 2953 pWal->truncateOnCommit = 1; 2954 2955 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 2956 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 2957 if( rc!=SQLITE_OK ){ 2958 return rc; 2959 } 2960 2961 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 2962 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 2963 ** an out-of-order write following a WAL restart could result in 2964 ** database corruption. See the ticket: 2965 ** 2966 ** http://localhost:591/sqlite/info/ff5be73dee 2967 */ 2968 if( pWal->syncHeader && sync_flags ){ 2969 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 2970 if( rc ) return rc; 2971 } 2972 } 2973 assert( (int)pWal->szPage==szPage ); 2974 2975 /* Setup information needed to write frames into the WAL */ 2976 w.pWal = pWal; 2977 w.pFd = pWal->pWalFd; 2978 w.iSyncPoint = 0; 2979 w.syncFlags = sync_flags; 2980 w.szPage = szPage; 2981 iOffset = walFrameOffset(iFrame+1, szPage); 2982 szFrame = szPage + WAL_FRAME_HDRSIZE; 2983 2984 /* Write all frames into the log file exactly once */ 2985 for(p=pList; p; p=p->pDirty){ 2986 int nDbSize; /* 0 normally. Positive == commit flag */ 2987 iFrame++; 2988 assert( iOffset==walFrameOffset(iFrame, szPage) ); 2989 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 2990 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 2991 if( rc ) return rc; 2992 pLast = p; 2993 iOffset += szFrame; 2994 } 2995 2996 /* If this is the end of a transaction, then we might need to pad 2997 ** the transaction and/or sync the WAL file. 2998 ** 2999 ** Padding and syncing only occur if this set of frames complete a 3000 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3001 ** or synchronous==OFF, then no padding or syncing are needed. 3002 ** 3003 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3004 ** needed and only the sync is done. If padding is needed, then the 3005 ** final frame is repeated (with its commit mark) until the next sector 3006 ** boundary is crossed. Only the part of the WAL prior to the last 3007 ** sector boundary is synced; the part of the last frame that extends 3008 ** past the sector boundary is written after the sync. 3009 */ 3010 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 3011 if( pWal->padToSectorBoundary ){ 3012 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3013 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3014 while( iOffset<w.iSyncPoint ){ 3015 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3016 if( rc ) return rc; 3017 iOffset += szFrame; 3018 nExtra++; 3019 } 3020 }else{ 3021 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 3022 } 3023 } 3024 3025 /* If this frame set completes the first transaction in the WAL and 3026 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3027 ** journal size limit, if possible. 3028 */ 3029 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3030 i64 sz = pWal->mxWalSize; 3031 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3032 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3033 } 3034 walLimitSize(pWal, sz); 3035 pWal->truncateOnCommit = 0; 3036 } 3037 3038 /* Append data to the wal-index. It is not necessary to lock the 3039 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3040 ** guarantees that there are no other writers, and no data that may 3041 ** be in use by existing readers is being overwritten. 3042 */ 3043 iFrame = pWal->hdr.mxFrame; 3044 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3045 iFrame++; 3046 rc = walIndexAppend(pWal, iFrame, p->pgno); 3047 } 3048 while( rc==SQLITE_OK && nExtra>0 ){ 3049 iFrame++; 3050 nExtra--; 3051 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3052 } 3053 3054 if( rc==SQLITE_OK ){ 3055 /* Update the private copy of the header. */ 3056 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3057 testcase( szPage<=32768 ); 3058 testcase( szPage>=65536 ); 3059 pWal->hdr.mxFrame = iFrame; 3060 if( isCommit ){ 3061 pWal->hdr.iChange++; 3062 pWal->hdr.nPage = nTruncate; 3063 } 3064 /* If this is a commit, update the wal-index header too. */ 3065 if( isCommit ){ 3066 walIndexWriteHdr(pWal); 3067 pWal->iCallback = iFrame; 3068 } 3069 } 3070 3071 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3072 return rc; 3073 } 3074 3075 /* 3076 ** This routine is called to implement sqlite3_wal_checkpoint() and 3077 ** related interfaces. 3078 ** 3079 ** Obtain a CHECKPOINT lock and then backfill as much information as 3080 ** we can from WAL into the database. 3081 ** 3082 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3083 ** callback. In this case this function runs a blocking checkpoint. 3084 */ 3085 int sqlite3WalCheckpoint( 3086 Wal *pWal, /* Wal connection */ 3087 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3088 int (*xBusy)(void*), /* Function to call when busy */ 3089 void *pBusyArg, /* Context argument for xBusyHandler */ 3090 int sync_flags, /* Flags to sync db file with (or 0) */ 3091 int nBuf, /* Size of temporary buffer */ 3092 u8 *zBuf, /* Temporary buffer to use */ 3093 int *pnLog, /* OUT: Number of frames in WAL */ 3094 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3095 ){ 3096 int rc; /* Return code */ 3097 int isChanged = 0; /* True if a new wal-index header is loaded */ 3098 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3099 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3100 3101 assert( pWal->ckptLock==0 ); 3102 assert( pWal->writeLock==0 ); 3103 3104 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3105 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3106 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3107 3108 if( pWal->readOnly ) return SQLITE_READONLY; 3109 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3110 3111 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3112 ** "checkpoint" lock on the database file. */ 3113 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3114 if( rc ){ 3115 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 3116 ** checkpoint operation at the same time, the lock cannot be obtained and 3117 ** SQLITE_BUSY is returned. 3118 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3119 ** it will not be invoked in this case. 3120 */ 3121 testcase( rc==SQLITE_BUSY ); 3122 testcase( xBusy!=0 ); 3123 return rc; 3124 } 3125 pWal->ckptLock = 1; 3126 3127 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3128 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3129 ** file. 3130 ** 3131 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3132 ** immediately, and a busy-handler is configured, it is invoked and the 3133 ** writer lock retried until either the busy-handler returns 0 or the 3134 ** lock is successfully obtained. 3135 */ 3136 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3137 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 3138 if( rc==SQLITE_OK ){ 3139 pWal->writeLock = 1; 3140 }else if( rc==SQLITE_BUSY ){ 3141 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3142 xBusy2 = 0; 3143 rc = SQLITE_OK; 3144 } 3145 } 3146 3147 /* Read the wal-index header. */ 3148 if( rc==SQLITE_OK ){ 3149 rc = walIndexReadHdr(pWal, &isChanged); 3150 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3151 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3152 } 3153 } 3154 3155 /* Copy data from the log to the database file. */ 3156 if( rc==SQLITE_OK ){ 3157 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3158 rc = SQLITE_CORRUPT_BKPT; 3159 }else{ 3160 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3161 } 3162 3163 /* If no error occurred, set the output variables. */ 3164 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3165 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3166 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3167 } 3168 } 3169 3170 if( isChanged ){ 3171 /* If a new wal-index header was loaded before the checkpoint was 3172 ** performed, then the pager-cache associated with pWal is now 3173 ** out of date. So zero the cached wal-index header to ensure that 3174 ** next time the pager opens a snapshot on this database it knows that 3175 ** the cache needs to be reset. 3176 */ 3177 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3178 } 3179 3180 /* Release the locks. */ 3181 sqlite3WalEndWriteTransaction(pWal); 3182 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3183 pWal->ckptLock = 0; 3184 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3185 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3186 } 3187 3188 /* Return the value to pass to a sqlite3_wal_hook callback, the 3189 ** number of frames in the WAL at the point of the last commit since 3190 ** sqlite3WalCallback() was called. If no commits have occurred since 3191 ** the last call, then return 0. 3192 */ 3193 int sqlite3WalCallback(Wal *pWal){ 3194 u32 ret = 0; 3195 if( pWal ){ 3196 ret = pWal->iCallback; 3197 pWal->iCallback = 0; 3198 } 3199 return (int)ret; 3200 } 3201 3202 /* 3203 ** This function is called to change the WAL subsystem into or out 3204 ** of locking_mode=EXCLUSIVE. 3205 ** 3206 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3207 ** into locking_mode=NORMAL. This means that we must acquire a lock 3208 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3209 ** or if the acquisition of the lock fails, then return 0. If the 3210 ** transition out of exclusive-mode is successful, return 1. This 3211 ** operation must occur while the pager is still holding the exclusive 3212 ** lock on the main database file. 3213 ** 3214 ** If op is one, then change from locking_mode=NORMAL into 3215 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3216 ** be released. Return 1 if the transition is made and 0 if the 3217 ** WAL is already in exclusive-locking mode - meaning that this 3218 ** routine is a no-op. The pager must already hold the exclusive lock 3219 ** on the main database file before invoking this operation. 3220 ** 3221 ** If op is negative, then do a dry-run of the op==1 case but do 3222 ** not actually change anything. The pager uses this to see if it 3223 ** should acquire the database exclusive lock prior to invoking 3224 ** the op==1 case. 3225 */ 3226 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3227 int rc; 3228 assert( pWal->writeLock==0 ); 3229 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3230 3231 /* pWal->readLock is usually set, but might be -1 if there was a 3232 ** prior error while attempting to acquire are read-lock. This cannot 3233 ** happen if the connection is actually in exclusive mode (as no xShmLock 3234 ** locks are taken in this case). Nor should the pager attempt to 3235 ** upgrade to exclusive-mode following such an error. 3236 */ 3237 assert( pWal->readLock>=0 || pWal->lockError ); 3238 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3239 3240 if( op==0 ){ 3241 if( pWal->exclusiveMode ){ 3242 pWal->exclusiveMode = 0; 3243 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3244 pWal->exclusiveMode = 1; 3245 } 3246 rc = pWal->exclusiveMode==0; 3247 }else{ 3248 /* Already in locking_mode=NORMAL */ 3249 rc = 0; 3250 } 3251 }else if( op>0 ){ 3252 assert( pWal->exclusiveMode==0 ); 3253 assert( pWal->readLock>=0 ); 3254 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3255 pWal->exclusiveMode = 1; 3256 rc = 1; 3257 }else{ 3258 rc = pWal->exclusiveMode==0; 3259 } 3260 return rc; 3261 } 3262 3263 /* 3264 ** Return true if the argument is non-NULL and the WAL module is using 3265 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3266 ** WAL module is using shared-memory, return false. 3267 */ 3268 int sqlite3WalHeapMemory(Wal *pWal){ 3269 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3270 } 3271 3272 #ifdef SQLITE_ENABLE_SNAPSHOT 3273 /* Create a snapshot object. The content of a snapshot is opaque to 3274 ** every other subsystem, so the WAL module can put whatever it needs 3275 ** in the object. 3276 */ 3277 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3278 int rc = SQLITE_OK; 3279 WalIndexHdr *pRet; 3280 3281 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3282 3283 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3284 if( pRet==0 ){ 3285 rc = SQLITE_NOMEM; 3286 }else{ 3287 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3288 *ppSnapshot = (sqlite3_snapshot*)pRet; 3289 } 3290 3291 return rc; 3292 } 3293 3294 /* Try to open on pSnapshot when the next read-transaction starts 3295 */ 3296 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3297 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3298 } 3299 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3300 3301 #ifdef SQLITE_ENABLE_ZIPVFS 3302 /* 3303 ** If the argument is not NULL, it points to a Wal object that holds a 3304 ** read-lock. This function returns the database page-size if it is known, 3305 ** or zero if it is not (or if pWal is NULL). 3306 */ 3307 int sqlite3WalFramesize(Wal *pWal){ 3308 assert( pWal==0 || pWal->readLock>=0 ); 3309 return (pWal ? pWal->szPage : 0); 3310 } 3311 #endif 3312 3313 #endif /* #ifndef SQLITE_OMIT_WAL */ 3314