1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. The values are: 165 ** 166 ** HASHTABLE_NPAGE 4096 167 ** HASHTABLE_NPAGE_ONE 4062 168 ** 169 ** Each index block contains two sections, a page-mapping that contains the 170 ** database page number associated with each wal frame, and a hash-table 171 ** that allows readers to query an index block for a specific page number. 172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 173 ** for the first index block) 32-bit page numbers. The first entry in the 174 ** first index-block contains the database page number corresponding to the 175 ** first frame in the WAL file. The first entry in the second index block 176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 177 ** the log, and so on. 178 ** 179 ** The last index block in a wal-index usually contains less than the full 180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 181 ** depending on the contents of the WAL file. This does not change the 182 ** allocated size of the page-mapping array - the page-mapping array merely 183 ** contains unused entries. 184 ** 185 ** Even without using the hash table, the last frame for page P 186 ** can be found by scanning the page-mapping sections of each index block 187 ** starting with the last index block and moving toward the first, and 188 ** within each index block, starting at the end and moving toward the 189 ** beginning. The first entry that equals P corresponds to the frame 190 ** holding the content for that page. 191 ** 192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 194 ** hash table for each page number in the mapping section, so the hash 195 ** table is never more than half full. The expected number of collisions 196 ** prior to finding a match is 1. Each entry of the hash table is an 197 ** 1-based index of an entry in the mapping section of the same 198 ** index block. Let K be the 1-based index of the largest entry in 199 ** the mapping section. (For index blocks other than the last, K will 200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 202 ** contain a value of 0. 203 ** 204 ** To look for page P in the hash table, first compute a hash iKey on 205 ** P as follows: 206 ** 207 ** iKey = (P * 383) % HASHTABLE_NSLOT 208 ** 209 ** Then start scanning entries of the hash table, starting with iKey 210 ** (wrapping around to the beginning when the end of the hash table is 211 ** reached) until an unused hash slot is found. Let the first unused slot 212 ** be at index iUnused. (iUnused might be less than iKey if there was 213 ** wrap-around.) Because the hash table is never more than half full, 214 ** the search is guaranteed to eventually hit an unused entry. Let 215 ** iMax be the value between iKey and iUnused, closest to iUnused, 216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 217 ** no hash slot such that aHash[i]==p) then page P is not in the 218 ** current index block. Otherwise the iMax-th mapping entry of the 219 ** current index block corresponds to the last entry that references 220 ** page P. 221 ** 222 ** A hash search begins with the last index block and moves toward the 223 ** first index block, looking for entries corresponding to page P. On 224 ** average, only two or three slots in each index block need to be 225 ** examined in order to either find the last entry for page P, or to 226 ** establish that no such entry exists in the block. Each index block 227 ** holds over 4000 entries. So two or three index blocks are sufficient 228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 229 ** comparisons (on average) suffice to either locate a frame in the 230 ** WAL or to establish that the frame does not exist in the WAL. This 231 ** is much faster than scanning the entire 10MB WAL. 232 ** 233 ** Note that entries are added in order of increasing K. Hence, one 234 ** reader might be using some value K0 and a second reader that started 235 ** at a later time (after additional transactions were added to the WAL 236 ** and to the wal-index) might be using a different value K1, where K1>K0. 237 ** Both readers can use the same hash table and mapping section to get 238 ** the correct result. There may be entries in the hash table with 239 ** K>K0 but to the first reader, those entries will appear to be unused 240 ** slots in the hash table and so the first reader will get an answer as 241 ** if no values greater than K0 had ever been inserted into the hash table 242 ** in the first place - which is what reader one wants. Meanwhile, the 243 ** second reader using K1 will see additional values that were inserted 244 ** later, which is exactly what reader two wants. 245 ** 246 ** When a rollback occurs, the value of K is decreased. Hash table entries 247 ** that correspond to frames greater than the new K value are removed 248 ** from the hash table at this point. 249 */ 250 #ifndef SQLITE_OMIT_WAL 251 252 #include "wal.h" 253 254 /* 255 ** Trace output macros 256 */ 257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 258 int sqlite3WalTrace = 0; 259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 260 #else 261 # define WALTRACE(X) 262 #endif 263 264 /* 265 ** The maximum (and only) versions of the wal and wal-index formats 266 ** that may be interpreted by this version of SQLite. 267 ** 268 ** If a client begins recovering a WAL file and finds that (a) the checksum 269 ** values in the wal-header are correct and (b) the version field is not 270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 271 ** 272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 273 ** checksum test is successful) and finds that the version field is not 274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 275 ** returns SQLITE_CANTOPEN. 276 */ 277 #define WAL_MAX_VERSION 3007000 278 #define WALINDEX_MAX_VERSION 3007000 279 280 /* 281 ** Index numbers for various locking bytes. WAL_NREADER is the number 282 ** of available reader locks and should be at least 3. The default 283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 284 ** 285 ** Technically, the various VFSes are free to implement these locks however 286 ** they see fit. However, compatibility is encouraged so that VFSes can 287 ** interoperate. The standard implemention used on both unix and windows 288 ** is for the index number to indicate a byte offset into the 289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 291 ** should be 120) is the location in the shm file for the first locking 292 ** byte. 293 */ 294 #define WAL_WRITE_LOCK 0 295 #define WAL_ALL_BUT_WRITE 1 296 #define WAL_CKPT_LOCK 1 297 #define WAL_RECOVER_LOCK 2 298 #define WAL_READ_LOCK(I) (3+(I)) 299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 300 301 302 /* Object declarations */ 303 typedef struct WalIndexHdr WalIndexHdr; 304 typedef struct WalIterator WalIterator; 305 typedef struct WalCkptInfo WalCkptInfo; 306 307 308 /* 309 ** The following object holds a copy of the wal-index header content. 310 ** 311 ** The actual header in the wal-index consists of two copies of this 312 ** object followed by one instance of the WalCkptInfo object. 313 ** For all versions of SQLite through 3.10.0 and probably beyond, 314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 315 ** the total header size is 136 bytes. 316 ** 317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 319 ** added in 3.7.1 when support for 64K pages was added. 320 */ 321 struct WalIndexHdr { 322 u32 iVersion; /* Wal-index version */ 323 u32 unused; /* Unused (padding) field */ 324 u32 iChange; /* Counter incremented each transaction */ 325 u8 isInit; /* 1 when initialized */ 326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 327 u16 szPage; /* Database page size in bytes. 1==64K */ 328 u32 mxFrame; /* Index of last valid frame in the WAL */ 329 u32 nPage; /* Size of database in pages */ 330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 332 u32 aCksum[2]; /* Checksum over all prior fields */ 333 }; 334 335 /* 336 ** A copy of the following object occurs in the wal-index immediately 337 ** following the second copy of the WalIndexHdr. This object stores 338 ** information used by checkpoint. 339 ** 340 ** nBackfill is the number of frames in the WAL that have been written 341 ** back into the database. (We call the act of moving content from WAL to 342 ** database "backfilling".) The nBackfill number is never greater than 343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 346 ** mxFrame back to zero when the WAL is reset. 347 ** 348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 350 ** the nBackfillAttempted is set before any backfilling is done and the 351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 354 ** 355 ** The aLock[] field is a set of bytes used for locking. These bytes should 356 ** never be read or written. 357 ** 358 ** There is one entry in aReadMark[] for each reader lock. If a reader 359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 362 ** a special case; its value is never used and it exists as a place-holder 363 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 365 ** directly from the database. 366 ** 367 ** The value of aReadMark[K] may only be changed by a thread that 368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 369 ** aReadMark[K] cannot changed while there is a reader is using that mark 370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 371 ** 372 ** The checkpointer may only transfer frames from WAL to database where 373 ** the frame numbers are less than or equal to every aReadMark[] that is 374 ** in use (that is, every aReadMark[j] for which there is a corresponding 375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 379 ** in the WAL has been backfilled into the database) then new readers 380 ** will choose aReadMark[0] which has value 0 and hence such reader will 381 ** get all their all content directly from the database file and ignore 382 ** the WAL. 383 ** 384 ** Writers normally append new frames to the end of the WAL. However, 385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 386 ** written back into the database) and if no readers are using the WAL 387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 388 ** the writer will first "reset" the WAL back to the beginning and start 389 ** writing new content beginning at frame 1. 390 ** 391 ** We assume that 32-bit loads are atomic and so no locks are needed in 392 ** order to read from any aReadMark[] entries. 393 */ 394 struct WalCkptInfo { 395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 399 u32 notUsed0; /* Available for future enhancements */ 400 }; 401 #define READMARK_NOT_USED 0xffffffff 402 403 /* 404 ** This is a schematic view of the complete 136-byte header of the 405 ** wal-index file (also known as the -shm file): 406 ** 407 ** +-----------------------------+ 408 ** 0: | iVersion | \ 409 ** +-----------------------------+ | 410 ** 4: | (unused padding) | | 411 ** +-----------------------------+ | 412 ** 8: | iChange | | 413 ** +-------+-------+-------------+ | 414 ** 12: | bInit | bBig | szPage | | 415 ** +-------+-------+-------------+ | 416 ** 16: | mxFrame | | First copy of the 417 ** +-----------------------------+ | WalIndexHdr object 418 ** 20: | nPage | | 419 ** +-----------------------------+ | 420 ** 24: | aFrameCksum | | 421 ** | | | 422 ** +-----------------------------+ | 423 ** 32: | aSalt | | 424 ** | | | 425 ** +-----------------------------+ | 426 ** 40: | aCksum | | 427 ** | | / 428 ** +-----------------------------+ 429 ** 48: | iVersion | \ 430 ** +-----------------------------+ | 431 ** 52: | (unused padding) | | 432 ** +-----------------------------+ | 433 ** 56: | iChange | | 434 ** +-------+-------+-------------+ | 435 ** 60: | bInit | bBig | szPage | | 436 ** +-------+-------+-------------+ | Second copy of the 437 ** 64: | mxFrame | | WalIndexHdr 438 ** +-----------------------------+ | 439 ** 68: | nPage | | 440 ** +-----------------------------+ | 441 ** 72: | aFrameCksum | | 442 ** | | | 443 ** +-----------------------------+ | 444 ** 80: | aSalt | | 445 ** | | | 446 ** +-----------------------------+ | 447 ** 88: | aCksum | | 448 ** | | / 449 ** +-----------------------------+ 450 ** 96: | nBackfill | 451 ** +-----------------------------+ 452 ** 100: | 5 read marks | 453 ** | | 454 ** | | 455 ** | | 456 ** | | 457 ** +-------+-------+------+------+ 458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \ 459 ** +-------+-------+------+------+ ) 8 lock bytes 460 ** | Read1 | Read2 | Rd3 | Rd4 | / 461 ** +-------+-------+------+------+ 462 ** 128: | nBackfillAttempted | 463 ** +-----------------------------+ 464 ** 132: | (unused padding) | 465 ** +-----------------------------+ 466 */ 467 468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 470 ** only support mandatory file-locks, we do not read or write data 471 ** from the region of the file on which locks are applied. 472 */ 473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 475 476 /* Size of header before each frame in wal */ 477 #define WAL_FRAME_HDRSIZE 24 478 479 /* Size of write ahead log header, including checksum. */ 480 #define WAL_HDRSIZE 32 481 482 /* WAL magic value. Either this value, or the same value with the least 483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 484 ** big-endian format in the first 4 bytes of a WAL file. 485 ** 486 ** If the LSB is set, then the checksums for each frame within the WAL 487 ** file are calculated by treating all data as an array of 32-bit 488 ** big-endian words. Otherwise, they are calculated by interpreting 489 ** all data as 32-bit little-endian words. 490 */ 491 #define WAL_MAGIC 0x377f0682 492 493 /* 494 ** Return the offset of frame iFrame in the write-ahead log file, 495 ** assuming a database page size of szPage bytes. The offset returned 496 ** is to the start of the write-ahead log frame-header. 497 */ 498 #define walFrameOffset(iFrame, szPage) ( \ 499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 500 ) 501 502 /* 503 ** An open write-ahead log file is represented by an instance of the 504 ** following object. 505 */ 506 struct Wal { 507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 508 sqlite3_file *pDbFd; /* File handle for the database file */ 509 sqlite3_file *pWalFd; /* File handle for WAL file */ 510 u32 iCallback; /* Value to pass to log callback (or 0) */ 511 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 512 int nWiData; /* Size of array apWiData */ 513 int szFirstBlock; /* Size of first block written to WAL file */ 514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 515 u32 szPage; /* Database page size */ 516 i16 readLock; /* Which read lock is being held. -1 for none */ 517 u8 syncFlags; /* Flags to use to sync header writes */ 518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 519 u8 writeLock; /* True if in a write transaction */ 520 u8 ckptLock; /* True if holding a checkpoint lock */ 521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 522 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 523 u8 syncHeader; /* Fsync the WAL header if true */ 524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 526 WalIndexHdr hdr; /* Wal-index header for current transaction */ 527 u32 minFrame; /* Ignore wal frames before this one */ 528 u32 iReCksum; /* On commit, recalculate checksums from here */ 529 const char *zWalName; /* Name of WAL file */ 530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 531 #ifdef SQLITE_DEBUG 532 u8 lockError; /* True if a locking error has occurred */ 533 #endif 534 #ifdef SQLITE_ENABLE_SNAPSHOT 535 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 536 #endif 537 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 538 sqlite3 *db; 539 #endif 540 }; 541 542 /* 543 ** Candidate values for Wal.exclusiveMode. 544 */ 545 #define WAL_NORMAL_MODE 0 546 #define WAL_EXCLUSIVE_MODE 1 547 #define WAL_HEAPMEMORY_MODE 2 548 549 /* 550 ** Possible values for WAL.readOnly 551 */ 552 #define WAL_RDWR 0 /* Normal read/write connection */ 553 #define WAL_RDONLY 1 /* The WAL file is readonly */ 554 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 555 556 /* 557 ** Each page of the wal-index mapping contains a hash-table made up of 558 ** an array of HASHTABLE_NSLOT elements of the following type. 559 */ 560 typedef u16 ht_slot; 561 562 /* 563 ** This structure is used to implement an iterator that loops through 564 ** all frames in the WAL in database page order. Where two or more frames 565 ** correspond to the same database page, the iterator visits only the 566 ** frame most recently written to the WAL (in other words, the frame with 567 ** the largest index). 568 ** 569 ** The internals of this structure are only accessed by: 570 ** 571 ** walIteratorInit() - Create a new iterator, 572 ** walIteratorNext() - Step an iterator, 573 ** walIteratorFree() - Free an iterator. 574 ** 575 ** This functionality is used by the checkpoint code (see walCheckpoint()). 576 */ 577 struct WalIterator { 578 u32 iPrior; /* Last result returned from the iterator */ 579 int nSegment; /* Number of entries in aSegment[] */ 580 struct WalSegment { 581 int iNext; /* Next slot in aIndex[] not yet returned */ 582 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 583 u32 *aPgno; /* Array of page numbers. */ 584 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 585 int iZero; /* Frame number associated with aPgno[0] */ 586 } aSegment[1]; /* One for every 32KB page in the wal-index */ 587 }; 588 589 /* 590 ** Define the parameters of the hash tables in the wal-index file. There 591 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 592 ** wal-index. 593 ** 594 ** Changing any of these constants will alter the wal-index format and 595 ** create incompatibilities. 596 */ 597 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 598 #define HASHTABLE_HASH_1 383 /* Should be prime */ 599 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 600 601 /* 602 ** The block of page numbers associated with the first hash-table in a 603 ** wal-index is smaller than usual. This is so that there is a complete 604 ** hash-table on each aligned 32KB page of the wal-index. 605 */ 606 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 607 608 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 609 #define WALINDEX_PGSZ ( \ 610 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 611 ) 612 613 /* 614 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 615 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 616 ** numbered from zero. 617 ** 618 ** If the wal-index is currently smaller the iPage pages then the size 619 ** of the wal-index might be increased, but only if it is safe to do 620 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 621 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 622 ** 623 ** Three possible result scenarios: 624 ** 625 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page 626 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL 627 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 628 ** 629 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 630 */ 631 static SQLITE_NOINLINE int walIndexPageRealloc( 632 Wal *pWal, /* The WAL context */ 633 int iPage, /* The page we seek */ 634 volatile u32 **ppPage /* Write the page pointer here */ 635 ){ 636 int rc = SQLITE_OK; 637 638 /* Enlarge the pWal->apWiData[] array if required */ 639 if( pWal->nWiData<=iPage ){ 640 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 641 volatile u32 **apNew; 642 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 643 if( !apNew ){ 644 *ppPage = 0; 645 return SQLITE_NOMEM_BKPT; 646 } 647 memset((void*)&apNew[pWal->nWiData], 0, 648 sizeof(u32*)*(iPage+1-pWal->nWiData)); 649 pWal->apWiData = apNew; 650 pWal->nWiData = iPage+1; 651 } 652 653 /* Request a pointer to the required page from the VFS */ 654 assert( pWal->apWiData[iPage]==0 ); 655 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 656 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 657 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 658 }else{ 659 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 660 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 661 ); 662 assert( pWal->apWiData[iPage]!=0 663 || rc!=SQLITE_OK 664 || (pWal->writeLock==0 && iPage==0) ); 665 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 666 if( rc==SQLITE_OK ){ 667 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 668 }else if( (rc&0xff)==SQLITE_READONLY ){ 669 pWal->readOnly |= WAL_SHM_RDONLY; 670 if( rc==SQLITE_READONLY ){ 671 rc = SQLITE_OK; 672 } 673 } 674 } 675 676 *ppPage = pWal->apWiData[iPage]; 677 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 678 return rc; 679 } 680 static int walIndexPage( 681 Wal *pWal, /* The WAL context */ 682 int iPage, /* The page we seek */ 683 volatile u32 **ppPage /* Write the page pointer here */ 684 ){ 685 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 686 return walIndexPageRealloc(pWal, iPage, ppPage); 687 } 688 return SQLITE_OK; 689 } 690 691 /* 692 ** Return a pointer to the WalCkptInfo structure in the wal-index. 693 */ 694 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 695 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 696 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 697 } 698 699 /* 700 ** Return a pointer to the WalIndexHdr structure in the wal-index. 701 */ 702 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 703 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 704 return (volatile WalIndexHdr*)pWal->apWiData[0]; 705 } 706 707 /* 708 ** The argument to this macro must be of type u32. On a little-endian 709 ** architecture, it returns the u32 value that results from interpreting 710 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 711 ** returns the value that would be produced by interpreting the 4 bytes 712 ** of the input value as a little-endian integer. 713 */ 714 #define BYTESWAP32(x) ( \ 715 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 716 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 717 ) 718 719 /* 720 ** Generate or extend an 8 byte checksum based on the data in 721 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 722 ** initial values of 0 and 0 if aIn==NULL). 723 ** 724 ** The checksum is written back into aOut[] before returning. 725 ** 726 ** nByte must be a positive multiple of 8. 727 */ 728 static void walChecksumBytes( 729 int nativeCksum, /* True for native byte-order, false for non-native */ 730 u8 *a, /* Content to be checksummed */ 731 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 732 const u32 *aIn, /* Initial checksum value input */ 733 u32 *aOut /* OUT: Final checksum value output */ 734 ){ 735 u32 s1, s2; 736 u32 *aData = (u32 *)a; 737 u32 *aEnd = (u32 *)&a[nByte]; 738 739 if( aIn ){ 740 s1 = aIn[0]; 741 s2 = aIn[1]; 742 }else{ 743 s1 = s2 = 0; 744 } 745 746 assert( nByte>=8 ); 747 assert( (nByte&0x00000007)==0 ); 748 assert( nByte<=65536 ); 749 750 if( nativeCksum ){ 751 do { 752 s1 += *aData++ + s2; 753 s2 += *aData++ + s1; 754 }while( aData<aEnd ); 755 }else{ 756 do { 757 s1 += BYTESWAP32(aData[0]) + s2; 758 s2 += BYTESWAP32(aData[1]) + s1; 759 aData += 2; 760 }while( aData<aEnd ); 761 } 762 763 aOut[0] = s1; 764 aOut[1] = s2; 765 } 766 767 /* 768 ** If there is the possibility of concurrent access to the SHM file 769 ** from multiple threads and/or processes, then do a memory barrier. 770 */ 771 static void walShmBarrier(Wal *pWal){ 772 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 773 sqlite3OsShmBarrier(pWal->pDbFd); 774 } 775 } 776 777 /* 778 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 779 ** definition as a hint that the function contains constructs that 780 ** might give false-positive TSAN warnings. 781 ** 782 ** See tag-20200519-1. 783 */ 784 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 785 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 786 #else 787 # define SQLITE_NO_TSAN 788 #endif 789 790 /* 791 ** Write the header information in pWal->hdr into the wal-index. 792 ** 793 ** The checksum on pWal->hdr is updated before it is written. 794 */ 795 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 796 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 797 const int nCksum = offsetof(WalIndexHdr, aCksum); 798 799 assert( pWal->writeLock ); 800 pWal->hdr.isInit = 1; 801 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 802 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 803 /* Possible TSAN false-positive. See tag-20200519-1 */ 804 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 805 walShmBarrier(pWal); 806 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 807 } 808 809 /* 810 ** This function encodes a single frame header and writes it to a buffer 811 ** supplied by the caller. A frame-header is made up of a series of 812 ** 4-byte big-endian integers, as follows: 813 ** 814 ** 0: Page number. 815 ** 4: For commit records, the size of the database image in pages 816 ** after the commit. For all other records, zero. 817 ** 8: Salt-1 (copied from the wal-header) 818 ** 12: Salt-2 (copied from the wal-header) 819 ** 16: Checksum-1. 820 ** 20: Checksum-2. 821 */ 822 static void walEncodeFrame( 823 Wal *pWal, /* The write-ahead log */ 824 u32 iPage, /* Database page number for frame */ 825 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 826 u8 *aData, /* Pointer to page data */ 827 u8 *aFrame /* OUT: Write encoded frame here */ 828 ){ 829 int nativeCksum; /* True for native byte-order checksums */ 830 u32 *aCksum = pWal->hdr.aFrameCksum; 831 assert( WAL_FRAME_HDRSIZE==24 ); 832 sqlite3Put4byte(&aFrame[0], iPage); 833 sqlite3Put4byte(&aFrame[4], nTruncate); 834 if( pWal->iReCksum==0 ){ 835 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 836 837 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 838 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 839 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 840 841 sqlite3Put4byte(&aFrame[16], aCksum[0]); 842 sqlite3Put4byte(&aFrame[20], aCksum[1]); 843 }else{ 844 memset(&aFrame[8], 0, 16); 845 } 846 } 847 848 /* 849 ** Check to see if the frame with header in aFrame[] and content 850 ** in aData[] is valid. If it is a valid frame, fill *piPage and 851 ** *pnTruncate and return true. Return if the frame is not valid. 852 */ 853 static int walDecodeFrame( 854 Wal *pWal, /* The write-ahead log */ 855 u32 *piPage, /* OUT: Database page number for frame */ 856 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 857 u8 *aData, /* Pointer to page data (for checksum) */ 858 u8 *aFrame /* Frame data */ 859 ){ 860 int nativeCksum; /* True for native byte-order checksums */ 861 u32 *aCksum = pWal->hdr.aFrameCksum; 862 u32 pgno; /* Page number of the frame */ 863 assert( WAL_FRAME_HDRSIZE==24 ); 864 865 /* A frame is only valid if the salt values in the frame-header 866 ** match the salt values in the wal-header. 867 */ 868 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 869 return 0; 870 } 871 872 /* A frame is only valid if the page number is creater than zero. 873 */ 874 pgno = sqlite3Get4byte(&aFrame[0]); 875 if( pgno==0 ){ 876 return 0; 877 } 878 879 /* A frame is only valid if a checksum of the WAL header, 880 ** all prior frams, the first 16 bytes of this frame-header, 881 ** and the frame-data matches the checksum in the last 8 882 ** bytes of this frame-header. 883 */ 884 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 885 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 886 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 887 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 888 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 889 ){ 890 /* Checksum failed. */ 891 return 0; 892 } 893 894 /* If we reach this point, the frame is valid. Return the page number 895 ** and the new database size. 896 */ 897 *piPage = pgno; 898 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 899 return 1; 900 } 901 902 903 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 904 /* 905 ** Names of locks. This routine is used to provide debugging output and is not 906 ** a part of an ordinary build. 907 */ 908 static const char *walLockName(int lockIdx){ 909 if( lockIdx==WAL_WRITE_LOCK ){ 910 return "WRITE-LOCK"; 911 }else if( lockIdx==WAL_CKPT_LOCK ){ 912 return "CKPT-LOCK"; 913 }else if( lockIdx==WAL_RECOVER_LOCK ){ 914 return "RECOVER-LOCK"; 915 }else{ 916 static char zName[15]; 917 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 918 lockIdx-WAL_READ_LOCK(0)); 919 return zName; 920 } 921 } 922 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 923 924 925 /* 926 ** Set or release locks on the WAL. Locks are either shared or exclusive. 927 ** A lock cannot be moved directly between shared and exclusive - it must go 928 ** through the unlocked state first. 929 ** 930 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 931 */ 932 static int walLockShared(Wal *pWal, int lockIdx){ 933 int rc; 934 if( pWal->exclusiveMode ) return SQLITE_OK; 935 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 936 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 937 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 938 walLockName(lockIdx), rc ? "failed" : "ok")); 939 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 940 return rc; 941 } 942 static void walUnlockShared(Wal *pWal, int lockIdx){ 943 if( pWal->exclusiveMode ) return; 944 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 945 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 946 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 947 } 948 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 949 int rc; 950 if( pWal->exclusiveMode ) return SQLITE_OK; 951 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 952 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 953 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 954 walLockName(lockIdx), n, rc ? "failed" : "ok")); 955 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 956 return rc; 957 } 958 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 959 if( pWal->exclusiveMode ) return; 960 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 961 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 962 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 963 walLockName(lockIdx), n)); 964 } 965 966 /* 967 ** Compute a hash on a page number. The resulting hash value must land 968 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 969 ** the hash to the next value in the event of a collision. 970 */ 971 static int walHash(u32 iPage){ 972 assert( iPage>0 ); 973 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 974 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 975 } 976 static int walNextHash(int iPriorHash){ 977 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 978 } 979 980 /* 981 ** An instance of the WalHashLoc object is used to describe the location 982 ** of a page hash table in the wal-index. This becomes the return value 983 ** from walHashGet(). 984 */ 985 typedef struct WalHashLoc WalHashLoc; 986 struct WalHashLoc { 987 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 988 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 989 u32 iZero; /* One less than the frame number of first indexed*/ 990 }; 991 992 /* 993 ** Return pointers to the hash table and page number array stored on 994 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 995 ** numbered starting from 0. 996 ** 997 ** Set output variable pLoc->aHash to point to the start of the hash table 998 ** in the wal-index file. Set pLoc->iZero to one less than the frame 999 ** number of the first frame indexed by this hash table. If a 1000 ** slot in the hash table is set to N, it refers to frame number 1001 ** (pLoc->iZero+N) in the log. 1002 ** 1003 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the 1004 ** first frame indexed by the hash table, frame (pLoc->iZero). 1005 */ 1006 static int walHashGet( 1007 Wal *pWal, /* WAL handle */ 1008 int iHash, /* Find the iHash'th table */ 1009 WalHashLoc *pLoc /* OUT: Hash table location */ 1010 ){ 1011 int rc; /* Return code */ 1012 1013 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 1014 assert( rc==SQLITE_OK || iHash>0 ); 1015 1016 if( pLoc->aPgno ){ 1017 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 1018 if( iHash==0 ){ 1019 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 1020 pLoc->iZero = 0; 1021 }else{ 1022 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 1023 } 1024 }else if( NEVER(rc==SQLITE_OK) ){ 1025 rc = SQLITE_ERROR; 1026 } 1027 return rc; 1028 } 1029 1030 /* 1031 ** Return the number of the wal-index page that contains the hash-table 1032 ** and page-number array that contain entries corresponding to WAL frame 1033 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 1034 ** are numbered starting from 0. 1035 */ 1036 static int walFramePage(u32 iFrame){ 1037 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 1038 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 1039 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 1040 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 1041 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 1042 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 1043 ); 1044 assert( iHash>=0 ); 1045 return iHash; 1046 } 1047 1048 /* 1049 ** Return the page number associated with frame iFrame in this WAL. 1050 */ 1051 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 1052 int iHash = walFramePage(iFrame); 1053 if( iHash==0 ){ 1054 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 1055 } 1056 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 1057 } 1058 1059 /* 1060 ** Remove entries from the hash table that point to WAL slots greater 1061 ** than pWal->hdr.mxFrame. 1062 ** 1063 ** This function is called whenever pWal->hdr.mxFrame is decreased due 1064 ** to a rollback or savepoint. 1065 ** 1066 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 1067 ** updated. Any later hash tables will be automatically cleared when 1068 ** pWal->hdr.mxFrame advances to the point where those hash tables are 1069 ** actually needed. 1070 */ 1071 static void walCleanupHash(Wal *pWal){ 1072 WalHashLoc sLoc; /* Hash table location */ 1073 int iLimit = 0; /* Zero values greater than this */ 1074 int nByte; /* Number of bytes to zero in aPgno[] */ 1075 int i; /* Used to iterate through aHash[] */ 1076 1077 assert( pWal->writeLock ); 1078 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1079 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1080 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1081 1082 if( pWal->hdr.mxFrame==0 ) return; 1083 1084 /* Obtain pointers to the hash-table and page-number array containing 1085 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1086 ** that the page said hash-table and array reside on is already mapped.(1) 1087 */ 1088 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1089 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1090 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1091 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1092 1093 /* Zero all hash-table entries that correspond to frame numbers greater 1094 ** than pWal->hdr.mxFrame. 1095 */ 1096 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1097 assert( iLimit>0 ); 1098 for(i=0; i<HASHTABLE_NSLOT; i++){ 1099 if( sLoc.aHash[i]>iLimit ){ 1100 sLoc.aHash[i] = 0; 1101 } 1102 } 1103 1104 /* Zero the entries in the aPgno array that correspond to frames with 1105 ** frame numbers greater than pWal->hdr.mxFrame. 1106 */ 1107 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); 1108 assert( nByte>=0 ); 1109 memset((void *)&sLoc.aPgno[iLimit], 0, nByte); 1110 1111 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1112 /* Verify that the every entry in the mapping region is still reachable 1113 ** via the hash table even after the cleanup. 1114 */ 1115 if( iLimit ){ 1116 int j; /* Loop counter */ 1117 int iKey; /* Hash key */ 1118 for(j=0; j<iLimit; j++){ 1119 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1120 if( sLoc.aHash[iKey]==j+1 ) break; 1121 } 1122 assert( sLoc.aHash[iKey]==j+1 ); 1123 } 1124 } 1125 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1126 } 1127 1128 1129 /* 1130 ** Set an entry in the wal-index that will map database page number 1131 ** pPage into WAL frame iFrame. 1132 */ 1133 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1134 int rc; /* Return code */ 1135 WalHashLoc sLoc; /* Wal-index hash table location */ 1136 1137 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1138 1139 /* Assuming the wal-index file was successfully mapped, populate the 1140 ** page number array and hash table entry. 1141 */ 1142 if( rc==SQLITE_OK ){ 1143 int iKey; /* Hash table key */ 1144 int idx; /* Value to write to hash-table slot */ 1145 int nCollide; /* Number of hash collisions */ 1146 1147 idx = iFrame - sLoc.iZero; 1148 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1149 1150 /* If this is the first entry to be added to this hash-table, zero the 1151 ** entire hash table and aPgno[] array before proceeding. 1152 */ 1153 if( idx==1 ){ 1154 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); 1155 assert( nByte>=0 ); 1156 memset((void*)sLoc.aPgno, 0, nByte); 1157 } 1158 1159 /* If the entry in aPgno[] is already set, then the previous writer 1160 ** must have exited unexpectedly in the middle of a transaction (after 1161 ** writing one or more dirty pages to the WAL to free up memory). 1162 ** Remove the remnants of that writers uncommitted transaction from 1163 ** the hash-table before writing any new entries. 1164 */ 1165 if( sLoc.aPgno[idx-1] ){ 1166 walCleanupHash(pWal); 1167 assert( !sLoc.aPgno[idx-1] ); 1168 } 1169 1170 /* Write the aPgno[] array entry and the hash-table slot. */ 1171 nCollide = idx; 1172 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1173 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1174 } 1175 sLoc.aPgno[idx-1] = iPage; 1176 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1177 1178 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1179 /* Verify that the number of entries in the hash table exactly equals 1180 ** the number of entries in the mapping region. 1181 */ 1182 { 1183 int i; /* Loop counter */ 1184 int nEntry = 0; /* Number of entries in the hash table */ 1185 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1186 assert( nEntry==idx ); 1187 } 1188 1189 /* Verify that the every entry in the mapping region is reachable 1190 ** via the hash table. This turns out to be a really, really expensive 1191 ** thing to check, so only do this occasionally - not on every 1192 ** iteration. 1193 */ 1194 if( (idx&0x3ff)==0 ){ 1195 int i; /* Loop counter */ 1196 for(i=0; i<idx; i++){ 1197 for(iKey=walHash(sLoc.aPgno[i]); 1198 sLoc.aHash[iKey]; 1199 iKey=walNextHash(iKey)){ 1200 if( sLoc.aHash[iKey]==i+1 ) break; 1201 } 1202 assert( sLoc.aHash[iKey]==i+1 ); 1203 } 1204 } 1205 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1206 } 1207 1208 return rc; 1209 } 1210 1211 1212 /* 1213 ** Recover the wal-index by reading the write-ahead log file. 1214 ** 1215 ** This routine first tries to establish an exclusive lock on the 1216 ** wal-index to prevent other threads/processes from doing anything 1217 ** with the WAL or wal-index while recovery is running. The 1218 ** WAL_RECOVER_LOCK is also held so that other threads will know 1219 ** that this thread is running recovery. If unable to establish 1220 ** the necessary locks, this routine returns SQLITE_BUSY. 1221 */ 1222 static int walIndexRecover(Wal *pWal){ 1223 int rc; /* Return Code */ 1224 i64 nSize; /* Size of log file */ 1225 u32 aFrameCksum[2] = {0, 0}; 1226 int iLock; /* Lock offset to lock for checkpoint */ 1227 1228 /* Obtain an exclusive lock on all byte in the locking range not already 1229 ** locked by the caller. The caller is guaranteed to have locked the 1230 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1231 ** If successful, the same bytes that are locked here are unlocked before 1232 ** this function returns. 1233 */ 1234 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1235 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1236 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1237 assert( pWal->writeLock ); 1238 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1239 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1240 if( rc ){ 1241 return rc; 1242 } 1243 1244 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1245 1246 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1247 1248 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1249 if( rc!=SQLITE_OK ){ 1250 goto recovery_error; 1251 } 1252 1253 if( nSize>WAL_HDRSIZE ){ 1254 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1255 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1256 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1257 int szFrame; /* Number of bytes in buffer aFrame[] */ 1258 u8 *aData; /* Pointer to data part of aFrame buffer */ 1259 int szPage; /* Page size according to the log */ 1260 u32 magic; /* Magic value read from WAL header */ 1261 u32 version; /* Magic value read from WAL header */ 1262 int isValid; /* True if this frame is valid */ 1263 u32 iPg; /* Current 32KB wal-index page */ 1264 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 1265 1266 /* Read in the WAL header. */ 1267 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1268 if( rc!=SQLITE_OK ){ 1269 goto recovery_error; 1270 } 1271 1272 /* If the database page size is not a power of two, or is greater than 1273 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1274 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1275 ** WAL file. 1276 */ 1277 magic = sqlite3Get4byte(&aBuf[0]); 1278 szPage = sqlite3Get4byte(&aBuf[8]); 1279 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1280 || szPage&(szPage-1) 1281 || szPage>SQLITE_MAX_PAGE_SIZE 1282 || szPage<512 1283 ){ 1284 goto finished; 1285 } 1286 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1287 pWal->szPage = szPage; 1288 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1289 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1290 1291 /* Verify that the WAL header checksum is correct */ 1292 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1293 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1294 ); 1295 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1296 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1297 ){ 1298 goto finished; 1299 } 1300 1301 /* Verify that the version number on the WAL format is one that 1302 ** are able to understand */ 1303 version = sqlite3Get4byte(&aBuf[4]); 1304 if( version!=WAL_MAX_VERSION ){ 1305 rc = SQLITE_CANTOPEN_BKPT; 1306 goto finished; 1307 } 1308 1309 /* Malloc a buffer to read frames into. */ 1310 szFrame = szPage + WAL_FRAME_HDRSIZE; 1311 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1312 if( !aFrame ){ 1313 rc = SQLITE_NOMEM_BKPT; 1314 goto recovery_error; 1315 } 1316 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1317 aPrivate = (u32*)&aData[szPage]; 1318 1319 /* Read all frames from the log file. */ 1320 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1321 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 1322 u32 *aShare; 1323 u32 iFrame; /* Index of last frame read */ 1324 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1325 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1326 u32 nHdr, nHdr32; 1327 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1328 assert( aShare!=0 || rc!=SQLITE_OK ); 1329 if( aShare==0 ) break; 1330 pWal->apWiData[iPg] = aPrivate; 1331 1332 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1333 i64 iOffset = walFrameOffset(iFrame, szPage); 1334 u32 pgno; /* Database page number for frame */ 1335 u32 nTruncate; /* dbsize field from frame header */ 1336 1337 /* Read and decode the next log frame. */ 1338 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1339 if( rc!=SQLITE_OK ) break; 1340 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1341 if( !isValid ) break; 1342 rc = walIndexAppend(pWal, iFrame, pgno); 1343 if( NEVER(rc!=SQLITE_OK) ) break; 1344 1345 /* If nTruncate is non-zero, this is a commit record. */ 1346 if( nTruncate ){ 1347 pWal->hdr.mxFrame = iFrame; 1348 pWal->hdr.nPage = nTruncate; 1349 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1350 testcase( szPage<=32768 ); 1351 testcase( szPage>=65536 ); 1352 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1353 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1354 } 1355 } 1356 pWal->apWiData[iPg] = aShare; 1357 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1358 nHdr32 = nHdr / sizeof(u32); 1359 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 1360 /* Memcpy() should work fine here, on all reasonable implementations. 1361 ** Technically, memcpy() might change the destination to some 1362 ** intermediate value before setting to the final value, and that might 1363 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 1364 ** do that, according to the spec, but no memcpy() implementation that 1365 ** we know of actually does that, which is why we say that memcpy() 1366 ** is safe for this. Memcpy() is certainly a lot faster. 1367 */ 1368 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1369 #else 1370 /* In the event that some platform is found for which memcpy() 1371 ** changes the destination to some intermediate value before 1372 ** setting the final value, this alternative copy routine is 1373 ** provided. 1374 */ 1375 { 1376 int i; 1377 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 1378 if( aShare[i]!=aPrivate[i] ){ 1379 /* Atomic memory operations are not required here because if 1380 ** the value needs to be changed, that means it is not being 1381 ** accessed concurrently. */ 1382 aShare[i] = aPrivate[i]; 1383 } 1384 } 1385 } 1386 #endif 1387 if( iFrame<=iLast ) break; 1388 } 1389 1390 sqlite3_free(aFrame); 1391 } 1392 1393 finished: 1394 if( rc==SQLITE_OK ){ 1395 volatile WalCkptInfo *pInfo; 1396 int i; 1397 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1398 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1399 walIndexWriteHdr(pWal); 1400 1401 /* Reset the checkpoint-header. This is safe because this thread is 1402 ** currently holding locks that exclude all other writers and 1403 ** checkpointers. Then set the values of read-mark slots 1 through N. 1404 */ 1405 pInfo = walCkptInfo(pWal); 1406 pInfo->nBackfill = 0; 1407 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1408 pInfo->aReadMark[0] = 0; 1409 for(i=1; i<WAL_NREADER; i++){ 1410 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1411 if( rc==SQLITE_OK ){ 1412 if( i==1 && pWal->hdr.mxFrame ){ 1413 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1414 }else{ 1415 pInfo->aReadMark[i] = READMARK_NOT_USED; 1416 } 1417 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1418 }else if( rc!=SQLITE_BUSY ){ 1419 goto recovery_error; 1420 } 1421 } 1422 1423 /* If more than one frame was recovered from the log file, report an 1424 ** event via sqlite3_log(). This is to help with identifying performance 1425 ** problems caused by applications routinely shutting down without 1426 ** checkpointing the log file. 1427 */ 1428 if( pWal->hdr.nPage ){ 1429 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1430 "recovered %d frames from WAL file %s", 1431 pWal->hdr.mxFrame, pWal->zWalName 1432 ); 1433 } 1434 } 1435 1436 recovery_error: 1437 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1438 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1439 return rc; 1440 } 1441 1442 /* 1443 ** Close an open wal-index. 1444 */ 1445 static void walIndexClose(Wal *pWal, int isDelete){ 1446 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1447 int i; 1448 for(i=0; i<pWal->nWiData; i++){ 1449 sqlite3_free((void *)pWal->apWiData[i]); 1450 pWal->apWiData[i] = 0; 1451 } 1452 } 1453 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1454 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1455 } 1456 } 1457 1458 /* 1459 ** Open a connection to the WAL file zWalName. The database file must 1460 ** already be opened on connection pDbFd. The buffer that zWalName points 1461 ** to must remain valid for the lifetime of the returned Wal* handle. 1462 ** 1463 ** A SHARED lock should be held on the database file when this function 1464 ** is called. The purpose of this SHARED lock is to prevent any other 1465 ** client from unlinking the WAL or wal-index file. If another process 1466 ** were to do this just after this client opened one of these files, the 1467 ** system would be badly broken. 1468 ** 1469 ** If the log file is successfully opened, SQLITE_OK is returned and 1470 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1471 ** an SQLite error code is returned and *ppWal is left unmodified. 1472 */ 1473 int sqlite3WalOpen( 1474 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1475 sqlite3_file *pDbFd, /* The open database file */ 1476 const char *zWalName, /* Name of the WAL file */ 1477 int bNoShm, /* True to run in heap-memory mode */ 1478 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1479 Wal **ppWal /* OUT: Allocated Wal handle */ 1480 ){ 1481 int rc; /* Return Code */ 1482 Wal *pRet; /* Object to allocate and return */ 1483 int flags; /* Flags passed to OsOpen() */ 1484 1485 assert( zWalName && zWalName[0] ); 1486 assert( pDbFd ); 1487 1488 /* Verify the values of various constants. Any changes to the values 1489 ** of these constants would result in an incompatible on-disk format 1490 ** for the -shm file. Any change that causes one of these asserts to 1491 ** fail is a backward compatibility problem, even if the change otherwise 1492 ** works. 1493 ** 1494 ** This table also serves as a helpful cross-reference when trying to 1495 ** interpret hex dumps of the -shm file. 1496 */ 1497 assert( 48 == sizeof(WalIndexHdr) ); 1498 assert( 40 == sizeof(WalCkptInfo) ); 1499 assert( 120 == WALINDEX_LOCK_OFFSET ); 1500 assert( 136 == WALINDEX_HDR_SIZE ); 1501 assert( 4096 == HASHTABLE_NPAGE ); 1502 assert( 4062 == HASHTABLE_NPAGE_ONE ); 1503 assert( 8192 == HASHTABLE_NSLOT ); 1504 assert( 383 == HASHTABLE_HASH_1 ); 1505 assert( 32768 == WALINDEX_PGSZ ); 1506 assert( 8 == SQLITE_SHM_NLOCK ); 1507 assert( 5 == WAL_NREADER ); 1508 assert( 24 == WAL_FRAME_HDRSIZE ); 1509 assert( 32 == WAL_HDRSIZE ); 1510 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 1511 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 1512 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 1513 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 1514 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 1515 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 1516 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 1517 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 1518 1519 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1520 ** this source file. Verify that the #defines of the locking byte offsets 1521 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1522 ** For that matter, if the lock offset ever changes from its initial design 1523 ** value of 120, we need to know that so there is an assert() to check it. 1524 */ 1525 #ifdef WIN_SHM_BASE 1526 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1527 #endif 1528 #ifdef UNIX_SHM_BASE 1529 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1530 #endif 1531 1532 1533 /* Allocate an instance of struct Wal to return. */ 1534 *ppWal = 0; 1535 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1536 if( !pRet ){ 1537 return SQLITE_NOMEM_BKPT; 1538 } 1539 1540 pRet->pVfs = pVfs; 1541 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1542 pRet->pDbFd = pDbFd; 1543 pRet->readLock = -1; 1544 pRet->mxWalSize = mxWalSize; 1545 pRet->zWalName = zWalName; 1546 pRet->syncHeader = 1; 1547 pRet->padToSectorBoundary = 1; 1548 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1549 1550 /* Open file handle on the write-ahead log file. */ 1551 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1552 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1553 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1554 pRet->readOnly = WAL_RDONLY; 1555 } 1556 1557 if( rc!=SQLITE_OK ){ 1558 walIndexClose(pRet, 0); 1559 sqlite3OsClose(pRet->pWalFd); 1560 sqlite3_free(pRet); 1561 }else{ 1562 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1563 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1564 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1565 pRet->padToSectorBoundary = 0; 1566 } 1567 *ppWal = pRet; 1568 WALTRACE(("WAL%d: opened\n", pRet)); 1569 } 1570 return rc; 1571 } 1572 1573 /* 1574 ** Change the size to which the WAL file is trucated on each reset. 1575 */ 1576 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1577 if( pWal ) pWal->mxWalSize = iLimit; 1578 } 1579 1580 /* 1581 ** Find the smallest page number out of all pages held in the WAL that 1582 ** has not been returned by any prior invocation of this method on the 1583 ** same WalIterator object. Write into *piFrame the frame index where 1584 ** that page was last written into the WAL. Write into *piPage the page 1585 ** number. 1586 ** 1587 ** Return 0 on success. If there are no pages in the WAL with a page 1588 ** number larger than *piPage, then return 1. 1589 */ 1590 static int walIteratorNext( 1591 WalIterator *p, /* Iterator */ 1592 u32 *piPage, /* OUT: The page number of the next page */ 1593 u32 *piFrame /* OUT: Wal frame index of next page */ 1594 ){ 1595 u32 iMin; /* Result pgno must be greater than iMin */ 1596 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1597 int i; /* For looping through segments */ 1598 1599 iMin = p->iPrior; 1600 assert( iMin<0xffffffff ); 1601 for(i=p->nSegment-1; i>=0; i--){ 1602 struct WalSegment *pSegment = &p->aSegment[i]; 1603 while( pSegment->iNext<pSegment->nEntry ){ 1604 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1605 if( iPg>iMin ){ 1606 if( iPg<iRet ){ 1607 iRet = iPg; 1608 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1609 } 1610 break; 1611 } 1612 pSegment->iNext++; 1613 } 1614 } 1615 1616 *piPage = p->iPrior = iRet; 1617 return (iRet==0xFFFFFFFF); 1618 } 1619 1620 /* 1621 ** This function merges two sorted lists into a single sorted list. 1622 ** 1623 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1624 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1625 ** is guaranteed for all J<K: 1626 ** 1627 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1628 ** aContent[aRight[J]] < aContent[aRight[K]] 1629 ** 1630 ** This routine overwrites aRight[] with a new (probably longer) sequence 1631 ** of indices such that the aRight[] contains every index that appears in 1632 ** either aLeft[] or the old aRight[] and such that the second condition 1633 ** above is still met. 1634 ** 1635 ** The aContent[aLeft[X]] values will be unique for all X. And the 1636 ** aContent[aRight[X]] values will be unique too. But there might be 1637 ** one or more combinations of X and Y such that 1638 ** 1639 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1640 ** 1641 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1642 */ 1643 static void walMerge( 1644 const u32 *aContent, /* Pages in wal - keys for the sort */ 1645 ht_slot *aLeft, /* IN: Left hand input list */ 1646 int nLeft, /* IN: Elements in array *paLeft */ 1647 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1648 int *pnRight, /* IN/OUT: Elements in *paRight */ 1649 ht_slot *aTmp /* Temporary buffer */ 1650 ){ 1651 int iLeft = 0; /* Current index in aLeft */ 1652 int iRight = 0; /* Current index in aRight */ 1653 int iOut = 0; /* Current index in output buffer */ 1654 int nRight = *pnRight; 1655 ht_slot *aRight = *paRight; 1656 1657 assert( nLeft>0 && nRight>0 ); 1658 while( iRight<nRight || iLeft<nLeft ){ 1659 ht_slot logpage; 1660 Pgno dbpage; 1661 1662 if( (iLeft<nLeft) 1663 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1664 ){ 1665 logpage = aLeft[iLeft++]; 1666 }else{ 1667 logpage = aRight[iRight++]; 1668 } 1669 dbpage = aContent[logpage]; 1670 1671 aTmp[iOut++] = logpage; 1672 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1673 1674 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1675 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1676 } 1677 1678 *paRight = aLeft; 1679 *pnRight = iOut; 1680 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1681 } 1682 1683 /* 1684 ** Sort the elements in list aList using aContent[] as the sort key. 1685 ** Remove elements with duplicate keys, preferring to keep the 1686 ** larger aList[] values. 1687 ** 1688 ** The aList[] entries are indices into aContent[]. The values in 1689 ** aList[] are to be sorted so that for all J<K: 1690 ** 1691 ** aContent[aList[J]] < aContent[aList[K]] 1692 ** 1693 ** For any X and Y such that 1694 ** 1695 ** aContent[aList[X]] == aContent[aList[Y]] 1696 ** 1697 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1698 ** the smaller. 1699 */ 1700 static void walMergesort( 1701 const u32 *aContent, /* Pages in wal */ 1702 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1703 ht_slot *aList, /* IN/OUT: List to sort */ 1704 int *pnList /* IN/OUT: Number of elements in aList[] */ 1705 ){ 1706 struct Sublist { 1707 int nList; /* Number of elements in aList */ 1708 ht_slot *aList; /* Pointer to sub-list content */ 1709 }; 1710 1711 const int nList = *pnList; /* Size of input list */ 1712 int nMerge = 0; /* Number of elements in list aMerge */ 1713 ht_slot *aMerge = 0; /* List to be merged */ 1714 int iList; /* Index into input list */ 1715 u32 iSub = 0; /* Index into aSub array */ 1716 struct Sublist aSub[13]; /* Array of sub-lists */ 1717 1718 memset(aSub, 0, sizeof(aSub)); 1719 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1720 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1721 1722 for(iList=0; iList<nList; iList++){ 1723 nMerge = 1; 1724 aMerge = &aList[iList]; 1725 for(iSub=0; iList & (1<<iSub); iSub++){ 1726 struct Sublist *p; 1727 assert( iSub<ArraySize(aSub) ); 1728 p = &aSub[iSub]; 1729 assert( p->aList && p->nList<=(1<<iSub) ); 1730 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1731 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1732 } 1733 aSub[iSub].aList = aMerge; 1734 aSub[iSub].nList = nMerge; 1735 } 1736 1737 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1738 if( nList & (1<<iSub) ){ 1739 struct Sublist *p; 1740 assert( iSub<ArraySize(aSub) ); 1741 p = &aSub[iSub]; 1742 assert( p->nList<=(1<<iSub) ); 1743 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1744 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1745 } 1746 } 1747 assert( aMerge==aList ); 1748 *pnList = nMerge; 1749 1750 #ifdef SQLITE_DEBUG 1751 { 1752 int i; 1753 for(i=1; i<*pnList; i++){ 1754 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1755 } 1756 } 1757 #endif 1758 } 1759 1760 /* 1761 ** Free an iterator allocated by walIteratorInit(). 1762 */ 1763 static void walIteratorFree(WalIterator *p){ 1764 sqlite3_free(p); 1765 } 1766 1767 /* 1768 ** Construct a WalInterator object that can be used to loop over all 1769 ** pages in the WAL following frame nBackfill in ascending order. Frames 1770 ** nBackfill or earlier may be included - excluding them is an optimization 1771 ** only. The caller must hold the checkpoint lock. 1772 ** 1773 ** On success, make *pp point to the newly allocated WalInterator object 1774 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1775 ** returns an error, the value of *pp is undefined. 1776 ** 1777 ** The calling routine should invoke walIteratorFree() to destroy the 1778 ** WalIterator object when it has finished with it. 1779 */ 1780 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1781 WalIterator *p; /* Return value */ 1782 int nSegment; /* Number of segments to merge */ 1783 u32 iLast; /* Last frame in log */ 1784 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1785 int i; /* Iterator variable */ 1786 ht_slot *aTmp; /* Temp space used by merge-sort */ 1787 int rc = SQLITE_OK; /* Return Code */ 1788 1789 /* This routine only runs while holding the checkpoint lock. And 1790 ** it only runs if there is actually content in the log (mxFrame>0). 1791 */ 1792 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1793 iLast = pWal->hdr.mxFrame; 1794 1795 /* Allocate space for the WalIterator object. */ 1796 nSegment = walFramePage(iLast) + 1; 1797 nByte = sizeof(WalIterator) 1798 + (nSegment-1)*sizeof(struct WalSegment) 1799 + iLast*sizeof(ht_slot); 1800 p = (WalIterator *)sqlite3_malloc64(nByte); 1801 if( !p ){ 1802 return SQLITE_NOMEM_BKPT; 1803 } 1804 memset(p, 0, nByte); 1805 p->nSegment = nSegment; 1806 1807 /* Allocate temporary space used by the merge-sort routine. This block 1808 ** of memory will be freed before this function returns. 1809 */ 1810 aTmp = (ht_slot *)sqlite3_malloc64( 1811 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1812 ); 1813 if( !aTmp ){ 1814 rc = SQLITE_NOMEM_BKPT; 1815 } 1816 1817 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1818 WalHashLoc sLoc; 1819 1820 rc = walHashGet(pWal, i, &sLoc); 1821 if( rc==SQLITE_OK ){ 1822 int j; /* Counter variable */ 1823 int nEntry; /* Number of entries in this segment */ 1824 ht_slot *aIndex; /* Sorted index for this segment */ 1825 1826 if( (i+1)==nSegment ){ 1827 nEntry = (int)(iLast - sLoc.iZero); 1828 }else{ 1829 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1830 } 1831 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1832 sLoc.iZero++; 1833 1834 for(j=0; j<nEntry; j++){ 1835 aIndex[j] = (ht_slot)j; 1836 } 1837 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1838 p->aSegment[i].iZero = sLoc.iZero; 1839 p->aSegment[i].nEntry = nEntry; 1840 p->aSegment[i].aIndex = aIndex; 1841 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1842 } 1843 } 1844 sqlite3_free(aTmp); 1845 1846 if( rc!=SQLITE_OK ){ 1847 walIteratorFree(p); 1848 p = 0; 1849 } 1850 *pp = p; 1851 return rc; 1852 } 1853 1854 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1855 /* 1856 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1857 ** they are supported by the VFS, and (b) the database handle is configured 1858 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1859 ** or 0 otherwise. 1860 */ 1861 static int walEnableBlocking(Wal *pWal){ 1862 int res = 0; 1863 if( pWal->db ){ 1864 int tmout = pWal->db->busyTimeout; 1865 if( tmout ){ 1866 int rc; 1867 rc = sqlite3OsFileControl( 1868 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1869 ); 1870 res = (rc==SQLITE_OK); 1871 } 1872 } 1873 return res; 1874 } 1875 1876 /* 1877 ** Disable blocking locks. 1878 */ 1879 static void walDisableBlocking(Wal *pWal){ 1880 int tmout = 0; 1881 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1882 } 1883 1884 /* 1885 ** If parameter bLock is true, attempt to enable blocking locks, take 1886 ** the WRITER lock, and then disable blocking locks. If blocking locks 1887 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1888 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1889 ** an error if blocking locks can not be enabled. 1890 ** 1891 ** If the bLock parameter is false and the WRITER lock is held, release it. 1892 */ 1893 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1894 int rc = SQLITE_OK; 1895 assert( pWal->readLock<0 || bLock==0 ); 1896 if( bLock ){ 1897 assert( pWal->db ); 1898 if( walEnableBlocking(pWal) ){ 1899 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1900 if( rc==SQLITE_OK ){ 1901 pWal->writeLock = 1; 1902 } 1903 walDisableBlocking(pWal); 1904 } 1905 }else if( pWal->writeLock ){ 1906 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1907 pWal->writeLock = 0; 1908 } 1909 return rc; 1910 } 1911 1912 /* 1913 ** Set the database handle used to determine if blocking locks are required. 1914 */ 1915 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1916 pWal->db = db; 1917 } 1918 1919 /* 1920 ** Take an exclusive WRITE lock. Blocking if so configured. 1921 */ 1922 static int walLockWriter(Wal *pWal){ 1923 int rc; 1924 walEnableBlocking(pWal); 1925 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1926 walDisableBlocking(pWal); 1927 return rc; 1928 } 1929 #else 1930 # define walEnableBlocking(x) 0 1931 # define walDisableBlocking(x) 1932 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1933 # define sqlite3WalDb(pWal, db) 1934 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1935 1936 1937 /* 1938 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1939 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1940 ** busy-handler function. Invoke it and retry the lock until either the 1941 ** lock is successfully obtained or the busy-handler returns 0. 1942 */ 1943 static int walBusyLock( 1944 Wal *pWal, /* WAL connection */ 1945 int (*xBusy)(void*), /* Function to call when busy */ 1946 void *pBusyArg, /* Context argument for xBusyHandler */ 1947 int lockIdx, /* Offset of first byte to lock */ 1948 int n /* Number of bytes to lock */ 1949 ){ 1950 int rc; 1951 do { 1952 rc = walLockExclusive(pWal, lockIdx, n); 1953 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1954 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1955 if( rc==SQLITE_BUSY_TIMEOUT ){ 1956 walDisableBlocking(pWal); 1957 rc = SQLITE_BUSY; 1958 } 1959 #endif 1960 return rc; 1961 } 1962 1963 /* 1964 ** The cache of the wal-index header must be valid to call this function. 1965 ** Return the page-size in bytes used by the database. 1966 */ 1967 static int walPagesize(Wal *pWal){ 1968 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1969 } 1970 1971 /* 1972 ** The following is guaranteed when this function is called: 1973 ** 1974 ** a) the WRITER lock is held, 1975 ** b) the entire log file has been checkpointed, and 1976 ** c) any existing readers are reading exclusively from the database 1977 ** file - there are no readers that may attempt to read a frame from 1978 ** the log file. 1979 ** 1980 ** This function updates the shared-memory structures so that the next 1981 ** client to write to the database (which may be this one) does so by 1982 ** writing frames into the start of the log file. 1983 ** 1984 ** The value of parameter salt1 is used as the aSalt[1] value in the 1985 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1986 ** one obtained from sqlite3_randomness()). 1987 */ 1988 static void walRestartHdr(Wal *pWal, u32 salt1){ 1989 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1990 int i; /* Loop counter */ 1991 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1992 pWal->nCkpt++; 1993 pWal->hdr.mxFrame = 0; 1994 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1995 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1996 walIndexWriteHdr(pWal); 1997 AtomicStore(&pInfo->nBackfill, 0); 1998 pInfo->nBackfillAttempted = 0; 1999 pInfo->aReadMark[1] = 0; 2000 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 2001 assert( pInfo->aReadMark[0]==0 ); 2002 } 2003 2004 /* 2005 ** Copy as much content as we can from the WAL back into the database file 2006 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 2007 ** 2008 ** The amount of information copies from WAL to database might be limited 2009 ** by active readers. This routine will never overwrite a database page 2010 ** that a concurrent reader might be using. 2011 ** 2012 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 2013 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 2014 ** checkpoints are always run by a background thread or background 2015 ** process, foreground threads will never block on a lengthy fsync call. 2016 ** 2017 ** Fsync is called on the WAL before writing content out of the WAL and 2018 ** into the database. This ensures that if the new content is persistent 2019 ** in the WAL and can be recovered following a power-loss or hard reset. 2020 ** 2021 ** Fsync is also called on the database file if (and only if) the entire 2022 ** WAL content is copied into the database file. This second fsync makes 2023 ** it safe to delete the WAL since the new content will persist in the 2024 ** database file. 2025 ** 2026 ** This routine uses and updates the nBackfill field of the wal-index header. 2027 ** This is the only routine that will increase the value of nBackfill. 2028 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 2029 ** its value.) 2030 ** 2031 ** The caller must be holding sufficient locks to ensure that no other 2032 ** checkpoint is running (in any other thread or process) at the same 2033 ** time. 2034 */ 2035 static int walCheckpoint( 2036 Wal *pWal, /* Wal connection */ 2037 sqlite3 *db, /* Check for interrupts on this handle */ 2038 int eMode, /* One of PASSIVE, FULL or RESTART */ 2039 int (*xBusy)(void*), /* Function to call when busy */ 2040 void *pBusyArg, /* Context argument for xBusyHandler */ 2041 int sync_flags, /* Flags for OsSync() (or 0) */ 2042 u8 *zBuf /* Temporary buffer to use */ 2043 ){ 2044 int rc = SQLITE_OK; /* Return code */ 2045 int szPage; /* Database page-size */ 2046 WalIterator *pIter = 0; /* Wal iterator context */ 2047 u32 iDbpage = 0; /* Next database page to write */ 2048 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 2049 u32 mxSafeFrame; /* Max frame that can be backfilled */ 2050 u32 mxPage; /* Max database page to write */ 2051 int i; /* Loop counter */ 2052 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 2053 2054 szPage = walPagesize(pWal); 2055 testcase( szPage<=32768 ); 2056 testcase( szPage>=65536 ); 2057 pInfo = walCkptInfo(pWal); 2058 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2059 2060 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 2061 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 2062 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 2063 2064 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 2065 ** safe to write into the database. Frames beyond mxSafeFrame might 2066 ** overwrite database pages that are in use by active readers and thus 2067 ** cannot be backfilled from the WAL. 2068 */ 2069 mxSafeFrame = pWal->hdr.mxFrame; 2070 mxPage = pWal->hdr.nPage; 2071 for(i=1; i<WAL_NREADER; i++){ 2072 u32 y = AtomicLoad(pInfo->aReadMark+i); 2073 if( mxSafeFrame>y ){ 2074 assert( y<=pWal->hdr.mxFrame ); 2075 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 2076 if( rc==SQLITE_OK ){ 2077 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 2078 AtomicStore(pInfo->aReadMark+i, iMark); 2079 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2080 }else if( rc==SQLITE_BUSY ){ 2081 mxSafeFrame = y; 2082 xBusy = 0; 2083 }else{ 2084 goto walcheckpoint_out; 2085 } 2086 } 2087 } 2088 2089 /* Allocate the iterator */ 2090 if( pInfo->nBackfill<mxSafeFrame ){ 2091 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 2092 assert( rc==SQLITE_OK || pIter==0 ); 2093 } 2094 2095 if( pIter 2096 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 2097 ){ 2098 u32 nBackfill = pInfo->nBackfill; 2099 2100 pInfo->nBackfillAttempted = mxSafeFrame; 2101 2102 /* Sync the WAL to disk */ 2103 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 2104 2105 /* If the database may grow as a result of this checkpoint, hint 2106 ** about the eventual size of the db file to the VFS layer. 2107 */ 2108 if( rc==SQLITE_OK ){ 2109 i64 nReq = ((i64)mxPage * szPage); 2110 i64 nSize; /* Current size of database file */ 2111 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 2112 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 2113 if( rc==SQLITE_OK && nSize<nReq ){ 2114 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 2115 /* If the size of the final database is larger than the current 2116 ** database plus the amount of data in the wal file, plus the 2117 ** maximum size of the pending-byte page (65536 bytes), then 2118 ** must be corruption somewhere. */ 2119 rc = SQLITE_CORRUPT_BKPT; 2120 }else{ 2121 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 2122 } 2123 } 2124 2125 } 2126 2127 /* Iterate through the contents of the WAL, copying data to the db file */ 2128 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 2129 i64 iOffset; 2130 assert( walFramePgno(pWal, iFrame)==iDbpage ); 2131 if( AtomicLoad(&db->u1.isInterrupted) ){ 2132 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 2133 break; 2134 } 2135 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 2136 continue; 2137 } 2138 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 2139 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2140 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2141 if( rc!=SQLITE_OK ) break; 2142 iOffset = (iDbpage-1)*(i64)szPage; 2143 testcase( IS_BIG_INT(iOffset) ); 2144 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2145 if( rc!=SQLITE_OK ) break; 2146 } 2147 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2148 2149 /* If work was actually accomplished... */ 2150 if( rc==SQLITE_OK ){ 2151 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2152 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2153 testcase( IS_BIG_INT(szDb) ); 2154 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2155 if( rc==SQLITE_OK ){ 2156 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2157 } 2158 } 2159 if( rc==SQLITE_OK ){ 2160 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2161 } 2162 } 2163 2164 /* Release the reader lock held while backfilling */ 2165 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2166 } 2167 2168 if( rc==SQLITE_BUSY ){ 2169 /* Reset the return code so as not to report a checkpoint failure 2170 ** just because there are active readers. */ 2171 rc = SQLITE_OK; 2172 } 2173 } 2174 2175 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2176 ** entire wal file has been copied into the database file, then block 2177 ** until all readers have finished using the wal file. This ensures that 2178 ** the next process to write to the database restarts the wal file. 2179 */ 2180 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2181 assert( pWal->writeLock ); 2182 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2183 rc = SQLITE_BUSY; 2184 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2185 u32 salt1; 2186 sqlite3_randomness(4, &salt1); 2187 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2188 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2189 if( rc==SQLITE_OK ){ 2190 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2191 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2192 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2193 ** truncates the log file to zero bytes just prior to a 2194 ** successful return. 2195 ** 2196 ** In theory, it might be safe to do this without updating the 2197 ** wal-index header in shared memory, as all subsequent reader or 2198 ** writer clients should see that the entire log file has been 2199 ** checkpointed and behave accordingly. This seems unsafe though, 2200 ** as it would leave the system in a state where the contents of 2201 ** the wal-index header do not match the contents of the 2202 ** file-system. To avoid this, update the wal-index header to 2203 ** indicate that the log file contains zero valid frames. */ 2204 walRestartHdr(pWal, salt1); 2205 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2206 } 2207 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2208 } 2209 } 2210 } 2211 2212 walcheckpoint_out: 2213 walIteratorFree(pIter); 2214 return rc; 2215 } 2216 2217 /* 2218 ** If the WAL file is currently larger than nMax bytes in size, truncate 2219 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2220 */ 2221 static void walLimitSize(Wal *pWal, i64 nMax){ 2222 i64 sz; 2223 int rx; 2224 sqlite3BeginBenignMalloc(); 2225 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2226 if( rx==SQLITE_OK && (sz > nMax ) ){ 2227 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2228 } 2229 sqlite3EndBenignMalloc(); 2230 if( rx ){ 2231 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2232 } 2233 } 2234 2235 /* 2236 ** Close a connection to a log file. 2237 */ 2238 int sqlite3WalClose( 2239 Wal *pWal, /* Wal to close */ 2240 sqlite3 *db, /* For interrupt flag */ 2241 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2242 int nBuf, 2243 u8 *zBuf /* Buffer of at least nBuf bytes */ 2244 ){ 2245 int rc = SQLITE_OK; 2246 if( pWal ){ 2247 int isDelete = 0; /* True to unlink wal and wal-index files */ 2248 2249 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2250 ** ordinary, rollback-mode locking methods, this guarantees that the 2251 ** connection associated with this log file is the only connection to 2252 ** the database. In this case checkpoint the database and unlink both 2253 ** the wal and wal-index files. 2254 ** 2255 ** The EXCLUSIVE lock is not released before returning. 2256 */ 2257 if( zBuf!=0 2258 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2259 ){ 2260 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2261 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2262 } 2263 rc = sqlite3WalCheckpoint(pWal, db, 2264 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2265 ); 2266 if( rc==SQLITE_OK ){ 2267 int bPersist = -1; 2268 sqlite3OsFileControlHint( 2269 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2270 ); 2271 if( bPersist!=1 ){ 2272 /* Try to delete the WAL file if the checkpoint completed and 2273 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2274 ** mode (!bPersist) */ 2275 isDelete = 1; 2276 }else if( pWal->mxWalSize>=0 ){ 2277 /* Try to truncate the WAL file to zero bytes if the checkpoint 2278 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2279 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2280 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2281 ** to zero bytes as truncating to the journal_size_limit might 2282 ** leave a corrupt WAL file on disk. */ 2283 walLimitSize(pWal, 0); 2284 } 2285 } 2286 } 2287 2288 walIndexClose(pWal, isDelete); 2289 sqlite3OsClose(pWal->pWalFd); 2290 if( isDelete ){ 2291 sqlite3BeginBenignMalloc(); 2292 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2293 sqlite3EndBenignMalloc(); 2294 } 2295 WALTRACE(("WAL%p: closed\n", pWal)); 2296 sqlite3_free((void *)pWal->apWiData); 2297 sqlite3_free(pWal); 2298 } 2299 return rc; 2300 } 2301 2302 /* 2303 ** Try to read the wal-index header. Return 0 on success and 1 if 2304 ** there is a problem. 2305 ** 2306 ** The wal-index is in shared memory. Another thread or process might 2307 ** be writing the header at the same time this procedure is trying to 2308 ** read it, which might result in inconsistency. A dirty read is detected 2309 ** by verifying that both copies of the header are the same and also by 2310 ** a checksum on the header. 2311 ** 2312 ** If and only if the read is consistent and the header is different from 2313 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2314 ** and *pChanged is set to 1. 2315 ** 2316 ** If the checksum cannot be verified return non-zero. If the header 2317 ** is read successfully and the checksum verified, return zero. 2318 */ 2319 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2320 u32 aCksum[2]; /* Checksum on the header content */ 2321 WalIndexHdr h1, h2; /* Two copies of the header content */ 2322 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2323 2324 /* The first page of the wal-index must be mapped at this point. */ 2325 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2326 2327 /* Read the header. This might happen concurrently with a write to the 2328 ** same area of shared memory on a different CPU in a SMP, 2329 ** meaning it is possible that an inconsistent snapshot is read 2330 ** from the file. If this happens, return non-zero. 2331 ** 2332 ** tag-20200519-1: 2333 ** There are two copies of the header at the beginning of the wal-index. 2334 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2335 ** Memory barriers are used to prevent the compiler or the hardware from 2336 ** reordering the reads and writes. TSAN and similar tools can sometimes 2337 ** give false-positive warnings about these accesses because the tools do not 2338 ** account for the double-read and the memory barrier. The use of mutexes 2339 ** here would be problematic as the memory being accessed is potentially 2340 ** shared among multiple processes and not all mutex implementions work 2341 ** reliably in that environment. 2342 */ 2343 aHdr = walIndexHdr(pWal); 2344 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2345 walShmBarrier(pWal); 2346 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2347 2348 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2349 return 1; /* Dirty read */ 2350 } 2351 if( h1.isInit==0 ){ 2352 return 1; /* Malformed header - probably all zeros */ 2353 } 2354 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2355 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2356 return 1; /* Checksum does not match */ 2357 } 2358 2359 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2360 *pChanged = 1; 2361 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2362 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2363 testcase( pWal->szPage<=32768 ); 2364 testcase( pWal->szPage>=65536 ); 2365 } 2366 2367 /* The header was successfully read. Return zero. */ 2368 return 0; 2369 } 2370 2371 /* 2372 ** This is the value that walTryBeginRead returns when it needs to 2373 ** be retried. 2374 */ 2375 #define WAL_RETRY (-1) 2376 2377 /* 2378 ** Read the wal-index header from the wal-index and into pWal->hdr. 2379 ** If the wal-header appears to be corrupt, try to reconstruct the 2380 ** wal-index from the WAL before returning. 2381 ** 2382 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2383 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2384 ** to 0. 2385 ** 2386 ** If the wal-index header is successfully read, return SQLITE_OK. 2387 ** Otherwise an SQLite error code. 2388 */ 2389 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2390 int rc; /* Return code */ 2391 int badHdr; /* True if a header read failed */ 2392 volatile u32 *page0; /* Chunk of wal-index containing header */ 2393 2394 /* Ensure that page 0 of the wal-index (the page that contains the 2395 ** wal-index header) is mapped. Return early if an error occurs here. 2396 */ 2397 assert( pChanged ); 2398 rc = walIndexPage(pWal, 0, &page0); 2399 if( rc!=SQLITE_OK ){ 2400 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2401 if( rc==SQLITE_READONLY_CANTINIT ){ 2402 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2403 ** was openable but is not writable, and this thread is unable to 2404 ** confirm that another write-capable connection has the shared-memory 2405 ** open, and hence the content of the shared-memory is unreliable, 2406 ** since the shared-memory might be inconsistent with the WAL file 2407 ** and there is no writer on hand to fix it. */ 2408 assert( page0==0 ); 2409 assert( pWal->writeLock==0 ); 2410 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2411 pWal->bShmUnreliable = 1; 2412 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2413 *pChanged = 1; 2414 }else{ 2415 return rc; /* Any other non-OK return is just an error */ 2416 } 2417 }else{ 2418 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2419 ** is zero, which prevents the SHM from growing */ 2420 testcase( page0!=0 ); 2421 } 2422 assert( page0!=0 || pWal->writeLock==0 ); 2423 2424 /* If the first page of the wal-index has been mapped, try to read the 2425 ** wal-index header immediately, without holding any lock. This usually 2426 ** works, but may fail if the wal-index header is corrupt or currently 2427 ** being modified by another thread or process. 2428 */ 2429 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2430 2431 /* If the first attempt failed, it might have been due to a race 2432 ** with a writer. So get a WRITE lock and try again. 2433 */ 2434 if( badHdr ){ 2435 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2436 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2437 walUnlockShared(pWal, WAL_WRITE_LOCK); 2438 rc = SQLITE_READONLY_RECOVERY; 2439 } 2440 }else{ 2441 int bWriteLock = pWal->writeLock; 2442 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2443 pWal->writeLock = 1; 2444 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2445 badHdr = walIndexTryHdr(pWal, pChanged); 2446 if( badHdr ){ 2447 /* If the wal-index header is still malformed even while holding 2448 ** a WRITE lock, it can only mean that the header is corrupted and 2449 ** needs to be reconstructed. So run recovery to do exactly that. 2450 */ 2451 rc = walIndexRecover(pWal); 2452 *pChanged = 1; 2453 } 2454 } 2455 if( bWriteLock==0 ){ 2456 pWal->writeLock = 0; 2457 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2458 } 2459 } 2460 } 2461 } 2462 2463 /* If the header is read successfully, check the version number to make 2464 ** sure the wal-index was not constructed with some future format that 2465 ** this version of SQLite cannot understand. 2466 */ 2467 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2468 rc = SQLITE_CANTOPEN_BKPT; 2469 } 2470 if( pWal->bShmUnreliable ){ 2471 if( rc!=SQLITE_OK ){ 2472 walIndexClose(pWal, 0); 2473 pWal->bShmUnreliable = 0; 2474 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2475 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2476 ** writer truncated the WAL out from under it. If that happens, it 2477 ** indicates that a writer has fixed the SHM file for us, so retry */ 2478 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2479 } 2480 pWal->exclusiveMode = WAL_NORMAL_MODE; 2481 } 2482 2483 return rc; 2484 } 2485 2486 /* 2487 ** Open a transaction in a connection where the shared-memory is read-only 2488 ** and where we cannot verify that there is a separate write-capable connection 2489 ** on hand to keep the shared-memory up-to-date with the WAL file. 2490 ** 2491 ** This can happen, for example, when the shared-memory is implemented by 2492 ** memory-mapping a *-shm file, where a prior writer has shut down and 2493 ** left the *-shm file on disk, and now the present connection is trying 2494 ** to use that database but lacks write permission on the *-shm file. 2495 ** Other scenarios are also possible, depending on the VFS implementation. 2496 ** 2497 ** Precondition: 2498 ** 2499 ** The *-wal file has been read and an appropriate wal-index has been 2500 ** constructed in pWal->apWiData[] using heap memory instead of shared 2501 ** memory. 2502 ** 2503 ** If this function returns SQLITE_OK, then the read transaction has 2504 ** been successfully opened. In this case output variable (*pChanged) 2505 ** is set to true before returning if the caller should discard the 2506 ** contents of the page cache before proceeding. Or, if it returns 2507 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2508 ** the caller should retry opening the read transaction from the 2509 ** beginning (including attempting to map the *-shm file). 2510 ** 2511 ** If an error occurs, an SQLite error code is returned. 2512 */ 2513 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2514 i64 szWal; /* Size of wal file on disk in bytes */ 2515 i64 iOffset; /* Current offset when reading wal file */ 2516 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2517 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2518 int szFrame; /* Number of bytes in buffer aFrame[] */ 2519 u8 *aData; /* Pointer to data part of aFrame buffer */ 2520 volatile void *pDummy; /* Dummy argument for xShmMap */ 2521 int rc; /* Return code */ 2522 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2523 2524 assert( pWal->bShmUnreliable ); 2525 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2526 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2527 2528 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2529 ** writers from running a checkpoint, but does not stop them 2530 ** from running recovery. */ 2531 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2532 if( rc!=SQLITE_OK ){ 2533 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2534 goto begin_unreliable_shm_out; 2535 } 2536 pWal->readLock = 0; 2537 2538 /* Check to see if a separate writer has attached to the shared-memory area, 2539 ** thus making the shared-memory "reliable" again. Do this by invoking 2540 ** the xShmMap() routine of the VFS and looking to see if the return 2541 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2542 ** 2543 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2544 ** cause the heap-memory WAL-index to be discarded and the actual 2545 ** shared memory to be used in its place. 2546 ** 2547 ** This step is important because, even though this connection is holding 2548 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2549 ** have already checkpointed the WAL file and, while the current 2550 ** is active, wrap the WAL and start overwriting frames that this 2551 ** process wants to use. 2552 ** 2553 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2554 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2555 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2556 ** even if some external agent does a "chmod" to make the shared-memory 2557 ** writable by us, until sqlite3OsShmUnmap() has been called. 2558 ** This is a requirement on the VFS implementation. 2559 */ 2560 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2561 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2562 if( rc!=SQLITE_READONLY_CANTINIT ){ 2563 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2564 goto begin_unreliable_shm_out; 2565 } 2566 2567 /* We reach this point only if the real shared-memory is still unreliable. 2568 ** Assume the in-memory WAL-index substitute is correct and load it 2569 ** into pWal->hdr. 2570 */ 2571 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2572 2573 /* Make sure some writer hasn't come in and changed the WAL file out 2574 ** from under us, then disconnected, while we were not looking. 2575 */ 2576 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2577 if( rc!=SQLITE_OK ){ 2578 goto begin_unreliable_shm_out; 2579 } 2580 if( szWal<WAL_HDRSIZE ){ 2581 /* If the wal file is too small to contain a wal-header and the 2582 ** wal-index header has mxFrame==0, then it must be safe to proceed 2583 ** reading the database file only. However, the page cache cannot 2584 ** be trusted, as a read/write connection may have connected, written 2585 ** the db, run a checkpoint, truncated the wal file and disconnected 2586 ** since this client's last read transaction. */ 2587 *pChanged = 1; 2588 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2589 goto begin_unreliable_shm_out; 2590 } 2591 2592 /* Check the salt keys at the start of the wal file still match. */ 2593 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2594 if( rc!=SQLITE_OK ){ 2595 goto begin_unreliable_shm_out; 2596 } 2597 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2598 /* Some writer has wrapped the WAL file while we were not looking. 2599 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2600 ** rebuilt. */ 2601 rc = WAL_RETRY; 2602 goto begin_unreliable_shm_out; 2603 } 2604 2605 /* Allocate a buffer to read frames into */ 2606 assert( (pWal->szPage & (pWal->szPage-1))==0 ); 2607 assert( pWal->szPage>=512 && pWal->szPage<=65536 ); 2608 szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; 2609 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2610 if( aFrame==0 ){ 2611 rc = SQLITE_NOMEM_BKPT; 2612 goto begin_unreliable_shm_out; 2613 } 2614 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2615 2616 /* Check to see if a complete transaction has been appended to the 2617 ** wal file since the heap-memory wal-index was created. If so, the 2618 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2619 ** the caller. */ 2620 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2621 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2622 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); 2623 iOffset+szFrame<=szWal; 2624 iOffset+=szFrame 2625 ){ 2626 u32 pgno; /* Database page number for frame */ 2627 u32 nTruncate; /* dbsize field from frame header */ 2628 2629 /* Read and decode the next log frame. */ 2630 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2631 if( rc!=SQLITE_OK ) break; 2632 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2633 2634 /* If nTruncate is non-zero, then a complete transaction has been 2635 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2636 ** the loop. */ 2637 if( nTruncate ){ 2638 rc = WAL_RETRY; 2639 break; 2640 } 2641 } 2642 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2643 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2644 2645 begin_unreliable_shm_out: 2646 sqlite3_free(aFrame); 2647 if( rc!=SQLITE_OK ){ 2648 int i; 2649 for(i=0; i<pWal->nWiData; i++){ 2650 sqlite3_free((void*)pWal->apWiData[i]); 2651 pWal->apWiData[i] = 0; 2652 } 2653 pWal->bShmUnreliable = 0; 2654 sqlite3WalEndReadTransaction(pWal); 2655 *pChanged = 1; 2656 } 2657 return rc; 2658 } 2659 2660 /* 2661 ** Attempt to start a read transaction. This might fail due to a race or 2662 ** other transient condition. When that happens, it returns WAL_RETRY to 2663 ** indicate to the caller that it is safe to retry immediately. 2664 ** 2665 ** On success return SQLITE_OK. On a permanent failure (such an 2666 ** I/O error or an SQLITE_BUSY because another process is running 2667 ** recovery) return a positive error code. 2668 ** 2669 ** The useWal parameter is true to force the use of the WAL and disable 2670 ** the case where the WAL is bypassed because it has been completely 2671 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2672 ** to make a copy of the wal-index header into pWal->hdr. If the 2673 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2674 ** to the caller that the local page cache is obsolete and needs to be 2675 ** flushed.) When useWal==1, the wal-index header is assumed to already 2676 ** be loaded and the pChanged parameter is unused. 2677 ** 2678 ** The caller must set the cnt parameter to the number of prior calls to 2679 ** this routine during the current read attempt that returned WAL_RETRY. 2680 ** This routine will start taking more aggressive measures to clear the 2681 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2682 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2683 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2684 ** and is not honoring the locking protocol. There is a vanishingly small 2685 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2686 ** bad luck when there is lots of contention for the wal-index, but that 2687 ** possibility is so small that it can be safely neglected, we believe. 2688 ** 2689 ** On success, this routine obtains a read lock on 2690 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2691 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2692 ** that means the Wal does not hold any read lock. The reader must not 2693 ** access any database page that is modified by a WAL frame up to and 2694 ** including frame number aReadMark[pWal->readLock]. The reader will 2695 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2696 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2697 ** completely and get all content directly from the database file. 2698 ** If the useWal parameter is 1 then the WAL will never be ignored and 2699 ** this routine will always set pWal->readLock>0 on success. 2700 ** When the read transaction is completed, the caller must release the 2701 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2702 ** 2703 ** This routine uses the nBackfill and aReadMark[] fields of the header 2704 ** to select a particular WAL_READ_LOCK() that strives to let the 2705 ** checkpoint process do as much work as possible. This routine might 2706 ** update values of the aReadMark[] array in the header, but if it does 2707 ** so it takes care to hold an exclusive lock on the corresponding 2708 ** WAL_READ_LOCK() while changing values. 2709 */ 2710 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2711 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2712 u32 mxReadMark; /* Largest aReadMark[] value */ 2713 int mxI; /* Index of largest aReadMark[] value */ 2714 int i; /* Loop counter */ 2715 int rc = SQLITE_OK; /* Return code */ 2716 u32 mxFrame; /* Wal frame to lock to */ 2717 2718 assert( pWal->readLock<0 ); /* Not currently locked */ 2719 2720 /* useWal may only be set for read/write connections */ 2721 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2722 2723 /* Take steps to avoid spinning forever if there is a protocol error. 2724 ** 2725 ** Circumstances that cause a RETRY should only last for the briefest 2726 ** instances of time. No I/O or other system calls are done while the 2727 ** locks are held, so the locks should not be held for very long. But 2728 ** if we are unlucky, another process that is holding a lock might get 2729 ** paged out or take a page-fault that is time-consuming to resolve, 2730 ** during the few nanoseconds that it is holding the lock. In that case, 2731 ** it might take longer than normal for the lock to free. 2732 ** 2733 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2734 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2735 ** is more of a scheduler yield than an actual delay. But on the 10th 2736 ** an subsequent retries, the delays start becoming longer and longer, 2737 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2738 ** The total delay time before giving up is less than 10 seconds. 2739 */ 2740 if( cnt>5 ){ 2741 int nDelay = 1; /* Pause time in microseconds */ 2742 if( cnt>100 ){ 2743 VVA_ONLY( pWal->lockError = 1; ) 2744 return SQLITE_PROTOCOL; 2745 } 2746 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2747 sqlite3OsSleep(pWal->pVfs, nDelay); 2748 } 2749 2750 if( !useWal ){ 2751 assert( rc==SQLITE_OK ); 2752 if( pWal->bShmUnreliable==0 ){ 2753 rc = walIndexReadHdr(pWal, pChanged); 2754 } 2755 if( rc==SQLITE_BUSY ){ 2756 /* If there is not a recovery running in another thread or process 2757 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2758 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2759 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2760 ** would be technically correct. But the race is benign since with 2761 ** WAL_RETRY this routine will be called again and will probably be 2762 ** right on the second iteration. 2763 */ 2764 if( pWal->apWiData[0]==0 ){ 2765 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2766 ** We assume this is a transient condition, so return WAL_RETRY. The 2767 ** xShmMap() implementation used by the default unix and win32 VFS 2768 ** modules may return SQLITE_BUSY due to a race condition in the 2769 ** code that determines whether or not the shared-memory region 2770 ** must be zeroed before the requested page is returned. 2771 */ 2772 rc = WAL_RETRY; 2773 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2774 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2775 rc = WAL_RETRY; 2776 }else if( rc==SQLITE_BUSY ){ 2777 rc = SQLITE_BUSY_RECOVERY; 2778 } 2779 } 2780 if( rc!=SQLITE_OK ){ 2781 return rc; 2782 } 2783 else if( pWal->bShmUnreliable ){ 2784 return walBeginShmUnreliable(pWal, pChanged); 2785 } 2786 } 2787 2788 assert( pWal->nWiData>0 ); 2789 assert( pWal->apWiData[0]!=0 ); 2790 pInfo = walCkptInfo(pWal); 2791 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2792 #ifdef SQLITE_ENABLE_SNAPSHOT 2793 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2794 #endif 2795 ){ 2796 /* The WAL has been completely backfilled (or it is empty). 2797 ** and can be safely ignored. 2798 */ 2799 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2800 walShmBarrier(pWal); 2801 if( rc==SQLITE_OK ){ 2802 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2803 /* It is not safe to allow the reader to continue here if frames 2804 ** may have been appended to the log before READ_LOCK(0) was obtained. 2805 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2806 ** which implies that the database file contains a trustworthy 2807 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2808 ** happening, this is usually correct. 2809 ** 2810 ** However, if frames have been appended to the log (or if the log 2811 ** is wrapped and written for that matter) before the READ_LOCK(0) 2812 ** is obtained, that is not necessarily true. A checkpointer may 2813 ** have started to backfill the appended frames but crashed before 2814 ** it finished. Leaving a corrupt image in the database file. 2815 */ 2816 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2817 return WAL_RETRY; 2818 } 2819 pWal->readLock = 0; 2820 return SQLITE_OK; 2821 }else if( rc!=SQLITE_BUSY ){ 2822 return rc; 2823 } 2824 } 2825 2826 /* If we get this far, it means that the reader will want to use 2827 ** the WAL to get at content from recent commits. The job now is 2828 ** to select one of the aReadMark[] entries that is closest to 2829 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2830 */ 2831 mxReadMark = 0; 2832 mxI = 0; 2833 mxFrame = pWal->hdr.mxFrame; 2834 #ifdef SQLITE_ENABLE_SNAPSHOT 2835 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2836 mxFrame = pWal->pSnapshot->mxFrame; 2837 } 2838 #endif 2839 for(i=1; i<WAL_NREADER; i++){ 2840 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2841 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2842 assert( thisMark!=READMARK_NOT_USED ); 2843 mxReadMark = thisMark; 2844 mxI = i; 2845 } 2846 } 2847 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2848 && (mxReadMark<mxFrame || mxI==0) 2849 ){ 2850 for(i=1; i<WAL_NREADER; i++){ 2851 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2852 if( rc==SQLITE_OK ){ 2853 AtomicStore(pInfo->aReadMark+i,mxFrame); 2854 mxReadMark = mxFrame; 2855 mxI = i; 2856 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2857 break; 2858 }else if( rc!=SQLITE_BUSY ){ 2859 return rc; 2860 } 2861 } 2862 } 2863 if( mxI==0 ){ 2864 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2865 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2866 } 2867 2868 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2869 if( rc ){ 2870 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2871 } 2872 /* Now that the read-lock has been obtained, check that neither the 2873 ** value in the aReadMark[] array or the contents of the wal-index 2874 ** header have changed. 2875 ** 2876 ** It is necessary to check that the wal-index header did not change 2877 ** between the time it was read and when the shared-lock was obtained 2878 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2879 ** that the log file may have been wrapped by a writer, or that frames 2880 ** that occur later in the log than pWal->hdr.mxFrame may have been 2881 ** copied into the database by a checkpointer. If either of these things 2882 ** happened, then reading the database with the current value of 2883 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2884 ** instead. 2885 ** 2886 ** Before checking that the live wal-index header has not changed 2887 ** since it was read, set Wal.minFrame to the first frame in the wal 2888 ** file that has not yet been checkpointed. This client will not need 2889 ** to read any frames earlier than minFrame from the wal file - they 2890 ** can be safely read directly from the database file. 2891 ** 2892 ** Because a ShmBarrier() call is made between taking the copy of 2893 ** nBackfill and checking that the wal-header in shared-memory still 2894 ** matches the one cached in pWal->hdr, it is guaranteed that the 2895 ** checkpointer that set nBackfill was not working with a wal-index 2896 ** header newer than that cached in pWal->hdr. If it were, that could 2897 ** cause a problem. The checkpointer could omit to checkpoint 2898 ** a version of page X that lies before pWal->minFrame (call that version 2899 ** A) on the basis that there is a newer version (version B) of the same 2900 ** page later in the wal file. But if version B happens to like past 2901 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2902 ** that it can read version A from the database file. However, since 2903 ** we can guarantee that the checkpointer that set nBackfill could not 2904 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2905 */ 2906 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2907 walShmBarrier(pWal); 2908 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2909 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2910 ){ 2911 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2912 return WAL_RETRY; 2913 }else{ 2914 assert( mxReadMark<=pWal->hdr.mxFrame ); 2915 pWal->readLock = (i16)mxI; 2916 } 2917 return rc; 2918 } 2919 2920 #ifdef SQLITE_ENABLE_SNAPSHOT 2921 /* 2922 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2923 ** variable so that older snapshots can be accessed. To do this, loop 2924 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2925 ** comparing their content to the corresponding page with the database 2926 ** file, if any. Set nBackfillAttempted to the frame number of the 2927 ** first frame for which the wal file content matches the db file. 2928 ** 2929 ** This is only really safe if the file-system is such that any page 2930 ** writes made by earlier checkpointers were atomic operations, which 2931 ** is not always true. It is also possible that nBackfillAttempted 2932 ** may be left set to a value larger than expected, if a wal frame 2933 ** contains content that duplicate of an earlier version of the same 2934 ** page. 2935 ** 2936 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2937 ** error occurs. It is not an error if nBackfillAttempted cannot be 2938 ** decreased at all. 2939 */ 2940 int sqlite3WalSnapshotRecover(Wal *pWal){ 2941 int rc; 2942 2943 assert( pWal->readLock>=0 ); 2944 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2945 if( rc==SQLITE_OK ){ 2946 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2947 int szPage = (int)pWal->szPage; 2948 i64 szDb; /* Size of db file in bytes */ 2949 2950 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2951 if( rc==SQLITE_OK ){ 2952 void *pBuf1 = sqlite3_malloc(szPage); 2953 void *pBuf2 = sqlite3_malloc(szPage); 2954 if( pBuf1==0 || pBuf2==0 ){ 2955 rc = SQLITE_NOMEM; 2956 }else{ 2957 u32 i = pInfo->nBackfillAttempted; 2958 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2959 WalHashLoc sLoc; /* Hash table location */ 2960 u32 pgno; /* Page number in db file */ 2961 i64 iDbOff; /* Offset of db file entry */ 2962 i64 iWalOff; /* Offset of wal file entry */ 2963 2964 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2965 if( rc!=SQLITE_OK ) break; 2966 assert( i - sLoc.iZero - 1 >=0 ); 2967 pgno = sLoc.aPgno[i-sLoc.iZero-1]; 2968 iDbOff = (i64)(pgno-1) * szPage; 2969 2970 if( iDbOff+szPage<=szDb ){ 2971 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2972 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2973 2974 if( rc==SQLITE_OK ){ 2975 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2976 } 2977 2978 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2979 break; 2980 } 2981 } 2982 2983 pInfo->nBackfillAttempted = i-1; 2984 } 2985 } 2986 2987 sqlite3_free(pBuf1); 2988 sqlite3_free(pBuf2); 2989 } 2990 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2991 } 2992 2993 return rc; 2994 } 2995 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2996 2997 /* 2998 ** Begin a read transaction on the database. 2999 ** 3000 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 3001 ** it takes a snapshot of the state of the WAL and wal-index for the current 3002 ** instant in time. The current thread will continue to use this snapshot. 3003 ** Other threads might append new content to the WAL and wal-index but 3004 ** that extra content is ignored by the current thread. 3005 ** 3006 ** If the database contents have changes since the previous read 3007 ** transaction, then *pChanged is set to 1 before returning. The 3008 ** Pager layer will use this to know that its cache is stale and 3009 ** needs to be flushed. 3010 */ 3011 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 3012 int rc; /* Return code */ 3013 int cnt = 0; /* Number of TryBeginRead attempts */ 3014 #ifdef SQLITE_ENABLE_SNAPSHOT 3015 int bChanged = 0; 3016 WalIndexHdr *pSnapshot = pWal->pSnapshot; 3017 #endif 3018 3019 assert( pWal->ckptLock==0 ); 3020 3021 #ifdef SQLITE_ENABLE_SNAPSHOT 3022 if( pSnapshot ){ 3023 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 3024 bChanged = 1; 3025 } 3026 3027 /* It is possible that there is a checkpointer thread running 3028 ** concurrent with this code. If this is the case, it may be that the 3029 ** checkpointer has already determined that it will checkpoint 3030 ** snapshot X, where X is later in the wal file than pSnapshot, but 3031 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 3032 ** its intent. To avoid the race condition this leads to, ensure that 3033 ** there is no checkpointer process by taking a shared CKPT lock 3034 ** before checking pInfo->nBackfillAttempted. */ 3035 (void)walEnableBlocking(pWal); 3036 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3037 walDisableBlocking(pWal); 3038 3039 if( rc!=SQLITE_OK ){ 3040 return rc; 3041 } 3042 pWal->ckptLock = 1; 3043 } 3044 #endif 3045 3046 do{ 3047 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 3048 }while( rc==WAL_RETRY ); 3049 testcase( (rc&0xff)==SQLITE_BUSY ); 3050 testcase( (rc&0xff)==SQLITE_IOERR ); 3051 testcase( rc==SQLITE_PROTOCOL ); 3052 testcase( rc==SQLITE_OK ); 3053 3054 #ifdef SQLITE_ENABLE_SNAPSHOT 3055 if( rc==SQLITE_OK ){ 3056 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 3057 /* At this point the client has a lock on an aReadMark[] slot holding 3058 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 3059 ** is populated with the wal-index header corresponding to the head 3060 ** of the wal file. Verify that pSnapshot is still valid before 3061 ** continuing. Reasons why pSnapshot might no longer be valid: 3062 ** 3063 ** (1) The WAL file has been reset since the snapshot was taken. 3064 ** In this case, the salt will have changed. 3065 ** 3066 ** (2) A checkpoint as been attempted that wrote frames past 3067 ** pSnapshot->mxFrame into the database file. Note that the 3068 ** checkpoint need not have completed for this to cause problems. 3069 */ 3070 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3071 3072 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 3073 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 3074 3075 /* Check that the wal file has not been wrapped. Assuming that it has 3076 ** not, also check that no checkpointer has attempted to checkpoint any 3077 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 3078 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 3079 ** with *pSnapshot and set *pChanged as appropriate for opening the 3080 ** snapshot. */ 3081 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3082 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 3083 ){ 3084 assert( pWal->readLock>0 ); 3085 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 3086 *pChanged = bChanged; 3087 }else{ 3088 rc = SQLITE_ERROR_SNAPSHOT; 3089 } 3090 3091 /* A client using a non-current snapshot may not ignore any frames 3092 ** from the start of the wal file. This is because, for a system 3093 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 3094 ** have omitted to checkpoint a frame earlier than minFrame in 3095 ** the file because there exists a frame after iSnapshot that 3096 ** is the same database page. */ 3097 pWal->minFrame = 1; 3098 3099 if( rc!=SQLITE_OK ){ 3100 sqlite3WalEndReadTransaction(pWal); 3101 } 3102 } 3103 } 3104 3105 /* Release the shared CKPT lock obtained above. */ 3106 if( pWal->ckptLock ){ 3107 assert( pSnapshot ); 3108 walUnlockShared(pWal, WAL_CKPT_LOCK); 3109 pWal->ckptLock = 0; 3110 } 3111 #endif 3112 return rc; 3113 } 3114 3115 /* 3116 ** Finish with a read transaction. All this does is release the 3117 ** read-lock. 3118 */ 3119 void sqlite3WalEndReadTransaction(Wal *pWal){ 3120 sqlite3WalEndWriteTransaction(pWal); 3121 if( pWal->readLock>=0 ){ 3122 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3123 pWal->readLock = -1; 3124 } 3125 } 3126 3127 /* 3128 ** Search the wal file for page pgno. If found, set *piRead to the frame that 3129 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 3130 ** to zero. 3131 ** 3132 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 3133 ** error does occur, the final value of *piRead is undefined. 3134 */ 3135 int sqlite3WalFindFrame( 3136 Wal *pWal, /* WAL handle */ 3137 Pgno pgno, /* Database page number to read data for */ 3138 u32 *piRead /* OUT: Frame number (or zero) */ 3139 ){ 3140 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 3141 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 3142 int iHash; /* Used to loop through N hash tables */ 3143 int iMinHash; 3144 3145 /* This routine is only be called from within a read transaction. */ 3146 assert( pWal->readLock>=0 || pWal->lockError ); 3147 3148 /* If the "last page" field of the wal-index header snapshot is 0, then 3149 ** no data will be read from the wal under any circumstances. Return early 3150 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3151 ** then the WAL is ignored by the reader so return early, as if the 3152 ** WAL were empty. 3153 */ 3154 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3155 *piRead = 0; 3156 return SQLITE_OK; 3157 } 3158 3159 /* Search the hash table or tables for an entry matching page number 3160 ** pgno. Each iteration of the following for() loop searches one 3161 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3162 ** 3163 ** This code might run concurrently to the code in walIndexAppend() 3164 ** that adds entries to the wal-index (and possibly to this hash 3165 ** table). This means the value just read from the hash 3166 ** slot (aHash[iKey]) may have been added before or after the 3167 ** current read transaction was opened. Values added after the 3168 ** read transaction was opened may have been written incorrectly - 3169 ** i.e. these slots may contain garbage data. However, we assume 3170 ** that any slots written before the current read transaction was 3171 ** opened remain unmodified. 3172 ** 3173 ** For the reasons above, the if(...) condition featured in the inner 3174 ** loop of the following block is more stringent that would be required 3175 ** if we had exclusive access to the hash-table: 3176 ** 3177 ** (aPgno[iFrame]==pgno): 3178 ** This condition filters out normal hash-table collisions. 3179 ** 3180 ** (iFrame<=iLast): 3181 ** This condition filters out entries that were added to the hash 3182 ** table after the current read-transaction had started. 3183 */ 3184 iMinHash = walFramePage(pWal->minFrame); 3185 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3186 WalHashLoc sLoc; /* Hash table location */ 3187 int iKey; /* Hash slot index */ 3188 int nCollide; /* Number of hash collisions remaining */ 3189 int rc; /* Error code */ 3190 u32 iH; 3191 3192 rc = walHashGet(pWal, iHash, &sLoc); 3193 if( rc!=SQLITE_OK ){ 3194 return rc; 3195 } 3196 nCollide = HASHTABLE_NSLOT; 3197 iKey = walHash(pgno); 3198 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3199 u32 iFrame = iH + sLoc.iZero; 3200 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ 3201 assert( iFrame>iRead || CORRUPT_DB ); 3202 iRead = iFrame; 3203 } 3204 if( (nCollide--)==0 ){ 3205 return SQLITE_CORRUPT_BKPT; 3206 } 3207 iKey = walNextHash(iKey); 3208 } 3209 if( iRead ) break; 3210 } 3211 3212 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3213 /* If expensive assert() statements are available, do a linear search 3214 ** of the wal-index file content. Make sure the results agree with the 3215 ** result obtained using the hash indexes above. */ 3216 { 3217 u32 iRead2 = 0; 3218 u32 iTest; 3219 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3220 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3221 if( walFramePgno(pWal, iTest)==pgno ){ 3222 iRead2 = iTest; 3223 break; 3224 } 3225 } 3226 assert( iRead==iRead2 ); 3227 } 3228 #endif 3229 3230 *piRead = iRead; 3231 return SQLITE_OK; 3232 } 3233 3234 /* 3235 ** Read the contents of frame iRead from the wal file into buffer pOut 3236 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3237 ** error code otherwise. 3238 */ 3239 int sqlite3WalReadFrame( 3240 Wal *pWal, /* WAL handle */ 3241 u32 iRead, /* Frame to read */ 3242 int nOut, /* Size of buffer pOut in bytes */ 3243 u8 *pOut /* Buffer to write page data to */ 3244 ){ 3245 int sz; 3246 i64 iOffset; 3247 sz = pWal->hdr.szPage; 3248 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3249 testcase( sz<=32768 ); 3250 testcase( sz>=65536 ); 3251 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3252 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3253 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3254 } 3255 3256 /* 3257 ** Return the size of the database in pages (or zero, if unknown). 3258 */ 3259 Pgno sqlite3WalDbsize(Wal *pWal){ 3260 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3261 return pWal->hdr.nPage; 3262 } 3263 return 0; 3264 } 3265 3266 3267 /* 3268 ** This function starts a write transaction on the WAL. 3269 ** 3270 ** A read transaction must have already been started by a prior call 3271 ** to sqlite3WalBeginReadTransaction(). 3272 ** 3273 ** If another thread or process has written into the database since 3274 ** the read transaction was started, then it is not possible for this 3275 ** thread to write as doing so would cause a fork. So this routine 3276 ** returns SQLITE_BUSY in that case and no write transaction is started. 3277 ** 3278 ** There can only be a single writer active at a time. 3279 */ 3280 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3281 int rc; 3282 3283 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3284 /* If the write-lock is already held, then it was obtained before the 3285 ** read-transaction was even opened, making this call a no-op. 3286 ** Return early. */ 3287 if( pWal->writeLock ){ 3288 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3289 return SQLITE_OK; 3290 } 3291 #endif 3292 3293 /* Cannot start a write transaction without first holding a read 3294 ** transaction. */ 3295 assert( pWal->readLock>=0 ); 3296 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3297 3298 if( pWal->readOnly ){ 3299 return SQLITE_READONLY; 3300 } 3301 3302 /* Only one writer allowed at a time. Get the write lock. Return 3303 ** SQLITE_BUSY if unable. 3304 */ 3305 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3306 if( rc ){ 3307 return rc; 3308 } 3309 pWal->writeLock = 1; 3310 3311 /* If another connection has written to the database file since the 3312 ** time the read transaction on this connection was started, then 3313 ** the write is disallowed. 3314 */ 3315 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3316 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3317 pWal->writeLock = 0; 3318 rc = SQLITE_BUSY_SNAPSHOT; 3319 } 3320 3321 return rc; 3322 } 3323 3324 /* 3325 ** End a write transaction. The commit has already been done. This 3326 ** routine merely releases the lock. 3327 */ 3328 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3329 if( pWal->writeLock ){ 3330 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3331 pWal->writeLock = 0; 3332 pWal->iReCksum = 0; 3333 pWal->truncateOnCommit = 0; 3334 } 3335 return SQLITE_OK; 3336 } 3337 3338 /* 3339 ** If any data has been written (but not committed) to the log file, this 3340 ** function moves the write-pointer back to the start of the transaction. 3341 ** 3342 ** Additionally, the callback function is invoked for each frame written 3343 ** to the WAL since the start of the transaction. If the callback returns 3344 ** other than SQLITE_OK, it is not invoked again and the error code is 3345 ** returned to the caller. 3346 ** 3347 ** Otherwise, if the callback function does not return an error, this 3348 ** function returns SQLITE_OK. 3349 */ 3350 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3351 int rc = SQLITE_OK; 3352 if( ALWAYS(pWal->writeLock) ){ 3353 Pgno iMax = pWal->hdr.mxFrame; 3354 Pgno iFrame; 3355 3356 /* Restore the clients cache of the wal-index header to the state it 3357 ** was in before the client began writing to the database. 3358 */ 3359 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3360 3361 for(iFrame=pWal->hdr.mxFrame+1; 3362 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3363 iFrame++ 3364 ){ 3365 /* This call cannot fail. Unless the page for which the page number 3366 ** is passed as the second argument is (a) in the cache and 3367 ** (b) has an outstanding reference, then xUndo is either a no-op 3368 ** (if (a) is false) or simply expels the page from the cache (if (b) 3369 ** is false). 3370 ** 3371 ** If the upper layer is doing a rollback, it is guaranteed that there 3372 ** are no outstanding references to any page other than page 1. And 3373 ** page 1 is never written to the log until the transaction is 3374 ** committed. As a result, the call to xUndo may not fail. 3375 */ 3376 assert( walFramePgno(pWal, iFrame)!=1 ); 3377 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3378 } 3379 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3380 } 3381 return rc; 3382 } 3383 3384 /* 3385 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3386 ** values. This function populates the array with values required to 3387 ** "rollback" the write position of the WAL handle back to the current 3388 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3389 */ 3390 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3391 assert( pWal->writeLock ); 3392 aWalData[0] = pWal->hdr.mxFrame; 3393 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3394 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3395 aWalData[3] = pWal->nCkpt; 3396 } 3397 3398 /* 3399 ** Move the write position of the WAL back to the point identified by 3400 ** the values in the aWalData[] array. aWalData must point to an array 3401 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3402 ** by a call to WalSavepoint(). 3403 */ 3404 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3405 int rc = SQLITE_OK; 3406 3407 assert( pWal->writeLock ); 3408 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3409 3410 if( aWalData[3]!=pWal->nCkpt ){ 3411 /* This savepoint was opened immediately after the write-transaction 3412 ** was started. Right after that, the writer decided to wrap around 3413 ** to the start of the log. Update the savepoint values to match. 3414 */ 3415 aWalData[0] = 0; 3416 aWalData[3] = pWal->nCkpt; 3417 } 3418 3419 if( aWalData[0]<pWal->hdr.mxFrame ){ 3420 pWal->hdr.mxFrame = aWalData[0]; 3421 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3422 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3423 walCleanupHash(pWal); 3424 } 3425 3426 return rc; 3427 } 3428 3429 /* 3430 ** This function is called just before writing a set of frames to the log 3431 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3432 ** to the current log file, it is possible to overwrite the start of the 3433 ** existing log file with the new frames (i.e. "reset" the log). If so, 3434 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3435 ** unchanged. 3436 ** 3437 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3438 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3439 ** if an error occurs. 3440 */ 3441 static int walRestartLog(Wal *pWal){ 3442 int rc = SQLITE_OK; 3443 int cnt; 3444 3445 if( pWal->readLock==0 ){ 3446 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3447 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3448 if( pInfo->nBackfill>0 ){ 3449 u32 salt1; 3450 sqlite3_randomness(4, &salt1); 3451 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3452 if( rc==SQLITE_OK ){ 3453 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3454 ** readers are currently using the WAL), then the transactions 3455 ** frames will overwrite the start of the existing log. Update the 3456 ** wal-index header to reflect this. 3457 ** 3458 ** In theory it would be Ok to update the cache of the header only 3459 ** at this point. But updating the actual wal-index header is also 3460 ** safe and means there is no special case for sqlite3WalUndo() 3461 ** to handle if this transaction is rolled back. */ 3462 walRestartHdr(pWal, salt1); 3463 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3464 }else if( rc!=SQLITE_BUSY ){ 3465 return rc; 3466 } 3467 } 3468 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3469 pWal->readLock = -1; 3470 cnt = 0; 3471 do{ 3472 int notUsed; 3473 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3474 }while( rc==WAL_RETRY ); 3475 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3476 testcase( (rc&0xff)==SQLITE_IOERR ); 3477 testcase( rc==SQLITE_PROTOCOL ); 3478 testcase( rc==SQLITE_OK ); 3479 } 3480 return rc; 3481 } 3482 3483 /* 3484 ** Information about the current state of the WAL file and where 3485 ** the next fsync should occur - passed from sqlite3WalFrames() into 3486 ** walWriteToLog(). 3487 */ 3488 typedef struct WalWriter { 3489 Wal *pWal; /* The complete WAL information */ 3490 sqlite3_file *pFd; /* The WAL file to which we write */ 3491 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3492 int syncFlags; /* Flags for the fsync */ 3493 int szPage; /* Size of one page */ 3494 } WalWriter; 3495 3496 /* 3497 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3498 ** Do a sync when crossing the p->iSyncPoint boundary. 3499 ** 3500 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3501 ** first write the part before iSyncPoint, then sync, then write the 3502 ** rest. 3503 */ 3504 static int walWriteToLog( 3505 WalWriter *p, /* WAL to write to */ 3506 void *pContent, /* Content to be written */ 3507 int iAmt, /* Number of bytes to write */ 3508 sqlite3_int64 iOffset /* Start writing at this offset */ 3509 ){ 3510 int rc; 3511 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3512 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3513 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3514 if( rc ) return rc; 3515 iOffset += iFirstAmt; 3516 iAmt -= iFirstAmt; 3517 pContent = (void*)(iFirstAmt + (char*)pContent); 3518 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3519 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3520 if( iAmt==0 || rc ) return rc; 3521 } 3522 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3523 return rc; 3524 } 3525 3526 /* 3527 ** Write out a single frame of the WAL 3528 */ 3529 static int walWriteOneFrame( 3530 WalWriter *p, /* Where to write the frame */ 3531 PgHdr *pPage, /* The page of the frame to be written */ 3532 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3533 sqlite3_int64 iOffset /* Byte offset at which to write */ 3534 ){ 3535 int rc; /* Result code from subfunctions */ 3536 void *pData; /* Data actually written */ 3537 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3538 pData = pPage->pData; 3539 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3540 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3541 if( rc ) return rc; 3542 /* Write the page data */ 3543 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3544 return rc; 3545 } 3546 3547 /* 3548 ** This function is called as part of committing a transaction within which 3549 ** one or more frames have been overwritten. It updates the checksums for 3550 ** all frames written to the wal file by the current transaction starting 3551 ** with the earliest to have been overwritten. 3552 ** 3553 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3554 */ 3555 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3556 const int szPage = pWal->szPage;/* Database page size */ 3557 int rc = SQLITE_OK; /* Return code */ 3558 u8 *aBuf; /* Buffer to load data from wal file into */ 3559 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3560 u32 iRead; /* Next frame to read from wal file */ 3561 i64 iCksumOff; 3562 3563 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3564 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3565 3566 /* Find the checksum values to use as input for the recalculating the 3567 ** first checksum. If the first frame is frame 1 (implying that the current 3568 ** transaction restarted the wal file), these values must be read from the 3569 ** wal-file header. Otherwise, read them from the frame header of the 3570 ** previous frame. */ 3571 assert( pWal->iReCksum>0 ); 3572 if( pWal->iReCksum==1 ){ 3573 iCksumOff = 24; 3574 }else{ 3575 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3576 } 3577 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3578 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3579 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3580 3581 iRead = pWal->iReCksum; 3582 pWal->iReCksum = 0; 3583 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3584 i64 iOff = walFrameOffset(iRead, szPage); 3585 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3586 if( rc==SQLITE_OK ){ 3587 u32 iPgno, nDbSize; 3588 iPgno = sqlite3Get4byte(aBuf); 3589 nDbSize = sqlite3Get4byte(&aBuf[4]); 3590 3591 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3592 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3593 } 3594 } 3595 3596 sqlite3_free(aBuf); 3597 return rc; 3598 } 3599 3600 /* 3601 ** Write a set of frames to the log. The caller must hold the write-lock 3602 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3603 */ 3604 int sqlite3WalFrames( 3605 Wal *pWal, /* Wal handle to write to */ 3606 int szPage, /* Database page-size in bytes */ 3607 PgHdr *pList, /* List of dirty pages to write */ 3608 Pgno nTruncate, /* Database size after this commit */ 3609 int isCommit, /* True if this is a commit */ 3610 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3611 ){ 3612 int rc; /* Used to catch return codes */ 3613 u32 iFrame; /* Next frame address */ 3614 PgHdr *p; /* Iterator to run through pList with. */ 3615 PgHdr *pLast = 0; /* Last frame in list */ 3616 int nExtra = 0; /* Number of extra copies of last page */ 3617 int szFrame; /* The size of a single frame */ 3618 i64 iOffset; /* Next byte to write in WAL file */ 3619 WalWriter w; /* The writer */ 3620 u32 iFirst = 0; /* First frame that may be overwritten */ 3621 WalIndexHdr *pLive; /* Pointer to shared header */ 3622 3623 assert( pList ); 3624 assert( pWal->writeLock ); 3625 3626 /* If this frame set completes a transaction, then nTruncate>0. If 3627 ** nTruncate==0 then this frame set does not complete the transaction. */ 3628 assert( (isCommit!=0)==(nTruncate!=0) ); 3629 3630 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3631 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3632 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3633 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3634 } 3635 #endif 3636 3637 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3638 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3639 iFirst = pLive->mxFrame+1; 3640 } 3641 3642 /* See if it is possible to write these frames into the start of the 3643 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3644 */ 3645 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3646 return rc; 3647 } 3648 3649 /* If this is the first frame written into the log, write the WAL 3650 ** header to the start of the WAL file. See comments at the top of 3651 ** this source file for a description of the WAL header format. 3652 */ 3653 iFrame = pWal->hdr.mxFrame; 3654 if( iFrame==0 ){ 3655 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3656 u32 aCksum[2]; /* Checksum for wal-header */ 3657 3658 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3659 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3660 sqlite3Put4byte(&aWalHdr[8], szPage); 3661 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3662 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3663 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3664 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3665 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3666 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3667 3668 pWal->szPage = szPage; 3669 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3670 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3671 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3672 pWal->truncateOnCommit = 1; 3673 3674 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3675 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3676 if( rc!=SQLITE_OK ){ 3677 return rc; 3678 } 3679 3680 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3681 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3682 ** an out-of-order write following a WAL restart could result in 3683 ** database corruption. See the ticket: 3684 ** 3685 ** https://sqlite.org/src/info/ff5be73dee 3686 */ 3687 if( pWal->syncHeader ){ 3688 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3689 if( rc ) return rc; 3690 } 3691 } 3692 assert( (int)pWal->szPage==szPage ); 3693 3694 /* Setup information needed to write frames into the WAL */ 3695 w.pWal = pWal; 3696 w.pFd = pWal->pWalFd; 3697 w.iSyncPoint = 0; 3698 w.syncFlags = sync_flags; 3699 w.szPage = szPage; 3700 iOffset = walFrameOffset(iFrame+1, szPage); 3701 szFrame = szPage + WAL_FRAME_HDRSIZE; 3702 3703 /* Write all frames into the log file exactly once */ 3704 for(p=pList; p; p=p->pDirty){ 3705 int nDbSize; /* 0 normally. Positive == commit flag */ 3706 3707 /* Check if this page has already been written into the wal file by 3708 ** the current transaction. If so, overwrite the existing frame and 3709 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3710 ** checksums must be recomputed when the transaction is committed. */ 3711 if( iFirst && (p->pDirty || isCommit==0) ){ 3712 u32 iWrite = 0; 3713 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3714 assert( rc==SQLITE_OK || iWrite==0 ); 3715 if( iWrite>=iFirst ){ 3716 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3717 void *pData; 3718 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3719 pWal->iReCksum = iWrite; 3720 } 3721 pData = p->pData; 3722 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3723 if( rc ) return rc; 3724 p->flags &= ~PGHDR_WAL_APPEND; 3725 continue; 3726 } 3727 } 3728 3729 iFrame++; 3730 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3731 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3732 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3733 if( rc ) return rc; 3734 pLast = p; 3735 iOffset += szFrame; 3736 p->flags |= PGHDR_WAL_APPEND; 3737 } 3738 3739 /* Recalculate checksums within the wal file if required. */ 3740 if( isCommit && pWal->iReCksum ){ 3741 rc = walRewriteChecksums(pWal, iFrame); 3742 if( rc ) return rc; 3743 } 3744 3745 /* If this is the end of a transaction, then we might need to pad 3746 ** the transaction and/or sync the WAL file. 3747 ** 3748 ** Padding and syncing only occur if this set of frames complete a 3749 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3750 ** or synchronous==OFF, then no padding or syncing are needed. 3751 ** 3752 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3753 ** needed and only the sync is done. If padding is needed, then the 3754 ** final frame is repeated (with its commit mark) until the next sector 3755 ** boundary is crossed. Only the part of the WAL prior to the last 3756 ** sector boundary is synced; the part of the last frame that extends 3757 ** past the sector boundary is written after the sync. 3758 */ 3759 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3760 int bSync = 1; 3761 if( pWal->padToSectorBoundary ){ 3762 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3763 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3764 bSync = (w.iSyncPoint==iOffset); 3765 testcase( bSync ); 3766 while( iOffset<w.iSyncPoint ){ 3767 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3768 if( rc ) return rc; 3769 iOffset += szFrame; 3770 nExtra++; 3771 assert( pLast!=0 ); 3772 } 3773 } 3774 if( bSync ){ 3775 assert( rc==SQLITE_OK ); 3776 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3777 } 3778 } 3779 3780 /* If this frame set completes the first transaction in the WAL and 3781 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3782 ** journal size limit, if possible. 3783 */ 3784 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3785 i64 sz = pWal->mxWalSize; 3786 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3787 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3788 } 3789 walLimitSize(pWal, sz); 3790 pWal->truncateOnCommit = 0; 3791 } 3792 3793 /* Append data to the wal-index. It is not necessary to lock the 3794 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3795 ** guarantees that there are no other writers, and no data that may 3796 ** be in use by existing readers is being overwritten. 3797 */ 3798 iFrame = pWal->hdr.mxFrame; 3799 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3800 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3801 iFrame++; 3802 rc = walIndexAppend(pWal, iFrame, p->pgno); 3803 } 3804 assert( pLast!=0 || nExtra==0 ); 3805 while( rc==SQLITE_OK && nExtra>0 ){ 3806 iFrame++; 3807 nExtra--; 3808 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3809 } 3810 3811 if( rc==SQLITE_OK ){ 3812 /* Update the private copy of the header. */ 3813 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3814 testcase( szPage<=32768 ); 3815 testcase( szPage>=65536 ); 3816 pWal->hdr.mxFrame = iFrame; 3817 if( isCommit ){ 3818 pWal->hdr.iChange++; 3819 pWal->hdr.nPage = nTruncate; 3820 } 3821 /* If this is a commit, update the wal-index header too. */ 3822 if( isCommit ){ 3823 walIndexWriteHdr(pWal); 3824 pWal->iCallback = iFrame; 3825 } 3826 } 3827 3828 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3829 return rc; 3830 } 3831 3832 /* 3833 ** This routine is called to implement sqlite3_wal_checkpoint() and 3834 ** related interfaces. 3835 ** 3836 ** Obtain a CHECKPOINT lock and then backfill as much information as 3837 ** we can from WAL into the database. 3838 ** 3839 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3840 ** callback. In this case this function runs a blocking checkpoint. 3841 */ 3842 int sqlite3WalCheckpoint( 3843 Wal *pWal, /* Wal connection */ 3844 sqlite3 *db, /* Check this handle's interrupt flag */ 3845 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3846 int (*xBusy)(void*), /* Function to call when busy */ 3847 void *pBusyArg, /* Context argument for xBusyHandler */ 3848 int sync_flags, /* Flags to sync db file with (or 0) */ 3849 int nBuf, /* Size of temporary buffer */ 3850 u8 *zBuf, /* Temporary buffer to use */ 3851 int *pnLog, /* OUT: Number of frames in WAL */ 3852 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3853 ){ 3854 int rc; /* Return code */ 3855 int isChanged = 0; /* True if a new wal-index header is loaded */ 3856 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3857 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3858 3859 assert( pWal->ckptLock==0 ); 3860 assert( pWal->writeLock==0 ); 3861 3862 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3863 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3864 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3865 3866 if( pWal->readOnly ) return SQLITE_READONLY; 3867 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3868 3869 /* Enable blocking locks, if possible. If blocking locks are successfully 3870 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3871 sqlite3WalDb(pWal, db); 3872 (void)walEnableBlocking(pWal); 3873 3874 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3875 ** "checkpoint" lock on the database file. 3876 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3877 ** checkpoint operation at the same time, the lock cannot be obtained and 3878 ** SQLITE_BUSY is returned. 3879 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3880 ** it will not be invoked in this case. 3881 */ 3882 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3883 testcase( rc==SQLITE_BUSY ); 3884 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3885 if( rc==SQLITE_OK ){ 3886 pWal->ckptLock = 1; 3887 3888 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3889 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3890 ** file. 3891 ** 3892 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3893 ** immediately, and a busy-handler is configured, it is invoked and the 3894 ** writer lock retried until either the busy-handler returns 0 or the 3895 ** lock is successfully obtained. 3896 */ 3897 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3898 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3899 if( rc==SQLITE_OK ){ 3900 pWal->writeLock = 1; 3901 }else if( rc==SQLITE_BUSY ){ 3902 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3903 xBusy2 = 0; 3904 rc = SQLITE_OK; 3905 } 3906 } 3907 } 3908 3909 3910 /* Read the wal-index header. */ 3911 if( rc==SQLITE_OK ){ 3912 walDisableBlocking(pWal); 3913 rc = walIndexReadHdr(pWal, &isChanged); 3914 (void)walEnableBlocking(pWal); 3915 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3916 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3917 } 3918 } 3919 3920 /* Copy data from the log to the database file. */ 3921 if( rc==SQLITE_OK ){ 3922 3923 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3924 rc = SQLITE_CORRUPT_BKPT; 3925 }else{ 3926 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3927 } 3928 3929 /* If no error occurred, set the output variables. */ 3930 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3931 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3932 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3933 } 3934 } 3935 3936 if( isChanged ){ 3937 /* If a new wal-index header was loaded before the checkpoint was 3938 ** performed, then the pager-cache associated with pWal is now 3939 ** out of date. So zero the cached wal-index header to ensure that 3940 ** next time the pager opens a snapshot on this database it knows that 3941 ** the cache needs to be reset. 3942 */ 3943 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3944 } 3945 3946 walDisableBlocking(pWal); 3947 sqlite3WalDb(pWal, 0); 3948 3949 /* Release the locks. */ 3950 sqlite3WalEndWriteTransaction(pWal); 3951 if( pWal->ckptLock ){ 3952 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3953 pWal->ckptLock = 0; 3954 } 3955 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3956 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3957 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3958 #endif 3959 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3960 } 3961 3962 /* Return the value to pass to a sqlite3_wal_hook callback, the 3963 ** number of frames in the WAL at the point of the last commit since 3964 ** sqlite3WalCallback() was called. If no commits have occurred since 3965 ** the last call, then return 0. 3966 */ 3967 int sqlite3WalCallback(Wal *pWal){ 3968 u32 ret = 0; 3969 if( pWal ){ 3970 ret = pWal->iCallback; 3971 pWal->iCallback = 0; 3972 } 3973 return (int)ret; 3974 } 3975 3976 /* 3977 ** This function is called to change the WAL subsystem into or out 3978 ** of locking_mode=EXCLUSIVE. 3979 ** 3980 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3981 ** into locking_mode=NORMAL. This means that we must acquire a lock 3982 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3983 ** or if the acquisition of the lock fails, then return 0. If the 3984 ** transition out of exclusive-mode is successful, return 1. This 3985 ** operation must occur while the pager is still holding the exclusive 3986 ** lock on the main database file. 3987 ** 3988 ** If op is one, then change from locking_mode=NORMAL into 3989 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3990 ** be released. Return 1 if the transition is made and 0 if the 3991 ** WAL is already in exclusive-locking mode - meaning that this 3992 ** routine is a no-op. The pager must already hold the exclusive lock 3993 ** on the main database file before invoking this operation. 3994 ** 3995 ** If op is negative, then do a dry-run of the op==1 case but do 3996 ** not actually change anything. The pager uses this to see if it 3997 ** should acquire the database exclusive lock prior to invoking 3998 ** the op==1 case. 3999 */ 4000 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 4001 int rc; 4002 assert( pWal->writeLock==0 ); 4003 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 4004 4005 /* pWal->readLock is usually set, but might be -1 if there was a 4006 ** prior error while attempting to acquire are read-lock. This cannot 4007 ** happen if the connection is actually in exclusive mode (as no xShmLock 4008 ** locks are taken in this case). Nor should the pager attempt to 4009 ** upgrade to exclusive-mode following such an error. 4010 */ 4011 assert( pWal->readLock>=0 || pWal->lockError ); 4012 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 4013 4014 if( op==0 ){ 4015 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 4016 pWal->exclusiveMode = WAL_NORMAL_MODE; 4017 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 4018 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 4019 } 4020 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 4021 }else{ 4022 /* Already in locking_mode=NORMAL */ 4023 rc = 0; 4024 } 4025 }else if( op>0 ){ 4026 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 4027 assert( pWal->readLock>=0 ); 4028 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 4029 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 4030 rc = 1; 4031 }else{ 4032 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 4033 } 4034 return rc; 4035 } 4036 4037 /* 4038 ** Return true if the argument is non-NULL and the WAL module is using 4039 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 4040 ** WAL module is using shared-memory, return false. 4041 */ 4042 int sqlite3WalHeapMemory(Wal *pWal){ 4043 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 4044 } 4045 4046 #ifdef SQLITE_ENABLE_SNAPSHOT 4047 /* Create a snapshot object. The content of a snapshot is opaque to 4048 ** every other subsystem, so the WAL module can put whatever it needs 4049 ** in the object. 4050 */ 4051 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 4052 int rc = SQLITE_OK; 4053 WalIndexHdr *pRet; 4054 static const u32 aZero[4] = { 0, 0, 0, 0 }; 4055 4056 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 4057 4058 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 4059 *ppSnapshot = 0; 4060 return SQLITE_ERROR; 4061 } 4062 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 4063 if( pRet==0 ){ 4064 rc = SQLITE_NOMEM_BKPT; 4065 }else{ 4066 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 4067 *ppSnapshot = (sqlite3_snapshot*)pRet; 4068 } 4069 4070 return rc; 4071 } 4072 4073 /* Try to open on pSnapshot when the next read-transaction starts 4074 */ 4075 void sqlite3WalSnapshotOpen( 4076 Wal *pWal, 4077 sqlite3_snapshot *pSnapshot 4078 ){ 4079 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 4080 } 4081 4082 /* 4083 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 4084 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 4085 */ 4086 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 4087 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 4088 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 4089 4090 /* aSalt[0] is a copy of the value stored in the wal file header. It 4091 ** is incremented each time the wal file is restarted. */ 4092 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 4093 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 4094 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 4095 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 4096 return 0; 4097 } 4098 4099 /* 4100 ** The caller currently has a read transaction open on the database. 4101 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 4102 ** checks if the snapshot passed as the second argument is still 4103 ** available. If so, SQLITE_OK is returned. 4104 ** 4105 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 4106 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 4107 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 4108 ** lock is released before returning. 4109 */ 4110 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 4111 int rc; 4112 rc = walLockShared(pWal, WAL_CKPT_LOCK); 4113 if( rc==SQLITE_OK ){ 4114 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 4115 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 4116 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 4117 ){ 4118 rc = SQLITE_ERROR_SNAPSHOT; 4119 walUnlockShared(pWal, WAL_CKPT_LOCK); 4120 } 4121 } 4122 return rc; 4123 } 4124 4125 /* 4126 ** Release a lock obtained by an earlier successful call to 4127 ** sqlite3WalSnapshotCheck(). 4128 */ 4129 void sqlite3WalSnapshotUnlock(Wal *pWal){ 4130 assert( pWal ); 4131 walUnlockShared(pWal, WAL_CKPT_LOCK); 4132 } 4133 4134 4135 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4136 4137 #ifdef SQLITE_ENABLE_ZIPVFS 4138 /* 4139 ** If the argument is not NULL, it points to a Wal object that holds a 4140 ** read-lock. This function returns the database page-size if it is known, 4141 ** or zero if it is not (or if pWal is NULL). 4142 */ 4143 int sqlite3WalFramesize(Wal *pWal){ 4144 assert( pWal==0 || pWal->readLock>=0 ); 4145 return (pWal ? pWal->szPage : 0); 4146 } 4147 #endif 4148 4149 /* Return the sqlite3_file object for the WAL file 4150 */ 4151 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4152 return pWal->pWalFd; 4153 } 4154 4155 #endif /* #ifndef SQLITE_OMIT_WAL */ 4156