1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. The values are: 165 ** 166 ** HASHTABLE_NPAGE 4096 167 ** HASHTABLE_NPAGE_ONE 4062 168 ** 169 ** Each index block contains two sections, a page-mapping that contains the 170 ** database page number associated with each wal frame, and a hash-table 171 ** that allows readers to query an index block for a specific page number. 172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 173 ** for the first index block) 32-bit page numbers. The first entry in the 174 ** first index-block contains the database page number corresponding to the 175 ** first frame in the WAL file. The first entry in the second index block 176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 177 ** the log, and so on. 178 ** 179 ** The last index block in a wal-index usually contains less than the full 180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 181 ** depending on the contents of the WAL file. This does not change the 182 ** allocated size of the page-mapping array - the page-mapping array merely 183 ** contains unused entries. 184 ** 185 ** Even without using the hash table, the last frame for page P 186 ** can be found by scanning the page-mapping sections of each index block 187 ** starting with the last index block and moving toward the first, and 188 ** within each index block, starting at the end and moving toward the 189 ** beginning. The first entry that equals P corresponds to the frame 190 ** holding the content for that page. 191 ** 192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 194 ** hash table for each page number in the mapping section, so the hash 195 ** table is never more than half full. The expected number of collisions 196 ** prior to finding a match is 1. Each entry of the hash table is an 197 ** 1-based index of an entry in the mapping section of the same 198 ** index block. Let K be the 1-based index of the largest entry in 199 ** the mapping section. (For index blocks other than the last, K will 200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 202 ** contain a value of 0. 203 ** 204 ** To look for page P in the hash table, first compute a hash iKey on 205 ** P as follows: 206 ** 207 ** iKey = (P * 383) % HASHTABLE_NSLOT 208 ** 209 ** Then start scanning entries of the hash table, starting with iKey 210 ** (wrapping around to the beginning when the end of the hash table is 211 ** reached) until an unused hash slot is found. Let the first unused slot 212 ** be at index iUnused. (iUnused might be less than iKey if there was 213 ** wrap-around.) Because the hash table is never more than half full, 214 ** the search is guaranteed to eventually hit an unused entry. Let 215 ** iMax be the value between iKey and iUnused, closest to iUnused, 216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 217 ** no hash slot such that aHash[i]==p) then page P is not in the 218 ** current index block. Otherwise the iMax-th mapping entry of the 219 ** current index block corresponds to the last entry that references 220 ** page P. 221 ** 222 ** A hash search begins with the last index block and moves toward the 223 ** first index block, looking for entries corresponding to page P. On 224 ** average, only two or three slots in each index block need to be 225 ** examined in order to either find the last entry for page P, or to 226 ** establish that no such entry exists in the block. Each index block 227 ** holds over 4000 entries. So two or three index blocks are sufficient 228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 229 ** comparisons (on average) suffice to either locate a frame in the 230 ** WAL or to establish that the frame does not exist in the WAL. This 231 ** is much faster than scanning the entire 10MB WAL. 232 ** 233 ** Note that entries are added in order of increasing K. Hence, one 234 ** reader might be using some value K0 and a second reader that started 235 ** at a later time (after additional transactions were added to the WAL 236 ** and to the wal-index) might be using a different value K1, where K1>K0. 237 ** Both readers can use the same hash table and mapping section to get 238 ** the correct result. There may be entries in the hash table with 239 ** K>K0 but to the first reader, those entries will appear to be unused 240 ** slots in the hash table and so the first reader will get an answer as 241 ** if no values greater than K0 had ever been inserted into the hash table 242 ** in the first place - which is what reader one wants. Meanwhile, the 243 ** second reader using K1 will see additional values that were inserted 244 ** later, which is exactly what reader two wants. 245 ** 246 ** When a rollback occurs, the value of K is decreased. Hash table entries 247 ** that correspond to frames greater than the new K value are removed 248 ** from the hash table at this point. 249 */ 250 #ifndef SQLITE_OMIT_WAL 251 252 #include "wal.h" 253 254 /* 255 ** Trace output macros 256 */ 257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 258 int sqlite3WalTrace = 0; 259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 260 #else 261 # define WALTRACE(X) 262 #endif 263 264 /* 265 ** The maximum (and only) versions of the wal and wal-index formats 266 ** that may be interpreted by this version of SQLite. 267 ** 268 ** If a client begins recovering a WAL file and finds that (a) the checksum 269 ** values in the wal-header are correct and (b) the version field is not 270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 271 ** 272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 273 ** checksum test is successful) and finds that the version field is not 274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 275 ** returns SQLITE_CANTOPEN. 276 */ 277 #define WAL_MAX_VERSION 3007000 278 #define WALINDEX_MAX_VERSION 3007000 279 280 /* 281 ** Index numbers for various locking bytes. WAL_NREADER is the number 282 ** of available reader locks and should be at least 3. The default 283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 284 ** 285 ** Technically, the various VFSes are free to implement these locks however 286 ** they see fit. However, compatibility is encouraged so that VFSes can 287 ** interoperate. The standard implemention used on both unix and windows 288 ** is for the index number to indicate a byte offset into the 289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 291 ** should be 120) is the location in the shm file for the first locking 292 ** byte. 293 */ 294 #define WAL_WRITE_LOCK 0 295 #define WAL_ALL_BUT_WRITE 1 296 #define WAL_CKPT_LOCK 1 297 #define WAL_RECOVER_LOCK 2 298 #define WAL_READ_LOCK(I) (3+(I)) 299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 300 301 302 /* Object declarations */ 303 typedef struct WalIndexHdr WalIndexHdr; 304 typedef struct WalIterator WalIterator; 305 typedef struct WalCkptInfo WalCkptInfo; 306 307 308 /* 309 ** The following object holds a copy of the wal-index header content. 310 ** 311 ** The actual header in the wal-index consists of two copies of this 312 ** object followed by one instance of the WalCkptInfo object. 313 ** For all versions of SQLite through 3.10.0 and probably beyond, 314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 315 ** the total header size is 136 bytes. 316 ** 317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 319 ** added in 3.7.1 when support for 64K pages was added. 320 */ 321 struct WalIndexHdr { 322 u32 iVersion; /* Wal-index version */ 323 u32 unused; /* Unused (padding) field */ 324 u32 iChange; /* Counter incremented each transaction */ 325 u8 isInit; /* 1 when initialized */ 326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 327 u16 szPage; /* Database page size in bytes. 1==64K */ 328 u32 mxFrame; /* Index of last valid frame in the WAL */ 329 u32 nPage; /* Size of database in pages */ 330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 332 u32 aCksum[2]; /* Checksum over all prior fields */ 333 }; 334 335 /* 336 ** A copy of the following object occurs in the wal-index immediately 337 ** following the second copy of the WalIndexHdr. This object stores 338 ** information used by checkpoint. 339 ** 340 ** nBackfill is the number of frames in the WAL that have been written 341 ** back into the database. (We call the act of moving content from WAL to 342 ** database "backfilling".) The nBackfill number is never greater than 343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 346 ** mxFrame back to zero when the WAL is reset. 347 ** 348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 350 ** the nBackfillAttempted is set before any backfilling is done and the 351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 354 ** 355 ** The aLock[] field is a set of bytes used for locking. These bytes should 356 ** never be read or written. 357 ** 358 ** There is one entry in aReadMark[] for each reader lock. If a reader 359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 362 ** a special case; its value is never used and it exists as a place-holder 363 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 365 ** directly from the database. 366 ** 367 ** The value of aReadMark[K] may only be changed by a thread that 368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 369 ** aReadMark[K] cannot changed while there is a reader is using that mark 370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 371 ** 372 ** The checkpointer may only transfer frames from WAL to database where 373 ** the frame numbers are less than or equal to every aReadMark[] that is 374 ** in use (that is, every aReadMark[j] for which there is a corresponding 375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 379 ** in the WAL has been backfilled into the database) then new readers 380 ** will choose aReadMark[0] which has value 0 and hence such reader will 381 ** get all their all content directly from the database file and ignore 382 ** the WAL. 383 ** 384 ** Writers normally append new frames to the end of the WAL. However, 385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 386 ** written back into the database) and if no readers are using the WAL 387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 388 ** the writer will first "reset" the WAL back to the beginning and start 389 ** writing new content beginning at frame 1. 390 ** 391 ** We assume that 32-bit loads are atomic and so no locks are needed in 392 ** order to read from any aReadMark[] entries. 393 */ 394 struct WalCkptInfo { 395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 399 u32 notUsed0; /* Available for future enhancements */ 400 }; 401 #define READMARK_NOT_USED 0xffffffff 402 403 /* 404 ** This is a schematic view of the complete 136-byte header of the 405 ** wal-index file (also known as the -shm file): 406 ** 407 ** +-----------------------------+ 408 ** 0: | iVersion | \ 409 ** +-----------------------------+ | 410 ** 4: | (unused padding) | | 411 ** +-----------------------------+ | 412 ** 8: | iChange | | 413 ** +-------+-------+-------------+ | 414 ** 12: | bInit | bBig | szPage | | 415 ** +-------+-------+-------------+ | 416 ** 16: | mxFrame | | First copy of the 417 ** +-----------------------------+ | WalIndexHdr object 418 ** 20: | nPage | | 419 ** +-----------------------------+ | 420 ** 24: | aFrameCksum | | 421 ** | | | 422 ** +-----------------------------+ | 423 ** 32: | aSalt | | 424 ** | | | 425 ** +-----------------------------+ | 426 ** 40: | aCksum | | 427 ** | | / 428 ** +-----------------------------+ 429 ** 48: | iVersion | \ 430 ** +-----------------------------+ | 431 ** 52: | (unused padding) | | 432 ** +-----------------------------+ | 433 ** 56: | iChange | | 434 ** +-------+-------+-------------+ | 435 ** 60: | bInit | bBig | szPage | | 436 ** +-------+-------+-------------+ | Second copy of the 437 ** 64: | mxFrame | | WalIndexHdr 438 ** +-----------------------------+ | 439 ** 68: | nPage | | 440 ** +-----------------------------+ | 441 ** 72: | aFrameCksum | | 442 ** | | | 443 ** +-----------------------------+ | 444 ** 80: | aSalt | | 445 ** | | | 446 ** +-----------------------------+ | 447 ** 88: | aCksum | | 448 ** | | / 449 ** +-----------------------------+ 450 ** 96: | nBackfill | 451 ** +-----------------------------+ 452 ** 100: | 5 read marks | 453 ** | | 454 ** | | 455 ** | | 456 ** | | 457 ** +-------+-------+------+------+ 458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \ 459 ** +-------+-------+------+------+ ) 8 lock bytes 460 ** | Read1 | Read2 | Rd3 | Rd4 | / 461 ** +-------+-------+------+------+ 462 ** 128: | nBackfillAttempted | 463 ** +-----------------------------+ 464 ** 132: | (unused padding) | 465 ** +-----------------------------+ 466 */ 467 468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 470 ** only support mandatory file-locks, we do not read or write data 471 ** from the region of the file on which locks are applied. 472 */ 473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 475 476 /* Size of header before each frame in wal */ 477 #define WAL_FRAME_HDRSIZE 24 478 479 /* Size of write ahead log header, including checksum. */ 480 #define WAL_HDRSIZE 32 481 482 /* WAL magic value. Either this value, or the same value with the least 483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 484 ** big-endian format in the first 4 bytes of a WAL file. 485 ** 486 ** If the LSB is set, then the checksums for each frame within the WAL 487 ** file are calculated by treating all data as an array of 32-bit 488 ** big-endian words. Otherwise, they are calculated by interpreting 489 ** all data as 32-bit little-endian words. 490 */ 491 #define WAL_MAGIC 0x377f0682 492 493 /* 494 ** Return the offset of frame iFrame in the write-ahead log file, 495 ** assuming a database page size of szPage bytes. The offset returned 496 ** is to the start of the write-ahead log frame-header. 497 */ 498 #define walFrameOffset(iFrame, szPage) ( \ 499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 500 ) 501 502 /* 503 ** An open write-ahead log file is represented by an instance of the 504 ** following object. 505 */ 506 struct Wal { 507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 508 sqlite3_file *pDbFd; /* File handle for the database file */ 509 sqlite3_file *pWalFd; /* File handle for WAL file */ 510 u32 iCallback; /* Value to pass to log callback (or 0) */ 511 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 512 int nWiData; /* Size of array apWiData */ 513 int szFirstBlock; /* Size of first block written to WAL file */ 514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 515 u32 szPage; /* Database page size */ 516 i16 readLock; /* Which read lock is being held. -1 for none */ 517 u8 syncFlags; /* Flags to use to sync header writes */ 518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 519 u8 writeLock; /* True if in a write transaction */ 520 u8 ckptLock; /* True if holding a checkpoint lock */ 521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 522 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 523 u8 syncHeader; /* Fsync the WAL header if true */ 524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 526 WalIndexHdr hdr; /* Wal-index header for current transaction */ 527 u32 minFrame; /* Ignore wal frames before this one */ 528 u32 iReCksum; /* On commit, recalculate checksums from here */ 529 const char *zWalName; /* Name of WAL file */ 530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 531 #ifdef SQLITE_DEBUG 532 u8 lockError; /* True if a locking error has occurred */ 533 #endif 534 #ifdef SQLITE_ENABLE_SNAPSHOT 535 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 536 #endif 537 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 538 sqlite3 *db; 539 #endif 540 }; 541 542 /* 543 ** Candidate values for Wal.exclusiveMode. 544 */ 545 #define WAL_NORMAL_MODE 0 546 #define WAL_EXCLUSIVE_MODE 1 547 #define WAL_HEAPMEMORY_MODE 2 548 549 /* 550 ** Possible values for WAL.readOnly 551 */ 552 #define WAL_RDWR 0 /* Normal read/write connection */ 553 #define WAL_RDONLY 1 /* The WAL file is readonly */ 554 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 555 556 /* 557 ** Each page of the wal-index mapping contains a hash-table made up of 558 ** an array of HASHTABLE_NSLOT elements of the following type. 559 */ 560 typedef u16 ht_slot; 561 562 /* 563 ** This structure is used to implement an iterator that loops through 564 ** all frames in the WAL in database page order. Where two or more frames 565 ** correspond to the same database page, the iterator visits only the 566 ** frame most recently written to the WAL (in other words, the frame with 567 ** the largest index). 568 ** 569 ** The internals of this structure are only accessed by: 570 ** 571 ** walIteratorInit() - Create a new iterator, 572 ** walIteratorNext() - Step an iterator, 573 ** walIteratorFree() - Free an iterator. 574 ** 575 ** This functionality is used by the checkpoint code (see walCheckpoint()). 576 */ 577 struct WalIterator { 578 u32 iPrior; /* Last result returned from the iterator */ 579 int nSegment; /* Number of entries in aSegment[] */ 580 struct WalSegment { 581 int iNext; /* Next slot in aIndex[] not yet returned */ 582 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 583 u32 *aPgno; /* Array of page numbers. */ 584 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 585 int iZero; /* Frame number associated with aPgno[0] */ 586 } aSegment[1]; /* One for every 32KB page in the wal-index */ 587 }; 588 589 /* 590 ** Define the parameters of the hash tables in the wal-index file. There 591 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 592 ** wal-index. 593 ** 594 ** Changing any of these constants will alter the wal-index format and 595 ** create incompatibilities. 596 */ 597 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 598 #define HASHTABLE_HASH_1 383 /* Should be prime */ 599 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 600 601 /* 602 ** The block of page numbers associated with the first hash-table in a 603 ** wal-index is smaller than usual. This is so that there is a complete 604 ** hash-table on each aligned 32KB page of the wal-index. 605 */ 606 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 607 608 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 609 #define WALINDEX_PGSZ ( \ 610 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 611 ) 612 613 /* 614 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 615 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 616 ** numbered from zero. 617 ** 618 ** If the wal-index is currently smaller the iPage pages then the size 619 ** of the wal-index might be increased, but only if it is safe to do 620 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 621 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 622 ** 623 ** Three possible result scenarios: 624 ** 625 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page 626 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL 627 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 628 ** 629 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 630 */ 631 static SQLITE_NOINLINE int walIndexPageRealloc( 632 Wal *pWal, /* The WAL context */ 633 int iPage, /* The page we seek */ 634 volatile u32 **ppPage /* Write the page pointer here */ 635 ){ 636 int rc = SQLITE_OK; 637 638 /* Enlarge the pWal->apWiData[] array if required */ 639 if( pWal->nWiData<=iPage ){ 640 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 641 volatile u32 **apNew; 642 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 643 if( !apNew ){ 644 *ppPage = 0; 645 return SQLITE_NOMEM_BKPT; 646 } 647 memset((void*)&apNew[pWal->nWiData], 0, 648 sizeof(u32*)*(iPage+1-pWal->nWiData)); 649 pWal->apWiData = apNew; 650 pWal->nWiData = iPage+1; 651 } 652 653 /* Request a pointer to the required page from the VFS */ 654 assert( pWal->apWiData[iPage]==0 ); 655 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 656 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 657 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 658 }else{ 659 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 660 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 661 ); 662 assert( pWal->apWiData[iPage]!=0 663 || rc!=SQLITE_OK 664 || (pWal->writeLock==0 && iPage==0) ); 665 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 666 if( rc==SQLITE_OK ){ 667 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 668 }else if( (rc&0xff)==SQLITE_READONLY ){ 669 pWal->readOnly |= WAL_SHM_RDONLY; 670 if( rc==SQLITE_READONLY ){ 671 rc = SQLITE_OK; 672 } 673 } 674 } 675 676 *ppPage = pWal->apWiData[iPage]; 677 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 678 return rc; 679 } 680 static int walIndexPage( 681 Wal *pWal, /* The WAL context */ 682 int iPage, /* The page we seek */ 683 volatile u32 **ppPage /* Write the page pointer here */ 684 ){ 685 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 686 return walIndexPageRealloc(pWal, iPage, ppPage); 687 } 688 return SQLITE_OK; 689 } 690 691 /* 692 ** Return a pointer to the WalCkptInfo structure in the wal-index. 693 */ 694 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 695 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 696 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 697 } 698 699 /* 700 ** Return a pointer to the WalIndexHdr structure in the wal-index. 701 */ 702 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 703 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 704 return (volatile WalIndexHdr*)pWal->apWiData[0]; 705 } 706 707 /* 708 ** The argument to this macro must be of type u32. On a little-endian 709 ** architecture, it returns the u32 value that results from interpreting 710 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 711 ** returns the value that would be produced by interpreting the 4 bytes 712 ** of the input value as a little-endian integer. 713 */ 714 #define BYTESWAP32(x) ( \ 715 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 716 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 717 ) 718 719 /* 720 ** Generate or extend an 8 byte checksum based on the data in 721 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 722 ** initial values of 0 and 0 if aIn==NULL). 723 ** 724 ** The checksum is written back into aOut[] before returning. 725 ** 726 ** nByte must be a positive multiple of 8. 727 */ 728 static void walChecksumBytes( 729 int nativeCksum, /* True for native byte-order, false for non-native */ 730 u8 *a, /* Content to be checksummed */ 731 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 732 const u32 *aIn, /* Initial checksum value input */ 733 u32 *aOut /* OUT: Final checksum value output */ 734 ){ 735 u32 s1, s2; 736 u32 *aData = (u32 *)a; 737 u32 *aEnd = (u32 *)&a[nByte]; 738 739 if( aIn ){ 740 s1 = aIn[0]; 741 s2 = aIn[1]; 742 }else{ 743 s1 = s2 = 0; 744 } 745 746 assert( nByte>=8 ); 747 assert( (nByte&0x00000007)==0 ); 748 assert( nByte<=65536 ); 749 750 if( nativeCksum ){ 751 do { 752 s1 += *aData++ + s2; 753 s2 += *aData++ + s1; 754 }while( aData<aEnd ); 755 }else{ 756 do { 757 s1 += BYTESWAP32(aData[0]) + s2; 758 s2 += BYTESWAP32(aData[1]) + s1; 759 aData += 2; 760 }while( aData<aEnd ); 761 } 762 763 aOut[0] = s1; 764 aOut[1] = s2; 765 } 766 767 /* 768 ** If there is the possibility of concurrent access to the SHM file 769 ** from multiple threads and/or processes, then do a memory barrier. 770 */ 771 static void walShmBarrier(Wal *pWal){ 772 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 773 sqlite3OsShmBarrier(pWal->pDbFd); 774 } 775 } 776 777 /* 778 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 779 ** definition as a hint that the function contains constructs that 780 ** might give false-positive TSAN warnings. 781 ** 782 ** See tag-20200519-1. 783 */ 784 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 785 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 786 #else 787 # define SQLITE_NO_TSAN 788 #endif 789 790 /* 791 ** Write the header information in pWal->hdr into the wal-index. 792 ** 793 ** The checksum on pWal->hdr is updated before it is written. 794 */ 795 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 796 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 797 const int nCksum = offsetof(WalIndexHdr, aCksum); 798 799 assert( pWal->writeLock ); 800 pWal->hdr.isInit = 1; 801 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 802 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 803 /* Possible TSAN false-positive. See tag-20200519-1 */ 804 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 805 walShmBarrier(pWal); 806 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 807 } 808 809 /* 810 ** This function encodes a single frame header and writes it to a buffer 811 ** supplied by the caller. A frame-header is made up of a series of 812 ** 4-byte big-endian integers, as follows: 813 ** 814 ** 0: Page number. 815 ** 4: For commit records, the size of the database image in pages 816 ** after the commit. For all other records, zero. 817 ** 8: Salt-1 (copied from the wal-header) 818 ** 12: Salt-2 (copied from the wal-header) 819 ** 16: Checksum-1. 820 ** 20: Checksum-2. 821 */ 822 static void walEncodeFrame( 823 Wal *pWal, /* The write-ahead log */ 824 u32 iPage, /* Database page number for frame */ 825 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 826 u8 *aData, /* Pointer to page data */ 827 u8 *aFrame /* OUT: Write encoded frame here */ 828 ){ 829 int nativeCksum; /* True for native byte-order checksums */ 830 u32 *aCksum = pWal->hdr.aFrameCksum; 831 assert( WAL_FRAME_HDRSIZE==24 ); 832 sqlite3Put4byte(&aFrame[0], iPage); 833 sqlite3Put4byte(&aFrame[4], nTruncate); 834 if( pWal->iReCksum==0 ){ 835 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 836 837 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 838 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 839 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 840 841 sqlite3Put4byte(&aFrame[16], aCksum[0]); 842 sqlite3Put4byte(&aFrame[20], aCksum[1]); 843 }else{ 844 memset(&aFrame[8], 0, 16); 845 } 846 } 847 848 /* 849 ** Check to see if the frame with header in aFrame[] and content 850 ** in aData[] is valid. If it is a valid frame, fill *piPage and 851 ** *pnTruncate and return true. Return if the frame is not valid. 852 */ 853 static int walDecodeFrame( 854 Wal *pWal, /* The write-ahead log */ 855 u32 *piPage, /* OUT: Database page number for frame */ 856 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 857 u8 *aData, /* Pointer to page data (for checksum) */ 858 u8 *aFrame /* Frame data */ 859 ){ 860 int nativeCksum; /* True for native byte-order checksums */ 861 u32 *aCksum = pWal->hdr.aFrameCksum; 862 u32 pgno; /* Page number of the frame */ 863 assert( WAL_FRAME_HDRSIZE==24 ); 864 865 /* A frame is only valid if the salt values in the frame-header 866 ** match the salt values in the wal-header. 867 */ 868 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 869 return 0; 870 } 871 872 /* A frame is only valid if the page number is creater than zero. 873 */ 874 pgno = sqlite3Get4byte(&aFrame[0]); 875 if( pgno==0 ){ 876 return 0; 877 } 878 879 /* A frame is only valid if a checksum of the WAL header, 880 ** all prior frams, the first 16 bytes of this frame-header, 881 ** and the frame-data matches the checksum in the last 8 882 ** bytes of this frame-header. 883 */ 884 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 885 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 886 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 887 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 888 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 889 ){ 890 /* Checksum failed. */ 891 return 0; 892 } 893 894 /* If we reach this point, the frame is valid. Return the page number 895 ** and the new database size. 896 */ 897 *piPage = pgno; 898 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 899 return 1; 900 } 901 902 903 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 904 /* 905 ** Names of locks. This routine is used to provide debugging output and is not 906 ** a part of an ordinary build. 907 */ 908 static const char *walLockName(int lockIdx){ 909 if( lockIdx==WAL_WRITE_LOCK ){ 910 return "WRITE-LOCK"; 911 }else if( lockIdx==WAL_CKPT_LOCK ){ 912 return "CKPT-LOCK"; 913 }else if( lockIdx==WAL_RECOVER_LOCK ){ 914 return "RECOVER-LOCK"; 915 }else{ 916 static char zName[15]; 917 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 918 lockIdx-WAL_READ_LOCK(0)); 919 return zName; 920 } 921 } 922 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 923 924 925 /* 926 ** Set or release locks on the WAL. Locks are either shared or exclusive. 927 ** A lock cannot be moved directly between shared and exclusive - it must go 928 ** through the unlocked state first. 929 ** 930 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 931 */ 932 static int walLockShared(Wal *pWal, int lockIdx){ 933 int rc; 934 if( pWal->exclusiveMode ) return SQLITE_OK; 935 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 936 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 937 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 938 walLockName(lockIdx), rc ? "failed" : "ok")); 939 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 940 return rc; 941 } 942 static void walUnlockShared(Wal *pWal, int lockIdx){ 943 if( pWal->exclusiveMode ) return; 944 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 945 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 946 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 947 } 948 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 949 int rc; 950 if( pWal->exclusiveMode ) return SQLITE_OK; 951 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 952 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 953 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 954 walLockName(lockIdx), n, rc ? "failed" : "ok")); 955 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 956 return rc; 957 } 958 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 959 if( pWal->exclusiveMode ) return; 960 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 961 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 962 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 963 walLockName(lockIdx), n)); 964 } 965 966 /* 967 ** Compute a hash on a page number. The resulting hash value must land 968 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 969 ** the hash to the next value in the event of a collision. 970 */ 971 static int walHash(u32 iPage){ 972 assert( iPage>0 ); 973 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 974 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 975 } 976 static int walNextHash(int iPriorHash){ 977 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 978 } 979 980 /* 981 ** An instance of the WalHashLoc object is used to describe the location 982 ** of a page hash table in the wal-index. This becomes the return value 983 ** from walHashGet(). 984 */ 985 typedef struct WalHashLoc WalHashLoc; 986 struct WalHashLoc { 987 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 988 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 989 u32 iZero; /* One less than the frame number of first indexed*/ 990 }; 991 992 /* 993 ** Return pointers to the hash table and page number array stored on 994 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 995 ** numbered starting from 0. 996 ** 997 ** Set output variable pLoc->aHash to point to the start of the hash table 998 ** in the wal-index file. Set pLoc->iZero to one less than the frame 999 ** number of the first frame indexed by this hash table. If a 1000 ** slot in the hash table is set to N, it refers to frame number 1001 ** (pLoc->iZero+N) in the log. 1002 ** 1003 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the 1004 ** first frame indexed by the hash table, frame (pLoc->iZero). 1005 */ 1006 static int walHashGet( 1007 Wal *pWal, /* WAL handle */ 1008 int iHash, /* Find the iHash'th table */ 1009 WalHashLoc *pLoc /* OUT: Hash table location */ 1010 ){ 1011 int rc; /* Return code */ 1012 1013 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 1014 assert( rc==SQLITE_OK || iHash>0 ); 1015 1016 if( rc==SQLITE_OK ){ 1017 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 1018 if( iHash==0 ){ 1019 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 1020 pLoc->iZero = 0; 1021 }else{ 1022 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 1023 } 1024 } 1025 return rc; 1026 } 1027 1028 /* 1029 ** Return the number of the wal-index page that contains the hash-table 1030 ** and page-number array that contain entries corresponding to WAL frame 1031 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 1032 ** are numbered starting from 0. 1033 */ 1034 static int walFramePage(u32 iFrame){ 1035 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 1036 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 1037 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 1038 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 1039 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 1040 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 1041 ); 1042 assert( iHash>=0 ); 1043 return iHash; 1044 } 1045 1046 /* 1047 ** Return the page number associated with frame iFrame in this WAL. 1048 */ 1049 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 1050 int iHash = walFramePage(iFrame); 1051 if( iHash==0 ){ 1052 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 1053 } 1054 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 1055 } 1056 1057 /* 1058 ** Remove entries from the hash table that point to WAL slots greater 1059 ** than pWal->hdr.mxFrame. 1060 ** 1061 ** This function is called whenever pWal->hdr.mxFrame is decreased due 1062 ** to a rollback or savepoint. 1063 ** 1064 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 1065 ** updated. Any later hash tables will be automatically cleared when 1066 ** pWal->hdr.mxFrame advances to the point where those hash tables are 1067 ** actually needed. 1068 */ 1069 static void walCleanupHash(Wal *pWal){ 1070 WalHashLoc sLoc; /* Hash table location */ 1071 int iLimit = 0; /* Zero values greater than this */ 1072 int nByte; /* Number of bytes to zero in aPgno[] */ 1073 int i; /* Used to iterate through aHash[] */ 1074 1075 assert( pWal->writeLock ); 1076 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1077 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1078 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1079 1080 if( pWal->hdr.mxFrame==0 ) return; 1081 1082 /* Obtain pointers to the hash-table and page-number array containing 1083 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1084 ** that the page said hash-table and array reside on is already mapped.(1) 1085 */ 1086 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1087 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1088 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1089 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1090 1091 /* Zero all hash-table entries that correspond to frame numbers greater 1092 ** than pWal->hdr.mxFrame. 1093 */ 1094 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1095 assert( iLimit>0 ); 1096 for(i=0; i<HASHTABLE_NSLOT; i++){ 1097 if( sLoc.aHash[i]>iLimit ){ 1098 sLoc.aHash[i] = 0; 1099 } 1100 } 1101 1102 /* Zero the entries in the aPgno array that correspond to frames with 1103 ** frame numbers greater than pWal->hdr.mxFrame. 1104 */ 1105 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); 1106 assert( nByte>=0 ); 1107 memset((void *)&sLoc.aPgno[iLimit], 0, nByte); 1108 1109 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1110 /* Verify that the every entry in the mapping region is still reachable 1111 ** via the hash table even after the cleanup. 1112 */ 1113 if( iLimit ){ 1114 int j; /* Loop counter */ 1115 int iKey; /* Hash key */ 1116 for(j=0; j<iLimit; j++){ 1117 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1118 if( sLoc.aHash[iKey]==j+1 ) break; 1119 } 1120 assert( sLoc.aHash[iKey]==j+1 ); 1121 } 1122 } 1123 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1124 } 1125 1126 1127 /* 1128 ** Set an entry in the wal-index that will map database page number 1129 ** pPage into WAL frame iFrame. 1130 */ 1131 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1132 int rc; /* Return code */ 1133 WalHashLoc sLoc; /* Wal-index hash table location */ 1134 1135 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1136 1137 /* Assuming the wal-index file was successfully mapped, populate the 1138 ** page number array and hash table entry. 1139 */ 1140 if( rc==SQLITE_OK ){ 1141 int iKey; /* Hash table key */ 1142 int idx; /* Value to write to hash-table slot */ 1143 int nCollide; /* Number of hash collisions */ 1144 1145 idx = iFrame - sLoc.iZero; 1146 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1147 1148 /* If this is the first entry to be added to this hash-table, zero the 1149 ** entire hash table and aPgno[] array before proceeding. 1150 */ 1151 if( idx==1 ){ 1152 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); 1153 assert( nByte>=0 ); 1154 memset((void*)sLoc.aPgno, 0, nByte); 1155 } 1156 1157 /* If the entry in aPgno[] is already set, then the previous writer 1158 ** must have exited unexpectedly in the middle of a transaction (after 1159 ** writing one or more dirty pages to the WAL to free up memory). 1160 ** Remove the remnants of that writers uncommitted transaction from 1161 ** the hash-table before writing any new entries. 1162 */ 1163 if( sLoc.aPgno[idx-1] ){ 1164 walCleanupHash(pWal); 1165 assert( !sLoc.aPgno[idx-1] ); 1166 } 1167 1168 /* Write the aPgno[] array entry and the hash-table slot. */ 1169 nCollide = idx; 1170 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1171 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1172 } 1173 sLoc.aPgno[idx-1] = iPage; 1174 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1175 1176 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1177 /* Verify that the number of entries in the hash table exactly equals 1178 ** the number of entries in the mapping region. 1179 */ 1180 { 1181 int i; /* Loop counter */ 1182 int nEntry = 0; /* Number of entries in the hash table */ 1183 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1184 assert( nEntry==idx ); 1185 } 1186 1187 /* Verify that the every entry in the mapping region is reachable 1188 ** via the hash table. This turns out to be a really, really expensive 1189 ** thing to check, so only do this occasionally - not on every 1190 ** iteration. 1191 */ 1192 if( (idx&0x3ff)==0 ){ 1193 int i; /* Loop counter */ 1194 for(i=0; i<idx; i++){ 1195 for(iKey=walHash(sLoc.aPgno[i]); 1196 sLoc.aHash[iKey]; 1197 iKey=walNextHash(iKey)){ 1198 if( sLoc.aHash[iKey]==i+1 ) break; 1199 } 1200 assert( sLoc.aHash[iKey]==i+1 ); 1201 } 1202 } 1203 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1204 } 1205 1206 return rc; 1207 } 1208 1209 1210 /* 1211 ** Recover the wal-index by reading the write-ahead log file. 1212 ** 1213 ** This routine first tries to establish an exclusive lock on the 1214 ** wal-index to prevent other threads/processes from doing anything 1215 ** with the WAL or wal-index while recovery is running. The 1216 ** WAL_RECOVER_LOCK is also held so that other threads will know 1217 ** that this thread is running recovery. If unable to establish 1218 ** the necessary locks, this routine returns SQLITE_BUSY. 1219 */ 1220 static int walIndexRecover(Wal *pWal){ 1221 int rc; /* Return Code */ 1222 i64 nSize; /* Size of log file */ 1223 u32 aFrameCksum[2] = {0, 0}; 1224 int iLock; /* Lock offset to lock for checkpoint */ 1225 1226 /* Obtain an exclusive lock on all byte in the locking range not already 1227 ** locked by the caller. The caller is guaranteed to have locked the 1228 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1229 ** If successful, the same bytes that are locked here are unlocked before 1230 ** this function returns. 1231 */ 1232 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1233 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1234 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1235 assert( pWal->writeLock ); 1236 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1237 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1238 if( rc ){ 1239 return rc; 1240 } 1241 1242 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1243 1244 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1245 1246 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1247 if( rc!=SQLITE_OK ){ 1248 goto recovery_error; 1249 } 1250 1251 if( nSize>WAL_HDRSIZE ){ 1252 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1253 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1254 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1255 int szFrame; /* Number of bytes in buffer aFrame[] */ 1256 u8 *aData; /* Pointer to data part of aFrame buffer */ 1257 int szPage; /* Page size according to the log */ 1258 u32 magic; /* Magic value read from WAL header */ 1259 u32 version; /* Magic value read from WAL header */ 1260 int isValid; /* True if this frame is valid */ 1261 u32 iPg; /* Current 32KB wal-index page */ 1262 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 1263 1264 /* Read in the WAL header. */ 1265 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1266 if( rc!=SQLITE_OK ){ 1267 goto recovery_error; 1268 } 1269 1270 /* If the database page size is not a power of two, or is greater than 1271 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1272 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1273 ** WAL file. 1274 */ 1275 magic = sqlite3Get4byte(&aBuf[0]); 1276 szPage = sqlite3Get4byte(&aBuf[8]); 1277 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1278 || szPage&(szPage-1) 1279 || szPage>SQLITE_MAX_PAGE_SIZE 1280 || szPage<512 1281 ){ 1282 goto finished; 1283 } 1284 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1285 pWal->szPage = szPage; 1286 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1287 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1288 1289 /* Verify that the WAL header checksum is correct */ 1290 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1291 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1292 ); 1293 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1294 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1295 ){ 1296 goto finished; 1297 } 1298 1299 /* Verify that the version number on the WAL format is one that 1300 ** are able to understand */ 1301 version = sqlite3Get4byte(&aBuf[4]); 1302 if( version!=WAL_MAX_VERSION ){ 1303 rc = SQLITE_CANTOPEN_BKPT; 1304 goto finished; 1305 } 1306 1307 /* Malloc a buffer to read frames into. */ 1308 szFrame = szPage + WAL_FRAME_HDRSIZE; 1309 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1310 if( !aFrame ){ 1311 rc = SQLITE_NOMEM_BKPT; 1312 goto recovery_error; 1313 } 1314 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1315 aPrivate = (u32*)&aData[szPage]; 1316 1317 /* Read all frames from the log file. */ 1318 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1319 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 1320 u32 *aShare; 1321 u32 iFrame; /* Index of last frame read */ 1322 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1323 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1324 u32 nHdr, nHdr32; 1325 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1326 if( rc ) break; 1327 pWal->apWiData[iPg] = aPrivate; 1328 1329 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1330 i64 iOffset = walFrameOffset(iFrame, szPage); 1331 u32 pgno; /* Database page number for frame */ 1332 u32 nTruncate; /* dbsize field from frame header */ 1333 1334 /* Read and decode the next log frame. */ 1335 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1336 if( rc!=SQLITE_OK ) break; 1337 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1338 if( !isValid ) break; 1339 rc = walIndexAppend(pWal, iFrame, pgno); 1340 if( NEVER(rc!=SQLITE_OK) ) break; 1341 1342 /* If nTruncate is non-zero, this is a commit record. */ 1343 if( nTruncate ){ 1344 pWal->hdr.mxFrame = iFrame; 1345 pWal->hdr.nPage = nTruncate; 1346 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1347 testcase( szPage<=32768 ); 1348 testcase( szPage>=65536 ); 1349 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1350 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1351 } 1352 } 1353 pWal->apWiData[iPg] = aShare; 1354 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1355 nHdr32 = nHdr / sizeof(u32); 1356 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 1357 /* Memcpy() should work fine here, on all reasonable implementations. 1358 ** Technically, memcpy() might change the destination to some 1359 ** intermediate value before setting to the final value, and that might 1360 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 1361 ** do that, according to the spec, but no memcpy() implementation that 1362 ** we know of actually does that, which is why we say that memcpy() 1363 ** is safe for this. Memcpy() is certainly a lot faster. 1364 */ 1365 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1366 #else 1367 /* In the event that some platform is found for which memcpy() 1368 ** changes the destination to some intermediate value before 1369 ** setting the final value, this alternative copy routine is 1370 ** provided. 1371 */ 1372 { 1373 int i; 1374 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 1375 if( aShare[i]!=aPrivate[i] ){ 1376 /* Atomic memory operations are not required here because if 1377 ** the value needs to be changed, that means it is not being 1378 ** accessed concurrently. */ 1379 aShare[i] = aPrivate[i]; 1380 } 1381 } 1382 } 1383 #endif 1384 if( iFrame<=iLast ) break; 1385 } 1386 1387 sqlite3_free(aFrame); 1388 } 1389 1390 finished: 1391 if( rc==SQLITE_OK ){ 1392 volatile WalCkptInfo *pInfo; 1393 int i; 1394 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1395 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1396 walIndexWriteHdr(pWal); 1397 1398 /* Reset the checkpoint-header. This is safe because this thread is 1399 ** currently holding locks that exclude all other writers and 1400 ** checkpointers. Then set the values of read-mark slots 1 through N. 1401 */ 1402 pInfo = walCkptInfo(pWal); 1403 pInfo->nBackfill = 0; 1404 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1405 pInfo->aReadMark[0] = 0; 1406 for(i=1; i<WAL_NREADER; i++){ 1407 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1408 if( rc==SQLITE_OK ){ 1409 if( i==1 && pWal->hdr.mxFrame ){ 1410 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1411 }else{ 1412 pInfo->aReadMark[i] = READMARK_NOT_USED; 1413 } 1414 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1415 }else if( rc!=SQLITE_BUSY ){ 1416 goto recovery_error; 1417 } 1418 } 1419 1420 /* If more than one frame was recovered from the log file, report an 1421 ** event via sqlite3_log(). This is to help with identifying performance 1422 ** problems caused by applications routinely shutting down without 1423 ** checkpointing the log file. 1424 */ 1425 if( pWal->hdr.nPage ){ 1426 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1427 "recovered %d frames from WAL file %s", 1428 pWal->hdr.mxFrame, pWal->zWalName 1429 ); 1430 } 1431 } 1432 1433 recovery_error: 1434 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1435 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1436 return rc; 1437 } 1438 1439 /* 1440 ** Close an open wal-index. 1441 */ 1442 static void walIndexClose(Wal *pWal, int isDelete){ 1443 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1444 int i; 1445 for(i=0; i<pWal->nWiData; i++){ 1446 sqlite3_free((void *)pWal->apWiData[i]); 1447 pWal->apWiData[i] = 0; 1448 } 1449 } 1450 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1451 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1452 } 1453 } 1454 1455 /* 1456 ** Open a connection to the WAL file zWalName. The database file must 1457 ** already be opened on connection pDbFd. The buffer that zWalName points 1458 ** to must remain valid for the lifetime of the returned Wal* handle. 1459 ** 1460 ** A SHARED lock should be held on the database file when this function 1461 ** is called. The purpose of this SHARED lock is to prevent any other 1462 ** client from unlinking the WAL or wal-index file. If another process 1463 ** were to do this just after this client opened one of these files, the 1464 ** system would be badly broken. 1465 ** 1466 ** If the log file is successfully opened, SQLITE_OK is returned and 1467 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1468 ** an SQLite error code is returned and *ppWal is left unmodified. 1469 */ 1470 int sqlite3WalOpen( 1471 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1472 sqlite3_file *pDbFd, /* The open database file */ 1473 const char *zWalName, /* Name of the WAL file */ 1474 int bNoShm, /* True to run in heap-memory mode */ 1475 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1476 Wal **ppWal /* OUT: Allocated Wal handle */ 1477 ){ 1478 int rc; /* Return Code */ 1479 Wal *pRet; /* Object to allocate and return */ 1480 int flags; /* Flags passed to OsOpen() */ 1481 1482 assert( zWalName && zWalName[0] ); 1483 assert( pDbFd ); 1484 1485 /* Verify the values of various constants. Any changes to the values 1486 ** of these constants would result in an incompatible on-disk format 1487 ** for the -shm file. Any change that causes one of these asserts to 1488 ** fail is a backward compatibility problem, even if the change otherwise 1489 ** works. 1490 ** 1491 ** This table also serves as a helpful cross-reference when trying to 1492 ** interpret hex dumps of the -shm file. 1493 */ 1494 assert( 48 == sizeof(WalIndexHdr) ); 1495 assert( 40 == sizeof(WalCkptInfo) ); 1496 assert( 120 == WALINDEX_LOCK_OFFSET ); 1497 assert( 136 == WALINDEX_HDR_SIZE ); 1498 assert( 4096 == HASHTABLE_NPAGE ); 1499 assert( 4062 == HASHTABLE_NPAGE_ONE ); 1500 assert( 8192 == HASHTABLE_NSLOT ); 1501 assert( 383 == HASHTABLE_HASH_1 ); 1502 assert( 32768 == WALINDEX_PGSZ ); 1503 assert( 8 == SQLITE_SHM_NLOCK ); 1504 assert( 5 == WAL_NREADER ); 1505 assert( 24 == WAL_FRAME_HDRSIZE ); 1506 assert( 32 == WAL_HDRSIZE ); 1507 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 1508 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 1509 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 1510 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 1511 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 1512 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 1513 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 1514 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 1515 1516 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1517 ** this source file. Verify that the #defines of the locking byte offsets 1518 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1519 ** For that matter, if the lock offset ever changes from its initial design 1520 ** value of 120, we need to know that so there is an assert() to check it. 1521 */ 1522 #ifdef WIN_SHM_BASE 1523 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1524 #endif 1525 #ifdef UNIX_SHM_BASE 1526 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1527 #endif 1528 1529 1530 /* Allocate an instance of struct Wal to return. */ 1531 *ppWal = 0; 1532 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1533 if( !pRet ){ 1534 return SQLITE_NOMEM_BKPT; 1535 } 1536 1537 pRet->pVfs = pVfs; 1538 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1539 pRet->pDbFd = pDbFd; 1540 pRet->readLock = -1; 1541 pRet->mxWalSize = mxWalSize; 1542 pRet->zWalName = zWalName; 1543 pRet->syncHeader = 1; 1544 pRet->padToSectorBoundary = 1; 1545 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1546 1547 /* Open file handle on the write-ahead log file. */ 1548 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1549 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1550 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1551 pRet->readOnly = WAL_RDONLY; 1552 } 1553 1554 if( rc!=SQLITE_OK ){ 1555 walIndexClose(pRet, 0); 1556 sqlite3OsClose(pRet->pWalFd); 1557 sqlite3_free(pRet); 1558 }else{ 1559 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1560 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1561 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1562 pRet->padToSectorBoundary = 0; 1563 } 1564 *ppWal = pRet; 1565 WALTRACE(("WAL%d: opened\n", pRet)); 1566 } 1567 return rc; 1568 } 1569 1570 /* 1571 ** Change the size to which the WAL file is trucated on each reset. 1572 */ 1573 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1574 if( pWal ) pWal->mxWalSize = iLimit; 1575 } 1576 1577 /* 1578 ** Find the smallest page number out of all pages held in the WAL that 1579 ** has not been returned by any prior invocation of this method on the 1580 ** same WalIterator object. Write into *piFrame the frame index where 1581 ** that page was last written into the WAL. Write into *piPage the page 1582 ** number. 1583 ** 1584 ** Return 0 on success. If there are no pages in the WAL with a page 1585 ** number larger than *piPage, then return 1. 1586 */ 1587 static int walIteratorNext( 1588 WalIterator *p, /* Iterator */ 1589 u32 *piPage, /* OUT: The page number of the next page */ 1590 u32 *piFrame /* OUT: Wal frame index of next page */ 1591 ){ 1592 u32 iMin; /* Result pgno must be greater than iMin */ 1593 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1594 int i; /* For looping through segments */ 1595 1596 iMin = p->iPrior; 1597 assert( iMin<0xffffffff ); 1598 for(i=p->nSegment-1; i>=0; i--){ 1599 struct WalSegment *pSegment = &p->aSegment[i]; 1600 while( pSegment->iNext<pSegment->nEntry ){ 1601 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1602 if( iPg>iMin ){ 1603 if( iPg<iRet ){ 1604 iRet = iPg; 1605 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1606 } 1607 break; 1608 } 1609 pSegment->iNext++; 1610 } 1611 } 1612 1613 *piPage = p->iPrior = iRet; 1614 return (iRet==0xFFFFFFFF); 1615 } 1616 1617 /* 1618 ** This function merges two sorted lists into a single sorted list. 1619 ** 1620 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1621 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1622 ** is guaranteed for all J<K: 1623 ** 1624 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1625 ** aContent[aRight[J]] < aContent[aRight[K]] 1626 ** 1627 ** This routine overwrites aRight[] with a new (probably longer) sequence 1628 ** of indices such that the aRight[] contains every index that appears in 1629 ** either aLeft[] or the old aRight[] and such that the second condition 1630 ** above is still met. 1631 ** 1632 ** The aContent[aLeft[X]] values will be unique for all X. And the 1633 ** aContent[aRight[X]] values will be unique too. But there might be 1634 ** one or more combinations of X and Y such that 1635 ** 1636 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1637 ** 1638 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1639 */ 1640 static void walMerge( 1641 const u32 *aContent, /* Pages in wal - keys for the sort */ 1642 ht_slot *aLeft, /* IN: Left hand input list */ 1643 int nLeft, /* IN: Elements in array *paLeft */ 1644 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1645 int *pnRight, /* IN/OUT: Elements in *paRight */ 1646 ht_slot *aTmp /* Temporary buffer */ 1647 ){ 1648 int iLeft = 0; /* Current index in aLeft */ 1649 int iRight = 0; /* Current index in aRight */ 1650 int iOut = 0; /* Current index in output buffer */ 1651 int nRight = *pnRight; 1652 ht_slot *aRight = *paRight; 1653 1654 assert( nLeft>0 && nRight>0 ); 1655 while( iRight<nRight || iLeft<nLeft ){ 1656 ht_slot logpage; 1657 Pgno dbpage; 1658 1659 if( (iLeft<nLeft) 1660 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1661 ){ 1662 logpage = aLeft[iLeft++]; 1663 }else{ 1664 logpage = aRight[iRight++]; 1665 } 1666 dbpage = aContent[logpage]; 1667 1668 aTmp[iOut++] = logpage; 1669 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1670 1671 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1672 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1673 } 1674 1675 *paRight = aLeft; 1676 *pnRight = iOut; 1677 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1678 } 1679 1680 /* 1681 ** Sort the elements in list aList using aContent[] as the sort key. 1682 ** Remove elements with duplicate keys, preferring to keep the 1683 ** larger aList[] values. 1684 ** 1685 ** The aList[] entries are indices into aContent[]. The values in 1686 ** aList[] are to be sorted so that for all J<K: 1687 ** 1688 ** aContent[aList[J]] < aContent[aList[K]] 1689 ** 1690 ** For any X and Y such that 1691 ** 1692 ** aContent[aList[X]] == aContent[aList[Y]] 1693 ** 1694 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1695 ** the smaller. 1696 */ 1697 static void walMergesort( 1698 const u32 *aContent, /* Pages in wal */ 1699 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1700 ht_slot *aList, /* IN/OUT: List to sort */ 1701 int *pnList /* IN/OUT: Number of elements in aList[] */ 1702 ){ 1703 struct Sublist { 1704 int nList; /* Number of elements in aList */ 1705 ht_slot *aList; /* Pointer to sub-list content */ 1706 }; 1707 1708 const int nList = *pnList; /* Size of input list */ 1709 int nMerge = 0; /* Number of elements in list aMerge */ 1710 ht_slot *aMerge = 0; /* List to be merged */ 1711 int iList; /* Index into input list */ 1712 u32 iSub = 0; /* Index into aSub array */ 1713 struct Sublist aSub[13]; /* Array of sub-lists */ 1714 1715 memset(aSub, 0, sizeof(aSub)); 1716 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1717 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1718 1719 for(iList=0; iList<nList; iList++){ 1720 nMerge = 1; 1721 aMerge = &aList[iList]; 1722 for(iSub=0; iList & (1<<iSub); iSub++){ 1723 struct Sublist *p; 1724 assert( iSub<ArraySize(aSub) ); 1725 p = &aSub[iSub]; 1726 assert( p->aList && p->nList<=(1<<iSub) ); 1727 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1728 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1729 } 1730 aSub[iSub].aList = aMerge; 1731 aSub[iSub].nList = nMerge; 1732 } 1733 1734 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1735 if( nList & (1<<iSub) ){ 1736 struct Sublist *p; 1737 assert( iSub<ArraySize(aSub) ); 1738 p = &aSub[iSub]; 1739 assert( p->nList<=(1<<iSub) ); 1740 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1741 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1742 } 1743 } 1744 assert( aMerge==aList ); 1745 *pnList = nMerge; 1746 1747 #ifdef SQLITE_DEBUG 1748 { 1749 int i; 1750 for(i=1; i<*pnList; i++){ 1751 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1752 } 1753 } 1754 #endif 1755 } 1756 1757 /* 1758 ** Free an iterator allocated by walIteratorInit(). 1759 */ 1760 static void walIteratorFree(WalIterator *p){ 1761 sqlite3_free(p); 1762 } 1763 1764 /* 1765 ** Construct a WalInterator object that can be used to loop over all 1766 ** pages in the WAL following frame nBackfill in ascending order. Frames 1767 ** nBackfill or earlier may be included - excluding them is an optimization 1768 ** only. The caller must hold the checkpoint lock. 1769 ** 1770 ** On success, make *pp point to the newly allocated WalInterator object 1771 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1772 ** returns an error, the value of *pp is undefined. 1773 ** 1774 ** The calling routine should invoke walIteratorFree() to destroy the 1775 ** WalIterator object when it has finished with it. 1776 */ 1777 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1778 WalIterator *p; /* Return value */ 1779 int nSegment; /* Number of segments to merge */ 1780 u32 iLast; /* Last frame in log */ 1781 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1782 int i; /* Iterator variable */ 1783 ht_slot *aTmp; /* Temp space used by merge-sort */ 1784 int rc = SQLITE_OK; /* Return Code */ 1785 1786 /* This routine only runs while holding the checkpoint lock. And 1787 ** it only runs if there is actually content in the log (mxFrame>0). 1788 */ 1789 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1790 iLast = pWal->hdr.mxFrame; 1791 1792 /* Allocate space for the WalIterator object. */ 1793 nSegment = walFramePage(iLast) + 1; 1794 nByte = sizeof(WalIterator) 1795 + (nSegment-1)*sizeof(struct WalSegment) 1796 + iLast*sizeof(ht_slot); 1797 p = (WalIterator *)sqlite3_malloc64(nByte); 1798 if( !p ){ 1799 return SQLITE_NOMEM_BKPT; 1800 } 1801 memset(p, 0, nByte); 1802 p->nSegment = nSegment; 1803 1804 /* Allocate temporary space used by the merge-sort routine. This block 1805 ** of memory will be freed before this function returns. 1806 */ 1807 aTmp = (ht_slot *)sqlite3_malloc64( 1808 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1809 ); 1810 if( !aTmp ){ 1811 rc = SQLITE_NOMEM_BKPT; 1812 } 1813 1814 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1815 WalHashLoc sLoc; 1816 1817 rc = walHashGet(pWal, i, &sLoc); 1818 if( rc==SQLITE_OK ){ 1819 int j; /* Counter variable */ 1820 int nEntry; /* Number of entries in this segment */ 1821 ht_slot *aIndex; /* Sorted index for this segment */ 1822 1823 if( (i+1)==nSegment ){ 1824 nEntry = (int)(iLast - sLoc.iZero); 1825 }else{ 1826 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1827 } 1828 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1829 sLoc.iZero++; 1830 1831 for(j=0; j<nEntry; j++){ 1832 aIndex[j] = (ht_slot)j; 1833 } 1834 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1835 p->aSegment[i].iZero = sLoc.iZero; 1836 p->aSegment[i].nEntry = nEntry; 1837 p->aSegment[i].aIndex = aIndex; 1838 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1839 } 1840 } 1841 sqlite3_free(aTmp); 1842 1843 if( rc!=SQLITE_OK ){ 1844 walIteratorFree(p); 1845 p = 0; 1846 } 1847 *pp = p; 1848 return rc; 1849 } 1850 1851 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1852 /* 1853 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1854 ** they are supported by the VFS, and (b) the database handle is configured 1855 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1856 ** or 0 otherwise. 1857 */ 1858 static int walEnableBlocking(Wal *pWal){ 1859 int res = 0; 1860 if( pWal->db ){ 1861 int tmout = pWal->db->busyTimeout; 1862 if( tmout ){ 1863 int rc; 1864 rc = sqlite3OsFileControl( 1865 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1866 ); 1867 res = (rc==SQLITE_OK); 1868 } 1869 } 1870 return res; 1871 } 1872 1873 /* 1874 ** Disable blocking locks. 1875 */ 1876 static void walDisableBlocking(Wal *pWal){ 1877 int tmout = 0; 1878 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1879 } 1880 1881 /* 1882 ** If parameter bLock is true, attempt to enable blocking locks, take 1883 ** the WRITER lock, and then disable blocking locks. If blocking locks 1884 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1885 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1886 ** an error if blocking locks can not be enabled. 1887 ** 1888 ** If the bLock parameter is false and the WRITER lock is held, release it. 1889 */ 1890 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1891 int rc = SQLITE_OK; 1892 assert( pWal->readLock<0 || bLock==0 ); 1893 if( bLock ){ 1894 assert( pWal->db ); 1895 if( walEnableBlocking(pWal) ){ 1896 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1897 if( rc==SQLITE_OK ){ 1898 pWal->writeLock = 1; 1899 } 1900 walDisableBlocking(pWal); 1901 } 1902 }else if( pWal->writeLock ){ 1903 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1904 pWal->writeLock = 0; 1905 } 1906 return rc; 1907 } 1908 1909 /* 1910 ** Set the database handle used to determine if blocking locks are required. 1911 */ 1912 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1913 pWal->db = db; 1914 } 1915 1916 /* 1917 ** Take an exclusive WRITE lock. Blocking if so configured. 1918 */ 1919 static int walLockWriter(Wal *pWal){ 1920 int rc; 1921 walEnableBlocking(pWal); 1922 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1923 walDisableBlocking(pWal); 1924 return rc; 1925 } 1926 #else 1927 # define walEnableBlocking(x) 0 1928 # define walDisableBlocking(x) 1929 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1930 # define sqlite3WalDb(pWal, db) 1931 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1932 1933 1934 /* 1935 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1936 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1937 ** busy-handler function. Invoke it and retry the lock until either the 1938 ** lock is successfully obtained or the busy-handler returns 0. 1939 */ 1940 static int walBusyLock( 1941 Wal *pWal, /* WAL connection */ 1942 int (*xBusy)(void*), /* Function to call when busy */ 1943 void *pBusyArg, /* Context argument for xBusyHandler */ 1944 int lockIdx, /* Offset of first byte to lock */ 1945 int n /* Number of bytes to lock */ 1946 ){ 1947 int rc; 1948 do { 1949 rc = walLockExclusive(pWal, lockIdx, n); 1950 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1951 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1952 if( rc==SQLITE_BUSY_TIMEOUT ){ 1953 walDisableBlocking(pWal); 1954 rc = SQLITE_BUSY; 1955 } 1956 #endif 1957 return rc; 1958 } 1959 1960 /* 1961 ** The cache of the wal-index header must be valid to call this function. 1962 ** Return the page-size in bytes used by the database. 1963 */ 1964 static int walPagesize(Wal *pWal){ 1965 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1966 } 1967 1968 /* 1969 ** The following is guaranteed when this function is called: 1970 ** 1971 ** a) the WRITER lock is held, 1972 ** b) the entire log file has been checkpointed, and 1973 ** c) any existing readers are reading exclusively from the database 1974 ** file - there are no readers that may attempt to read a frame from 1975 ** the log file. 1976 ** 1977 ** This function updates the shared-memory structures so that the next 1978 ** client to write to the database (which may be this one) does so by 1979 ** writing frames into the start of the log file. 1980 ** 1981 ** The value of parameter salt1 is used as the aSalt[1] value in the 1982 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1983 ** one obtained from sqlite3_randomness()). 1984 */ 1985 static void walRestartHdr(Wal *pWal, u32 salt1){ 1986 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1987 int i; /* Loop counter */ 1988 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1989 pWal->nCkpt++; 1990 pWal->hdr.mxFrame = 0; 1991 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1992 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1993 walIndexWriteHdr(pWal); 1994 AtomicStore(&pInfo->nBackfill, 0); 1995 pInfo->nBackfillAttempted = 0; 1996 pInfo->aReadMark[1] = 0; 1997 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1998 assert( pInfo->aReadMark[0]==0 ); 1999 } 2000 2001 /* 2002 ** Copy as much content as we can from the WAL back into the database file 2003 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 2004 ** 2005 ** The amount of information copies from WAL to database might be limited 2006 ** by active readers. This routine will never overwrite a database page 2007 ** that a concurrent reader might be using. 2008 ** 2009 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 2010 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 2011 ** checkpoints are always run by a background thread or background 2012 ** process, foreground threads will never block on a lengthy fsync call. 2013 ** 2014 ** Fsync is called on the WAL before writing content out of the WAL and 2015 ** into the database. This ensures that if the new content is persistent 2016 ** in the WAL and can be recovered following a power-loss or hard reset. 2017 ** 2018 ** Fsync is also called on the database file if (and only if) the entire 2019 ** WAL content is copied into the database file. This second fsync makes 2020 ** it safe to delete the WAL since the new content will persist in the 2021 ** database file. 2022 ** 2023 ** This routine uses and updates the nBackfill field of the wal-index header. 2024 ** This is the only routine that will increase the value of nBackfill. 2025 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 2026 ** its value.) 2027 ** 2028 ** The caller must be holding sufficient locks to ensure that no other 2029 ** checkpoint is running (in any other thread or process) at the same 2030 ** time. 2031 */ 2032 static int walCheckpoint( 2033 Wal *pWal, /* Wal connection */ 2034 sqlite3 *db, /* Check for interrupts on this handle */ 2035 int eMode, /* One of PASSIVE, FULL or RESTART */ 2036 int (*xBusy)(void*), /* Function to call when busy */ 2037 void *pBusyArg, /* Context argument for xBusyHandler */ 2038 int sync_flags, /* Flags for OsSync() (or 0) */ 2039 u8 *zBuf /* Temporary buffer to use */ 2040 ){ 2041 int rc = SQLITE_OK; /* Return code */ 2042 int szPage; /* Database page-size */ 2043 WalIterator *pIter = 0; /* Wal iterator context */ 2044 u32 iDbpage = 0; /* Next database page to write */ 2045 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 2046 u32 mxSafeFrame; /* Max frame that can be backfilled */ 2047 u32 mxPage; /* Max database page to write */ 2048 int i; /* Loop counter */ 2049 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 2050 2051 szPage = walPagesize(pWal); 2052 testcase( szPage<=32768 ); 2053 testcase( szPage>=65536 ); 2054 pInfo = walCkptInfo(pWal); 2055 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2056 2057 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 2058 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 2059 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 2060 2061 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 2062 ** safe to write into the database. Frames beyond mxSafeFrame might 2063 ** overwrite database pages that are in use by active readers and thus 2064 ** cannot be backfilled from the WAL. 2065 */ 2066 mxSafeFrame = pWal->hdr.mxFrame; 2067 mxPage = pWal->hdr.nPage; 2068 for(i=1; i<WAL_NREADER; i++){ 2069 u32 y = AtomicLoad(pInfo->aReadMark+i); 2070 if( mxSafeFrame>y ){ 2071 assert( y<=pWal->hdr.mxFrame ); 2072 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 2073 if( rc==SQLITE_OK ){ 2074 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 2075 AtomicStore(pInfo->aReadMark+i, iMark); 2076 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2077 }else if( rc==SQLITE_BUSY ){ 2078 mxSafeFrame = y; 2079 xBusy = 0; 2080 }else{ 2081 goto walcheckpoint_out; 2082 } 2083 } 2084 } 2085 2086 /* Allocate the iterator */ 2087 if( pInfo->nBackfill<mxSafeFrame ){ 2088 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 2089 assert( rc==SQLITE_OK || pIter==0 ); 2090 } 2091 2092 if( pIter 2093 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 2094 ){ 2095 u32 nBackfill = pInfo->nBackfill; 2096 2097 pInfo->nBackfillAttempted = mxSafeFrame; 2098 2099 /* Sync the WAL to disk */ 2100 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 2101 2102 /* If the database may grow as a result of this checkpoint, hint 2103 ** about the eventual size of the db file to the VFS layer. 2104 */ 2105 if( rc==SQLITE_OK ){ 2106 i64 nReq = ((i64)mxPage * szPage); 2107 i64 nSize; /* Current size of database file */ 2108 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 2109 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 2110 if( rc==SQLITE_OK && nSize<nReq ){ 2111 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 2112 /* If the size of the final database is larger than the current 2113 ** database plus the amount of data in the wal file, plus the 2114 ** maximum size of the pending-byte page (65536 bytes), then 2115 ** must be corruption somewhere. */ 2116 rc = SQLITE_CORRUPT_BKPT; 2117 }else{ 2118 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 2119 } 2120 } 2121 2122 } 2123 2124 /* Iterate through the contents of the WAL, copying data to the db file */ 2125 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 2126 i64 iOffset; 2127 assert( walFramePgno(pWal, iFrame)==iDbpage ); 2128 if( AtomicLoad(&db->u1.isInterrupted) ){ 2129 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 2130 break; 2131 } 2132 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 2133 continue; 2134 } 2135 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 2136 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2137 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2138 if( rc!=SQLITE_OK ) break; 2139 iOffset = (iDbpage-1)*(i64)szPage; 2140 testcase( IS_BIG_INT(iOffset) ); 2141 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2142 if( rc!=SQLITE_OK ) break; 2143 } 2144 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2145 2146 /* If work was actually accomplished... */ 2147 if( rc==SQLITE_OK ){ 2148 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2149 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2150 testcase( IS_BIG_INT(szDb) ); 2151 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2152 if( rc==SQLITE_OK ){ 2153 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2154 } 2155 } 2156 if( rc==SQLITE_OK ){ 2157 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2158 } 2159 } 2160 2161 /* Release the reader lock held while backfilling */ 2162 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2163 } 2164 2165 if( rc==SQLITE_BUSY ){ 2166 /* Reset the return code so as not to report a checkpoint failure 2167 ** just because there are active readers. */ 2168 rc = SQLITE_OK; 2169 } 2170 } 2171 2172 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2173 ** entire wal file has been copied into the database file, then block 2174 ** until all readers have finished using the wal file. This ensures that 2175 ** the next process to write to the database restarts the wal file. 2176 */ 2177 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2178 assert( pWal->writeLock ); 2179 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2180 rc = SQLITE_BUSY; 2181 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2182 u32 salt1; 2183 sqlite3_randomness(4, &salt1); 2184 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2185 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2186 if( rc==SQLITE_OK ){ 2187 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2188 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2189 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2190 ** truncates the log file to zero bytes just prior to a 2191 ** successful return. 2192 ** 2193 ** In theory, it might be safe to do this without updating the 2194 ** wal-index header in shared memory, as all subsequent reader or 2195 ** writer clients should see that the entire log file has been 2196 ** checkpointed and behave accordingly. This seems unsafe though, 2197 ** as it would leave the system in a state where the contents of 2198 ** the wal-index header do not match the contents of the 2199 ** file-system. To avoid this, update the wal-index header to 2200 ** indicate that the log file contains zero valid frames. */ 2201 walRestartHdr(pWal, salt1); 2202 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2203 } 2204 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2205 } 2206 } 2207 } 2208 2209 walcheckpoint_out: 2210 walIteratorFree(pIter); 2211 return rc; 2212 } 2213 2214 /* 2215 ** If the WAL file is currently larger than nMax bytes in size, truncate 2216 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2217 */ 2218 static void walLimitSize(Wal *pWal, i64 nMax){ 2219 i64 sz; 2220 int rx; 2221 sqlite3BeginBenignMalloc(); 2222 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2223 if( rx==SQLITE_OK && (sz > nMax ) ){ 2224 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2225 } 2226 sqlite3EndBenignMalloc(); 2227 if( rx ){ 2228 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2229 } 2230 } 2231 2232 /* 2233 ** Close a connection to a log file. 2234 */ 2235 int sqlite3WalClose( 2236 Wal *pWal, /* Wal to close */ 2237 sqlite3 *db, /* For interrupt flag */ 2238 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2239 int nBuf, 2240 u8 *zBuf /* Buffer of at least nBuf bytes */ 2241 ){ 2242 int rc = SQLITE_OK; 2243 if( pWal ){ 2244 int isDelete = 0; /* True to unlink wal and wal-index files */ 2245 2246 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2247 ** ordinary, rollback-mode locking methods, this guarantees that the 2248 ** connection associated with this log file is the only connection to 2249 ** the database. In this case checkpoint the database and unlink both 2250 ** the wal and wal-index files. 2251 ** 2252 ** The EXCLUSIVE lock is not released before returning. 2253 */ 2254 if( zBuf!=0 2255 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2256 ){ 2257 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2258 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2259 } 2260 rc = sqlite3WalCheckpoint(pWal, db, 2261 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2262 ); 2263 if( rc==SQLITE_OK ){ 2264 int bPersist = -1; 2265 sqlite3OsFileControlHint( 2266 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2267 ); 2268 if( bPersist!=1 ){ 2269 /* Try to delete the WAL file if the checkpoint completed and 2270 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2271 ** mode (!bPersist) */ 2272 isDelete = 1; 2273 }else if( pWal->mxWalSize>=0 ){ 2274 /* Try to truncate the WAL file to zero bytes if the checkpoint 2275 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2276 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2277 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2278 ** to zero bytes as truncating to the journal_size_limit might 2279 ** leave a corrupt WAL file on disk. */ 2280 walLimitSize(pWal, 0); 2281 } 2282 } 2283 } 2284 2285 walIndexClose(pWal, isDelete); 2286 sqlite3OsClose(pWal->pWalFd); 2287 if( isDelete ){ 2288 sqlite3BeginBenignMalloc(); 2289 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2290 sqlite3EndBenignMalloc(); 2291 } 2292 WALTRACE(("WAL%p: closed\n", pWal)); 2293 sqlite3_free((void *)pWal->apWiData); 2294 sqlite3_free(pWal); 2295 } 2296 return rc; 2297 } 2298 2299 /* 2300 ** Try to read the wal-index header. Return 0 on success and 1 if 2301 ** there is a problem. 2302 ** 2303 ** The wal-index is in shared memory. Another thread or process might 2304 ** be writing the header at the same time this procedure is trying to 2305 ** read it, which might result in inconsistency. A dirty read is detected 2306 ** by verifying that both copies of the header are the same and also by 2307 ** a checksum on the header. 2308 ** 2309 ** If and only if the read is consistent and the header is different from 2310 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2311 ** and *pChanged is set to 1. 2312 ** 2313 ** If the checksum cannot be verified return non-zero. If the header 2314 ** is read successfully and the checksum verified, return zero. 2315 */ 2316 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2317 u32 aCksum[2]; /* Checksum on the header content */ 2318 WalIndexHdr h1, h2; /* Two copies of the header content */ 2319 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2320 2321 /* The first page of the wal-index must be mapped at this point. */ 2322 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2323 2324 /* Read the header. This might happen concurrently with a write to the 2325 ** same area of shared memory on a different CPU in a SMP, 2326 ** meaning it is possible that an inconsistent snapshot is read 2327 ** from the file. If this happens, return non-zero. 2328 ** 2329 ** tag-20200519-1: 2330 ** There are two copies of the header at the beginning of the wal-index. 2331 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2332 ** Memory barriers are used to prevent the compiler or the hardware from 2333 ** reordering the reads and writes. TSAN and similar tools can sometimes 2334 ** give false-positive warnings about these accesses because the tools do not 2335 ** account for the double-read and the memory barrier. The use of mutexes 2336 ** here would be problematic as the memory being accessed is potentially 2337 ** shared among multiple processes and not all mutex implementions work 2338 ** reliably in that environment. 2339 */ 2340 aHdr = walIndexHdr(pWal); 2341 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2342 walShmBarrier(pWal); 2343 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2344 2345 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2346 return 1; /* Dirty read */ 2347 } 2348 if( h1.isInit==0 ){ 2349 return 1; /* Malformed header - probably all zeros */ 2350 } 2351 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2352 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2353 return 1; /* Checksum does not match */ 2354 } 2355 2356 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2357 *pChanged = 1; 2358 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2359 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2360 testcase( pWal->szPage<=32768 ); 2361 testcase( pWal->szPage>=65536 ); 2362 } 2363 2364 /* The header was successfully read. Return zero. */ 2365 return 0; 2366 } 2367 2368 /* 2369 ** This is the value that walTryBeginRead returns when it needs to 2370 ** be retried. 2371 */ 2372 #define WAL_RETRY (-1) 2373 2374 /* 2375 ** Read the wal-index header from the wal-index and into pWal->hdr. 2376 ** If the wal-header appears to be corrupt, try to reconstruct the 2377 ** wal-index from the WAL before returning. 2378 ** 2379 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2380 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2381 ** to 0. 2382 ** 2383 ** If the wal-index header is successfully read, return SQLITE_OK. 2384 ** Otherwise an SQLite error code. 2385 */ 2386 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2387 int rc; /* Return code */ 2388 int badHdr; /* True if a header read failed */ 2389 volatile u32 *page0; /* Chunk of wal-index containing header */ 2390 2391 /* Ensure that page 0 of the wal-index (the page that contains the 2392 ** wal-index header) is mapped. Return early if an error occurs here. 2393 */ 2394 assert( pChanged ); 2395 rc = walIndexPage(pWal, 0, &page0); 2396 if( rc!=SQLITE_OK ){ 2397 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2398 if( rc==SQLITE_READONLY_CANTINIT ){ 2399 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2400 ** was openable but is not writable, and this thread is unable to 2401 ** confirm that another write-capable connection has the shared-memory 2402 ** open, and hence the content of the shared-memory is unreliable, 2403 ** since the shared-memory might be inconsistent with the WAL file 2404 ** and there is no writer on hand to fix it. */ 2405 assert( page0==0 ); 2406 assert( pWal->writeLock==0 ); 2407 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2408 pWal->bShmUnreliable = 1; 2409 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2410 *pChanged = 1; 2411 }else{ 2412 return rc; /* Any other non-OK return is just an error */ 2413 } 2414 }else{ 2415 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2416 ** is zero, which prevents the SHM from growing */ 2417 testcase( page0!=0 ); 2418 } 2419 assert( page0!=0 || pWal->writeLock==0 ); 2420 2421 /* If the first page of the wal-index has been mapped, try to read the 2422 ** wal-index header immediately, without holding any lock. This usually 2423 ** works, but may fail if the wal-index header is corrupt or currently 2424 ** being modified by another thread or process. 2425 */ 2426 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2427 2428 /* If the first attempt failed, it might have been due to a race 2429 ** with a writer. So get a WRITE lock and try again. 2430 */ 2431 if( badHdr ){ 2432 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2433 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2434 walUnlockShared(pWal, WAL_WRITE_LOCK); 2435 rc = SQLITE_READONLY_RECOVERY; 2436 } 2437 }else{ 2438 int bWriteLock = pWal->writeLock; 2439 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2440 pWal->writeLock = 1; 2441 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2442 badHdr = walIndexTryHdr(pWal, pChanged); 2443 if( badHdr ){ 2444 /* If the wal-index header is still malformed even while holding 2445 ** a WRITE lock, it can only mean that the header is corrupted and 2446 ** needs to be reconstructed. So run recovery to do exactly that. 2447 */ 2448 rc = walIndexRecover(pWal); 2449 *pChanged = 1; 2450 } 2451 } 2452 if( bWriteLock==0 ){ 2453 pWal->writeLock = 0; 2454 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2455 } 2456 } 2457 } 2458 } 2459 2460 /* If the header is read successfully, check the version number to make 2461 ** sure the wal-index was not constructed with some future format that 2462 ** this version of SQLite cannot understand. 2463 */ 2464 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2465 rc = SQLITE_CANTOPEN_BKPT; 2466 } 2467 if( pWal->bShmUnreliable ){ 2468 if( rc!=SQLITE_OK ){ 2469 walIndexClose(pWal, 0); 2470 pWal->bShmUnreliable = 0; 2471 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2472 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2473 ** writer truncated the WAL out from under it. If that happens, it 2474 ** indicates that a writer has fixed the SHM file for us, so retry */ 2475 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2476 } 2477 pWal->exclusiveMode = WAL_NORMAL_MODE; 2478 } 2479 2480 return rc; 2481 } 2482 2483 /* 2484 ** Open a transaction in a connection where the shared-memory is read-only 2485 ** and where we cannot verify that there is a separate write-capable connection 2486 ** on hand to keep the shared-memory up-to-date with the WAL file. 2487 ** 2488 ** This can happen, for example, when the shared-memory is implemented by 2489 ** memory-mapping a *-shm file, where a prior writer has shut down and 2490 ** left the *-shm file on disk, and now the present connection is trying 2491 ** to use that database but lacks write permission on the *-shm file. 2492 ** Other scenarios are also possible, depending on the VFS implementation. 2493 ** 2494 ** Precondition: 2495 ** 2496 ** The *-wal file has been read and an appropriate wal-index has been 2497 ** constructed in pWal->apWiData[] using heap memory instead of shared 2498 ** memory. 2499 ** 2500 ** If this function returns SQLITE_OK, then the read transaction has 2501 ** been successfully opened. In this case output variable (*pChanged) 2502 ** is set to true before returning if the caller should discard the 2503 ** contents of the page cache before proceeding. Or, if it returns 2504 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2505 ** the caller should retry opening the read transaction from the 2506 ** beginning (including attempting to map the *-shm file). 2507 ** 2508 ** If an error occurs, an SQLite error code is returned. 2509 */ 2510 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2511 i64 szWal; /* Size of wal file on disk in bytes */ 2512 i64 iOffset; /* Current offset when reading wal file */ 2513 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2514 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2515 int szFrame; /* Number of bytes in buffer aFrame[] */ 2516 u8 *aData; /* Pointer to data part of aFrame buffer */ 2517 volatile void *pDummy; /* Dummy argument for xShmMap */ 2518 int rc; /* Return code */ 2519 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2520 2521 assert( pWal->bShmUnreliable ); 2522 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2523 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2524 2525 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2526 ** writers from running a checkpoint, but does not stop them 2527 ** from running recovery. */ 2528 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2529 if( rc!=SQLITE_OK ){ 2530 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2531 goto begin_unreliable_shm_out; 2532 } 2533 pWal->readLock = 0; 2534 2535 /* Check to see if a separate writer has attached to the shared-memory area, 2536 ** thus making the shared-memory "reliable" again. Do this by invoking 2537 ** the xShmMap() routine of the VFS and looking to see if the return 2538 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2539 ** 2540 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2541 ** cause the heap-memory WAL-index to be discarded and the actual 2542 ** shared memory to be used in its place. 2543 ** 2544 ** This step is important because, even though this connection is holding 2545 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2546 ** have already checkpointed the WAL file and, while the current 2547 ** is active, wrap the WAL and start overwriting frames that this 2548 ** process wants to use. 2549 ** 2550 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2551 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2552 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2553 ** even if some external agent does a "chmod" to make the shared-memory 2554 ** writable by us, until sqlite3OsShmUnmap() has been called. 2555 ** This is a requirement on the VFS implementation. 2556 */ 2557 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2558 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2559 if( rc!=SQLITE_READONLY_CANTINIT ){ 2560 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2561 goto begin_unreliable_shm_out; 2562 } 2563 2564 /* We reach this point only if the real shared-memory is still unreliable. 2565 ** Assume the in-memory WAL-index substitute is correct and load it 2566 ** into pWal->hdr. 2567 */ 2568 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2569 2570 /* Make sure some writer hasn't come in and changed the WAL file out 2571 ** from under us, then disconnected, while we were not looking. 2572 */ 2573 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2574 if( rc!=SQLITE_OK ){ 2575 goto begin_unreliable_shm_out; 2576 } 2577 if( szWal<WAL_HDRSIZE ){ 2578 /* If the wal file is too small to contain a wal-header and the 2579 ** wal-index header has mxFrame==0, then it must be safe to proceed 2580 ** reading the database file only. However, the page cache cannot 2581 ** be trusted, as a read/write connection may have connected, written 2582 ** the db, run a checkpoint, truncated the wal file and disconnected 2583 ** since this client's last read transaction. */ 2584 *pChanged = 1; 2585 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2586 goto begin_unreliable_shm_out; 2587 } 2588 2589 /* Check the salt keys at the start of the wal file still match. */ 2590 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2591 if( rc!=SQLITE_OK ){ 2592 goto begin_unreliable_shm_out; 2593 } 2594 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2595 /* Some writer has wrapped the WAL file while we were not looking. 2596 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2597 ** rebuilt. */ 2598 rc = WAL_RETRY; 2599 goto begin_unreliable_shm_out; 2600 } 2601 2602 /* Allocate a buffer to read frames into */ 2603 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2604 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2605 if( aFrame==0 ){ 2606 rc = SQLITE_NOMEM_BKPT; 2607 goto begin_unreliable_shm_out; 2608 } 2609 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2610 2611 /* Check to see if a complete transaction has been appended to the 2612 ** wal file since the heap-memory wal-index was created. If so, the 2613 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2614 ** the caller. */ 2615 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2616 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2617 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2618 iOffset+szFrame<=szWal; 2619 iOffset+=szFrame 2620 ){ 2621 u32 pgno; /* Database page number for frame */ 2622 u32 nTruncate; /* dbsize field from frame header */ 2623 2624 /* Read and decode the next log frame. */ 2625 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2626 if( rc!=SQLITE_OK ) break; 2627 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2628 2629 /* If nTruncate is non-zero, then a complete transaction has been 2630 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2631 ** the loop. */ 2632 if( nTruncate ){ 2633 rc = WAL_RETRY; 2634 break; 2635 } 2636 } 2637 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2638 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2639 2640 begin_unreliable_shm_out: 2641 sqlite3_free(aFrame); 2642 if( rc!=SQLITE_OK ){ 2643 int i; 2644 for(i=0; i<pWal->nWiData; i++){ 2645 sqlite3_free((void*)pWal->apWiData[i]); 2646 pWal->apWiData[i] = 0; 2647 } 2648 pWal->bShmUnreliable = 0; 2649 sqlite3WalEndReadTransaction(pWal); 2650 *pChanged = 1; 2651 } 2652 return rc; 2653 } 2654 2655 /* 2656 ** Attempt to start a read transaction. This might fail due to a race or 2657 ** other transient condition. When that happens, it returns WAL_RETRY to 2658 ** indicate to the caller that it is safe to retry immediately. 2659 ** 2660 ** On success return SQLITE_OK. On a permanent failure (such an 2661 ** I/O error or an SQLITE_BUSY because another process is running 2662 ** recovery) return a positive error code. 2663 ** 2664 ** The useWal parameter is true to force the use of the WAL and disable 2665 ** the case where the WAL is bypassed because it has been completely 2666 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2667 ** to make a copy of the wal-index header into pWal->hdr. If the 2668 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2669 ** to the caller that the local page cache is obsolete and needs to be 2670 ** flushed.) When useWal==1, the wal-index header is assumed to already 2671 ** be loaded and the pChanged parameter is unused. 2672 ** 2673 ** The caller must set the cnt parameter to the number of prior calls to 2674 ** this routine during the current read attempt that returned WAL_RETRY. 2675 ** This routine will start taking more aggressive measures to clear the 2676 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2677 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2678 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2679 ** and is not honoring the locking protocol. There is a vanishingly small 2680 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2681 ** bad luck when there is lots of contention for the wal-index, but that 2682 ** possibility is so small that it can be safely neglected, we believe. 2683 ** 2684 ** On success, this routine obtains a read lock on 2685 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2686 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2687 ** that means the Wal does not hold any read lock. The reader must not 2688 ** access any database page that is modified by a WAL frame up to and 2689 ** including frame number aReadMark[pWal->readLock]. The reader will 2690 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2691 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2692 ** completely and get all content directly from the database file. 2693 ** If the useWal parameter is 1 then the WAL will never be ignored and 2694 ** this routine will always set pWal->readLock>0 on success. 2695 ** When the read transaction is completed, the caller must release the 2696 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2697 ** 2698 ** This routine uses the nBackfill and aReadMark[] fields of the header 2699 ** to select a particular WAL_READ_LOCK() that strives to let the 2700 ** checkpoint process do as much work as possible. This routine might 2701 ** update values of the aReadMark[] array in the header, but if it does 2702 ** so it takes care to hold an exclusive lock on the corresponding 2703 ** WAL_READ_LOCK() while changing values. 2704 */ 2705 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2706 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2707 u32 mxReadMark; /* Largest aReadMark[] value */ 2708 int mxI; /* Index of largest aReadMark[] value */ 2709 int i; /* Loop counter */ 2710 int rc = SQLITE_OK; /* Return code */ 2711 u32 mxFrame; /* Wal frame to lock to */ 2712 2713 assert( pWal->readLock<0 ); /* Not currently locked */ 2714 2715 /* useWal may only be set for read/write connections */ 2716 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2717 2718 /* Take steps to avoid spinning forever if there is a protocol error. 2719 ** 2720 ** Circumstances that cause a RETRY should only last for the briefest 2721 ** instances of time. No I/O or other system calls are done while the 2722 ** locks are held, so the locks should not be held for very long. But 2723 ** if we are unlucky, another process that is holding a lock might get 2724 ** paged out or take a page-fault that is time-consuming to resolve, 2725 ** during the few nanoseconds that it is holding the lock. In that case, 2726 ** it might take longer than normal for the lock to free. 2727 ** 2728 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2729 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2730 ** is more of a scheduler yield than an actual delay. But on the 10th 2731 ** an subsequent retries, the delays start becoming longer and longer, 2732 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2733 ** The total delay time before giving up is less than 10 seconds. 2734 */ 2735 if( cnt>5 ){ 2736 int nDelay = 1; /* Pause time in microseconds */ 2737 if( cnt>100 ){ 2738 VVA_ONLY( pWal->lockError = 1; ) 2739 return SQLITE_PROTOCOL; 2740 } 2741 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2742 sqlite3OsSleep(pWal->pVfs, nDelay); 2743 } 2744 2745 if( !useWal ){ 2746 assert( rc==SQLITE_OK ); 2747 if( pWal->bShmUnreliable==0 ){ 2748 rc = walIndexReadHdr(pWal, pChanged); 2749 } 2750 if( rc==SQLITE_BUSY ){ 2751 /* If there is not a recovery running in another thread or process 2752 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2753 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2754 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2755 ** would be technically correct. But the race is benign since with 2756 ** WAL_RETRY this routine will be called again and will probably be 2757 ** right on the second iteration. 2758 */ 2759 if( pWal->apWiData[0]==0 ){ 2760 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2761 ** We assume this is a transient condition, so return WAL_RETRY. The 2762 ** xShmMap() implementation used by the default unix and win32 VFS 2763 ** modules may return SQLITE_BUSY due to a race condition in the 2764 ** code that determines whether or not the shared-memory region 2765 ** must be zeroed before the requested page is returned. 2766 */ 2767 rc = WAL_RETRY; 2768 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2769 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2770 rc = WAL_RETRY; 2771 }else if( rc==SQLITE_BUSY ){ 2772 rc = SQLITE_BUSY_RECOVERY; 2773 } 2774 } 2775 if( rc!=SQLITE_OK ){ 2776 return rc; 2777 } 2778 else if( pWal->bShmUnreliable ){ 2779 return walBeginShmUnreliable(pWal, pChanged); 2780 } 2781 } 2782 2783 assert( pWal->nWiData>0 ); 2784 assert( pWal->apWiData[0]!=0 ); 2785 pInfo = walCkptInfo(pWal); 2786 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2787 #ifdef SQLITE_ENABLE_SNAPSHOT 2788 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2789 #endif 2790 ){ 2791 /* The WAL has been completely backfilled (or it is empty). 2792 ** and can be safely ignored. 2793 */ 2794 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2795 walShmBarrier(pWal); 2796 if( rc==SQLITE_OK ){ 2797 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2798 /* It is not safe to allow the reader to continue here if frames 2799 ** may have been appended to the log before READ_LOCK(0) was obtained. 2800 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2801 ** which implies that the database file contains a trustworthy 2802 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2803 ** happening, this is usually correct. 2804 ** 2805 ** However, if frames have been appended to the log (or if the log 2806 ** is wrapped and written for that matter) before the READ_LOCK(0) 2807 ** is obtained, that is not necessarily true. A checkpointer may 2808 ** have started to backfill the appended frames but crashed before 2809 ** it finished. Leaving a corrupt image in the database file. 2810 */ 2811 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2812 return WAL_RETRY; 2813 } 2814 pWal->readLock = 0; 2815 return SQLITE_OK; 2816 }else if( rc!=SQLITE_BUSY ){ 2817 return rc; 2818 } 2819 } 2820 2821 /* If we get this far, it means that the reader will want to use 2822 ** the WAL to get at content from recent commits. The job now is 2823 ** to select one of the aReadMark[] entries that is closest to 2824 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2825 */ 2826 mxReadMark = 0; 2827 mxI = 0; 2828 mxFrame = pWal->hdr.mxFrame; 2829 #ifdef SQLITE_ENABLE_SNAPSHOT 2830 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2831 mxFrame = pWal->pSnapshot->mxFrame; 2832 } 2833 #endif 2834 for(i=1; i<WAL_NREADER; i++){ 2835 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2836 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2837 assert( thisMark!=READMARK_NOT_USED ); 2838 mxReadMark = thisMark; 2839 mxI = i; 2840 } 2841 } 2842 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2843 && (mxReadMark<mxFrame || mxI==0) 2844 ){ 2845 for(i=1; i<WAL_NREADER; i++){ 2846 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2847 if( rc==SQLITE_OK ){ 2848 AtomicStore(pInfo->aReadMark+i,mxFrame); 2849 mxReadMark = mxFrame; 2850 mxI = i; 2851 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2852 break; 2853 }else if( rc!=SQLITE_BUSY ){ 2854 return rc; 2855 } 2856 } 2857 } 2858 if( mxI==0 ){ 2859 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2860 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2861 } 2862 2863 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2864 if( rc ){ 2865 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2866 } 2867 /* Now that the read-lock has been obtained, check that neither the 2868 ** value in the aReadMark[] array or the contents of the wal-index 2869 ** header have changed. 2870 ** 2871 ** It is necessary to check that the wal-index header did not change 2872 ** between the time it was read and when the shared-lock was obtained 2873 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2874 ** that the log file may have been wrapped by a writer, or that frames 2875 ** that occur later in the log than pWal->hdr.mxFrame may have been 2876 ** copied into the database by a checkpointer. If either of these things 2877 ** happened, then reading the database with the current value of 2878 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2879 ** instead. 2880 ** 2881 ** Before checking that the live wal-index header has not changed 2882 ** since it was read, set Wal.minFrame to the first frame in the wal 2883 ** file that has not yet been checkpointed. This client will not need 2884 ** to read any frames earlier than minFrame from the wal file - they 2885 ** can be safely read directly from the database file. 2886 ** 2887 ** Because a ShmBarrier() call is made between taking the copy of 2888 ** nBackfill and checking that the wal-header in shared-memory still 2889 ** matches the one cached in pWal->hdr, it is guaranteed that the 2890 ** checkpointer that set nBackfill was not working with a wal-index 2891 ** header newer than that cached in pWal->hdr. If it were, that could 2892 ** cause a problem. The checkpointer could omit to checkpoint 2893 ** a version of page X that lies before pWal->minFrame (call that version 2894 ** A) on the basis that there is a newer version (version B) of the same 2895 ** page later in the wal file. But if version B happens to like past 2896 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2897 ** that it can read version A from the database file. However, since 2898 ** we can guarantee that the checkpointer that set nBackfill could not 2899 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2900 */ 2901 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2902 walShmBarrier(pWal); 2903 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2904 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2905 ){ 2906 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2907 return WAL_RETRY; 2908 }else{ 2909 assert( mxReadMark<=pWal->hdr.mxFrame ); 2910 pWal->readLock = (i16)mxI; 2911 } 2912 return rc; 2913 } 2914 2915 #ifdef SQLITE_ENABLE_SNAPSHOT 2916 /* 2917 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2918 ** variable so that older snapshots can be accessed. To do this, loop 2919 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2920 ** comparing their content to the corresponding page with the database 2921 ** file, if any. Set nBackfillAttempted to the frame number of the 2922 ** first frame for which the wal file content matches the db file. 2923 ** 2924 ** This is only really safe if the file-system is such that any page 2925 ** writes made by earlier checkpointers were atomic operations, which 2926 ** is not always true. It is also possible that nBackfillAttempted 2927 ** may be left set to a value larger than expected, if a wal frame 2928 ** contains content that duplicate of an earlier version of the same 2929 ** page. 2930 ** 2931 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2932 ** error occurs. It is not an error if nBackfillAttempted cannot be 2933 ** decreased at all. 2934 */ 2935 int sqlite3WalSnapshotRecover(Wal *pWal){ 2936 int rc; 2937 2938 assert( pWal->readLock>=0 ); 2939 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2940 if( rc==SQLITE_OK ){ 2941 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2942 int szPage = (int)pWal->szPage; 2943 i64 szDb; /* Size of db file in bytes */ 2944 2945 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2946 if( rc==SQLITE_OK ){ 2947 void *pBuf1 = sqlite3_malloc(szPage); 2948 void *pBuf2 = sqlite3_malloc(szPage); 2949 if( pBuf1==0 || pBuf2==0 ){ 2950 rc = SQLITE_NOMEM; 2951 }else{ 2952 u32 i = pInfo->nBackfillAttempted; 2953 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2954 WalHashLoc sLoc; /* Hash table location */ 2955 u32 pgno; /* Page number in db file */ 2956 i64 iDbOff; /* Offset of db file entry */ 2957 i64 iWalOff; /* Offset of wal file entry */ 2958 2959 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2960 if( rc!=SQLITE_OK ) break; 2961 assert( i - sLoc.iZero - 1 >=0 ); 2962 pgno = sLoc.aPgno[i-sLoc.iZero-1]; 2963 iDbOff = (i64)(pgno-1) * szPage; 2964 2965 if( iDbOff+szPage<=szDb ){ 2966 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2967 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2968 2969 if( rc==SQLITE_OK ){ 2970 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2971 } 2972 2973 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2974 break; 2975 } 2976 } 2977 2978 pInfo->nBackfillAttempted = i-1; 2979 } 2980 } 2981 2982 sqlite3_free(pBuf1); 2983 sqlite3_free(pBuf2); 2984 } 2985 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2986 } 2987 2988 return rc; 2989 } 2990 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2991 2992 /* 2993 ** Begin a read transaction on the database. 2994 ** 2995 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2996 ** it takes a snapshot of the state of the WAL and wal-index for the current 2997 ** instant in time. The current thread will continue to use this snapshot. 2998 ** Other threads might append new content to the WAL and wal-index but 2999 ** that extra content is ignored by the current thread. 3000 ** 3001 ** If the database contents have changes since the previous read 3002 ** transaction, then *pChanged is set to 1 before returning. The 3003 ** Pager layer will use this to know that its cache is stale and 3004 ** needs to be flushed. 3005 */ 3006 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 3007 int rc; /* Return code */ 3008 int cnt = 0; /* Number of TryBeginRead attempts */ 3009 #ifdef SQLITE_ENABLE_SNAPSHOT 3010 int bChanged = 0; 3011 WalIndexHdr *pSnapshot = pWal->pSnapshot; 3012 #endif 3013 3014 assert( pWal->ckptLock==0 ); 3015 3016 #ifdef SQLITE_ENABLE_SNAPSHOT 3017 if( pSnapshot ){ 3018 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 3019 bChanged = 1; 3020 } 3021 3022 /* It is possible that there is a checkpointer thread running 3023 ** concurrent with this code. If this is the case, it may be that the 3024 ** checkpointer has already determined that it will checkpoint 3025 ** snapshot X, where X is later in the wal file than pSnapshot, but 3026 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 3027 ** its intent. To avoid the race condition this leads to, ensure that 3028 ** there is no checkpointer process by taking a shared CKPT lock 3029 ** before checking pInfo->nBackfillAttempted. */ 3030 (void)walEnableBlocking(pWal); 3031 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3032 walDisableBlocking(pWal); 3033 3034 if( rc!=SQLITE_OK ){ 3035 return rc; 3036 } 3037 pWal->ckptLock = 1; 3038 } 3039 #endif 3040 3041 do{ 3042 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 3043 }while( rc==WAL_RETRY ); 3044 testcase( (rc&0xff)==SQLITE_BUSY ); 3045 testcase( (rc&0xff)==SQLITE_IOERR ); 3046 testcase( rc==SQLITE_PROTOCOL ); 3047 testcase( rc==SQLITE_OK ); 3048 3049 #ifdef SQLITE_ENABLE_SNAPSHOT 3050 if( rc==SQLITE_OK ){ 3051 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 3052 /* At this point the client has a lock on an aReadMark[] slot holding 3053 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 3054 ** is populated with the wal-index header corresponding to the head 3055 ** of the wal file. Verify that pSnapshot is still valid before 3056 ** continuing. Reasons why pSnapshot might no longer be valid: 3057 ** 3058 ** (1) The WAL file has been reset since the snapshot was taken. 3059 ** In this case, the salt will have changed. 3060 ** 3061 ** (2) A checkpoint as been attempted that wrote frames past 3062 ** pSnapshot->mxFrame into the database file. Note that the 3063 ** checkpoint need not have completed for this to cause problems. 3064 */ 3065 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3066 3067 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 3068 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 3069 3070 /* Check that the wal file has not been wrapped. Assuming that it has 3071 ** not, also check that no checkpointer has attempted to checkpoint any 3072 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 3073 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 3074 ** with *pSnapshot and set *pChanged as appropriate for opening the 3075 ** snapshot. */ 3076 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3077 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 3078 ){ 3079 assert( pWal->readLock>0 ); 3080 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 3081 *pChanged = bChanged; 3082 }else{ 3083 rc = SQLITE_ERROR_SNAPSHOT; 3084 } 3085 3086 /* A client using a non-current snapshot may not ignore any frames 3087 ** from the start of the wal file. This is because, for a system 3088 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 3089 ** have omitted to checkpoint a frame earlier than minFrame in 3090 ** the file because there exists a frame after iSnapshot that 3091 ** is the same database page. */ 3092 pWal->minFrame = 1; 3093 3094 if( rc!=SQLITE_OK ){ 3095 sqlite3WalEndReadTransaction(pWal); 3096 } 3097 } 3098 } 3099 3100 /* Release the shared CKPT lock obtained above. */ 3101 if( pWal->ckptLock ){ 3102 assert( pSnapshot ); 3103 walUnlockShared(pWal, WAL_CKPT_LOCK); 3104 pWal->ckptLock = 0; 3105 } 3106 #endif 3107 return rc; 3108 } 3109 3110 /* 3111 ** Finish with a read transaction. All this does is release the 3112 ** read-lock. 3113 */ 3114 void sqlite3WalEndReadTransaction(Wal *pWal){ 3115 sqlite3WalEndWriteTransaction(pWal); 3116 if( pWal->readLock>=0 ){ 3117 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3118 pWal->readLock = -1; 3119 } 3120 } 3121 3122 /* 3123 ** Search the wal file for page pgno. If found, set *piRead to the frame that 3124 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 3125 ** to zero. 3126 ** 3127 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 3128 ** error does occur, the final value of *piRead is undefined. 3129 */ 3130 int sqlite3WalFindFrame( 3131 Wal *pWal, /* WAL handle */ 3132 Pgno pgno, /* Database page number to read data for */ 3133 u32 *piRead /* OUT: Frame number (or zero) */ 3134 ){ 3135 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 3136 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 3137 int iHash; /* Used to loop through N hash tables */ 3138 int iMinHash; 3139 3140 /* This routine is only be called from within a read transaction. */ 3141 assert( pWal->readLock>=0 || pWal->lockError ); 3142 3143 /* If the "last page" field of the wal-index header snapshot is 0, then 3144 ** no data will be read from the wal under any circumstances. Return early 3145 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3146 ** then the WAL is ignored by the reader so return early, as if the 3147 ** WAL were empty. 3148 */ 3149 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3150 *piRead = 0; 3151 return SQLITE_OK; 3152 } 3153 3154 /* Search the hash table or tables for an entry matching page number 3155 ** pgno. Each iteration of the following for() loop searches one 3156 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3157 ** 3158 ** This code might run concurrently to the code in walIndexAppend() 3159 ** that adds entries to the wal-index (and possibly to this hash 3160 ** table). This means the value just read from the hash 3161 ** slot (aHash[iKey]) may have been added before or after the 3162 ** current read transaction was opened. Values added after the 3163 ** read transaction was opened may have been written incorrectly - 3164 ** i.e. these slots may contain garbage data. However, we assume 3165 ** that any slots written before the current read transaction was 3166 ** opened remain unmodified. 3167 ** 3168 ** For the reasons above, the if(...) condition featured in the inner 3169 ** loop of the following block is more stringent that would be required 3170 ** if we had exclusive access to the hash-table: 3171 ** 3172 ** (aPgno[iFrame]==pgno): 3173 ** This condition filters out normal hash-table collisions. 3174 ** 3175 ** (iFrame<=iLast): 3176 ** This condition filters out entries that were added to the hash 3177 ** table after the current read-transaction had started. 3178 */ 3179 iMinHash = walFramePage(pWal->minFrame); 3180 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3181 WalHashLoc sLoc; /* Hash table location */ 3182 int iKey; /* Hash slot index */ 3183 int nCollide; /* Number of hash collisions remaining */ 3184 int rc; /* Error code */ 3185 u32 iH; 3186 3187 rc = walHashGet(pWal, iHash, &sLoc); 3188 if( rc!=SQLITE_OK ){ 3189 return rc; 3190 } 3191 nCollide = HASHTABLE_NSLOT; 3192 iKey = walHash(pgno); 3193 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3194 u32 iFrame = iH + sLoc.iZero; 3195 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ 3196 assert( iFrame>iRead || CORRUPT_DB ); 3197 iRead = iFrame; 3198 } 3199 if( (nCollide--)==0 ){ 3200 return SQLITE_CORRUPT_BKPT; 3201 } 3202 iKey = walNextHash(iKey); 3203 } 3204 if( iRead ) break; 3205 } 3206 3207 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3208 /* If expensive assert() statements are available, do a linear search 3209 ** of the wal-index file content. Make sure the results agree with the 3210 ** result obtained using the hash indexes above. */ 3211 { 3212 u32 iRead2 = 0; 3213 u32 iTest; 3214 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3215 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3216 if( walFramePgno(pWal, iTest)==pgno ){ 3217 iRead2 = iTest; 3218 break; 3219 } 3220 } 3221 assert( iRead==iRead2 ); 3222 } 3223 #endif 3224 3225 *piRead = iRead; 3226 return SQLITE_OK; 3227 } 3228 3229 /* 3230 ** Read the contents of frame iRead from the wal file into buffer pOut 3231 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3232 ** error code otherwise. 3233 */ 3234 int sqlite3WalReadFrame( 3235 Wal *pWal, /* WAL handle */ 3236 u32 iRead, /* Frame to read */ 3237 int nOut, /* Size of buffer pOut in bytes */ 3238 u8 *pOut /* Buffer to write page data to */ 3239 ){ 3240 int sz; 3241 i64 iOffset; 3242 sz = pWal->hdr.szPage; 3243 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3244 testcase( sz<=32768 ); 3245 testcase( sz>=65536 ); 3246 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3247 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3248 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3249 } 3250 3251 /* 3252 ** Return the size of the database in pages (or zero, if unknown). 3253 */ 3254 Pgno sqlite3WalDbsize(Wal *pWal){ 3255 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3256 return pWal->hdr.nPage; 3257 } 3258 return 0; 3259 } 3260 3261 3262 /* 3263 ** This function starts a write transaction on the WAL. 3264 ** 3265 ** A read transaction must have already been started by a prior call 3266 ** to sqlite3WalBeginReadTransaction(). 3267 ** 3268 ** If another thread or process has written into the database since 3269 ** the read transaction was started, then it is not possible for this 3270 ** thread to write as doing so would cause a fork. So this routine 3271 ** returns SQLITE_BUSY in that case and no write transaction is started. 3272 ** 3273 ** There can only be a single writer active at a time. 3274 */ 3275 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3276 int rc; 3277 3278 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3279 /* If the write-lock is already held, then it was obtained before the 3280 ** read-transaction was even opened, making this call a no-op. 3281 ** Return early. */ 3282 if( pWal->writeLock ){ 3283 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3284 return SQLITE_OK; 3285 } 3286 #endif 3287 3288 /* Cannot start a write transaction without first holding a read 3289 ** transaction. */ 3290 assert( pWal->readLock>=0 ); 3291 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3292 3293 if( pWal->readOnly ){ 3294 return SQLITE_READONLY; 3295 } 3296 3297 /* Only one writer allowed at a time. Get the write lock. Return 3298 ** SQLITE_BUSY if unable. 3299 */ 3300 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3301 if( rc ){ 3302 return rc; 3303 } 3304 pWal->writeLock = 1; 3305 3306 /* If another connection has written to the database file since the 3307 ** time the read transaction on this connection was started, then 3308 ** the write is disallowed. 3309 */ 3310 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3311 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3312 pWal->writeLock = 0; 3313 rc = SQLITE_BUSY_SNAPSHOT; 3314 } 3315 3316 return rc; 3317 } 3318 3319 /* 3320 ** End a write transaction. The commit has already been done. This 3321 ** routine merely releases the lock. 3322 */ 3323 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3324 if( pWal->writeLock ){ 3325 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3326 pWal->writeLock = 0; 3327 pWal->iReCksum = 0; 3328 pWal->truncateOnCommit = 0; 3329 } 3330 return SQLITE_OK; 3331 } 3332 3333 /* 3334 ** If any data has been written (but not committed) to the log file, this 3335 ** function moves the write-pointer back to the start of the transaction. 3336 ** 3337 ** Additionally, the callback function is invoked for each frame written 3338 ** to the WAL since the start of the transaction. If the callback returns 3339 ** other than SQLITE_OK, it is not invoked again and the error code is 3340 ** returned to the caller. 3341 ** 3342 ** Otherwise, if the callback function does not return an error, this 3343 ** function returns SQLITE_OK. 3344 */ 3345 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3346 int rc = SQLITE_OK; 3347 if( ALWAYS(pWal->writeLock) ){ 3348 Pgno iMax = pWal->hdr.mxFrame; 3349 Pgno iFrame; 3350 3351 /* Restore the clients cache of the wal-index header to the state it 3352 ** was in before the client began writing to the database. 3353 */ 3354 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3355 3356 for(iFrame=pWal->hdr.mxFrame+1; 3357 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3358 iFrame++ 3359 ){ 3360 /* This call cannot fail. Unless the page for which the page number 3361 ** is passed as the second argument is (a) in the cache and 3362 ** (b) has an outstanding reference, then xUndo is either a no-op 3363 ** (if (a) is false) or simply expels the page from the cache (if (b) 3364 ** is false). 3365 ** 3366 ** If the upper layer is doing a rollback, it is guaranteed that there 3367 ** are no outstanding references to any page other than page 1. And 3368 ** page 1 is never written to the log until the transaction is 3369 ** committed. As a result, the call to xUndo may not fail. 3370 */ 3371 assert( walFramePgno(pWal, iFrame)!=1 ); 3372 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3373 } 3374 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3375 } 3376 return rc; 3377 } 3378 3379 /* 3380 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3381 ** values. This function populates the array with values required to 3382 ** "rollback" the write position of the WAL handle back to the current 3383 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3384 */ 3385 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3386 assert( pWal->writeLock ); 3387 aWalData[0] = pWal->hdr.mxFrame; 3388 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3389 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3390 aWalData[3] = pWal->nCkpt; 3391 } 3392 3393 /* 3394 ** Move the write position of the WAL back to the point identified by 3395 ** the values in the aWalData[] array. aWalData must point to an array 3396 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3397 ** by a call to WalSavepoint(). 3398 */ 3399 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3400 int rc = SQLITE_OK; 3401 3402 assert( pWal->writeLock ); 3403 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3404 3405 if( aWalData[3]!=pWal->nCkpt ){ 3406 /* This savepoint was opened immediately after the write-transaction 3407 ** was started. Right after that, the writer decided to wrap around 3408 ** to the start of the log. Update the savepoint values to match. 3409 */ 3410 aWalData[0] = 0; 3411 aWalData[3] = pWal->nCkpt; 3412 } 3413 3414 if( aWalData[0]<pWal->hdr.mxFrame ){ 3415 pWal->hdr.mxFrame = aWalData[0]; 3416 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3417 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3418 walCleanupHash(pWal); 3419 } 3420 3421 return rc; 3422 } 3423 3424 /* 3425 ** This function is called just before writing a set of frames to the log 3426 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3427 ** to the current log file, it is possible to overwrite the start of the 3428 ** existing log file with the new frames (i.e. "reset" the log). If so, 3429 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3430 ** unchanged. 3431 ** 3432 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3433 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3434 ** if an error occurs. 3435 */ 3436 static int walRestartLog(Wal *pWal){ 3437 int rc = SQLITE_OK; 3438 int cnt; 3439 3440 if( pWal->readLock==0 ){ 3441 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3442 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3443 if( pInfo->nBackfill>0 ){ 3444 u32 salt1; 3445 sqlite3_randomness(4, &salt1); 3446 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3447 if( rc==SQLITE_OK ){ 3448 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3449 ** readers are currently using the WAL), then the transactions 3450 ** frames will overwrite the start of the existing log. Update the 3451 ** wal-index header to reflect this. 3452 ** 3453 ** In theory it would be Ok to update the cache of the header only 3454 ** at this point. But updating the actual wal-index header is also 3455 ** safe and means there is no special case for sqlite3WalUndo() 3456 ** to handle if this transaction is rolled back. */ 3457 walRestartHdr(pWal, salt1); 3458 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3459 }else if( rc!=SQLITE_BUSY ){ 3460 return rc; 3461 } 3462 } 3463 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3464 pWal->readLock = -1; 3465 cnt = 0; 3466 do{ 3467 int notUsed; 3468 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3469 }while( rc==WAL_RETRY ); 3470 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3471 testcase( (rc&0xff)==SQLITE_IOERR ); 3472 testcase( rc==SQLITE_PROTOCOL ); 3473 testcase( rc==SQLITE_OK ); 3474 } 3475 return rc; 3476 } 3477 3478 /* 3479 ** Information about the current state of the WAL file and where 3480 ** the next fsync should occur - passed from sqlite3WalFrames() into 3481 ** walWriteToLog(). 3482 */ 3483 typedef struct WalWriter { 3484 Wal *pWal; /* The complete WAL information */ 3485 sqlite3_file *pFd; /* The WAL file to which we write */ 3486 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3487 int syncFlags; /* Flags for the fsync */ 3488 int szPage; /* Size of one page */ 3489 } WalWriter; 3490 3491 /* 3492 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3493 ** Do a sync when crossing the p->iSyncPoint boundary. 3494 ** 3495 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3496 ** first write the part before iSyncPoint, then sync, then write the 3497 ** rest. 3498 */ 3499 static int walWriteToLog( 3500 WalWriter *p, /* WAL to write to */ 3501 void *pContent, /* Content to be written */ 3502 int iAmt, /* Number of bytes to write */ 3503 sqlite3_int64 iOffset /* Start writing at this offset */ 3504 ){ 3505 int rc; 3506 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3507 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3508 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3509 if( rc ) return rc; 3510 iOffset += iFirstAmt; 3511 iAmt -= iFirstAmt; 3512 pContent = (void*)(iFirstAmt + (char*)pContent); 3513 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3514 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3515 if( iAmt==0 || rc ) return rc; 3516 } 3517 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3518 return rc; 3519 } 3520 3521 /* 3522 ** Write out a single frame of the WAL 3523 */ 3524 static int walWriteOneFrame( 3525 WalWriter *p, /* Where to write the frame */ 3526 PgHdr *pPage, /* The page of the frame to be written */ 3527 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3528 sqlite3_int64 iOffset /* Byte offset at which to write */ 3529 ){ 3530 int rc; /* Result code from subfunctions */ 3531 void *pData; /* Data actually written */ 3532 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3533 pData = pPage->pData; 3534 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3535 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3536 if( rc ) return rc; 3537 /* Write the page data */ 3538 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3539 return rc; 3540 } 3541 3542 /* 3543 ** This function is called as part of committing a transaction within which 3544 ** one or more frames have been overwritten. It updates the checksums for 3545 ** all frames written to the wal file by the current transaction starting 3546 ** with the earliest to have been overwritten. 3547 ** 3548 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3549 */ 3550 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3551 const int szPage = pWal->szPage;/* Database page size */ 3552 int rc = SQLITE_OK; /* Return code */ 3553 u8 *aBuf; /* Buffer to load data from wal file into */ 3554 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3555 u32 iRead; /* Next frame to read from wal file */ 3556 i64 iCksumOff; 3557 3558 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3559 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3560 3561 /* Find the checksum values to use as input for the recalculating the 3562 ** first checksum. If the first frame is frame 1 (implying that the current 3563 ** transaction restarted the wal file), these values must be read from the 3564 ** wal-file header. Otherwise, read them from the frame header of the 3565 ** previous frame. */ 3566 assert( pWal->iReCksum>0 ); 3567 if( pWal->iReCksum==1 ){ 3568 iCksumOff = 24; 3569 }else{ 3570 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3571 } 3572 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3573 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3574 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3575 3576 iRead = pWal->iReCksum; 3577 pWal->iReCksum = 0; 3578 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3579 i64 iOff = walFrameOffset(iRead, szPage); 3580 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3581 if( rc==SQLITE_OK ){ 3582 u32 iPgno, nDbSize; 3583 iPgno = sqlite3Get4byte(aBuf); 3584 nDbSize = sqlite3Get4byte(&aBuf[4]); 3585 3586 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3587 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3588 } 3589 } 3590 3591 sqlite3_free(aBuf); 3592 return rc; 3593 } 3594 3595 /* 3596 ** Write a set of frames to the log. The caller must hold the write-lock 3597 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3598 */ 3599 int sqlite3WalFrames( 3600 Wal *pWal, /* Wal handle to write to */ 3601 int szPage, /* Database page-size in bytes */ 3602 PgHdr *pList, /* List of dirty pages to write */ 3603 Pgno nTruncate, /* Database size after this commit */ 3604 int isCommit, /* True if this is a commit */ 3605 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3606 ){ 3607 int rc; /* Used to catch return codes */ 3608 u32 iFrame; /* Next frame address */ 3609 PgHdr *p; /* Iterator to run through pList with. */ 3610 PgHdr *pLast = 0; /* Last frame in list */ 3611 int nExtra = 0; /* Number of extra copies of last page */ 3612 int szFrame; /* The size of a single frame */ 3613 i64 iOffset; /* Next byte to write in WAL file */ 3614 WalWriter w; /* The writer */ 3615 u32 iFirst = 0; /* First frame that may be overwritten */ 3616 WalIndexHdr *pLive; /* Pointer to shared header */ 3617 3618 assert( pList ); 3619 assert( pWal->writeLock ); 3620 3621 /* If this frame set completes a transaction, then nTruncate>0. If 3622 ** nTruncate==0 then this frame set does not complete the transaction. */ 3623 assert( (isCommit!=0)==(nTruncate!=0) ); 3624 3625 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3626 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3627 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3628 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3629 } 3630 #endif 3631 3632 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3633 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3634 iFirst = pLive->mxFrame+1; 3635 } 3636 3637 /* See if it is possible to write these frames into the start of the 3638 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3639 */ 3640 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3641 return rc; 3642 } 3643 3644 /* If this is the first frame written into the log, write the WAL 3645 ** header to the start of the WAL file. See comments at the top of 3646 ** this source file for a description of the WAL header format. 3647 */ 3648 iFrame = pWal->hdr.mxFrame; 3649 if( iFrame==0 ){ 3650 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3651 u32 aCksum[2]; /* Checksum for wal-header */ 3652 3653 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3654 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3655 sqlite3Put4byte(&aWalHdr[8], szPage); 3656 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3657 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3658 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3659 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3660 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3661 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3662 3663 pWal->szPage = szPage; 3664 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3665 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3666 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3667 pWal->truncateOnCommit = 1; 3668 3669 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3670 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3671 if( rc!=SQLITE_OK ){ 3672 return rc; 3673 } 3674 3675 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3676 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3677 ** an out-of-order write following a WAL restart could result in 3678 ** database corruption. See the ticket: 3679 ** 3680 ** https://sqlite.org/src/info/ff5be73dee 3681 */ 3682 if( pWal->syncHeader ){ 3683 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3684 if( rc ) return rc; 3685 } 3686 } 3687 assert( (int)pWal->szPage==szPage ); 3688 3689 /* Setup information needed to write frames into the WAL */ 3690 w.pWal = pWal; 3691 w.pFd = pWal->pWalFd; 3692 w.iSyncPoint = 0; 3693 w.syncFlags = sync_flags; 3694 w.szPage = szPage; 3695 iOffset = walFrameOffset(iFrame+1, szPage); 3696 szFrame = szPage + WAL_FRAME_HDRSIZE; 3697 3698 /* Write all frames into the log file exactly once */ 3699 for(p=pList; p; p=p->pDirty){ 3700 int nDbSize; /* 0 normally. Positive == commit flag */ 3701 3702 /* Check if this page has already been written into the wal file by 3703 ** the current transaction. If so, overwrite the existing frame and 3704 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3705 ** checksums must be recomputed when the transaction is committed. */ 3706 if( iFirst && (p->pDirty || isCommit==0) ){ 3707 u32 iWrite = 0; 3708 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3709 assert( rc==SQLITE_OK || iWrite==0 ); 3710 if( iWrite>=iFirst ){ 3711 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3712 void *pData; 3713 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3714 pWal->iReCksum = iWrite; 3715 } 3716 pData = p->pData; 3717 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3718 if( rc ) return rc; 3719 p->flags &= ~PGHDR_WAL_APPEND; 3720 continue; 3721 } 3722 } 3723 3724 iFrame++; 3725 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3726 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3727 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3728 if( rc ) return rc; 3729 pLast = p; 3730 iOffset += szFrame; 3731 p->flags |= PGHDR_WAL_APPEND; 3732 } 3733 3734 /* Recalculate checksums within the wal file if required. */ 3735 if( isCommit && pWal->iReCksum ){ 3736 rc = walRewriteChecksums(pWal, iFrame); 3737 if( rc ) return rc; 3738 } 3739 3740 /* If this is the end of a transaction, then we might need to pad 3741 ** the transaction and/or sync the WAL file. 3742 ** 3743 ** Padding and syncing only occur if this set of frames complete a 3744 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3745 ** or synchronous==OFF, then no padding or syncing are needed. 3746 ** 3747 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3748 ** needed and only the sync is done. If padding is needed, then the 3749 ** final frame is repeated (with its commit mark) until the next sector 3750 ** boundary is crossed. Only the part of the WAL prior to the last 3751 ** sector boundary is synced; the part of the last frame that extends 3752 ** past the sector boundary is written after the sync. 3753 */ 3754 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3755 int bSync = 1; 3756 if( pWal->padToSectorBoundary ){ 3757 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3758 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3759 bSync = (w.iSyncPoint==iOffset); 3760 testcase( bSync ); 3761 while( iOffset<w.iSyncPoint ){ 3762 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3763 if( rc ) return rc; 3764 iOffset += szFrame; 3765 nExtra++; 3766 assert( pLast!=0 ); 3767 } 3768 } 3769 if( bSync ){ 3770 assert( rc==SQLITE_OK ); 3771 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3772 } 3773 } 3774 3775 /* If this frame set completes the first transaction in the WAL and 3776 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3777 ** journal size limit, if possible. 3778 */ 3779 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3780 i64 sz = pWal->mxWalSize; 3781 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3782 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3783 } 3784 walLimitSize(pWal, sz); 3785 pWal->truncateOnCommit = 0; 3786 } 3787 3788 /* Append data to the wal-index. It is not necessary to lock the 3789 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3790 ** guarantees that there are no other writers, and no data that may 3791 ** be in use by existing readers is being overwritten. 3792 */ 3793 iFrame = pWal->hdr.mxFrame; 3794 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3795 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3796 iFrame++; 3797 rc = walIndexAppend(pWal, iFrame, p->pgno); 3798 } 3799 assert( pLast!=0 || nExtra==0 ); 3800 while( rc==SQLITE_OK && nExtra>0 ){ 3801 iFrame++; 3802 nExtra--; 3803 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3804 } 3805 3806 if( rc==SQLITE_OK ){ 3807 /* Update the private copy of the header. */ 3808 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3809 testcase( szPage<=32768 ); 3810 testcase( szPage>=65536 ); 3811 pWal->hdr.mxFrame = iFrame; 3812 if( isCommit ){ 3813 pWal->hdr.iChange++; 3814 pWal->hdr.nPage = nTruncate; 3815 } 3816 /* If this is a commit, update the wal-index header too. */ 3817 if( isCommit ){ 3818 walIndexWriteHdr(pWal); 3819 pWal->iCallback = iFrame; 3820 } 3821 } 3822 3823 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3824 return rc; 3825 } 3826 3827 /* 3828 ** This routine is called to implement sqlite3_wal_checkpoint() and 3829 ** related interfaces. 3830 ** 3831 ** Obtain a CHECKPOINT lock and then backfill as much information as 3832 ** we can from WAL into the database. 3833 ** 3834 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3835 ** callback. In this case this function runs a blocking checkpoint. 3836 */ 3837 int sqlite3WalCheckpoint( 3838 Wal *pWal, /* Wal connection */ 3839 sqlite3 *db, /* Check this handle's interrupt flag */ 3840 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3841 int (*xBusy)(void*), /* Function to call when busy */ 3842 void *pBusyArg, /* Context argument for xBusyHandler */ 3843 int sync_flags, /* Flags to sync db file with (or 0) */ 3844 int nBuf, /* Size of temporary buffer */ 3845 u8 *zBuf, /* Temporary buffer to use */ 3846 int *pnLog, /* OUT: Number of frames in WAL */ 3847 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3848 ){ 3849 int rc; /* Return code */ 3850 int isChanged = 0; /* True if a new wal-index header is loaded */ 3851 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3852 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3853 3854 assert( pWal->ckptLock==0 ); 3855 assert( pWal->writeLock==0 ); 3856 3857 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3858 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3859 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3860 3861 if( pWal->readOnly ) return SQLITE_READONLY; 3862 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3863 3864 /* Enable blocking locks, if possible. If blocking locks are successfully 3865 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3866 sqlite3WalDb(pWal, db); 3867 (void)walEnableBlocking(pWal); 3868 3869 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3870 ** "checkpoint" lock on the database file. 3871 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3872 ** checkpoint operation at the same time, the lock cannot be obtained and 3873 ** SQLITE_BUSY is returned. 3874 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3875 ** it will not be invoked in this case. 3876 */ 3877 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3878 testcase( rc==SQLITE_BUSY ); 3879 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3880 if( rc==SQLITE_OK ){ 3881 pWal->ckptLock = 1; 3882 3883 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3884 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3885 ** file. 3886 ** 3887 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3888 ** immediately, and a busy-handler is configured, it is invoked and the 3889 ** writer lock retried until either the busy-handler returns 0 or the 3890 ** lock is successfully obtained. 3891 */ 3892 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3893 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3894 if( rc==SQLITE_OK ){ 3895 pWal->writeLock = 1; 3896 }else if( rc==SQLITE_BUSY ){ 3897 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3898 xBusy2 = 0; 3899 rc = SQLITE_OK; 3900 } 3901 } 3902 } 3903 3904 3905 /* Read the wal-index header. */ 3906 if( rc==SQLITE_OK ){ 3907 walDisableBlocking(pWal); 3908 rc = walIndexReadHdr(pWal, &isChanged); 3909 (void)walEnableBlocking(pWal); 3910 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3911 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3912 } 3913 } 3914 3915 /* Copy data from the log to the database file. */ 3916 if( rc==SQLITE_OK ){ 3917 3918 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3919 rc = SQLITE_CORRUPT_BKPT; 3920 }else{ 3921 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3922 } 3923 3924 /* If no error occurred, set the output variables. */ 3925 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3926 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3927 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3928 } 3929 } 3930 3931 if( isChanged ){ 3932 /* If a new wal-index header was loaded before the checkpoint was 3933 ** performed, then the pager-cache associated with pWal is now 3934 ** out of date. So zero the cached wal-index header to ensure that 3935 ** next time the pager opens a snapshot on this database it knows that 3936 ** the cache needs to be reset. 3937 */ 3938 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3939 } 3940 3941 walDisableBlocking(pWal); 3942 sqlite3WalDb(pWal, 0); 3943 3944 /* Release the locks. */ 3945 sqlite3WalEndWriteTransaction(pWal); 3946 if( pWal->ckptLock ){ 3947 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3948 pWal->ckptLock = 0; 3949 } 3950 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3951 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3952 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3953 #endif 3954 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3955 } 3956 3957 /* Return the value to pass to a sqlite3_wal_hook callback, the 3958 ** number of frames in the WAL at the point of the last commit since 3959 ** sqlite3WalCallback() was called. If no commits have occurred since 3960 ** the last call, then return 0. 3961 */ 3962 int sqlite3WalCallback(Wal *pWal){ 3963 u32 ret = 0; 3964 if( pWal ){ 3965 ret = pWal->iCallback; 3966 pWal->iCallback = 0; 3967 } 3968 return (int)ret; 3969 } 3970 3971 /* 3972 ** This function is called to change the WAL subsystem into or out 3973 ** of locking_mode=EXCLUSIVE. 3974 ** 3975 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3976 ** into locking_mode=NORMAL. This means that we must acquire a lock 3977 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3978 ** or if the acquisition of the lock fails, then return 0. If the 3979 ** transition out of exclusive-mode is successful, return 1. This 3980 ** operation must occur while the pager is still holding the exclusive 3981 ** lock on the main database file. 3982 ** 3983 ** If op is one, then change from locking_mode=NORMAL into 3984 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3985 ** be released. Return 1 if the transition is made and 0 if the 3986 ** WAL is already in exclusive-locking mode - meaning that this 3987 ** routine is a no-op. The pager must already hold the exclusive lock 3988 ** on the main database file before invoking this operation. 3989 ** 3990 ** If op is negative, then do a dry-run of the op==1 case but do 3991 ** not actually change anything. The pager uses this to see if it 3992 ** should acquire the database exclusive lock prior to invoking 3993 ** the op==1 case. 3994 */ 3995 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3996 int rc; 3997 assert( pWal->writeLock==0 ); 3998 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3999 4000 /* pWal->readLock is usually set, but might be -1 if there was a 4001 ** prior error while attempting to acquire are read-lock. This cannot 4002 ** happen if the connection is actually in exclusive mode (as no xShmLock 4003 ** locks are taken in this case). Nor should the pager attempt to 4004 ** upgrade to exclusive-mode following such an error. 4005 */ 4006 assert( pWal->readLock>=0 || pWal->lockError ); 4007 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 4008 4009 if( op==0 ){ 4010 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 4011 pWal->exclusiveMode = WAL_NORMAL_MODE; 4012 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 4013 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 4014 } 4015 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 4016 }else{ 4017 /* Already in locking_mode=NORMAL */ 4018 rc = 0; 4019 } 4020 }else if( op>0 ){ 4021 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 4022 assert( pWal->readLock>=0 ); 4023 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 4024 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 4025 rc = 1; 4026 }else{ 4027 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 4028 } 4029 return rc; 4030 } 4031 4032 /* 4033 ** Return true if the argument is non-NULL and the WAL module is using 4034 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 4035 ** WAL module is using shared-memory, return false. 4036 */ 4037 int sqlite3WalHeapMemory(Wal *pWal){ 4038 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 4039 } 4040 4041 #ifdef SQLITE_ENABLE_SNAPSHOT 4042 /* Create a snapshot object. The content of a snapshot is opaque to 4043 ** every other subsystem, so the WAL module can put whatever it needs 4044 ** in the object. 4045 */ 4046 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 4047 int rc = SQLITE_OK; 4048 WalIndexHdr *pRet; 4049 static const u32 aZero[4] = { 0, 0, 0, 0 }; 4050 4051 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 4052 4053 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 4054 *ppSnapshot = 0; 4055 return SQLITE_ERROR; 4056 } 4057 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 4058 if( pRet==0 ){ 4059 rc = SQLITE_NOMEM_BKPT; 4060 }else{ 4061 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 4062 *ppSnapshot = (sqlite3_snapshot*)pRet; 4063 } 4064 4065 return rc; 4066 } 4067 4068 /* Try to open on pSnapshot when the next read-transaction starts 4069 */ 4070 void sqlite3WalSnapshotOpen( 4071 Wal *pWal, 4072 sqlite3_snapshot *pSnapshot 4073 ){ 4074 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 4075 } 4076 4077 /* 4078 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 4079 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 4080 */ 4081 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 4082 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 4083 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 4084 4085 /* aSalt[0] is a copy of the value stored in the wal file header. It 4086 ** is incremented each time the wal file is restarted. */ 4087 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 4088 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 4089 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 4090 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 4091 return 0; 4092 } 4093 4094 /* 4095 ** The caller currently has a read transaction open on the database. 4096 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 4097 ** checks if the snapshot passed as the second argument is still 4098 ** available. If so, SQLITE_OK is returned. 4099 ** 4100 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 4101 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 4102 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 4103 ** lock is released before returning. 4104 */ 4105 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 4106 int rc; 4107 rc = walLockShared(pWal, WAL_CKPT_LOCK); 4108 if( rc==SQLITE_OK ){ 4109 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 4110 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 4111 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 4112 ){ 4113 rc = SQLITE_ERROR_SNAPSHOT; 4114 walUnlockShared(pWal, WAL_CKPT_LOCK); 4115 } 4116 } 4117 return rc; 4118 } 4119 4120 /* 4121 ** Release a lock obtained by an earlier successful call to 4122 ** sqlite3WalSnapshotCheck(). 4123 */ 4124 void sqlite3WalSnapshotUnlock(Wal *pWal){ 4125 assert( pWal ); 4126 walUnlockShared(pWal, WAL_CKPT_LOCK); 4127 } 4128 4129 4130 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4131 4132 #ifdef SQLITE_ENABLE_ZIPVFS 4133 /* 4134 ** If the argument is not NULL, it points to a Wal object that holds a 4135 ** read-lock. This function returns the database page-size if it is known, 4136 ** or zero if it is not (or if pWal is NULL). 4137 */ 4138 int sqlite3WalFramesize(Wal *pWal){ 4139 assert( pWal==0 || pWal->readLock>=0 ); 4140 return (pWal ? pWal->szPage : 0); 4141 } 4142 #endif 4143 4144 /* Return the sqlite3_file object for the WAL file 4145 */ 4146 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4147 return pWal->pWalFd; 4148 } 4149 4150 #endif /* #ifndef SQLITE_OMIT_WAL */ 4151