xref: /sqlite-3.40.0/src/wal.c (revision 7a420e22)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P, return the index of the last frame for page P in the WAL,
146 ** or return NULL if there are no frames for page P in the WAL.
147 **
148 ** The wal-index consists of a header region, followed by an one or
149 ** more index blocks.
150 **
151 ** The wal-index header contains the total number of frames within the WAL
152 ** in the the mxFrame field.
153 **
154 ** Each index block except for the first contains information on
155 ** HASHTABLE_NPAGE frames. The first index block contains information on
156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
158 ** first index block are the same size as all other index blocks in the
159 ** wal-index.
160 **
161 ** Each index block contains two sections, a page-mapping that contains the
162 ** database page number associated with each wal frame, and a hash-table
163 ** that allows readers to query an index block for a specific page number.
164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165 ** for the first index block) 32-bit page numbers. The first entry in the
166 ** first index-block contains the database page number corresponding to the
167 ** first frame in the WAL file. The first entry in the second index block
168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169 ** the log, and so on.
170 **
171 ** The last index block in a wal-index usually contains less than the full
172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173 ** depending on the contents of the WAL file. This does not change the
174 ** allocated size of the page-mapping array - the page-mapping array merely
175 ** contains unused entries.
176 **
177 ** Even without using the hash table, the last frame for page P
178 ** can be found by scanning the page-mapping sections of each index block
179 ** starting with the last index block and moving toward the first, and
180 ** within each index block, starting at the end and moving toward the
181 ** beginning.  The first entry that equals P corresponds to the frame
182 ** holding the content for that page.
183 **
184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186 ** hash table for each page number in the mapping section, so the hash
187 ** table is never more than half full.  The expected number of collisions
188 ** prior to finding a match is 1.  Each entry of the hash table is an
189 ** 1-based index of an entry in the mapping section of the same
190 ** index block.   Let K be the 1-based index of the largest entry in
191 ** the mapping section.  (For index blocks other than the last, K will
192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
194 ** contain a value of 0.
195 **
196 ** To look for page P in the hash table, first compute a hash iKey on
197 ** P as follows:
198 **
199 **      iKey = (P * 383) % HASHTABLE_NSLOT
200 **
201 ** Then start scanning entries of the hash table, starting with iKey
202 ** (wrapping around to the beginning when the end of the hash table is
203 ** reached) until an unused hash slot is found. Let the first unused slot
204 ** be at index iUnused.  (iUnused might be less than iKey if there was
205 ** wrap-around.) Because the hash table is never more than half full,
206 ** the search is guaranteed to eventually hit an unused entry.  Let
207 ** iMax be the value between iKey and iUnused, closest to iUnused,
208 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
209 ** no hash slot such that aHash[i]==p) then page P is not in the
210 ** current index block.  Otherwise the iMax-th mapping entry of the
211 ** current index block corresponds to the last entry that references
212 ** page P.
213 **
214 ** A hash search begins with the last index block and moves toward the
215 ** first index block, looking for entries corresponding to page P.  On
216 ** average, only two or three slots in each index block need to be
217 ** examined in order to either find the last entry for page P, or to
218 ** establish that no such entry exists in the block.  Each index block
219 ** holds over 4000 entries.  So two or three index blocks are sufficient
220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
221 ** comparisons (on average) suffice to either locate a frame in the
222 ** WAL or to establish that the frame does not exist in the WAL.  This
223 ** is much faster than scanning the entire 10MB WAL.
224 **
225 ** Note that entries are added in order of increasing K.  Hence, one
226 ** reader might be using some value K0 and a second reader that started
227 ** at a later time (after additional transactions were added to the WAL
228 ** and to the wal-index) might be using a different value K1, where K1>K0.
229 ** Both readers can use the same hash table and mapping section to get
230 ** the correct result.  There may be entries in the hash table with
231 ** K>K0 but to the first reader, those entries will appear to be unused
232 ** slots in the hash table and so the first reader will get an answer as
233 ** if no values greater than K0 had ever been inserted into the hash table
234 ** in the first place - which is what reader one wants.  Meanwhile, the
235 ** second reader using K1 will see additional values that were inserted
236 ** later, which is exactly what reader two wants.
237 **
238 ** When a rollback occurs, the value of K is decreased. Hash table entries
239 ** that correspond to frames greater than the new K value are removed
240 ** from the hash table at this point.
241 */
242 #ifndef SQLITE_OMIT_WAL
243 
244 #include "wal.h"
245 
246 /*
247 ** Trace output macros
248 */
249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
250 int sqlite3WalTrace = 0;
251 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
252 #else
253 # define WALTRACE(X)
254 #endif
255 
256 /*
257 ** The maximum (and only) versions of the wal and wal-index formats
258 ** that may be interpreted by this version of SQLite.
259 **
260 ** If a client begins recovering a WAL file and finds that (a) the checksum
261 ** values in the wal-header are correct and (b) the version field is not
262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263 **
264 ** Similarly, if a client successfully reads a wal-index header (i.e. the
265 ** checksum test is successful) and finds that the version field is not
266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267 ** returns SQLITE_CANTOPEN.
268 */
269 #define WAL_MAX_VERSION      3007000
270 #define WALINDEX_MAX_VERSION 3007000
271 
272 /*
273 ** Indices of various locking bytes.   WAL_NREADER is the number
274 ** of available reader locks and should be at least 3.
275 */
276 #define WAL_WRITE_LOCK         0
277 #define WAL_ALL_BUT_WRITE      1
278 #define WAL_CKPT_LOCK          1
279 #define WAL_RECOVER_LOCK       2
280 #define WAL_READ_LOCK(I)       (3+(I))
281 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
282 
283 
284 /* Object declarations */
285 typedef struct WalIndexHdr WalIndexHdr;
286 typedef struct WalIterator WalIterator;
287 typedef struct WalCkptInfo WalCkptInfo;
288 
289 
290 /*
291 ** The following object holds a copy of the wal-index header content.
292 **
293 ** The actual header in the wal-index consists of two copies of this
294 ** object.
295 **
296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
298 ** added in 3.7.1 when support for 64K pages was added.
299 */
300 struct WalIndexHdr {
301   u32 iVersion;                   /* Wal-index version */
302   u32 unused;                     /* Unused (padding) field */
303   u32 iChange;                    /* Counter incremented each transaction */
304   u8 isInit;                      /* 1 when initialized */
305   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
306   u16 szPage;                     /* Database page size in bytes. 1==64K */
307   u32 mxFrame;                    /* Index of last valid frame in the WAL */
308   u32 nPage;                      /* Size of database in pages */
309   u32 aFrameCksum[2];             /* Checksum of last frame in log */
310   u32 aSalt[2];                   /* Two salt values copied from WAL header */
311   u32 aCksum[2];                  /* Checksum over all prior fields */
312 };
313 
314 /*
315 ** A copy of the following object occurs in the wal-index immediately
316 ** following the second copy of the WalIndexHdr.  This object stores
317 ** information used by checkpoint.
318 **
319 ** nBackfill is the number of frames in the WAL that have been written
320 ** back into the database. (We call the act of moving content from WAL to
321 ** database "backfilling".)  The nBackfill number is never greater than
322 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325 ** mxFrame back to zero when the WAL is reset.
326 **
327 ** There is one entry in aReadMark[] for each reader lock.  If a reader
328 ** holds read-lock K, then the value in aReadMark[K] is no greater than
329 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
330 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
331 ** a special case; its value is never used and it exists as a place-holder
332 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334 ** directly from the database.
335 **
336 ** The value of aReadMark[K] may only be changed by a thread that
337 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
338 ** aReadMark[K] cannot changed while there is a reader is using that mark
339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340 **
341 ** The checkpointer may only transfer frames from WAL to database where
342 ** the frame numbers are less than or equal to every aReadMark[] that is
343 ** in use (that is, every aReadMark[j] for which there is a corresponding
344 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
345 ** largest value and will increase an unused aReadMark[] to mxFrame if there
346 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
348 ** in the WAL has been backfilled into the database) then new readers
349 ** will choose aReadMark[0] which has value 0 and hence such reader will
350 ** get all their all content directly from the database file and ignore
351 ** the WAL.
352 **
353 ** Writers normally append new frames to the end of the WAL.  However,
354 ** if nBackfill equals mxFrame (meaning that all WAL content has been
355 ** written back into the database) and if no readers are using the WAL
356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357 ** the writer will first "reset" the WAL back to the beginning and start
358 ** writing new content beginning at frame 1.
359 **
360 ** We assume that 32-bit loads are atomic and so no locks are needed in
361 ** order to read from any aReadMark[] entries.
362 */
363 struct WalCkptInfo {
364   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
365   u32 aReadMark[WAL_NREADER];     /* Reader marks */
366 };
367 #define READMARK_NOT_USED  0xffffffff
368 
369 
370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372 ** only support mandatory file-locks, we do not read or write data
373 ** from the region of the file on which locks are applied.
374 */
375 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376 #define WALINDEX_LOCK_RESERVED 16
377 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
378 
379 /* Size of header before each frame in wal */
380 #define WAL_FRAME_HDRSIZE 24
381 
382 /* Size of write ahead log header, including checksum. */
383 /* #define WAL_HDRSIZE 24 */
384 #define WAL_HDRSIZE 32
385 
386 /* WAL magic value. Either this value, or the same value with the least
387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388 ** big-endian format in the first 4 bytes of a WAL file.
389 **
390 ** If the LSB is set, then the checksums for each frame within the WAL
391 ** file are calculated by treating all data as an array of 32-bit
392 ** big-endian words. Otherwise, they are calculated by interpreting
393 ** all data as 32-bit little-endian words.
394 */
395 #define WAL_MAGIC 0x377f0682
396 
397 /*
398 ** Return the offset of frame iFrame in the write-ahead log file,
399 ** assuming a database page size of szPage bytes. The offset returned
400 ** is to the start of the write-ahead log frame-header.
401 */
402 #define walFrameOffset(iFrame, szPage) (                               \
403   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
404 )
405 
406 /*
407 ** An open write-ahead log file is represented by an instance of the
408 ** following object.
409 */
410 struct Wal {
411   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
412   sqlite3_file *pDbFd;       /* File handle for the database file */
413   sqlite3_file *pWalFd;      /* File handle for WAL file */
414   u32 iCallback;             /* Value to pass to log callback (or 0) */
415   int nWiData;               /* Size of array apWiData */
416   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
417   u32 szPage;                /* Database page size */
418   i16 readLock;              /* Which read lock is being held.  -1 for none */
419   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
420   u8 writeLock;              /* True if in a write transaction */
421   u8 ckptLock;               /* True if holding a checkpoint lock */
422   u8 readOnly;               /* True if the WAL file is open read-only */
423   WalIndexHdr hdr;           /* Wal-index header for current transaction */
424   const char *zWalName;      /* Name of WAL file */
425   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
426 #ifdef SQLITE_DEBUG
427   u8 lockError;              /* True if a locking error has occurred */
428 #endif
429 };
430 
431 /*
432 ** Candidate values for Wal.exclusiveMode.
433 */
434 #define WAL_NORMAL_MODE     0
435 #define WAL_EXCLUSIVE_MODE  1
436 #define WAL_HEAPMEMORY_MODE 2
437 
438 /*
439 ** Each page of the wal-index mapping contains a hash-table made up of
440 ** an array of HASHTABLE_NSLOT elements of the following type.
441 */
442 typedef u16 ht_slot;
443 
444 /*
445 ** This structure is used to implement an iterator that loops through
446 ** all frames in the WAL in database page order. Where two or more frames
447 ** correspond to the same database page, the iterator visits only the
448 ** frame most recently written to the WAL (in other words, the frame with
449 ** the largest index).
450 **
451 ** The internals of this structure are only accessed by:
452 **
453 **   walIteratorInit() - Create a new iterator,
454 **   walIteratorNext() - Step an iterator,
455 **   walIteratorFree() - Free an iterator.
456 **
457 ** This functionality is used by the checkpoint code (see walCheckpoint()).
458 */
459 struct WalIterator {
460   int iPrior;                     /* Last result returned from the iterator */
461   int nSegment;                   /* Size of the aSegment[] array */
462   struct WalSegment {
463     int iNext;                    /* Next slot in aIndex[] not yet returned */
464     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
465     u32 *aPgno;                   /* Array of page numbers. */
466     int nEntry;                   /* Max size of aPgno[] and aIndex[] arrays */
467     int iZero;                    /* Frame number associated with aPgno[0] */
468   } aSegment[1];                  /* One for every 32KB page in the WAL */
469 };
470 
471 /*
472 ** Define the parameters of the hash tables in the wal-index file. There
473 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
474 ** wal-index.
475 **
476 ** Changing any of these constants will alter the wal-index format and
477 ** create incompatibilities.
478 */
479 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
480 #define HASHTABLE_HASH_1     383                  /* Should be prime */
481 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
482 
483 /*
484 ** The block of page numbers associated with the first hash-table in a
485 ** wal-index is smaller than usual. This is so that there is a complete
486 ** hash-table on each aligned 32KB page of the wal-index.
487 */
488 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
489 
490 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
491 #define WALINDEX_PGSZ   (                                         \
492     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
493 )
494 
495 /*
496 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
497 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
498 ** numbered from zero.
499 **
500 ** If this call is successful, *ppPage is set to point to the wal-index
501 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
502 ** then an SQLite error code is returned and *ppPage is set to 0.
503 */
504 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
505   int rc = SQLITE_OK;
506 
507   /* Enlarge the pWal->apWiData[] array if required */
508   if( pWal->nWiData<=iPage ){
509     int nByte = sizeof(u32*)*(iPage+1);
510     volatile u32 **apNew;
511     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
512     if( !apNew ){
513       *ppPage = 0;
514       return SQLITE_NOMEM;
515     }
516     memset((void*)&apNew[pWal->nWiData], 0,
517            sizeof(u32*)*(iPage+1-pWal->nWiData));
518     pWal->apWiData = apNew;
519     pWal->nWiData = iPage+1;
520   }
521 
522   /* Request a pointer to the required page from the VFS */
523   if( pWal->apWiData[iPage]==0 ){
524     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
525       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
526       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
527     }else{
528       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
529           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
530       );
531     }
532   }
533 
534   *ppPage = pWal->apWiData[iPage];
535   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
536   return rc;
537 }
538 
539 /*
540 ** Return a pointer to the WalCkptInfo structure in the wal-index.
541 */
542 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
543   assert( pWal->nWiData>0 && pWal->apWiData[0] );
544   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
545 }
546 
547 /*
548 ** Return a pointer to the WalIndexHdr structure in the wal-index.
549 */
550 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
551   assert( pWal->nWiData>0 && pWal->apWiData[0] );
552   return (volatile WalIndexHdr*)pWal->apWiData[0];
553 }
554 
555 /*
556 ** The argument to this macro must be of type u32. On a little-endian
557 ** architecture, it returns the u32 value that results from interpreting
558 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
559 ** returns the value that would be produced by intepreting the 4 bytes
560 ** of the input value as a little-endian integer.
561 */
562 #define BYTESWAP32(x) ( \
563     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
564   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
565 )
566 
567 /*
568 ** Generate or extend an 8 byte checksum based on the data in
569 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
570 ** initial values of 0 and 0 if aIn==NULL).
571 **
572 ** The checksum is written back into aOut[] before returning.
573 **
574 ** nByte must be a positive multiple of 8.
575 */
576 static void walChecksumBytes(
577   int nativeCksum, /* True for native byte-order, false for non-native */
578   u8 *a,           /* Content to be checksummed */
579   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
580   const u32 *aIn,  /* Initial checksum value input */
581   u32 *aOut        /* OUT: Final checksum value output */
582 ){
583   u32 s1, s2;
584   u32 *aData = (u32 *)a;
585   u32 *aEnd = (u32 *)&a[nByte];
586 
587   if( aIn ){
588     s1 = aIn[0];
589     s2 = aIn[1];
590   }else{
591     s1 = s2 = 0;
592   }
593 
594   assert( nByte>=8 );
595   assert( (nByte&0x00000007)==0 );
596 
597   if( nativeCksum ){
598     do {
599       s1 += *aData++ + s2;
600       s2 += *aData++ + s1;
601     }while( aData<aEnd );
602   }else{
603     do {
604       s1 += BYTESWAP32(aData[0]) + s2;
605       s2 += BYTESWAP32(aData[1]) + s1;
606       aData += 2;
607     }while( aData<aEnd );
608   }
609 
610   aOut[0] = s1;
611   aOut[1] = s2;
612 }
613 
614 static void walShmBarrier(Wal *pWal){
615   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
616     sqlite3OsShmBarrier(pWal->pDbFd);
617   }
618 }
619 
620 /*
621 ** Write the header information in pWal->hdr into the wal-index.
622 **
623 ** The checksum on pWal->hdr is updated before it is written.
624 */
625 static void walIndexWriteHdr(Wal *pWal){
626   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
627   const int nCksum = offsetof(WalIndexHdr, aCksum);
628 
629   assert( pWal->writeLock );
630   pWal->hdr.isInit = 1;
631   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
632   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
633   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
634   walShmBarrier(pWal);
635   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
636 }
637 
638 /*
639 ** This function encodes a single frame header and writes it to a buffer
640 ** supplied by the caller. A frame-header is made up of a series of
641 ** 4-byte big-endian integers, as follows:
642 **
643 **     0: Page number.
644 **     4: For commit records, the size of the database image in pages
645 **        after the commit. For all other records, zero.
646 **     8: Salt-1 (copied from the wal-header)
647 **    12: Salt-2 (copied from the wal-header)
648 **    16: Checksum-1.
649 **    20: Checksum-2.
650 */
651 static void walEncodeFrame(
652   Wal *pWal,                      /* The write-ahead log */
653   u32 iPage,                      /* Database page number for frame */
654   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
655   u8 *aData,                      /* Pointer to page data */
656   u8 *aFrame                      /* OUT: Write encoded frame here */
657 ){
658   int nativeCksum;                /* True for native byte-order checksums */
659   u32 *aCksum = pWal->hdr.aFrameCksum;
660   assert( WAL_FRAME_HDRSIZE==24 );
661   sqlite3Put4byte(&aFrame[0], iPage);
662   sqlite3Put4byte(&aFrame[4], nTruncate);
663   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
664 
665   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
666   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
667   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
668 
669   sqlite3Put4byte(&aFrame[16], aCksum[0]);
670   sqlite3Put4byte(&aFrame[20], aCksum[1]);
671 }
672 
673 /*
674 ** Check to see if the frame with header in aFrame[] and content
675 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
676 ** *pnTruncate and return true.  Return if the frame is not valid.
677 */
678 static int walDecodeFrame(
679   Wal *pWal,                      /* The write-ahead log */
680   u32 *piPage,                    /* OUT: Database page number for frame */
681   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
682   u8 *aData,                      /* Pointer to page data (for checksum) */
683   u8 *aFrame                      /* Frame data */
684 ){
685   int nativeCksum;                /* True for native byte-order checksums */
686   u32 *aCksum = pWal->hdr.aFrameCksum;
687   u32 pgno;                       /* Page number of the frame */
688   assert( WAL_FRAME_HDRSIZE==24 );
689 
690   /* A frame is only valid if the salt values in the frame-header
691   ** match the salt values in the wal-header.
692   */
693   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
694     return 0;
695   }
696 
697   /* A frame is only valid if the page number is creater than zero.
698   */
699   pgno = sqlite3Get4byte(&aFrame[0]);
700   if( pgno==0 ){
701     return 0;
702   }
703 
704   /* A frame is only valid if a checksum of the WAL header,
705   ** all prior frams, the first 16 bytes of this frame-header,
706   ** and the frame-data matches the checksum in the last 8
707   ** bytes of this frame-header.
708   */
709   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
710   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
711   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
712   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
713    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
714   ){
715     /* Checksum failed. */
716     return 0;
717   }
718 
719   /* If we reach this point, the frame is valid.  Return the page number
720   ** and the new database size.
721   */
722   *piPage = pgno;
723   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
724   return 1;
725 }
726 
727 
728 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
729 /*
730 ** Names of locks.  This routine is used to provide debugging output and is not
731 ** a part of an ordinary build.
732 */
733 static const char *walLockName(int lockIdx){
734   if( lockIdx==WAL_WRITE_LOCK ){
735     return "WRITE-LOCK";
736   }else if( lockIdx==WAL_CKPT_LOCK ){
737     return "CKPT-LOCK";
738   }else if( lockIdx==WAL_RECOVER_LOCK ){
739     return "RECOVER-LOCK";
740   }else{
741     static char zName[15];
742     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
743                      lockIdx-WAL_READ_LOCK(0));
744     return zName;
745   }
746 }
747 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
748 
749 
750 /*
751 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
752 ** A lock cannot be moved directly between shared and exclusive - it must go
753 ** through the unlocked state first.
754 **
755 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
756 */
757 static int walLockShared(Wal *pWal, int lockIdx){
758   int rc;
759   if( pWal->exclusiveMode ) return SQLITE_OK;
760   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
761                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
762   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
763             walLockName(lockIdx), rc ? "failed" : "ok"));
764   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
765   return rc;
766 }
767 static void walUnlockShared(Wal *pWal, int lockIdx){
768   if( pWal->exclusiveMode ) return;
769   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
770                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
771   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
772 }
773 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
774   int rc;
775   if( pWal->exclusiveMode ) return SQLITE_OK;
776   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
777                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
778   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
779             walLockName(lockIdx), n, rc ? "failed" : "ok"));
780   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
781   return rc;
782 }
783 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
784   if( pWal->exclusiveMode ) return;
785   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
786                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
787   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
788              walLockName(lockIdx), n));
789 }
790 
791 /*
792 ** Compute a hash on a page number.  The resulting hash value must land
793 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
794 ** the hash to the next value in the event of a collision.
795 */
796 static int walHash(u32 iPage){
797   assert( iPage>0 );
798   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
799   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
800 }
801 static int walNextHash(int iPriorHash){
802   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
803 }
804 
805 /*
806 ** Return pointers to the hash table and page number array stored on
807 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
808 ** numbered starting from 0.
809 **
810 ** Set output variable *paHash to point to the start of the hash table
811 ** in the wal-index file. Set *piZero to one less than the frame
812 ** number of the first frame indexed by this hash table. If a
813 ** slot in the hash table is set to N, it refers to frame number
814 ** (*piZero+N) in the log.
815 **
816 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
817 ** first frame indexed by the hash table, frame (*piZero+1).
818 */
819 static int walHashGet(
820   Wal *pWal,                      /* WAL handle */
821   int iHash,                      /* Find the iHash'th table */
822   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
823   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
824   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
825 ){
826   int rc;                         /* Return code */
827   volatile u32 *aPgno;
828 
829   rc = walIndexPage(pWal, iHash, &aPgno);
830   assert( rc==SQLITE_OK || iHash>0 );
831 
832   if( rc==SQLITE_OK ){
833     u32 iZero;
834     volatile ht_slot *aHash;
835 
836     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
837     if( iHash==0 ){
838       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
839       iZero = 0;
840     }else{
841       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
842     }
843 
844     *paPgno = &aPgno[-1];
845     *paHash = aHash;
846     *piZero = iZero;
847   }
848   return rc;
849 }
850 
851 /*
852 ** Return the number of the wal-index page that contains the hash-table
853 ** and page-number array that contain entries corresponding to WAL frame
854 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
855 ** are numbered starting from 0.
856 */
857 static int walFramePage(u32 iFrame){
858   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
859   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
860        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
861        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
862        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
863        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
864   );
865   return iHash;
866 }
867 
868 /*
869 ** Return the page number associated with frame iFrame in this WAL.
870 */
871 static u32 walFramePgno(Wal *pWal, u32 iFrame){
872   int iHash = walFramePage(iFrame);
873   if( iHash==0 ){
874     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
875   }
876   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
877 }
878 
879 /*
880 ** Remove entries from the hash table that point to WAL slots greater
881 ** than pWal->hdr.mxFrame.
882 **
883 ** This function is called whenever pWal->hdr.mxFrame is decreased due
884 ** to a rollback or savepoint.
885 **
886 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
887 ** updated.  Any later hash tables will be automatically cleared when
888 ** pWal->hdr.mxFrame advances to the point where those hash tables are
889 ** actually needed.
890 */
891 static void walCleanupHash(Wal *pWal){
892   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
893   volatile u32 *aPgno = 0;        /* Page number array for hash table */
894   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
895   int iLimit = 0;                 /* Zero values greater than this */
896   int nByte;                      /* Number of bytes to zero in aPgno[] */
897   int i;                          /* Used to iterate through aHash[] */
898 
899   assert( pWal->writeLock );
900   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
901   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
902   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
903 
904   if( pWal->hdr.mxFrame==0 ) return;
905 
906   /* Obtain pointers to the hash-table and page-number array containing
907   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
908   ** that the page said hash-table and array reside on is already mapped.
909   */
910   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
911   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
912   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
913 
914   /* Zero all hash-table entries that correspond to frame numbers greater
915   ** than pWal->hdr.mxFrame.
916   */
917   iLimit = pWal->hdr.mxFrame - iZero;
918   assert( iLimit>0 );
919   for(i=0; i<HASHTABLE_NSLOT; i++){
920     if( aHash[i]>iLimit ){
921       aHash[i] = 0;
922     }
923   }
924 
925   /* Zero the entries in the aPgno array that correspond to frames with
926   ** frame numbers greater than pWal->hdr.mxFrame.
927   */
928   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
929   memset((void *)&aPgno[iLimit+1], 0, nByte);
930 
931 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
932   /* Verify that the every entry in the mapping region is still reachable
933   ** via the hash table even after the cleanup.
934   */
935   if( iLimit ){
936     int i;           /* Loop counter */
937     int iKey;        /* Hash key */
938     for(i=1; i<=iLimit; i++){
939       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
940         if( aHash[iKey]==i ) break;
941       }
942       assert( aHash[iKey]==i );
943     }
944   }
945 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
946 }
947 
948 
949 /*
950 ** Set an entry in the wal-index that will map database page number
951 ** pPage into WAL frame iFrame.
952 */
953 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
954   int rc;                         /* Return code */
955   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
956   volatile u32 *aPgno = 0;        /* Page number array */
957   volatile ht_slot *aHash = 0;    /* Hash table */
958 
959   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
960 
961   /* Assuming the wal-index file was successfully mapped, populate the
962   ** page number array and hash table entry.
963   */
964   if( rc==SQLITE_OK ){
965     int iKey;                     /* Hash table key */
966     int idx;                      /* Value to write to hash-table slot */
967     int nCollide;                 /* Number of hash collisions */
968 
969     idx = iFrame - iZero;
970     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
971 
972     /* If this is the first entry to be added to this hash-table, zero the
973     ** entire hash table and aPgno[] array before proceding.
974     */
975     if( idx==1 ){
976       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
977       memset((void*)&aPgno[1], 0, nByte);
978     }
979 
980     /* If the entry in aPgno[] is already set, then the previous writer
981     ** must have exited unexpectedly in the middle of a transaction (after
982     ** writing one or more dirty pages to the WAL to free up memory).
983     ** Remove the remnants of that writers uncommitted transaction from
984     ** the hash-table before writing any new entries.
985     */
986     if( aPgno[idx] ){
987       walCleanupHash(pWal);
988       assert( !aPgno[idx] );
989     }
990 
991     /* Write the aPgno[] array entry and the hash-table slot. */
992     nCollide = idx;
993     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
994       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
995     }
996     aPgno[idx] = iPage;
997     aHash[iKey] = (ht_slot)idx;
998 
999 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1000     /* Verify that the number of entries in the hash table exactly equals
1001     ** the number of entries in the mapping region.
1002     */
1003     {
1004       int i;           /* Loop counter */
1005       int nEntry = 0;  /* Number of entries in the hash table */
1006       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1007       assert( nEntry==idx );
1008     }
1009 
1010     /* Verify that the every entry in the mapping region is reachable
1011     ** via the hash table.  This turns out to be a really, really expensive
1012     ** thing to check, so only do this occasionally - not on every
1013     ** iteration.
1014     */
1015     if( (idx&0x3ff)==0 ){
1016       int i;           /* Loop counter */
1017       for(i=1; i<=idx; i++){
1018         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1019           if( aHash[iKey]==i ) break;
1020         }
1021         assert( aHash[iKey]==i );
1022       }
1023     }
1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1025   }
1026 
1027 
1028   return rc;
1029 }
1030 
1031 
1032 /*
1033 ** Recover the wal-index by reading the write-ahead log file.
1034 **
1035 ** This routine first tries to establish an exclusive lock on the
1036 ** wal-index to prevent other threads/processes from doing anything
1037 ** with the WAL or wal-index while recovery is running.  The
1038 ** WAL_RECOVER_LOCK is also held so that other threads will know
1039 ** that this thread is running recovery.  If unable to establish
1040 ** the necessary locks, this routine returns SQLITE_BUSY.
1041 */
1042 static int walIndexRecover(Wal *pWal){
1043   int rc;                         /* Return Code */
1044   i64 nSize;                      /* Size of log file */
1045   u32 aFrameCksum[2] = {0, 0};
1046   int iLock;                      /* Lock offset to lock for checkpoint */
1047   int nLock;                      /* Number of locks to hold */
1048 
1049   /* Obtain an exclusive lock on all byte in the locking range not already
1050   ** locked by the caller. The caller is guaranteed to have locked the
1051   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1052   ** If successful, the same bytes that are locked here are unlocked before
1053   ** this function returns.
1054   */
1055   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1056   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1057   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1058   assert( pWal->writeLock );
1059   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1060   nLock = SQLITE_SHM_NLOCK - iLock;
1061   rc = walLockExclusive(pWal, iLock, nLock);
1062   if( rc ){
1063     return rc;
1064   }
1065   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1066 
1067   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1068 
1069   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1070   if( rc!=SQLITE_OK ){
1071     goto recovery_error;
1072   }
1073 
1074   if( nSize>WAL_HDRSIZE ){
1075     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1076     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1077     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1078     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1079     int iFrame;                   /* Index of last frame read */
1080     i64 iOffset;                  /* Next offset to read from log file */
1081     int szPage;                   /* Page size according to the log */
1082     u32 magic;                    /* Magic value read from WAL header */
1083     u32 version;                  /* Magic value read from WAL header */
1084 
1085     /* Read in the WAL header. */
1086     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1087     if( rc!=SQLITE_OK ){
1088       goto recovery_error;
1089     }
1090 
1091     /* If the database page size is not a power of two, or is greater than
1092     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1093     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1094     ** WAL file.
1095     */
1096     magic = sqlite3Get4byte(&aBuf[0]);
1097     szPage = sqlite3Get4byte(&aBuf[8]);
1098     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1099      || szPage&(szPage-1)
1100      || szPage>SQLITE_MAX_PAGE_SIZE
1101      || szPage<512
1102     ){
1103       goto finished;
1104     }
1105     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1106     pWal->szPage = szPage;
1107     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1108     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1109 
1110     /* Verify that the WAL header checksum is correct */
1111     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1112         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1113     );
1114     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1115      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1116     ){
1117       goto finished;
1118     }
1119 
1120     /* Verify that the version number on the WAL format is one that
1121     ** are able to understand */
1122     version = sqlite3Get4byte(&aBuf[4]);
1123     if( version!=WAL_MAX_VERSION ){
1124       rc = SQLITE_CANTOPEN_BKPT;
1125       goto finished;
1126     }
1127 
1128     /* Malloc a buffer to read frames into. */
1129     szFrame = szPage + WAL_FRAME_HDRSIZE;
1130     aFrame = (u8 *)sqlite3_malloc(szFrame);
1131     if( !aFrame ){
1132       rc = SQLITE_NOMEM;
1133       goto recovery_error;
1134     }
1135     aData = &aFrame[WAL_FRAME_HDRSIZE];
1136 
1137     /* Read all frames from the log file. */
1138     iFrame = 0;
1139     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1140       u32 pgno;                   /* Database page number for frame */
1141       u32 nTruncate;              /* dbsize field from frame header */
1142       int isValid;                /* True if this frame is valid */
1143 
1144       /* Read and decode the next log frame. */
1145       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1146       if( rc!=SQLITE_OK ) break;
1147       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1148       if( !isValid ) break;
1149       rc = walIndexAppend(pWal, ++iFrame, pgno);
1150       if( rc!=SQLITE_OK ) break;
1151 
1152       /* If nTruncate is non-zero, this is a commit record. */
1153       if( nTruncate ){
1154         pWal->hdr.mxFrame = iFrame;
1155         pWal->hdr.nPage = nTruncate;
1156         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1157         testcase( szPage<=32768 );
1158         testcase( szPage>=65536 );
1159         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1160         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1161       }
1162     }
1163 
1164     sqlite3_free(aFrame);
1165   }
1166 
1167 finished:
1168   if( rc==SQLITE_OK ){
1169     volatile WalCkptInfo *pInfo;
1170     int i;
1171     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1172     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1173     walIndexWriteHdr(pWal);
1174 
1175     /* Reset the checkpoint-header. This is safe because this thread is
1176     ** currently holding locks that exclude all other readers, writers and
1177     ** checkpointers.
1178     */
1179     pInfo = walCkptInfo(pWal);
1180     pInfo->nBackfill = 0;
1181     pInfo->aReadMark[0] = 0;
1182     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1183 
1184     /* If more than one frame was recovered from the log file, report an
1185     ** event via sqlite3_log(). This is to help with identifying performance
1186     ** problems caused by applications routinely shutting down without
1187     ** checkpointing the log file.
1188     */
1189     if( pWal->hdr.nPage ){
1190       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1191           pWal->hdr.nPage, pWal->zWalName
1192       );
1193     }
1194   }
1195 
1196 recovery_error:
1197   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1198   walUnlockExclusive(pWal, iLock, nLock);
1199   return rc;
1200 }
1201 
1202 /*
1203 ** Close an open wal-index.
1204 */
1205 static void walIndexClose(Wal *pWal, int isDelete){
1206   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1207     int i;
1208     for(i=0; i<pWal->nWiData; i++){
1209       sqlite3_free((void *)pWal->apWiData[i]);
1210       pWal->apWiData[i] = 0;
1211     }
1212   }else{
1213     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1214   }
1215 }
1216 
1217 /*
1218 ** Open a connection to the WAL file zWalName. The database file must
1219 ** already be opened on connection pDbFd. The buffer that zWalName points
1220 ** to must remain valid for the lifetime of the returned Wal* handle.
1221 **
1222 ** A SHARED lock should be held on the database file when this function
1223 ** is called. The purpose of this SHARED lock is to prevent any other
1224 ** client from unlinking the WAL or wal-index file. If another process
1225 ** were to do this just after this client opened one of these files, the
1226 ** system would be badly broken.
1227 **
1228 ** If the log file is successfully opened, SQLITE_OK is returned and
1229 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1230 ** an SQLite error code is returned and *ppWal is left unmodified.
1231 */
1232 int sqlite3WalOpen(
1233   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1234   sqlite3_file *pDbFd,            /* The open database file */
1235   const char *zWalName,           /* Name of the WAL file */
1236   int bNoShm,                     /* True to run in heap-memory mode */
1237   Wal **ppWal                     /* OUT: Allocated Wal handle */
1238 ){
1239   int rc;                         /* Return Code */
1240   Wal *pRet;                      /* Object to allocate and return */
1241   int flags;                      /* Flags passed to OsOpen() */
1242 
1243   assert( zWalName && zWalName[0] );
1244   assert( pDbFd );
1245 
1246   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1247   ** this source file.  Verify that the #defines of the locking byte offsets
1248   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1249   */
1250 #ifdef WIN_SHM_BASE
1251   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1252 #endif
1253 #ifdef UNIX_SHM_BASE
1254   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1255 #endif
1256 
1257 
1258   /* Allocate an instance of struct Wal to return. */
1259   *ppWal = 0;
1260   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1261   if( !pRet ){
1262     return SQLITE_NOMEM;
1263   }
1264 
1265   pRet->pVfs = pVfs;
1266   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1267   pRet->pDbFd = pDbFd;
1268   pRet->readLock = -1;
1269   pRet->zWalName = zWalName;
1270   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1271 
1272   /* Open file handle on the write-ahead log file. */
1273   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1274   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1275   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1276     pRet->readOnly = 1;
1277   }
1278 
1279   if( rc!=SQLITE_OK ){
1280     walIndexClose(pRet, 0);
1281     sqlite3OsClose(pRet->pWalFd);
1282     sqlite3_free(pRet);
1283   }else{
1284     *ppWal = pRet;
1285     WALTRACE(("WAL%d: opened\n", pRet));
1286   }
1287   return rc;
1288 }
1289 
1290 /*
1291 ** Find the smallest page number out of all pages held in the WAL that
1292 ** has not been returned by any prior invocation of this method on the
1293 ** same WalIterator object.   Write into *piFrame the frame index where
1294 ** that page was last written into the WAL.  Write into *piPage the page
1295 ** number.
1296 **
1297 ** Return 0 on success.  If there are no pages in the WAL with a page
1298 ** number larger than *piPage, then return 1.
1299 */
1300 static int walIteratorNext(
1301   WalIterator *p,               /* Iterator */
1302   u32 *piPage,                  /* OUT: The page number of the next page */
1303   u32 *piFrame                  /* OUT: Wal frame index of next page */
1304 ){
1305   u32 iMin;                     /* Result pgno must be greater than iMin */
1306   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1307   int i;                        /* For looping through segments */
1308 
1309   iMin = p->iPrior;
1310   assert( iMin<0xffffffff );
1311   for(i=p->nSegment-1; i>=0; i--){
1312     struct WalSegment *pSegment = &p->aSegment[i];
1313     while( pSegment->iNext<pSegment->nEntry ){
1314       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1315       if( iPg>iMin ){
1316         if( iPg<iRet ){
1317           iRet = iPg;
1318           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1319         }
1320         break;
1321       }
1322       pSegment->iNext++;
1323     }
1324   }
1325 
1326   *piPage = p->iPrior = iRet;
1327   return (iRet==0xFFFFFFFF);
1328 }
1329 
1330 /*
1331 ** This function merges two sorted lists into a single sorted list.
1332 */
1333 static void walMerge(
1334   u32 *aContent,                  /* Pages in wal */
1335   ht_slot *aLeft,                 /* IN: Left hand input list */
1336   int nLeft,                      /* IN: Elements in array *paLeft */
1337   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1338   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1339   ht_slot *aTmp                   /* Temporary buffer */
1340 ){
1341   int iLeft = 0;                  /* Current index in aLeft */
1342   int iRight = 0;                 /* Current index in aRight */
1343   int iOut = 0;                   /* Current index in output buffer */
1344   int nRight = *pnRight;
1345   ht_slot *aRight = *paRight;
1346 
1347   assert( nLeft>0 && nRight>0 );
1348   while( iRight<nRight || iLeft<nLeft ){
1349     ht_slot logpage;
1350     Pgno dbpage;
1351 
1352     if( (iLeft<nLeft)
1353      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1354     ){
1355       logpage = aLeft[iLeft++];
1356     }else{
1357       logpage = aRight[iRight++];
1358     }
1359     dbpage = aContent[logpage];
1360 
1361     aTmp[iOut++] = logpage;
1362     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1363 
1364     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1365     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1366   }
1367 
1368   *paRight = aLeft;
1369   *pnRight = iOut;
1370   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1371 }
1372 
1373 /*
1374 ** Sort the elements in list aList, removing any duplicates.
1375 */
1376 static void walMergesort(
1377   u32 *aContent,                  /* Pages in wal */
1378   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1379   ht_slot *aList,                 /* IN/OUT: List to sort */
1380   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1381 ){
1382   struct Sublist {
1383     int nList;                    /* Number of elements in aList */
1384     ht_slot *aList;               /* Pointer to sub-list content */
1385   };
1386 
1387   const int nList = *pnList;      /* Size of input list */
1388   int nMerge = 0;                 /* Number of elements in list aMerge */
1389   ht_slot *aMerge = 0;            /* List to be merged */
1390   int iList;                      /* Index into input list */
1391   int iSub = 0;                   /* Index into aSub array */
1392   struct Sublist aSub[13];        /* Array of sub-lists */
1393 
1394   memset(aSub, 0, sizeof(aSub));
1395   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1396   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1397 
1398   for(iList=0; iList<nList; iList++){
1399     nMerge = 1;
1400     aMerge = &aList[iList];
1401     for(iSub=0; iList & (1<<iSub); iSub++){
1402       struct Sublist *p = &aSub[iSub];
1403       assert( p->aList && p->nList<=(1<<iSub) );
1404       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1405       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1406     }
1407     aSub[iSub].aList = aMerge;
1408     aSub[iSub].nList = nMerge;
1409   }
1410 
1411   for(iSub++; iSub<ArraySize(aSub); iSub++){
1412     if( nList & (1<<iSub) ){
1413       struct Sublist *p = &aSub[iSub];
1414       assert( p->nList<=(1<<iSub) );
1415       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1416       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1417     }
1418   }
1419   assert( aMerge==aList );
1420   *pnList = nMerge;
1421 
1422 #ifdef SQLITE_DEBUG
1423   {
1424     int i;
1425     for(i=1; i<*pnList; i++){
1426       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1427     }
1428   }
1429 #endif
1430 }
1431 
1432 /*
1433 ** Free an iterator allocated by walIteratorInit().
1434 */
1435 static void walIteratorFree(WalIterator *p){
1436   sqlite3ScratchFree(p);
1437 }
1438 
1439 /*
1440 ** Construct a WalInterator object that can be used to loop over all
1441 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1442 **
1443 ** On success, make *pp point to the newly allocated WalInterator object
1444 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1445 ** returns an error, the value of *pp is undefined.
1446 **
1447 ** The calling routine should invoke walIteratorFree() to destroy the
1448 ** WalIterator object when it has finished with it.
1449 */
1450 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1451   WalIterator *p;                 /* Return value */
1452   int nSegment;                   /* Number of segments to merge */
1453   u32 iLast;                      /* Last frame in log */
1454   int nByte;                      /* Number of bytes to allocate */
1455   int i;                          /* Iterator variable */
1456   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1457   int rc = SQLITE_OK;             /* Return Code */
1458 
1459   /* This routine only runs while holding the checkpoint lock. And
1460   ** it only runs if there is actually content in the log (mxFrame>0).
1461   */
1462   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1463   iLast = pWal->hdr.mxFrame;
1464 
1465   /* Allocate space for the WalIterator object. */
1466   nSegment = walFramePage(iLast) + 1;
1467   nByte = sizeof(WalIterator)
1468         + (nSegment-1)*sizeof(struct WalSegment)
1469         + iLast*sizeof(ht_slot);
1470   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
1471   if( !p ){
1472     return SQLITE_NOMEM;
1473   }
1474   memset(p, 0, nByte);
1475   p->nSegment = nSegment;
1476 
1477   /* Allocate temporary space used by the merge-sort routine. This block
1478   ** of memory will be freed before this function returns.
1479   */
1480   aTmp = (ht_slot *)sqlite3ScratchMalloc(
1481       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1482   );
1483   if( !aTmp ){
1484     rc = SQLITE_NOMEM;
1485   }
1486 
1487   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1488     volatile ht_slot *aHash;
1489     u32 iZero;
1490     volatile u32 *aPgno;
1491 
1492     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1493     if( rc==SQLITE_OK ){
1494       int j;                      /* Counter variable */
1495       int nEntry;                 /* Number of entries in this segment */
1496       ht_slot *aIndex;            /* Sorted index for this segment */
1497 
1498       aPgno++;
1499       if( (i+1)==nSegment ){
1500         nEntry = (int)(iLast - iZero);
1501       }else{
1502         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1503       }
1504       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1505       iZero++;
1506 
1507       for(j=0; j<nEntry; j++){
1508         aIndex[j] = (ht_slot)j;
1509       }
1510       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1511       p->aSegment[i].iZero = iZero;
1512       p->aSegment[i].nEntry = nEntry;
1513       p->aSegment[i].aIndex = aIndex;
1514       p->aSegment[i].aPgno = (u32 *)aPgno;
1515     }
1516   }
1517   sqlite3ScratchFree(aTmp);
1518 
1519   if( rc!=SQLITE_OK ){
1520     walIteratorFree(p);
1521   }
1522   *pp = p;
1523   return rc;
1524 }
1525 
1526 /*
1527 ** Copy as much content as we can from the WAL back into the database file
1528 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1529 **
1530 ** The amount of information copies from WAL to database might be limited
1531 ** by active readers.  This routine will never overwrite a database page
1532 ** that a concurrent reader might be using.
1533 **
1534 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1535 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1536 ** checkpoints are always run by a background thread or background
1537 ** process, foreground threads will never block on a lengthy fsync call.
1538 **
1539 ** Fsync is called on the WAL before writing content out of the WAL and
1540 ** into the database.  This ensures that if the new content is persistent
1541 ** in the WAL and can be recovered following a power-loss or hard reset.
1542 **
1543 ** Fsync is also called on the database file if (and only if) the entire
1544 ** WAL content is copied into the database file.  This second fsync makes
1545 ** it safe to delete the WAL since the new content will persist in the
1546 ** database file.
1547 **
1548 ** This routine uses and updates the nBackfill field of the wal-index header.
1549 ** This is the only routine tha will increase the value of nBackfill.
1550 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1551 ** its value.)
1552 **
1553 ** The caller must be holding sufficient locks to ensure that no other
1554 ** checkpoint is running (in any other thread or process) at the same
1555 ** time.
1556 */
1557 static int walCheckpoint(
1558   Wal *pWal,                      /* Wal connection */
1559   int sync_flags,                 /* Flags for OsSync() (or 0) */
1560   int nBuf,                       /* Size of zBuf in bytes */
1561   u8 *zBuf                        /* Temporary buffer to use */
1562 ){
1563   int rc;                         /* Return code */
1564   int szPage;                     /* Database page-size */
1565   WalIterator *pIter = 0;         /* Wal iterator context */
1566   u32 iDbpage = 0;                /* Next database page to write */
1567   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1568   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1569   u32 mxPage;                     /* Max database page to write */
1570   int i;                          /* Loop counter */
1571   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1572 
1573   szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1574   testcase( szPage<=32768 );
1575   testcase( szPage>=65536 );
1576   if( pWal->hdr.mxFrame==0 ) return SQLITE_OK;
1577 
1578   /* Allocate the iterator */
1579   rc = walIteratorInit(pWal, &pIter);
1580   if( rc!=SQLITE_OK ){
1581     return rc;
1582   }
1583   assert( pIter );
1584 
1585   /*** TODO:  Move this test out to the caller.  Make it an assert() here ***/
1586   if( szPage!=nBuf ){
1587     rc = SQLITE_CORRUPT_BKPT;
1588     goto walcheckpoint_out;
1589   }
1590 
1591   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1592   ** safe to write into the database.  Frames beyond mxSafeFrame might
1593   ** overwrite database pages that are in use by active readers and thus
1594   ** cannot be backfilled from the WAL.
1595   */
1596   mxSafeFrame = pWal->hdr.mxFrame;
1597   mxPage = pWal->hdr.nPage;
1598   pInfo = walCkptInfo(pWal);
1599   for(i=1; i<WAL_NREADER; i++){
1600     u32 y = pInfo->aReadMark[i];
1601     if( mxSafeFrame>=y ){
1602       assert( y<=pWal->hdr.mxFrame );
1603       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1604       if( rc==SQLITE_OK ){
1605         pInfo->aReadMark[i] = READMARK_NOT_USED;
1606         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1607       }else if( rc==SQLITE_BUSY ){
1608         mxSafeFrame = y;
1609       }else{
1610         goto walcheckpoint_out;
1611       }
1612     }
1613   }
1614 
1615   if( pInfo->nBackfill<mxSafeFrame
1616    && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1617   ){
1618     i64 nSize;                    /* Current size of database file */
1619     u32 nBackfill = pInfo->nBackfill;
1620 
1621     /* Sync the WAL to disk */
1622     if( sync_flags ){
1623       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1624     }
1625 
1626     /* If the database file may grow as a result of this checkpoint, hint
1627     ** about the eventual size of the db file to the VFS layer.
1628     */
1629     if( rc==SQLITE_OK ){
1630       i64 nReq = ((i64)mxPage * szPage);
1631       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1632       if( rc==SQLITE_OK && nSize<nReq ){
1633         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1634       }
1635     }
1636 
1637     /* Iterate through the contents of the WAL, copying data to the db file. */
1638     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1639       i64 iOffset;
1640       assert( walFramePgno(pWal, iFrame)==iDbpage );
1641       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
1642       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1643       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1644       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1645       if( rc!=SQLITE_OK ) break;
1646       iOffset = (iDbpage-1)*(i64)szPage;
1647       testcase( IS_BIG_INT(iOffset) );
1648       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1649       if( rc!=SQLITE_OK ) break;
1650     }
1651 
1652     /* If work was actually accomplished... */
1653     if( rc==SQLITE_OK ){
1654       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1655         i64 szDb = pWal->hdr.nPage*(i64)szPage;
1656         testcase( IS_BIG_INT(szDb) );
1657         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1658         if( rc==SQLITE_OK && sync_flags ){
1659           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1660         }
1661       }
1662       if( rc==SQLITE_OK ){
1663         pInfo->nBackfill = mxSafeFrame;
1664       }
1665     }
1666 
1667     /* Release the reader lock held while backfilling */
1668     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1669   }else if( rc==SQLITE_BUSY ){
1670     /* Reset the return code so as not to report a checkpoint failure
1671     ** just because active readers prevent any backfill.
1672     */
1673     rc = SQLITE_OK;
1674   }
1675 
1676  walcheckpoint_out:
1677   walIteratorFree(pIter);
1678   return rc;
1679 }
1680 
1681 /*
1682 ** Close a connection to a log file.
1683 */
1684 int sqlite3WalClose(
1685   Wal *pWal,                      /* Wal to close */
1686   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1687   int nBuf,
1688   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1689 ){
1690   int rc = SQLITE_OK;
1691   if( pWal ){
1692     int isDelete = 0;             /* True to unlink wal and wal-index files */
1693 
1694     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1695     ** ordinary, rollback-mode locking methods, this guarantees that the
1696     ** connection associated with this log file is the only connection to
1697     ** the database. In this case checkpoint the database and unlink both
1698     ** the wal and wal-index files.
1699     **
1700     ** The EXCLUSIVE lock is not released before returning.
1701     */
1702     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1703     if( rc==SQLITE_OK ){
1704       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1705         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1706       }
1707       rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
1708       if( rc==SQLITE_OK ){
1709         isDelete = 1;
1710       }
1711     }
1712 
1713     walIndexClose(pWal, isDelete);
1714     sqlite3OsClose(pWal->pWalFd);
1715     if( isDelete ){
1716       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1717     }
1718     WALTRACE(("WAL%p: closed\n", pWal));
1719     sqlite3_free((void *)pWal->apWiData);
1720     sqlite3_free(pWal);
1721   }
1722   return rc;
1723 }
1724 
1725 /*
1726 ** Try to read the wal-index header.  Return 0 on success and 1 if
1727 ** there is a problem.
1728 **
1729 ** The wal-index is in shared memory.  Another thread or process might
1730 ** be writing the header at the same time this procedure is trying to
1731 ** read it, which might result in inconsistency.  A dirty read is detected
1732 ** by verifying that both copies of the header are the same and also by
1733 ** a checksum on the header.
1734 **
1735 ** If and only if the read is consistent and the header is different from
1736 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1737 ** and *pChanged is set to 1.
1738 **
1739 ** If the checksum cannot be verified return non-zero. If the header
1740 ** is read successfully and the checksum verified, return zero.
1741 */
1742 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1743   u32 aCksum[2];                  /* Checksum on the header content */
1744   WalIndexHdr h1, h2;             /* Two copies of the header content */
1745   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
1746 
1747   /* The first page of the wal-index must be mapped at this point. */
1748   assert( pWal->nWiData>0 && pWal->apWiData[0] );
1749 
1750   /* Read the header. This might happen concurrently with a write to the
1751   ** same area of shared memory on a different CPU in a SMP,
1752   ** meaning it is possible that an inconsistent snapshot is read
1753   ** from the file. If this happens, return non-zero.
1754   **
1755   ** There are two copies of the header at the beginning of the wal-index.
1756   ** When reading, read [0] first then [1].  Writes are in the reverse order.
1757   ** Memory barriers are used to prevent the compiler or the hardware from
1758   ** reordering the reads and writes.
1759   */
1760   aHdr = walIndexHdr(pWal);
1761   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1762   walShmBarrier(pWal);
1763   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1764 
1765   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1766     return 1;   /* Dirty read */
1767   }
1768   if( h1.isInit==0 ){
1769     return 1;   /* Malformed header - probably all zeros */
1770   }
1771   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
1772   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1773     return 1;   /* Checksum does not match */
1774   }
1775 
1776   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
1777     *pChanged = 1;
1778     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
1779     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1780     testcase( pWal->szPage<=32768 );
1781     testcase( pWal->szPage>=65536 );
1782   }
1783 
1784   /* The header was successfully read. Return zero. */
1785   return 0;
1786 }
1787 
1788 /*
1789 ** Read the wal-index header from the wal-index and into pWal->hdr.
1790 ** If the wal-header appears to be corrupt, try to reconstruct the
1791 ** wal-index from the WAL before returning.
1792 **
1793 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1794 ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
1795 ** to 0.
1796 **
1797 ** If the wal-index header is successfully read, return SQLITE_OK.
1798 ** Otherwise an SQLite error code.
1799 */
1800 static int walIndexReadHdr(Wal *pWal, int *pChanged){
1801   int rc;                         /* Return code */
1802   int badHdr;                     /* True if a header read failed */
1803   volatile u32 *page0;            /* Chunk of wal-index containing header */
1804 
1805   /* Ensure that page 0 of the wal-index (the page that contains the
1806   ** wal-index header) is mapped. Return early if an error occurs here.
1807   */
1808   assert( pChanged );
1809   rc = walIndexPage(pWal, 0, &page0);
1810   if( rc!=SQLITE_OK ){
1811     return rc;
1812   };
1813   assert( page0 || pWal->writeLock==0 );
1814 
1815   /* If the first page of the wal-index has been mapped, try to read the
1816   ** wal-index header immediately, without holding any lock. This usually
1817   ** works, but may fail if the wal-index header is corrupt or currently
1818   ** being modified by another thread or process.
1819   */
1820   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
1821 
1822   /* If the first attempt failed, it might have been due to a race
1823   ** with a writer.  So get a WRITE lock and try again.
1824   */
1825   assert( badHdr==0 || pWal->writeLock==0 );
1826   if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1827     pWal->writeLock = 1;
1828     if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1829       badHdr = walIndexTryHdr(pWal, pChanged);
1830       if( badHdr ){
1831         /* If the wal-index header is still malformed even while holding
1832         ** a WRITE lock, it can only mean that the header is corrupted and
1833         ** needs to be reconstructed.  So run recovery to do exactly that.
1834         */
1835         rc = walIndexRecover(pWal);
1836         *pChanged = 1;
1837       }
1838     }
1839     pWal->writeLock = 0;
1840     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1841   }
1842 
1843   /* If the header is read successfully, check the version number to make
1844   ** sure the wal-index was not constructed with some future format that
1845   ** this version of SQLite cannot understand.
1846   */
1847   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1848     rc = SQLITE_CANTOPEN_BKPT;
1849   }
1850 
1851   return rc;
1852 }
1853 
1854 /*
1855 ** This is the value that walTryBeginRead returns when it needs to
1856 ** be retried.
1857 */
1858 #define WAL_RETRY  (-1)
1859 
1860 /*
1861 ** Attempt to start a read transaction.  This might fail due to a race or
1862 ** other transient condition.  When that happens, it returns WAL_RETRY to
1863 ** indicate to the caller that it is safe to retry immediately.
1864 **
1865 ** On success return SQLITE_OK.  On a permanent failure (such an
1866 ** I/O error or an SQLITE_BUSY because another process is running
1867 ** recovery) return a positive error code.
1868 **
1869 ** The useWal parameter is true to force the use of the WAL and disable
1870 ** the case where the WAL is bypassed because it has been completely
1871 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
1872 ** to make a copy of the wal-index header into pWal->hdr.  If the
1873 ** wal-index header has changed, *pChanged is set to 1 (as an indication
1874 ** to the caller that the local paget cache is obsolete and needs to be
1875 ** flushed.)  When useWal==1, the wal-index header is assumed to already
1876 ** be loaded and the pChanged parameter is unused.
1877 **
1878 ** The caller must set the cnt parameter to the number of prior calls to
1879 ** this routine during the current read attempt that returned WAL_RETRY.
1880 ** This routine will start taking more aggressive measures to clear the
1881 ** race conditions after multiple WAL_RETRY returns, and after an excessive
1882 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
1883 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1884 ** and is not honoring the locking protocol.  There is a vanishingly small
1885 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
1886 ** bad luck when there is lots of contention for the wal-index, but that
1887 ** possibility is so small that it can be safely neglected, we believe.
1888 **
1889 ** On success, this routine obtains a read lock on
1890 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
1891 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
1892 ** that means the Wal does not hold any read lock.  The reader must not
1893 ** access any database page that is modified by a WAL frame up to and
1894 ** including frame number aReadMark[pWal->readLock].  The reader will
1895 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1896 ** Or if pWal->readLock==0, then the reader will ignore the WAL
1897 ** completely and get all content directly from the database file.
1898 ** If the useWal parameter is 1 then the WAL will never be ignored and
1899 ** this routine will always set pWal->readLock>0 on success.
1900 ** When the read transaction is completed, the caller must release the
1901 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1902 **
1903 ** This routine uses the nBackfill and aReadMark[] fields of the header
1904 ** to select a particular WAL_READ_LOCK() that strives to let the
1905 ** checkpoint process do as much work as possible.  This routine might
1906 ** update values of the aReadMark[] array in the header, but if it does
1907 ** so it takes care to hold an exclusive lock on the corresponding
1908 ** WAL_READ_LOCK() while changing values.
1909 */
1910 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
1911   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
1912   u32 mxReadMark;                 /* Largest aReadMark[] value */
1913   int mxI;                        /* Index of largest aReadMark[] value */
1914   int i;                          /* Loop counter */
1915   int rc = SQLITE_OK;             /* Return code  */
1916 
1917   assert( pWal->readLock<0 );     /* Not currently locked */
1918 
1919   /* Take steps to avoid spinning forever if there is a protocol error. */
1920   if( cnt>5 ){
1921     if( cnt>100 ) return SQLITE_PROTOCOL;
1922     sqlite3OsSleep(pWal->pVfs, 1);
1923   }
1924 
1925   if( !useWal ){
1926     rc = walIndexReadHdr(pWal, pChanged);
1927     if( rc==SQLITE_BUSY ){
1928       /* If there is not a recovery running in another thread or process
1929       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
1930       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
1931       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1932       ** would be technically correct.  But the race is benign since with
1933       ** WAL_RETRY this routine will be called again and will probably be
1934       ** right on the second iteration.
1935       */
1936       if( pWal->apWiData[0]==0 ){
1937         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
1938         ** We assume this is a transient condition, so return WAL_RETRY. The
1939         ** xShmMap() implementation used by the default unix and win32 VFS
1940         ** modules may return SQLITE_BUSY due to a race condition in the
1941         ** code that determines whether or not the shared-memory region
1942         ** must be zeroed before the requested page is returned.
1943         */
1944         rc = WAL_RETRY;
1945       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
1946         walUnlockShared(pWal, WAL_RECOVER_LOCK);
1947         rc = WAL_RETRY;
1948       }else if( rc==SQLITE_BUSY ){
1949         rc = SQLITE_BUSY_RECOVERY;
1950       }
1951     }
1952     if( rc!=SQLITE_OK ){
1953       return rc;
1954     }
1955   }
1956 
1957   pInfo = walCkptInfo(pWal);
1958   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1959     /* The WAL has been completely backfilled (or it is empty).
1960     ** and can be safely ignored.
1961     */
1962     rc = walLockShared(pWal, WAL_READ_LOCK(0));
1963     walShmBarrier(pWal);
1964     if( rc==SQLITE_OK ){
1965       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
1966         /* It is not safe to allow the reader to continue here if frames
1967         ** may have been appended to the log before READ_LOCK(0) was obtained.
1968         ** When holding READ_LOCK(0), the reader ignores the entire log file,
1969         ** which implies that the database file contains a trustworthy
1970         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1971         ** happening, this is usually correct.
1972         **
1973         ** However, if frames have been appended to the log (or if the log
1974         ** is wrapped and written for that matter) before the READ_LOCK(0)
1975         ** is obtained, that is not necessarily true. A checkpointer may
1976         ** have started to backfill the appended frames but crashed before
1977         ** it finished. Leaving a corrupt image in the database file.
1978         */
1979         walUnlockShared(pWal, WAL_READ_LOCK(0));
1980         return WAL_RETRY;
1981       }
1982       pWal->readLock = 0;
1983       return SQLITE_OK;
1984     }else if( rc!=SQLITE_BUSY ){
1985       return rc;
1986     }
1987   }
1988 
1989   /* If we get this far, it means that the reader will want to use
1990   ** the WAL to get at content from recent commits.  The job now is
1991   ** to select one of the aReadMark[] entries that is closest to
1992   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1993   */
1994   mxReadMark = 0;
1995   mxI = 0;
1996   for(i=1; i<WAL_NREADER; i++){
1997     u32 thisMark = pInfo->aReadMark[i];
1998     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1999       assert( thisMark!=READMARK_NOT_USED );
2000       mxReadMark = thisMark;
2001       mxI = i;
2002     }
2003   }
2004   if( mxI==0 ){
2005     /* If we get here, it means that all of the aReadMark[] entries between
2006     ** 1 and WAL_NREADER-1 are zero.  Try to initialize aReadMark[1] to
2007     ** be mxFrame, then retry.
2008     */
2009     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
2010     if( rc==SQLITE_OK ){
2011       pInfo->aReadMark[1] = pWal->hdr.mxFrame;
2012       walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
2013       rc = WAL_RETRY;
2014     }else if( rc==SQLITE_BUSY ){
2015       rc = WAL_RETRY;
2016     }
2017     return rc;
2018   }else{
2019     if( mxReadMark < pWal->hdr.mxFrame ){
2020       for(i=1; i<WAL_NREADER; i++){
2021         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2022         if( rc==SQLITE_OK ){
2023           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2024           mxI = i;
2025           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2026           break;
2027         }else if( rc!=SQLITE_BUSY ){
2028           return rc;
2029         }
2030       }
2031     }
2032 
2033     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2034     if( rc ){
2035       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2036     }
2037     /* Now that the read-lock has been obtained, check that neither the
2038     ** value in the aReadMark[] array or the contents of the wal-index
2039     ** header have changed.
2040     **
2041     ** It is necessary to check that the wal-index header did not change
2042     ** between the time it was read and when the shared-lock was obtained
2043     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2044     ** that the log file may have been wrapped by a writer, or that frames
2045     ** that occur later in the log than pWal->hdr.mxFrame may have been
2046     ** copied into the database by a checkpointer. If either of these things
2047     ** happened, then reading the database with the current value of
2048     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2049     ** instead.
2050     **
2051     ** This does not guarantee that the copy of the wal-index header is up to
2052     ** date before proceeding. That would not be possible without somehow
2053     ** blocking writers. It only guarantees that a dangerous checkpoint or
2054     ** log-wrap (either of which would require an exclusive lock on
2055     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2056     */
2057     walShmBarrier(pWal);
2058     if( pInfo->aReadMark[mxI]!=mxReadMark
2059      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2060     ){
2061       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2062       return WAL_RETRY;
2063     }else{
2064       assert( mxReadMark<=pWal->hdr.mxFrame );
2065       pWal->readLock = (i16)mxI;
2066     }
2067   }
2068   return rc;
2069 }
2070 
2071 /*
2072 ** Begin a read transaction on the database.
2073 **
2074 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2075 ** it takes a snapshot of the state of the WAL and wal-index for the current
2076 ** instant in time.  The current thread will continue to use this snapshot.
2077 ** Other threads might append new content to the WAL and wal-index but
2078 ** that extra content is ignored by the current thread.
2079 **
2080 ** If the database contents have changes since the previous read
2081 ** transaction, then *pChanged is set to 1 before returning.  The
2082 ** Pager layer will use this to know that is cache is stale and
2083 ** needs to be flushed.
2084 */
2085 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2086   int rc;                         /* Return code */
2087   int cnt = 0;                    /* Number of TryBeginRead attempts */
2088 
2089   do{
2090     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2091   }while( rc==WAL_RETRY );
2092   return rc;
2093 }
2094 
2095 /*
2096 ** Finish with a read transaction.  All this does is release the
2097 ** read-lock.
2098 */
2099 void sqlite3WalEndReadTransaction(Wal *pWal){
2100   sqlite3WalEndWriteTransaction(pWal);
2101   if( pWal->readLock>=0 ){
2102     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2103     pWal->readLock = -1;
2104   }
2105 }
2106 
2107 /*
2108 ** Read a page from the WAL, if it is present in the WAL and if the
2109 ** current read transaction is configured to use the WAL.
2110 **
2111 ** The *pInWal is set to 1 if the requested page is in the WAL and
2112 ** has been loaded.  Or *pInWal is set to 0 if the page was not in
2113 ** the WAL and needs to be read out of the database.
2114 */
2115 int sqlite3WalRead(
2116   Wal *pWal,                      /* WAL handle */
2117   Pgno pgno,                      /* Database page number to read data for */
2118   int *pInWal,                    /* OUT: True if data is read from WAL */
2119   int nOut,                       /* Size of buffer pOut in bytes */
2120   u8 *pOut                        /* Buffer to write page data to */
2121 ){
2122   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2123   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2124   int iHash;                      /* Used to loop through N hash tables */
2125 
2126   /* This routine is only be called from within a read transaction. */
2127   assert( pWal->readLock>=0 || pWal->lockError );
2128 
2129   /* If the "last page" field of the wal-index header snapshot is 0, then
2130   ** no data will be read from the wal under any circumstances. Return early
2131   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2132   ** then the WAL is ignored by the reader so return early, as if the
2133   ** WAL were empty.
2134   */
2135   if( iLast==0 || pWal->readLock==0 ){
2136     *pInWal = 0;
2137     return SQLITE_OK;
2138   }
2139 
2140   /* Search the hash table or tables for an entry matching page number
2141   ** pgno. Each iteration of the following for() loop searches one
2142   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2143   **
2144   ** This code might run concurrently to the code in walIndexAppend()
2145   ** that adds entries to the wal-index (and possibly to this hash
2146   ** table). This means the value just read from the hash
2147   ** slot (aHash[iKey]) may have been added before or after the
2148   ** current read transaction was opened. Values added after the
2149   ** read transaction was opened may have been written incorrectly -
2150   ** i.e. these slots may contain garbage data. However, we assume
2151   ** that any slots written before the current read transaction was
2152   ** opened remain unmodified.
2153   **
2154   ** For the reasons above, the if(...) condition featured in the inner
2155   ** loop of the following block is more stringent that would be required
2156   ** if we had exclusive access to the hash-table:
2157   **
2158   **   (aPgno[iFrame]==pgno):
2159   **     This condition filters out normal hash-table collisions.
2160   **
2161   **   (iFrame<=iLast):
2162   **     This condition filters out entries that were added to the hash
2163   **     table after the current read-transaction had started.
2164   */
2165   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
2166     volatile ht_slot *aHash;      /* Pointer to hash table */
2167     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2168     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2169     int iKey;                     /* Hash slot index */
2170     int nCollide;                 /* Number of hash collisions remaining */
2171     int rc;                       /* Error code */
2172 
2173     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2174     if( rc!=SQLITE_OK ){
2175       return rc;
2176     }
2177     nCollide = HASHTABLE_NSLOT;
2178     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2179       u32 iFrame = aHash[iKey] + iZero;
2180       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
2181         assert( iFrame>iRead );
2182         iRead = iFrame;
2183       }
2184       if( (nCollide--)==0 ){
2185         return SQLITE_CORRUPT_BKPT;
2186       }
2187     }
2188   }
2189 
2190 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2191   /* If expensive assert() statements are available, do a linear search
2192   ** of the wal-index file content. Make sure the results agree with the
2193   ** result obtained using the hash indexes above.  */
2194   {
2195     u32 iRead2 = 0;
2196     u32 iTest;
2197     for(iTest=iLast; iTest>0; iTest--){
2198       if( walFramePgno(pWal, iTest)==pgno ){
2199         iRead2 = iTest;
2200         break;
2201       }
2202     }
2203     assert( iRead==iRead2 );
2204   }
2205 #endif
2206 
2207   /* If iRead is non-zero, then it is the log frame number that contains the
2208   ** required page. Read and return data from the log file.
2209   */
2210   if( iRead ){
2211     int sz;
2212     i64 iOffset;
2213     sz = pWal->hdr.szPage;
2214     sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2215     testcase( sz<=32768 );
2216     testcase( sz>=65536 );
2217     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2218     *pInWal = 1;
2219     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2220     return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
2221   }
2222 
2223   *pInWal = 0;
2224   return SQLITE_OK;
2225 }
2226 
2227 
2228 /*
2229 ** Return the size of the database in pages (or zero, if unknown).
2230 */
2231 Pgno sqlite3WalDbsize(Wal *pWal){
2232   if( pWal && ALWAYS(pWal->readLock>=0) ){
2233     return pWal->hdr.nPage;
2234   }
2235   return 0;
2236 }
2237 
2238 
2239 /*
2240 ** This function starts a write transaction on the WAL.
2241 **
2242 ** A read transaction must have already been started by a prior call
2243 ** to sqlite3WalBeginReadTransaction().
2244 **
2245 ** If another thread or process has written into the database since
2246 ** the read transaction was started, then it is not possible for this
2247 ** thread to write as doing so would cause a fork.  So this routine
2248 ** returns SQLITE_BUSY in that case and no write transaction is started.
2249 **
2250 ** There can only be a single writer active at a time.
2251 */
2252 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2253   int rc;
2254 
2255   /* Cannot start a write transaction without first holding a read
2256   ** transaction. */
2257   assert( pWal->readLock>=0 );
2258 
2259   if( pWal->readOnly ){
2260     return SQLITE_READONLY;
2261   }
2262 
2263   /* Only one writer allowed at a time.  Get the write lock.  Return
2264   ** SQLITE_BUSY if unable.
2265   */
2266   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2267   if( rc ){
2268     return rc;
2269   }
2270   pWal->writeLock = 1;
2271 
2272   /* If another connection has written to the database file since the
2273   ** time the read transaction on this connection was started, then
2274   ** the write is disallowed.
2275   */
2276   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2277     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2278     pWal->writeLock = 0;
2279     rc = SQLITE_BUSY;
2280   }
2281 
2282   return rc;
2283 }
2284 
2285 /*
2286 ** End a write transaction.  The commit has already been done.  This
2287 ** routine merely releases the lock.
2288 */
2289 int sqlite3WalEndWriteTransaction(Wal *pWal){
2290   if( pWal->writeLock ){
2291     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2292     pWal->writeLock = 0;
2293   }
2294   return SQLITE_OK;
2295 }
2296 
2297 /*
2298 ** If any data has been written (but not committed) to the log file, this
2299 ** function moves the write-pointer back to the start of the transaction.
2300 **
2301 ** Additionally, the callback function is invoked for each frame written
2302 ** to the WAL since the start of the transaction. If the callback returns
2303 ** other than SQLITE_OK, it is not invoked again and the error code is
2304 ** returned to the caller.
2305 **
2306 ** Otherwise, if the callback function does not return an error, this
2307 ** function returns SQLITE_OK.
2308 */
2309 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2310   int rc = SQLITE_OK;
2311   if( ALWAYS(pWal->writeLock) ){
2312     Pgno iMax = pWal->hdr.mxFrame;
2313     Pgno iFrame;
2314 
2315     /* Restore the clients cache of the wal-index header to the state it
2316     ** was in before the client began writing to the database.
2317     */
2318     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2319 
2320     for(iFrame=pWal->hdr.mxFrame+1;
2321         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2322         iFrame++
2323     ){
2324       /* This call cannot fail. Unless the page for which the page number
2325       ** is passed as the second argument is (a) in the cache and
2326       ** (b) has an outstanding reference, then xUndo is either a no-op
2327       ** (if (a) is false) or simply expels the page from the cache (if (b)
2328       ** is false).
2329       **
2330       ** If the upper layer is doing a rollback, it is guaranteed that there
2331       ** are no outstanding references to any page other than page 1. And
2332       ** page 1 is never written to the log until the transaction is
2333       ** committed. As a result, the call to xUndo may not fail.
2334       */
2335       assert( walFramePgno(pWal, iFrame)!=1 );
2336       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2337     }
2338     walCleanupHash(pWal);
2339   }
2340   assert( rc==SQLITE_OK );
2341   return rc;
2342 }
2343 
2344 /*
2345 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2346 ** values. This function populates the array with values required to
2347 ** "rollback" the write position of the WAL handle back to the current
2348 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2349 */
2350 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2351   assert( pWal->writeLock );
2352   aWalData[0] = pWal->hdr.mxFrame;
2353   aWalData[1] = pWal->hdr.aFrameCksum[0];
2354   aWalData[2] = pWal->hdr.aFrameCksum[1];
2355   aWalData[3] = pWal->nCkpt;
2356 }
2357 
2358 /*
2359 ** Move the write position of the WAL back to the point identified by
2360 ** the values in the aWalData[] array. aWalData must point to an array
2361 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2362 ** by a call to WalSavepoint().
2363 */
2364 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2365   int rc = SQLITE_OK;
2366 
2367   assert( pWal->writeLock );
2368   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2369 
2370   if( aWalData[3]!=pWal->nCkpt ){
2371     /* This savepoint was opened immediately after the write-transaction
2372     ** was started. Right after that, the writer decided to wrap around
2373     ** to the start of the log. Update the savepoint values to match.
2374     */
2375     aWalData[0] = 0;
2376     aWalData[3] = pWal->nCkpt;
2377   }
2378 
2379   if( aWalData[0]<pWal->hdr.mxFrame ){
2380     pWal->hdr.mxFrame = aWalData[0];
2381     pWal->hdr.aFrameCksum[0] = aWalData[1];
2382     pWal->hdr.aFrameCksum[1] = aWalData[2];
2383     walCleanupHash(pWal);
2384   }
2385 
2386   return rc;
2387 }
2388 
2389 /*
2390 ** This function is called just before writing a set of frames to the log
2391 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2392 ** to the current log file, it is possible to overwrite the start of the
2393 ** existing log file with the new frames (i.e. "reset" the log). If so,
2394 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2395 ** unchanged.
2396 **
2397 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2398 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2399 ** if an error occurs.
2400 */
2401 static int walRestartLog(Wal *pWal){
2402   int rc = SQLITE_OK;
2403   int cnt;
2404 
2405   if( pWal->readLock==0 ){
2406     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2407     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2408     if( pInfo->nBackfill>0 ){
2409       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2410       if( rc==SQLITE_OK ){
2411         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2412         ** readers are currently using the WAL), then the transactions
2413         ** frames will overwrite the start of the existing log. Update the
2414         ** wal-index header to reflect this.
2415         **
2416         ** In theory it would be Ok to update the cache of the header only
2417         ** at this point. But updating the actual wal-index header is also
2418         ** safe and means there is no special case for sqlite3WalUndo()
2419         ** to handle if this transaction is rolled back.
2420         */
2421         int i;                    /* Loop counter */
2422         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
2423         pWal->nCkpt++;
2424         pWal->hdr.mxFrame = 0;
2425         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2426         sqlite3_randomness(4, &aSalt[1]);
2427         walIndexWriteHdr(pWal);
2428         pInfo->nBackfill = 0;
2429         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2430         assert( pInfo->aReadMark[0]==0 );
2431         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2432       }else if( rc!=SQLITE_BUSY ){
2433         return rc;
2434       }
2435     }
2436     walUnlockShared(pWal, WAL_READ_LOCK(0));
2437     pWal->readLock = -1;
2438     cnt = 0;
2439     do{
2440       int notUsed;
2441       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2442     }while( rc==WAL_RETRY );
2443   }
2444   return rc;
2445 }
2446 
2447 /*
2448 ** Write a set of frames to the log. The caller must hold the write-lock
2449 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2450 */
2451 int sqlite3WalFrames(
2452   Wal *pWal,                      /* Wal handle to write to */
2453   int szPage,                     /* Database page-size in bytes */
2454   PgHdr *pList,                   /* List of dirty pages to write */
2455   Pgno nTruncate,                 /* Database size after this commit */
2456   int isCommit,                   /* True if this is a commit */
2457   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2458 ){
2459   int rc;                         /* Used to catch return codes */
2460   u32 iFrame;                     /* Next frame address */
2461   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2462   PgHdr *p;                       /* Iterator to run through pList with. */
2463   PgHdr *pLast = 0;               /* Last frame in list */
2464   int nLast = 0;                  /* Number of extra copies of last page */
2465 
2466   assert( pList );
2467   assert( pWal->writeLock );
2468 
2469 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2470   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2471     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2472               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2473   }
2474 #endif
2475 
2476   /* See if it is possible to write these frames into the start of the
2477   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2478   */
2479   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2480     return rc;
2481   }
2482 
2483   /* If this is the first frame written into the log, write the WAL
2484   ** header to the start of the WAL file. See comments at the top of
2485   ** this source file for a description of the WAL header format.
2486   */
2487   iFrame = pWal->hdr.mxFrame;
2488   if( iFrame==0 ){
2489     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2490     u32 aCksum[2];                /* Checksum for wal-header */
2491 
2492     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2493     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2494     sqlite3Put4byte(&aWalHdr[8], szPage);
2495     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2496     sqlite3_randomness(8, pWal->hdr.aSalt);
2497     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2498     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2499     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2500     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2501 
2502     pWal->szPage = szPage;
2503     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2504     pWal->hdr.aFrameCksum[0] = aCksum[0];
2505     pWal->hdr.aFrameCksum[1] = aCksum[1];
2506 
2507     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2508     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2509     if( rc!=SQLITE_OK ){
2510       return rc;
2511     }
2512   }
2513   assert( (int)pWal->szPage==szPage );
2514 
2515   /* Write the log file. */
2516   for(p=pList; p; p=p->pDirty){
2517     u32 nDbsize;                  /* Db-size field for frame header */
2518     i64 iOffset;                  /* Write offset in log file */
2519     void *pData;
2520 
2521     iOffset = walFrameOffset(++iFrame, szPage);
2522     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2523 
2524     /* Populate and write the frame header */
2525     nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2526 #if defined(SQLITE_HAS_CODEC)
2527     if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
2528 #else
2529     pData = p->pData;
2530 #endif
2531     walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
2532     rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2533     if( rc!=SQLITE_OK ){
2534       return rc;
2535     }
2536 
2537     /* Write the page data */
2538     rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
2539     if( rc!=SQLITE_OK ){
2540       return rc;
2541     }
2542     pLast = p;
2543   }
2544 
2545   /* Sync the log file if the 'isSync' flag was specified. */
2546   if( sync_flags ){
2547     i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
2548     i64 iOffset = walFrameOffset(iFrame+1, szPage);
2549 
2550     assert( isCommit );
2551     assert( iSegment>0 );
2552 
2553     iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2554     while( iOffset<iSegment ){
2555       void *pData;
2556 #if defined(SQLITE_HAS_CODEC)
2557       if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
2558 #else
2559       pData = pLast->pData;
2560 #endif
2561       walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
2562       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2563       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2564       if( rc!=SQLITE_OK ){
2565         return rc;
2566       }
2567       iOffset += WAL_FRAME_HDRSIZE;
2568       rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
2569       if( rc!=SQLITE_OK ){
2570         return rc;
2571       }
2572       nLast++;
2573       iOffset += szPage;
2574     }
2575 
2576     rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
2577   }
2578 
2579   /* Append data to the wal-index. It is not necessary to lock the
2580   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2581   ** guarantees that there are no other writers, and no data that may
2582   ** be in use by existing readers is being overwritten.
2583   */
2584   iFrame = pWal->hdr.mxFrame;
2585   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2586     iFrame++;
2587     rc = walIndexAppend(pWal, iFrame, p->pgno);
2588   }
2589   while( nLast>0 && rc==SQLITE_OK ){
2590     iFrame++;
2591     nLast--;
2592     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2593   }
2594 
2595   if( rc==SQLITE_OK ){
2596     /* Update the private copy of the header. */
2597     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2598     testcase( szPage<=32768 );
2599     testcase( szPage>=65536 );
2600     pWal->hdr.mxFrame = iFrame;
2601     if( isCommit ){
2602       pWal->hdr.iChange++;
2603       pWal->hdr.nPage = nTruncate;
2604     }
2605     /* If this is a commit, update the wal-index header too. */
2606     if( isCommit ){
2607       walIndexWriteHdr(pWal);
2608       pWal->iCallback = iFrame;
2609     }
2610   }
2611 
2612   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2613   return rc;
2614 }
2615 
2616 /*
2617 ** This routine is called to implement sqlite3_wal_checkpoint() and
2618 ** related interfaces.
2619 **
2620 ** Obtain a CHECKPOINT lock and then backfill as much information as
2621 ** we can from WAL into the database.
2622 */
2623 int sqlite3WalCheckpoint(
2624   Wal *pWal,                      /* Wal connection */
2625   int sync_flags,                 /* Flags to sync db file with (or 0) */
2626   int nBuf,                       /* Size of temporary buffer */
2627   u8 *zBuf                        /* Temporary buffer to use */
2628 ){
2629   int rc;                         /* Return code */
2630   int isChanged = 0;              /* True if a new wal-index header is loaded */
2631 
2632   assert( pWal->ckptLock==0 );
2633 
2634   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
2635   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2636   if( rc ){
2637     /* Usually this is SQLITE_BUSY meaning that another thread or process
2638     ** is already running a checkpoint, or maybe a recovery.  But it might
2639     ** also be SQLITE_IOERR. */
2640     return rc;
2641   }
2642   pWal->ckptLock = 1;
2643 
2644   /* Copy data from the log to the database file. */
2645   rc = walIndexReadHdr(pWal, &isChanged);
2646   if( rc==SQLITE_OK ){
2647     rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
2648   }
2649   if( isChanged ){
2650     /* If a new wal-index header was loaded before the checkpoint was
2651     ** performed, then the pager-cache associated with pWal is now
2652     ** out of date. So zero the cached wal-index header to ensure that
2653     ** next time the pager opens a snapshot on this database it knows that
2654     ** the cache needs to be reset.
2655     */
2656     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2657   }
2658 
2659   /* Release the locks. */
2660   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2661   pWal->ckptLock = 0;
2662   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
2663   return rc;
2664 }
2665 
2666 /* Return the value to pass to a sqlite3_wal_hook callback, the
2667 ** number of frames in the WAL at the point of the last commit since
2668 ** sqlite3WalCallback() was called.  If no commits have occurred since
2669 ** the last call, then return 0.
2670 */
2671 int sqlite3WalCallback(Wal *pWal){
2672   u32 ret = 0;
2673   if( pWal ){
2674     ret = pWal->iCallback;
2675     pWal->iCallback = 0;
2676   }
2677   return (int)ret;
2678 }
2679 
2680 /*
2681 ** This function is called to change the WAL subsystem into or out
2682 ** of locking_mode=EXCLUSIVE.
2683 **
2684 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2685 ** into locking_mode=NORMAL.  This means that we must acquire a lock
2686 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
2687 ** or if the acquisition of the lock fails, then return 0.  If the
2688 ** transition out of exclusive-mode is successful, return 1.  This
2689 ** operation must occur while the pager is still holding the exclusive
2690 ** lock on the main database file.
2691 **
2692 ** If op is one, then change from locking_mode=NORMAL into
2693 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
2694 ** be released.  Return 1 if the transition is made and 0 if the
2695 ** WAL is already in exclusive-locking mode - meaning that this
2696 ** routine is a no-op.  The pager must already hold the exclusive lock
2697 ** on the main database file before invoking this operation.
2698 **
2699 ** If op is negative, then do a dry-run of the op==1 case but do
2700 ** not actually change anything. The pager uses this to see if it
2701 ** should acquire the database exclusive lock prior to invoking
2702 ** the op==1 case.
2703 */
2704 int sqlite3WalExclusiveMode(Wal *pWal, int op){
2705   int rc;
2706   assert( pWal->writeLock==0 );
2707   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
2708 
2709   /* pWal->readLock is usually set, but might be -1 if there was a
2710   ** prior error while attempting to acquire are read-lock. This cannot
2711   ** happen if the connection is actually in exclusive mode (as no xShmLock
2712   ** locks are taken in this case). Nor should the pager attempt to
2713   ** upgrade to exclusive-mode following such an error.
2714   */
2715   assert( pWal->readLock>=0 || pWal->lockError );
2716   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2717 
2718   if( op==0 ){
2719     if( pWal->exclusiveMode ){
2720       pWal->exclusiveMode = 0;
2721       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
2722         pWal->exclusiveMode = 1;
2723       }
2724       rc = pWal->exclusiveMode==0;
2725     }else{
2726       /* Already in locking_mode=NORMAL */
2727       rc = 0;
2728     }
2729   }else if( op>0 ){
2730     assert( pWal->exclusiveMode==0 );
2731     assert( pWal->readLock>=0 );
2732     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2733     pWal->exclusiveMode = 1;
2734     rc = 1;
2735   }else{
2736     rc = pWal->exclusiveMode==0;
2737   }
2738   return rc;
2739 }
2740 
2741 /*
2742 ** Return true if the argument is non-NULL and the WAL module is using
2743 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
2744 ** WAL module is using shared-memory, return false.
2745 */
2746 int sqlite3WalHeapMemory(Wal *pWal){
2747   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
2748 }
2749 
2750 #endif /* #ifndef SQLITE_OMIT_WAL */
2751