xref: /sqlite-3.40.0/src/wal.c (revision 71c3ea75)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.  The values are:
165 **
166 **   HASHTABLE_NPAGE      4096
167 **   HASHTABLE_NPAGE_ONE  4062
168 **
169 ** Each index block contains two sections, a page-mapping that contains the
170 ** database page number associated with each wal frame, and a hash-table
171 ** that allows readers to query an index block for a specific page number.
172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
173 ** for the first index block) 32-bit page numbers. The first entry in the
174 ** first index-block contains the database page number corresponding to the
175 ** first frame in the WAL file. The first entry in the second index block
176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
177 ** the log, and so on.
178 **
179 ** The last index block in a wal-index usually contains less than the full
180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
181 ** depending on the contents of the WAL file. This does not change the
182 ** allocated size of the page-mapping array - the page-mapping array merely
183 ** contains unused entries.
184 **
185 ** Even without using the hash table, the last frame for page P
186 ** can be found by scanning the page-mapping sections of each index block
187 ** starting with the last index block and moving toward the first, and
188 ** within each index block, starting at the end and moving toward the
189 ** beginning.  The first entry that equals P corresponds to the frame
190 ** holding the content for that page.
191 **
192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
194 ** hash table for each page number in the mapping section, so the hash
195 ** table is never more than half full.  The expected number of collisions
196 ** prior to finding a match is 1.  Each entry of the hash table is an
197 ** 1-based index of an entry in the mapping section of the same
198 ** index block.   Let K be the 1-based index of the largest entry in
199 ** the mapping section.  (For index blocks other than the last, K will
200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
201 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
202 ** contain a value of 0.
203 **
204 ** To look for page P in the hash table, first compute a hash iKey on
205 ** P as follows:
206 **
207 **      iKey = (P * 383) % HASHTABLE_NSLOT
208 **
209 ** Then start scanning entries of the hash table, starting with iKey
210 ** (wrapping around to the beginning when the end of the hash table is
211 ** reached) until an unused hash slot is found. Let the first unused slot
212 ** be at index iUnused.  (iUnused might be less than iKey if there was
213 ** wrap-around.) Because the hash table is never more than half full,
214 ** the search is guaranteed to eventually hit an unused entry.  Let
215 ** iMax be the value between iKey and iUnused, closest to iUnused,
216 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
217 ** no hash slot such that aHash[i]==p) then page P is not in the
218 ** current index block.  Otherwise the iMax-th mapping entry of the
219 ** current index block corresponds to the last entry that references
220 ** page P.
221 **
222 ** A hash search begins with the last index block and moves toward the
223 ** first index block, looking for entries corresponding to page P.  On
224 ** average, only two or three slots in each index block need to be
225 ** examined in order to either find the last entry for page P, or to
226 ** establish that no such entry exists in the block.  Each index block
227 ** holds over 4000 entries.  So two or three index blocks are sufficient
228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
229 ** comparisons (on average) suffice to either locate a frame in the
230 ** WAL or to establish that the frame does not exist in the WAL.  This
231 ** is much faster than scanning the entire 10MB WAL.
232 **
233 ** Note that entries are added in order of increasing K.  Hence, one
234 ** reader might be using some value K0 and a second reader that started
235 ** at a later time (after additional transactions were added to the WAL
236 ** and to the wal-index) might be using a different value K1, where K1>K0.
237 ** Both readers can use the same hash table and mapping section to get
238 ** the correct result.  There may be entries in the hash table with
239 ** K>K0 but to the first reader, those entries will appear to be unused
240 ** slots in the hash table and so the first reader will get an answer as
241 ** if no values greater than K0 had ever been inserted into the hash table
242 ** in the first place - which is what reader one wants.  Meanwhile, the
243 ** second reader using K1 will see additional values that were inserted
244 ** later, which is exactly what reader two wants.
245 **
246 ** When a rollback occurs, the value of K is decreased. Hash table entries
247 ** that correspond to frames greater than the new K value are removed
248 ** from the hash table at this point.
249 */
250 #ifndef SQLITE_OMIT_WAL
251 
252 #include "wal.h"
253 
254 /*
255 ** Trace output macros
256 */
257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
258 int sqlite3WalTrace = 0;
259 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
260 #else
261 # define WALTRACE(X)
262 #endif
263 
264 /*
265 ** The maximum (and only) versions of the wal and wal-index formats
266 ** that may be interpreted by this version of SQLite.
267 **
268 ** If a client begins recovering a WAL file and finds that (a) the checksum
269 ** values in the wal-header are correct and (b) the version field is not
270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
271 **
272 ** Similarly, if a client successfully reads a wal-index header (i.e. the
273 ** checksum test is successful) and finds that the version field is not
274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
275 ** returns SQLITE_CANTOPEN.
276 */
277 #define WAL_MAX_VERSION      3007000
278 #define WALINDEX_MAX_VERSION 3007000
279 
280 /*
281 ** Index numbers for various locking bytes.   WAL_NREADER is the number
282 ** of available reader locks and should be at least 3.  The default
283 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
284 **
285 ** Technically, the various VFSes are free to implement these locks however
286 ** they see fit.  However, compatibility is encouraged so that VFSes can
287 ** interoperate.  The standard implemention used on both unix and windows
288 ** is for the index number to indicate a byte offset into the
289 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
290 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
291 ** should be 120) is the location in the shm file for the first locking
292 ** byte.
293 */
294 #define WAL_WRITE_LOCK         0
295 #define WAL_ALL_BUT_WRITE      1
296 #define WAL_CKPT_LOCK          1
297 #define WAL_RECOVER_LOCK       2
298 #define WAL_READ_LOCK(I)       (3+(I))
299 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
300 
301 
302 /* Object declarations */
303 typedef struct WalIndexHdr WalIndexHdr;
304 typedef struct WalIterator WalIterator;
305 typedef struct WalCkptInfo WalCkptInfo;
306 
307 
308 /*
309 ** The following object holds a copy of the wal-index header content.
310 **
311 ** The actual header in the wal-index consists of two copies of this
312 ** object followed by one instance of the WalCkptInfo object.
313 ** For all versions of SQLite through 3.10.0 and probably beyond,
314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
315 ** the total header size is 136 bytes.
316 **
317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
318 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
319 ** added in 3.7.1 when support for 64K pages was added.
320 */
321 struct WalIndexHdr {
322   u32 iVersion;                   /* Wal-index version */
323   u32 unused;                     /* Unused (padding) field */
324   u32 iChange;                    /* Counter incremented each transaction */
325   u8 isInit;                      /* 1 when initialized */
326   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
327   u16 szPage;                     /* Database page size in bytes. 1==64K */
328   u32 mxFrame;                    /* Index of last valid frame in the WAL */
329   u32 nPage;                      /* Size of database in pages */
330   u32 aFrameCksum[2];             /* Checksum of last frame in log */
331   u32 aSalt[2];                   /* Two salt values copied from WAL header */
332   u32 aCksum[2];                  /* Checksum over all prior fields */
333 };
334 
335 /*
336 ** A copy of the following object occurs in the wal-index immediately
337 ** following the second copy of the WalIndexHdr.  This object stores
338 ** information used by checkpoint.
339 **
340 ** nBackfill is the number of frames in the WAL that have been written
341 ** back into the database. (We call the act of moving content from WAL to
342 ** database "backfilling".)  The nBackfill number is never greater than
343 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
346 ** mxFrame back to zero when the WAL is reset.
347 **
348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
349 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
350 ** the nBackfillAttempted is set before any backfilling is done and the
351 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
352 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
354 **
355 ** The aLock[] field is a set of bytes used for locking.  These bytes should
356 ** never be read or written.
357 **
358 ** There is one entry in aReadMark[] for each reader lock.  If a reader
359 ** holds read-lock K, then the value in aReadMark[K] is no greater than
360 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
361 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
362 ** a special case; its value is never used and it exists as a place-holder
363 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
365 ** directly from the database.
366 **
367 ** The value of aReadMark[K] may only be changed by a thread that
368 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
369 ** aReadMark[K] cannot changed while there is a reader is using that mark
370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
371 **
372 ** The checkpointer may only transfer frames from WAL to database where
373 ** the frame numbers are less than or equal to every aReadMark[] that is
374 ** in use (that is, every aReadMark[j] for which there is a corresponding
375 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
376 ** largest value and will increase an unused aReadMark[] to mxFrame if there
377 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
379 ** in the WAL has been backfilled into the database) then new readers
380 ** will choose aReadMark[0] which has value 0 and hence such reader will
381 ** get all their all content directly from the database file and ignore
382 ** the WAL.
383 **
384 ** Writers normally append new frames to the end of the WAL.  However,
385 ** if nBackfill equals mxFrame (meaning that all WAL content has been
386 ** written back into the database) and if no readers are using the WAL
387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
388 ** the writer will first "reset" the WAL back to the beginning and start
389 ** writing new content beginning at frame 1.
390 **
391 ** We assume that 32-bit loads are atomic and so no locks are needed in
392 ** order to read from any aReadMark[] entries.
393 */
394 struct WalCkptInfo {
395   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
396   u32 aReadMark[WAL_NREADER];     /* Reader marks */
397   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
398   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
399   u32 notUsed0;                   /* Available for future enhancements */
400 };
401 #define READMARK_NOT_USED  0xffffffff
402 
403 /*
404 ** This is a schematic view of the complete 136-byte header of the
405 ** wal-index file (also known as the -shm file):
406 **
407 **      +-----------------------------+
408 **   0: | iVersion                    | \
409 **      +-----------------------------+  |
410 **   4: | (unused padding)            |  |
411 **      +-----------------------------+  |
412 **   8: | iChange                     |  |
413 **      +-------+-------+-------------+  |
414 **  12: | bInit |  bBig |   szPage    |  |
415 **      +-------+-------+-------------+  |
416 **  16: | mxFrame                     |  |  First copy of the
417 **      +-----------------------------+  |  WalIndexHdr object
418 **  20: | nPage                       |  |
419 **      +-----------------------------+  |
420 **  24: | aFrameCksum                 |  |
421 **      |                             |  |
422 **      +-----------------------------+  |
423 **  32: | aSalt                       |  |
424 **      |                             |  |
425 **      +-----------------------------+  |
426 **  40: | aCksum                      |  |
427 **      |                             | /
428 **      +-----------------------------+
429 **  48: | iVersion                    | \
430 **      +-----------------------------+  |
431 **  52: | (unused padding)            |  |
432 **      +-----------------------------+  |
433 **  56: | iChange                     |  |
434 **      +-------+-------+-------------+  |
435 **  60: | bInit |  bBig |   szPage    |  |
436 **      +-------+-------+-------------+  |  Second copy of the
437 **  64: | mxFrame                     |  |  WalIndexHdr
438 **      +-----------------------------+  |
439 **  68: | nPage                       |  |
440 **      +-----------------------------+  |
441 **  72: | aFrameCksum                 |  |
442 **      |                             |  |
443 **      +-----------------------------+  |
444 **  80: | aSalt                       |  |
445 **      |                             |  |
446 **      +-----------------------------+  |
447 **  88: | aCksum                      |  |
448 **      |                             | /
449 **      +-----------------------------+
450 **  96: | nBackfill                   |
451 **      +-----------------------------+
452 ** 100: | 5 read marks                |
453 **      |                             |
454 **      |                             |
455 **      |                             |
456 **      |                             |
457 **      +-------+-------+------+------+
458 ** 120: | Write | Ckpt  | Rcvr | Rd0  | \
459 **      +-------+-------+------+------+  ) 8 lock bytes
460 **      | Read1 | Read2 | Rd3  | Rd4  | /
461 **      +-------+-------+------+------+
462 ** 128: | nBackfillAttempted          |
463 **      +-----------------------------+
464 ** 132: | (unused padding)            |
465 **      +-----------------------------+
466 */
467 
468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
470 ** only support mandatory file-locks, we do not read or write data
471 ** from the region of the file on which locks are applied.
472 */
473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
474 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
475 
476 /* Size of header before each frame in wal */
477 #define WAL_FRAME_HDRSIZE 24
478 
479 /* Size of write ahead log header, including checksum. */
480 #define WAL_HDRSIZE 32
481 
482 /* WAL magic value. Either this value, or the same value with the least
483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
484 ** big-endian format in the first 4 bytes of a WAL file.
485 **
486 ** If the LSB is set, then the checksums for each frame within the WAL
487 ** file are calculated by treating all data as an array of 32-bit
488 ** big-endian words. Otherwise, they are calculated by interpreting
489 ** all data as 32-bit little-endian words.
490 */
491 #define WAL_MAGIC 0x377f0682
492 
493 /*
494 ** Return the offset of frame iFrame in the write-ahead log file,
495 ** assuming a database page size of szPage bytes. The offset returned
496 ** is to the start of the write-ahead log frame-header.
497 */
498 #define walFrameOffset(iFrame, szPage) (                               \
499   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
500 )
501 
502 /*
503 ** An open write-ahead log file is represented by an instance of the
504 ** following object.
505 */
506 struct Wal {
507   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
508   sqlite3_file *pDbFd;       /* File handle for the database file */
509   sqlite3_file *pWalFd;      /* File handle for WAL file */
510   u32 iCallback;             /* Value to pass to log callback (or 0) */
511   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
512   int nWiData;               /* Size of array apWiData */
513   int szFirstBlock;          /* Size of first block written to WAL file */
514   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
515   u32 szPage;                /* Database page size */
516   i16 readLock;              /* Which read lock is being held.  -1 for none */
517   u8 syncFlags;              /* Flags to use to sync header writes */
518   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
519   u8 writeLock;              /* True if in a write transaction */
520   u8 ckptLock;               /* True if holding a checkpoint lock */
521   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
522   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
523   u8 syncHeader;             /* Fsync the WAL header if true */
524   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
525   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
526   WalIndexHdr hdr;           /* Wal-index header for current transaction */
527   u32 minFrame;              /* Ignore wal frames before this one */
528   u32 iReCksum;              /* On commit, recalculate checksums from here */
529   const char *zWalName;      /* Name of WAL file */
530   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
531 #ifdef SQLITE_DEBUG
532   u8 lockError;              /* True if a locking error has occurred */
533 #endif
534 #ifdef SQLITE_ENABLE_SNAPSHOT
535   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
536 #endif
537 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
538   sqlite3 *db;
539 #endif
540 };
541 
542 /*
543 ** Candidate values for Wal.exclusiveMode.
544 */
545 #define WAL_NORMAL_MODE     0
546 #define WAL_EXCLUSIVE_MODE  1
547 #define WAL_HEAPMEMORY_MODE 2
548 
549 /*
550 ** Possible values for WAL.readOnly
551 */
552 #define WAL_RDWR        0    /* Normal read/write connection */
553 #define WAL_RDONLY      1    /* The WAL file is readonly */
554 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
555 
556 /*
557 ** Each page of the wal-index mapping contains a hash-table made up of
558 ** an array of HASHTABLE_NSLOT elements of the following type.
559 */
560 typedef u16 ht_slot;
561 
562 /*
563 ** This structure is used to implement an iterator that loops through
564 ** all frames in the WAL in database page order. Where two or more frames
565 ** correspond to the same database page, the iterator visits only the
566 ** frame most recently written to the WAL (in other words, the frame with
567 ** the largest index).
568 **
569 ** The internals of this structure are only accessed by:
570 **
571 **   walIteratorInit() - Create a new iterator,
572 **   walIteratorNext() - Step an iterator,
573 **   walIteratorFree() - Free an iterator.
574 **
575 ** This functionality is used by the checkpoint code (see walCheckpoint()).
576 */
577 struct WalIterator {
578   u32 iPrior;                     /* Last result returned from the iterator */
579   int nSegment;                   /* Number of entries in aSegment[] */
580   struct WalSegment {
581     int iNext;                    /* Next slot in aIndex[] not yet returned */
582     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
583     u32 *aPgno;                   /* Array of page numbers. */
584     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
585     int iZero;                    /* Frame number associated with aPgno[0] */
586   } aSegment[1];                  /* One for every 32KB page in the wal-index */
587 };
588 
589 /*
590 ** Define the parameters of the hash tables in the wal-index file. There
591 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
592 ** wal-index.
593 **
594 ** Changing any of these constants will alter the wal-index format and
595 ** create incompatibilities.
596 */
597 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
598 #define HASHTABLE_HASH_1     383                  /* Should be prime */
599 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
600 
601 /*
602 ** The block of page numbers associated with the first hash-table in a
603 ** wal-index is smaller than usual. This is so that there is a complete
604 ** hash-table on each aligned 32KB page of the wal-index.
605 */
606 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
607 
608 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
609 #define WALINDEX_PGSZ   (                                         \
610     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
611 )
612 
613 /*
614 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
615 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
616 ** numbered from zero.
617 **
618 ** If the wal-index is currently smaller the iPage pages then the size
619 ** of the wal-index might be increased, but only if it is safe to do
620 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
621 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
622 **
623 ** Three possible result scenarios:
624 **
625 **   (1)  rc==SQLITE_OK    and *ppPage==Requested-Wal-Index-Page
626 **   (2)  rc>=SQLITE_ERROR and *ppPage==NULL
627 **   (3)  rc==SQLITE_OK    and *ppPage==NULL  // only if iPage==0
628 **
629 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
630 */
631 static SQLITE_NOINLINE int walIndexPageRealloc(
632   Wal *pWal,               /* The WAL context */
633   int iPage,               /* The page we seek */
634   volatile u32 **ppPage    /* Write the page pointer here */
635 ){
636   int rc = SQLITE_OK;
637 
638   /* Enlarge the pWal->apWiData[] array if required */
639   if( pWal->nWiData<=iPage ){
640     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
641     volatile u32 **apNew;
642     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
643     if( !apNew ){
644       *ppPage = 0;
645       return SQLITE_NOMEM_BKPT;
646     }
647     memset((void*)&apNew[pWal->nWiData], 0,
648            sizeof(u32*)*(iPage+1-pWal->nWiData));
649     pWal->apWiData = apNew;
650     pWal->nWiData = iPage+1;
651   }
652 
653   /* Request a pointer to the required page from the VFS */
654   assert( pWal->apWiData[iPage]==0 );
655   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
656     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
657     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
658   }else{
659     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
660         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
661     );
662     assert( pWal->apWiData[iPage]!=0
663          || rc!=SQLITE_OK
664          || (pWal->writeLock==0 && iPage==0) );
665     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
666     if( rc==SQLITE_OK ){
667       if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
668     }else if( (rc&0xff)==SQLITE_READONLY ){
669       pWal->readOnly |= WAL_SHM_RDONLY;
670       if( rc==SQLITE_READONLY ){
671         rc = SQLITE_OK;
672       }
673     }
674   }
675 
676   *ppPage = pWal->apWiData[iPage];
677   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
678   return rc;
679 }
680 static int walIndexPage(
681   Wal *pWal,               /* The WAL context */
682   int iPage,               /* The page we seek */
683   volatile u32 **ppPage    /* Write the page pointer here */
684 ){
685   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
686     return walIndexPageRealloc(pWal, iPage, ppPage);
687   }
688   return SQLITE_OK;
689 }
690 
691 /*
692 ** Return a pointer to the WalCkptInfo structure in the wal-index.
693 */
694 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
695   assert( pWal->nWiData>0 && pWal->apWiData[0] );
696   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
697 }
698 
699 /*
700 ** Return a pointer to the WalIndexHdr structure in the wal-index.
701 */
702 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
703   assert( pWal->nWiData>0 && pWal->apWiData[0] );
704   return (volatile WalIndexHdr*)pWal->apWiData[0];
705 }
706 
707 /*
708 ** The argument to this macro must be of type u32. On a little-endian
709 ** architecture, it returns the u32 value that results from interpreting
710 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
711 ** returns the value that would be produced by interpreting the 4 bytes
712 ** of the input value as a little-endian integer.
713 */
714 #define BYTESWAP32(x) ( \
715     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
716   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
717 )
718 
719 /*
720 ** Generate or extend an 8 byte checksum based on the data in
721 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
722 ** initial values of 0 and 0 if aIn==NULL).
723 **
724 ** The checksum is written back into aOut[] before returning.
725 **
726 ** nByte must be a positive multiple of 8.
727 */
728 static void walChecksumBytes(
729   int nativeCksum, /* True for native byte-order, false for non-native */
730   u8 *a,           /* Content to be checksummed */
731   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
732   const u32 *aIn,  /* Initial checksum value input */
733   u32 *aOut        /* OUT: Final checksum value output */
734 ){
735   u32 s1, s2;
736   u32 *aData = (u32 *)a;
737   u32 *aEnd = (u32 *)&a[nByte];
738 
739   if( aIn ){
740     s1 = aIn[0];
741     s2 = aIn[1];
742   }else{
743     s1 = s2 = 0;
744   }
745 
746   assert( nByte>=8 );
747   assert( (nByte&0x00000007)==0 );
748   assert( nByte<=65536 );
749 
750   if( nativeCksum ){
751     do {
752       s1 += *aData++ + s2;
753       s2 += *aData++ + s1;
754     }while( aData<aEnd );
755   }else{
756     do {
757       s1 += BYTESWAP32(aData[0]) + s2;
758       s2 += BYTESWAP32(aData[1]) + s1;
759       aData += 2;
760     }while( aData<aEnd );
761   }
762 
763   aOut[0] = s1;
764   aOut[1] = s2;
765 }
766 
767 /*
768 ** If there is the possibility of concurrent access to the SHM file
769 ** from multiple threads and/or processes, then do a memory barrier.
770 */
771 static void walShmBarrier(Wal *pWal){
772   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
773     sqlite3OsShmBarrier(pWal->pDbFd);
774   }
775 }
776 
777 /*
778 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
779 ** definition as a hint that the function contains constructs that
780 ** might give false-positive TSAN warnings.
781 **
782 ** See tag-20200519-1.
783 */
784 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
785 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
786 #else
787 # define SQLITE_NO_TSAN
788 #endif
789 
790 /*
791 ** Write the header information in pWal->hdr into the wal-index.
792 **
793 ** The checksum on pWal->hdr is updated before it is written.
794 */
795 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
796   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
797   const int nCksum = offsetof(WalIndexHdr, aCksum);
798 
799   assert( pWal->writeLock );
800   pWal->hdr.isInit = 1;
801   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
802   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
803   /* Possible TSAN false-positive.  See tag-20200519-1 */
804   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
805   walShmBarrier(pWal);
806   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
807 }
808 
809 /*
810 ** This function encodes a single frame header and writes it to a buffer
811 ** supplied by the caller. A frame-header is made up of a series of
812 ** 4-byte big-endian integers, as follows:
813 **
814 **     0: Page number.
815 **     4: For commit records, the size of the database image in pages
816 **        after the commit. For all other records, zero.
817 **     8: Salt-1 (copied from the wal-header)
818 **    12: Salt-2 (copied from the wal-header)
819 **    16: Checksum-1.
820 **    20: Checksum-2.
821 */
822 static void walEncodeFrame(
823   Wal *pWal,                      /* The write-ahead log */
824   u32 iPage,                      /* Database page number for frame */
825   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
826   u8 *aData,                      /* Pointer to page data */
827   u8 *aFrame                      /* OUT: Write encoded frame here */
828 ){
829   int nativeCksum;                /* True for native byte-order checksums */
830   u32 *aCksum = pWal->hdr.aFrameCksum;
831   assert( WAL_FRAME_HDRSIZE==24 );
832   sqlite3Put4byte(&aFrame[0], iPage);
833   sqlite3Put4byte(&aFrame[4], nTruncate);
834   if( pWal->iReCksum==0 ){
835     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
836 
837     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
838     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
839     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
840 
841     sqlite3Put4byte(&aFrame[16], aCksum[0]);
842     sqlite3Put4byte(&aFrame[20], aCksum[1]);
843   }else{
844     memset(&aFrame[8], 0, 16);
845   }
846 }
847 
848 /*
849 ** Check to see if the frame with header in aFrame[] and content
850 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
851 ** *pnTruncate and return true.  Return if the frame is not valid.
852 */
853 static int walDecodeFrame(
854   Wal *pWal,                      /* The write-ahead log */
855   u32 *piPage,                    /* OUT: Database page number for frame */
856   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
857   u8 *aData,                      /* Pointer to page data (for checksum) */
858   u8 *aFrame                      /* Frame data */
859 ){
860   int nativeCksum;                /* True for native byte-order checksums */
861   u32 *aCksum = pWal->hdr.aFrameCksum;
862   u32 pgno;                       /* Page number of the frame */
863   assert( WAL_FRAME_HDRSIZE==24 );
864 
865   /* A frame is only valid if the salt values in the frame-header
866   ** match the salt values in the wal-header.
867   */
868   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
869     return 0;
870   }
871 
872   /* A frame is only valid if the page number is creater than zero.
873   */
874   pgno = sqlite3Get4byte(&aFrame[0]);
875   if( pgno==0 ){
876     return 0;
877   }
878 
879   /* A frame is only valid if a checksum of the WAL header,
880   ** all prior frams, the first 16 bytes of this frame-header,
881   ** and the frame-data matches the checksum in the last 8
882   ** bytes of this frame-header.
883   */
884   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
885   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
886   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
887   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
888    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
889   ){
890     /* Checksum failed. */
891     return 0;
892   }
893 
894   /* If we reach this point, the frame is valid.  Return the page number
895   ** and the new database size.
896   */
897   *piPage = pgno;
898   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
899   return 1;
900 }
901 
902 
903 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
904 /*
905 ** Names of locks.  This routine is used to provide debugging output and is not
906 ** a part of an ordinary build.
907 */
908 static const char *walLockName(int lockIdx){
909   if( lockIdx==WAL_WRITE_LOCK ){
910     return "WRITE-LOCK";
911   }else if( lockIdx==WAL_CKPT_LOCK ){
912     return "CKPT-LOCK";
913   }else if( lockIdx==WAL_RECOVER_LOCK ){
914     return "RECOVER-LOCK";
915   }else{
916     static char zName[15];
917     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
918                      lockIdx-WAL_READ_LOCK(0));
919     return zName;
920   }
921 }
922 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
923 
924 
925 /*
926 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
927 ** A lock cannot be moved directly between shared and exclusive - it must go
928 ** through the unlocked state first.
929 **
930 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
931 */
932 static int walLockShared(Wal *pWal, int lockIdx){
933   int rc;
934   if( pWal->exclusiveMode ) return SQLITE_OK;
935   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
936                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
937   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
938             walLockName(lockIdx), rc ? "failed" : "ok"));
939   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
940   return rc;
941 }
942 static void walUnlockShared(Wal *pWal, int lockIdx){
943   if( pWal->exclusiveMode ) return;
944   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
945                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
946   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
947 }
948 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
949   int rc;
950   if( pWal->exclusiveMode ) return SQLITE_OK;
951   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
952                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
953   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
954             walLockName(lockIdx), n, rc ? "failed" : "ok"));
955   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
956   return rc;
957 }
958 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
959   if( pWal->exclusiveMode ) return;
960   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
961                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
962   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
963              walLockName(lockIdx), n));
964 }
965 
966 /*
967 ** Compute a hash on a page number.  The resulting hash value must land
968 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
969 ** the hash to the next value in the event of a collision.
970 */
971 static int walHash(u32 iPage){
972   assert( iPage>0 );
973   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
974   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
975 }
976 static int walNextHash(int iPriorHash){
977   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
978 }
979 
980 /*
981 ** An instance of the WalHashLoc object is used to describe the location
982 ** of a page hash table in the wal-index.  This becomes the return value
983 ** from walHashGet().
984 */
985 typedef struct WalHashLoc WalHashLoc;
986 struct WalHashLoc {
987   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
988   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
989   u32 iZero;                /* One less than the frame number of first indexed*/
990 };
991 
992 /*
993 ** Return pointers to the hash table and page number array stored on
994 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
995 ** numbered starting from 0.
996 **
997 ** Set output variable pLoc->aHash to point to the start of the hash table
998 ** in the wal-index file. Set pLoc->iZero to one less than the frame
999 ** number of the first frame indexed by this hash table. If a
1000 ** slot in the hash table is set to N, it refers to frame number
1001 ** (pLoc->iZero+N) in the log.
1002 **
1003 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
1004 ** first frame indexed by the hash table, frame (pLoc->iZero).
1005 */
1006 static int walHashGet(
1007   Wal *pWal,                      /* WAL handle */
1008   int iHash,                      /* Find the iHash'th table */
1009   WalHashLoc *pLoc                /* OUT: Hash table location */
1010 ){
1011   int rc;                         /* Return code */
1012 
1013   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
1014   assert( rc==SQLITE_OK || iHash>0 );
1015 
1016   if( rc==SQLITE_OK ){
1017     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
1018     if( iHash==0 ){
1019       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
1020       pLoc->iZero = 0;
1021     }else{
1022       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
1023     }
1024   }
1025   return rc;
1026 }
1027 
1028 /*
1029 ** Return the number of the wal-index page that contains the hash-table
1030 ** and page-number array that contain entries corresponding to WAL frame
1031 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
1032 ** are numbered starting from 0.
1033 */
1034 static int walFramePage(u32 iFrame){
1035   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
1036   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
1037        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
1038        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
1039        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
1040        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
1041   );
1042   assert( iHash>=0 );
1043   return iHash;
1044 }
1045 
1046 /*
1047 ** Return the page number associated with frame iFrame in this WAL.
1048 */
1049 static u32 walFramePgno(Wal *pWal, u32 iFrame){
1050   int iHash = walFramePage(iFrame);
1051   if( iHash==0 ){
1052     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
1053   }
1054   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
1055 }
1056 
1057 /*
1058 ** Remove entries from the hash table that point to WAL slots greater
1059 ** than pWal->hdr.mxFrame.
1060 **
1061 ** This function is called whenever pWal->hdr.mxFrame is decreased due
1062 ** to a rollback or savepoint.
1063 **
1064 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
1065 ** updated.  Any later hash tables will be automatically cleared when
1066 ** pWal->hdr.mxFrame advances to the point where those hash tables are
1067 ** actually needed.
1068 */
1069 static void walCleanupHash(Wal *pWal){
1070   WalHashLoc sLoc;                /* Hash table location */
1071   int iLimit = 0;                 /* Zero values greater than this */
1072   int nByte;                      /* Number of bytes to zero in aPgno[] */
1073   int i;                          /* Used to iterate through aHash[] */
1074 
1075   assert( pWal->writeLock );
1076   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1077   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1078   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1079 
1080   if( pWal->hdr.mxFrame==0 ) return;
1081 
1082   /* Obtain pointers to the hash-table and page-number array containing
1083   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1084   ** that the page said hash-table and array reside on is already mapped.(1)
1085   */
1086   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1087   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1088   i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1089   if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
1090 
1091   /* Zero all hash-table entries that correspond to frame numbers greater
1092   ** than pWal->hdr.mxFrame.
1093   */
1094   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1095   assert( iLimit>0 );
1096   for(i=0; i<HASHTABLE_NSLOT; i++){
1097     if( sLoc.aHash[i]>iLimit ){
1098       sLoc.aHash[i] = 0;
1099     }
1100   }
1101 
1102   /* Zero the entries in the aPgno array that correspond to frames with
1103   ** frame numbers greater than pWal->hdr.mxFrame.
1104   */
1105   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
1106   assert( nByte>=0 );
1107   memset((void *)&sLoc.aPgno[iLimit], 0, nByte);
1108 
1109 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1110   /* Verify that the every entry in the mapping region is still reachable
1111   ** via the hash table even after the cleanup.
1112   */
1113   if( iLimit ){
1114     int j;           /* Loop counter */
1115     int iKey;        /* Hash key */
1116     for(j=0; j<iLimit; j++){
1117       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1118         if( sLoc.aHash[iKey]==j+1 ) break;
1119       }
1120       assert( sLoc.aHash[iKey]==j+1 );
1121     }
1122   }
1123 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1124 }
1125 
1126 
1127 /*
1128 ** Set an entry in the wal-index that will map database page number
1129 ** pPage into WAL frame iFrame.
1130 */
1131 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1132   int rc;                         /* Return code */
1133   WalHashLoc sLoc;                /* Wal-index hash table location */
1134 
1135   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1136 
1137   /* Assuming the wal-index file was successfully mapped, populate the
1138   ** page number array and hash table entry.
1139   */
1140   if( rc==SQLITE_OK ){
1141     int iKey;                     /* Hash table key */
1142     int idx;                      /* Value to write to hash-table slot */
1143     int nCollide;                 /* Number of hash collisions */
1144 
1145     idx = iFrame - sLoc.iZero;
1146     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1147 
1148     /* If this is the first entry to be added to this hash-table, zero the
1149     ** entire hash table and aPgno[] array before proceeding.
1150     */
1151     if( idx==1 ){
1152       int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
1153       assert( nByte>=0 );
1154       memset((void*)sLoc.aPgno, 0, nByte);
1155     }
1156 
1157     /* If the entry in aPgno[] is already set, then the previous writer
1158     ** must have exited unexpectedly in the middle of a transaction (after
1159     ** writing one or more dirty pages to the WAL to free up memory).
1160     ** Remove the remnants of that writers uncommitted transaction from
1161     ** the hash-table before writing any new entries.
1162     */
1163     if( sLoc.aPgno[idx-1] ){
1164       walCleanupHash(pWal);
1165       assert( !sLoc.aPgno[idx-1] );
1166     }
1167 
1168     /* Write the aPgno[] array entry and the hash-table slot. */
1169     nCollide = idx;
1170     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1171       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1172     }
1173     sLoc.aPgno[idx-1] = iPage;
1174     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1175 
1176 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1177     /* Verify that the number of entries in the hash table exactly equals
1178     ** the number of entries in the mapping region.
1179     */
1180     {
1181       int i;           /* Loop counter */
1182       int nEntry = 0;  /* Number of entries in the hash table */
1183       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1184       assert( nEntry==idx );
1185     }
1186 
1187     /* Verify that the every entry in the mapping region is reachable
1188     ** via the hash table.  This turns out to be a really, really expensive
1189     ** thing to check, so only do this occasionally - not on every
1190     ** iteration.
1191     */
1192     if( (idx&0x3ff)==0 ){
1193       int i;           /* Loop counter */
1194       for(i=0; i<idx; i++){
1195         for(iKey=walHash(sLoc.aPgno[i]);
1196             sLoc.aHash[iKey];
1197             iKey=walNextHash(iKey)){
1198           if( sLoc.aHash[iKey]==i+1 ) break;
1199         }
1200         assert( sLoc.aHash[iKey]==i+1 );
1201       }
1202     }
1203 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1204   }
1205 
1206   return rc;
1207 }
1208 
1209 
1210 /*
1211 ** Recover the wal-index by reading the write-ahead log file.
1212 **
1213 ** This routine first tries to establish an exclusive lock on the
1214 ** wal-index to prevent other threads/processes from doing anything
1215 ** with the WAL or wal-index while recovery is running.  The
1216 ** WAL_RECOVER_LOCK is also held so that other threads will know
1217 ** that this thread is running recovery.  If unable to establish
1218 ** the necessary locks, this routine returns SQLITE_BUSY.
1219 */
1220 static int walIndexRecover(Wal *pWal){
1221   int rc;                         /* Return Code */
1222   i64 nSize;                      /* Size of log file */
1223   u32 aFrameCksum[2] = {0, 0};
1224   int iLock;                      /* Lock offset to lock for checkpoint */
1225 
1226   /* Obtain an exclusive lock on all byte in the locking range not already
1227   ** locked by the caller. The caller is guaranteed to have locked the
1228   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1229   ** If successful, the same bytes that are locked here are unlocked before
1230   ** this function returns.
1231   */
1232   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1233   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1234   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1235   assert( pWal->writeLock );
1236   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1237   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1238   if( rc ){
1239     return rc;
1240   }
1241 
1242   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1243 
1244   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1245 
1246   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1247   if( rc!=SQLITE_OK ){
1248     goto recovery_error;
1249   }
1250 
1251   if( nSize>WAL_HDRSIZE ){
1252     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1253     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1254     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1255     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1256     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1257     int szPage;                   /* Page size according to the log */
1258     u32 magic;                    /* Magic value read from WAL header */
1259     u32 version;                  /* Magic value read from WAL header */
1260     int isValid;                  /* True if this frame is valid */
1261     u32 iPg;                      /* Current 32KB wal-index page */
1262     u32 iLastFrame;               /* Last frame in wal, based on nSize alone */
1263 
1264     /* Read in the WAL header. */
1265     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1266     if( rc!=SQLITE_OK ){
1267       goto recovery_error;
1268     }
1269 
1270     /* If the database page size is not a power of two, or is greater than
1271     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1272     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1273     ** WAL file.
1274     */
1275     magic = sqlite3Get4byte(&aBuf[0]);
1276     szPage = sqlite3Get4byte(&aBuf[8]);
1277     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1278      || szPage&(szPage-1)
1279      || szPage>SQLITE_MAX_PAGE_SIZE
1280      || szPage<512
1281     ){
1282       goto finished;
1283     }
1284     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1285     pWal->szPage = szPage;
1286     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1287     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1288 
1289     /* Verify that the WAL header checksum is correct */
1290     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1291         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1292     );
1293     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1294      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1295     ){
1296       goto finished;
1297     }
1298 
1299     /* Verify that the version number on the WAL format is one that
1300     ** are able to understand */
1301     version = sqlite3Get4byte(&aBuf[4]);
1302     if( version!=WAL_MAX_VERSION ){
1303       rc = SQLITE_CANTOPEN_BKPT;
1304       goto finished;
1305     }
1306 
1307     /* Malloc a buffer to read frames into. */
1308     szFrame = szPage + WAL_FRAME_HDRSIZE;
1309     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1310     if( !aFrame ){
1311       rc = SQLITE_NOMEM_BKPT;
1312       goto recovery_error;
1313     }
1314     aData = &aFrame[WAL_FRAME_HDRSIZE];
1315     aPrivate = (u32*)&aData[szPage];
1316 
1317     /* Read all frames from the log file. */
1318     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1319     for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1320       u32 *aShare;
1321       u32 iFrame;                 /* Index of last frame read */
1322       u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1323       u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1324       u32 nHdr, nHdr32;
1325       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1326       if( rc ) break;
1327       pWal->apWiData[iPg] = aPrivate;
1328 
1329       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1330         i64 iOffset = walFrameOffset(iFrame, szPage);
1331         u32 pgno;                 /* Database page number for frame */
1332         u32 nTruncate;            /* dbsize field from frame header */
1333 
1334         /* Read and decode the next log frame. */
1335         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1336         if( rc!=SQLITE_OK ) break;
1337         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1338         if( !isValid ) break;
1339         rc = walIndexAppend(pWal, iFrame, pgno);
1340         if( NEVER(rc!=SQLITE_OK) ) break;
1341 
1342         /* If nTruncate is non-zero, this is a commit record. */
1343         if( nTruncate ){
1344           pWal->hdr.mxFrame = iFrame;
1345           pWal->hdr.nPage = nTruncate;
1346           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1347           testcase( szPage<=32768 );
1348           testcase( szPage>=65536 );
1349           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1350           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1351         }
1352       }
1353       pWal->apWiData[iPg] = aShare;
1354       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1355       nHdr32 = nHdr / sizeof(u32);
1356 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1357       /* Memcpy() should work fine here, on all reasonable implementations.
1358       ** Technically, memcpy() might change the destination to some
1359       ** intermediate value before setting to the final value, and that might
1360       ** cause a concurrent reader to malfunction.  Memcpy() is allowed to
1361       ** do that, according to the spec, but no memcpy() implementation that
1362       ** we know of actually does that, which is why we say that memcpy()
1363       ** is safe for this.  Memcpy() is certainly a lot faster.
1364       */
1365       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1366 #else
1367       /* In the event that some platform is found for which memcpy()
1368       ** changes the destination to some intermediate value before
1369       ** setting the final value, this alternative copy routine is
1370       ** provided.
1371       */
1372       {
1373         int i;
1374         for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1375           if( aShare[i]!=aPrivate[i] ){
1376             /* Atomic memory operations are not required here because if
1377             ** the value needs to be changed, that means it is not being
1378             ** accessed concurrently. */
1379             aShare[i] = aPrivate[i];
1380           }
1381         }
1382       }
1383 #endif
1384       if( iFrame<=iLast ) break;
1385     }
1386 
1387     sqlite3_free(aFrame);
1388   }
1389 
1390 finished:
1391   if( rc==SQLITE_OK ){
1392     volatile WalCkptInfo *pInfo;
1393     int i;
1394     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1395     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1396     walIndexWriteHdr(pWal);
1397 
1398     /* Reset the checkpoint-header. This is safe because this thread is
1399     ** currently holding locks that exclude all other writers and
1400     ** checkpointers. Then set the values of read-mark slots 1 through N.
1401     */
1402     pInfo = walCkptInfo(pWal);
1403     pInfo->nBackfill = 0;
1404     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1405     pInfo->aReadMark[0] = 0;
1406     for(i=1; i<WAL_NREADER; i++){
1407       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1408       if( rc==SQLITE_OK ){
1409         if( i==1 && pWal->hdr.mxFrame ){
1410           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1411         }else{
1412           pInfo->aReadMark[i] = READMARK_NOT_USED;
1413         }
1414         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1415       }else if( rc!=SQLITE_BUSY ){
1416         goto recovery_error;
1417       }
1418     }
1419 
1420     /* If more than one frame was recovered from the log file, report an
1421     ** event via sqlite3_log(). This is to help with identifying performance
1422     ** problems caused by applications routinely shutting down without
1423     ** checkpointing the log file.
1424     */
1425     if( pWal->hdr.nPage ){
1426       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1427           "recovered %d frames from WAL file %s",
1428           pWal->hdr.mxFrame, pWal->zWalName
1429       );
1430     }
1431   }
1432 
1433 recovery_error:
1434   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1435   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1436   return rc;
1437 }
1438 
1439 /*
1440 ** Close an open wal-index.
1441 */
1442 static void walIndexClose(Wal *pWal, int isDelete){
1443   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1444     int i;
1445     for(i=0; i<pWal->nWiData; i++){
1446       sqlite3_free((void *)pWal->apWiData[i]);
1447       pWal->apWiData[i] = 0;
1448     }
1449   }
1450   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1451     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1452   }
1453 }
1454 
1455 /*
1456 ** Open a connection to the WAL file zWalName. The database file must
1457 ** already be opened on connection pDbFd. The buffer that zWalName points
1458 ** to must remain valid for the lifetime of the returned Wal* handle.
1459 **
1460 ** A SHARED lock should be held on the database file when this function
1461 ** is called. The purpose of this SHARED lock is to prevent any other
1462 ** client from unlinking the WAL or wal-index file. If another process
1463 ** were to do this just after this client opened one of these files, the
1464 ** system would be badly broken.
1465 **
1466 ** If the log file is successfully opened, SQLITE_OK is returned and
1467 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1468 ** an SQLite error code is returned and *ppWal is left unmodified.
1469 */
1470 int sqlite3WalOpen(
1471   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1472   sqlite3_file *pDbFd,            /* The open database file */
1473   const char *zWalName,           /* Name of the WAL file */
1474   int bNoShm,                     /* True to run in heap-memory mode */
1475   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1476   Wal **ppWal                     /* OUT: Allocated Wal handle */
1477 ){
1478   int rc;                         /* Return Code */
1479   Wal *pRet;                      /* Object to allocate and return */
1480   int flags;                      /* Flags passed to OsOpen() */
1481 
1482   assert( zWalName && zWalName[0] );
1483   assert( pDbFd );
1484 
1485   /* Verify the values of various constants.  Any changes to the values
1486   ** of these constants would result in an incompatible on-disk format
1487   ** for the -shm file.  Any change that causes one of these asserts to
1488   ** fail is a backward compatibility problem, even if the change otherwise
1489   ** works.
1490   **
1491   ** This table also serves as a helpful cross-reference when trying to
1492   ** interpret hex dumps of the -shm file.
1493   */
1494   assert(    48 ==  sizeof(WalIndexHdr)  );
1495   assert(    40 ==  sizeof(WalCkptInfo)  );
1496   assert(   120 ==  WALINDEX_LOCK_OFFSET );
1497   assert(   136 ==  WALINDEX_HDR_SIZE    );
1498   assert(  4096 ==  HASHTABLE_NPAGE      );
1499   assert(  4062 ==  HASHTABLE_NPAGE_ONE  );
1500   assert(  8192 ==  HASHTABLE_NSLOT      );
1501   assert(   383 ==  HASHTABLE_HASH_1     );
1502   assert( 32768 ==  WALINDEX_PGSZ        );
1503   assert(     8 ==  SQLITE_SHM_NLOCK     );
1504   assert(     5 ==  WAL_NREADER          );
1505   assert(    24 ==  WAL_FRAME_HDRSIZE    );
1506   assert(    32 ==  WAL_HDRSIZE          );
1507   assert(   120 ==  WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK   );
1508   assert(   121 ==  WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK    );
1509   assert(   122 ==  WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
1510   assert(   123 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
1511   assert(   124 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
1512   assert(   125 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
1513   assert(   126 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
1514   assert(   127 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
1515 
1516   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1517   ** this source file.  Verify that the #defines of the locking byte offsets
1518   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1519   ** For that matter, if the lock offset ever changes from its initial design
1520   ** value of 120, we need to know that so there is an assert() to check it.
1521   */
1522 #ifdef WIN_SHM_BASE
1523   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1524 #endif
1525 #ifdef UNIX_SHM_BASE
1526   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1527 #endif
1528 
1529 
1530   /* Allocate an instance of struct Wal to return. */
1531   *ppWal = 0;
1532   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1533   if( !pRet ){
1534     return SQLITE_NOMEM_BKPT;
1535   }
1536 
1537   pRet->pVfs = pVfs;
1538   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1539   pRet->pDbFd = pDbFd;
1540   pRet->readLock = -1;
1541   pRet->mxWalSize = mxWalSize;
1542   pRet->zWalName = zWalName;
1543   pRet->syncHeader = 1;
1544   pRet->padToSectorBoundary = 1;
1545   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1546 
1547   /* Open file handle on the write-ahead log file. */
1548   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1549   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1550   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1551     pRet->readOnly = WAL_RDONLY;
1552   }
1553 
1554   if( rc!=SQLITE_OK ){
1555     walIndexClose(pRet, 0);
1556     sqlite3OsClose(pRet->pWalFd);
1557     sqlite3_free(pRet);
1558   }else{
1559     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1560     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1561     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1562       pRet->padToSectorBoundary = 0;
1563     }
1564     *ppWal = pRet;
1565     WALTRACE(("WAL%d: opened\n", pRet));
1566   }
1567   return rc;
1568 }
1569 
1570 /*
1571 ** Change the size to which the WAL file is trucated on each reset.
1572 */
1573 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1574   if( pWal ) pWal->mxWalSize = iLimit;
1575 }
1576 
1577 /*
1578 ** Find the smallest page number out of all pages held in the WAL that
1579 ** has not been returned by any prior invocation of this method on the
1580 ** same WalIterator object.   Write into *piFrame the frame index where
1581 ** that page was last written into the WAL.  Write into *piPage the page
1582 ** number.
1583 **
1584 ** Return 0 on success.  If there are no pages in the WAL with a page
1585 ** number larger than *piPage, then return 1.
1586 */
1587 static int walIteratorNext(
1588   WalIterator *p,               /* Iterator */
1589   u32 *piPage,                  /* OUT: The page number of the next page */
1590   u32 *piFrame                  /* OUT: Wal frame index of next page */
1591 ){
1592   u32 iMin;                     /* Result pgno must be greater than iMin */
1593   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1594   int i;                        /* For looping through segments */
1595 
1596   iMin = p->iPrior;
1597   assert( iMin<0xffffffff );
1598   for(i=p->nSegment-1; i>=0; i--){
1599     struct WalSegment *pSegment = &p->aSegment[i];
1600     while( pSegment->iNext<pSegment->nEntry ){
1601       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1602       if( iPg>iMin ){
1603         if( iPg<iRet ){
1604           iRet = iPg;
1605           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1606         }
1607         break;
1608       }
1609       pSegment->iNext++;
1610     }
1611   }
1612 
1613   *piPage = p->iPrior = iRet;
1614   return (iRet==0xFFFFFFFF);
1615 }
1616 
1617 /*
1618 ** This function merges two sorted lists into a single sorted list.
1619 **
1620 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1621 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1622 ** is guaranteed for all J<K:
1623 **
1624 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1625 **        aContent[aRight[J]] < aContent[aRight[K]]
1626 **
1627 ** This routine overwrites aRight[] with a new (probably longer) sequence
1628 ** of indices such that the aRight[] contains every index that appears in
1629 ** either aLeft[] or the old aRight[] and such that the second condition
1630 ** above is still met.
1631 **
1632 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1633 ** aContent[aRight[X]] values will be unique too.  But there might be
1634 ** one or more combinations of X and Y such that
1635 **
1636 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1637 **
1638 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1639 */
1640 static void walMerge(
1641   const u32 *aContent,            /* Pages in wal - keys for the sort */
1642   ht_slot *aLeft,                 /* IN: Left hand input list */
1643   int nLeft,                      /* IN: Elements in array *paLeft */
1644   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1645   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1646   ht_slot *aTmp                   /* Temporary buffer */
1647 ){
1648   int iLeft = 0;                  /* Current index in aLeft */
1649   int iRight = 0;                 /* Current index in aRight */
1650   int iOut = 0;                   /* Current index in output buffer */
1651   int nRight = *pnRight;
1652   ht_slot *aRight = *paRight;
1653 
1654   assert( nLeft>0 && nRight>0 );
1655   while( iRight<nRight || iLeft<nLeft ){
1656     ht_slot logpage;
1657     Pgno dbpage;
1658 
1659     if( (iLeft<nLeft)
1660      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1661     ){
1662       logpage = aLeft[iLeft++];
1663     }else{
1664       logpage = aRight[iRight++];
1665     }
1666     dbpage = aContent[logpage];
1667 
1668     aTmp[iOut++] = logpage;
1669     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1670 
1671     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1672     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1673   }
1674 
1675   *paRight = aLeft;
1676   *pnRight = iOut;
1677   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1678 }
1679 
1680 /*
1681 ** Sort the elements in list aList using aContent[] as the sort key.
1682 ** Remove elements with duplicate keys, preferring to keep the
1683 ** larger aList[] values.
1684 **
1685 ** The aList[] entries are indices into aContent[].  The values in
1686 ** aList[] are to be sorted so that for all J<K:
1687 **
1688 **      aContent[aList[J]] < aContent[aList[K]]
1689 **
1690 ** For any X and Y such that
1691 **
1692 **      aContent[aList[X]] == aContent[aList[Y]]
1693 **
1694 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1695 ** the smaller.
1696 */
1697 static void walMergesort(
1698   const u32 *aContent,            /* Pages in wal */
1699   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1700   ht_slot *aList,                 /* IN/OUT: List to sort */
1701   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1702 ){
1703   struct Sublist {
1704     int nList;                    /* Number of elements in aList */
1705     ht_slot *aList;               /* Pointer to sub-list content */
1706   };
1707 
1708   const int nList = *pnList;      /* Size of input list */
1709   int nMerge = 0;                 /* Number of elements in list aMerge */
1710   ht_slot *aMerge = 0;            /* List to be merged */
1711   int iList;                      /* Index into input list */
1712   u32 iSub = 0;                   /* Index into aSub array */
1713   struct Sublist aSub[13];        /* Array of sub-lists */
1714 
1715   memset(aSub, 0, sizeof(aSub));
1716   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1717   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1718 
1719   for(iList=0; iList<nList; iList++){
1720     nMerge = 1;
1721     aMerge = &aList[iList];
1722     for(iSub=0; iList & (1<<iSub); iSub++){
1723       struct Sublist *p;
1724       assert( iSub<ArraySize(aSub) );
1725       p = &aSub[iSub];
1726       assert( p->aList && p->nList<=(1<<iSub) );
1727       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1728       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1729     }
1730     aSub[iSub].aList = aMerge;
1731     aSub[iSub].nList = nMerge;
1732   }
1733 
1734   for(iSub++; iSub<ArraySize(aSub); iSub++){
1735     if( nList & (1<<iSub) ){
1736       struct Sublist *p;
1737       assert( iSub<ArraySize(aSub) );
1738       p = &aSub[iSub];
1739       assert( p->nList<=(1<<iSub) );
1740       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1741       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1742     }
1743   }
1744   assert( aMerge==aList );
1745   *pnList = nMerge;
1746 
1747 #ifdef SQLITE_DEBUG
1748   {
1749     int i;
1750     for(i=1; i<*pnList; i++){
1751       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1752     }
1753   }
1754 #endif
1755 }
1756 
1757 /*
1758 ** Free an iterator allocated by walIteratorInit().
1759 */
1760 static void walIteratorFree(WalIterator *p){
1761   sqlite3_free(p);
1762 }
1763 
1764 /*
1765 ** Construct a WalInterator object that can be used to loop over all
1766 ** pages in the WAL following frame nBackfill in ascending order. Frames
1767 ** nBackfill or earlier may be included - excluding them is an optimization
1768 ** only. The caller must hold the checkpoint lock.
1769 **
1770 ** On success, make *pp point to the newly allocated WalInterator object
1771 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1772 ** returns an error, the value of *pp is undefined.
1773 **
1774 ** The calling routine should invoke walIteratorFree() to destroy the
1775 ** WalIterator object when it has finished with it.
1776 */
1777 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1778   WalIterator *p;                 /* Return value */
1779   int nSegment;                   /* Number of segments to merge */
1780   u32 iLast;                      /* Last frame in log */
1781   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1782   int i;                          /* Iterator variable */
1783   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1784   int rc = SQLITE_OK;             /* Return Code */
1785 
1786   /* This routine only runs while holding the checkpoint lock. And
1787   ** it only runs if there is actually content in the log (mxFrame>0).
1788   */
1789   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1790   iLast = pWal->hdr.mxFrame;
1791 
1792   /* Allocate space for the WalIterator object. */
1793   nSegment = walFramePage(iLast) + 1;
1794   nByte = sizeof(WalIterator)
1795         + (nSegment-1)*sizeof(struct WalSegment)
1796         + iLast*sizeof(ht_slot);
1797   p = (WalIterator *)sqlite3_malloc64(nByte);
1798   if( !p ){
1799     return SQLITE_NOMEM_BKPT;
1800   }
1801   memset(p, 0, nByte);
1802   p->nSegment = nSegment;
1803 
1804   /* Allocate temporary space used by the merge-sort routine. This block
1805   ** of memory will be freed before this function returns.
1806   */
1807   aTmp = (ht_slot *)sqlite3_malloc64(
1808       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1809   );
1810   if( !aTmp ){
1811     rc = SQLITE_NOMEM_BKPT;
1812   }
1813 
1814   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1815     WalHashLoc sLoc;
1816 
1817     rc = walHashGet(pWal, i, &sLoc);
1818     if( rc==SQLITE_OK ){
1819       int j;                      /* Counter variable */
1820       int nEntry;                 /* Number of entries in this segment */
1821       ht_slot *aIndex;            /* Sorted index for this segment */
1822 
1823       if( (i+1)==nSegment ){
1824         nEntry = (int)(iLast - sLoc.iZero);
1825       }else{
1826         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1827       }
1828       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1829       sLoc.iZero++;
1830 
1831       for(j=0; j<nEntry; j++){
1832         aIndex[j] = (ht_slot)j;
1833       }
1834       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1835       p->aSegment[i].iZero = sLoc.iZero;
1836       p->aSegment[i].nEntry = nEntry;
1837       p->aSegment[i].aIndex = aIndex;
1838       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1839     }
1840   }
1841   sqlite3_free(aTmp);
1842 
1843   if( rc!=SQLITE_OK ){
1844     walIteratorFree(p);
1845     p = 0;
1846   }
1847   *pp = p;
1848   return rc;
1849 }
1850 
1851 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1852 /*
1853 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1854 ** they are supported by the VFS, and (b) the database handle is configured
1855 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1856 ** or 0 otherwise.
1857 */
1858 static int walEnableBlocking(Wal *pWal){
1859   int res = 0;
1860   if( pWal->db ){
1861     int tmout = pWal->db->busyTimeout;
1862     if( tmout ){
1863       int rc;
1864       rc = sqlite3OsFileControl(
1865           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1866       );
1867       res = (rc==SQLITE_OK);
1868     }
1869   }
1870   return res;
1871 }
1872 
1873 /*
1874 ** Disable blocking locks.
1875 */
1876 static void walDisableBlocking(Wal *pWal){
1877   int tmout = 0;
1878   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1879 }
1880 
1881 /*
1882 ** If parameter bLock is true, attempt to enable blocking locks, take
1883 ** the WRITER lock, and then disable blocking locks. If blocking locks
1884 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1885 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1886 ** an error if blocking locks can not be enabled.
1887 **
1888 ** If the bLock parameter is false and the WRITER lock is held, release it.
1889 */
1890 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1891   int rc = SQLITE_OK;
1892   assert( pWal->readLock<0 || bLock==0 );
1893   if( bLock ){
1894     assert( pWal->db );
1895     if( walEnableBlocking(pWal) ){
1896       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1897       if( rc==SQLITE_OK ){
1898         pWal->writeLock = 1;
1899       }
1900       walDisableBlocking(pWal);
1901     }
1902   }else if( pWal->writeLock ){
1903     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1904     pWal->writeLock = 0;
1905   }
1906   return rc;
1907 }
1908 
1909 /*
1910 ** Set the database handle used to determine if blocking locks are required.
1911 */
1912 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1913   pWal->db = db;
1914 }
1915 
1916 /*
1917 ** Take an exclusive WRITE lock. Blocking if so configured.
1918 */
1919 static int walLockWriter(Wal *pWal){
1920   int rc;
1921   walEnableBlocking(pWal);
1922   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1923   walDisableBlocking(pWal);
1924   return rc;
1925 }
1926 #else
1927 # define walEnableBlocking(x) 0
1928 # define walDisableBlocking(x)
1929 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1930 # define sqlite3WalDb(pWal, db)
1931 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1932 
1933 
1934 /*
1935 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1936 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1937 ** busy-handler function. Invoke it and retry the lock until either the
1938 ** lock is successfully obtained or the busy-handler returns 0.
1939 */
1940 static int walBusyLock(
1941   Wal *pWal,                      /* WAL connection */
1942   int (*xBusy)(void*),            /* Function to call when busy */
1943   void *pBusyArg,                 /* Context argument for xBusyHandler */
1944   int lockIdx,                    /* Offset of first byte to lock */
1945   int n                           /* Number of bytes to lock */
1946 ){
1947   int rc;
1948   do {
1949     rc = walLockExclusive(pWal, lockIdx, n);
1950   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1951 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1952   if( rc==SQLITE_BUSY_TIMEOUT ){
1953     walDisableBlocking(pWal);
1954     rc = SQLITE_BUSY;
1955   }
1956 #endif
1957   return rc;
1958 }
1959 
1960 /*
1961 ** The cache of the wal-index header must be valid to call this function.
1962 ** Return the page-size in bytes used by the database.
1963 */
1964 static int walPagesize(Wal *pWal){
1965   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1966 }
1967 
1968 /*
1969 ** The following is guaranteed when this function is called:
1970 **
1971 **   a) the WRITER lock is held,
1972 **   b) the entire log file has been checkpointed, and
1973 **   c) any existing readers are reading exclusively from the database
1974 **      file - there are no readers that may attempt to read a frame from
1975 **      the log file.
1976 **
1977 ** This function updates the shared-memory structures so that the next
1978 ** client to write to the database (which may be this one) does so by
1979 ** writing frames into the start of the log file.
1980 **
1981 ** The value of parameter salt1 is used as the aSalt[1] value in the
1982 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1983 ** one obtained from sqlite3_randomness()).
1984 */
1985 static void walRestartHdr(Wal *pWal, u32 salt1){
1986   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1987   int i;                          /* Loop counter */
1988   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1989   pWal->nCkpt++;
1990   pWal->hdr.mxFrame = 0;
1991   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1992   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1993   walIndexWriteHdr(pWal);
1994   AtomicStore(&pInfo->nBackfill, 0);
1995   pInfo->nBackfillAttempted = 0;
1996   pInfo->aReadMark[1] = 0;
1997   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1998   assert( pInfo->aReadMark[0]==0 );
1999 }
2000 
2001 /*
2002 ** Copy as much content as we can from the WAL back into the database file
2003 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
2004 **
2005 ** The amount of information copies from WAL to database might be limited
2006 ** by active readers.  This routine will never overwrite a database page
2007 ** that a concurrent reader might be using.
2008 **
2009 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
2010 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
2011 ** checkpoints are always run by a background thread or background
2012 ** process, foreground threads will never block on a lengthy fsync call.
2013 **
2014 ** Fsync is called on the WAL before writing content out of the WAL and
2015 ** into the database.  This ensures that if the new content is persistent
2016 ** in the WAL and can be recovered following a power-loss or hard reset.
2017 **
2018 ** Fsync is also called on the database file if (and only if) the entire
2019 ** WAL content is copied into the database file.  This second fsync makes
2020 ** it safe to delete the WAL since the new content will persist in the
2021 ** database file.
2022 **
2023 ** This routine uses and updates the nBackfill field of the wal-index header.
2024 ** This is the only routine that will increase the value of nBackfill.
2025 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
2026 ** its value.)
2027 **
2028 ** The caller must be holding sufficient locks to ensure that no other
2029 ** checkpoint is running (in any other thread or process) at the same
2030 ** time.
2031 */
2032 static int walCheckpoint(
2033   Wal *pWal,                      /* Wal connection */
2034   sqlite3 *db,                    /* Check for interrupts on this handle */
2035   int eMode,                      /* One of PASSIVE, FULL or RESTART */
2036   int (*xBusy)(void*),            /* Function to call when busy */
2037   void *pBusyArg,                 /* Context argument for xBusyHandler */
2038   int sync_flags,                 /* Flags for OsSync() (or 0) */
2039   u8 *zBuf                        /* Temporary buffer to use */
2040 ){
2041   int rc = SQLITE_OK;             /* Return code */
2042   int szPage;                     /* Database page-size */
2043   WalIterator *pIter = 0;         /* Wal iterator context */
2044   u32 iDbpage = 0;                /* Next database page to write */
2045   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
2046   u32 mxSafeFrame;                /* Max frame that can be backfilled */
2047   u32 mxPage;                     /* Max database page to write */
2048   int i;                          /* Loop counter */
2049   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
2050 
2051   szPage = walPagesize(pWal);
2052   testcase( szPage<=32768 );
2053   testcase( szPage>=65536 );
2054   pInfo = walCkptInfo(pWal);
2055   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2056 
2057     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2058     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2059     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2060 
2061     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
2062     ** safe to write into the database.  Frames beyond mxSafeFrame might
2063     ** overwrite database pages that are in use by active readers and thus
2064     ** cannot be backfilled from the WAL.
2065     */
2066     mxSafeFrame = pWal->hdr.mxFrame;
2067     mxPage = pWal->hdr.nPage;
2068     for(i=1; i<WAL_NREADER; i++){
2069       u32 y = AtomicLoad(pInfo->aReadMark+i);
2070       if( mxSafeFrame>y ){
2071         assert( y<=pWal->hdr.mxFrame );
2072         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
2073         if( rc==SQLITE_OK ){
2074           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
2075           AtomicStore(pInfo->aReadMark+i, iMark);
2076           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2077         }else if( rc==SQLITE_BUSY ){
2078           mxSafeFrame = y;
2079           xBusy = 0;
2080         }else{
2081           goto walcheckpoint_out;
2082         }
2083       }
2084     }
2085 
2086     /* Allocate the iterator */
2087     if( pInfo->nBackfill<mxSafeFrame ){
2088       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
2089       assert( rc==SQLITE_OK || pIter==0 );
2090     }
2091 
2092     if( pIter
2093      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
2094     ){
2095       u32 nBackfill = pInfo->nBackfill;
2096 
2097       pInfo->nBackfillAttempted = mxSafeFrame;
2098 
2099       /* Sync the WAL to disk */
2100       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2101 
2102       /* If the database may grow as a result of this checkpoint, hint
2103       ** about the eventual size of the db file to the VFS layer.
2104       */
2105       if( rc==SQLITE_OK ){
2106         i64 nReq = ((i64)mxPage * szPage);
2107         i64 nSize;                    /* Current size of database file */
2108         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2109         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2110         if( rc==SQLITE_OK && nSize<nReq ){
2111           if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2112             /* If the size of the final database is larger than the current
2113             ** database plus the amount of data in the wal file, plus the
2114             ** maximum size of the pending-byte page (65536 bytes), then
2115             ** must be corruption somewhere.  */
2116             rc = SQLITE_CORRUPT_BKPT;
2117           }else{
2118             sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2119           }
2120         }
2121 
2122       }
2123 
2124       /* Iterate through the contents of the WAL, copying data to the db file */
2125       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2126         i64 iOffset;
2127         assert( walFramePgno(pWal, iFrame)==iDbpage );
2128         if( AtomicLoad(&db->u1.isInterrupted) ){
2129           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2130           break;
2131         }
2132         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2133           continue;
2134         }
2135         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2136         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2137         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2138         if( rc!=SQLITE_OK ) break;
2139         iOffset = (iDbpage-1)*(i64)szPage;
2140         testcase( IS_BIG_INT(iOffset) );
2141         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2142         if( rc!=SQLITE_OK ) break;
2143       }
2144       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2145 
2146       /* If work was actually accomplished... */
2147       if( rc==SQLITE_OK ){
2148         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2149           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2150           testcase( IS_BIG_INT(szDb) );
2151           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2152           if( rc==SQLITE_OK ){
2153             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2154           }
2155         }
2156         if( rc==SQLITE_OK ){
2157           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2158         }
2159       }
2160 
2161       /* Release the reader lock held while backfilling */
2162       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2163     }
2164 
2165     if( rc==SQLITE_BUSY ){
2166       /* Reset the return code so as not to report a checkpoint failure
2167       ** just because there are active readers.  */
2168       rc = SQLITE_OK;
2169     }
2170   }
2171 
2172   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2173   ** entire wal file has been copied into the database file, then block
2174   ** until all readers have finished using the wal file. This ensures that
2175   ** the next process to write to the database restarts the wal file.
2176   */
2177   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2178     assert( pWal->writeLock );
2179     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2180       rc = SQLITE_BUSY;
2181     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2182       u32 salt1;
2183       sqlite3_randomness(4, &salt1);
2184       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2185       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2186       if( rc==SQLITE_OK ){
2187         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2188           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2189           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2190           ** truncates the log file to zero bytes just prior to a
2191           ** successful return.
2192           **
2193           ** In theory, it might be safe to do this without updating the
2194           ** wal-index header in shared memory, as all subsequent reader or
2195           ** writer clients should see that the entire log file has been
2196           ** checkpointed and behave accordingly. This seems unsafe though,
2197           ** as it would leave the system in a state where the contents of
2198           ** the wal-index header do not match the contents of the
2199           ** file-system. To avoid this, update the wal-index header to
2200           ** indicate that the log file contains zero valid frames.  */
2201           walRestartHdr(pWal, salt1);
2202           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2203         }
2204         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2205       }
2206     }
2207   }
2208 
2209  walcheckpoint_out:
2210   walIteratorFree(pIter);
2211   return rc;
2212 }
2213 
2214 /*
2215 ** If the WAL file is currently larger than nMax bytes in size, truncate
2216 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2217 */
2218 static void walLimitSize(Wal *pWal, i64 nMax){
2219   i64 sz;
2220   int rx;
2221   sqlite3BeginBenignMalloc();
2222   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2223   if( rx==SQLITE_OK && (sz > nMax ) ){
2224     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2225   }
2226   sqlite3EndBenignMalloc();
2227   if( rx ){
2228     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2229   }
2230 }
2231 
2232 /*
2233 ** Close a connection to a log file.
2234 */
2235 int sqlite3WalClose(
2236   Wal *pWal,                      /* Wal to close */
2237   sqlite3 *db,                    /* For interrupt flag */
2238   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2239   int nBuf,
2240   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2241 ){
2242   int rc = SQLITE_OK;
2243   if( pWal ){
2244     int isDelete = 0;             /* True to unlink wal and wal-index files */
2245 
2246     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2247     ** ordinary, rollback-mode locking methods, this guarantees that the
2248     ** connection associated with this log file is the only connection to
2249     ** the database. In this case checkpoint the database and unlink both
2250     ** the wal and wal-index files.
2251     **
2252     ** The EXCLUSIVE lock is not released before returning.
2253     */
2254     if( zBuf!=0
2255      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2256     ){
2257       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2258         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2259       }
2260       rc = sqlite3WalCheckpoint(pWal, db,
2261           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2262       );
2263       if( rc==SQLITE_OK ){
2264         int bPersist = -1;
2265         sqlite3OsFileControlHint(
2266             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2267         );
2268         if( bPersist!=1 ){
2269           /* Try to delete the WAL file if the checkpoint completed and
2270           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2271           ** mode (!bPersist) */
2272           isDelete = 1;
2273         }else if( pWal->mxWalSize>=0 ){
2274           /* Try to truncate the WAL file to zero bytes if the checkpoint
2275           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2276           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2277           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2278           ** to zero bytes as truncating to the journal_size_limit might
2279           ** leave a corrupt WAL file on disk. */
2280           walLimitSize(pWal, 0);
2281         }
2282       }
2283     }
2284 
2285     walIndexClose(pWal, isDelete);
2286     sqlite3OsClose(pWal->pWalFd);
2287     if( isDelete ){
2288       sqlite3BeginBenignMalloc();
2289       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2290       sqlite3EndBenignMalloc();
2291     }
2292     WALTRACE(("WAL%p: closed\n", pWal));
2293     sqlite3_free((void *)pWal->apWiData);
2294     sqlite3_free(pWal);
2295   }
2296   return rc;
2297 }
2298 
2299 /*
2300 ** Try to read the wal-index header.  Return 0 on success and 1 if
2301 ** there is a problem.
2302 **
2303 ** The wal-index is in shared memory.  Another thread or process might
2304 ** be writing the header at the same time this procedure is trying to
2305 ** read it, which might result in inconsistency.  A dirty read is detected
2306 ** by verifying that both copies of the header are the same and also by
2307 ** a checksum on the header.
2308 **
2309 ** If and only if the read is consistent and the header is different from
2310 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2311 ** and *pChanged is set to 1.
2312 **
2313 ** If the checksum cannot be verified return non-zero. If the header
2314 ** is read successfully and the checksum verified, return zero.
2315 */
2316 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2317   u32 aCksum[2];                  /* Checksum on the header content */
2318   WalIndexHdr h1, h2;             /* Two copies of the header content */
2319   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2320 
2321   /* The first page of the wal-index must be mapped at this point. */
2322   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2323 
2324   /* Read the header. This might happen concurrently with a write to the
2325   ** same area of shared memory on a different CPU in a SMP,
2326   ** meaning it is possible that an inconsistent snapshot is read
2327   ** from the file. If this happens, return non-zero.
2328   **
2329   ** tag-20200519-1:
2330   ** There are two copies of the header at the beginning of the wal-index.
2331   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2332   ** Memory barriers are used to prevent the compiler or the hardware from
2333   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2334   ** give false-positive warnings about these accesses because the tools do not
2335   ** account for the double-read and the memory barrier. The use of mutexes
2336   ** here would be problematic as the memory being accessed is potentially
2337   ** shared among multiple processes and not all mutex implementions work
2338   ** reliably in that environment.
2339   */
2340   aHdr = walIndexHdr(pWal);
2341   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2342   walShmBarrier(pWal);
2343   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2344 
2345   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2346     return 1;   /* Dirty read */
2347   }
2348   if( h1.isInit==0 ){
2349     return 1;   /* Malformed header - probably all zeros */
2350   }
2351   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2352   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2353     return 1;   /* Checksum does not match */
2354   }
2355 
2356   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2357     *pChanged = 1;
2358     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2359     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2360     testcase( pWal->szPage<=32768 );
2361     testcase( pWal->szPage>=65536 );
2362   }
2363 
2364   /* The header was successfully read. Return zero. */
2365   return 0;
2366 }
2367 
2368 /*
2369 ** This is the value that walTryBeginRead returns when it needs to
2370 ** be retried.
2371 */
2372 #define WAL_RETRY  (-1)
2373 
2374 /*
2375 ** Read the wal-index header from the wal-index and into pWal->hdr.
2376 ** If the wal-header appears to be corrupt, try to reconstruct the
2377 ** wal-index from the WAL before returning.
2378 **
2379 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2380 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2381 ** to 0.
2382 **
2383 ** If the wal-index header is successfully read, return SQLITE_OK.
2384 ** Otherwise an SQLite error code.
2385 */
2386 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2387   int rc;                         /* Return code */
2388   int badHdr;                     /* True if a header read failed */
2389   volatile u32 *page0;            /* Chunk of wal-index containing header */
2390 
2391   /* Ensure that page 0 of the wal-index (the page that contains the
2392   ** wal-index header) is mapped. Return early if an error occurs here.
2393   */
2394   assert( pChanged );
2395   rc = walIndexPage(pWal, 0, &page0);
2396   if( rc!=SQLITE_OK ){
2397     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2398     if( rc==SQLITE_READONLY_CANTINIT ){
2399       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2400       ** was openable but is not writable, and this thread is unable to
2401       ** confirm that another write-capable connection has the shared-memory
2402       ** open, and hence the content of the shared-memory is unreliable,
2403       ** since the shared-memory might be inconsistent with the WAL file
2404       ** and there is no writer on hand to fix it. */
2405       assert( page0==0 );
2406       assert( pWal->writeLock==0 );
2407       assert( pWal->readOnly & WAL_SHM_RDONLY );
2408       pWal->bShmUnreliable = 1;
2409       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2410       *pChanged = 1;
2411     }else{
2412       return rc; /* Any other non-OK return is just an error */
2413     }
2414   }else{
2415     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2416     ** is zero, which prevents the SHM from growing */
2417     testcase( page0!=0 );
2418   }
2419   assert( page0!=0 || pWal->writeLock==0 );
2420 
2421   /* If the first page of the wal-index has been mapped, try to read the
2422   ** wal-index header immediately, without holding any lock. This usually
2423   ** works, but may fail if the wal-index header is corrupt or currently
2424   ** being modified by another thread or process.
2425   */
2426   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2427 
2428   /* If the first attempt failed, it might have been due to a race
2429   ** with a writer.  So get a WRITE lock and try again.
2430   */
2431   if( badHdr ){
2432     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2433       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2434         walUnlockShared(pWal, WAL_WRITE_LOCK);
2435         rc = SQLITE_READONLY_RECOVERY;
2436       }
2437     }else{
2438       int bWriteLock = pWal->writeLock;
2439       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2440         pWal->writeLock = 1;
2441         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2442           badHdr = walIndexTryHdr(pWal, pChanged);
2443           if( badHdr ){
2444             /* If the wal-index header is still malformed even while holding
2445             ** a WRITE lock, it can only mean that the header is corrupted and
2446             ** needs to be reconstructed.  So run recovery to do exactly that.
2447             */
2448             rc = walIndexRecover(pWal);
2449             *pChanged = 1;
2450           }
2451         }
2452         if( bWriteLock==0 ){
2453           pWal->writeLock = 0;
2454           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2455         }
2456       }
2457     }
2458   }
2459 
2460   /* If the header is read successfully, check the version number to make
2461   ** sure the wal-index was not constructed with some future format that
2462   ** this version of SQLite cannot understand.
2463   */
2464   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2465     rc = SQLITE_CANTOPEN_BKPT;
2466   }
2467   if( pWal->bShmUnreliable ){
2468     if( rc!=SQLITE_OK ){
2469       walIndexClose(pWal, 0);
2470       pWal->bShmUnreliable = 0;
2471       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2472       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2473       ** writer truncated the WAL out from under it.  If that happens, it
2474       ** indicates that a writer has fixed the SHM file for us, so retry */
2475       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2476     }
2477     pWal->exclusiveMode = WAL_NORMAL_MODE;
2478   }
2479 
2480   return rc;
2481 }
2482 
2483 /*
2484 ** Open a transaction in a connection where the shared-memory is read-only
2485 ** and where we cannot verify that there is a separate write-capable connection
2486 ** on hand to keep the shared-memory up-to-date with the WAL file.
2487 **
2488 ** This can happen, for example, when the shared-memory is implemented by
2489 ** memory-mapping a *-shm file, where a prior writer has shut down and
2490 ** left the *-shm file on disk, and now the present connection is trying
2491 ** to use that database but lacks write permission on the *-shm file.
2492 ** Other scenarios are also possible, depending on the VFS implementation.
2493 **
2494 ** Precondition:
2495 **
2496 **    The *-wal file has been read and an appropriate wal-index has been
2497 **    constructed in pWal->apWiData[] using heap memory instead of shared
2498 **    memory.
2499 **
2500 ** If this function returns SQLITE_OK, then the read transaction has
2501 ** been successfully opened. In this case output variable (*pChanged)
2502 ** is set to true before returning if the caller should discard the
2503 ** contents of the page cache before proceeding. Or, if it returns
2504 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2505 ** the caller should retry opening the read transaction from the
2506 ** beginning (including attempting to map the *-shm file).
2507 **
2508 ** If an error occurs, an SQLite error code is returned.
2509 */
2510 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2511   i64 szWal;                      /* Size of wal file on disk in bytes */
2512   i64 iOffset;                    /* Current offset when reading wal file */
2513   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2514   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2515   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2516   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2517   volatile void *pDummy;          /* Dummy argument for xShmMap */
2518   int rc;                         /* Return code */
2519   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2520 
2521   assert( pWal->bShmUnreliable );
2522   assert( pWal->readOnly & WAL_SHM_RDONLY );
2523   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2524 
2525   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2526   ** writers from running a checkpoint, but does not stop them
2527   ** from running recovery.  */
2528   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2529   if( rc!=SQLITE_OK ){
2530     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2531     goto begin_unreliable_shm_out;
2532   }
2533   pWal->readLock = 0;
2534 
2535   /* Check to see if a separate writer has attached to the shared-memory area,
2536   ** thus making the shared-memory "reliable" again.  Do this by invoking
2537   ** the xShmMap() routine of the VFS and looking to see if the return
2538   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2539   **
2540   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2541   ** cause the heap-memory WAL-index to be discarded and the actual
2542   ** shared memory to be used in its place.
2543   **
2544   ** This step is important because, even though this connection is holding
2545   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2546   ** have already checkpointed the WAL file and, while the current
2547   ** is active, wrap the WAL and start overwriting frames that this
2548   ** process wants to use.
2549   **
2550   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2551   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2552   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2553   ** even if some external agent does a "chmod" to make the shared-memory
2554   ** writable by us, until sqlite3OsShmUnmap() has been called.
2555   ** This is a requirement on the VFS implementation.
2556    */
2557   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2558   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2559   if( rc!=SQLITE_READONLY_CANTINIT ){
2560     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2561     goto begin_unreliable_shm_out;
2562   }
2563 
2564   /* We reach this point only if the real shared-memory is still unreliable.
2565   ** Assume the in-memory WAL-index substitute is correct and load it
2566   ** into pWal->hdr.
2567   */
2568   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2569 
2570   /* Make sure some writer hasn't come in and changed the WAL file out
2571   ** from under us, then disconnected, while we were not looking.
2572   */
2573   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2574   if( rc!=SQLITE_OK ){
2575     goto begin_unreliable_shm_out;
2576   }
2577   if( szWal<WAL_HDRSIZE ){
2578     /* If the wal file is too small to contain a wal-header and the
2579     ** wal-index header has mxFrame==0, then it must be safe to proceed
2580     ** reading the database file only. However, the page cache cannot
2581     ** be trusted, as a read/write connection may have connected, written
2582     ** the db, run a checkpoint, truncated the wal file and disconnected
2583     ** since this client's last read transaction.  */
2584     *pChanged = 1;
2585     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2586     goto begin_unreliable_shm_out;
2587   }
2588 
2589   /* Check the salt keys at the start of the wal file still match. */
2590   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2591   if( rc!=SQLITE_OK ){
2592     goto begin_unreliable_shm_out;
2593   }
2594   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2595     /* Some writer has wrapped the WAL file while we were not looking.
2596     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2597     ** rebuilt. */
2598     rc = WAL_RETRY;
2599     goto begin_unreliable_shm_out;
2600   }
2601 
2602   /* Allocate a buffer to read frames into */
2603   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2604   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2605   if( aFrame==0 ){
2606     rc = SQLITE_NOMEM_BKPT;
2607     goto begin_unreliable_shm_out;
2608   }
2609   aData = &aFrame[WAL_FRAME_HDRSIZE];
2610 
2611   /* Check to see if a complete transaction has been appended to the
2612   ** wal file since the heap-memory wal-index was created. If so, the
2613   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2614   ** the caller.  */
2615   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2616   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2617   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2618       iOffset+szFrame<=szWal;
2619       iOffset+=szFrame
2620   ){
2621     u32 pgno;                   /* Database page number for frame */
2622     u32 nTruncate;              /* dbsize field from frame header */
2623 
2624     /* Read and decode the next log frame. */
2625     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2626     if( rc!=SQLITE_OK ) break;
2627     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2628 
2629     /* If nTruncate is non-zero, then a complete transaction has been
2630     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2631     ** the loop.  */
2632     if( nTruncate ){
2633       rc = WAL_RETRY;
2634       break;
2635     }
2636   }
2637   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2638   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2639 
2640  begin_unreliable_shm_out:
2641   sqlite3_free(aFrame);
2642   if( rc!=SQLITE_OK ){
2643     int i;
2644     for(i=0; i<pWal->nWiData; i++){
2645       sqlite3_free((void*)pWal->apWiData[i]);
2646       pWal->apWiData[i] = 0;
2647     }
2648     pWal->bShmUnreliable = 0;
2649     sqlite3WalEndReadTransaction(pWal);
2650     *pChanged = 1;
2651   }
2652   return rc;
2653 }
2654 
2655 /*
2656 ** Attempt to start a read transaction.  This might fail due to a race or
2657 ** other transient condition.  When that happens, it returns WAL_RETRY to
2658 ** indicate to the caller that it is safe to retry immediately.
2659 **
2660 ** On success return SQLITE_OK.  On a permanent failure (such an
2661 ** I/O error or an SQLITE_BUSY because another process is running
2662 ** recovery) return a positive error code.
2663 **
2664 ** The useWal parameter is true to force the use of the WAL and disable
2665 ** the case where the WAL is bypassed because it has been completely
2666 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2667 ** to make a copy of the wal-index header into pWal->hdr.  If the
2668 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2669 ** to the caller that the local page cache is obsolete and needs to be
2670 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2671 ** be loaded and the pChanged parameter is unused.
2672 **
2673 ** The caller must set the cnt parameter to the number of prior calls to
2674 ** this routine during the current read attempt that returned WAL_RETRY.
2675 ** This routine will start taking more aggressive measures to clear the
2676 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2677 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2678 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2679 ** and is not honoring the locking protocol.  There is a vanishingly small
2680 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2681 ** bad luck when there is lots of contention for the wal-index, but that
2682 ** possibility is so small that it can be safely neglected, we believe.
2683 **
2684 ** On success, this routine obtains a read lock on
2685 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2686 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2687 ** that means the Wal does not hold any read lock.  The reader must not
2688 ** access any database page that is modified by a WAL frame up to and
2689 ** including frame number aReadMark[pWal->readLock].  The reader will
2690 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2691 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2692 ** completely and get all content directly from the database file.
2693 ** If the useWal parameter is 1 then the WAL will never be ignored and
2694 ** this routine will always set pWal->readLock>0 on success.
2695 ** When the read transaction is completed, the caller must release the
2696 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2697 **
2698 ** This routine uses the nBackfill and aReadMark[] fields of the header
2699 ** to select a particular WAL_READ_LOCK() that strives to let the
2700 ** checkpoint process do as much work as possible.  This routine might
2701 ** update values of the aReadMark[] array in the header, but if it does
2702 ** so it takes care to hold an exclusive lock on the corresponding
2703 ** WAL_READ_LOCK() while changing values.
2704 */
2705 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2706   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2707   u32 mxReadMark;                 /* Largest aReadMark[] value */
2708   int mxI;                        /* Index of largest aReadMark[] value */
2709   int i;                          /* Loop counter */
2710   int rc = SQLITE_OK;             /* Return code  */
2711   u32 mxFrame;                    /* Wal frame to lock to */
2712 
2713   assert( pWal->readLock<0 );     /* Not currently locked */
2714 
2715   /* useWal may only be set for read/write connections */
2716   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2717 
2718   /* Take steps to avoid spinning forever if there is a protocol error.
2719   **
2720   ** Circumstances that cause a RETRY should only last for the briefest
2721   ** instances of time.  No I/O or other system calls are done while the
2722   ** locks are held, so the locks should not be held for very long. But
2723   ** if we are unlucky, another process that is holding a lock might get
2724   ** paged out or take a page-fault that is time-consuming to resolve,
2725   ** during the few nanoseconds that it is holding the lock.  In that case,
2726   ** it might take longer than normal for the lock to free.
2727   **
2728   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2729   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2730   ** is more of a scheduler yield than an actual delay.  But on the 10th
2731   ** an subsequent retries, the delays start becoming longer and longer,
2732   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2733   ** The total delay time before giving up is less than 10 seconds.
2734   */
2735   if( cnt>5 ){
2736     int nDelay = 1;                      /* Pause time in microseconds */
2737     if( cnt>100 ){
2738       VVA_ONLY( pWal->lockError = 1; )
2739       return SQLITE_PROTOCOL;
2740     }
2741     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2742     sqlite3OsSleep(pWal->pVfs, nDelay);
2743   }
2744 
2745   if( !useWal ){
2746     assert( rc==SQLITE_OK );
2747     if( pWal->bShmUnreliable==0 ){
2748       rc = walIndexReadHdr(pWal, pChanged);
2749     }
2750     if( rc==SQLITE_BUSY ){
2751       /* If there is not a recovery running in another thread or process
2752       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2753       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2754       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2755       ** would be technically correct.  But the race is benign since with
2756       ** WAL_RETRY this routine will be called again and will probably be
2757       ** right on the second iteration.
2758       */
2759       if( pWal->apWiData[0]==0 ){
2760         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2761         ** We assume this is a transient condition, so return WAL_RETRY. The
2762         ** xShmMap() implementation used by the default unix and win32 VFS
2763         ** modules may return SQLITE_BUSY due to a race condition in the
2764         ** code that determines whether or not the shared-memory region
2765         ** must be zeroed before the requested page is returned.
2766         */
2767         rc = WAL_RETRY;
2768       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2769         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2770         rc = WAL_RETRY;
2771       }else if( rc==SQLITE_BUSY ){
2772         rc = SQLITE_BUSY_RECOVERY;
2773       }
2774     }
2775     if( rc!=SQLITE_OK ){
2776       return rc;
2777     }
2778     else if( pWal->bShmUnreliable ){
2779       return walBeginShmUnreliable(pWal, pChanged);
2780     }
2781   }
2782 
2783   assert( pWal->nWiData>0 );
2784   assert( pWal->apWiData[0]!=0 );
2785   pInfo = walCkptInfo(pWal);
2786   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2787 #ifdef SQLITE_ENABLE_SNAPSHOT
2788    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2789 #endif
2790   ){
2791     /* The WAL has been completely backfilled (or it is empty).
2792     ** and can be safely ignored.
2793     */
2794     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2795     walShmBarrier(pWal);
2796     if( rc==SQLITE_OK ){
2797       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2798         /* It is not safe to allow the reader to continue here if frames
2799         ** may have been appended to the log before READ_LOCK(0) was obtained.
2800         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2801         ** which implies that the database file contains a trustworthy
2802         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2803         ** happening, this is usually correct.
2804         **
2805         ** However, if frames have been appended to the log (or if the log
2806         ** is wrapped and written for that matter) before the READ_LOCK(0)
2807         ** is obtained, that is not necessarily true. A checkpointer may
2808         ** have started to backfill the appended frames but crashed before
2809         ** it finished. Leaving a corrupt image in the database file.
2810         */
2811         walUnlockShared(pWal, WAL_READ_LOCK(0));
2812         return WAL_RETRY;
2813       }
2814       pWal->readLock = 0;
2815       return SQLITE_OK;
2816     }else if( rc!=SQLITE_BUSY ){
2817       return rc;
2818     }
2819   }
2820 
2821   /* If we get this far, it means that the reader will want to use
2822   ** the WAL to get at content from recent commits.  The job now is
2823   ** to select one of the aReadMark[] entries that is closest to
2824   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2825   */
2826   mxReadMark = 0;
2827   mxI = 0;
2828   mxFrame = pWal->hdr.mxFrame;
2829 #ifdef SQLITE_ENABLE_SNAPSHOT
2830   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2831     mxFrame = pWal->pSnapshot->mxFrame;
2832   }
2833 #endif
2834   for(i=1; i<WAL_NREADER; i++){
2835     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2836     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2837       assert( thisMark!=READMARK_NOT_USED );
2838       mxReadMark = thisMark;
2839       mxI = i;
2840     }
2841   }
2842   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2843    && (mxReadMark<mxFrame || mxI==0)
2844   ){
2845     for(i=1; i<WAL_NREADER; i++){
2846       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2847       if( rc==SQLITE_OK ){
2848         AtomicStore(pInfo->aReadMark+i,mxFrame);
2849         mxReadMark = mxFrame;
2850         mxI = i;
2851         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2852         break;
2853       }else if( rc!=SQLITE_BUSY ){
2854         return rc;
2855       }
2856     }
2857   }
2858   if( mxI==0 ){
2859     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2860     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2861   }
2862 
2863   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2864   if( rc ){
2865     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2866   }
2867   /* Now that the read-lock has been obtained, check that neither the
2868   ** value in the aReadMark[] array or the contents of the wal-index
2869   ** header have changed.
2870   **
2871   ** It is necessary to check that the wal-index header did not change
2872   ** between the time it was read and when the shared-lock was obtained
2873   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2874   ** that the log file may have been wrapped by a writer, or that frames
2875   ** that occur later in the log than pWal->hdr.mxFrame may have been
2876   ** copied into the database by a checkpointer. If either of these things
2877   ** happened, then reading the database with the current value of
2878   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2879   ** instead.
2880   **
2881   ** Before checking that the live wal-index header has not changed
2882   ** since it was read, set Wal.minFrame to the first frame in the wal
2883   ** file that has not yet been checkpointed. This client will not need
2884   ** to read any frames earlier than minFrame from the wal file - they
2885   ** can be safely read directly from the database file.
2886   **
2887   ** Because a ShmBarrier() call is made between taking the copy of
2888   ** nBackfill and checking that the wal-header in shared-memory still
2889   ** matches the one cached in pWal->hdr, it is guaranteed that the
2890   ** checkpointer that set nBackfill was not working with a wal-index
2891   ** header newer than that cached in pWal->hdr. If it were, that could
2892   ** cause a problem. The checkpointer could omit to checkpoint
2893   ** a version of page X that lies before pWal->minFrame (call that version
2894   ** A) on the basis that there is a newer version (version B) of the same
2895   ** page later in the wal file. But if version B happens to like past
2896   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2897   ** that it can read version A from the database file. However, since
2898   ** we can guarantee that the checkpointer that set nBackfill could not
2899   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2900   */
2901   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2902   walShmBarrier(pWal);
2903   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2904    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2905   ){
2906     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2907     return WAL_RETRY;
2908   }else{
2909     assert( mxReadMark<=pWal->hdr.mxFrame );
2910     pWal->readLock = (i16)mxI;
2911   }
2912   return rc;
2913 }
2914 
2915 #ifdef SQLITE_ENABLE_SNAPSHOT
2916 /*
2917 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2918 ** variable so that older snapshots can be accessed. To do this, loop
2919 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2920 ** comparing their content to the corresponding page with the database
2921 ** file, if any. Set nBackfillAttempted to the frame number of the
2922 ** first frame for which the wal file content matches the db file.
2923 **
2924 ** This is only really safe if the file-system is such that any page
2925 ** writes made by earlier checkpointers were atomic operations, which
2926 ** is not always true. It is also possible that nBackfillAttempted
2927 ** may be left set to a value larger than expected, if a wal frame
2928 ** contains content that duplicate of an earlier version of the same
2929 ** page.
2930 **
2931 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2932 ** error occurs. It is not an error if nBackfillAttempted cannot be
2933 ** decreased at all.
2934 */
2935 int sqlite3WalSnapshotRecover(Wal *pWal){
2936   int rc;
2937 
2938   assert( pWal->readLock>=0 );
2939   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2940   if( rc==SQLITE_OK ){
2941     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2942     int szPage = (int)pWal->szPage;
2943     i64 szDb;                   /* Size of db file in bytes */
2944 
2945     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2946     if( rc==SQLITE_OK ){
2947       void *pBuf1 = sqlite3_malloc(szPage);
2948       void *pBuf2 = sqlite3_malloc(szPage);
2949       if( pBuf1==0 || pBuf2==0 ){
2950         rc = SQLITE_NOMEM;
2951       }else{
2952         u32 i = pInfo->nBackfillAttempted;
2953         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2954           WalHashLoc sLoc;          /* Hash table location */
2955           u32 pgno;                 /* Page number in db file */
2956           i64 iDbOff;               /* Offset of db file entry */
2957           i64 iWalOff;              /* Offset of wal file entry */
2958 
2959           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2960           if( rc!=SQLITE_OK ) break;
2961           assert( i - sLoc.iZero - 1 >=0 );
2962           pgno = sLoc.aPgno[i-sLoc.iZero-1];
2963           iDbOff = (i64)(pgno-1) * szPage;
2964 
2965           if( iDbOff+szPage<=szDb ){
2966             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2967             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2968 
2969             if( rc==SQLITE_OK ){
2970               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2971             }
2972 
2973             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2974               break;
2975             }
2976           }
2977 
2978           pInfo->nBackfillAttempted = i-1;
2979         }
2980       }
2981 
2982       sqlite3_free(pBuf1);
2983       sqlite3_free(pBuf2);
2984     }
2985     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2986   }
2987 
2988   return rc;
2989 }
2990 #endif /* SQLITE_ENABLE_SNAPSHOT */
2991 
2992 /*
2993 ** Begin a read transaction on the database.
2994 **
2995 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2996 ** it takes a snapshot of the state of the WAL and wal-index for the current
2997 ** instant in time.  The current thread will continue to use this snapshot.
2998 ** Other threads might append new content to the WAL and wal-index but
2999 ** that extra content is ignored by the current thread.
3000 **
3001 ** If the database contents have changes since the previous read
3002 ** transaction, then *pChanged is set to 1 before returning.  The
3003 ** Pager layer will use this to know that its cache is stale and
3004 ** needs to be flushed.
3005 */
3006 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
3007   int rc;                         /* Return code */
3008   int cnt = 0;                    /* Number of TryBeginRead attempts */
3009 #ifdef SQLITE_ENABLE_SNAPSHOT
3010   int bChanged = 0;
3011   WalIndexHdr *pSnapshot = pWal->pSnapshot;
3012 #endif
3013 
3014   assert( pWal->ckptLock==0 );
3015 
3016 #ifdef SQLITE_ENABLE_SNAPSHOT
3017   if( pSnapshot ){
3018     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3019       bChanged = 1;
3020     }
3021 
3022     /* It is possible that there is a checkpointer thread running
3023     ** concurrent with this code. If this is the case, it may be that the
3024     ** checkpointer has already determined that it will checkpoint
3025     ** snapshot X, where X is later in the wal file than pSnapshot, but
3026     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
3027     ** its intent. To avoid the race condition this leads to, ensure that
3028     ** there is no checkpointer process by taking a shared CKPT lock
3029     ** before checking pInfo->nBackfillAttempted.  */
3030     (void)walEnableBlocking(pWal);
3031     rc = walLockShared(pWal, WAL_CKPT_LOCK);
3032     walDisableBlocking(pWal);
3033 
3034     if( rc!=SQLITE_OK ){
3035       return rc;
3036     }
3037     pWal->ckptLock = 1;
3038   }
3039 #endif
3040 
3041   do{
3042     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
3043   }while( rc==WAL_RETRY );
3044   testcase( (rc&0xff)==SQLITE_BUSY );
3045   testcase( (rc&0xff)==SQLITE_IOERR );
3046   testcase( rc==SQLITE_PROTOCOL );
3047   testcase( rc==SQLITE_OK );
3048 
3049 #ifdef SQLITE_ENABLE_SNAPSHOT
3050   if( rc==SQLITE_OK ){
3051     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3052       /* At this point the client has a lock on an aReadMark[] slot holding
3053       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
3054       ** is populated with the wal-index header corresponding to the head
3055       ** of the wal file. Verify that pSnapshot is still valid before
3056       ** continuing.  Reasons why pSnapshot might no longer be valid:
3057       **
3058       **    (1)  The WAL file has been reset since the snapshot was taken.
3059       **         In this case, the salt will have changed.
3060       **
3061       **    (2)  A checkpoint as been attempted that wrote frames past
3062       **         pSnapshot->mxFrame into the database file.  Note that the
3063       **         checkpoint need not have completed for this to cause problems.
3064       */
3065       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3066 
3067       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
3068       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
3069 
3070       /* Check that the wal file has not been wrapped. Assuming that it has
3071       ** not, also check that no checkpointer has attempted to checkpoint any
3072       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
3073       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
3074       ** with *pSnapshot and set *pChanged as appropriate for opening the
3075       ** snapshot.  */
3076       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3077        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
3078       ){
3079         assert( pWal->readLock>0 );
3080         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
3081         *pChanged = bChanged;
3082       }else{
3083         rc = SQLITE_ERROR_SNAPSHOT;
3084       }
3085 
3086       /* A client using a non-current snapshot may not ignore any frames
3087       ** from the start of the wal file. This is because, for a system
3088       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3089       ** have omitted to checkpoint a frame earlier than minFrame in
3090       ** the file because there exists a frame after iSnapshot that
3091       ** is the same database page.  */
3092       pWal->minFrame = 1;
3093 
3094       if( rc!=SQLITE_OK ){
3095         sqlite3WalEndReadTransaction(pWal);
3096       }
3097     }
3098   }
3099 
3100   /* Release the shared CKPT lock obtained above. */
3101   if( pWal->ckptLock ){
3102     assert( pSnapshot );
3103     walUnlockShared(pWal, WAL_CKPT_LOCK);
3104     pWal->ckptLock = 0;
3105   }
3106 #endif
3107   return rc;
3108 }
3109 
3110 /*
3111 ** Finish with a read transaction.  All this does is release the
3112 ** read-lock.
3113 */
3114 void sqlite3WalEndReadTransaction(Wal *pWal){
3115   sqlite3WalEndWriteTransaction(pWal);
3116   if( pWal->readLock>=0 ){
3117     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3118     pWal->readLock = -1;
3119   }
3120 }
3121 
3122 /*
3123 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3124 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3125 ** to zero.
3126 **
3127 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3128 ** error does occur, the final value of *piRead is undefined.
3129 */
3130 int sqlite3WalFindFrame(
3131   Wal *pWal,                      /* WAL handle */
3132   Pgno pgno,                      /* Database page number to read data for */
3133   u32 *piRead                     /* OUT: Frame number (or zero) */
3134 ){
3135   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
3136   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
3137   int iHash;                      /* Used to loop through N hash tables */
3138   int iMinHash;
3139 
3140   /* This routine is only be called from within a read transaction. */
3141   assert( pWal->readLock>=0 || pWal->lockError );
3142 
3143   /* If the "last page" field of the wal-index header snapshot is 0, then
3144   ** no data will be read from the wal under any circumstances. Return early
3145   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3146   ** then the WAL is ignored by the reader so return early, as if the
3147   ** WAL were empty.
3148   */
3149   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3150     *piRead = 0;
3151     return SQLITE_OK;
3152   }
3153 
3154   /* Search the hash table or tables for an entry matching page number
3155   ** pgno. Each iteration of the following for() loop searches one
3156   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3157   **
3158   ** This code might run concurrently to the code in walIndexAppend()
3159   ** that adds entries to the wal-index (and possibly to this hash
3160   ** table). This means the value just read from the hash
3161   ** slot (aHash[iKey]) may have been added before or after the
3162   ** current read transaction was opened. Values added after the
3163   ** read transaction was opened may have been written incorrectly -
3164   ** i.e. these slots may contain garbage data. However, we assume
3165   ** that any slots written before the current read transaction was
3166   ** opened remain unmodified.
3167   **
3168   ** For the reasons above, the if(...) condition featured in the inner
3169   ** loop of the following block is more stringent that would be required
3170   ** if we had exclusive access to the hash-table:
3171   **
3172   **   (aPgno[iFrame]==pgno):
3173   **     This condition filters out normal hash-table collisions.
3174   **
3175   **   (iFrame<=iLast):
3176   **     This condition filters out entries that were added to the hash
3177   **     table after the current read-transaction had started.
3178   */
3179   iMinHash = walFramePage(pWal->minFrame);
3180   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3181     WalHashLoc sLoc;              /* Hash table location */
3182     int iKey;                     /* Hash slot index */
3183     int nCollide;                 /* Number of hash collisions remaining */
3184     int rc;                       /* Error code */
3185     u32 iH;
3186 
3187     rc = walHashGet(pWal, iHash, &sLoc);
3188     if( rc!=SQLITE_OK ){
3189       return rc;
3190     }
3191     nCollide = HASHTABLE_NSLOT;
3192     iKey = walHash(pgno);
3193     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3194       u32 iFrame = iH + sLoc.iZero;
3195       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
3196         assert( iFrame>iRead || CORRUPT_DB );
3197         iRead = iFrame;
3198       }
3199       if( (nCollide--)==0 ){
3200         return SQLITE_CORRUPT_BKPT;
3201       }
3202       iKey = walNextHash(iKey);
3203     }
3204     if( iRead ) break;
3205   }
3206 
3207 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3208   /* If expensive assert() statements are available, do a linear search
3209   ** of the wal-index file content. Make sure the results agree with the
3210   ** result obtained using the hash indexes above.  */
3211   {
3212     u32 iRead2 = 0;
3213     u32 iTest;
3214     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3215     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3216       if( walFramePgno(pWal, iTest)==pgno ){
3217         iRead2 = iTest;
3218         break;
3219       }
3220     }
3221     assert( iRead==iRead2 );
3222   }
3223 #endif
3224 
3225   *piRead = iRead;
3226   return SQLITE_OK;
3227 }
3228 
3229 /*
3230 ** Read the contents of frame iRead from the wal file into buffer pOut
3231 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3232 ** error code otherwise.
3233 */
3234 int sqlite3WalReadFrame(
3235   Wal *pWal,                      /* WAL handle */
3236   u32 iRead,                      /* Frame to read */
3237   int nOut,                       /* Size of buffer pOut in bytes */
3238   u8 *pOut                        /* Buffer to write page data to */
3239 ){
3240   int sz;
3241   i64 iOffset;
3242   sz = pWal->hdr.szPage;
3243   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3244   testcase( sz<=32768 );
3245   testcase( sz>=65536 );
3246   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3247   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3248   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3249 }
3250 
3251 /*
3252 ** Return the size of the database in pages (or zero, if unknown).
3253 */
3254 Pgno sqlite3WalDbsize(Wal *pWal){
3255   if( pWal && ALWAYS(pWal->readLock>=0) ){
3256     return pWal->hdr.nPage;
3257   }
3258   return 0;
3259 }
3260 
3261 
3262 /*
3263 ** This function starts a write transaction on the WAL.
3264 **
3265 ** A read transaction must have already been started by a prior call
3266 ** to sqlite3WalBeginReadTransaction().
3267 **
3268 ** If another thread or process has written into the database since
3269 ** the read transaction was started, then it is not possible for this
3270 ** thread to write as doing so would cause a fork.  So this routine
3271 ** returns SQLITE_BUSY in that case and no write transaction is started.
3272 **
3273 ** There can only be a single writer active at a time.
3274 */
3275 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3276   int rc;
3277 
3278 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3279   /* If the write-lock is already held, then it was obtained before the
3280   ** read-transaction was even opened, making this call a no-op.
3281   ** Return early. */
3282   if( pWal->writeLock ){
3283     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3284     return SQLITE_OK;
3285   }
3286 #endif
3287 
3288   /* Cannot start a write transaction without first holding a read
3289   ** transaction. */
3290   assert( pWal->readLock>=0 );
3291   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3292 
3293   if( pWal->readOnly ){
3294     return SQLITE_READONLY;
3295   }
3296 
3297   /* Only one writer allowed at a time.  Get the write lock.  Return
3298   ** SQLITE_BUSY if unable.
3299   */
3300   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3301   if( rc ){
3302     return rc;
3303   }
3304   pWal->writeLock = 1;
3305 
3306   /* If another connection has written to the database file since the
3307   ** time the read transaction on this connection was started, then
3308   ** the write is disallowed.
3309   */
3310   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3311     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3312     pWal->writeLock = 0;
3313     rc = SQLITE_BUSY_SNAPSHOT;
3314   }
3315 
3316   return rc;
3317 }
3318 
3319 /*
3320 ** End a write transaction.  The commit has already been done.  This
3321 ** routine merely releases the lock.
3322 */
3323 int sqlite3WalEndWriteTransaction(Wal *pWal){
3324   if( pWal->writeLock ){
3325     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3326     pWal->writeLock = 0;
3327     pWal->iReCksum = 0;
3328     pWal->truncateOnCommit = 0;
3329   }
3330   return SQLITE_OK;
3331 }
3332 
3333 /*
3334 ** If any data has been written (but not committed) to the log file, this
3335 ** function moves the write-pointer back to the start of the transaction.
3336 **
3337 ** Additionally, the callback function is invoked for each frame written
3338 ** to the WAL since the start of the transaction. If the callback returns
3339 ** other than SQLITE_OK, it is not invoked again and the error code is
3340 ** returned to the caller.
3341 **
3342 ** Otherwise, if the callback function does not return an error, this
3343 ** function returns SQLITE_OK.
3344 */
3345 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3346   int rc = SQLITE_OK;
3347   if( ALWAYS(pWal->writeLock) ){
3348     Pgno iMax = pWal->hdr.mxFrame;
3349     Pgno iFrame;
3350 
3351     /* Restore the clients cache of the wal-index header to the state it
3352     ** was in before the client began writing to the database.
3353     */
3354     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3355 
3356     for(iFrame=pWal->hdr.mxFrame+1;
3357         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3358         iFrame++
3359     ){
3360       /* This call cannot fail. Unless the page for which the page number
3361       ** is passed as the second argument is (a) in the cache and
3362       ** (b) has an outstanding reference, then xUndo is either a no-op
3363       ** (if (a) is false) or simply expels the page from the cache (if (b)
3364       ** is false).
3365       **
3366       ** If the upper layer is doing a rollback, it is guaranteed that there
3367       ** are no outstanding references to any page other than page 1. And
3368       ** page 1 is never written to the log until the transaction is
3369       ** committed. As a result, the call to xUndo may not fail.
3370       */
3371       assert( walFramePgno(pWal, iFrame)!=1 );
3372       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3373     }
3374     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3375   }
3376   return rc;
3377 }
3378 
3379 /*
3380 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3381 ** values. This function populates the array with values required to
3382 ** "rollback" the write position of the WAL handle back to the current
3383 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3384 */
3385 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3386   assert( pWal->writeLock );
3387   aWalData[0] = pWal->hdr.mxFrame;
3388   aWalData[1] = pWal->hdr.aFrameCksum[0];
3389   aWalData[2] = pWal->hdr.aFrameCksum[1];
3390   aWalData[3] = pWal->nCkpt;
3391 }
3392 
3393 /*
3394 ** Move the write position of the WAL back to the point identified by
3395 ** the values in the aWalData[] array. aWalData must point to an array
3396 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3397 ** by a call to WalSavepoint().
3398 */
3399 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3400   int rc = SQLITE_OK;
3401 
3402   assert( pWal->writeLock );
3403   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3404 
3405   if( aWalData[3]!=pWal->nCkpt ){
3406     /* This savepoint was opened immediately after the write-transaction
3407     ** was started. Right after that, the writer decided to wrap around
3408     ** to the start of the log. Update the savepoint values to match.
3409     */
3410     aWalData[0] = 0;
3411     aWalData[3] = pWal->nCkpt;
3412   }
3413 
3414   if( aWalData[0]<pWal->hdr.mxFrame ){
3415     pWal->hdr.mxFrame = aWalData[0];
3416     pWal->hdr.aFrameCksum[0] = aWalData[1];
3417     pWal->hdr.aFrameCksum[1] = aWalData[2];
3418     walCleanupHash(pWal);
3419   }
3420 
3421   return rc;
3422 }
3423 
3424 /*
3425 ** This function is called just before writing a set of frames to the log
3426 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3427 ** to the current log file, it is possible to overwrite the start of the
3428 ** existing log file with the new frames (i.e. "reset" the log). If so,
3429 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3430 ** unchanged.
3431 **
3432 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3433 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3434 ** if an error occurs.
3435 */
3436 static int walRestartLog(Wal *pWal){
3437   int rc = SQLITE_OK;
3438   int cnt;
3439 
3440   if( pWal->readLock==0 ){
3441     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3442     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3443     if( pInfo->nBackfill>0 ){
3444       u32 salt1;
3445       sqlite3_randomness(4, &salt1);
3446       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3447       if( rc==SQLITE_OK ){
3448         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3449         ** readers are currently using the WAL), then the transactions
3450         ** frames will overwrite the start of the existing log. Update the
3451         ** wal-index header to reflect this.
3452         **
3453         ** In theory it would be Ok to update the cache of the header only
3454         ** at this point. But updating the actual wal-index header is also
3455         ** safe and means there is no special case for sqlite3WalUndo()
3456         ** to handle if this transaction is rolled back.  */
3457         walRestartHdr(pWal, salt1);
3458         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3459       }else if( rc!=SQLITE_BUSY ){
3460         return rc;
3461       }
3462     }
3463     walUnlockShared(pWal, WAL_READ_LOCK(0));
3464     pWal->readLock = -1;
3465     cnt = 0;
3466     do{
3467       int notUsed;
3468       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3469     }while( rc==WAL_RETRY );
3470     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3471     testcase( (rc&0xff)==SQLITE_IOERR );
3472     testcase( rc==SQLITE_PROTOCOL );
3473     testcase( rc==SQLITE_OK );
3474   }
3475   return rc;
3476 }
3477 
3478 /*
3479 ** Information about the current state of the WAL file and where
3480 ** the next fsync should occur - passed from sqlite3WalFrames() into
3481 ** walWriteToLog().
3482 */
3483 typedef struct WalWriter {
3484   Wal *pWal;                   /* The complete WAL information */
3485   sqlite3_file *pFd;           /* The WAL file to which we write */
3486   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3487   int syncFlags;               /* Flags for the fsync */
3488   int szPage;                  /* Size of one page */
3489 } WalWriter;
3490 
3491 /*
3492 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3493 ** Do a sync when crossing the p->iSyncPoint boundary.
3494 **
3495 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3496 ** first write the part before iSyncPoint, then sync, then write the
3497 ** rest.
3498 */
3499 static int walWriteToLog(
3500   WalWriter *p,              /* WAL to write to */
3501   void *pContent,            /* Content to be written */
3502   int iAmt,                  /* Number of bytes to write */
3503   sqlite3_int64 iOffset      /* Start writing at this offset */
3504 ){
3505   int rc;
3506   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3507     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3508     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3509     if( rc ) return rc;
3510     iOffset += iFirstAmt;
3511     iAmt -= iFirstAmt;
3512     pContent = (void*)(iFirstAmt + (char*)pContent);
3513     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3514     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3515     if( iAmt==0 || rc ) return rc;
3516   }
3517   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3518   return rc;
3519 }
3520 
3521 /*
3522 ** Write out a single frame of the WAL
3523 */
3524 static int walWriteOneFrame(
3525   WalWriter *p,               /* Where to write the frame */
3526   PgHdr *pPage,               /* The page of the frame to be written */
3527   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3528   sqlite3_int64 iOffset       /* Byte offset at which to write */
3529 ){
3530   int rc;                         /* Result code from subfunctions */
3531   void *pData;                    /* Data actually written */
3532   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3533   pData = pPage->pData;
3534   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3535   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3536   if( rc ) return rc;
3537   /* Write the page data */
3538   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3539   return rc;
3540 }
3541 
3542 /*
3543 ** This function is called as part of committing a transaction within which
3544 ** one or more frames have been overwritten. It updates the checksums for
3545 ** all frames written to the wal file by the current transaction starting
3546 ** with the earliest to have been overwritten.
3547 **
3548 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3549 */
3550 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3551   const int szPage = pWal->szPage;/* Database page size */
3552   int rc = SQLITE_OK;             /* Return code */
3553   u8 *aBuf;                       /* Buffer to load data from wal file into */
3554   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3555   u32 iRead;                      /* Next frame to read from wal file */
3556   i64 iCksumOff;
3557 
3558   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3559   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3560 
3561   /* Find the checksum values to use as input for the recalculating the
3562   ** first checksum. If the first frame is frame 1 (implying that the current
3563   ** transaction restarted the wal file), these values must be read from the
3564   ** wal-file header. Otherwise, read them from the frame header of the
3565   ** previous frame.  */
3566   assert( pWal->iReCksum>0 );
3567   if( pWal->iReCksum==1 ){
3568     iCksumOff = 24;
3569   }else{
3570     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3571   }
3572   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3573   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3574   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3575 
3576   iRead = pWal->iReCksum;
3577   pWal->iReCksum = 0;
3578   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3579     i64 iOff = walFrameOffset(iRead, szPage);
3580     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3581     if( rc==SQLITE_OK ){
3582       u32 iPgno, nDbSize;
3583       iPgno = sqlite3Get4byte(aBuf);
3584       nDbSize = sqlite3Get4byte(&aBuf[4]);
3585 
3586       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3587       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3588     }
3589   }
3590 
3591   sqlite3_free(aBuf);
3592   return rc;
3593 }
3594 
3595 /*
3596 ** Write a set of frames to the log. The caller must hold the write-lock
3597 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3598 */
3599 int sqlite3WalFrames(
3600   Wal *pWal,                      /* Wal handle to write to */
3601   int szPage,                     /* Database page-size in bytes */
3602   PgHdr *pList,                   /* List of dirty pages to write */
3603   Pgno nTruncate,                 /* Database size after this commit */
3604   int isCommit,                   /* True if this is a commit */
3605   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3606 ){
3607   int rc;                         /* Used to catch return codes */
3608   u32 iFrame;                     /* Next frame address */
3609   PgHdr *p;                       /* Iterator to run through pList with. */
3610   PgHdr *pLast = 0;               /* Last frame in list */
3611   int nExtra = 0;                 /* Number of extra copies of last page */
3612   int szFrame;                    /* The size of a single frame */
3613   i64 iOffset;                    /* Next byte to write in WAL file */
3614   WalWriter w;                    /* The writer */
3615   u32 iFirst = 0;                 /* First frame that may be overwritten */
3616   WalIndexHdr *pLive;             /* Pointer to shared header */
3617 
3618   assert( pList );
3619   assert( pWal->writeLock );
3620 
3621   /* If this frame set completes a transaction, then nTruncate>0.  If
3622   ** nTruncate==0 then this frame set does not complete the transaction. */
3623   assert( (isCommit!=0)==(nTruncate!=0) );
3624 
3625 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3626   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3627     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3628               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3629   }
3630 #endif
3631 
3632   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3633   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3634     iFirst = pLive->mxFrame+1;
3635   }
3636 
3637   /* See if it is possible to write these frames into the start of the
3638   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3639   */
3640   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3641     return rc;
3642   }
3643 
3644   /* If this is the first frame written into the log, write the WAL
3645   ** header to the start of the WAL file. See comments at the top of
3646   ** this source file for a description of the WAL header format.
3647   */
3648   iFrame = pWal->hdr.mxFrame;
3649   if( iFrame==0 ){
3650     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3651     u32 aCksum[2];                /* Checksum for wal-header */
3652 
3653     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3654     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3655     sqlite3Put4byte(&aWalHdr[8], szPage);
3656     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3657     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3658     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3659     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3660     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3661     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3662 
3663     pWal->szPage = szPage;
3664     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3665     pWal->hdr.aFrameCksum[0] = aCksum[0];
3666     pWal->hdr.aFrameCksum[1] = aCksum[1];
3667     pWal->truncateOnCommit = 1;
3668 
3669     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3670     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3671     if( rc!=SQLITE_OK ){
3672       return rc;
3673     }
3674 
3675     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3676     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3677     ** an out-of-order write following a WAL restart could result in
3678     ** database corruption.  See the ticket:
3679     **
3680     **     https://sqlite.org/src/info/ff5be73dee
3681     */
3682     if( pWal->syncHeader ){
3683       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3684       if( rc ) return rc;
3685     }
3686   }
3687   assert( (int)pWal->szPage==szPage );
3688 
3689   /* Setup information needed to write frames into the WAL */
3690   w.pWal = pWal;
3691   w.pFd = pWal->pWalFd;
3692   w.iSyncPoint = 0;
3693   w.syncFlags = sync_flags;
3694   w.szPage = szPage;
3695   iOffset = walFrameOffset(iFrame+1, szPage);
3696   szFrame = szPage + WAL_FRAME_HDRSIZE;
3697 
3698   /* Write all frames into the log file exactly once */
3699   for(p=pList; p; p=p->pDirty){
3700     int nDbSize;   /* 0 normally.  Positive == commit flag */
3701 
3702     /* Check if this page has already been written into the wal file by
3703     ** the current transaction. If so, overwrite the existing frame and
3704     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3705     ** checksums must be recomputed when the transaction is committed.  */
3706     if( iFirst && (p->pDirty || isCommit==0) ){
3707       u32 iWrite = 0;
3708       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3709       assert( rc==SQLITE_OK || iWrite==0 );
3710       if( iWrite>=iFirst ){
3711         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3712         void *pData;
3713         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3714           pWal->iReCksum = iWrite;
3715         }
3716         pData = p->pData;
3717         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3718         if( rc ) return rc;
3719         p->flags &= ~PGHDR_WAL_APPEND;
3720         continue;
3721       }
3722     }
3723 
3724     iFrame++;
3725     assert( iOffset==walFrameOffset(iFrame, szPage) );
3726     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3727     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3728     if( rc ) return rc;
3729     pLast = p;
3730     iOffset += szFrame;
3731     p->flags |= PGHDR_WAL_APPEND;
3732   }
3733 
3734   /* Recalculate checksums within the wal file if required. */
3735   if( isCommit && pWal->iReCksum ){
3736     rc = walRewriteChecksums(pWal, iFrame);
3737     if( rc ) return rc;
3738   }
3739 
3740   /* If this is the end of a transaction, then we might need to pad
3741   ** the transaction and/or sync the WAL file.
3742   **
3743   ** Padding and syncing only occur if this set of frames complete a
3744   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3745   ** or synchronous==OFF, then no padding or syncing are needed.
3746   **
3747   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3748   ** needed and only the sync is done.  If padding is needed, then the
3749   ** final frame is repeated (with its commit mark) until the next sector
3750   ** boundary is crossed.  Only the part of the WAL prior to the last
3751   ** sector boundary is synced; the part of the last frame that extends
3752   ** past the sector boundary is written after the sync.
3753   */
3754   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3755     int bSync = 1;
3756     if( pWal->padToSectorBoundary ){
3757       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3758       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3759       bSync = (w.iSyncPoint==iOffset);
3760       testcase( bSync );
3761       while( iOffset<w.iSyncPoint ){
3762         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3763         if( rc ) return rc;
3764         iOffset += szFrame;
3765         nExtra++;
3766         assert( pLast!=0 );
3767       }
3768     }
3769     if( bSync ){
3770       assert( rc==SQLITE_OK );
3771       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3772     }
3773   }
3774 
3775   /* If this frame set completes the first transaction in the WAL and
3776   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3777   ** journal size limit, if possible.
3778   */
3779   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3780     i64 sz = pWal->mxWalSize;
3781     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3782       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3783     }
3784     walLimitSize(pWal, sz);
3785     pWal->truncateOnCommit = 0;
3786   }
3787 
3788   /* Append data to the wal-index. It is not necessary to lock the
3789   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3790   ** guarantees that there are no other writers, and no data that may
3791   ** be in use by existing readers is being overwritten.
3792   */
3793   iFrame = pWal->hdr.mxFrame;
3794   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3795     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3796     iFrame++;
3797     rc = walIndexAppend(pWal, iFrame, p->pgno);
3798   }
3799   assert( pLast!=0 || nExtra==0 );
3800   while( rc==SQLITE_OK && nExtra>0 ){
3801     iFrame++;
3802     nExtra--;
3803     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3804   }
3805 
3806   if( rc==SQLITE_OK ){
3807     /* Update the private copy of the header. */
3808     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3809     testcase( szPage<=32768 );
3810     testcase( szPage>=65536 );
3811     pWal->hdr.mxFrame = iFrame;
3812     if( isCommit ){
3813       pWal->hdr.iChange++;
3814       pWal->hdr.nPage = nTruncate;
3815     }
3816     /* If this is a commit, update the wal-index header too. */
3817     if( isCommit ){
3818       walIndexWriteHdr(pWal);
3819       pWal->iCallback = iFrame;
3820     }
3821   }
3822 
3823   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3824   return rc;
3825 }
3826 
3827 /*
3828 ** This routine is called to implement sqlite3_wal_checkpoint() and
3829 ** related interfaces.
3830 **
3831 ** Obtain a CHECKPOINT lock and then backfill as much information as
3832 ** we can from WAL into the database.
3833 **
3834 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3835 ** callback. In this case this function runs a blocking checkpoint.
3836 */
3837 int sqlite3WalCheckpoint(
3838   Wal *pWal,                      /* Wal connection */
3839   sqlite3 *db,                    /* Check this handle's interrupt flag */
3840   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3841   int (*xBusy)(void*),            /* Function to call when busy */
3842   void *pBusyArg,                 /* Context argument for xBusyHandler */
3843   int sync_flags,                 /* Flags to sync db file with (or 0) */
3844   int nBuf,                       /* Size of temporary buffer */
3845   u8 *zBuf,                       /* Temporary buffer to use */
3846   int *pnLog,                     /* OUT: Number of frames in WAL */
3847   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3848 ){
3849   int rc;                         /* Return code */
3850   int isChanged = 0;              /* True if a new wal-index header is loaded */
3851   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3852   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3853 
3854   assert( pWal->ckptLock==0 );
3855   assert( pWal->writeLock==0 );
3856 
3857   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3858   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3859   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3860 
3861   if( pWal->readOnly ) return SQLITE_READONLY;
3862   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3863 
3864   /* Enable blocking locks, if possible. If blocking locks are successfully
3865   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3866   sqlite3WalDb(pWal, db);
3867   (void)walEnableBlocking(pWal);
3868 
3869   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3870   ** "checkpoint" lock on the database file.
3871   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3872   ** checkpoint operation at the same time, the lock cannot be obtained and
3873   ** SQLITE_BUSY is returned.
3874   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3875   ** it will not be invoked in this case.
3876   */
3877   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3878   testcase( rc==SQLITE_BUSY );
3879   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3880   if( rc==SQLITE_OK ){
3881     pWal->ckptLock = 1;
3882 
3883     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3884     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3885     ** file.
3886     **
3887     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3888     ** immediately, and a busy-handler is configured, it is invoked and the
3889     ** writer lock retried until either the busy-handler returns 0 or the
3890     ** lock is successfully obtained.
3891     */
3892     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3893       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3894       if( rc==SQLITE_OK ){
3895         pWal->writeLock = 1;
3896       }else if( rc==SQLITE_BUSY ){
3897         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3898         xBusy2 = 0;
3899         rc = SQLITE_OK;
3900       }
3901     }
3902   }
3903 
3904 
3905   /* Read the wal-index header. */
3906   if( rc==SQLITE_OK ){
3907     walDisableBlocking(pWal);
3908     rc = walIndexReadHdr(pWal, &isChanged);
3909     (void)walEnableBlocking(pWal);
3910     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3911       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3912     }
3913   }
3914 
3915   /* Copy data from the log to the database file. */
3916   if( rc==SQLITE_OK ){
3917 
3918     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3919       rc = SQLITE_CORRUPT_BKPT;
3920     }else{
3921       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3922     }
3923 
3924     /* If no error occurred, set the output variables. */
3925     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3926       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3927       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3928     }
3929   }
3930 
3931   if( isChanged ){
3932     /* If a new wal-index header was loaded before the checkpoint was
3933     ** performed, then the pager-cache associated with pWal is now
3934     ** out of date. So zero the cached wal-index header to ensure that
3935     ** next time the pager opens a snapshot on this database it knows that
3936     ** the cache needs to be reset.
3937     */
3938     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3939   }
3940 
3941   walDisableBlocking(pWal);
3942   sqlite3WalDb(pWal, 0);
3943 
3944   /* Release the locks. */
3945   sqlite3WalEndWriteTransaction(pWal);
3946   if( pWal->ckptLock ){
3947     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3948     pWal->ckptLock = 0;
3949   }
3950   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3951 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3952   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3953 #endif
3954   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3955 }
3956 
3957 /* Return the value to pass to a sqlite3_wal_hook callback, the
3958 ** number of frames in the WAL at the point of the last commit since
3959 ** sqlite3WalCallback() was called.  If no commits have occurred since
3960 ** the last call, then return 0.
3961 */
3962 int sqlite3WalCallback(Wal *pWal){
3963   u32 ret = 0;
3964   if( pWal ){
3965     ret = pWal->iCallback;
3966     pWal->iCallback = 0;
3967   }
3968   return (int)ret;
3969 }
3970 
3971 /*
3972 ** This function is called to change the WAL subsystem into or out
3973 ** of locking_mode=EXCLUSIVE.
3974 **
3975 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3976 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3977 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3978 ** or if the acquisition of the lock fails, then return 0.  If the
3979 ** transition out of exclusive-mode is successful, return 1.  This
3980 ** operation must occur while the pager is still holding the exclusive
3981 ** lock on the main database file.
3982 **
3983 ** If op is one, then change from locking_mode=NORMAL into
3984 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3985 ** be released.  Return 1 if the transition is made and 0 if the
3986 ** WAL is already in exclusive-locking mode - meaning that this
3987 ** routine is a no-op.  The pager must already hold the exclusive lock
3988 ** on the main database file before invoking this operation.
3989 **
3990 ** If op is negative, then do a dry-run of the op==1 case but do
3991 ** not actually change anything. The pager uses this to see if it
3992 ** should acquire the database exclusive lock prior to invoking
3993 ** the op==1 case.
3994 */
3995 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3996   int rc;
3997   assert( pWal->writeLock==0 );
3998   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3999 
4000   /* pWal->readLock is usually set, but might be -1 if there was a
4001   ** prior error while attempting to acquire are read-lock. This cannot
4002   ** happen if the connection is actually in exclusive mode (as no xShmLock
4003   ** locks are taken in this case). Nor should the pager attempt to
4004   ** upgrade to exclusive-mode following such an error.
4005   */
4006   assert( pWal->readLock>=0 || pWal->lockError );
4007   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
4008 
4009   if( op==0 ){
4010     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
4011       pWal->exclusiveMode = WAL_NORMAL_MODE;
4012       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
4013         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4014       }
4015       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4016     }else{
4017       /* Already in locking_mode=NORMAL */
4018       rc = 0;
4019     }
4020   }else if( op>0 ){
4021     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
4022     assert( pWal->readLock>=0 );
4023     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
4024     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4025     rc = 1;
4026   }else{
4027     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4028   }
4029   return rc;
4030 }
4031 
4032 /*
4033 ** Return true if the argument is non-NULL and the WAL module is using
4034 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
4035 ** WAL module is using shared-memory, return false.
4036 */
4037 int sqlite3WalHeapMemory(Wal *pWal){
4038   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
4039 }
4040 
4041 #ifdef SQLITE_ENABLE_SNAPSHOT
4042 /* Create a snapshot object.  The content of a snapshot is opaque to
4043 ** every other subsystem, so the WAL module can put whatever it needs
4044 ** in the object.
4045 */
4046 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
4047   int rc = SQLITE_OK;
4048   WalIndexHdr *pRet;
4049   static const u32 aZero[4] = { 0, 0, 0, 0 };
4050 
4051   assert( pWal->readLock>=0 && pWal->writeLock==0 );
4052 
4053   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
4054     *ppSnapshot = 0;
4055     return SQLITE_ERROR;
4056   }
4057   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
4058   if( pRet==0 ){
4059     rc = SQLITE_NOMEM_BKPT;
4060   }else{
4061     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
4062     *ppSnapshot = (sqlite3_snapshot*)pRet;
4063   }
4064 
4065   return rc;
4066 }
4067 
4068 /* Try to open on pSnapshot when the next read-transaction starts
4069 */
4070 void sqlite3WalSnapshotOpen(
4071   Wal *pWal,
4072   sqlite3_snapshot *pSnapshot
4073 ){
4074   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4075 }
4076 
4077 /*
4078 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4079 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4080 */
4081 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4082   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4083   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4084 
4085   /* aSalt[0] is a copy of the value stored in the wal file header. It
4086   ** is incremented each time the wal file is restarted.  */
4087   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4088   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4089   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4090   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4091   return 0;
4092 }
4093 
4094 /*
4095 ** The caller currently has a read transaction open on the database.
4096 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4097 ** checks if the snapshot passed as the second argument is still
4098 ** available. If so, SQLITE_OK is returned.
4099 **
4100 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4101 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4102 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4103 ** lock is released before returning.
4104 */
4105 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4106   int rc;
4107   rc = walLockShared(pWal, WAL_CKPT_LOCK);
4108   if( rc==SQLITE_OK ){
4109     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4110     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4111      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4112     ){
4113       rc = SQLITE_ERROR_SNAPSHOT;
4114       walUnlockShared(pWal, WAL_CKPT_LOCK);
4115     }
4116   }
4117   return rc;
4118 }
4119 
4120 /*
4121 ** Release a lock obtained by an earlier successful call to
4122 ** sqlite3WalSnapshotCheck().
4123 */
4124 void sqlite3WalSnapshotUnlock(Wal *pWal){
4125   assert( pWal );
4126   walUnlockShared(pWal, WAL_CKPT_LOCK);
4127 }
4128 
4129 
4130 #endif /* SQLITE_ENABLE_SNAPSHOT */
4131 
4132 #ifdef SQLITE_ENABLE_ZIPVFS
4133 /*
4134 ** If the argument is not NULL, it points to a Wal object that holds a
4135 ** read-lock. This function returns the database page-size if it is known,
4136 ** or zero if it is not (or if pWal is NULL).
4137 */
4138 int sqlite3WalFramesize(Wal *pWal){
4139   assert( pWal==0 || pWal->readLock>=0 );
4140   return (pWal ? pWal->szPage : 0);
4141 }
4142 #endif
4143 
4144 /* Return the sqlite3_file object for the WAL file
4145 */
4146 sqlite3_file *sqlite3WalFile(Wal *pWal){
4147   return pWal->pWalFd;
4148 }
4149 
4150 #endif /* #ifndef SQLITE_OMIT_WAL */
4151