xref: /sqlite-3.40.0/src/wal.c (revision 8ccdef6b)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P and a maximum frame index M, return the index of the
146 ** last frame in the wal before frame M for page P in the WAL, or return
147 ** NULL if there are no frames for page P in the WAL prior to M.
148 **
149 ** The wal-index consists of a header region, followed by an one or
150 ** more index blocks.
151 **
152 ** The wal-index header contains the total number of frames within the WAL
153 ** in the mxFrame field.
154 **
155 ** Each index block except for the first contains information on
156 ** HASHTABLE_NPAGE frames. The first index block contains information on
157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
159 ** first index block are the same size as all other index blocks in the
160 ** wal-index.
161 **
162 ** Each index block contains two sections, a page-mapping that contains the
163 ** database page number associated with each wal frame, and a hash-table
164 ** that allows readers to query an index block for a specific page number.
165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166 ** for the first index block) 32-bit page numbers. The first entry in the
167 ** first index-block contains the database page number corresponding to the
168 ** first frame in the WAL file. The first entry in the second index block
169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170 ** the log, and so on.
171 **
172 ** The last index block in a wal-index usually contains less than the full
173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174 ** depending on the contents of the WAL file. This does not change the
175 ** allocated size of the page-mapping array - the page-mapping array merely
176 ** contains unused entries.
177 **
178 ** Even without using the hash table, the last frame for page P
179 ** can be found by scanning the page-mapping sections of each index block
180 ** starting with the last index block and moving toward the first, and
181 ** within each index block, starting at the end and moving toward the
182 ** beginning.  The first entry that equals P corresponds to the frame
183 ** holding the content for that page.
184 **
185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187 ** hash table for each page number in the mapping section, so the hash
188 ** table is never more than half full.  The expected number of collisions
189 ** prior to finding a match is 1.  Each entry of the hash table is an
190 ** 1-based index of an entry in the mapping section of the same
191 ** index block.   Let K be the 1-based index of the largest entry in
192 ** the mapping section.  (For index blocks other than the last, K will
193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
195 ** contain a value of 0.
196 **
197 ** To look for page P in the hash table, first compute a hash iKey on
198 ** P as follows:
199 **
200 **      iKey = (P * 383) % HASHTABLE_NSLOT
201 **
202 ** Then start scanning entries of the hash table, starting with iKey
203 ** (wrapping around to the beginning when the end of the hash table is
204 ** reached) until an unused hash slot is found. Let the first unused slot
205 ** be at index iUnused.  (iUnused might be less than iKey if there was
206 ** wrap-around.) Because the hash table is never more than half full,
207 ** the search is guaranteed to eventually hit an unused entry.  Let
208 ** iMax be the value between iKey and iUnused, closest to iUnused,
209 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
210 ** no hash slot such that aHash[i]==p) then page P is not in the
211 ** current index block.  Otherwise the iMax-th mapping entry of the
212 ** current index block corresponds to the last entry that references
213 ** page P.
214 **
215 ** A hash search begins with the last index block and moves toward the
216 ** first index block, looking for entries corresponding to page P.  On
217 ** average, only two or three slots in each index block need to be
218 ** examined in order to either find the last entry for page P, or to
219 ** establish that no such entry exists in the block.  Each index block
220 ** holds over 4000 entries.  So two or three index blocks are sufficient
221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
222 ** comparisons (on average) suffice to either locate a frame in the
223 ** WAL or to establish that the frame does not exist in the WAL.  This
224 ** is much faster than scanning the entire 10MB WAL.
225 **
226 ** Note that entries are added in order of increasing K.  Hence, one
227 ** reader might be using some value K0 and a second reader that started
228 ** at a later time (after additional transactions were added to the WAL
229 ** and to the wal-index) might be using a different value K1, where K1>K0.
230 ** Both readers can use the same hash table and mapping section to get
231 ** the correct result.  There may be entries in the hash table with
232 ** K>K0 but to the first reader, those entries will appear to be unused
233 ** slots in the hash table and so the first reader will get an answer as
234 ** if no values greater than K0 had ever been inserted into the hash table
235 ** in the first place - which is what reader one wants.  Meanwhile, the
236 ** second reader using K1 will see additional values that were inserted
237 ** later, which is exactly what reader two wants.
238 **
239 ** When a rollback occurs, the value of K is decreased. Hash table entries
240 ** that correspond to frames greater than the new K value are removed
241 ** from the hash table at this point.
242 */
243 #ifndef SQLITE_OMIT_WAL
244 
245 #include "wal.h"
246 
247 /*
248 ** Trace output macros
249 */
250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
251 int sqlite3WalTrace = 0;
252 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
253 #else
254 # define WALTRACE(X)
255 #endif
256 
257 /*
258 ** The maximum (and only) versions of the wal and wal-index formats
259 ** that may be interpreted by this version of SQLite.
260 **
261 ** If a client begins recovering a WAL file and finds that (a) the checksum
262 ** values in the wal-header are correct and (b) the version field is not
263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264 **
265 ** Similarly, if a client successfully reads a wal-index header (i.e. the
266 ** checksum test is successful) and finds that the version field is not
267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268 ** returns SQLITE_CANTOPEN.
269 */
270 #define WAL_MAX_VERSION      3007000
271 #define WALINDEX_MAX_VERSION 3007000
272 
273 /*
274 ** Indices of various locking bytes.   WAL_NREADER is the number
275 ** of available reader locks and should be at least 3.  The default
276 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
277 */
278 #define WAL_WRITE_LOCK         0
279 #define WAL_ALL_BUT_WRITE      1
280 #define WAL_CKPT_LOCK          1
281 #define WAL_RECOVER_LOCK       2
282 #define WAL_READ_LOCK(I)       (3+(I))
283 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
284 
285 
286 /* Object declarations */
287 typedef struct WalIndexHdr WalIndexHdr;
288 typedef struct WalIterator WalIterator;
289 typedef struct WalCkptInfo WalCkptInfo;
290 
291 
292 /*
293 ** The following object holds a copy of the wal-index header content.
294 **
295 ** The actual header in the wal-index consists of two copies of this
296 ** object followed by one instance of the WalCkptInfo object.
297 ** For all versions of SQLite through 3.10.0 and probably beyond,
298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
299 ** the total header size is 136 bytes.
300 **
301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
302 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
303 ** added in 3.7.1 when support for 64K pages was added.
304 */
305 struct WalIndexHdr {
306   u32 iVersion;                   /* Wal-index version */
307   u32 unused;                     /* Unused (padding) field */
308   u32 iChange;                    /* Counter incremented each transaction */
309   u8 isInit;                      /* 1 when initialized */
310   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
311   u16 szPage;                     /* Database page size in bytes. 1==64K */
312   u32 mxFrame;                    /* Index of last valid frame in the WAL */
313   u32 nPage;                      /* Size of database in pages */
314   u32 aFrameCksum[2];             /* Checksum of last frame in log */
315   u32 aSalt[2];                   /* Two salt values copied from WAL header */
316   u32 aCksum[2];                  /* Checksum over all prior fields */
317 };
318 
319 /*
320 ** A copy of the following object occurs in the wal-index immediately
321 ** following the second copy of the WalIndexHdr.  This object stores
322 ** information used by checkpoint.
323 **
324 ** nBackfill is the number of frames in the WAL that have been written
325 ** back into the database. (We call the act of moving content from WAL to
326 ** database "backfilling".)  The nBackfill number is never greater than
327 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
330 ** mxFrame back to zero when the WAL is reset.
331 **
332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
333 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
334 ** the nBackfillAttempted is set before any backfilling is done and the
335 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
336 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
338 **
339 ** The aLock[] field is a set of bytes used for locking.  These bytes should
340 ** never be read or written.
341 **
342 ** There is one entry in aReadMark[] for each reader lock.  If a reader
343 ** holds read-lock K, then the value in aReadMark[K] is no greater than
344 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
345 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
346 ** a special case; its value is never used and it exists as a place-holder
347 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
349 ** directly from the database.
350 **
351 ** The value of aReadMark[K] may only be changed by a thread that
352 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
353 ** aReadMark[K] cannot changed while there is a reader is using that mark
354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
355 **
356 ** The checkpointer may only transfer frames from WAL to database where
357 ** the frame numbers are less than or equal to every aReadMark[] that is
358 ** in use (that is, every aReadMark[j] for which there is a corresponding
359 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
360 ** largest value and will increase an unused aReadMark[] to mxFrame if there
361 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
363 ** in the WAL has been backfilled into the database) then new readers
364 ** will choose aReadMark[0] which has value 0 and hence such reader will
365 ** get all their all content directly from the database file and ignore
366 ** the WAL.
367 **
368 ** Writers normally append new frames to the end of the WAL.  However,
369 ** if nBackfill equals mxFrame (meaning that all WAL content has been
370 ** written back into the database) and if no readers are using the WAL
371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
372 ** the writer will first "reset" the WAL back to the beginning and start
373 ** writing new content beginning at frame 1.
374 **
375 ** We assume that 32-bit loads are atomic and so no locks are needed in
376 ** order to read from any aReadMark[] entries.
377 */
378 struct WalCkptInfo {
379   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
380   u32 aReadMark[WAL_NREADER];     /* Reader marks */
381   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
382   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
383   u32 notUsed0;                   /* Available for future enhancements */
384 };
385 #define READMARK_NOT_USED  0xffffffff
386 
387 
388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
390 ** only support mandatory file-locks, we do not read or write data
391 ** from the region of the file on which locks are applied.
392 */
393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
394 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
395 
396 /* Size of header before each frame in wal */
397 #define WAL_FRAME_HDRSIZE 24
398 
399 /* Size of write ahead log header, including checksum. */
400 /* #define WAL_HDRSIZE 24 */
401 #define WAL_HDRSIZE 32
402 
403 /* WAL magic value. Either this value, or the same value with the least
404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
405 ** big-endian format in the first 4 bytes of a WAL file.
406 **
407 ** If the LSB is set, then the checksums for each frame within the WAL
408 ** file are calculated by treating all data as an array of 32-bit
409 ** big-endian words. Otherwise, they are calculated by interpreting
410 ** all data as 32-bit little-endian words.
411 */
412 #define WAL_MAGIC 0x377f0682
413 
414 /*
415 ** Return the offset of frame iFrame in the write-ahead log file,
416 ** assuming a database page size of szPage bytes. The offset returned
417 ** is to the start of the write-ahead log frame-header.
418 */
419 #define walFrameOffset(iFrame, szPage) (                               \
420   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
421 )
422 
423 /*
424 ** An open write-ahead log file is represented by an instance of the
425 ** following object.
426 */
427 struct Wal {
428   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
429   sqlite3_file *pDbFd;       /* File handle for the database file */
430   sqlite3_file *pWalFd;      /* File handle for WAL file */
431   u32 iCallback;             /* Value to pass to log callback (or 0) */
432   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
433   int nWiData;               /* Size of array apWiData */
434   int szFirstBlock;          /* Size of first block written to WAL file */
435   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
436   u32 szPage;                /* Database page size */
437   i16 readLock;              /* Which read lock is being held.  -1 for none */
438   u8 syncFlags;              /* Flags to use to sync header writes */
439   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
440   u8 writeLock;              /* True if in a write transaction */
441   u8 ckptLock;               /* True if holding a checkpoint lock */
442   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
443   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
444   u8 syncHeader;             /* Fsync the WAL header if true */
445   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
446   WalIndexHdr hdr;           /* Wal-index header for current transaction */
447   u32 minFrame;              /* Ignore wal frames before this one */
448   const char *zWalName;      /* Name of WAL file */
449   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
450 #ifdef SQLITE_DEBUG
451   u8 lockError;              /* True if a locking error has occurred */
452 #endif
453 #ifdef SQLITE_ENABLE_SNAPSHOT
454   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
455 #endif
456 };
457 
458 /*
459 ** Candidate values for Wal.exclusiveMode.
460 */
461 #define WAL_NORMAL_MODE     0
462 #define WAL_EXCLUSIVE_MODE  1
463 #define WAL_HEAPMEMORY_MODE 2
464 
465 /*
466 ** Possible values for WAL.readOnly
467 */
468 #define WAL_RDWR        0    /* Normal read/write connection */
469 #define WAL_RDONLY      1    /* The WAL file is readonly */
470 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
471 
472 /*
473 ** Each page of the wal-index mapping contains a hash-table made up of
474 ** an array of HASHTABLE_NSLOT elements of the following type.
475 */
476 typedef u16 ht_slot;
477 
478 /*
479 ** This structure is used to implement an iterator that loops through
480 ** all frames in the WAL in database page order. Where two or more frames
481 ** correspond to the same database page, the iterator visits only the
482 ** frame most recently written to the WAL (in other words, the frame with
483 ** the largest index).
484 **
485 ** The internals of this structure are only accessed by:
486 **
487 **   walIteratorInit() - Create a new iterator,
488 **   walIteratorNext() - Step an iterator,
489 **   walIteratorFree() - Free an iterator.
490 **
491 ** This functionality is used by the checkpoint code (see walCheckpoint()).
492 */
493 struct WalIterator {
494   int iPrior;                     /* Last result returned from the iterator */
495   int nSegment;                   /* Number of entries in aSegment[] */
496   struct WalSegment {
497     int iNext;                    /* Next slot in aIndex[] not yet returned */
498     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
499     u32 *aPgno;                   /* Array of page numbers. */
500     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
501     int iZero;                    /* Frame number associated with aPgno[0] */
502   } aSegment[1];                  /* One for every 32KB page in the wal-index */
503 };
504 
505 /*
506 ** Define the parameters of the hash tables in the wal-index file. There
507 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
508 ** wal-index.
509 **
510 ** Changing any of these constants will alter the wal-index format and
511 ** create incompatibilities.
512 */
513 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
514 #define HASHTABLE_HASH_1     383                  /* Should be prime */
515 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
516 
517 /*
518 ** The block of page numbers associated with the first hash-table in a
519 ** wal-index is smaller than usual. This is so that there is a complete
520 ** hash-table on each aligned 32KB page of the wal-index.
521 */
522 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
523 
524 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
525 #define WALINDEX_PGSZ   (                                         \
526     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
527 )
528 
529 /*
530 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
531 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
532 ** numbered from zero.
533 **
534 ** If this call is successful, *ppPage is set to point to the wal-index
535 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
536 ** then an SQLite error code is returned and *ppPage is set to 0.
537 */
538 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
539   int rc = SQLITE_OK;
540 
541   /* Enlarge the pWal->apWiData[] array if required */
542   if( pWal->nWiData<=iPage ){
543     int nByte = sizeof(u32*)*(iPage+1);
544     volatile u32 **apNew;
545     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
546     if( !apNew ){
547       *ppPage = 0;
548       return SQLITE_NOMEM;
549     }
550     memset((void*)&apNew[pWal->nWiData], 0,
551            sizeof(u32*)*(iPage+1-pWal->nWiData));
552     pWal->apWiData = apNew;
553     pWal->nWiData = iPage+1;
554   }
555 
556   /* Request a pointer to the required page from the VFS */
557   if( pWal->apWiData[iPage]==0 ){
558     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
559       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
560       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
561     }else{
562       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
563           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
564       );
565       if( rc==SQLITE_READONLY ){
566         pWal->readOnly |= WAL_SHM_RDONLY;
567         rc = SQLITE_OK;
568       }
569     }
570   }
571 
572   *ppPage = pWal->apWiData[iPage];
573   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
574   return rc;
575 }
576 
577 /*
578 ** Return a pointer to the WalCkptInfo structure in the wal-index.
579 */
580 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
581   assert( pWal->nWiData>0 && pWal->apWiData[0] );
582   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
583 }
584 
585 /*
586 ** Return a pointer to the WalIndexHdr structure in the wal-index.
587 */
588 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
589   assert( pWal->nWiData>0 && pWal->apWiData[0] );
590   return (volatile WalIndexHdr*)pWal->apWiData[0];
591 }
592 
593 /*
594 ** The argument to this macro must be of type u32. On a little-endian
595 ** architecture, it returns the u32 value that results from interpreting
596 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
597 ** returns the value that would be produced by interpreting the 4 bytes
598 ** of the input value as a little-endian integer.
599 */
600 #define BYTESWAP32(x) ( \
601     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
602   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
603 )
604 
605 /*
606 ** Generate or extend an 8 byte checksum based on the data in
607 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
608 ** initial values of 0 and 0 if aIn==NULL).
609 **
610 ** The checksum is written back into aOut[] before returning.
611 **
612 ** nByte must be a positive multiple of 8.
613 */
614 static void walChecksumBytes(
615   int nativeCksum, /* True for native byte-order, false for non-native */
616   u8 *a,           /* Content to be checksummed */
617   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
618   const u32 *aIn,  /* Initial checksum value input */
619   u32 *aOut        /* OUT: Final checksum value output */
620 ){
621   u32 s1, s2;
622   u32 *aData = (u32 *)a;
623   u32 *aEnd = (u32 *)&a[nByte];
624 
625   if( aIn ){
626     s1 = aIn[0];
627     s2 = aIn[1];
628   }else{
629     s1 = s2 = 0;
630   }
631 
632   assert( nByte>=8 );
633   assert( (nByte&0x00000007)==0 );
634 
635   if( nativeCksum ){
636     do {
637       s1 += *aData++ + s2;
638       s2 += *aData++ + s1;
639     }while( aData<aEnd );
640   }else{
641     do {
642       s1 += BYTESWAP32(aData[0]) + s2;
643       s2 += BYTESWAP32(aData[1]) + s1;
644       aData += 2;
645     }while( aData<aEnd );
646   }
647 
648   aOut[0] = s1;
649   aOut[1] = s2;
650 }
651 
652 static void walShmBarrier(Wal *pWal){
653   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
654     sqlite3OsShmBarrier(pWal->pDbFd);
655   }
656 }
657 
658 /*
659 ** Write the header information in pWal->hdr into the wal-index.
660 **
661 ** The checksum on pWal->hdr is updated before it is written.
662 */
663 static void walIndexWriteHdr(Wal *pWal){
664   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
665   const int nCksum = offsetof(WalIndexHdr, aCksum);
666 
667   assert( pWal->writeLock );
668   pWal->hdr.isInit = 1;
669   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
670   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
671   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
672   walShmBarrier(pWal);
673   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
674 }
675 
676 /*
677 ** This function encodes a single frame header and writes it to a buffer
678 ** supplied by the caller. A frame-header is made up of a series of
679 ** 4-byte big-endian integers, as follows:
680 **
681 **     0: Page number.
682 **     4: For commit records, the size of the database image in pages
683 **        after the commit. For all other records, zero.
684 **     8: Salt-1 (copied from the wal-header)
685 **    12: Salt-2 (copied from the wal-header)
686 **    16: Checksum-1.
687 **    20: Checksum-2.
688 */
689 static void walEncodeFrame(
690   Wal *pWal,                      /* The write-ahead log */
691   u32 iPage,                      /* Database page number for frame */
692   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
693   u8 *aData,                      /* Pointer to page data */
694   u8 *aFrame                      /* OUT: Write encoded frame here */
695 ){
696   int nativeCksum;                /* True for native byte-order checksums */
697   u32 *aCksum = pWal->hdr.aFrameCksum;
698   assert( WAL_FRAME_HDRSIZE==24 );
699   sqlite3Put4byte(&aFrame[0], iPage);
700   sqlite3Put4byte(&aFrame[4], nTruncate);
701   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
702 
703   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
704   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
705   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
706 
707   sqlite3Put4byte(&aFrame[16], aCksum[0]);
708   sqlite3Put4byte(&aFrame[20], aCksum[1]);
709 }
710 
711 /*
712 ** Check to see if the frame with header in aFrame[] and content
713 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
714 ** *pnTruncate and return true.  Return if the frame is not valid.
715 */
716 static int walDecodeFrame(
717   Wal *pWal,                      /* The write-ahead log */
718   u32 *piPage,                    /* OUT: Database page number for frame */
719   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
720   u8 *aData,                      /* Pointer to page data (for checksum) */
721   u8 *aFrame                      /* Frame data */
722 ){
723   int nativeCksum;                /* True for native byte-order checksums */
724   u32 *aCksum = pWal->hdr.aFrameCksum;
725   u32 pgno;                       /* Page number of the frame */
726   assert( WAL_FRAME_HDRSIZE==24 );
727 
728   /* A frame is only valid if the salt values in the frame-header
729   ** match the salt values in the wal-header.
730   */
731   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
732     return 0;
733   }
734 
735   /* A frame is only valid if the page number is creater than zero.
736   */
737   pgno = sqlite3Get4byte(&aFrame[0]);
738   if( pgno==0 ){
739     return 0;
740   }
741 
742   /* A frame is only valid if a checksum of the WAL header,
743   ** all prior frams, the first 16 bytes of this frame-header,
744   ** and the frame-data matches the checksum in the last 8
745   ** bytes of this frame-header.
746   */
747   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
748   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
749   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
750   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
751    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
752   ){
753     /* Checksum failed. */
754     return 0;
755   }
756 
757   /* If we reach this point, the frame is valid.  Return the page number
758   ** and the new database size.
759   */
760   *piPage = pgno;
761   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
762   return 1;
763 }
764 
765 
766 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
767 /*
768 ** Names of locks.  This routine is used to provide debugging output and is not
769 ** a part of an ordinary build.
770 */
771 static const char *walLockName(int lockIdx){
772   if( lockIdx==WAL_WRITE_LOCK ){
773     return "WRITE-LOCK";
774   }else if( lockIdx==WAL_CKPT_LOCK ){
775     return "CKPT-LOCK";
776   }else if( lockIdx==WAL_RECOVER_LOCK ){
777     return "RECOVER-LOCK";
778   }else{
779     static char zName[15];
780     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
781                      lockIdx-WAL_READ_LOCK(0));
782     return zName;
783   }
784 }
785 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
786 
787 
788 /*
789 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
790 ** A lock cannot be moved directly between shared and exclusive - it must go
791 ** through the unlocked state first.
792 **
793 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
794 */
795 static int walLockShared(Wal *pWal, int lockIdx){
796   int rc;
797   if( pWal->exclusiveMode ) return SQLITE_OK;
798   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
799                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
800   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
801             walLockName(lockIdx), rc ? "failed" : "ok"));
802   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
803   return rc;
804 }
805 static void walUnlockShared(Wal *pWal, int lockIdx){
806   if( pWal->exclusiveMode ) return;
807   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
808                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
809   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
810 }
811 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
812   int rc;
813   if( pWal->exclusiveMode ) return SQLITE_OK;
814   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
815                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
816   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
817             walLockName(lockIdx), n, rc ? "failed" : "ok"));
818   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
819   return rc;
820 }
821 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
822   if( pWal->exclusiveMode ) return;
823   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
824                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
825   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
826              walLockName(lockIdx), n));
827 }
828 
829 /*
830 ** Compute a hash on a page number.  The resulting hash value must land
831 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
832 ** the hash to the next value in the event of a collision.
833 */
834 static int walHash(u32 iPage){
835   assert( iPage>0 );
836   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
837   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
838 }
839 static int walNextHash(int iPriorHash){
840   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
841 }
842 
843 /*
844 ** Return pointers to the hash table and page number array stored on
845 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
846 ** numbered starting from 0.
847 **
848 ** Set output variable *paHash to point to the start of the hash table
849 ** in the wal-index file. Set *piZero to one less than the frame
850 ** number of the first frame indexed by this hash table. If a
851 ** slot in the hash table is set to N, it refers to frame number
852 ** (*piZero+N) in the log.
853 **
854 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
855 ** first frame indexed by the hash table, frame (*piZero+1).
856 */
857 static int walHashGet(
858   Wal *pWal,                      /* WAL handle */
859   int iHash,                      /* Find the iHash'th table */
860   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
861   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
862   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
863 ){
864   int rc;                         /* Return code */
865   volatile u32 *aPgno;
866 
867   rc = walIndexPage(pWal, iHash, &aPgno);
868   assert( rc==SQLITE_OK || iHash>0 );
869 
870   if( rc==SQLITE_OK ){
871     u32 iZero;
872     volatile ht_slot *aHash;
873 
874     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
875     if( iHash==0 ){
876       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
877       iZero = 0;
878     }else{
879       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
880     }
881 
882     *paPgno = &aPgno[-1];
883     *paHash = aHash;
884     *piZero = iZero;
885   }
886   return rc;
887 }
888 
889 /*
890 ** Return the number of the wal-index page that contains the hash-table
891 ** and page-number array that contain entries corresponding to WAL frame
892 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
893 ** are numbered starting from 0.
894 */
895 static int walFramePage(u32 iFrame){
896   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
897   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
898        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
899        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
900        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
901        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
902   );
903   return iHash;
904 }
905 
906 /*
907 ** Return the page number associated with frame iFrame in this WAL.
908 */
909 static u32 walFramePgno(Wal *pWal, u32 iFrame){
910   int iHash = walFramePage(iFrame);
911   if( iHash==0 ){
912     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
913   }
914   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
915 }
916 
917 /*
918 ** Remove entries from the hash table that point to WAL slots greater
919 ** than pWal->hdr.mxFrame.
920 **
921 ** This function is called whenever pWal->hdr.mxFrame is decreased due
922 ** to a rollback or savepoint.
923 **
924 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
925 ** updated.  Any later hash tables will be automatically cleared when
926 ** pWal->hdr.mxFrame advances to the point where those hash tables are
927 ** actually needed.
928 */
929 static void walCleanupHash(Wal *pWal){
930   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
931   volatile u32 *aPgno = 0;        /* Page number array for hash table */
932   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
933   int iLimit = 0;                 /* Zero values greater than this */
934   int nByte;                      /* Number of bytes to zero in aPgno[] */
935   int i;                          /* Used to iterate through aHash[] */
936 
937   assert( pWal->writeLock );
938   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
939   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
940   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
941 
942   if( pWal->hdr.mxFrame==0 ) return;
943 
944   /* Obtain pointers to the hash-table and page-number array containing
945   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
946   ** that the page said hash-table and array reside on is already mapped.
947   */
948   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
949   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
950   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
951 
952   /* Zero all hash-table entries that correspond to frame numbers greater
953   ** than pWal->hdr.mxFrame.
954   */
955   iLimit = pWal->hdr.mxFrame - iZero;
956   assert( iLimit>0 );
957   for(i=0; i<HASHTABLE_NSLOT; i++){
958     if( aHash[i]>iLimit ){
959       aHash[i] = 0;
960     }
961   }
962 
963   /* Zero the entries in the aPgno array that correspond to frames with
964   ** frame numbers greater than pWal->hdr.mxFrame.
965   */
966   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
967   memset((void *)&aPgno[iLimit+1], 0, nByte);
968 
969 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
970   /* Verify that the every entry in the mapping region is still reachable
971   ** via the hash table even after the cleanup.
972   */
973   if( iLimit ){
974     int j;           /* Loop counter */
975     int iKey;        /* Hash key */
976     for(j=1; j<=iLimit; j++){
977       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
978         if( aHash[iKey]==j ) break;
979       }
980       assert( aHash[iKey]==j );
981     }
982   }
983 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
984 }
985 
986 
987 /*
988 ** Set an entry in the wal-index that will map database page number
989 ** pPage into WAL frame iFrame.
990 */
991 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
992   int rc;                         /* Return code */
993   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
994   volatile u32 *aPgno = 0;        /* Page number array */
995   volatile ht_slot *aHash = 0;    /* Hash table */
996 
997   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
998 
999   /* Assuming the wal-index file was successfully mapped, populate the
1000   ** page number array and hash table entry.
1001   */
1002   if( rc==SQLITE_OK ){
1003     int iKey;                     /* Hash table key */
1004     int idx;                      /* Value to write to hash-table slot */
1005     int nCollide;                 /* Number of hash collisions */
1006 
1007     idx = iFrame - iZero;
1008     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1009 
1010     /* If this is the first entry to be added to this hash-table, zero the
1011     ** entire hash table and aPgno[] array before proceeding.
1012     */
1013     if( idx==1 ){
1014       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1015       memset((void*)&aPgno[1], 0, nByte);
1016     }
1017 
1018     /* If the entry in aPgno[] is already set, then the previous writer
1019     ** must have exited unexpectedly in the middle of a transaction (after
1020     ** writing one or more dirty pages to the WAL to free up memory).
1021     ** Remove the remnants of that writers uncommitted transaction from
1022     ** the hash-table before writing any new entries.
1023     */
1024     if( aPgno[idx] ){
1025       walCleanupHash(pWal);
1026       assert( !aPgno[idx] );
1027     }
1028 
1029     /* Write the aPgno[] array entry and the hash-table slot. */
1030     nCollide = idx;
1031     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1032       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1033     }
1034     aPgno[idx] = iPage;
1035     aHash[iKey] = (ht_slot)idx;
1036 
1037 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1038     /* Verify that the number of entries in the hash table exactly equals
1039     ** the number of entries in the mapping region.
1040     */
1041     {
1042       int i;           /* Loop counter */
1043       int nEntry = 0;  /* Number of entries in the hash table */
1044       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1045       assert( nEntry==idx );
1046     }
1047 
1048     /* Verify that the every entry in the mapping region is reachable
1049     ** via the hash table.  This turns out to be a really, really expensive
1050     ** thing to check, so only do this occasionally - not on every
1051     ** iteration.
1052     */
1053     if( (idx&0x3ff)==0 ){
1054       int i;           /* Loop counter */
1055       for(i=1; i<=idx; i++){
1056         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1057           if( aHash[iKey]==i ) break;
1058         }
1059         assert( aHash[iKey]==i );
1060       }
1061     }
1062 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1063   }
1064 
1065 
1066   return rc;
1067 }
1068 
1069 
1070 /*
1071 ** Recover the wal-index by reading the write-ahead log file.
1072 **
1073 ** This routine first tries to establish an exclusive lock on the
1074 ** wal-index to prevent other threads/processes from doing anything
1075 ** with the WAL or wal-index while recovery is running.  The
1076 ** WAL_RECOVER_LOCK is also held so that other threads will know
1077 ** that this thread is running recovery.  If unable to establish
1078 ** the necessary locks, this routine returns SQLITE_BUSY.
1079 */
1080 static int walIndexRecover(Wal *pWal){
1081   int rc;                         /* Return Code */
1082   i64 nSize;                      /* Size of log file */
1083   u32 aFrameCksum[2] = {0, 0};
1084   int iLock;                      /* Lock offset to lock for checkpoint */
1085   int nLock;                      /* Number of locks to hold */
1086 
1087   /* Obtain an exclusive lock on all byte in the locking range not already
1088   ** locked by the caller. The caller is guaranteed to have locked the
1089   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1090   ** If successful, the same bytes that are locked here are unlocked before
1091   ** this function returns.
1092   */
1093   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1094   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1095   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1096   assert( pWal->writeLock );
1097   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1098   nLock = SQLITE_SHM_NLOCK - iLock;
1099   rc = walLockExclusive(pWal, iLock, nLock);
1100   if( rc ){
1101     return rc;
1102   }
1103   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1104 
1105   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1106 
1107   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1108   if( rc!=SQLITE_OK ){
1109     goto recovery_error;
1110   }
1111 
1112   if( nSize>WAL_HDRSIZE ){
1113     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1114     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1115     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1116     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1117     int iFrame;                   /* Index of last frame read */
1118     i64 iOffset;                  /* Next offset to read from log file */
1119     int szPage;                   /* Page size according to the log */
1120     u32 magic;                    /* Magic value read from WAL header */
1121     u32 version;                  /* Magic value read from WAL header */
1122     int isValid;                  /* True if this frame is valid */
1123 
1124     /* Read in the WAL header. */
1125     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1126     if( rc!=SQLITE_OK ){
1127       goto recovery_error;
1128     }
1129 
1130     /* If the database page size is not a power of two, or is greater than
1131     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1132     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1133     ** WAL file.
1134     */
1135     magic = sqlite3Get4byte(&aBuf[0]);
1136     szPage = sqlite3Get4byte(&aBuf[8]);
1137     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1138      || szPage&(szPage-1)
1139      || szPage>SQLITE_MAX_PAGE_SIZE
1140      || szPage<512
1141     ){
1142       goto finished;
1143     }
1144     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1145     pWal->szPage = szPage;
1146     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1147     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1148 
1149     /* Verify that the WAL header checksum is correct */
1150     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1151         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1152     );
1153     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1154      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1155     ){
1156       goto finished;
1157     }
1158 
1159     /* Verify that the version number on the WAL format is one that
1160     ** are able to understand */
1161     version = sqlite3Get4byte(&aBuf[4]);
1162     if( version!=WAL_MAX_VERSION ){
1163       rc = SQLITE_CANTOPEN_BKPT;
1164       goto finished;
1165     }
1166 
1167     /* Malloc a buffer to read frames into. */
1168     szFrame = szPage + WAL_FRAME_HDRSIZE;
1169     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1170     if( !aFrame ){
1171       rc = SQLITE_NOMEM;
1172       goto recovery_error;
1173     }
1174     aData = &aFrame[WAL_FRAME_HDRSIZE];
1175 
1176     /* Read all frames from the log file. */
1177     iFrame = 0;
1178     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1179       u32 pgno;                   /* Database page number for frame */
1180       u32 nTruncate;              /* dbsize field from frame header */
1181 
1182       /* Read and decode the next log frame. */
1183       iFrame++;
1184       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1185       if( rc!=SQLITE_OK ) break;
1186       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1187       if( !isValid ) break;
1188       rc = walIndexAppend(pWal, iFrame, pgno);
1189       if( rc!=SQLITE_OK ) break;
1190 
1191       /* If nTruncate is non-zero, this is a commit record. */
1192       if( nTruncate ){
1193         pWal->hdr.mxFrame = iFrame;
1194         pWal->hdr.nPage = nTruncate;
1195         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1196         testcase( szPage<=32768 );
1197         testcase( szPage>=65536 );
1198         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1199         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1200       }
1201     }
1202 
1203     sqlite3_free(aFrame);
1204   }
1205 
1206 finished:
1207   if( rc==SQLITE_OK ){
1208     volatile WalCkptInfo *pInfo;
1209     int i;
1210     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1211     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1212     walIndexWriteHdr(pWal);
1213 
1214     /* Reset the checkpoint-header. This is safe because this thread is
1215     ** currently holding locks that exclude all other readers, writers and
1216     ** checkpointers.
1217     */
1218     pInfo = walCkptInfo(pWal);
1219     pInfo->nBackfill = 0;
1220     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1221     pInfo->aReadMark[0] = 0;
1222     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1223     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1224 
1225     /* If more than one frame was recovered from the log file, report an
1226     ** event via sqlite3_log(). This is to help with identifying performance
1227     ** problems caused by applications routinely shutting down without
1228     ** checkpointing the log file.
1229     */
1230     if( pWal->hdr.nPage ){
1231       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1232           "recovered %d frames from WAL file %s",
1233           pWal->hdr.mxFrame, pWal->zWalName
1234       );
1235     }
1236   }
1237 
1238 recovery_error:
1239   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1240   walUnlockExclusive(pWal, iLock, nLock);
1241   return rc;
1242 }
1243 
1244 /*
1245 ** Close an open wal-index.
1246 */
1247 static void walIndexClose(Wal *pWal, int isDelete){
1248   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1249     int i;
1250     for(i=0; i<pWal->nWiData; i++){
1251       sqlite3_free((void *)pWal->apWiData[i]);
1252       pWal->apWiData[i] = 0;
1253     }
1254   }else{
1255     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1256   }
1257 }
1258 
1259 /*
1260 ** Open a connection to the WAL file zWalName. The database file must
1261 ** already be opened on connection pDbFd. The buffer that zWalName points
1262 ** to must remain valid for the lifetime of the returned Wal* handle.
1263 **
1264 ** A SHARED lock should be held on the database file when this function
1265 ** is called. The purpose of this SHARED lock is to prevent any other
1266 ** client from unlinking the WAL or wal-index file. If another process
1267 ** were to do this just after this client opened one of these files, the
1268 ** system would be badly broken.
1269 **
1270 ** If the log file is successfully opened, SQLITE_OK is returned and
1271 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1272 ** an SQLite error code is returned and *ppWal is left unmodified.
1273 */
1274 int sqlite3WalOpen(
1275   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1276   sqlite3_file *pDbFd,            /* The open database file */
1277   const char *zWalName,           /* Name of the WAL file */
1278   int bNoShm,                     /* True to run in heap-memory mode */
1279   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1280   Wal **ppWal                     /* OUT: Allocated Wal handle */
1281 ){
1282   int rc;                         /* Return Code */
1283   Wal *pRet;                      /* Object to allocate and return */
1284   int flags;                      /* Flags passed to OsOpen() */
1285 
1286   assert( zWalName && zWalName[0] );
1287   assert( pDbFd );
1288 
1289   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1290   ** this source file.  Verify that the #defines of the locking byte offsets
1291   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1292   ** For that matter, if the lock offset ever changes from its initial design
1293   ** value of 120, we need to know that so there is an assert() to check it.
1294   */
1295   assert( 120==WALINDEX_LOCK_OFFSET );
1296   assert( 136==WALINDEX_HDR_SIZE );
1297 #ifdef WIN_SHM_BASE
1298   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1299 #endif
1300 #ifdef UNIX_SHM_BASE
1301   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1302 #endif
1303 
1304 
1305   /* Allocate an instance of struct Wal to return. */
1306   *ppWal = 0;
1307   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1308   if( !pRet ){
1309     return SQLITE_NOMEM;
1310   }
1311 
1312   pRet->pVfs = pVfs;
1313   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1314   pRet->pDbFd = pDbFd;
1315   pRet->readLock = -1;
1316   pRet->mxWalSize = mxWalSize;
1317   pRet->zWalName = zWalName;
1318   pRet->syncHeader = 1;
1319   pRet->padToSectorBoundary = 1;
1320   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1321 
1322   /* Open file handle on the write-ahead log file. */
1323   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1324   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1325   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1326     pRet->readOnly = WAL_RDONLY;
1327   }
1328 
1329   if( rc!=SQLITE_OK ){
1330     walIndexClose(pRet, 0);
1331     sqlite3OsClose(pRet->pWalFd);
1332     sqlite3_free(pRet);
1333   }else{
1334     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1335     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1336     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1337       pRet->padToSectorBoundary = 0;
1338     }
1339     *ppWal = pRet;
1340     WALTRACE(("WAL%d: opened\n", pRet));
1341   }
1342   return rc;
1343 }
1344 
1345 /*
1346 ** Change the size to which the WAL file is trucated on each reset.
1347 */
1348 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1349   if( pWal ) pWal->mxWalSize = iLimit;
1350 }
1351 
1352 /*
1353 ** Find the smallest page number out of all pages held in the WAL that
1354 ** has not been returned by any prior invocation of this method on the
1355 ** same WalIterator object.   Write into *piFrame the frame index where
1356 ** that page was last written into the WAL.  Write into *piPage the page
1357 ** number.
1358 **
1359 ** Return 0 on success.  If there are no pages in the WAL with a page
1360 ** number larger than *piPage, then return 1.
1361 */
1362 static int walIteratorNext(
1363   WalIterator *p,               /* Iterator */
1364   u32 *piPage,                  /* OUT: The page number of the next page */
1365   u32 *piFrame                  /* OUT: Wal frame index of next page */
1366 ){
1367   u32 iMin;                     /* Result pgno must be greater than iMin */
1368   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1369   int i;                        /* For looping through segments */
1370 
1371   iMin = p->iPrior;
1372   assert( iMin<0xffffffff );
1373   for(i=p->nSegment-1; i>=0; i--){
1374     struct WalSegment *pSegment = &p->aSegment[i];
1375     while( pSegment->iNext<pSegment->nEntry ){
1376       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1377       if( iPg>iMin ){
1378         if( iPg<iRet ){
1379           iRet = iPg;
1380           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1381         }
1382         break;
1383       }
1384       pSegment->iNext++;
1385     }
1386   }
1387 
1388   *piPage = p->iPrior = iRet;
1389   return (iRet==0xFFFFFFFF);
1390 }
1391 
1392 /*
1393 ** This function merges two sorted lists into a single sorted list.
1394 **
1395 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1396 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1397 ** is guaranteed for all J<K:
1398 **
1399 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1400 **        aContent[aRight[J]] < aContent[aRight[K]]
1401 **
1402 ** This routine overwrites aRight[] with a new (probably longer) sequence
1403 ** of indices such that the aRight[] contains every index that appears in
1404 ** either aLeft[] or the old aRight[] and such that the second condition
1405 ** above is still met.
1406 **
1407 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1408 ** aContent[aRight[X]] values will be unique too.  But there might be
1409 ** one or more combinations of X and Y such that
1410 **
1411 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1412 **
1413 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1414 */
1415 static void walMerge(
1416   const u32 *aContent,            /* Pages in wal - keys for the sort */
1417   ht_slot *aLeft,                 /* IN: Left hand input list */
1418   int nLeft,                      /* IN: Elements in array *paLeft */
1419   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1420   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1421   ht_slot *aTmp                   /* Temporary buffer */
1422 ){
1423   int iLeft = 0;                  /* Current index in aLeft */
1424   int iRight = 0;                 /* Current index in aRight */
1425   int iOut = 0;                   /* Current index in output buffer */
1426   int nRight = *pnRight;
1427   ht_slot *aRight = *paRight;
1428 
1429   assert( nLeft>0 && nRight>0 );
1430   while( iRight<nRight || iLeft<nLeft ){
1431     ht_slot logpage;
1432     Pgno dbpage;
1433 
1434     if( (iLeft<nLeft)
1435      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1436     ){
1437       logpage = aLeft[iLeft++];
1438     }else{
1439       logpage = aRight[iRight++];
1440     }
1441     dbpage = aContent[logpage];
1442 
1443     aTmp[iOut++] = logpage;
1444     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1445 
1446     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1447     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1448   }
1449 
1450   *paRight = aLeft;
1451   *pnRight = iOut;
1452   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1453 }
1454 
1455 /*
1456 ** Sort the elements in list aList using aContent[] as the sort key.
1457 ** Remove elements with duplicate keys, preferring to keep the
1458 ** larger aList[] values.
1459 **
1460 ** The aList[] entries are indices into aContent[].  The values in
1461 ** aList[] are to be sorted so that for all J<K:
1462 **
1463 **      aContent[aList[J]] < aContent[aList[K]]
1464 **
1465 ** For any X and Y such that
1466 **
1467 **      aContent[aList[X]] == aContent[aList[Y]]
1468 **
1469 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1470 ** the smaller.
1471 */
1472 static void walMergesort(
1473   const u32 *aContent,            /* Pages in wal */
1474   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1475   ht_slot *aList,                 /* IN/OUT: List to sort */
1476   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1477 ){
1478   struct Sublist {
1479     int nList;                    /* Number of elements in aList */
1480     ht_slot *aList;               /* Pointer to sub-list content */
1481   };
1482 
1483   const int nList = *pnList;      /* Size of input list */
1484   int nMerge = 0;                 /* Number of elements in list aMerge */
1485   ht_slot *aMerge = 0;            /* List to be merged */
1486   int iList;                      /* Index into input list */
1487   u32 iSub = 0;                   /* Index into aSub array */
1488   struct Sublist aSub[13];        /* Array of sub-lists */
1489 
1490   memset(aSub, 0, sizeof(aSub));
1491   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1492   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1493 
1494   for(iList=0; iList<nList; iList++){
1495     nMerge = 1;
1496     aMerge = &aList[iList];
1497     for(iSub=0; iList & (1<<iSub); iSub++){
1498       struct Sublist *p;
1499       assert( iSub<ArraySize(aSub) );
1500       p = &aSub[iSub];
1501       assert( p->aList && p->nList<=(1<<iSub) );
1502       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1503       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1504     }
1505     aSub[iSub].aList = aMerge;
1506     aSub[iSub].nList = nMerge;
1507   }
1508 
1509   for(iSub++; iSub<ArraySize(aSub); iSub++){
1510     if( nList & (1<<iSub) ){
1511       struct Sublist *p;
1512       assert( iSub<ArraySize(aSub) );
1513       p = &aSub[iSub];
1514       assert( p->nList<=(1<<iSub) );
1515       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1516       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1517     }
1518   }
1519   assert( aMerge==aList );
1520   *pnList = nMerge;
1521 
1522 #ifdef SQLITE_DEBUG
1523   {
1524     int i;
1525     for(i=1; i<*pnList; i++){
1526       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1527     }
1528   }
1529 #endif
1530 }
1531 
1532 /*
1533 ** Free an iterator allocated by walIteratorInit().
1534 */
1535 static void walIteratorFree(WalIterator *p){
1536   sqlite3_free(p);
1537 }
1538 
1539 /*
1540 ** Construct a WalInterator object that can be used to loop over all
1541 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1542 ** lock.
1543 **
1544 ** On success, make *pp point to the newly allocated WalInterator object
1545 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1546 ** returns an error, the value of *pp is undefined.
1547 **
1548 ** The calling routine should invoke walIteratorFree() to destroy the
1549 ** WalIterator object when it has finished with it.
1550 */
1551 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1552   WalIterator *p;                 /* Return value */
1553   int nSegment;                   /* Number of segments to merge */
1554   u32 iLast;                      /* Last frame in log */
1555   int nByte;                      /* Number of bytes to allocate */
1556   int i;                          /* Iterator variable */
1557   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1558   int rc = SQLITE_OK;             /* Return Code */
1559 
1560   /* This routine only runs while holding the checkpoint lock. And
1561   ** it only runs if there is actually content in the log (mxFrame>0).
1562   */
1563   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1564   iLast = pWal->hdr.mxFrame;
1565 
1566   /* Allocate space for the WalIterator object. */
1567   nSegment = walFramePage(iLast) + 1;
1568   nByte = sizeof(WalIterator)
1569         + (nSegment-1)*sizeof(struct WalSegment)
1570         + iLast*sizeof(ht_slot);
1571   p = (WalIterator *)sqlite3_malloc64(nByte);
1572   if( !p ){
1573     return SQLITE_NOMEM;
1574   }
1575   memset(p, 0, nByte);
1576   p->nSegment = nSegment;
1577 
1578   /* Allocate temporary space used by the merge-sort routine. This block
1579   ** of memory will be freed before this function returns.
1580   */
1581   aTmp = (ht_slot *)sqlite3_malloc64(
1582       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1583   );
1584   if( !aTmp ){
1585     rc = SQLITE_NOMEM;
1586   }
1587 
1588   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1589     volatile ht_slot *aHash;
1590     u32 iZero;
1591     volatile u32 *aPgno;
1592 
1593     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1594     if( rc==SQLITE_OK ){
1595       int j;                      /* Counter variable */
1596       int nEntry;                 /* Number of entries in this segment */
1597       ht_slot *aIndex;            /* Sorted index for this segment */
1598 
1599       aPgno++;
1600       if( (i+1)==nSegment ){
1601         nEntry = (int)(iLast - iZero);
1602       }else{
1603         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1604       }
1605       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1606       iZero++;
1607 
1608       for(j=0; j<nEntry; j++){
1609         aIndex[j] = (ht_slot)j;
1610       }
1611       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1612       p->aSegment[i].iZero = iZero;
1613       p->aSegment[i].nEntry = nEntry;
1614       p->aSegment[i].aIndex = aIndex;
1615       p->aSegment[i].aPgno = (u32 *)aPgno;
1616     }
1617   }
1618   sqlite3_free(aTmp);
1619 
1620   if( rc!=SQLITE_OK ){
1621     walIteratorFree(p);
1622   }
1623   *pp = p;
1624   return rc;
1625 }
1626 
1627 /*
1628 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1629 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1630 ** busy-handler function. Invoke it and retry the lock until either the
1631 ** lock is successfully obtained or the busy-handler returns 0.
1632 */
1633 static int walBusyLock(
1634   Wal *pWal,                      /* WAL connection */
1635   int (*xBusy)(void*),            /* Function to call when busy */
1636   void *pBusyArg,                 /* Context argument for xBusyHandler */
1637   int lockIdx,                    /* Offset of first byte to lock */
1638   int n                           /* Number of bytes to lock */
1639 ){
1640   int rc;
1641   do {
1642     rc = walLockExclusive(pWal, lockIdx, n);
1643   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1644   return rc;
1645 }
1646 
1647 /*
1648 ** The cache of the wal-index header must be valid to call this function.
1649 ** Return the page-size in bytes used by the database.
1650 */
1651 static int walPagesize(Wal *pWal){
1652   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1653 }
1654 
1655 /*
1656 ** The following is guaranteed when this function is called:
1657 **
1658 **   a) the WRITER lock is held,
1659 **   b) the entire log file has been checkpointed, and
1660 **   c) any existing readers are reading exclusively from the database
1661 **      file - there are no readers that may attempt to read a frame from
1662 **      the log file.
1663 **
1664 ** This function updates the shared-memory structures so that the next
1665 ** client to write to the database (which may be this one) does so by
1666 ** writing frames into the start of the log file.
1667 **
1668 ** The value of parameter salt1 is used as the aSalt[1] value in the
1669 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1670 ** one obtained from sqlite3_randomness()).
1671 */
1672 static void walRestartHdr(Wal *pWal, u32 salt1){
1673   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1674   int i;                          /* Loop counter */
1675   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1676   pWal->nCkpt++;
1677   pWal->hdr.mxFrame = 0;
1678   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1679   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1680   walIndexWriteHdr(pWal);
1681   pInfo->nBackfill = 0;
1682   pInfo->nBackfillAttempted = 0;
1683   pInfo->aReadMark[1] = 0;
1684   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1685   assert( pInfo->aReadMark[0]==0 );
1686 }
1687 
1688 /*
1689 ** Copy as much content as we can from the WAL back into the database file
1690 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1691 **
1692 ** The amount of information copies from WAL to database might be limited
1693 ** by active readers.  This routine will never overwrite a database page
1694 ** that a concurrent reader might be using.
1695 **
1696 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1697 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1698 ** checkpoints are always run by a background thread or background
1699 ** process, foreground threads will never block on a lengthy fsync call.
1700 **
1701 ** Fsync is called on the WAL before writing content out of the WAL and
1702 ** into the database.  This ensures that if the new content is persistent
1703 ** in the WAL and can be recovered following a power-loss or hard reset.
1704 **
1705 ** Fsync is also called on the database file if (and only if) the entire
1706 ** WAL content is copied into the database file.  This second fsync makes
1707 ** it safe to delete the WAL since the new content will persist in the
1708 ** database file.
1709 **
1710 ** This routine uses and updates the nBackfill field of the wal-index header.
1711 ** This is the only routine that will increase the value of nBackfill.
1712 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1713 ** its value.)
1714 **
1715 ** The caller must be holding sufficient locks to ensure that no other
1716 ** checkpoint is running (in any other thread or process) at the same
1717 ** time.
1718 */
1719 static int walCheckpoint(
1720   Wal *pWal,                      /* Wal connection */
1721   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1722   int (*xBusy)(void*),            /* Function to call when busy */
1723   void *pBusyArg,                 /* Context argument for xBusyHandler */
1724   int sync_flags,                 /* Flags for OsSync() (or 0) */
1725   u8 *zBuf                        /* Temporary buffer to use */
1726 ){
1727   int rc = SQLITE_OK;             /* Return code */
1728   int szPage;                     /* Database page-size */
1729   WalIterator *pIter = 0;         /* Wal iterator context */
1730   u32 iDbpage = 0;                /* Next database page to write */
1731   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1732   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1733   u32 mxPage;                     /* Max database page to write */
1734   int i;                          /* Loop counter */
1735   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1736 
1737   szPage = walPagesize(pWal);
1738   testcase( szPage<=32768 );
1739   testcase( szPage>=65536 );
1740   pInfo = walCkptInfo(pWal);
1741   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1742 
1743     /* Allocate the iterator */
1744     rc = walIteratorInit(pWal, &pIter);
1745     if( rc!=SQLITE_OK ){
1746       return rc;
1747     }
1748     assert( pIter );
1749 
1750     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1751     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1752     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1753 
1754     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1755     ** safe to write into the database.  Frames beyond mxSafeFrame might
1756     ** overwrite database pages that are in use by active readers and thus
1757     ** cannot be backfilled from the WAL.
1758     */
1759     mxSafeFrame = pWal->hdr.mxFrame;
1760     mxPage = pWal->hdr.nPage;
1761     for(i=1; i<WAL_NREADER; i++){
1762       /* Thread-sanitizer reports that the following is an unsafe read,
1763       ** as some other thread may be in the process of updating the value
1764       ** of the aReadMark[] slot. The assumption here is that if that is
1765       ** happening, the other client may only be increasing the value,
1766       ** not decreasing it. So assuming either that either the "old" or
1767       ** "new" version of the value is read, and not some arbitrary value
1768       ** that would never be written by a real client, things are still
1769       ** safe.  */
1770       u32 y = pInfo->aReadMark[i];
1771       if( mxSafeFrame>y ){
1772         assert( y<=pWal->hdr.mxFrame );
1773         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1774         if( rc==SQLITE_OK ){
1775           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1776           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1777         }else if( rc==SQLITE_BUSY ){
1778           mxSafeFrame = y;
1779           xBusy = 0;
1780         }else{
1781           goto walcheckpoint_out;
1782         }
1783       }
1784     }
1785 
1786     if( pInfo->nBackfill<mxSafeFrame
1787      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1788     ){
1789       i64 nSize;                    /* Current size of database file */
1790       u32 nBackfill = pInfo->nBackfill;
1791 
1792       pInfo->nBackfillAttempted = mxSafeFrame;
1793 
1794       /* Sync the WAL to disk */
1795       if( sync_flags ){
1796         rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1797       }
1798 
1799       /* If the database may grow as a result of this checkpoint, hint
1800       ** about the eventual size of the db file to the VFS layer.
1801       */
1802       if( rc==SQLITE_OK ){
1803         i64 nReq = ((i64)mxPage * szPage);
1804         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1805         if( rc==SQLITE_OK && nSize<nReq ){
1806           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1807         }
1808       }
1809 
1810 
1811       /* Iterate through the contents of the WAL, copying data to the db file */
1812       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1813         i64 iOffset;
1814         assert( walFramePgno(pWal, iFrame)==iDbpage );
1815         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1816           continue;
1817         }
1818         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1819         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1820         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1821         if( rc!=SQLITE_OK ) break;
1822         iOffset = (iDbpage-1)*(i64)szPage;
1823         testcase( IS_BIG_INT(iOffset) );
1824         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1825         if( rc!=SQLITE_OK ) break;
1826       }
1827 
1828       /* If work was actually accomplished... */
1829       if( rc==SQLITE_OK ){
1830         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1831           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1832           testcase( IS_BIG_INT(szDb) );
1833           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1834           if( rc==SQLITE_OK && sync_flags ){
1835             rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1836           }
1837         }
1838         if( rc==SQLITE_OK ){
1839           pInfo->nBackfill = mxSafeFrame;
1840         }
1841       }
1842 
1843       /* Release the reader lock held while backfilling */
1844       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1845     }
1846 
1847     if( rc==SQLITE_BUSY ){
1848       /* Reset the return code so as not to report a checkpoint failure
1849       ** just because there are active readers.  */
1850       rc = SQLITE_OK;
1851     }
1852   }
1853 
1854   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1855   ** entire wal file has been copied into the database file, then block
1856   ** until all readers have finished using the wal file. This ensures that
1857   ** the next process to write to the database restarts the wal file.
1858   */
1859   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1860     assert( pWal->writeLock );
1861     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1862       rc = SQLITE_BUSY;
1863     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1864       u32 salt1;
1865       sqlite3_randomness(4, &salt1);
1866       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1867       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1868       if( rc==SQLITE_OK ){
1869         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1870           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1871           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1872           ** truncates the log file to zero bytes just prior to a
1873           ** successful return.
1874           **
1875           ** In theory, it might be safe to do this without updating the
1876           ** wal-index header in shared memory, as all subsequent reader or
1877           ** writer clients should see that the entire log file has been
1878           ** checkpointed and behave accordingly. This seems unsafe though,
1879           ** as it would leave the system in a state where the contents of
1880           ** the wal-index header do not match the contents of the
1881           ** file-system. To avoid this, update the wal-index header to
1882           ** indicate that the log file contains zero valid frames.  */
1883           walRestartHdr(pWal, salt1);
1884           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1885         }
1886         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1887       }
1888     }
1889   }
1890 
1891  walcheckpoint_out:
1892   walIteratorFree(pIter);
1893   return rc;
1894 }
1895 
1896 /*
1897 ** If the WAL file is currently larger than nMax bytes in size, truncate
1898 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1899 */
1900 static void walLimitSize(Wal *pWal, i64 nMax){
1901   i64 sz;
1902   int rx;
1903   sqlite3BeginBenignMalloc();
1904   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1905   if( rx==SQLITE_OK && (sz > nMax ) ){
1906     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1907   }
1908   sqlite3EndBenignMalloc();
1909   if( rx ){
1910     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1911   }
1912 }
1913 
1914 /*
1915 ** Close a connection to a log file.
1916 */
1917 int sqlite3WalClose(
1918   Wal *pWal,                      /* Wal to close */
1919   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1920   int nBuf,
1921   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1922 ){
1923   int rc = SQLITE_OK;
1924   if( pWal ){
1925     int isDelete = 0;             /* True to unlink wal and wal-index files */
1926 
1927     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1928     ** ordinary, rollback-mode locking methods, this guarantees that the
1929     ** connection associated with this log file is the only connection to
1930     ** the database. In this case checkpoint the database and unlink both
1931     ** the wal and wal-index files.
1932     **
1933     ** The EXCLUSIVE lock is not released before returning.
1934     */
1935     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1936     if( rc==SQLITE_OK ){
1937       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1938         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1939       }
1940       rc = sqlite3WalCheckpoint(
1941           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1942       );
1943       if( rc==SQLITE_OK ){
1944         int bPersist = -1;
1945         sqlite3OsFileControlHint(
1946             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1947         );
1948         if( bPersist!=1 ){
1949           /* Try to delete the WAL file if the checkpoint completed and
1950           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1951           ** mode (!bPersist) */
1952           isDelete = 1;
1953         }else if( pWal->mxWalSize>=0 ){
1954           /* Try to truncate the WAL file to zero bytes if the checkpoint
1955           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1956           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1957           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1958           ** to zero bytes as truncating to the journal_size_limit might
1959           ** leave a corrupt WAL file on disk. */
1960           walLimitSize(pWal, 0);
1961         }
1962       }
1963     }
1964 
1965     walIndexClose(pWal, isDelete);
1966     sqlite3OsClose(pWal->pWalFd);
1967     if( isDelete ){
1968       sqlite3BeginBenignMalloc();
1969       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1970       sqlite3EndBenignMalloc();
1971     }
1972     WALTRACE(("WAL%p: closed\n", pWal));
1973     sqlite3_free((void *)pWal->apWiData);
1974     sqlite3_free(pWal);
1975   }
1976   return rc;
1977 }
1978 
1979 /*
1980 ** Try to read the wal-index header.  Return 0 on success and 1 if
1981 ** there is a problem.
1982 **
1983 ** The wal-index is in shared memory.  Another thread or process might
1984 ** be writing the header at the same time this procedure is trying to
1985 ** read it, which might result in inconsistency.  A dirty read is detected
1986 ** by verifying that both copies of the header are the same and also by
1987 ** a checksum on the header.
1988 **
1989 ** If and only if the read is consistent and the header is different from
1990 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1991 ** and *pChanged is set to 1.
1992 **
1993 ** If the checksum cannot be verified return non-zero. If the header
1994 ** is read successfully and the checksum verified, return zero.
1995 */
1996 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1997   u32 aCksum[2];                  /* Checksum on the header content */
1998   WalIndexHdr h1, h2;             /* Two copies of the header content */
1999   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2000 
2001   /* The first page of the wal-index must be mapped at this point. */
2002   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2003 
2004   /* Read the header. This might happen concurrently with a write to the
2005   ** same area of shared memory on a different CPU in a SMP,
2006   ** meaning it is possible that an inconsistent snapshot is read
2007   ** from the file. If this happens, return non-zero.
2008   **
2009   ** There are two copies of the header at the beginning of the wal-index.
2010   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2011   ** Memory barriers are used to prevent the compiler or the hardware from
2012   ** reordering the reads and writes.
2013   */
2014   aHdr = walIndexHdr(pWal);
2015   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2016   walShmBarrier(pWal);
2017   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2018 
2019   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2020     return 1;   /* Dirty read */
2021   }
2022   if( h1.isInit==0 ){
2023     return 1;   /* Malformed header - probably all zeros */
2024   }
2025   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2026   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2027     return 1;   /* Checksum does not match */
2028   }
2029 
2030   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2031     *pChanged = 1;
2032     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2033     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2034     testcase( pWal->szPage<=32768 );
2035     testcase( pWal->szPage>=65536 );
2036   }
2037 
2038   /* The header was successfully read. Return zero. */
2039   return 0;
2040 }
2041 
2042 /*
2043 ** Read the wal-index header from the wal-index and into pWal->hdr.
2044 ** If the wal-header appears to be corrupt, try to reconstruct the
2045 ** wal-index from the WAL before returning.
2046 **
2047 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2048 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2049 ** to 0.
2050 **
2051 ** If the wal-index header is successfully read, return SQLITE_OK.
2052 ** Otherwise an SQLite error code.
2053 */
2054 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2055   int rc;                         /* Return code */
2056   int badHdr;                     /* True if a header read failed */
2057   volatile u32 *page0;            /* Chunk of wal-index containing header */
2058 
2059   /* Ensure that page 0 of the wal-index (the page that contains the
2060   ** wal-index header) is mapped. Return early if an error occurs here.
2061   */
2062   assert( pChanged );
2063   rc = walIndexPage(pWal, 0, &page0);
2064   if( rc!=SQLITE_OK ){
2065     return rc;
2066   };
2067   assert( page0 || pWal->writeLock==0 );
2068 
2069   /* If the first page of the wal-index has been mapped, try to read the
2070   ** wal-index header immediately, without holding any lock. This usually
2071   ** works, but may fail if the wal-index header is corrupt or currently
2072   ** being modified by another thread or process.
2073   */
2074   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2075 
2076   /* If the first attempt failed, it might have been due to a race
2077   ** with a writer.  So get a WRITE lock and try again.
2078   */
2079   assert( badHdr==0 || pWal->writeLock==0 );
2080   if( badHdr ){
2081     if( pWal->readOnly & WAL_SHM_RDONLY ){
2082       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2083         walUnlockShared(pWal, WAL_WRITE_LOCK);
2084         rc = SQLITE_READONLY_RECOVERY;
2085       }
2086     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2087       pWal->writeLock = 1;
2088       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2089         badHdr = walIndexTryHdr(pWal, pChanged);
2090         if( badHdr ){
2091           /* If the wal-index header is still malformed even while holding
2092           ** a WRITE lock, it can only mean that the header is corrupted and
2093           ** needs to be reconstructed.  So run recovery to do exactly that.
2094           */
2095           rc = walIndexRecover(pWal);
2096           *pChanged = 1;
2097         }
2098       }
2099       pWal->writeLock = 0;
2100       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2101     }
2102   }
2103 
2104   /* If the header is read successfully, check the version number to make
2105   ** sure the wal-index was not constructed with some future format that
2106   ** this version of SQLite cannot understand.
2107   */
2108   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2109     rc = SQLITE_CANTOPEN_BKPT;
2110   }
2111 
2112   return rc;
2113 }
2114 
2115 /*
2116 ** This is the value that walTryBeginRead returns when it needs to
2117 ** be retried.
2118 */
2119 #define WAL_RETRY  (-1)
2120 
2121 /*
2122 ** Attempt to start a read transaction.  This might fail due to a race or
2123 ** other transient condition.  When that happens, it returns WAL_RETRY to
2124 ** indicate to the caller that it is safe to retry immediately.
2125 **
2126 ** On success return SQLITE_OK.  On a permanent failure (such an
2127 ** I/O error or an SQLITE_BUSY because another process is running
2128 ** recovery) return a positive error code.
2129 **
2130 ** The useWal parameter is true to force the use of the WAL and disable
2131 ** the case where the WAL is bypassed because it has been completely
2132 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2133 ** to make a copy of the wal-index header into pWal->hdr.  If the
2134 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2135 ** to the caller that the local paget cache is obsolete and needs to be
2136 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2137 ** be loaded and the pChanged parameter is unused.
2138 **
2139 ** The caller must set the cnt parameter to the number of prior calls to
2140 ** this routine during the current read attempt that returned WAL_RETRY.
2141 ** This routine will start taking more aggressive measures to clear the
2142 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2143 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2144 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2145 ** and is not honoring the locking protocol.  There is a vanishingly small
2146 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2147 ** bad luck when there is lots of contention for the wal-index, but that
2148 ** possibility is so small that it can be safely neglected, we believe.
2149 **
2150 ** On success, this routine obtains a read lock on
2151 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2152 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2153 ** that means the Wal does not hold any read lock.  The reader must not
2154 ** access any database page that is modified by a WAL frame up to and
2155 ** including frame number aReadMark[pWal->readLock].  The reader will
2156 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2157 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2158 ** completely and get all content directly from the database file.
2159 ** If the useWal parameter is 1 then the WAL will never be ignored and
2160 ** this routine will always set pWal->readLock>0 on success.
2161 ** When the read transaction is completed, the caller must release the
2162 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2163 **
2164 ** This routine uses the nBackfill and aReadMark[] fields of the header
2165 ** to select a particular WAL_READ_LOCK() that strives to let the
2166 ** checkpoint process do as much work as possible.  This routine might
2167 ** update values of the aReadMark[] array in the header, but if it does
2168 ** so it takes care to hold an exclusive lock on the corresponding
2169 ** WAL_READ_LOCK() while changing values.
2170 */
2171 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2172   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2173   u32 mxReadMark;                 /* Largest aReadMark[] value */
2174   int mxI;                        /* Index of largest aReadMark[] value */
2175   int i;                          /* Loop counter */
2176   int rc = SQLITE_OK;             /* Return code  */
2177   u32 mxFrame;                    /* Wal frame to lock to */
2178 
2179   assert( pWal->readLock<0 );     /* Not currently locked */
2180 
2181   /* Take steps to avoid spinning forever if there is a protocol error.
2182   **
2183   ** Circumstances that cause a RETRY should only last for the briefest
2184   ** instances of time.  No I/O or other system calls are done while the
2185   ** locks are held, so the locks should not be held for very long. But
2186   ** if we are unlucky, another process that is holding a lock might get
2187   ** paged out or take a page-fault that is time-consuming to resolve,
2188   ** during the few nanoseconds that it is holding the lock.  In that case,
2189   ** it might take longer than normal for the lock to free.
2190   **
2191   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2192   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2193   ** is more of a scheduler yield than an actual delay.  But on the 10th
2194   ** an subsequent retries, the delays start becoming longer and longer,
2195   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2196   ** The total delay time before giving up is less than 10 seconds.
2197   */
2198   if( cnt>5 ){
2199     int nDelay = 1;                      /* Pause time in microseconds */
2200     if( cnt>100 ){
2201       VVA_ONLY( pWal->lockError = 1; )
2202       return SQLITE_PROTOCOL;
2203     }
2204     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2205     sqlite3OsSleep(pWal->pVfs, nDelay);
2206   }
2207 
2208   if( !useWal ){
2209     rc = walIndexReadHdr(pWal, pChanged);
2210     if( rc==SQLITE_BUSY ){
2211       /* If there is not a recovery running in another thread or process
2212       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2213       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2214       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2215       ** would be technically correct.  But the race is benign since with
2216       ** WAL_RETRY this routine will be called again and will probably be
2217       ** right on the second iteration.
2218       */
2219       if( pWal->apWiData[0]==0 ){
2220         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2221         ** We assume this is a transient condition, so return WAL_RETRY. The
2222         ** xShmMap() implementation used by the default unix and win32 VFS
2223         ** modules may return SQLITE_BUSY due to a race condition in the
2224         ** code that determines whether or not the shared-memory region
2225         ** must be zeroed before the requested page is returned.
2226         */
2227         rc = WAL_RETRY;
2228       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2229         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2230         rc = WAL_RETRY;
2231       }else if( rc==SQLITE_BUSY ){
2232         rc = SQLITE_BUSY_RECOVERY;
2233       }
2234     }
2235     if( rc!=SQLITE_OK ){
2236       return rc;
2237     }
2238   }
2239 
2240   pInfo = walCkptInfo(pWal);
2241   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2242 #ifdef SQLITE_ENABLE_SNAPSHOT
2243    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2244      || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2245 #endif
2246   ){
2247     /* The WAL has been completely backfilled (or it is empty).
2248     ** and can be safely ignored.
2249     */
2250     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2251     walShmBarrier(pWal);
2252     if( rc==SQLITE_OK ){
2253       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2254         /* It is not safe to allow the reader to continue here if frames
2255         ** may have been appended to the log before READ_LOCK(0) was obtained.
2256         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2257         ** which implies that the database file contains a trustworthy
2258         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2259         ** happening, this is usually correct.
2260         **
2261         ** However, if frames have been appended to the log (or if the log
2262         ** is wrapped and written for that matter) before the READ_LOCK(0)
2263         ** is obtained, that is not necessarily true. A checkpointer may
2264         ** have started to backfill the appended frames but crashed before
2265         ** it finished. Leaving a corrupt image in the database file.
2266         */
2267         walUnlockShared(pWal, WAL_READ_LOCK(0));
2268         return WAL_RETRY;
2269       }
2270       pWal->readLock = 0;
2271       return SQLITE_OK;
2272     }else if( rc!=SQLITE_BUSY ){
2273       return rc;
2274     }
2275   }
2276 
2277   /* If we get this far, it means that the reader will want to use
2278   ** the WAL to get at content from recent commits.  The job now is
2279   ** to select one of the aReadMark[] entries that is closest to
2280   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2281   */
2282   mxReadMark = 0;
2283   mxI = 0;
2284   mxFrame = pWal->hdr.mxFrame;
2285 #ifdef SQLITE_ENABLE_SNAPSHOT
2286   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2287     mxFrame = pWal->pSnapshot->mxFrame;
2288   }
2289 #endif
2290   for(i=1; i<WAL_NREADER; i++){
2291     u32 thisMark = pInfo->aReadMark[i];
2292     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2293       assert( thisMark!=READMARK_NOT_USED );
2294       mxReadMark = thisMark;
2295       mxI = i;
2296     }
2297   }
2298   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2299    && (mxReadMark<mxFrame || mxI==0)
2300   ){
2301     for(i=1; i<WAL_NREADER; i++){
2302       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2303       if( rc==SQLITE_OK ){
2304         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2305         mxI = i;
2306         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2307         break;
2308       }else if( rc!=SQLITE_BUSY ){
2309         return rc;
2310       }
2311     }
2312   }
2313   if( mxI==0 ){
2314     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2315     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2316   }
2317 
2318   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2319   if( rc ){
2320     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2321   }
2322   /* Now that the read-lock has been obtained, check that neither the
2323   ** value in the aReadMark[] array or the contents of the wal-index
2324   ** header have changed.
2325   **
2326   ** It is necessary to check that the wal-index header did not change
2327   ** between the time it was read and when the shared-lock was obtained
2328   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2329   ** that the log file may have been wrapped by a writer, or that frames
2330   ** that occur later in the log than pWal->hdr.mxFrame may have been
2331   ** copied into the database by a checkpointer. If either of these things
2332   ** happened, then reading the database with the current value of
2333   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2334   ** instead.
2335   **
2336   ** Before checking that the live wal-index header has not changed
2337   ** since it was read, set Wal.minFrame to the first frame in the wal
2338   ** file that has not yet been checkpointed. This client will not need
2339   ** to read any frames earlier than minFrame from the wal file - they
2340   ** can be safely read directly from the database file.
2341   **
2342   ** Because a ShmBarrier() call is made between taking the copy of
2343   ** nBackfill and checking that the wal-header in shared-memory still
2344   ** matches the one cached in pWal->hdr, it is guaranteed that the
2345   ** checkpointer that set nBackfill was not working with a wal-index
2346   ** header newer than that cached in pWal->hdr. If it were, that could
2347   ** cause a problem. The checkpointer could omit to checkpoint
2348   ** a version of page X that lies before pWal->minFrame (call that version
2349   ** A) on the basis that there is a newer version (version B) of the same
2350   ** page later in the wal file. But if version B happens to like past
2351   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2352   ** that it can read version A from the database file. However, since
2353   ** we can guarantee that the checkpointer that set nBackfill could not
2354   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2355   */
2356   pWal->minFrame = pInfo->nBackfill+1;
2357   walShmBarrier(pWal);
2358   if( pInfo->aReadMark[mxI]!=mxReadMark
2359    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2360   ){
2361     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2362     return WAL_RETRY;
2363   }else{
2364     assert( mxReadMark<=pWal->hdr.mxFrame );
2365     pWal->readLock = (i16)mxI;
2366   }
2367   return rc;
2368 }
2369 
2370 /*
2371 ** Begin a read transaction on the database.
2372 **
2373 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2374 ** it takes a snapshot of the state of the WAL and wal-index for the current
2375 ** instant in time.  The current thread will continue to use this snapshot.
2376 ** Other threads might append new content to the WAL and wal-index but
2377 ** that extra content is ignored by the current thread.
2378 **
2379 ** If the database contents have changes since the previous read
2380 ** transaction, then *pChanged is set to 1 before returning.  The
2381 ** Pager layer will use this to know that is cache is stale and
2382 ** needs to be flushed.
2383 */
2384 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2385   int rc;                         /* Return code */
2386   int cnt = 0;                    /* Number of TryBeginRead attempts */
2387 
2388 #ifdef SQLITE_ENABLE_SNAPSHOT
2389   int bChanged = 0;
2390   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2391   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2392     bChanged = 1;
2393   }
2394 #endif
2395 
2396   do{
2397     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2398   }while( rc==WAL_RETRY );
2399   testcase( (rc&0xff)==SQLITE_BUSY );
2400   testcase( (rc&0xff)==SQLITE_IOERR );
2401   testcase( rc==SQLITE_PROTOCOL );
2402   testcase( rc==SQLITE_OK );
2403 
2404 #ifdef SQLITE_ENABLE_SNAPSHOT
2405   if( rc==SQLITE_OK ){
2406     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2407       /* At this point the client has a lock on an aReadMark[] slot holding
2408       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2409       ** is populated with the wal-index header corresponding to the head
2410       ** of the wal file. Verify that pSnapshot is still valid before
2411       ** continuing.  Reasons why pSnapshot might no longer be valid:
2412       **
2413       **    (1)  The WAL file has been reset since the snapshot was taken.
2414       **         In this case, the salt will have changed.
2415       **
2416       **    (2)  A checkpoint as been attempted that wrote frames past
2417       **         pSnapshot->mxFrame into the database file.  Note that the
2418       **         checkpoint need not have completed for this to cause problems.
2419       */
2420       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2421 
2422       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2423       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2424 
2425       /* It is possible that there is a checkpointer thread running
2426       ** concurrent with this code. If this is the case, it may be that the
2427       ** checkpointer has already determined that it will checkpoint
2428       ** snapshot X, where X is later in the wal file than pSnapshot, but
2429       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2430       ** its intent. To avoid the race condition this leads to, ensure that
2431       ** there is no checkpointer process by taking a shared CKPT lock
2432       ** before checking pInfo->nBackfillAttempted.  */
2433       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2434 
2435       if( rc==SQLITE_OK ){
2436         /* Check that the wal file has not been wrapped. Assuming that it has
2437         ** not, also check that no checkpointer has attempted to checkpoint any
2438         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2439         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2440         ** with *pSnapshot and set *pChanged as appropriate for opening the
2441         ** snapshot.  */
2442         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2443          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2444         ){
2445           assert( pWal->readLock>0 );
2446           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2447           *pChanged = bChanged;
2448         }else{
2449           rc = SQLITE_BUSY_SNAPSHOT;
2450         }
2451 
2452         /* Release the shared CKPT lock obtained above. */
2453         walUnlockShared(pWal, WAL_CKPT_LOCK);
2454       }
2455 
2456 
2457       if( rc!=SQLITE_OK ){
2458         sqlite3WalEndReadTransaction(pWal);
2459       }
2460     }
2461   }
2462 #endif
2463   return rc;
2464 }
2465 
2466 /*
2467 ** Finish with a read transaction.  All this does is release the
2468 ** read-lock.
2469 */
2470 void sqlite3WalEndReadTransaction(Wal *pWal){
2471   sqlite3WalEndWriteTransaction(pWal);
2472   if( pWal->readLock>=0 ){
2473     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2474     pWal->readLock = -1;
2475   }
2476 }
2477 
2478 /*
2479 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2480 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2481 ** to zero.
2482 **
2483 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2484 ** error does occur, the final value of *piRead is undefined.
2485 */
2486 int sqlite3WalFindFrame(
2487   Wal *pWal,                      /* WAL handle */
2488   Pgno pgno,                      /* Database page number to read data for */
2489   u32 *piRead                     /* OUT: Frame number (or zero) */
2490 ){
2491   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2492   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2493   int iHash;                      /* Used to loop through N hash tables */
2494   int iMinHash;
2495 
2496   /* This routine is only be called from within a read transaction. */
2497   assert( pWal->readLock>=0 || pWal->lockError );
2498 
2499   /* If the "last page" field of the wal-index header snapshot is 0, then
2500   ** no data will be read from the wal under any circumstances. Return early
2501   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2502   ** then the WAL is ignored by the reader so return early, as if the
2503   ** WAL were empty.
2504   */
2505   if( iLast==0 || pWal->readLock==0 ){
2506     *piRead = 0;
2507     return SQLITE_OK;
2508   }
2509 
2510   /* Search the hash table or tables for an entry matching page number
2511   ** pgno. Each iteration of the following for() loop searches one
2512   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2513   **
2514   ** This code might run concurrently to the code in walIndexAppend()
2515   ** that adds entries to the wal-index (and possibly to this hash
2516   ** table). This means the value just read from the hash
2517   ** slot (aHash[iKey]) may have been added before or after the
2518   ** current read transaction was opened. Values added after the
2519   ** read transaction was opened may have been written incorrectly -
2520   ** i.e. these slots may contain garbage data. However, we assume
2521   ** that any slots written before the current read transaction was
2522   ** opened remain unmodified.
2523   **
2524   ** For the reasons above, the if(...) condition featured in the inner
2525   ** loop of the following block is more stringent that would be required
2526   ** if we had exclusive access to the hash-table:
2527   **
2528   **   (aPgno[iFrame]==pgno):
2529   **     This condition filters out normal hash-table collisions.
2530   **
2531   **   (iFrame<=iLast):
2532   **     This condition filters out entries that were added to the hash
2533   **     table after the current read-transaction had started.
2534   */
2535   iMinHash = walFramePage(pWal->minFrame);
2536   for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2537     volatile ht_slot *aHash;      /* Pointer to hash table */
2538     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2539     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2540     int iKey;                     /* Hash slot index */
2541     int nCollide;                 /* Number of hash collisions remaining */
2542     int rc;                       /* Error code */
2543 
2544     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2545     if( rc!=SQLITE_OK ){
2546       return rc;
2547     }
2548     nCollide = HASHTABLE_NSLOT;
2549     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2550       u32 iFrame = aHash[iKey] + iZero;
2551       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2552         assert( iFrame>iRead || CORRUPT_DB );
2553         iRead = iFrame;
2554       }
2555       if( (nCollide--)==0 ){
2556         return SQLITE_CORRUPT_BKPT;
2557       }
2558     }
2559   }
2560 
2561 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2562   /* If expensive assert() statements are available, do a linear search
2563   ** of the wal-index file content. Make sure the results agree with the
2564   ** result obtained using the hash indexes above.  */
2565   {
2566     u32 iRead2 = 0;
2567     u32 iTest;
2568     assert( pWal->minFrame>0 );
2569     for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
2570       if( walFramePgno(pWal, iTest)==pgno ){
2571         iRead2 = iTest;
2572         break;
2573       }
2574     }
2575     assert( iRead==iRead2 );
2576   }
2577 #endif
2578 
2579   *piRead = iRead;
2580   return SQLITE_OK;
2581 }
2582 
2583 /*
2584 ** Read the contents of frame iRead from the wal file into buffer pOut
2585 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2586 ** error code otherwise.
2587 */
2588 int sqlite3WalReadFrame(
2589   Wal *pWal,                      /* WAL handle */
2590   u32 iRead,                      /* Frame to read */
2591   int nOut,                       /* Size of buffer pOut in bytes */
2592   u8 *pOut                        /* Buffer to write page data to */
2593 ){
2594   int sz;
2595   i64 iOffset;
2596   sz = pWal->hdr.szPage;
2597   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2598   testcase( sz<=32768 );
2599   testcase( sz>=65536 );
2600   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2601   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2602   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2603 }
2604 
2605 /*
2606 ** Return the size of the database in pages (or zero, if unknown).
2607 */
2608 Pgno sqlite3WalDbsize(Wal *pWal){
2609   if( pWal && ALWAYS(pWal->readLock>=0) ){
2610     return pWal->hdr.nPage;
2611   }
2612   return 0;
2613 }
2614 
2615 
2616 /*
2617 ** This function starts a write transaction on the WAL.
2618 **
2619 ** A read transaction must have already been started by a prior call
2620 ** to sqlite3WalBeginReadTransaction().
2621 **
2622 ** If another thread or process has written into the database since
2623 ** the read transaction was started, then it is not possible for this
2624 ** thread to write as doing so would cause a fork.  So this routine
2625 ** returns SQLITE_BUSY in that case and no write transaction is started.
2626 **
2627 ** There can only be a single writer active at a time.
2628 */
2629 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2630   int rc;
2631 
2632   /* Cannot start a write transaction without first holding a read
2633   ** transaction. */
2634   assert( pWal->readLock>=0 );
2635 
2636   if( pWal->readOnly ){
2637     return SQLITE_READONLY;
2638   }
2639 
2640   /* Only one writer allowed at a time.  Get the write lock.  Return
2641   ** SQLITE_BUSY if unable.
2642   */
2643   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2644   if( rc ){
2645     return rc;
2646   }
2647   pWal->writeLock = 1;
2648 
2649   /* If another connection has written to the database file since the
2650   ** time the read transaction on this connection was started, then
2651   ** the write is disallowed.
2652   */
2653   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2654     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2655     pWal->writeLock = 0;
2656     rc = SQLITE_BUSY_SNAPSHOT;
2657   }
2658 
2659   return rc;
2660 }
2661 
2662 /*
2663 ** End a write transaction.  The commit has already been done.  This
2664 ** routine merely releases the lock.
2665 */
2666 int sqlite3WalEndWriteTransaction(Wal *pWal){
2667   if( pWal->writeLock ){
2668     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2669     pWal->writeLock = 0;
2670     pWal->truncateOnCommit = 0;
2671   }
2672   return SQLITE_OK;
2673 }
2674 
2675 /*
2676 ** If any data has been written (but not committed) to the log file, this
2677 ** function moves the write-pointer back to the start of the transaction.
2678 **
2679 ** Additionally, the callback function is invoked for each frame written
2680 ** to the WAL since the start of the transaction. If the callback returns
2681 ** other than SQLITE_OK, it is not invoked again and the error code is
2682 ** returned to the caller.
2683 **
2684 ** Otherwise, if the callback function does not return an error, this
2685 ** function returns SQLITE_OK.
2686 */
2687 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2688   int rc = SQLITE_OK;
2689   if( ALWAYS(pWal->writeLock) ){
2690     Pgno iMax = pWal->hdr.mxFrame;
2691     Pgno iFrame;
2692 
2693     /* Restore the clients cache of the wal-index header to the state it
2694     ** was in before the client began writing to the database.
2695     */
2696     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2697 
2698     for(iFrame=pWal->hdr.mxFrame+1;
2699         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2700         iFrame++
2701     ){
2702       /* This call cannot fail. Unless the page for which the page number
2703       ** is passed as the second argument is (a) in the cache and
2704       ** (b) has an outstanding reference, then xUndo is either a no-op
2705       ** (if (a) is false) or simply expels the page from the cache (if (b)
2706       ** is false).
2707       **
2708       ** If the upper layer is doing a rollback, it is guaranteed that there
2709       ** are no outstanding references to any page other than page 1. And
2710       ** page 1 is never written to the log until the transaction is
2711       ** committed. As a result, the call to xUndo may not fail.
2712       */
2713       assert( walFramePgno(pWal, iFrame)!=1 );
2714       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2715     }
2716     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2717   }
2718   return rc;
2719 }
2720 
2721 /*
2722 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2723 ** values. This function populates the array with values required to
2724 ** "rollback" the write position of the WAL handle back to the current
2725 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2726 */
2727 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2728   assert( pWal->writeLock );
2729   aWalData[0] = pWal->hdr.mxFrame;
2730   aWalData[1] = pWal->hdr.aFrameCksum[0];
2731   aWalData[2] = pWal->hdr.aFrameCksum[1];
2732   aWalData[3] = pWal->nCkpt;
2733 }
2734 
2735 /*
2736 ** Move the write position of the WAL back to the point identified by
2737 ** the values in the aWalData[] array. aWalData must point to an array
2738 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2739 ** by a call to WalSavepoint().
2740 */
2741 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2742   int rc = SQLITE_OK;
2743 
2744   assert( pWal->writeLock );
2745   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2746 
2747   if( aWalData[3]!=pWal->nCkpt ){
2748     /* This savepoint was opened immediately after the write-transaction
2749     ** was started. Right after that, the writer decided to wrap around
2750     ** to the start of the log. Update the savepoint values to match.
2751     */
2752     aWalData[0] = 0;
2753     aWalData[3] = pWal->nCkpt;
2754   }
2755 
2756   if( aWalData[0]<pWal->hdr.mxFrame ){
2757     pWal->hdr.mxFrame = aWalData[0];
2758     pWal->hdr.aFrameCksum[0] = aWalData[1];
2759     pWal->hdr.aFrameCksum[1] = aWalData[2];
2760     walCleanupHash(pWal);
2761   }
2762 
2763   return rc;
2764 }
2765 
2766 /*
2767 ** This function is called just before writing a set of frames to the log
2768 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2769 ** to the current log file, it is possible to overwrite the start of the
2770 ** existing log file with the new frames (i.e. "reset" the log). If so,
2771 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2772 ** unchanged.
2773 **
2774 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2775 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2776 ** if an error occurs.
2777 */
2778 static int walRestartLog(Wal *pWal){
2779   int rc = SQLITE_OK;
2780   int cnt;
2781 
2782   if( pWal->readLock==0 ){
2783     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2784     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2785     if( pInfo->nBackfill>0 ){
2786       u32 salt1;
2787       sqlite3_randomness(4, &salt1);
2788       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2789       if( rc==SQLITE_OK ){
2790         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2791         ** readers are currently using the WAL), then the transactions
2792         ** frames will overwrite the start of the existing log. Update the
2793         ** wal-index header to reflect this.
2794         **
2795         ** In theory it would be Ok to update the cache of the header only
2796         ** at this point. But updating the actual wal-index header is also
2797         ** safe and means there is no special case for sqlite3WalUndo()
2798         ** to handle if this transaction is rolled back.  */
2799         walRestartHdr(pWal, salt1);
2800         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2801       }else if( rc!=SQLITE_BUSY ){
2802         return rc;
2803       }
2804     }
2805     walUnlockShared(pWal, WAL_READ_LOCK(0));
2806     pWal->readLock = -1;
2807     cnt = 0;
2808     do{
2809       int notUsed;
2810       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2811     }while( rc==WAL_RETRY );
2812     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2813     testcase( (rc&0xff)==SQLITE_IOERR );
2814     testcase( rc==SQLITE_PROTOCOL );
2815     testcase( rc==SQLITE_OK );
2816   }
2817   return rc;
2818 }
2819 
2820 /*
2821 ** Information about the current state of the WAL file and where
2822 ** the next fsync should occur - passed from sqlite3WalFrames() into
2823 ** walWriteToLog().
2824 */
2825 typedef struct WalWriter {
2826   Wal *pWal;                   /* The complete WAL information */
2827   sqlite3_file *pFd;           /* The WAL file to which we write */
2828   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2829   int syncFlags;               /* Flags for the fsync */
2830   int szPage;                  /* Size of one page */
2831 } WalWriter;
2832 
2833 /*
2834 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2835 ** Do a sync when crossing the p->iSyncPoint boundary.
2836 **
2837 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2838 ** first write the part before iSyncPoint, then sync, then write the
2839 ** rest.
2840 */
2841 static int walWriteToLog(
2842   WalWriter *p,              /* WAL to write to */
2843   void *pContent,            /* Content to be written */
2844   int iAmt,                  /* Number of bytes to write */
2845   sqlite3_int64 iOffset      /* Start writing at this offset */
2846 ){
2847   int rc;
2848   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2849     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2850     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2851     if( rc ) return rc;
2852     iOffset += iFirstAmt;
2853     iAmt -= iFirstAmt;
2854     pContent = (void*)(iFirstAmt + (char*)pContent);
2855     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2856     rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
2857     if( iAmt==0 || rc ) return rc;
2858   }
2859   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2860   return rc;
2861 }
2862 
2863 /*
2864 ** Write out a single frame of the WAL
2865 */
2866 static int walWriteOneFrame(
2867   WalWriter *p,               /* Where to write the frame */
2868   PgHdr *pPage,               /* The page of the frame to be written */
2869   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2870   sqlite3_int64 iOffset       /* Byte offset at which to write */
2871 ){
2872   int rc;                         /* Result code from subfunctions */
2873   void *pData;                    /* Data actually written */
2874   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2875 #if defined(SQLITE_HAS_CODEC)
2876   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2877 #else
2878   pData = pPage->pData;
2879 #endif
2880   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2881   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2882   if( rc ) return rc;
2883   /* Write the page data */
2884   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2885   return rc;
2886 }
2887 
2888 /*
2889 ** Write a set of frames to the log. The caller must hold the write-lock
2890 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2891 */
2892 int sqlite3WalFrames(
2893   Wal *pWal,                      /* Wal handle to write to */
2894   int szPage,                     /* Database page-size in bytes */
2895   PgHdr *pList,                   /* List of dirty pages to write */
2896   Pgno nTruncate,                 /* Database size after this commit */
2897   int isCommit,                   /* True if this is a commit */
2898   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2899 ){
2900   int rc;                         /* Used to catch return codes */
2901   u32 iFrame;                     /* Next frame address */
2902   PgHdr *p;                       /* Iterator to run through pList with. */
2903   PgHdr *pLast = 0;               /* Last frame in list */
2904   int nExtra = 0;                 /* Number of extra copies of last page */
2905   int szFrame;                    /* The size of a single frame */
2906   i64 iOffset;                    /* Next byte to write in WAL file */
2907   WalWriter w;                    /* The writer */
2908 
2909   assert( pList );
2910   assert( pWal->writeLock );
2911 
2912   /* If this frame set completes a transaction, then nTruncate>0.  If
2913   ** nTruncate==0 then this frame set does not complete the transaction. */
2914   assert( (isCommit!=0)==(nTruncate!=0) );
2915 
2916 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2917   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2918     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2919               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2920   }
2921 #endif
2922 
2923   /* See if it is possible to write these frames into the start of the
2924   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2925   */
2926   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2927     return rc;
2928   }
2929 
2930   /* If this is the first frame written into the log, write the WAL
2931   ** header to the start of the WAL file. See comments at the top of
2932   ** this source file for a description of the WAL header format.
2933   */
2934   iFrame = pWal->hdr.mxFrame;
2935   if( iFrame==0 ){
2936     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2937     u32 aCksum[2];                /* Checksum for wal-header */
2938 
2939     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2940     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2941     sqlite3Put4byte(&aWalHdr[8], szPage);
2942     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2943     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
2944     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2945     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2946     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2947     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2948 
2949     pWal->szPage = szPage;
2950     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2951     pWal->hdr.aFrameCksum[0] = aCksum[0];
2952     pWal->hdr.aFrameCksum[1] = aCksum[1];
2953     pWal->truncateOnCommit = 1;
2954 
2955     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2956     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2957     if( rc!=SQLITE_OK ){
2958       return rc;
2959     }
2960 
2961     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2962     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
2963     ** an out-of-order write following a WAL restart could result in
2964     ** database corruption.  See the ticket:
2965     **
2966     **     http://localhost:591/sqlite/info/ff5be73dee
2967     */
2968     if( pWal->syncHeader && sync_flags ){
2969       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2970       if( rc ) return rc;
2971     }
2972   }
2973   assert( (int)pWal->szPage==szPage );
2974 
2975   /* Setup information needed to write frames into the WAL */
2976   w.pWal = pWal;
2977   w.pFd = pWal->pWalFd;
2978   w.iSyncPoint = 0;
2979   w.syncFlags = sync_flags;
2980   w.szPage = szPage;
2981   iOffset = walFrameOffset(iFrame+1, szPage);
2982   szFrame = szPage + WAL_FRAME_HDRSIZE;
2983 
2984   /* Write all frames into the log file exactly once */
2985   for(p=pList; p; p=p->pDirty){
2986     int nDbSize;   /* 0 normally.  Positive == commit flag */
2987     iFrame++;
2988     assert( iOffset==walFrameOffset(iFrame, szPage) );
2989     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2990     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2991     if( rc ) return rc;
2992     pLast = p;
2993     iOffset += szFrame;
2994   }
2995 
2996   /* If this is the end of a transaction, then we might need to pad
2997   ** the transaction and/or sync the WAL file.
2998   **
2999   ** Padding and syncing only occur if this set of frames complete a
3000   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3001   ** or synchronous==OFF, then no padding or syncing are needed.
3002   **
3003   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3004   ** needed and only the sync is done.  If padding is needed, then the
3005   ** final frame is repeated (with its commit mark) until the next sector
3006   ** boundary is crossed.  Only the part of the WAL prior to the last
3007   ** sector boundary is synced; the part of the last frame that extends
3008   ** past the sector boundary is written after the sync.
3009   */
3010   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
3011     if( pWal->padToSectorBoundary ){
3012       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3013       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3014       while( iOffset<w.iSyncPoint ){
3015         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3016         if( rc ) return rc;
3017         iOffset += szFrame;
3018         nExtra++;
3019       }
3020     }else{
3021       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
3022     }
3023   }
3024 
3025   /* If this frame set completes the first transaction in the WAL and
3026   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3027   ** journal size limit, if possible.
3028   */
3029   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3030     i64 sz = pWal->mxWalSize;
3031     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3032       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3033     }
3034     walLimitSize(pWal, sz);
3035     pWal->truncateOnCommit = 0;
3036   }
3037 
3038   /* Append data to the wal-index. It is not necessary to lock the
3039   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3040   ** guarantees that there are no other writers, and no data that may
3041   ** be in use by existing readers is being overwritten.
3042   */
3043   iFrame = pWal->hdr.mxFrame;
3044   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3045     iFrame++;
3046     rc = walIndexAppend(pWal, iFrame, p->pgno);
3047   }
3048   while( rc==SQLITE_OK && nExtra>0 ){
3049     iFrame++;
3050     nExtra--;
3051     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3052   }
3053 
3054   if( rc==SQLITE_OK ){
3055     /* Update the private copy of the header. */
3056     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3057     testcase( szPage<=32768 );
3058     testcase( szPage>=65536 );
3059     pWal->hdr.mxFrame = iFrame;
3060     if( isCommit ){
3061       pWal->hdr.iChange++;
3062       pWal->hdr.nPage = nTruncate;
3063     }
3064     /* If this is a commit, update the wal-index header too. */
3065     if( isCommit ){
3066       walIndexWriteHdr(pWal);
3067       pWal->iCallback = iFrame;
3068     }
3069   }
3070 
3071   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3072   return rc;
3073 }
3074 
3075 /*
3076 ** This routine is called to implement sqlite3_wal_checkpoint() and
3077 ** related interfaces.
3078 **
3079 ** Obtain a CHECKPOINT lock and then backfill as much information as
3080 ** we can from WAL into the database.
3081 **
3082 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3083 ** callback. In this case this function runs a blocking checkpoint.
3084 */
3085 int sqlite3WalCheckpoint(
3086   Wal *pWal,                      /* Wal connection */
3087   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3088   int (*xBusy)(void*),            /* Function to call when busy */
3089   void *pBusyArg,                 /* Context argument for xBusyHandler */
3090   int sync_flags,                 /* Flags to sync db file with (or 0) */
3091   int nBuf,                       /* Size of temporary buffer */
3092   u8 *zBuf,                       /* Temporary buffer to use */
3093   int *pnLog,                     /* OUT: Number of frames in WAL */
3094   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3095 ){
3096   int rc;                         /* Return code */
3097   int isChanged = 0;              /* True if a new wal-index header is loaded */
3098   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3099   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3100 
3101   assert( pWal->ckptLock==0 );
3102   assert( pWal->writeLock==0 );
3103 
3104   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3105   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3106   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3107 
3108   if( pWal->readOnly ) return SQLITE_READONLY;
3109   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3110 
3111   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3112   ** "checkpoint" lock on the database file. */
3113   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3114   if( rc ){
3115     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3116     ** checkpoint operation at the same time, the lock cannot be obtained and
3117     ** SQLITE_BUSY is returned.
3118     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3119     ** it will not be invoked in this case.
3120     */
3121     testcase( rc==SQLITE_BUSY );
3122     testcase( xBusy!=0 );
3123     return rc;
3124   }
3125   pWal->ckptLock = 1;
3126 
3127   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3128   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3129   ** file.
3130   **
3131   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3132   ** immediately, and a busy-handler is configured, it is invoked and the
3133   ** writer lock retried until either the busy-handler returns 0 or the
3134   ** lock is successfully obtained.
3135   */
3136   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3137     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3138     if( rc==SQLITE_OK ){
3139       pWal->writeLock = 1;
3140     }else if( rc==SQLITE_BUSY ){
3141       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3142       xBusy2 = 0;
3143       rc = SQLITE_OK;
3144     }
3145   }
3146 
3147   /* Read the wal-index header. */
3148   if( rc==SQLITE_OK ){
3149     rc = walIndexReadHdr(pWal, &isChanged);
3150     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3151       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3152     }
3153   }
3154 
3155   /* Copy data from the log to the database file. */
3156   if( rc==SQLITE_OK ){
3157     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3158       rc = SQLITE_CORRUPT_BKPT;
3159     }else{
3160       rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3161     }
3162 
3163     /* If no error occurred, set the output variables. */
3164     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3165       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3166       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3167     }
3168   }
3169 
3170   if( isChanged ){
3171     /* If a new wal-index header was loaded before the checkpoint was
3172     ** performed, then the pager-cache associated with pWal is now
3173     ** out of date. So zero the cached wal-index header to ensure that
3174     ** next time the pager opens a snapshot on this database it knows that
3175     ** the cache needs to be reset.
3176     */
3177     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3178   }
3179 
3180   /* Release the locks. */
3181   sqlite3WalEndWriteTransaction(pWal);
3182   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3183   pWal->ckptLock = 0;
3184   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3185   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3186 }
3187 
3188 /* Return the value to pass to a sqlite3_wal_hook callback, the
3189 ** number of frames in the WAL at the point of the last commit since
3190 ** sqlite3WalCallback() was called.  If no commits have occurred since
3191 ** the last call, then return 0.
3192 */
3193 int sqlite3WalCallback(Wal *pWal){
3194   u32 ret = 0;
3195   if( pWal ){
3196     ret = pWal->iCallback;
3197     pWal->iCallback = 0;
3198   }
3199   return (int)ret;
3200 }
3201 
3202 /*
3203 ** This function is called to change the WAL subsystem into or out
3204 ** of locking_mode=EXCLUSIVE.
3205 **
3206 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3207 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3208 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3209 ** or if the acquisition of the lock fails, then return 0.  If the
3210 ** transition out of exclusive-mode is successful, return 1.  This
3211 ** operation must occur while the pager is still holding the exclusive
3212 ** lock on the main database file.
3213 **
3214 ** If op is one, then change from locking_mode=NORMAL into
3215 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3216 ** be released.  Return 1 if the transition is made and 0 if the
3217 ** WAL is already in exclusive-locking mode - meaning that this
3218 ** routine is a no-op.  The pager must already hold the exclusive lock
3219 ** on the main database file before invoking this operation.
3220 **
3221 ** If op is negative, then do a dry-run of the op==1 case but do
3222 ** not actually change anything. The pager uses this to see if it
3223 ** should acquire the database exclusive lock prior to invoking
3224 ** the op==1 case.
3225 */
3226 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3227   int rc;
3228   assert( pWal->writeLock==0 );
3229   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3230 
3231   /* pWal->readLock is usually set, but might be -1 if there was a
3232   ** prior error while attempting to acquire are read-lock. This cannot
3233   ** happen if the connection is actually in exclusive mode (as no xShmLock
3234   ** locks are taken in this case). Nor should the pager attempt to
3235   ** upgrade to exclusive-mode following such an error.
3236   */
3237   assert( pWal->readLock>=0 || pWal->lockError );
3238   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3239 
3240   if( op==0 ){
3241     if( pWal->exclusiveMode ){
3242       pWal->exclusiveMode = 0;
3243       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3244         pWal->exclusiveMode = 1;
3245       }
3246       rc = pWal->exclusiveMode==0;
3247     }else{
3248       /* Already in locking_mode=NORMAL */
3249       rc = 0;
3250     }
3251   }else if( op>0 ){
3252     assert( pWal->exclusiveMode==0 );
3253     assert( pWal->readLock>=0 );
3254     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3255     pWal->exclusiveMode = 1;
3256     rc = 1;
3257   }else{
3258     rc = pWal->exclusiveMode==0;
3259   }
3260   return rc;
3261 }
3262 
3263 /*
3264 ** Return true if the argument is non-NULL and the WAL module is using
3265 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3266 ** WAL module is using shared-memory, return false.
3267 */
3268 int sqlite3WalHeapMemory(Wal *pWal){
3269   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3270 }
3271 
3272 #ifdef SQLITE_ENABLE_SNAPSHOT
3273 /* Create a snapshot object.  The content of a snapshot is opaque to
3274 ** every other subsystem, so the WAL module can put whatever it needs
3275 ** in the object.
3276 */
3277 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3278   int rc = SQLITE_OK;
3279   WalIndexHdr *pRet;
3280 
3281   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3282 
3283   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3284   if( pRet==0 ){
3285     rc = SQLITE_NOMEM;
3286   }else{
3287     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3288     *ppSnapshot = (sqlite3_snapshot*)pRet;
3289   }
3290 
3291   return rc;
3292 }
3293 
3294 /* Try to open on pSnapshot when the next read-transaction starts
3295 */
3296 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3297   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3298 }
3299 #endif /* SQLITE_ENABLE_SNAPSHOT */
3300 
3301 #ifdef SQLITE_ENABLE_ZIPVFS
3302 /*
3303 ** If the argument is not NULL, it points to a Wal object that holds a
3304 ** read-lock. This function returns the database page-size if it is known,
3305 ** or zero if it is not (or if pWal is NULL).
3306 */
3307 int sqlite3WalFramesize(Wal *pWal){
3308   assert( pWal==0 || pWal->readLock>=0 );
3309   return (pWal ? pWal->szPage : 0);
3310 }
3311 #endif
3312 
3313 #endif /* #ifndef SQLITE_OMIT_WAL */
3314