xref: /sqlite-3.40.0/src/wal.c (revision 7aa3ebee)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P and a maximum frame index M, return the index of the
146 ** last frame in the wal before frame M for page P in the WAL, or return
147 ** NULL if there are no frames for page P in the WAL prior to M.
148 **
149 ** The wal-index consists of a header region, followed by an one or
150 ** more index blocks.
151 **
152 ** The wal-index header contains the total number of frames within the WAL
153 ** in the mxFrame field.
154 **
155 ** Each index block except for the first contains information on
156 ** HASHTABLE_NPAGE frames. The first index block contains information on
157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
159 ** first index block are the same size as all other index blocks in the
160 ** wal-index.
161 **
162 ** Each index block contains two sections, a page-mapping that contains the
163 ** database page number associated with each wal frame, and a hash-table
164 ** that allows readers to query an index block for a specific page number.
165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166 ** for the first index block) 32-bit page numbers. The first entry in the
167 ** first index-block contains the database page number corresponding to the
168 ** first frame in the WAL file. The first entry in the second index block
169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170 ** the log, and so on.
171 **
172 ** The last index block in a wal-index usually contains less than the full
173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174 ** depending on the contents of the WAL file. This does not change the
175 ** allocated size of the page-mapping array - the page-mapping array merely
176 ** contains unused entries.
177 **
178 ** Even without using the hash table, the last frame for page P
179 ** can be found by scanning the page-mapping sections of each index block
180 ** starting with the last index block and moving toward the first, and
181 ** within each index block, starting at the end and moving toward the
182 ** beginning.  The first entry that equals P corresponds to the frame
183 ** holding the content for that page.
184 **
185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187 ** hash table for each page number in the mapping section, so the hash
188 ** table is never more than half full.  The expected number of collisions
189 ** prior to finding a match is 1.  Each entry of the hash table is an
190 ** 1-based index of an entry in the mapping section of the same
191 ** index block.   Let K be the 1-based index of the largest entry in
192 ** the mapping section.  (For index blocks other than the last, K will
193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
195 ** contain a value of 0.
196 **
197 ** To look for page P in the hash table, first compute a hash iKey on
198 ** P as follows:
199 **
200 **      iKey = (P * 383) % HASHTABLE_NSLOT
201 **
202 ** Then start scanning entries of the hash table, starting with iKey
203 ** (wrapping around to the beginning when the end of the hash table is
204 ** reached) until an unused hash slot is found. Let the first unused slot
205 ** be at index iUnused.  (iUnused might be less than iKey if there was
206 ** wrap-around.) Because the hash table is never more than half full,
207 ** the search is guaranteed to eventually hit an unused entry.  Let
208 ** iMax be the value between iKey and iUnused, closest to iUnused,
209 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
210 ** no hash slot such that aHash[i]==p) then page P is not in the
211 ** current index block.  Otherwise the iMax-th mapping entry of the
212 ** current index block corresponds to the last entry that references
213 ** page P.
214 **
215 ** A hash search begins with the last index block and moves toward the
216 ** first index block, looking for entries corresponding to page P.  On
217 ** average, only two or three slots in each index block need to be
218 ** examined in order to either find the last entry for page P, or to
219 ** establish that no such entry exists in the block.  Each index block
220 ** holds over 4000 entries.  So two or three index blocks are sufficient
221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
222 ** comparisons (on average) suffice to either locate a frame in the
223 ** WAL or to establish that the frame does not exist in the WAL.  This
224 ** is much faster than scanning the entire 10MB WAL.
225 **
226 ** Note that entries are added in order of increasing K.  Hence, one
227 ** reader might be using some value K0 and a second reader that started
228 ** at a later time (after additional transactions were added to the WAL
229 ** and to the wal-index) might be using a different value K1, where K1>K0.
230 ** Both readers can use the same hash table and mapping section to get
231 ** the correct result.  There may be entries in the hash table with
232 ** K>K0 but to the first reader, those entries will appear to be unused
233 ** slots in the hash table and so the first reader will get an answer as
234 ** if no values greater than K0 had ever been inserted into the hash table
235 ** in the first place - which is what reader one wants.  Meanwhile, the
236 ** second reader using K1 will see additional values that were inserted
237 ** later, which is exactly what reader two wants.
238 **
239 ** When a rollback occurs, the value of K is decreased. Hash table entries
240 ** that correspond to frames greater than the new K value are removed
241 ** from the hash table at this point.
242 */
243 #ifndef SQLITE_OMIT_WAL
244 
245 #include "wal.h"
246 
247 /*
248 ** Trace output macros
249 */
250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
251 int sqlite3WalTrace = 0;
252 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
253 #else
254 # define WALTRACE(X)
255 #endif
256 
257 /*
258 ** The maximum (and only) versions of the wal and wal-index formats
259 ** that may be interpreted by this version of SQLite.
260 **
261 ** If a client begins recovering a WAL file and finds that (a) the checksum
262 ** values in the wal-header are correct and (b) the version field is not
263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264 **
265 ** Similarly, if a client successfully reads a wal-index header (i.e. the
266 ** checksum test is successful) and finds that the version field is not
267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268 ** returns SQLITE_CANTOPEN.
269 */
270 #define WAL_MAX_VERSION      3007000
271 #define WALINDEX_MAX_VERSION 3007000
272 
273 /*
274 ** Indices of various locking bytes.   WAL_NREADER is the number
275 ** of available reader locks and should be at least 3.  The default
276 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
277 */
278 #define WAL_WRITE_LOCK         0
279 #define WAL_ALL_BUT_WRITE      1
280 #define WAL_CKPT_LOCK          1
281 #define WAL_RECOVER_LOCK       2
282 #define WAL_READ_LOCK(I)       (3+(I))
283 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
284 
285 
286 /* Object declarations */
287 typedef struct WalIndexHdr WalIndexHdr;
288 typedef struct WalIterator WalIterator;
289 typedef struct WalCkptInfo WalCkptInfo;
290 
291 
292 /*
293 ** The following object holds a copy of the wal-index header content.
294 **
295 ** The actual header in the wal-index consists of two copies of this
296 ** object followed by one instance of the WalCkptInfo object.
297 ** For all versions of SQLite through 3.10.0 and probably beyond,
298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
299 ** the total header size is 136 bytes.
300 **
301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
302 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
303 ** added in 3.7.1 when support for 64K pages was added.
304 */
305 struct WalIndexHdr {
306   u32 iVersion;                   /* Wal-index version */
307   u32 unused;                     /* Unused (padding) field */
308   u32 iChange;                    /* Counter incremented each transaction */
309   u8 isInit;                      /* 1 when initialized */
310   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
311   u16 szPage;                     /* Database page size in bytes. 1==64K */
312   u32 mxFrame;                    /* Index of last valid frame in the WAL */
313   u32 nPage;                      /* Size of database in pages */
314   u32 aFrameCksum[2];             /* Checksum of last frame in log */
315   u32 aSalt[2];                   /* Two salt values copied from WAL header */
316   u32 aCksum[2];                  /* Checksum over all prior fields */
317 };
318 
319 /*
320 ** A copy of the following object occurs in the wal-index immediately
321 ** following the second copy of the WalIndexHdr.  This object stores
322 ** information used by checkpoint.
323 **
324 ** nBackfill is the number of frames in the WAL that have been written
325 ** back into the database. (We call the act of moving content from WAL to
326 ** database "backfilling".)  The nBackfill number is never greater than
327 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
330 ** mxFrame back to zero when the WAL is reset.
331 **
332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
333 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
334 ** the nBackfillAttempted is set before any backfilling is done and the
335 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
336 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
338 **
339 ** The aLock[] field is a set of bytes used for locking.  These bytes should
340 ** never be read or written.
341 **
342 ** There is one entry in aReadMark[] for each reader lock.  If a reader
343 ** holds read-lock K, then the value in aReadMark[K] is no greater than
344 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
345 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
346 ** a special case; its value is never used and it exists as a place-holder
347 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
349 ** directly from the database.
350 **
351 ** The value of aReadMark[K] may only be changed by a thread that
352 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
353 ** aReadMark[K] cannot changed while there is a reader is using that mark
354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
355 **
356 ** The checkpointer may only transfer frames from WAL to database where
357 ** the frame numbers are less than or equal to every aReadMark[] that is
358 ** in use (that is, every aReadMark[j] for which there is a corresponding
359 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
360 ** largest value and will increase an unused aReadMark[] to mxFrame if there
361 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
363 ** in the WAL has been backfilled into the database) then new readers
364 ** will choose aReadMark[0] which has value 0 and hence such reader will
365 ** get all their all content directly from the database file and ignore
366 ** the WAL.
367 **
368 ** Writers normally append new frames to the end of the WAL.  However,
369 ** if nBackfill equals mxFrame (meaning that all WAL content has been
370 ** written back into the database) and if no readers are using the WAL
371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
372 ** the writer will first "reset" the WAL back to the beginning and start
373 ** writing new content beginning at frame 1.
374 **
375 ** We assume that 32-bit loads are atomic and so no locks are needed in
376 ** order to read from any aReadMark[] entries.
377 */
378 struct WalCkptInfo {
379   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
380   u32 aReadMark[WAL_NREADER];     /* Reader marks */
381   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
382   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
383   u32 notUsed0;                   /* Available for future enhancements */
384 };
385 #define READMARK_NOT_USED  0xffffffff
386 
387 
388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
390 ** only support mandatory file-locks, we do not read or write data
391 ** from the region of the file on which locks are applied.
392 */
393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
394 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
395 
396 /* Size of header before each frame in wal */
397 #define WAL_FRAME_HDRSIZE 24
398 
399 /* Size of write ahead log header, including checksum. */
400 /* #define WAL_HDRSIZE 24 */
401 #define WAL_HDRSIZE 32
402 
403 /* WAL magic value. Either this value, or the same value with the least
404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
405 ** big-endian format in the first 4 bytes of a WAL file.
406 **
407 ** If the LSB is set, then the checksums for each frame within the WAL
408 ** file are calculated by treating all data as an array of 32-bit
409 ** big-endian words. Otherwise, they are calculated by interpreting
410 ** all data as 32-bit little-endian words.
411 */
412 #define WAL_MAGIC 0x377f0682
413 
414 /*
415 ** Return the offset of frame iFrame in the write-ahead log file,
416 ** assuming a database page size of szPage bytes. The offset returned
417 ** is to the start of the write-ahead log frame-header.
418 */
419 #define walFrameOffset(iFrame, szPage) (                               \
420   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
421 )
422 
423 /*
424 ** An open write-ahead log file is represented by an instance of the
425 ** following object.
426 */
427 struct Wal {
428   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
429   sqlite3_file *pDbFd;       /* File handle for the database file */
430   sqlite3_file *pWalFd;      /* File handle for WAL file */
431   u32 iCallback;             /* Value to pass to log callback (or 0) */
432   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
433   int nWiData;               /* Size of array apWiData */
434   int szFirstBlock;          /* Size of first block written to WAL file */
435   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
436   u32 szPage;                /* Database page size */
437   i16 readLock;              /* Which read lock is being held.  -1 for none */
438   u8 syncFlags;              /* Flags to use to sync header writes */
439   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
440   u8 writeLock;              /* True if in a write transaction */
441   u8 ckptLock;               /* True if holding a checkpoint lock */
442   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
443   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
444   u8 syncHeader;             /* Fsync the WAL header if true */
445   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
446   WalIndexHdr hdr;           /* Wal-index header for current transaction */
447   u32 minFrame;              /* Ignore wal frames before this one */
448   u32 iReCksum;              /* On commit, recalculate checksums from here */
449   const char *zWalName;      /* Name of WAL file */
450   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
451 #ifdef SQLITE_DEBUG
452   u8 lockError;              /* True if a locking error has occurred */
453 #endif
454 #ifdef SQLITE_ENABLE_SNAPSHOT
455   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
456 #endif
457 };
458 
459 /*
460 ** Candidate values for Wal.exclusiveMode.
461 */
462 #define WAL_NORMAL_MODE     0
463 #define WAL_EXCLUSIVE_MODE  1
464 #define WAL_HEAPMEMORY_MODE 2
465 
466 /*
467 ** Possible values for WAL.readOnly
468 */
469 #define WAL_RDWR        0    /* Normal read/write connection */
470 #define WAL_RDONLY      1    /* The WAL file is readonly */
471 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
472 
473 /*
474 ** Each page of the wal-index mapping contains a hash-table made up of
475 ** an array of HASHTABLE_NSLOT elements of the following type.
476 */
477 typedef u16 ht_slot;
478 
479 /*
480 ** This structure is used to implement an iterator that loops through
481 ** all frames in the WAL in database page order. Where two or more frames
482 ** correspond to the same database page, the iterator visits only the
483 ** frame most recently written to the WAL (in other words, the frame with
484 ** the largest index).
485 **
486 ** The internals of this structure are only accessed by:
487 **
488 **   walIteratorInit() - Create a new iterator,
489 **   walIteratorNext() - Step an iterator,
490 **   walIteratorFree() - Free an iterator.
491 **
492 ** This functionality is used by the checkpoint code (see walCheckpoint()).
493 */
494 struct WalIterator {
495   int iPrior;                     /* Last result returned from the iterator */
496   int nSegment;                   /* Number of entries in aSegment[] */
497   struct WalSegment {
498     int iNext;                    /* Next slot in aIndex[] not yet returned */
499     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
500     u32 *aPgno;                   /* Array of page numbers. */
501     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
502     int iZero;                    /* Frame number associated with aPgno[0] */
503   } aSegment[1];                  /* One for every 32KB page in the wal-index */
504 };
505 
506 /*
507 ** Define the parameters of the hash tables in the wal-index file. There
508 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
509 ** wal-index.
510 **
511 ** Changing any of these constants will alter the wal-index format and
512 ** create incompatibilities.
513 */
514 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
515 #define HASHTABLE_HASH_1     383                  /* Should be prime */
516 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
517 
518 /*
519 ** The block of page numbers associated with the first hash-table in a
520 ** wal-index is smaller than usual. This is so that there is a complete
521 ** hash-table on each aligned 32KB page of the wal-index.
522 */
523 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
524 
525 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
526 #define WALINDEX_PGSZ   (                                         \
527     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
528 )
529 
530 /*
531 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
532 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
533 ** numbered from zero.
534 **
535 ** If this call is successful, *ppPage is set to point to the wal-index
536 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
537 ** then an SQLite error code is returned and *ppPage is set to 0.
538 */
539 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
540   int rc = SQLITE_OK;
541 
542   /* Enlarge the pWal->apWiData[] array if required */
543   if( pWal->nWiData<=iPage ){
544     int nByte = sizeof(u32*)*(iPage+1);
545     volatile u32 **apNew;
546     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
547     if( !apNew ){
548       *ppPage = 0;
549       return SQLITE_NOMEM_BKPT;
550     }
551     memset((void*)&apNew[pWal->nWiData], 0,
552            sizeof(u32*)*(iPage+1-pWal->nWiData));
553     pWal->apWiData = apNew;
554     pWal->nWiData = iPage+1;
555   }
556 
557   /* Request a pointer to the required page from the VFS */
558   if( pWal->apWiData[iPage]==0 ){
559     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
560       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
561       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
562     }else{
563       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
564           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
565       );
566       if( rc==SQLITE_READONLY ){
567         pWal->readOnly |= WAL_SHM_RDONLY;
568         rc = SQLITE_OK;
569       }
570     }
571   }
572 
573   *ppPage = pWal->apWiData[iPage];
574   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
575   return rc;
576 }
577 
578 /*
579 ** Return a pointer to the WalCkptInfo structure in the wal-index.
580 */
581 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
582   assert( pWal->nWiData>0 && pWal->apWiData[0] );
583   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
584 }
585 
586 /*
587 ** Return a pointer to the WalIndexHdr structure in the wal-index.
588 */
589 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
590   assert( pWal->nWiData>0 && pWal->apWiData[0] );
591   return (volatile WalIndexHdr*)pWal->apWiData[0];
592 }
593 
594 /*
595 ** The argument to this macro must be of type u32. On a little-endian
596 ** architecture, it returns the u32 value that results from interpreting
597 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
598 ** returns the value that would be produced by interpreting the 4 bytes
599 ** of the input value as a little-endian integer.
600 */
601 #define BYTESWAP32(x) ( \
602     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
603   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
604 )
605 
606 /*
607 ** Generate or extend an 8 byte checksum based on the data in
608 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
609 ** initial values of 0 and 0 if aIn==NULL).
610 **
611 ** The checksum is written back into aOut[] before returning.
612 **
613 ** nByte must be a positive multiple of 8.
614 */
615 static void walChecksumBytes(
616   int nativeCksum, /* True for native byte-order, false for non-native */
617   u8 *a,           /* Content to be checksummed */
618   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
619   const u32 *aIn,  /* Initial checksum value input */
620   u32 *aOut        /* OUT: Final checksum value output */
621 ){
622   u32 s1, s2;
623   u32 *aData = (u32 *)a;
624   u32 *aEnd = (u32 *)&a[nByte];
625 
626   if( aIn ){
627     s1 = aIn[0];
628     s2 = aIn[1];
629   }else{
630     s1 = s2 = 0;
631   }
632 
633   assert( nByte>=8 );
634   assert( (nByte&0x00000007)==0 );
635 
636   if( nativeCksum ){
637     do {
638       s1 += *aData++ + s2;
639       s2 += *aData++ + s1;
640     }while( aData<aEnd );
641   }else{
642     do {
643       s1 += BYTESWAP32(aData[0]) + s2;
644       s2 += BYTESWAP32(aData[1]) + s1;
645       aData += 2;
646     }while( aData<aEnd );
647   }
648 
649   aOut[0] = s1;
650   aOut[1] = s2;
651 }
652 
653 static void walShmBarrier(Wal *pWal){
654   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
655     sqlite3OsShmBarrier(pWal->pDbFd);
656   }
657 }
658 
659 /*
660 ** Write the header information in pWal->hdr into the wal-index.
661 **
662 ** The checksum on pWal->hdr is updated before it is written.
663 */
664 static void walIndexWriteHdr(Wal *pWal){
665   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
666   const int nCksum = offsetof(WalIndexHdr, aCksum);
667 
668   assert( pWal->writeLock );
669   pWal->hdr.isInit = 1;
670   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
671   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
672   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
673   walShmBarrier(pWal);
674   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
675 }
676 
677 /*
678 ** This function encodes a single frame header and writes it to a buffer
679 ** supplied by the caller. A frame-header is made up of a series of
680 ** 4-byte big-endian integers, as follows:
681 **
682 **     0: Page number.
683 **     4: For commit records, the size of the database image in pages
684 **        after the commit. For all other records, zero.
685 **     8: Salt-1 (copied from the wal-header)
686 **    12: Salt-2 (copied from the wal-header)
687 **    16: Checksum-1.
688 **    20: Checksum-2.
689 */
690 static void walEncodeFrame(
691   Wal *pWal,                      /* The write-ahead log */
692   u32 iPage,                      /* Database page number for frame */
693   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
694   u8 *aData,                      /* Pointer to page data */
695   u8 *aFrame                      /* OUT: Write encoded frame here */
696 ){
697   int nativeCksum;                /* True for native byte-order checksums */
698   u32 *aCksum = pWal->hdr.aFrameCksum;
699   assert( WAL_FRAME_HDRSIZE==24 );
700   sqlite3Put4byte(&aFrame[0], iPage);
701   sqlite3Put4byte(&aFrame[4], nTruncate);
702   if( pWal->iReCksum==0 ){
703     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
704 
705     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
706     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
707     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
708 
709     sqlite3Put4byte(&aFrame[16], aCksum[0]);
710     sqlite3Put4byte(&aFrame[20], aCksum[1]);
711   }else{
712     memset(&aFrame[8], 0, 16);
713   }
714 }
715 
716 /*
717 ** Check to see if the frame with header in aFrame[] and content
718 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
719 ** *pnTruncate and return true.  Return if the frame is not valid.
720 */
721 static int walDecodeFrame(
722   Wal *pWal,                      /* The write-ahead log */
723   u32 *piPage,                    /* OUT: Database page number for frame */
724   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
725   u8 *aData,                      /* Pointer to page data (for checksum) */
726   u8 *aFrame                      /* Frame data */
727 ){
728   int nativeCksum;                /* True for native byte-order checksums */
729   u32 *aCksum = pWal->hdr.aFrameCksum;
730   u32 pgno;                       /* Page number of the frame */
731   assert( WAL_FRAME_HDRSIZE==24 );
732 
733   /* A frame is only valid if the salt values in the frame-header
734   ** match the salt values in the wal-header.
735   */
736   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
737     return 0;
738   }
739 
740   /* A frame is only valid if the page number is creater than zero.
741   */
742   pgno = sqlite3Get4byte(&aFrame[0]);
743   if( pgno==0 ){
744     return 0;
745   }
746 
747   /* A frame is only valid if a checksum of the WAL header,
748   ** all prior frams, the first 16 bytes of this frame-header,
749   ** and the frame-data matches the checksum in the last 8
750   ** bytes of this frame-header.
751   */
752   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
753   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
754   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
755   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
756    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
757   ){
758     /* Checksum failed. */
759     return 0;
760   }
761 
762   /* If we reach this point, the frame is valid.  Return the page number
763   ** and the new database size.
764   */
765   *piPage = pgno;
766   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
767   return 1;
768 }
769 
770 
771 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
772 /*
773 ** Names of locks.  This routine is used to provide debugging output and is not
774 ** a part of an ordinary build.
775 */
776 static const char *walLockName(int lockIdx){
777   if( lockIdx==WAL_WRITE_LOCK ){
778     return "WRITE-LOCK";
779   }else if( lockIdx==WAL_CKPT_LOCK ){
780     return "CKPT-LOCK";
781   }else if( lockIdx==WAL_RECOVER_LOCK ){
782     return "RECOVER-LOCK";
783   }else{
784     static char zName[15];
785     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
786                      lockIdx-WAL_READ_LOCK(0));
787     return zName;
788   }
789 }
790 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
791 
792 
793 /*
794 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
795 ** A lock cannot be moved directly between shared and exclusive - it must go
796 ** through the unlocked state first.
797 **
798 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
799 */
800 static int walLockShared(Wal *pWal, int lockIdx){
801   int rc;
802   if( pWal->exclusiveMode ) return SQLITE_OK;
803   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
804                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
805   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
806             walLockName(lockIdx), rc ? "failed" : "ok"));
807   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
808   return rc;
809 }
810 static void walUnlockShared(Wal *pWal, int lockIdx){
811   if( pWal->exclusiveMode ) return;
812   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
813                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
814   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
815 }
816 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
817   int rc;
818   if( pWal->exclusiveMode ) return SQLITE_OK;
819   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
820                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
821   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
822             walLockName(lockIdx), n, rc ? "failed" : "ok"));
823   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
824   return rc;
825 }
826 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
827   if( pWal->exclusiveMode ) return;
828   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
829                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
830   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
831              walLockName(lockIdx), n));
832 }
833 
834 /*
835 ** Compute a hash on a page number.  The resulting hash value must land
836 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
837 ** the hash to the next value in the event of a collision.
838 */
839 static int walHash(u32 iPage){
840   assert( iPage>0 );
841   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
842   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
843 }
844 static int walNextHash(int iPriorHash){
845   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
846 }
847 
848 /*
849 ** Return pointers to the hash table and page number array stored on
850 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
851 ** numbered starting from 0.
852 **
853 ** Set output variable *paHash to point to the start of the hash table
854 ** in the wal-index file. Set *piZero to one less than the frame
855 ** number of the first frame indexed by this hash table. If a
856 ** slot in the hash table is set to N, it refers to frame number
857 ** (*piZero+N) in the log.
858 **
859 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
860 ** first frame indexed by the hash table, frame (*piZero+1).
861 */
862 static int walHashGet(
863   Wal *pWal,                      /* WAL handle */
864   int iHash,                      /* Find the iHash'th table */
865   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
866   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
867   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
868 ){
869   int rc;                         /* Return code */
870   volatile u32 *aPgno;
871 
872   rc = walIndexPage(pWal, iHash, &aPgno);
873   assert( rc==SQLITE_OK || iHash>0 );
874 
875   if( rc==SQLITE_OK ){
876     u32 iZero;
877     volatile ht_slot *aHash;
878 
879     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
880     if( iHash==0 ){
881       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
882       iZero = 0;
883     }else{
884       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
885     }
886 
887     *paPgno = &aPgno[-1];
888     *paHash = aHash;
889     *piZero = iZero;
890   }
891   return rc;
892 }
893 
894 /*
895 ** Return the number of the wal-index page that contains the hash-table
896 ** and page-number array that contain entries corresponding to WAL frame
897 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
898 ** are numbered starting from 0.
899 */
900 static int walFramePage(u32 iFrame){
901   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
902   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
903        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
904        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
905        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
906        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
907   );
908   return iHash;
909 }
910 
911 /*
912 ** Return the page number associated with frame iFrame in this WAL.
913 */
914 static u32 walFramePgno(Wal *pWal, u32 iFrame){
915   int iHash = walFramePage(iFrame);
916   if( iHash==0 ){
917     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
918   }
919   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
920 }
921 
922 /*
923 ** Remove entries from the hash table that point to WAL slots greater
924 ** than pWal->hdr.mxFrame.
925 **
926 ** This function is called whenever pWal->hdr.mxFrame is decreased due
927 ** to a rollback or savepoint.
928 **
929 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
930 ** updated.  Any later hash tables will be automatically cleared when
931 ** pWal->hdr.mxFrame advances to the point where those hash tables are
932 ** actually needed.
933 */
934 static void walCleanupHash(Wal *pWal){
935   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
936   volatile u32 *aPgno = 0;        /* Page number array for hash table */
937   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
938   int iLimit = 0;                 /* Zero values greater than this */
939   int nByte;                      /* Number of bytes to zero in aPgno[] */
940   int i;                          /* Used to iterate through aHash[] */
941 
942   assert( pWal->writeLock );
943   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
944   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
945   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
946 
947   if( pWal->hdr.mxFrame==0 ) return;
948 
949   /* Obtain pointers to the hash-table and page-number array containing
950   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
951   ** that the page said hash-table and array reside on is already mapped.
952   */
953   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
954   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
955   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
956 
957   /* Zero all hash-table entries that correspond to frame numbers greater
958   ** than pWal->hdr.mxFrame.
959   */
960   iLimit = pWal->hdr.mxFrame - iZero;
961   assert( iLimit>0 );
962   for(i=0; i<HASHTABLE_NSLOT; i++){
963     if( aHash[i]>iLimit ){
964       aHash[i] = 0;
965     }
966   }
967 
968   /* Zero the entries in the aPgno array that correspond to frames with
969   ** frame numbers greater than pWal->hdr.mxFrame.
970   */
971   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
972   memset((void *)&aPgno[iLimit+1], 0, nByte);
973 
974 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
975   /* Verify that the every entry in the mapping region is still reachable
976   ** via the hash table even after the cleanup.
977   */
978   if( iLimit ){
979     int j;           /* Loop counter */
980     int iKey;        /* Hash key */
981     for(j=1; j<=iLimit; j++){
982       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
983         if( aHash[iKey]==j ) break;
984       }
985       assert( aHash[iKey]==j );
986     }
987   }
988 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
989 }
990 
991 
992 /*
993 ** Set an entry in the wal-index that will map database page number
994 ** pPage into WAL frame iFrame.
995 */
996 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
997   int rc;                         /* Return code */
998   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
999   volatile u32 *aPgno = 0;        /* Page number array */
1000   volatile ht_slot *aHash = 0;    /* Hash table */
1001 
1002   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1003 
1004   /* Assuming the wal-index file was successfully mapped, populate the
1005   ** page number array and hash table entry.
1006   */
1007   if( rc==SQLITE_OK ){
1008     int iKey;                     /* Hash table key */
1009     int idx;                      /* Value to write to hash-table slot */
1010     int nCollide;                 /* Number of hash collisions */
1011 
1012     idx = iFrame - iZero;
1013     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1014 
1015     /* If this is the first entry to be added to this hash-table, zero the
1016     ** entire hash table and aPgno[] array before proceeding.
1017     */
1018     if( idx==1 ){
1019       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1020       memset((void*)&aPgno[1], 0, nByte);
1021     }
1022 
1023     /* If the entry in aPgno[] is already set, then the previous writer
1024     ** must have exited unexpectedly in the middle of a transaction (after
1025     ** writing one or more dirty pages to the WAL to free up memory).
1026     ** Remove the remnants of that writers uncommitted transaction from
1027     ** the hash-table before writing any new entries.
1028     */
1029     if( aPgno[idx] ){
1030       walCleanupHash(pWal);
1031       assert( !aPgno[idx] );
1032     }
1033 
1034     /* Write the aPgno[] array entry and the hash-table slot. */
1035     nCollide = idx;
1036     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1037       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1038     }
1039     aPgno[idx] = iPage;
1040     aHash[iKey] = (ht_slot)idx;
1041 
1042 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1043     /* Verify that the number of entries in the hash table exactly equals
1044     ** the number of entries in the mapping region.
1045     */
1046     {
1047       int i;           /* Loop counter */
1048       int nEntry = 0;  /* Number of entries in the hash table */
1049       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1050       assert( nEntry==idx );
1051     }
1052 
1053     /* Verify that the every entry in the mapping region is reachable
1054     ** via the hash table.  This turns out to be a really, really expensive
1055     ** thing to check, so only do this occasionally - not on every
1056     ** iteration.
1057     */
1058     if( (idx&0x3ff)==0 ){
1059       int i;           /* Loop counter */
1060       for(i=1; i<=idx; i++){
1061         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1062           if( aHash[iKey]==i ) break;
1063         }
1064         assert( aHash[iKey]==i );
1065       }
1066     }
1067 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1068   }
1069 
1070 
1071   return rc;
1072 }
1073 
1074 
1075 /*
1076 ** Recover the wal-index by reading the write-ahead log file.
1077 **
1078 ** This routine first tries to establish an exclusive lock on the
1079 ** wal-index to prevent other threads/processes from doing anything
1080 ** with the WAL or wal-index while recovery is running.  The
1081 ** WAL_RECOVER_LOCK is also held so that other threads will know
1082 ** that this thread is running recovery.  If unable to establish
1083 ** the necessary locks, this routine returns SQLITE_BUSY.
1084 */
1085 static int walIndexRecover(Wal *pWal){
1086   int rc;                         /* Return Code */
1087   i64 nSize;                      /* Size of log file */
1088   u32 aFrameCksum[2] = {0, 0};
1089   int iLock;                      /* Lock offset to lock for checkpoint */
1090   int nLock;                      /* Number of locks to hold */
1091 
1092   /* Obtain an exclusive lock on all byte in the locking range not already
1093   ** locked by the caller. The caller is guaranteed to have locked the
1094   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1095   ** If successful, the same bytes that are locked here are unlocked before
1096   ** this function returns.
1097   */
1098   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1099   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1100   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1101   assert( pWal->writeLock );
1102   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1103   nLock = SQLITE_SHM_NLOCK - iLock;
1104   rc = walLockExclusive(pWal, iLock, nLock);
1105   if( rc ){
1106     return rc;
1107   }
1108   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1109 
1110   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1111 
1112   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1113   if( rc!=SQLITE_OK ){
1114     goto recovery_error;
1115   }
1116 
1117   if( nSize>WAL_HDRSIZE ){
1118     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1119     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1120     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1121     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1122     int iFrame;                   /* Index of last frame read */
1123     i64 iOffset;                  /* Next offset to read from log file */
1124     int szPage;                   /* Page size according to the log */
1125     u32 magic;                    /* Magic value read from WAL header */
1126     u32 version;                  /* Magic value read from WAL header */
1127     int isValid;                  /* True if this frame is valid */
1128 
1129     /* Read in the WAL header. */
1130     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1131     if( rc!=SQLITE_OK ){
1132       goto recovery_error;
1133     }
1134 
1135     /* If the database page size is not a power of two, or is greater than
1136     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1137     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1138     ** WAL file.
1139     */
1140     magic = sqlite3Get4byte(&aBuf[0]);
1141     szPage = sqlite3Get4byte(&aBuf[8]);
1142     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1143      || szPage&(szPage-1)
1144      || szPage>SQLITE_MAX_PAGE_SIZE
1145      || szPage<512
1146     ){
1147       goto finished;
1148     }
1149     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1150     pWal->szPage = szPage;
1151     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1152     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1153 
1154     /* Verify that the WAL header checksum is correct */
1155     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1156         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1157     );
1158     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1159      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1160     ){
1161       goto finished;
1162     }
1163 
1164     /* Verify that the version number on the WAL format is one that
1165     ** are able to understand */
1166     version = sqlite3Get4byte(&aBuf[4]);
1167     if( version!=WAL_MAX_VERSION ){
1168       rc = SQLITE_CANTOPEN_BKPT;
1169       goto finished;
1170     }
1171 
1172     /* Malloc a buffer to read frames into. */
1173     szFrame = szPage + WAL_FRAME_HDRSIZE;
1174     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1175     if( !aFrame ){
1176       rc = SQLITE_NOMEM_BKPT;
1177       goto recovery_error;
1178     }
1179     aData = &aFrame[WAL_FRAME_HDRSIZE];
1180 
1181     /* Read all frames from the log file. */
1182     iFrame = 0;
1183     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1184       u32 pgno;                   /* Database page number for frame */
1185       u32 nTruncate;              /* dbsize field from frame header */
1186 
1187       /* Read and decode the next log frame. */
1188       iFrame++;
1189       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1190       if( rc!=SQLITE_OK ) break;
1191       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1192       if( !isValid ) break;
1193       rc = walIndexAppend(pWal, iFrame, pgno);
1194       if( rc!=SQLITE_OK ) break;
1195 
1196       /* If nTruncate is non-zero, this is a commit record. */
1197       if( nTruncate ){
1198         pWal->hdr.mxFrame = iFrame;
1199         pWal->hdr.nPage = nTruncate;
1200         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1201         testcase( szPage<=32768 );
1202         testcase( szPage>=65536 );
1203         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1204         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1205       }
1206     }
1207 
1208     sqlite3_free(aFrame);
1209   }
1210 
1211 finished:
1212   if( rc==SQLITE_OK ){
1213     volatile WalCkptInfo *pInfo;
1214     int i;
1215     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1216     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1217     walIndexWriteHdr(pWal);
1218 
1219     /* Reset the checkpoint-header. This is safe because this thread is
1220     ** currently holding locks that exclude all other readers, writers and
1221     ** checkpointers.
1222     */
1223     pInfo = walCkptInfo(pWal);
1224     pInfo->nBackfill = 0;
1225     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1226     pInfo->aReadMark[0] = 0;
1227     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1228     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1229 
1230     /* If more than one frame was recovered from the log file, report an
1231     ** event via sqlite3_log(). This is to help with identifying performance
1232     ** problems caused by applications routinely shutting down without
1233     ** checkpointing the log file.
1234     */
1235     if( pWal->hdr.nPage ){
1236       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1237           "recovered %d frames from WAL file %s",
1238           pWal->hdr.mxFrame, pWal->zWalName
1239       );
1240     }
1241   }
1242 
1243 recovery_error:
1244   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1245   walUnlockExclusive(pWal, iLock, nLock);
1246   return rc;
1247 }
1248 
1249 /*
1250 ** Close an open wal-index.
1251 */
1252 static void walIndexClose(Wal *pWal, int isDelete){
1253   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1254     int i;
1255     for(i=0; i<pWal->nWiData; i++){
1256       sqlite3_free((void *)pWal->apWiData[i]);
1257       pWal->apWiData[i] = 0;
1258     }
1259   }else{
1260     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1261   }
1262 }
1263 
1264 /*
1265 ** Open a connection to the WAL file zWalName. The database file must
1266 ** already be opened on connection pDbFd. The buffer that zWalName points
1267 ** to must remain valid for the lifetime of the returned Wal* handle.
1268 **
1269 ** A SHARED lock should be held on the database file when this function
1270 ** is called. The purpose of this SHARED lock is to prevent any other
1271 ** client from unlinking the WAL or wal-index file. If another process
1272 ** were to do this just after this client opened one of these files, the
1273 ** system would be badly broken.
1274 **
1275 ** If the log file is successfully opened, SQLITE_OK is returned and
1276 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1277 ** an SQLite error code is returned and *ppWal is left unmodified.
1278 */
1279 int sqlite3WalOpen(
1280   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1281   sqlite3_file *pDbFd,            /* The open database file */
1282   const char *zWalName,           /* Name of the WAL file */
1283   int bNoShm,                     /* True to run in heap-memory mode */
1284   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1285   Wal **ppWal                     /* OUT: Allocated Wal handle */
1286 ){
1287   int rc;                         /* Return Code */
1288   Wal *pRet;                      /* Object to allocate and return */
1289   int flags;                      /* Flags passed to OsOpen() */
1290 
1291   assert( zWalName && zWalName[0] );
1292   assert( pDbFd );
1293 
1294   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1295   ** this source file.  Verify that the #defines of the locking byte offsets
1296   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1297   ** For that matter, if the lock offset ever changes from its initial design
1298   ** value of 120, we need to know that so there is an assert() to check it.
1299   */
1300   assert( 120==WALINDEX_LOCK_OFFSET );
1301   assert( 136==WALINDEX_HDR_SIZE );
1302 #ifdef WIN_SHM_BASE
1303   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1304 #endif
1305 #ifdef UNIX_SHM_BASE
1306   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1307 #endif
1308 
1309 
1310   /* Allocate an instance of struct Wal to return. */
1311   *ppWal = 0;
1312   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1313   if( !pRet ){
1314     return SQLITE_NOMEM_BKPT;
1315   }
1316 
1317   pRet->pVfs = pVfs;
1318   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1319   pRet->pDbFd = pDbFd;
1320   pRet->readLock = -1;
1321   pRet->mxWalSize = mxWalSize;
1322   pRet->zWalName = zWalName;
1323   pRet->syncHeader = 1;
1324   pRet->padToSectorBoundary = 1;
1325   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1326 
1327   /* Open file handle on the write-ahead log file. */
1328   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1329   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1330   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1331     pRet->readOnly = WAL_RDONLY;
1332   }
1333 
1334   if( rc!=SQLITE_OK ){
1335     walIndexClose(pRet, 0);
1336     sqlite3OsClose(pRet->pWalFd);
1337     sqlite3_free(pRet);
1338   }else{
1339     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1340     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1341     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1342       pRet->padToSectorBoundary = 0;
1343     }
1344     *ppWal = pRet;
1345     WALTRACE(("WAL%d: opened\n", pRet));
1346   }
1347   return rc;
1348 }
1349 
1350 /*
1351 ** Change the size to which the WAL file is trucated on each reset.
1352 */
1353 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1354   if( pWal ) pWal->mxWalSize = iLimit;
1355 }
1356 
1357 /*
1358 ** Find the smallest page number out of all pages held in the WAL that
1359 ** has not been returned by any prior invocation of this method on the
1360 ** same WalIterator object.   Write into *piFrame the frame index where
1361 ** that page was last written into the WAL.  Write into *piPage the page
1362 ** number.
1363 **
1364 ** Return 0 on success.  If there are no pages in the WAL with a page
1365 ** number larger than *piPage, then return 1.
1366 */
1367 static int walIteratorNext(
1368   WalIterator *p,               /* Iterator */
1369   u32 *piPage,                  /* OUT: The page number of the next page */
1370   u32 *piFrame                  /* OUT: Wal frame index of next page */
1371 ){
1372   u32 iMin;                     /* Result pgno must be greater than iMin */
1373   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1374   int i;                        /* For looping through segments */
1375 
1376   iMin = p->iPrior;
1377   assert( iMin<0xffffffff );
1378   for(i=p->nSegment-1; i>=0; i--){
1379     struct WalSegment *pSegment = &p->aSegment[i];
1380     while( pSegment->iNext<pSegment->nEntry ){
1381       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1382       if( iPg>iMin ){
1383         if( iPg<iRet ){
1384           iRet = iPg;
1385           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1386         }
1387         break;
1388       }
1389       pSegment->iNext++;
1390     }
1391   }
1392 
1393   *piPage = p->iPrior = iRet;
1394   return (iRet==0xFFFFFFFF);
1395 }
1396 
1397 /*
1398 ** This function merges two sorted lists into a single sorted list.
1399 **
1400 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1401 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1402 ** is guaranteed for all J<K:
1403 **
1404 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1405 **        aContent[aRight[J]] < aContent[aRight[K]]
1406 **
1407 ** This routine overwrites aRight[] with a new (probably longer) sequence
1408 ** of indices such that the aRight[] contains every index that appears in
1409 ** either aLeft[] or the old aRight[] and such that the second condition
1410 ** above is still met.
1411 **
1412 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1413 ** aContent[aRight[X]] values will be unique too.  But there might be
1414 ** one or more combinations of X and Y such that
1415 **
1416 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1417 **
1418 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1419 */
1420 static void walMerge(
1421   const u32 *aContent,            /* Pages in wal - keys for the sort */
1422   ht_slot *aLeft,                 /* IN: Left hand input list */
1423   int nLeft,                      /* IN: Elements in array *paLeft */
1424   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1425   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1426   ht_slot *aTmp                   /* Temporary buffer */
1427 ){
1428   int iLeft = 0;                  /* Current index in aLeft */
1429   int iRight = 0;                 /* Current index in aRight */
1430   int iOut = 0;                   /* Current index in output buffer */
1431   int nRight = *pnRight;
1432   ht_slot *aRight = *paRight;
1433 
1434   assert( nLeft>0 && nRight>0 );
1435   while( iRight<nRight || iLeft<nLeft ){
1436     ht_slot logpage;
1437     Pgno dbpage;
1438 
1439     if( (iLeft<nLeft)
1440      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1441     ){
1442       logpage = aLeft[iLeft++];
1443     }else{
1444       logpage = aRight[iRight++];
1445     }
1446     dbpage = aContent[logpage];
1447 
1448     aTmp[iOut++] = logpage;
1449     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1450 
1451     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1452     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1453   }
1454 
1455   *paRight = aLeft;
1456   *pnRight = iOut;
1457   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1458 }
1459 
1460 /*
1461 ** Sort the elements in list aList using aContent[] as the sort key.
1462 ** Remove elements with duplicate keys, preferring to keep the
1463 ** larger aList[] values.
1464 **
1465 ** The aList[] entries are indices into aContent[].  The values in
1466 ** aList[] are to be sorted so that for all J<K:
1467 **
1468 **      aContent[aList[J]] < aContent[aList[K]]
1469 **
1470 ** For any X and Y such that
1471 **
1472 **      aContent[aList[X]] == aContent[aList[Y]]
1473 **
1474 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1475 ** the smaller.
1476 */
1477 static void walMergesort(
1478   const u32 *aContent,            /* Pages in wal */
1479   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1480   ht_slot *aList,                 /* IN/OUT: List to sort */
1481   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1482 ){
1483   struct Sublist {
1484     int nList;                    /* Number of elements in aList */
1485     ht_slot *aList;               /* Pointer to sub-list content */
1486   };
1487 
1488   const int nList = *pnList;      /* Size of input list */
1489   int nMerge = 0;                 /* Number of elements in list aMerge */
1490   ht_slot *aMerge = 0;            /* List to be merged */
1491   int iList;                      /* Index into input list */
1492   u32 iSub = 0;                   /* Index into aSub array */
1493   struct Sublist aSub[13];        /* Array of sub-lists */
1494 
1495   memset(aSub, 0, sizeof(aSub));
1496   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1497   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1498 
1499   for(iList=0; iList<nList; iList++){
1500     nMerge = 1;
1501     aMerge = &aList[iList];
1502     for(iSub=0; iList & (1<<iSub); iSub++){
1503       struct Sublist *p;
1504       assert( iSub<ArraySize(aSub) );
1505       p = &aSub[iSub];
1506       assert( p->aList && p->nList<=(1<<iSub) );
1507       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1508       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1509     }
1510     aSub[iSub].aList = aMerge;
1511     aSub[iSub].nList = nMerge;
1512   }
1513 
1514   for(iSub++; iSub<ArraySize(aSub); iSub++){
1515     if( nList & (1<<iSub) ){
1516       struct Sublist *p;
1517       assert( iSub<ArraySize(aSub) );
1518       p = &aSub[iSub];
1519       assert( p->nList<=(1<<iSub) );
1520       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1521       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1522     }
1523   }
1524   assert( aMerge==aList );
1525   *pnList = nMerge;
1526 
1527 #ifdef SQLITE_DEBUG
1528   {
1529     int i;
1530     for(i=1; i<*pnList; i++){
1531       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1532     }
1533   }
1534 #endif
1535 }
1536 
1537 /*
1538 ** Free an iterator allocated by walIteratorInit().
1539 */
1540 static void walIteratorFree(WalIterator *p){
1541   sqlite3_free(p);
1542 }
1543 
1544 /*
1545 ** Construct a WalInterator object that can be used to loop over all
1546 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1547 ** lock.
1548 **
1549 ** On success, make *pp point to the newly allocated WalInterator object
1550 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1551 ** returns an error, the value of *pp is undefined.
1552 **
1553 ** The calling routine should invoke walIteratorFree() to destroy the
1554 ** WalIterator object when it has finished with it.
1555 */
1556 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1557   WalIterator *p;                 /* Return value */
1558   int nSegment;                   /* Number of segments to merge */
1559   u32 iLast;                      /* Last frame in log */
1560   int nByte;                      /* Number of bytes to allocate */
1561   int i;                          /* Iterator variable */
1562   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1563   int rc = SQLITE_OK;             /* Return Code */
1564 
1565   /* This routine only runs while holding the checkpoint lock. And
1566   ** it only runs if there is actually content in the log (mxFrame>0).
1567   */
1568   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1569   iLast = pWal->hdr.mxFrame;
1570 
1571   /* Allocate space for the WalIterator object. */
1572   nSegment = walFramePage(iLast) + 1;
1573   nByte = sizeof(WalIterator)
1574         + (nSegment-1)*sizeof(struct WalSegment)
1575         + iLast*sizeof(ht_slot);
1576   p = (WalIterator *)sqlite3_malloc64(nByte);
1577   if( !p ){
1578     return SQLITE_NOMEM_BKPT;
1579   }
1580   memset(p, 0, nByte);
1581   p->nSegment = nSegment;
1582 
1583   /* Allocate temporary space used by the merge-sort routine. This block
1584   ** of memory will be freed before this function returns.
1585   */
1586   aTmp = (ht_slot *)sqlite3_malloc64(
1587       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1588   );
1589   if( !aTmp ){
1590     rc = SQLITE_NOMEM_BKPT;
1591   }
1592 
1593   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1594     volatile ht_slot *aHash;
1595     u32 iZero;
1596     volatile u32 *aPgno;
1597 
1598     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1599     if( rc==SQLITE_OK ){
1600       int j;                      /* Counter variable */
1601       int nEntry;                 /* Number of entries in this segment */
1602       ht_slot *aIndex;            /* Sorted index for this segment */
1603 
1604       aPgno++;
1605       if( (i+1)==nSegment ){
1606         nEntry = (int)(iLast - iZero);
1607       }else{
1608         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1609       }
1610       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1611       iZero++;
1612 
1613       for(j=0; j<nEntry; j++){
1614         aIndex[j] = (ht_slot)j;
1615       }
1616       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1617       p->aSegment[i].iZero = iZero;
1618       p->aSegment[i].nEntry = nEntry;
1619       p->aSegment[i].aIndex = aIndex;
1620       p->aSegment[i].aPgno = (u32 *)aPgno;
1621     }
1622   }
1623   sqlite3_free(aTmp);
1624 
1625   if( rc!=SQLITE_OK ){
1626     walIteratorFree(p);
1627   }
1628   *pp = p;
1629   return rc;
1630 }
1631 
1632 /*
1633 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1634 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1635 ** busy-handler function. Invoke it and retry the lock until either the
1636 ** lock is successfully obtained or the busy-handler returns 0.
1637 */
1638 static int walBusyLock(
1639   Wal *pWal,                      /* WAL connection */
1640   int (*xBusy)(void*),            /* Function to call when busy */
1641   void *pBusyArg,                 /* Context argument for xBusyHandler */
1642   int lockIdx,                    /* Offset of first byte to lock */
1643   int n                           /* Number of bytes to lock */
1644 ){
1645   int rc;
1646   do {
1647     rc = walLockExclusive(pWal, lockIdx, n);
1648   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1649   return rc;
1650 }
1651 
1652 /*
1653 ** The cache of the wal-index header must be valid to call this function.
1654 ** Return the page-size in bytes used by the database.
1655 */
1656 static int walPagesize(Wal *pWal){
1657   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1658 }
1659 
1660 /*
1661 ** The following is guaranteed when this function is called:
1662 **
1663 **   a) the WRITER lock is held,
1664 **   b) the entire log file has been checkpointed, and
1665 **   c) any existing readers are reading exclusively from the database
1666 **      file - there are no readers that may attempt to read a frame from
1667 **      the log file.
1668 **
1669 ** This function updates the shared-memory structures so that the next
1670 ** client to write to the database (which may be this one) does so by
1671 ** writing frames into the start of the log file.
1672 **
1673 ** The value of parameter salt1 is used as the aSalt[1] value in the
1674 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1675 ** one obtained from sqlite3_randomness()).
1676 */
1677 static void walRestartHdr(Wal *pWal, u32 salt1){
1678   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1679   int i;                          /* Loop counter */
1680   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1681   pWal->nCkpt++;
1682   pWal->hdr.mxFrame = 0;
1683   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1684   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1685   walIndexWriteHdr(pWal);
1686   pInfo->nBackfill = 0;
1687   pInfo->nBackfillAttempted = 0;
1688   pInfo->aReadMark[1] = 0;
1689   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1690   assert( pInfo->aReadMark[0]==0 );
1691 }
1692 
1693 /*
1694 ** Copy as much content as we can from the WAL back into the database file
1695 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1696 **
1697 ** The amount of information copies from WAL to database might be limited
1698 ** by active readers.  This routine will never overwrite a database page
1699 ** that a concurrent reader might be using.
1700 **
1701 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1702 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1703 ** checkpoints are always run by a background thread or background
1704 ** process, foreground threads will never block on a lengthy fsync call.
1705 **
1706 ** Fsync is called on the WAL before writing content out of the WAL and
1707 ** into the database.  This ensures that if the new content is persistent
1708 ** in the WAL and can be recovered following a power-loss or hard reset.
1709 **
1710 ** Fsync is also called on the database file if (and only if) the entire
1711 ** WAL content is copied into the database file.  This second fsync makes
1712 ** it safe to delete the WAL since the new content will persist in the
1713 ** database file.
1714 **
1715 ** This routine uses and updates the nBackfill field of the wal-index header.
1716 ** This is the only routine that will increase the value of nBackfill.
1717 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1718 ** its value.)
1719 **
1720 ** The caller must be holding sufficient locks to ensure that no other
1721 ** checkpoint is running (in any other thread or process) at the same
1722 ** time.
1723 */
1724 static int walCheckpoint(
1725   Wal *pWal,                      /* Wal connection */
1726   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1727   int (*xBusy)(void*),            /* Function to call when busy */
1728   void *pBusyArg,                 /* Context argument for xBusyHandler */
1729   int sync_flags,                 /* Flags for OsSync() (or 0) */
1730   u8 *zBuf                        /* Temporary buffer to use */
1731 ){
1732   int rc = SQLITE_OK;             /* Return code */
1733   int szPage;                     /* Database page-size */
1734   WalIterator *pIter = 0;         /* Wal iterator context */
1735   u32 iDbpage = 0;                /* Next database page to write */
1736   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1737   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1738   u32 mxPage;                     /* Max database page to write */
1739   int i;                          /* Loop counter */
1740   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1741 
1742   szPage = walPagesize(pWal);
1743   testcase( szPage<=32768 );
1744   testcase( szPage>=65536 );
1745   pInfo = walCkptInfo(pWal);
1746   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1747 
1748     /* Allocate the iterator */
1749     rc = walIteratorInit(pWal, &pIter);
1750     if( rc!=SQLITE_OK ){
1751       return rc;
1752     }
1753     assert( pIter );
1754 
1755     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1756     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1757     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1758 
1759     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1760     ** safe to write into the database.  Frames beyond mxSafeFrame might
1761     ** overwrite database pages that are in use by active readers and thus
1762     ** cannot be backfilled from the WAL.
1763     */
1764     mxSafeFrame = pWal->hdr.mxFrame;
1765     mxPage = pWal->hdr.nPage;
1766     for(i=1; i<WAL_NREADER; i++){
1767       /* Thread-sanitizer reports that the following is an unsafe read,
1768       ** as some other thread may be in the process of updating the value
1769       ** of the aReadMark[] slot. The assumption here is that if that is
1770       ** happening, the other client may only be increasing the value,
1771       ** not decreasing it. So assuming either that either the "old" or
1772       ** "new" version of the value is read, and not some arbitrary value
1773       ** that would never be written by a real client, things are still
1774       ** safe.  */
1775       u32 y = pInfo->aReadMark[i];
1776       if( mxSafeFrame>y ){
1777         assert( y<=pWal->hdr.mxFrame );
1778         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1779         if( rc==SQLITE_OK ){
1780           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1781           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1782         }else if( rc==SQLITE_BUSY ){
1783           mxSafeFrame = y;
1784           xBusy = 0;
1785         }else{
1786           goto walcheckpoint_out;
1787         }
1788       }
1789     }
1790 
1791     if( pInfo->nBackfill<mxSafeFrame
1792      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1793     ){
1794       i64 nSize;                    /* Current size of database file */
1795       u32 nBackfill = pInfo->nBackfill;
1796 
1797       pInfo->nBackfillAttempted = mxSafeFrame;
1798 
1799       /* Sync the WAL to disk */
1800       if( sync_flags ){
1801         rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1802       }
1803 
1804       /* If the database may grow as a result of this checkpoint, hint
1805       ** about the eventual size of the db file to the VFS layer.
1806       */
1807       if( rc==SQLITE_OK ){
1808         i64 nReq = ((i64)mxPage * szPage);
1809         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1810         if( rc==SQLITE_OK && nSize<nReq ){
1811           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1812         }
1813       }
1814 
1815 
1816       /* Iterate through the contents of the WAL, copying data to the db file */
1817       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1818         i64 iOffset;
1819         assert( walFramePgno(pWal, iFrame)==iDbpage );
1820         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1821           continue;
1822         }
1823         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1824         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1825         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1826         if( rc!=SQLITE_OK ) break;
1827         iOffset = (iDbpage-1)*(i64)szPage;
1828         testcase( IS_BIG_INT(iOffset) );
1829         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1830         if( rc!=SQLITE_OK ) break;
1831       }
1832 
1833       /* If work was actually accomplished... */
1834       if( rc==SQLITE_OK ){
1835         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1836           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1837           testcase( IS_BIG_INT(szDb) );
1838           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1839           if( rc==SQLITE_OK && sync_flags ){
1840             rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1841           }
1842         }
1843         if( rc==SQLITE_OK ){
1844           pInfo->nBackfill = mxSafeFrame;
1845         }
1846       }
1847 
1848       /* Release the reader lock held while backfilling */
1849       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1850     }
1851 
1852     if( rc==SQLITE_BUSY ){
1853       /* Reset the return code so as not to report a checkpoint failure
1854       ** just because there are active readers.  */
1855       rc = SQLITE_OK;
1856     }
1857   }
1858 
1859   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1860   ** entire wal file has been copied into the database file, then block
1861   ** until all readers have finished using the wal file. This ensures that
1862   ** the next process to write to the database restarts the wal file.
1863   */
1864   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1865     assert( pWal->writeLock );
1866     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1867       rc = SQLITE_BUSY;
1868     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1869       u32 salt1;
1870       sqlite3_randomness(4, &salt1);
1871       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1872       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1873       if( rc==SQLITE_OK ){
1874         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1875           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1876           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1877           ** truncates the log file to zero bytes just prior to a
1878           ** successful return.
1879           **
1880           ** In theory, it might be safe to do this without updating the
1881           ** wal-index header in shared memory, as all subsequent reader or
1882           ** writer clients should see that the entire log file has been
1883           ** checkpointed and behave accordingly. This seems unsafe though,
1884           ** as it would leave the system in a state where the contents of
1885           ** the wal-index header do not match the contents of the
1886           ** file-system. To avoid this, update the wal-index header to
1887           ** indicate that the log file contains zero valid frames.  */
1888           walRestartHdr(pWal, salt1);
1889           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1890         }
1891         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1892       }
1893     }
1894   }
1895 
1896  walcheckpoint_out:
1897   walIteratorFree(pIter);
1898   return rc;
1899 }
1900 
1901 /*
1902 ** If the WAL file is currently larger than nMax bytes in size, truncate
1903 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1904 */
1905 static void walLimitSize(Wal *pWal, i64 nMax){
1906   i64 sz;
1907   int rx;
1908   sqlite3BeginBenignMalloc();
1909   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1910   if( rx==SQLITE_OK && (sz > nMax ) ){
1911     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1912   }
1913   sqlite3EndBenignMalloc();
1914   if( rx ){
1915     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1916   }
1917 }
1918 
1919 /*
1920 ** Close a connection to a log file.
1921 */
1922 int sqlite3WalClose(
1923   Wal *pWal,                      /* Wal to close */
1924   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1925   int nBuf,
1926   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1927 ){
1928   int rc = SQLITE_OK;
1929   if( pWal ){
1930     int isDelete = 0;             /* True to unlink wal and wal-index files */
1931 
1932     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1933     ** ordinary, rollback-mode locking methods, this guarantees that the
1934     ** connection associated with this log file is the only connection to
1935     ** the database. In this case checkpoint the database and unlink both
1936     ** the wal and wal-index files.
1937     **
1938     ** The EXCLUSIVE lock is not released before returning.
1939     */
1940     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1941     if( rc==SQLITE_OK ){
1942       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1943         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1944       }
1945       rc = sqlite3WalCheckpoint(
1946           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1947       );
1948       if( rc==SQLITE_OK ){
1949         int bPersist = -1;
1950         sqlite3OsFileControlHint(
1951             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1952         );
1953         if( bPersist!=1 ){
1954           /* Try to delete the WAL file if the checkpoint completed and
1955           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1956           ** mode (!bPersist) */
1957           isDelete = 1;
1958         }else if( pWal->mxWalSize>=0 ){
1959           /* Try to truncate the WAL file to zero bytes if the checkpoint
1960           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1961           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1962           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1963           ** to zero bytes as truncating to the journal_size_limit might
1964           ** leave a corrupt WAL file on disk. */
1965           walLimitSize(pWal, 0);
1966         }
1967       }
1968     }
1969 
1970     walIndexClose(pWal, isDelete);
1971     sqlite3OsClose(pWal->pWalFd);
1972     if( isDelete ){
1973       sqlite3BeginBenignMalloc();
1974       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1975       sqlite3EndBenignMalloc();
1976     }
1977     WALTRACE(("WAL%p: closed\n", pWal));
1978     sqlite3_free((void *)pWal->apWiData);
1979     sqlite3_free(pWal);
1980   }
1981   return rc;
1982 }
1983 
1984 /*
1985 ** Try to read the wal-index header.  Return 0 on success and 1 if
1986 ** there is a problem.
1987 **
1988 ** The wal-index is in shared memory.  Another thread or process might
1989 ** be writing the header at the same time this procedure is trying to
1990 ** read it, which might result in inconsistency.  A dirty read is detected
1991 ** by verifying that both copies of the header are the same and also by
1992 ** a checksum on the header.
1993 **
1994 ** If and only if the read is consistent and the header is different from
1995 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1996 ** and *pChanged is set to 1.
1997 **
1998 ** If the checksum cannot be verified return non-zero. If the header
1999 ** is read successfully and the checksum verified, return zero.
2000 */
2001 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2002   u32 aCksum[2];                  /* Checksum on the header content */
2003   WalIndexHdr h1, h2;             /* Two copies of the header content */
2004   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2005 
2006   /* The first page of the wal-index must be mapped at this point. */
2007   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2008 
2009   /* Read the header. This might happen concurrently with a write to the
2010   ** same area of shared memory on a different CPU in a SMP,
2011   ** meaning it is possible that an inconsistent snapshot is read
2012   ** from the file. If this happens, return non-zero.
2013   **
2014   ** There are two copies of the header at the beginning of the wal-index.
2015   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2016   ** Memory barriers are used to prevent the compiler or the hardware from
2017   ** reordering the reads and writes.
2018   */
2019   aHdr = walIndexHdr(pWal);
2020   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2021   walShmBarrier(pWal);
2022   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2023 
2024   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2025     return 1;   /* Dirty read */
2026   }
2027   if( h1.isInit==0 ){
2028     return 1;   /* Malformed header - probably all zeros */
2029   }
2030   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2031   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2032     return 1;   /* Checksum does not match */
2033   }
2034 
2035   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2036     *pChanged = 1;
2037     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2038     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2039     testcase( pWal->szPage<=32768 );
2040     testcase( pWal->szPage>=65536 );
2041   }
2042 
2043   /* The header was successfully read. Return zero. */
2044   return 0;
2045 }
2046 
2047 /*
2048 ** Read the wal-index header from the wal-index and into pWal->hdr.
2049 ** If the wal-header appears to be corrupt, try to reconstruct the
2050 ** wal-index from the WAL before returning.
2051 **
2052 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2053 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2054 ** to 0.
2055 **
2056 ** If the wal-index header is successfully read, return SQLITE_OK.
2057 ** Otherwise an SQLite error code.
2058 */
2059 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2060   int rc;                         /* Return code */
2061   int badHdr;                     /* True if a header read failed */
2062   volatile u32 *page0;            /* Chunk of wal-index containing header */
2063 
2064   /* Ensure that page 0 of the wal-index (the page that contains the
2065   ** wal-index header) is mapped. Return early if an error occurs here.
2066   */
2067   assert( pChanged );
2068   rc = walIndexPage(pWal, 0, &page0);
2069   if( rc!=SQLITE_OK ){
2070     return rc;
2071   };
2072   assert( page0 || pWal->writeLock==0 );
2073 
2074   /* If the first page of the wal-index has been mapped, try to read the
2075   ** wal-index header immediately, without holding any lock. This usually
2076   ** works, but may fail if the wal-index header is corrupt or currently
2077   ** being modified by another thread or process.
2078   */
2079   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2080 
2081   /* If the first attempt failed, it might have been due to a race
2082   ** with a writer.  So get a WRITE lock and try again.
2083   */
2084   assert( badHdr==0 || pWal->writeLock==0 );
2085   if( badHdr ){
2086     if( pWal->readOnly & WAL_SHM_RDONLY ){
2087       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2088         walUnlockShared(pWal, WAL_WRITE_LOCK);
2089         rc = SQLITE_READONLY_RECOVERY;
2090       }
2091     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2092       pWal->writeLock = 1;
2093       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2094         badHdr = walIndexTryHdr(pWal, pChanged);
2095         if( badHdr ){
2096           /* If the wal-index header is still malformed even while holding
2097           ** a WRITE lock, it can only mean that the header is corrupted and
2098           ** needs to be reconstructed.  So run recovery to do exactly that.
2099           */
2100           rc = walIndexRecover(pWal);
2101           *pChanged = 1;
2102         }
2103       }
2104       pWal->writeLock = 0;
2105       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2106     }
2107   }
2108 
2109   /* If the header is read successfully, check the version number to make
2110   ** sure the wal-index was not constructed with some future format that
2111   ** this version of SQLite cannot understand.
2112   */
2113   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2114     rc = SQLITE_CANTOPEN_BKPT;
2115   }
2116 
2117   return rc;
2118 }
2119 
2120 /*
2121 ** This is the value that walTryBeginRead returns when it needs to
2122 ** be retried.
2123 */
2124 #define WAL_RETRY  (-1)
2125 
2126 /*
2127 ** Attempt to start a read transaction.  This might fail due to a race or
2128 ** other transient condition.  When that happens, it returns WAL_RETRY to
2129 ** indicate to the caller that it is safe to retry immediately.
2130 **
2131 ** On success return SQLITE_OK.  On a permanent failure (such an
2132 ** I/O error or an SQLITE_BUSY because another process is running
2133 ** recovery) return a positive error code.
2134 **
2135 ** The useWal parameter is true to force the use of the WAL and disable
2136 ** the case where the WAL is bypassed because it has been completely
2137 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2138 ** to make a copy of the wal-index header into pWal->hdr.  If the
2139 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2140 ** to the caller that the local paget cache is obsolete and needs to be
2141 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2142 ** be loaded and the pChanged parameter is unused.
2143 **
2144 ** The caller must set the cnt parameter to the number of prior calls to
2145 ** this routine during the current read attempt that returned WAL_RETRY.
2146 ** This routine will start taking more aggressive measures to clear the
2147 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2148 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2149 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2150 ** and is not honoring the locking protocol.  There is a vanishingly small
2151 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2152 ** bad luck when there is lots of contention for the wal-index, but that
2153 ** possibility is so small that it can be safely neglected, we believe.
2154 **
2155 ** On success, this routine obtains a read lock on
2156 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2157 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2158 ** that means the Wal does not hold any read lock.  The reader must not
2159 ** access any database page that is modified by a WAL frame up to and
2160 ** including frame number aReadMark[pWal->readLock].  The reader will
2161 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2162 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2163 ** completely and get all content directly from the database file.
2164 ** If the useWal parameter is 1 then the WAL will never be ignored and
2165 ** this routine will always set pWal->readLock>0 on success.
2166 ** When the read transaction is completed, the caller must release the
2167 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2168 **
2169 ** This routine uses the nBackfill and aReadMark[] fields of the header
2170 ** to select a particular WAL_READ_LOCK() that strives to let the
2171 ** checkpoint process do as much work as possible.  This routine might
2172 ** update values of the aReadMark[] array in the header, but if it does
2173 ** so it takes care to hold an exclusive lock on the corresponding
2174 ** WAL_READ_LOCK() while changing values.
2175 */
2176 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2177   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2178   u32 mxReadMark;                 /* Largest aReadMark[] value */
2179   int mxI;                        /* Index of largest aReadMark[] value */
2180   int i;                          /* Loop counter */
2181   int rc = SQLITE_OK;             /* Return code  */
2182   u32 mxFrame;                    /* Wal frame to lock to */
2183 
2184   assert( pWal->readLock<0 );     /* Not currently locked */
2185 
2186   /* Take steps to avoid spinning forever if there is a protocol error.
2187   **
2188   ** Circumstances that cause a RETRY should only last for the briefest
2189   ** instances of time.  No I/O or other system calls are done while the
2190   ** locks are held, so the locks should not be held for very long. But
2191   ** if we are unlucky, another process that is holding a lock might get
2192   ** paged out or take a page-fault that is time-consuming to resolve,
2193   ** during the few nanoseconds that it is holding the lock.  In that case,
2194   ** it might take longer than normal for the lock to free.
2195   **
2196   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2197   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2198   ** is more of a scheduler yield than an actual delay.  But on the 10th
2199   ** an subsequent retries, the delays start becoming longer and longer,
2200   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2201   ** The total delay time before giving up is less than 10 seconds.
2202   */
2203   if( cnt>5 ){
2204     int nDelay = 1;                      /* Pause time in microseconds */
2205     if( cnt>100 ){
2206       VVA_ONLY( pWal->lockError = 1; )
2207       return SQLITE_PROTOCOL;
2208     }
2209     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2210     sqlite3OsSleep(pWal->pVfs, nDelay);
2211   }
2212 
2213   if( !useWal ){
2214     rc = walIndexReadHdr(pWal, pChanged);
2215     if( rc==SQLITE_BUSY ){
2216       /* If there is not a recovery running in another thread or process
2217       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2218       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2219       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2220       ** would be technically correct.  But the race is benign since with
2221       ** WAL_RETRY this routine will be called again and will probably be
2222       ** right on the second iteration.
2223       */
2224       if( pWal->apWiData[0]==0 ){
2225         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2226         ** We assume this is a transient condition, so return WAL_RETRY. The
2227         ** xShmMap() implementation used by the default unix and win32 VFS
2228         ** modules may return SQLITE_BUSY due to a race condition in the
2229         ** code that determines whether or not the shared-memory region
2230         ** must be zeroed before the requested page is returned.
2231         */
2232         rc = WAL_RETRY;
2233       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2234         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2235         rc = WAL_RETRY;
2236       }else if( rc==SQLITE_BUSY ){
2237         rc = SQLITE_BUSY_RECOVERY;
2238       }
2239     }
2240     if( rc!=SQLITE_OK ){
2241       return rc;
2242     }
2243   }
2244 
2245   pInfo = walCkptInfo(pWal);
2246   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2247 #ifdef SQLITE_ENABLE_SNAPSHOT
2248    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2249      || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2250 #endif
2251   ){
2252     /* The WAL has been completely backfilled (or it is empty).
2253     ** and can be safely ignored.
2254     */
2255     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2256     walShmBarrier(pWal);
2257     if( rc==SQLITE_OK ){
2258       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2259         /* It is not safe to allow the reader to continue here if frames
2260         ** may have been appended to the log before READ_LOCK(0) was obtained.
2261         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2262         ** which implies that the database file contains a trustworthy
2263         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2264         ** happening, this is usually correct.
2265         **
2266         ** However, if frames have been appended to the log (or if the log
2267         ** is wrapped and written for that matter) before the READ_LOCK(0)
2268         ** is obtained, that is not necessarily true. A checkpointer may
2269         ** have started to backfill the appended frames but crashed before
2270         ** it finished. Leaving a corrupt image in the database file.
2271         */
2272         walUnlockShared(pWal, WAL_READ_LOCK(0));
2273         return WAL_RETRY;
2274       }
2275       pWal->readLock = 0;
2276       return SQLITE_OK;
2277     }else if( rc!=SQLITE_BUSY ){
2278       return rc;
2279     }
2280   }
2281 
2282   /* If we get this far, it means that the reader will want to use
2283   ** the WAL to get at content from recent commits.  The job now is
2284   ** to select one of the aReadMark[] entries that is closest to
2285   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2286   */
2287   mxReadMark = 0;
2288   mxI = 0;
2289   mxFrame = pWal->hdr.mxFrame;
2290 #ifdef SQLITE_ENABLE_SNAPSHOT
2291   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2292     mxFrame = pWal->pSnapshot->mxFrame;
2293   }
2294 #endif
2295   for(i=1; i<WAL_NREADER; i++){
2296     u32 thisMark = pInfo->aReadMark[i];
2297     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2298       assert( thisMark!=READMARK_NOT_USED );
2299       mxReadMark = thisMark;
2300       mxI = i;
2301     }
2302   }
2303   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2304    && (mxReadMark<mxFrame || mxI==0)
2305   ){
2306     for(i=1; i<WAL_NREADER; i++){
2307       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2308       if( rc==SQLITE_OK ){
2309         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2310         mxI = i;
2311         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2312         break;
2313       }else if( rc!=SQLITE_BUSY ){
2314         return rc;
2315       }
2316     }
2317   }
2318   if( mxI==0 ){
2319     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2320     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2321   }
2322 
2323   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2324   if( rc ){
2325     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2326   }
2327   /* Now that the read-lock has been obtained, check that neither the
2328   ** value in the aReadMark[] array or the contents of the wal-index
2329   ** header have changed.
2330   **
2331   ** It is necessary to check that the wal-index header did not change
2332   ** between the time it was read and when the shared-lock was obtained
2333   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2334   ** that the log file may have been wrapped by a writer, or that frames
2335   ** that occur later in the log than pWal->hdr.mxFrame may have been
2336   ** copied into the database by a checkpointer. If either of these things
2337   ** happened, then reading the database with the current value of
2338   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2339   ** instead.
2340   **
2341   ** Before checking that the live wal-index header has not changed
2342   ** since it was read, set Wal.minFrame to the first frame in the wal
2343   ** file that has not yet been checkpointed. This client will not need
2344   ** to read any frames earlier than minFrame from the wal file - they
2345   ** can be safely read directly from the database file.
2346   **
2347   ** Because a ShmBarrier() call is made between taking the copy of
2348   ** nBackfill and checking that the wal-header in shared-memory still
2349   ** matches the one cached in pWal->hdr, it is guaranteed that the
2350   ** checkpointer that set nBackfill was not working with a wal-index
2351   ** header newer than that cached in pWal->hdr. If it were, that could
2352   ** cause a problem. The checkpointer could omit to checkpoint
2353   ** a version of page X that lies before pWal->minFrame (call that version
2354   ** A) on the basis that there is a newer version (version B) of the same
2355   ** page later in the wal file. But if version B happens to like past
2356   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2357   ** that it can read version A from the database file. However, since
2358   ** we can guarantee that the checkpointer that set nBackfill could not
2359   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2360   */
2361   pWal->minFrame = pInfo->nBackfill+1;
2362   walShmBarrier(pWal);
2363   if( pInfo->aReadMark[mxI]!=mxReadMark
2364    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2365   ){
2366     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2367     return WAL_RETRY;
2368   }else{
2369     assert( mxReadMark<=pWal->hdr.mxFrame );
2370     pWal->readLock = (i16)mxI;
2371   }
2372   return rc;
2373 }
2374 
2375 /*
2376 ** Begin a read transaction on the database.
2377 **
2378 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2379 ** it takes a snapshot of the state of the WAL and wal-index for the current
2380 ** instant in time.  The current thread will continue to use this snapshot.
2381 ** Other threads might append new content to the WAL and wal-index but
2382 ** that extra content is ignored by the current thread.
2383 **
2384 ** If the database contents have changes since the previous read
2385 ** transaction, then *pChanged is set to 1 before returning.  The
2386 ** Pager layer will use this to know that is cache is stale and
2387 ** needs to be flushed.
2388 */
2389 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2390   int rc;                         /* Return code */
2391   int cnt = 0;                    /* Number of TryBeginRead attempts */
2392 
2393 #ifdef SQLITE_ENABLE_SNAPSHOT
2394   int bChanged = 0;
2395   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2396   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2397     bChanged = 1;
2398   }
2399 #endif
2400 
2401   do{
2402     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2403   }while( rc==WAL_RETRY );
2404   testcase( (rc&0xff)==SQLITE_BUSY );
2405   testcase( (rc&0xff)==SQLITE_IOERR );
2406   testcase( rc==SQLITE_PROTOCOL );
2407   testcase( rc==SQLITE_OK );
2408 
2409 #ifdef SQLITE_ENABLE_SNAPSHOT
2410   if( rc==SQLITE_OK ){
2411     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2412       /* At this point the client has a lock on an aReadMark[] slot holding
2413       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2414       ** is populated with the wal-index header corresponding to the head
2415       ** of the wal file. Verify that pSnapshot is still valid before
2416       ** continuing.  Reasons why pSnapshot might no longer be valid:
2417       **
2418       **    (1)  The WAL file has been reset since the snapshot was taken.
2419       **         In this case, the salt will have changed.
2420       **
2421       **    (2)  A checkpoint as been attempted that wrote frames past
2422       **         pSnapshot->mxFrame into the database file.  Note that the
2423       **         checkpoint need not have completed for this to cause problems.
2424       */
2425       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2426 
2427       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2428       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2429 
2430       /* It is possible that there is a checkpointer thread running
2431       ** concurrent with this code. If this is the case, it may be that the
2432       ** checkpointer has already determined that it will checkpoint
2433       ** snapshot X, where X is later in the wal file than pSnapshot, but
2434       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2435       ** its intent. To avoid the race condition this leads to, ensure that
2436       ** there is no checkpointer process by taking a shared CKPT lock
2437       ** before checking pInfo->nBackfillAttempted.  */
2438       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2439 
2440       if( rc==SQLITE_OK ){
2441         /* Check that the wal file has not been wrapped. Assuming that it has
2442         ** not, also check that no checkpointer has attempted to checkpoint any
2443         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2444         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2445         ** with *pSnapshot and set *pChanged as appropriate for opening the
2446         ** snapshot.  */
2447         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2448          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2449         ){
2450           assert( pWal->readLock>0 );
2451           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2452           *pChanged = bChanged;
2453         }else{
2454           rc = SQLITE_BUSY_SNAPSHOT;
2455         }
2456 
2457         /* Release the shared CKPT lock obtained above. */
2458         walUnlockShared(pWal, WAL_CKPT_LOCK);
2459       }
2460 
2461 
2462       if( rc!=SQLITE_OK ){
2463         sqlite3WalEndReadTransaction(pWal);
2464       }
2465     }
2466   }
2467 #endif
2468   return rc;
2469 }
2470 
2471 /*
2472 ** Finish with a read transaction.  All this does is release the
2473 ** read-lock.
2474 */
2475 void sqlite3WalEndReadTransaction(Wal *pWal){
2476   sqlite3WalEndWriteTransaction(pWal);
2477   if( pWal->readLock>=0 ){
2478     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2479     pWal->readLock = -1;
2480   }
2481 }
2482 
2483 /*
2484 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2485 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2486 ** to zero.
2487 **
2488 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2489 ** error does occur, the final value of *piRead is undefined.
2490 */
2491 int sqlite3WalFindFrame(
2492   Wal *pWal,                      /* WAL handle */
2493   Pgno pgno,                      /* Database page number to read data for */
2494   u32 *piRead                     /* OUT: Frame number (or zero) */
2495 ){
2496   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2497   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2498   int iHash;                      /* Used to loop through N hash tables */
2499   int iMinHash;
2500 
2501   /* This routine is only be called from within a read transaction. */
2502   assert( pWal->readLock>=0 || pWal->lockError );
2503 
2504   /* If the "last page" field of the wal-index header snapshot is 0, then
2505   ** no data will be read from the wal under any circumstances. Return early
2506   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2507   ** then the WAL is ignored by the reader so return early, as if the
2508   ** WAL were empty.
2509   */
2510   if( iLast==0 || pWal->readLock==0 ){
2511     *piRead = 0;
2512     return SQLITE_OK;
2513   }
2514 
2515   /* Search the hash table or tables for an entry matching page number
2516   ** pgno. Each iteration of the following for() loop searches one
2517   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2518   **
2519   ** This code might run concurrently to the code in walIndexAppend()
2520   ** that adds entries to the wal-index (and possibly to this hash
2521   ** table). This means the value just read from the hash
2522   ** slot (aHash[iKey]) may have been added before or after the
2523   ** current read transaction was opened. Values added after the
2524   ** read transaction was opened may have been written incorrectly -
2525   ** i.e. these slots may contain garbage data. However, we assume
2526   ** that any slots written before the current read transaction was
2527   ** opened remain unmodified.
2528   **
2529   ** For the reasons above, the if(...) condition featured in the inner
2530   ** loop of the following block is more stringent that would be required
2531   ** if we had exclusive access to the hash-table:
2532   **
2533   **   (aPgno[iFrame]==pgno):
2534   **     This condition filters out normal hash-table collisions.
2535   **
2536   **   (iFrame<=iLast):
2537   **     This condition filters out entries that were added to the hash
2538   **     table after the current read-transaction had started.
2539   */
2540   iMinHash = walFramePage(pWal->minFrame);
2541   for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2542     volatile ht_slot *aHash;      /* Pointer to hash table */
2543     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2544     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2545     int iKey;                     /* Hash slot index */
2546     int nCollide;                 /* Number of hash collisions remaining */
2547     int rc;                       /* Error code */
2548 
2549     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2550     if( rc!=SQLITE_OK ){
2551       return rc;
2552     }
2553     nCollide = HASHTABLE_NSLOT;
2554     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2555       u32 iFrame = aHash[iKey] + iZero;
2556       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2557         assert( iFrame>iRead || CORRUPT_DB );
2558         iRead = iFrame;
2559       }
2560       if( (nCollide--)==0 ){
2561         return SQLITE_CORRUPT_BKPT;
2562       }
2563     }
2564   }
2565 
2566 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2567   /* If expensive assert() statements are available, do a linear search
2568   ** of the wal-index file content. Make sure the results agree with the
2569   ** result obtained using the hash indexes above.  */
2570   {
2571     u32 iRead2 = 0;
2572     u32 iTest;
2573     assert( pWal->minFrame>0 );
2574     for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
2575       if( walFramePgno(pWal, iTest)==pgno ){
2576         iRead2 = iTest;
2577         break;
2578       }
2579     }
2580     assert( iRead==iRead2 );
2581   }
2582 #endif
2583 
2584   *piRead = iRead;
2585   return SQLITE_OK;
2586 }
2587 
2588 /*
2589 ** Read the contents of frame iRead from the wal file into buffer pOut
2590 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2591 ** error code otherwise.
2592 */
2593 int sqlite3WalReadFrame(
2594   Wal *pWal,                      /* WAL handle */
2595   u32 iRead,                      /* Frame to read */
2596   int nOut,                       /* Size of buffer pOut in bytes */
2597   u8 *pOut                        /* Buffer to write page data to */
2598 ){
2599   int sz;
2600   i64 iOffset;
2601   sz = pWal->hdr.szPage;
2602   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2603   testcase( sz<=32768 );
2604   testcase( sz>=65536 );
2605   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2606   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2607   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2608 }
2609 
2610 /*
2611 ** Return the size of the database in pages (or zero, if unknown).
2612 */
2613 Pgno sqlite3WalDbsize(Wal *pWal){
2614   if( pWal && ALWAYS(pWal->readLock>=0) ){
2615     return pWal->hdr.nPage;
2616   }
2617   return 0;
2618 }
2619 
2620 
2621 /*
2622 ** This function starts a write transaction on the WAL.
2623 **
2624 ** A read transaction must have already been started by a prior call
2625 ** to sqlite3WalBeginReadTransaction().
2626 **
2627 ** If another thread or process has written into the database since
2628 ** the read transaction was started, then it is not possible for this
2629 ** thread to write as doing so would cause a fork.  So this routine
2630 ** returns SQLITE_BUSY in that case and no write transaction is started.
2631 **
2632 ** There can only be a single writer active at a time.
2633 */
2634 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2635   int rc;
2636 
2637   /* Cannot start a write transaction without first holding a read
2638   ** transaction. */
2639   assert( pWal->readLock>=0 );
2640   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2641 
2642   if( pWal->readOnly ){
2643     return SQLITE_READONLY;
2644   }
2645 
2646   /* Only one writer allowed at a time.  Get the write lock.  Return
2647   ** SQLITE_BUSY if unable.
2648   */
2649   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2650   if( rc ){
2651     return rc;
2652   }
2653   pWal->writeLock = 1;
2654 
2655   /* If another connection has written to the database file since the
2656   ** time the read transaction on this connection was started, then
2657   ** the write is disallowed.
2658   */
2659   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2660     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2661     pWal->writeLock = 0;
2662     rc = SQLITE_BUSY_SNAPSHOT;
2663   }
2664 
2665   return rc;
2666 }
2667 
2668 /*
2669 ** End a write transaction.  The commit has already been done.  This
2670 ** routine merely releases the lock.
2671 */
2672 int sqlite3WalEndWriteTransaction(Wal *pWal){
2673   if( pWal->writeLock ){
2674     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2675     pWal->writeLock = 0;
2676     pWal->iReCksum = 0;
2677     pWal->truncateOnCommit = 0;
2678   }
2679   return SQLITE_OK;
2680 }
2681 
2682 /*
2683 ** If any data has been written (but not committed) to the log file, this
2684 ** function moves the write-pointer back to the start of the transaction.
2685 **
2686 ** Additionally, the callback function is invoked for each frame written
2687 ** to the WAL since the start of the transaction. If the callback returns
2688 ** other than SQLITE_OK, it is not invoked again and the error code is
2689 ** returned to the caller.
2690 **
2691 ** Otherwise, if the callback function does not return an error, this
2692 ** function returns SQLITE_OK.
2693 */
2694 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2695   int rc = SQLITE_OK;
2696   if( ALWAYS(pWal->writeLock) ){
2697     Pgno iMax = pWal->hdr.mxFrame;
2698     Pgno iFrame;
2699 
2700     /* Restore the clients cache of the wal-index header to the state it
2701     ** was in before the client began writing to the database.
2702     */
2703     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2704 
2705     for(iFrame=pWal->hdr.mxFrame+1;
2706         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2707         iFrame++
2708     ){
2709       /* This call cannot fail. Unless the page for which the page number
2710       ** is passed as the second argument is (a) in the cache and
2711       ** (b) has an outstanding reference, then xUndo is either a no-op
2712       ** (if (a) is false) or simply expels the page from the cache (if (b)
2713       ** is false).
2714       **
2715       ** If the upper layer is doing a rollback, it is guaranteed that there
2716       ** are no outstanding references to any page other than page 1. And
2717       ** page 1 is never written to the log until the transaction is
2718       ** committed. As a result, the call to xUndo may not fail.
2719       */
2720       assert( walFramePgno(pWal, iFrame)!=1 );
2721       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2722     }
2723     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2724   }
2725   return rc;
2726 }
2727 
2728 /*
2729 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2730 ** values. This function populates the array with values required to
2731 ** "rollback" the write position of the WAL handle back to the current
2732 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2733 */
2734 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2735   assert( pWal->writeLock );
2736   aWalData[0] = pWal->hdr.mxFrame;
2737   aWalData[1] = pWal->hdr.aFrameCksum[0];
2738   aWalData[2] = pWal->hdr.aFrameCksum[1];
2739   aWalData[3] = pWal->nCkpt;
2740 }
2741 
2742 /*
2743 ** Move the write position of the WAL back to the point identified by
2744 ** the values in the aWalData[] array. aWalData must point to an array
2745 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2746 ** by a call to WalSavepoint().
2747 */
2748 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2749   int rc = SQLITE_OK;
2750 
2751   assert( pWal->writeLock );
2752   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2753 
2754   if( aWalData[3]!=pWal->nCkpt ){
2755     /* This savepoint was opened immediately after the write-transaction
2756     ** was started. Right after that, the writer decided to wrap around
2757     ** to the start of the log. Update the savepoint values to match.
2758     */
2759     aWalData[0] = 0;
2760     aWalData[3] = pWal->nCkpt;
2761   }
2762 
2763   if( aWalData[0]<pWal->hdr.mxFrame ){
2764     pWal->hdr.mxFrame = aWalData[0];
2765     pWal->hdr.aFrameCksum[0] = aWalData[1];
2766     pWal->hdr.aFrameCksum[1] = aWalData[2];
2767     walCleanupHash(pWal);
2768   }
2769 
2770   return rc;
2771 }
2772 
2773 /*
2774 ** This function is called just before writing a set of frames to the log
2775 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2776 ** to the current log file, it is possible to overwrite the start of the
2777 ** existing log file with the new frames (i.e. "reset" the log). If so,
2778 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2779 ** unchanged.
2780 **
2781 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2782 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2783 ** if an error occurs.
2784 */
2785 static int walRestartLog(Wal *pWal){
2786   int rc = SQLITE_OK;
2787   int cnt;
2788 
2789   if( pWal->readLock==0 ){
2790     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2791     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2792     if( pInfo->nBackfill>0 ){
2793       u32 salt1;
2794       sqlite3_randomness(4, &salt1);
2795       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2796       if( rc==SQLITE_OK ){
2797         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2798         ** readers are currently using the WAL), then the transactions
2799         ** frames will overwrite the start of the existing log. Update the
2800         ** wal-index header to reflect this.
2801         **
2802         ** In theory it would be Ok to update the cache of the header only
2803         ** at this point. But updating the actual wal-index header is also
2804         ** safe and means there is no special case for sqlite3WalUndo()
2805         ** to handle if this transaction is rolled back.  */
2806         walRestartHdr(pWal, salt1);
2807         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2808       }else if( rc!=SQLITE_BUSY ){
2809         return rc;
2810       }
2811     }
2812     walUnlockShared(pWal, WAL_READ_LOCK(0));
2813     pWal->readLock = -1;
2814     cnt = 0;
2815     do{
2816       int notUsed;
2817       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2818     }while( rc==WAL_RETRY );
2819     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2820     testcase( (rc&0xff)==SQLITE_IOERR );
2821     testcase( rc==SQLITE_PROTOCOL );
2822     testcase( rc==SQLITE_OK );
2823   }
2824   return rc;
2825 }
2826 
2827 /*
2828 ** Information about the current state of the WAL file and where
2829 ** the next fsync should occur - passed from sqlite3WalFrames() into
2830 ** walWriteToLog().
2831 */
2832 typedef struct WalWriter {
2833   Wal *pWal;                   /* The complete WAL information */
2834   sqlite3_file *pFd;           /* The WAL file to which we write */
2835   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2836   int syncFlags;               /* Flags for the fsync */
2837   int szPage;                  /* Size of one page */
2838 } WalWriter;
2839 
2840 /*
2841 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2842 ** Do a sync when crossing the p->iSyncPoint boundary.
2843 **
2844 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2845 ** first write the part before iSyncPoint, then sync, then write the
2846 ** rest.
2847 */
2848 static int walWriteToLog(
2849   WalWriter *p,              /* WAL to write to */
2850   void *pContent,            /* Content to be written */
2851   int iAmt,                  /* Number of bytes to write */
2852   sqlite3_int64 iOffset      /* Start writing at this offset */
2853 ){
2854   int rc;
2855   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2856     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2857     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2858     if( rc ) return rc;
2859     iOffset += iFirstAmt;
2860     iAmt -= iFirstAmt;
2861     pContent = (void*)(iFirstAmt + (char*)pContent);
2862     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2863     rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
2864     if( iAmt==0 || rc ) return rc;
2865   }
2866   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2867   return rc;
2868 }
2869 
2870 /*
2871 ** Write out a single frame of the WAL
2872 */
2873 static int walWriteOneFrame(
2874   WalWriter *p,               /* Where to write the frame */
2875   PgHdr *pPage,               /* The page of the frame to be written */
2876   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2877   sqlite3_int64 iOffset       /* Byte offset at which to write */
2878 ){
2879   int rc;                         /* Result code from subfunctions */
2880   void *pData;                    /* Data actually written */
2881   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2882 #if defined(SQLITE_HAS_CODEC)
2883   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
2884 #else
2885   pData = pPage->pData;
2886 #endif
2887   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2888   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2889   if( rc ) return rc;
2890   /* Write the page data */
2891   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2892   return rc;
2893 }
2894 
2895 /*
2896 ** This function is called as part of committing a transaction within which
2897 ** one or more frames have been overwritten. It updates the checksums for
2898 ** all frames written to the wal file by the current transaction starting
2899 ** with the earliest to have been overwritten.
2900 **
2901 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2902 */
2903 static int walRewriteChecksums(Wal *pWal, u32 iLast){
2904   const int szPage = pWal->szPage;/* Database page size */
2905   int rc = SQLITE_OK;             /* Return code */
2906   u8 *aBuf;                       /* Buffer to load data from wal file into */
2907   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
2908   u32 iRead;                      /* Next frame to read from wal file */
2909   i64 iCksumOff;
2910 
2911   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
2912   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
2913 
2914   /* Find the checksum values to use as input for the recalculating the
2915   ** first checksum. If the first frame is frame 1 (implying that the current
2916   ** transaction restarted the wal file), these values must be read from the
2917   ** wal-file header. Otherwise, read them from the frame header of the
2918   ** previous frame.  */
2919   assert( pWal->iReCksum>0 );
2920   if( pWal->iReCksum==1 ){
2921     iCksumOff = 24;
2922   }else{
2923     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
2924   }
2925   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
2926   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
2927   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
2928 
2929   iRead = pWal->iReCksum;
2930   pWal->iReCksum = 0;
2931   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
2932     i64 iOff = walFrameOffset(iRead, szPage);
2933     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
2934     if( rc==SQLITE_OK ){
2935       u32 iPgno, nDbSize;
2936       iPgno = sqlite3Get4byte(aBuf);
2937       nDbSize = sqlite3Get4byte(&aBuf[4]);
2938 
2939       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
2940       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
2941     }
2942   }
2943 
2944   sqlite3_free(aBuf);
2945   return rc;
2946 }
2947 
2948 /*
2949 ** Write a set of frames to the log. The caller must hold the write-lock
2950 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2951 */
2952 int sqlite3WalFrames(
2953   Wal *pWal,                      /* Wal handle to write to */
2954   int szPage,                     /* Database page-size in bytes */
2955   PgHdr *pList,                   /* List of dirty pages to write */
2956   Pgno nTruncate,                 /* Database size after this commit */
2957   int isCommit,                   /* True if this is a commit */
2958   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2959 ){
2960   int rc;                         /* Used to catch return codes */
2961   u32 iFrame;                     /* Next frame address */
2962   PgHdr *p;                       /* Iterator to run through pList with. */
2963   PgHdr *pLast = 0;               /* Last frame in list */
2964   int nExtra = 0;                 /* Number of extra copies of last page */
2965   int szFrame;                    /* The size of a single frame */
2966   i64 iOffset;                    /* Next byte to write in WAL file */
2967   WalWriter w;                    /* The writer */
2968   u32 iFirst = 0;                 /* First frame that may be overwritten */
2969   WalIndexHdr *pLive;             /* Pointer to shared header */
2970 
2971   assert( pList );
2972   assert( pWal->writeLock );
2973 
2974   /* If this frame set completes a transaction, then nTruncate>0.  If
2975   ** nTruncate==0 then this frame set does not complete the transaction. */
2976   assert( (isCommit!=0)==(nTruncate!=0) );
2977 
2978 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2979   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2980     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2981               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2982   }
2983 #endif
2984 
2985   pLive = (WalIndexHdr*)walIndexHdr(pWal);
2986   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
2987     iFirst = pLive->mxFrame+1;
2988   }
2989 
2990   /* See if it is possible to write these frames into the start of the
2991   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2992   */
2993   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2994     return rc;
2995   }
2996 
2997   /* If this is the first frame written into the log, write the WAL
2998   ** header to the start of the WAL file. See comments at the top of
2999   ** this source file for a description of the WAL header format.
3000   */
3001   iFrame = pWal->hdr.mxFrame;
3002   if( iFrame==0 ){
3003     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3004     u32 aCksum[2];                /* Checksum for wal-header */
3005 
3006     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3007     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3008     sqlite3Put4byte(&aWalHdr[8], szPage);
3009     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3010     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3011     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3012     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3013     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3014     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3015 
3016     pWal->szPage = szPage;
3017     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3018     pWal->hdr.aFrameCksum[0] = aCksum[0];
3019     pWal->hdr.aFrameCksum[1] = aCksum[1];
3020     pWal->truncateOnCommit = 1;
3021 
3022     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3023     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3024     if( rc!=SQLITE_OK ){
3025       return rc;
3026     }
3027 
3028     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3029     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3030     ** an out-of-order write following a WAL restart could result in
3031     ** database corruption.  See the ticket:
3032     **
3033     **     http://localhost:591/sqlite/info/ff5be73dee
3034     */
3035     if( pWal->syncHeader && sync_flags ){
3036       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
3037       if( rc ) return rc;
3038     }
3039   }
3040   assert( (int)pWal->szPage==szPage );
3041 
3042   /* Setup information needed to write frames into the WAL */
3043   w.pWal = pWal;
3044   w.pFd = pWal->pWalFd;
3045   w.iSyncPoint = 0;
3046   w.syncFlags = sync_flags;
3047   w.szPage = szPage;
3048   iOffset = walFrameOffset(iFrame+1, szPage);
3049   szFrame = szPage + WAL_FRAME_HDRSIZE;
3050 
3051   /* Write all frames into the log file exactly once */
3052   for(p=pList; p; p=p->pDirty){
3053     int nDbSize;   /* 0 normally.  Positive == commit flag */
3054 
3055     /* Check if this page has already been written into the wal file by
3056     ** the current transaction. If so, overwrite the existing frame and
3057     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3058     ** checksums must be recomputed when the transaction is committed.  */
3059     if( iFirst && (p->pDirty || isCommit==0) ){
3060       u32 iWrite = 0;
3061       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3062       assert( rc==SQLITE_OK || iWrite==0 );
3063       if( iWrite>=iFirst ){
3064         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3065         void *pData;
3066         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3067           pWal->iReCksum = iWrite;
3068         }
3069 #if defined(SQLITE_HAS_CODEC)
3070         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3071 #else
3072         pData = p->pData;
3073 #endif
3074         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3075         if( rc ) return rc;
3076         p->flags &= ~PGHDR_WAL_APPEND;
3077         continue;
3078       }
3079     }
3080 
3081     iFrame++;
3082     assert( iOffset==walFrameOffset(iFrame, szPage) );
3083     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3084     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3085     if( rc ) return rc;
3086     pLast = p;
3087     iOffset += szFrame;
3088     p->flags |= PGHDR_WAL_APPEND;
3089   }
3090 
3091   /* Recalculate checksums within the wal file if required. */
3092   if( isCommit && pWal->iReCksum ){
3093     rc = walRewriteChecksums(pWal, iFrame);
3094     if( rc ) return rc;
3095   }
3096 
3097   /* If this is the end of a transaction, then we might need to pad
3098   ** the transaction and/or sync the WAL file.
3099   **
3100   ** Padding and syncing only occur if this set of frames complete a
3101   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3102   ** or synchronous==OFF, then no padding or syncing are needed.
3103   **
3104   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3105   ** needed and only the sync is done.  If padding is needed, then the
3106   ** final frame is repeated (with its commit mark) until the next sector
3107   ** boundary is crossed.  Only the part of the WAL prior to the last
3108   ** sector boundary is synced; the part of the last frame that extends
3109   ** past the sector boundary is written after the sync.
3110   */
3111   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
3112     if( pWal->padToSectorBoundary ){
3113       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3114       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3115       while( iOffset<w.iSyncPoint ){
3116         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3117         if( rc ) return rc;
3118         iOffset += szFrame;
3119         nExtra++;
3120       }
3121     }else{
3122       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
3123     }
3124   }
3125 
3126   /* If this frame set completes the first transaction in the WAL and
3127   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3128   ** journal size limit, if possible.
3129   */
3130   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3131     i64 sz = pWal->mxWalSize;
3132     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3133       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3134     }
3135     walLimitSize(pWal, sz);
3136     pWal->truncateOnCommit = 0;
3137   }
3138 
3139   /* Append data to the wal-index. It is not necessary to lock the
3140   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3141   ** guarantees that there are no other writers, and no data that may
3142   ** be in use by existing readers is being overwritten.
3143   */
3144   iFrame = pWal->hdr.mxFrame;
3145   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3146     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3147     iFrame++;
3148     rc = walIndexAppend(pWal, iFrame, p->pgno);
3149   }
3150   while( rc==SQLITE_OK && nExtra>0 ){
3151     iFrame++;
3152     nExtra--;
3153     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3154   }
3155 
3156   if( rc==SQLITE_OK ){
3157     /* Update the private copy of the header. */
3158     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3159     testcase( szPage<=32768 );
3160     testcase( szPage>=65536 );
3161     pWal->hdr.mxFrame = iFrame;
3162     if( isCommit ){
3163       pWal->hdr.iChange++;
3164       pWal->hdr.nPage = nTruncate;
3165     }
3166     /* If this is a commit, update the wal-index header too. */
3167     if( isCommit ){
3168       walIndexWriteHdr(pWal);
3169       pWal->iCallback = iFrame;
3170     }
3171   }
3172 
3173   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3174   return rc;
3175 }
3176 
3177 /*
3178 ** This routine is called to implement sqlite3_wal_checkpoint() and
3179 ** related interfaces.
3180 **
3181 ** Obtain a CHECKPOINT lock and then backfill as much information as
3182 ** we can from WAL into the database.
3183 **
3184 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3185 ** callback. In this case this function runs a blocking checkpoint.
3186 */
3187 int sqlite3WalCheckpoint(
3188   Wal *pWal,                      /* Wal connection */
3189   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3190   int (*xBusy)(void*),            /* Function to call when busy */
3191   void *pBusyArg,                 /* Context argument for xBusyHandler */
3192   int sync_flags,                 /* Flags to sync db file with (or 0) */
3193   int nBuf,                       /* Size of temporary buffer */
3194   u8 *zBuf,                       /* Temporary buffer to use */
3195   int *pnLog,                     /* OUT: Number of frames in WAL */
3196   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3197 ){
3198   int rc;                         /* Return code */
3199   int isChanged = 0;              /* True if a new wal-index header is loaded */
3200   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3201   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3202 
3203   assert( pWal->ckptLock==0 );
3204   assert( pWal->writeLock==0 );
3205 
3206   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3207   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3208   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3209 
3210   if( pWal->readOnly ) return SQLITE_READONLY;
3211   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3212 
3213   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3214   ** "checkpoint" lock on the database file. */
3215   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3216   if( rc ){
3217     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3218     ** checkpoint operation at the same time, the lock cannot be obtained and
3219     ** SQLITE_BUSY is returned.
3220     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3221     ** it will not be invoked in this case.
3222     */
3223     testcase( rc==SQLITE_BUSY );
3224     testcase( xBusy!=0 );
3225     return rc;
3226   }
3227   pWal->ckptLock = 1;
3228 
3229   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3230   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3231   ** file.
3232   **
3233   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3234   ** immediately, and a busy-handler is configured, it is invoked and the
3235   ** writer lock retried until either the busy-handler returns 0 or the
3236   ** lock is successfully obtained.
3237   */
3238   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3239     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3240     if( rc==SQLITE_OK ){
3241       pWal->writeLock = 1;
3242     }else if( rc==SQLITE_BUSY ){
3243       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3244       xBusy2 = 0;
3245       rc = SQLITE_OK;
3246     }
3247   }
3248 
3249   /* Read the wal-index header. */
3250   if( rc==SQLITE_OK ){
3251     rc = walIndexReadHdr(pWal, &isChanged);
3252     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3253       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3254     }
3255   }
3256 
3257   /* Copy data from the log to the database file. */
3258   if( rc==SQLITE_OK ){
3259 
3260     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3261       rc = SQLITE_CORRUPT_BKPT;
3262     }else{
3263       rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3264     }
3265 
3266     /* If no error occurred, set the output variables. */
3267     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3268       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3269       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3270     }
3271   }
3272 
3273   if( isChanged ){
3274     /* If a new wal-index header was loaded before the checkpoint was
3275     ** performed, then the pager-cache associated with pWal is now
3276     ** out of date. So zero the cached wal-index header to ensure that
3277     ** next time the pager opens a snapshot on this database it knows that
3278     ** the cache needs to be reset.
3279     */
3280     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3281   }
3282 
3283   /* Release the locks. */
3284   sqlite3WalEndWriteTransaction(pWal);
3285   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3286   pWal->ckptLock = 0;
3287   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3288   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3289 }
3290 
3291 /* Return the value to pass to a sqlite3_wal_hook callback, the
3292 ** number of frames in the WAL at the point of the last commit since
3293 ** sqlite3WalCallback() was called.  If no commits have occurred since
3294 ** the last call, then return 0.
3295 */
3296 int sqlite3WalCallback(Wal *pWal){
3297   u32 ret = 0;
3298   if( pWal ){
3299     ret = pWal->iCallback;
3300     pWal->iCallback = 0;
3301   }
3302   return (int)ret;
3303 }
3304 
3305 /*
3306 ** This function is called to change the WAL subsystem into or out
3307 ** of locking_mode=EXCLUSIVE.
3308 **
3309 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3310 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3311 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3312 ** or if the acquisition of the lock fails, then return 0.  If the
3313 ** transition out of exclusive-mode is successful, return 1.  This
3314 ** operation must occur while the pager is still holding the exclusive
3315 ** lock on the main database file.
3316 **
3317 ** If op is one, then change from locking_mode=NORMAL into
3318 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3319 ** be released.  Return 1 if the transition is made and 0 if the
3320 ** WAL is already in exclusive-locking mode - meaning that this
3321 ** routine is a no-op.  The pager must already hold the exclusive lock
3322 ** on the main database file before invoking this operation.
3323 **
3324 ** If op is negative, then do a dry-run of the op==1 case but do
3325 ** not actually change anything. The pager uses this to see if it
3326 ** should acquire the database exclusive lock prior to invoking
3327 ** the op==1 case.
3328 */
3329 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3330   int rc;
3331   assert( pWal->writeLock==0 );
3332   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3333 
3334   /* pWal->readLock is usually set, but might be -1 if there was a
3335   ** prior error while attempting to acquire are read-lock. This cannot
3336   ** happen if the connection is actually in exclusive mode (as no xShmLock
3337   ** locks are taken in this case). Nor should the pager attempt to
3338   ** upgrade to exclusive-mode following such an error.
3339   */
3340   assert( pWal->readLock>=0 || pWal->lockError );
3341   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3342 
3343   if( op==0 ){
3344     if( pWal->exclusiveMode ){
3345       pWal->exclusiveMode = 0;
3346       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3347         pWal->exclusiveMode = 1;
3348       }
3349       rc = pWal->exclusiveMode==0;
3350     }else{
3351       /* Already in locking_mode=NORMAL */
3352       rc = 0;
3353     }
3354   }else if( op>0 ){
3355     assert( pWal->exclusiveMode==0 );
3356     assert( pWal->readLock>=0 );
3357     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3358     pWal->exclusiveMode = 1;
3359     rc = 1;
3360   }else{
3361     rc = pWal->exclusiveMode==0;
3362   }
3363   return rc;
3364 }
3365 
3366 /*
3367 ** Return true if the argument is non-NULL and the WAL module is using
3368 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3369 ** WAL module is using shared-memory, return false.
3370 */
3371 int sqlite3WalHeapMemory(Wal *pWal){
3372   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3373 }
3374 
3375 #ifdef SQLITE_ENABLE_SNAPSHOT
3376 /* Create a snapshot object.  The content of a snapshot is opaque to
3377 ** every other subsystem, so the WAL module can put whatever it needs
3378 ** in the object.
3379 */
3380 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3381   int rc = SQLITE_OK;
3382   WalIndexHdr *pRet;
3383 
3384   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3385 
3386   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3387   if( pRet==0 ){
3388     rc = SQLITE_NOMEM_BKPT;
3389   }else{
3390     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3391     *ppSnapshot = (sqlite3_snapshot*)pRet;
3392   }
3393 
3394   return rc;
3395 }
3396 
3397 /* Try to open on pSnapshot when the next read-transaction starts
3398 */
3399 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3400   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3401 }
3402 #endif /* SQLITE_ENABLE_SNAPSHOT */
3403 
3404 #ifdef SQLITE_ENABLE_ZIPVFS
3405 /*
3406 ** If the argument is not NULL, it points to a Wal object that holds a
3407 ** read-lock. This function returns the database page-size if it is known,
3408 ** or zero if it is not (or if pWal is NULL).
3409 */
3410 int sqlite3WalFramesize(Wal *pWal){
3411   assert( pWal==0 || pWal->readLock>=0 );
3412   return (pWal ? pWal->szPage : 0);
3413 }
3414 #endif
3415 
3416 /* Return the sqlite3_file object for the WAL file
3417 */
3418 sqlite3_file *sqlite3WalFile(Wal *pWal){
3419   return pWal->pWalFd;
3420 }
3421 
3422 #endif /* #ifndef SQLITE_OMIT_WAL */
3423