xref: /sqlite-3.40.0/src/wal.c (revision 4e8ad3bc)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   WalIndexHdr hdr;           /* Wal-index header for current transaction */
459   u32 minFrame;              /* Ignore wal frames before this one */
460   u32 iReCksum;              /* On commit, recalculate checksums from here */
461   const char *zWalName;      /* Name of WAL file */
462   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
463 #ifdef SQLITE_DEBUG
464   u8 lockError;              /* True if a locking error has occurred */
465 #endif
466 #ifdef SQLITE_ENABLE_SNAPSHOT
467   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
468 #endif
469 };
470 
471 /*
472 ** Candidate values for Wal.exclusiveMode.
473 */
474 #define WAL_NORMAL_MODE     0
475 #define WAL_EXCLUSIVE_MODE  1
476 #define WAL_HEAPMEMORY_MODE 2
477 
478 /*
479 ** Possible values for WAL.readOnly
480 */
481 #define WAL_RDWR        0    /* Normal read/write connection */
482 #define WAL_RDONLY      1    /* The WAL file is readonly */
483 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
484 
485 /*
486 ** Each page of the wal-index mapping contains a hash-table made up of
487 ** an array of HASHTABLE_NSLOT elements of the following type.
488 */
489 typedef u16 ht_slot;
490 
491 /*
492 ** This structure is used to implement an iterator that loops through
493 ** all frames in the WAL in database page order. Where two or more frames
494 ** correspond to the same database page, the iterator visits only the
495 ** frame most recently written to the WAL (in other words, the frame with
496 ** the largest index).
497 **
498 ** The internals of this structure are only accessed by:
499 **
500 **   walIteratorInit() - Create a new iterator,
501 **   walIteratorNext() - Step an iterator,
502 **   walIteratorFree() - Free an iterator.
503 **
504 ** This functionality is used by the checkpoint code (see walCheckpoint()).
505 */
506 struct WalIterator {
507   int iPrior;                     /* Last result returned from the iterator */
508   int nSegment;                   /* Number of entries in aSegment[] */
509   struct WalSegment {
510     int iNext;                    /* Next slot in aIndex[] not yet returned */
511     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
512     u32 *aPgno;                   /* Array of page numbers. */
513     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
514     int iZero;                    /* Frame number associated with aPgno[0] */
515   } aSegment[1];                  /* One for every 32KB page in the wal-index */
516 };
517 
518 /*
519 ** Define the parameters of the hash tables in the wal-index file. There
520 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
521 ** wal-index.
522 **
523 ** Changing any of these constants will alter the wal-index format and
524 ** create incompatibilities.
525 */
526 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
527 #define HASHTABLE_HASH_1     383                  /* Should be prime */
528 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
529 
530 /*
531 ** The block of page numbers associated with the first hash-table in a
532 ** wal-index is smaller than usual. This is so that there is a complete
533 ** hash-table on each aligned 32KB page of the wal-index.
534 */
535 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
536 
537 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
538 #define WALINDEX_PGSZ   (                                         \
539     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
540 )
541 
542 /*
543 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
544 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
545 ** numbered from zero.
546 **
547 ** If this call is successful, *ppPage is set to point to the wal-index
548 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
549 ** then an SQLite error code is returned and *ppPage is set to 0.
550 */
551 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
552   int rc = SQLITE_OK;
553 
554   /* Enlarge the pWal->apWiData[] array if required */
555   if( pWal->nWiData<=iPage ){
556     int nByte = sizeof(u32*)*(iPage+1);
557     volatile u32 **apNew;
558     apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
559     if( !apNew ){
560       *ppPage = 0;
561       return SQLITE_NOMEM_BKPT;
562     }
563     memset((void*)&apNew[pWal->nWiData], 0,
564            sizeof(u32*)*(iPage+1-pWal->nWiData));
565     pWal->apWiData = apNew;
566     pWal->nWiData = iPage+1;
567   }
568 
569   /* Request a pointer to the required page from the VFS */
570   if( pWal->apWiData[iPage]==0 ){
571     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
572       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
573       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
574     }else{
575       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
576           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
577       );
578       if( rc==SQLITE_READONLY ){
579         pWal->readOnly |= WAL_SHM_RDONLY;
580         rc = SQLITE_OK;
581       }
582     }
583   }
584 
585   *ppPage = pWal->apWiData[iPage];
586   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
587   return rc;
588 }
589 
590 /*
591 ** Return a pointer to the WalCkptInfo structure in the wal-index.
592 */
593 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
594   assert( pWal->nWiData>0 && pWal->apWiData[0] );
595   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
596 }
597 
598 /*
599 ** Return a pointer to the WalIndexHdr structure in the wal-index.
600 */
601 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
602   assert( pWal->nWiData>0 && pWal->apWiData[0] );
603   return (volatile WalIndexHdr*)pWal->apWiData[0];
604 }
605 
606 /*
607 ** The argument to this macro must be of type u32. On a little-endian
608 ** architecture, it returns the u32 value that results from interpreting
609 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
610 ** returns the value that would be produced by interpreting the 4 bytes
611 ** of the input value as a little-endian integer.
612 */
613 #define BYTESWAP32(x) ( \
614     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
615   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
616 )
617 
618 /*
619 ** Generate or extend an 8 byte checksum based on the data in
620 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
621 ** initial values of 0 and 0 if aIn==NULL).
622 **
623 ** The checksum is written back into aOut[] before returning.
624 **
625 ** nByte must be a positive multiple of 8.
626 */
627 static void walChecksumBytes(
628   int nativeCksum, /* True for native byte-order, false for non-native */
629   u8 *a,           /* Content to be checksummed */
630   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
631   const u32 *aIn,  /* Initial checksum value input */
632   u32 *aOut        /* OUT: Final checksum value output */
633 ){
634   u32 s1, s2;
635   u32 *aData = (u32 *)a;
636   u32 *aEnd = (u32 *)&a[nByte];
637 
638   if( aIn ){
639     s1 = aIn[0];
640     s2 = aIn[1];
641   }else{
642     s1 = s2 = 0;
643   }
644 
645   assert( nByte>=8 );
646   assert( (nByte&0x00000007)==0 );
647 
648   if( nativeCksum ){
649     do {
650       s1 += *aData++ + s2;
651       s2 += *aData++ + s1;
652     }while( aData<aEnd );
653   }else{
654     do {
655       s1 += BYTESWAP32(aData[0]) + s2;
656       s2 += BYTESWAP32(aData[1]) + s1;
657       aData += 2;
658     }while( aData<aEnd );
659   }
660 
661   aOut[0] = s1;
662   aOut[1] = s2;
663 }
664 
665 static void walShmBarrier(Wal *pWal){
666   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
667     sqlite3OsShmBarrier(pWal->pDbFd);
668   }
669 }
670 
671 /*
672 ** Write the header information in pWal->hdr into the wal-index.
673 **
674 ** The checksum on pWal->hdr is updated before it is written.
675 */
676 static void walIndexWriteHdr(Wal *pWal){
677   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
678   const int nCksum = offsetof(WalIndexHdr, aCksum);
679 
680   assert( pWal->writeLock );
681   pWal->hdr.isInit = 1;
682   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
683   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
684   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
685   walShmBarrier(pWal);
686   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
687 }
688 
689 /*
690 ** This function encodes a single frame header and writes it to a buffer
691 ** supplied by the caller. A frame-header is made up of a series of
692 ** 4-byte big-endian integers, as follows:
693 **
694 **     0: Page number.
695 **     4: For commit records, the size of the database image in pages
696 **        after the commit. For all other records, zero.
697 **     8: Salt-1 (copied from the wal-header)
698 **    12: Salt-2 (copied from the wal-header)
699 **    16: Checksum-1.
700 **    20: Checksum-2.
701 */
702 static void walEncodeFrame(
703   Wal *pWal,                      /* The write-ahead log */
704   u32 iPage,                      /* Database page number for frame */
705   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
706   u8 *aData,                      /* Pointer to page data */
707   u8 *aFrame                      /* OUT: Write encoded frame here */
708 ){
709   int nativeCksum;                /* True for native byte-order checksums */
710   u32 *aCksum = pWal->hdr.aFrameCksum;
711   assert( WAL_FRAME_HDRSIZE==24 );
712   sqlite3Put4byte(&aFrame[0], iPage);
713   sqlite3Put4byte(&aFrame[4], nTruncate);
714   if( pWal->iReCksum==0 ){
715     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
716 
717     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
718     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
719     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
720 
721     sqlite3Put4byte(&aFrame[16], aCksum[0]);
722     sqlite3Put4byte(&aFrame[20], aCksum[1]);
723   }else{
724     memset(&aFrame[8], 0, 16);
725   }
726 }
727 
728 /*
729 ** Check to see if the frame with header in aFrame[] and content
730 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
731 ** *pnTruncate and return true.  Return if the frame is not valid.
732 */
733 static int walDecodeFrame(
734   Wal *pWal,                      /* The write-ahead log */
735   u32 *piPage,                    /* OUT: Database page number for frame */
736   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
737   u8 *aData,                      /* Pointer to page data (for checksum) */
738   u8 *aFrame                      /* Frame data */
739 ){
740   int nativeCksum;                /* True for native byte-order checksums */
741   u32 *aCksum = pWal->hdr.aFrameCksum;
742   u32 pgno;                       /* Page number of the frame */
743   assert( WAL_FRAME_HDRSIZE==24 );
744 
745   /* A frame is only valid if the salt values in the frame-header
746   ** match the salt values in the wal-header.
747   */
748   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
749     return 0;
750   }
751 
752   /* A frame is only valid if the page number is creater than zero.
753   */
754   pgno = sqlite3Get4byte(&aFrame[0]);
755   if( pgno==0 ){
756     return 0;
757   }
758 
759   /* A frame is only valid if a checksum of the WAL header,
760   ** all prior frams, the first 16 bytes of this frame-header,
761   ** and the frame-data matches the checksum in the last 8
762   ** bytes of this frame-header.
763   */
764   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
767   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
768    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
769   ){
770     /* Checksum failed. */
771     return 0;
772   }
773 
774   /* If we reach this point, the frame is valid.  Return the page number
775   ** and the new database size.
776   */
777   *piPage = pgno;
778   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
779   return 1;
780 }
781 
782 
783 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
784 /*
785 ** Names of locks.  This routine is used to provide debugging output and is not
786 ** a part of an ordinary build.
787 */
788 static const char *walLockName(int lockIdx){
789   if( lockIdx==WAL_WRITE_LOCK ){
790     return "WRITE-LOCK";
791   }else if( lockIdx==WAL_CKPT_LOCK ){
792     return "CKPT-LOCK";
793   }else if( lockIdx==WAL_RECOVER_LOCK ){
794     return "RECOVER-LOCK";
795   }else{
796     static char zName[15];
797     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
798                      lockIdx-WAL_READ_LOCK(0));
799     return zName;
800   }
801 }
802 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
803 
804 
805 /*
806 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
807 ** A lock cannot be moved directly between shared and exclusive - it must go
808 ** through the unlocked state first.
809 **
810 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
811 */
812 static int walLockShared(Wal *pWal, int lockIdx){
813   int rc;
814   if( pWal->exclusiveMode ) return SQLITE_OK;
815   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
816                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
817   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
818             walLockName(lockIdx), rc ? "failed" : "ok"));
819   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
820   return rc;
821 }
822 static void walUnlockShared(Wal *pWal, int lockIdx){
823   if( pWal->exclusiveMode ) return;
824   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
825                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
826   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
827 }
828 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
829   int rc;
830   if( pWal->exclusiveMode ) return SQLITE_OK;
831   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
832                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
833   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
834             walLockName(lockIdx), n, rc ? "failed" : "ok"));
835   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
836   return rc;
837 }
838 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
839   if( pWal->exclusiveMode ) return;
840   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
841                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
842   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
843              walLockName(lockIdx), n));
844 }
845 
846 /*
847 ** Compute a hash on a page number.  The resulting hash value must land
848 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
849 ** the hash to the next value in the event of a collision.
850 */
851 static int walHash(u32 iPage){
852   assert( iPage>0 );
853   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
854   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
855 }
856 static int walNextHash(int iPriorHash){
857   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
858 }
859 
860 /*
861 ** Return pointers to the hash table and page number array stored on
862 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
863 ** numbered starting from 0.
864 **
865 ** Set output variable *paHash to point to the start of the hash table
866 ** in the wal-index file. Set *piZero to one less than the frame
867 ** number of the first frame indexed by this hash table. If a
868 ** slot in the hash table is set to N, it refers to frame number
869 ** (*piZero+N) in the log.
870 **
871 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
872 ** first frame indexed by the hash table, frame (*piZero+1).
873 */
874 static int walHashGet(
875   Wal *pWal,                      /* WAL handle */
876   int iHash,                      /* Find the iHash'th table */
877   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
878   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
879   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
880 ){
881   int rc;                         /* Return code */
882   volatile u32 *aPgno;
883 
884   rc = walIndexPage(pWal, iHash, &aPgno);
885   assert( rc==SQLITE_OK || iHash>0 );
886 
887   if( rc==SQLITE_OK ){
888     u32 iZero;
889     volatile ht_slot *aHash;
890 
891     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
892     if( iHash==0 ){
893       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
894       iZero = 0;
895     }else{
896       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
897     }
898 
899     *paPgno = &aPgno[-1];
900     *paHash = aHash;
901     *piZero = iZero;
902   }
903   return rc;
904 }
905 
906 /*
907 ** Return the number of the wal-index page that contains the hash-table
908 ** and page-number array that contain entries corresponding to WAL frame
909 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
910 ** are numbered starting from 0.
911 */
912 static int walFramePage(u32 iFrame){
913   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
914   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
915        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
916        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
917        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
918        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
919   );
920   return iHash;
921 }
922 
923 /*
924 ** Return the page number associated with frame iFrame in this WAL.
925 */
926 static u32 walFramePgno(Wal *pWal, u32 iFrame){
927   int iHash = walFramePage(iFrame);
928   if( iHash==0 ){
929     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
930   }
931   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
932 }
933 
934 /*
935 ** Remove entries from the hash table that point to WAL slots greater
936 ** than pWal->hdr.mxFrame.
937 **
938 ** This function is called whenever pWal->hdr.mxFrame is decreased due
939 ** to a rollback or savepoint.
940 **
941 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
942 ** updated.  Any later hash tables will be automatically cleared when
943 ** pWal->hdr.mxFrame advances to the point where those hash tables are
944 ** actually needed.
945 */
946 static void walCleanupHash(Wal *pWal){
947   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
948   volatile u32 *aPgno = 0;        /* Page number array for hash table */
949   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
950   int iLimit = 0;                 /* Zero values greater than this */
951   int nByte;                      /* Number of bytes to zero in aPgno[] */
952   int i;                          /* Used to iterate through aHash[] */
953 
954   assert( pWal->writeLock );
955   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
956   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
957   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
958 
959   if( pWal->hdr.mxFrame==0 ) return;
960 
961   /* Obtain pointers to the hash-table and page-number array containing
962   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
963   ** that the page said hash-table and array reside on is already mapped.
964   */
965   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
966   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
967   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
968 
969   /* Zero all hash-table entries that correspond to frame numbers greater
970   ** than pWal->hdr.mxFrame.
971   */
972   iLimit = pWal->hdr.mxFrame - iZero;
973   assert( iLimit>0 );
974   for(i=0; i<HASHTABLE_NSLOT; i++){
975     if( aHash[i]>iLimit ){
976       aHash[i] = 0;
977     }
978   }
979 
980   /* Zero the entries in the aPgno array that correspond to frames with
981   ** frame numbers greater than pWal->hdr.mxFrame.
982   */
983   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
984   memset((void *)&aPgno[iLimit+1], 0, nByte);
985 
986 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
987   /* Verify that the every entry in the mapping region is still reachable
988   ** via the hash table even after the cleanup.
989   */
990   if( iLimit ){
991     int j;           /* Loop counter */
992     int iKey;        /* Hash key */
993     for(j=1; j<=iLimit; j++){
994       for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
995         if( aHash[iKey]==j ) break;
996       }
997       assert( aHash[iKey]==j );
998     }
999   }
1000 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1001 }
1002 
1003 
1004 /*
1005 ** Set an entry in the wal-index that will map database page number
1006 ** pPage into WAL frame iFrame.
1007 */
1008 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1009   int rc;                         /* Return code */
1010   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
1011   volatile u32 *aPgno = 0;        /* Page number array */
1012   volatile ht_slot *aHash = 0;    /* Hash table */
1013 
1014   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1015 
1016   /* Assuming the wal-index file was successfully mapped, populate the
1017   ** page number array and hash table entry.
1018   */
1019   if( rc==SQLITE_OK ){
1020     int iKey;                     /* Hash table key */
1021     int idx;                      /* Value to write to hash-table slot */
1022     int nCollide;                 /* Number of hash collisions */
1023 
1024     idx = iFrame - iZero;
1025     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1026 
1027     /* If this is the first entry to be added to this hash-table, zero the
1028     ** entire hash table and aPgno[] array before proceeding.
1029     */
1030     if( idx==1 ){
1031       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1032       memset((void*)&aPgno[1], 0, nByte);
1033     }
1034 
1035     /* If the entry in aPgno[] is already set, then the previous writer
1036     ** must have exited unexpectedly in the middle of a transaction (after
1037     ** writing one or more dirty pages to the WAL to free up memory).
1038     ** Remove the remnants of that writers uncommitted transaction from
1039     ** the hash-table before writing any new entries.
1040     */
1041     if( aPgno[idx] ){
1042       walCleanupHash(pWal);
1043       assert( !aPgno[idx] );
1044     }
1045 
1046     /* Write the aPgno[] array entry and the hash-table slot. */
1047     nCollide = idx;
1048     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1049       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1050     }
1051     aPgno[idx] = iPage;
1052     aHash[iKey] = (ht_slot)idx;
1053 
1054 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1055     /* Verify that the number of entries in the hash table exactly equals
1056     ** the number of entries in the mapping region.
1057     */
1058     {
1059       int i;           /* Loop counter */
1060       int nEntry = 0;  /* Number of entries in the hash table */
1061       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1062       assert( nEntry==idx );
1063     }
1064 
1065     /* Verify that the every entry in the mapping region is reachable
1066     ** via the hash table.  This turns out to be a really, really expensive
1067     ** thing to check, so only do this occasionally - not on every
1068     ** iteration.
1069     */
1070     if( (idx&0x3ff)==0 ){
1071       int i;           /* Loop counter */
1072       for(i=1; i<=idx; i++){
1073         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1074           if( aHash[iKey]==i ) break;
1075         }
1076         assert( aHash[iKey]==i );
1077       }
1078     }
1079 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1080   }
1081 
1082 
1083   return rc;
1084 }
1085 
1086 
1087 /*
1088 ** Recover the wal-index by reading the write-ahead log file.
1089 **
1090 ** This routine first tries to establish an exclusive lock on the
1091 ** wal-index to prevent other threads/processes from doing anything
1092 ** with the WAL or wal-index while recovery is running.  The
1093 ** WAL_RECOVER_LOCK is also held so that other threads will know
1094 ** that this thread is running recovery.  If unable to establish
1095 ** the necessary locks, this routine returns SQLITE_BUSY.
1096 */
1097 static int walIndexRecover(Wal *pWal){
1098   int rc;                         /* Return Code */
1099   i64 nSize;                      /* Size of log file */
1100   u32 aFrameCksum[2] = {0, 0};
1101   int iLock;                      /* Lock offset to lock for checkpoint */
1102   int nLock;                      /* Number of locks to hold */
1103 
1104   /* Obtain an exclusive lock on all byte in the locking range not already
1105   ** locked by the caller. The caller is guaranteed to have locked the
1106   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1107   ** If successful, the same bytes that are locked here are unlocked before
1108   ** this function returns.
1109   */
1110   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1111   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1112   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1113   assert( pWal->writeLock );
1114   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1115   nLock = SQLITE_SHM_NLOCK - iLock;
1116   rc = walLockExclusive(pWal, iLock, nLock);
1117   if( rc ){
1118     return rc;
1119   }
1120   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1121 
1122   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1123 
1124   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1125   if( rc!=SQLITE_OK ){
1126     goto recovery_error;
1127   }
1128 
1129   if( nSize>WAL_HDRSIZE ){
1130     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1131     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1132     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1133     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1134     int iFrame;                   /* Index of last frame read */
1135     i64 iOffset;                  /* Next offset to read from log file */
1136     int szPage;                   /* Page size according to the log */
1137     u32 magic;                    /* Magic value read from WAL header */
1138     u32 version;                  /* Magic value read from WAL header */
1139     int isValid;                  /* True if this frame is valid */
1140 
1141     /* Read in the WAL header. */
1142     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1143     if( rc!=SQLITE_OK ){
1144       goto recovery_error;
1145     }
1146 
1147     /* If the database page size is not a power of two, or is greater than
1148     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1149     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1150     ** WAL file.
1151     */
1152     magic = sqlite3Get4byte(&aBuf[0]);
1153     szPage = sqlite3Get4byte(&aBuf[8]);
1154     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1155      || szPage&(szPage-1)
1156      || szPage>SQLITE_MAX_PAGE_SIZE
1157      || szPage<512
1158     ){
1159       goto finished;
1160     }
1161     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1162     pWal->szPage = szPage;
1163     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1164     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1165 
1166     /* Verify that the WAL header checksum is correct */
1167     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1168         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1169     );
1170     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1171      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1172     ){
1173       goto finished;
1174     }
1175 
1176     /* Verify that the version number on the WAL format is one that
1177     ** are able to understand */
1178     version = sqlite3Get4byte(&aBuf[4]);
1179     if( version!=WAL_MAX_VERSION ){
1180       rc = SQLITE_CANTOPEN_BKPT;
1181       goto finished;
1182     }
1183 
1184     /* Malloc a buffer to read frames into. */
1185     szFrame = szPage + WAL_FRAME_HDRSIZE;
1186     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1187     if( !aFrame ){
1188       rc = SQLITE_NOMEM_BKPT;
1189       goto recovery_error;
1190     }
1191     aData = &aFrame[WAL_FRAME_HDRSIZE];
1192 
1193     /* Read all frames from the log file. */
1194     iFrame = 0;
1195     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1196       u32 pgno;                   /* Database page number for frame */
1197       u32 nTruncate;              /* dbsize field from frame header */
1198 
1199       /* Read and decode the next log frame. */
1200       iFrame++;
1201       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1202       if( rc!=SQLITE_OK ) break;
1203       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1204       if( !isValid ) break;
1205       rc = walIndexAppend(pWal, iFrame, pgno);
1206       if( rc!=SQLITE_OK ) break;
1207 
1208       /* If nTruncate is non-zero, this is a commit record. */
1209       if( nTruncate ){
1210         pWal->hdr.mxFrame = iFrame;
1211         pWal->hdr.nPage = nTruncate;
1212         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1213         testcase( szPage<=32768 );
1214         testcase( szPage>=65536 );
1215         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1216         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1217       }
1218     }
1219 
1220     sqlite3_free(aFrame);
1221   }
1222 
1223 finished:
1224   if( rc==SQLITE_OK ){
1225     volatile WalCkptInfo *pInfo;
1226     int i;
1227     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1228     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1229     walIndexWriteHdr(pWal);
1230 
1231     /* Reset the checkpoint-header. This is safe because this thread is
1232     ** currently holding locks that exclude all other readers, writers and
1233     ** checkpointers.
1234     */
1235     pInfo = walCkptInfo(pWal);
1236     pInfo->nBackfill = 0;
1237     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1238     pInfo->aReadMark[0] = 0;
1239     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1240     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1241 
1242     /* If more than one frame was recovered from the log file, report an
1243     ** event via sqlite3_log(). This is to help with identifying performance
1244     ** problems caused by applications routinely shutting down without
1245     ** checkpointing the log file.
1246     */
1247     if( pWal->hdr.nPage ){
1248       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1249           "recovered %d frames from WAL file %s",
1250           pWal->hdr.mxFrame, pWal->zWalName
1251       );
1252     }
1253   }
1254 
1255 recovery_error:
1256   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1257   walUnlockExclusive(pWal, iLock, nLock);
1258   return rc;
1259 }
1260 
1261 /*
1262 ** Close an open wal-index.
1263 */
1264 static void walIndexClose(Wal *pWal, int isDelete){
1265   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1266     int i;
1267     for(i=0; i<pWal->nWiData; i++){
1268       sqlite3_free((void *)pWal->apWiData[i]);
1269       pWal->apWiData[i] = 0;
1270     }
1271   }else{
1272     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1273   }
1274 }
1275 
1276 /*
1277 ** Open a connection to the WAL file zWalName. The database file must
1278 ** already be opened on connection pDbFd. The buffer that zWalName points
1279 ** to must remain valid for the lifetime of the returned Wal* handle.
1280 **
1281 ** A SHARED lock should be held on the database file when this function
1282 ** is called. The purpose of this SHARED lock is to prevent any other
1283 ** client from unlinking the WAL or wal-index file. If another process
1284 ** were to do this just after this client opened one of these files, the
1285 ** system would be badly broken.
1286 **
1287 ** If the log file is successfully opened, SQLITE_OK is returned and
1288 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1289 ** an SQLite error code is returned and *ppWal is left unmodified.
1290 */
1291 int sqlite3WalOpen(
1292   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1293   sqlite3_file *pDbFd,            /* The open database file */
1294   const char *zWalName,           /* Name of the WAL file */
1295   int bNoShm,                     /* True to run in heap-memory mode */
1296   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1297   Wal **ppWal                     /* OUT: Allocated Wal handle */
1298 ){
1299   int rc;                         /* Return Code */
1300   Wal *pRet;                      /* Object to allocate and return */
1301   int flags;                      /* Flags passed to OsOpen() */
1302 
1303   assert( zWalName && zWalName[0] );
1304   assert( pDbFd );
1305 
1306   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1307   ** this source file.  Verify that the #defines of the locking byte offsets
1308   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1309   ** For that matter, if the lock offset ever changes from its initial design
1310   ** value of 120, we need to know that so there is an assert() to check it.
1311   */
1312   assert( 120==WALINDEX_LOCK_OFFSET );
1313   assert( 136==WALINDEX_HDR_SIZE );
1314 #ifdef WIN_SHM_BASE
1315   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1316 #endif
1317 #ifdef UNIX_SHM_BASE
1318   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1319 #endif
1320 
1321 
1322   /* Allocate an instance of struct Wal to return. */
1323   *ppWal = 0;
1324   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1325   if( !pRet ){
1326     return SQLITE_NOMEM_BKPT;
1327   }
1328 
1329   pRet->pVfs = pVfs;
1330   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1331   pRet->pDbFd = pDbFd;
1332   pRet->readLock = -1;
1333   pRet->mxWalSize = mxWalSize;
1334   pRet->zWalName = zWalName;
1335   pRet->syncHeader = 1;
1336   pRet->padToSectorBoundary = 1;
1337   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1338 
1339   /* Open file handle on the write-ahead log file. */
1340   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1341   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1342   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1343     pRet->readOnly = WAL_RDONLY;
1344   }
1345 
1346   if( rc!=SQLITE_OK ){
1347     walIndexClose(pRet, 0);
1348     sqlite3OsClose(pRet->pWalFd);
1349     sqlite3_free(pRet);
1350   }else{
1351     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1352     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1353     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1354       pRet->padToSectorBoundary = 0;
1355     }
1356     *ppWal = pRet;
1357     WALTRACE(("WAL%d: opened\n", pRet));
1358   }
1359   return rc;
1360 }
1361 
1362 /*
1363 ** Change the size to which the WAL file is trucated on each reset.
1364 */
1365 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1366   if( pWal ) pWal->mxWalSize = iLimit;
1367 }
1368 
1369 /*
1370 ** Find the smallest page number out of all pages held in the WAL that
1371 ** has not been returned by any prior invocation of this method on the
1372 ** same WalIterator object.   Write into *piFrame the frame index where
1373 ** that page was last written into the WAL.  Write into *piPage the page
1374 ** number.
1375 **
1376 ** Return 0 on success.  If there are no pages in the WAL with a page
1377 ** number larger than *piPage, then return 1.
1378 */
1379 static int walIteratorNext(
1380   WalIterator *p,               /* Iterator */
1381   u32 *piPage,                  /* OUT: The page number of the next page */
1382   u32 *piFrame                  /* OUT: Wal frame index of next page */
1383 ){
1384   u32 iMin;                     /* Result pgno must be greater than iMin */
1385   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1386   int i;                        /* For looping through segments */
1387 
1388   iMin = p->iPrior;
1389   assert( iMin<0xffffffff );
1390   for(i=p->nSegment-1; i>=0; i--){
1391     struct WalSegment *pSegment = &p->aSegment[i];
1392     while( pSegment->iNext<pSegment->nEntry ){
1393       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1394       if( iPg>iMin ){
1395         if( iPg<iRet ){
1396           iRet = iPg;
1397           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1398         }
1399         break;
1400       }
1401       pSegment->iNext++;
1402     }
1403   }
1404 
1405   *piPage = p->iPrior = iRet;
1406   return (iRet==0xFFFFFFFF);
1407 }
1408 
1409 /*
1410 ** This function merges two sorted lists into a single sorted list.
1411 **
1412 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1413 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1414 ** is guaranteed for all J<K:
1415 **
1416 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1417 **        aContent[aRight[J]] < aContent[aRight[K]]
1418 **
1419 ** This routine overwrites aRight[] with a new (probably longer) sequence
1420 ** of indices such that the aRight[] contains every index that appears in
1421 ** either aLeft[] or the old aRight[] and such that the second condition
1422 ** above is still met.
1423 **
1424 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1425 ** aContent[aRight[X]] values will be unique too.  But there might be
1426 ** one or more combinations of X and Y such that
1427 **
1428 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1429 **
1430 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1431 */
1432 static void walMerge(
1433   const u32 *aContent,            /* Pages in wal - keys for the sort */
1434   ht_slot *aLeft,                 /* IN: Left hand input list */
1435   int nLeft,                      /* IN: Elements in array *paLeft */
1436   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1437   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1438   ht_slot *aTmp                   /* Temporary buffer */
1439 ){
1440   int iLeft = 0;                  /* Current index in aLeft */
1441   int iRight = 0;                 /* Current index in aRight */
1442   int iOut = 0;                   /* Current index in output buffer */
1443   int nRight = *pnRight;
1444   ht_slot *aRight = *paRight;
1445 
1446   assert( nLeft>0 && nRight>0 );
1447   while( iRight<nRight || iLeft<nLeft ){
1448     ht_slot logpage;
1449     Pgno dbpage;
1450 
1451     if( (iLeft<nLeft)
1452      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1453     ){
1454       logpage = aLeft[iLeft++];
1455     }else{
1456       logpage = aRight[iRight++];
1457     }
1458     dbpage = aContent[logpage];
1459 
1460     aTmp[iOut++] = logpage;
1461     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1462 
1463     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1464     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1465   }
1466 
1467   *paRight = aLeft;
1468   *pnRight = iOut;
1469   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1470 }
1471 
1472 /*
1473 ** Sort the elements in list aList using aContent[] as the sort key.
1474 ** Remove elements with duplicate keys, preferring to keep the
1475 ** larger aList[] values.
1476 **
1477 ** The aList[] entries are indices into aContent[].  The values in
1478 ** aList[] are to be sorted so that for all J<K:
1479 **
1480 **      aContent[aList[J]] < aContent[aList[K]]
1481 **
1482 ** For any X and Y such that
1483 **
1484 **      aContent[aList[X]] == aContent[aList[Y]]
1485 **
1486 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1487 ** the smaller.
1488 */
1489 static void walMergesort(
1490   const u32 *aContent,            /* Pages in wal */
1491   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1492   ht_slot *aList,                 /* IN/OUT: List to sort */
1493   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1494 ){
1495   struct Sublist {
1496     int nList;                    /* Number of elements in aList */
1497     ht_slot *aList;               /* Pointer to sub-list content */
1498   };
1499 
1500   const int nList = *pnList;      /* Size of input list */
1501   int nMerge = 0;                 /* Number of elements in list aMerge */
1502   ht_slot *aMerge = 0;            /* List to be merged */
1503   int iList;                      /* Index into input list */
1504   u32 iSub = 0;                   /* Index into aSub array */
1505   struct Sublist aSub[13];        /* Array of sub-lists */
1506 
1507   memset(aSub, 0, sizeof(aSub));
1508   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1509   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1510 
1511   for(iList=0; iList<nList; iList++){
1512     nMerge = 1;
1513     aMerge = &aList[iList];
1514     for(iSub=0; iList & (1<<iSub); iSub++){
1515       struct Sublist *p;
1516       assert( iSub<ArraySize(aSub) );
1517       p = &aSub[iSub];
1518       assert( p->aList && p->nList<=(1<<iSub) );
1519       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1520       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1521     }
1522     aSub[iSub].aList = aMerge;
1523     aSub[iSub].nList = nMerge;
1524   }
1525 
1526   for(iSub++; iSub<ArraySize(aSub); iSub++){
1527     if( nList & (1<<iSub) ){
1528       struct Sublist *p;
1529       assert( iSub<ArraySize(aSub) );
1530       p = &aSub[iSub];
1531       assert( p->nList<=(1<<iSub) );
1532       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1533       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1534     }
1535   }
1536   assert( aMerge==aList );
1537   *pnList = nMerge;
1538 
1539 #ifdef SQLITE_DEBUG
1540   {
1541     int i;
1542     for(i=1; i<*pnList; i++){
1543       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1544     }
1545   }
1546 #endif
1547 }
1548 
1549 /*
1550 ** Free an iterator allocated by walIteratorInit().
1551 */
1552 static void walIteratorFree(WalIterator *p){
1553   sqlite3_free(p);
1554 }
1555 
1556 /*
1557 ** Construct a WalInterator object that can be used to loop over all
1558 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1559 ** lock.
1560 **
1561 ** On success, make *pp point to the newly allocated WalInterator object
1562 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1563 ** returns an error, the value of *pp is undefined.
1564 **
1565 ** The calling routine should invoke walIteratorFree() to destroy the
1566 ** WalIterator object when it has finished with it.
1567 */
1568 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1569   WalIterator *p;                 /* Return value */
1570   int nSegment;                   /* Number of segments to merge */
1571   u32 iLast;                      /* Last frame in log */
1572   int nByte;                      /* Number of bytes to allocate */
1573   int i;                          /* Iterator variable */
1574   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1575   int rc = SQLITE_OK;             /* Return Code */
1576 
1577   /* This routine only runs while holding the checkpoint lock. And
1578   ** it only runs if there is actually content in the log (mxFrame>0).
1579   */
1580   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1581   iLast = pWal->hdr.mxFrame;
1582 
1583   /* Allocate space for the WalIterator object. */
1584   nSegment = walFramePage(iLast) + 1;
1585   nByte = sizeof(WalIterator)
1586         + (nSegment-1)*sizeof(struct WalSegment)
1587         + iLast*sizeof(ht_slot);
1588   p = (WalIterator *)sqlite3_malloc64(nByte);
1589   if( !p ){
1590     return SQLITE_NOMEM_BKPT;
1591   }
1592   memset(p, 0, nByte);
1593   p->nSegment = nSegment;
1594 
1595   /* Allocate temporary space used by the merge-sort routine. This block
1596   ** of memory will be freed before this function returns.
1597   */
1598   aTmp = (ht_slot *)sqlite3_malloc64(
1599       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1600   );
1601   if( !aTmp ){
1602     rc = SQLITE_NOMEM_BKPT;
1603   }
1604 
1605   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1606     volatile ht_slot *aHash;
1607     u32 iZero;
1608     volatile u32 *aPgno;
1609 
1610     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1611     if( rc==SQLITE_OK ){
1612       int j;                      /* Counter variable */
1613       int nEntry;                 /* Number of entries in this segment */
1614       ht_slot *aIndex;            /* Sorted index for this segment */
1615 
1616       aPgno++;
1617       if( (i+1)==nSegment ){
1618         nEntry = (int)(iLast - iZero);
1619       }else{
1620         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1621       }
1622       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1623       iZero++;
1624 
1625       for(j=0; j<nEntry; j++){
1626         aIndex[j] = (ht_slot)j;
1627       }
1628       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1629       p->aSegment[i].iZero = iZero;
1630       p->aSegment[i].nEntry = nEntry;
1631       p->aSegment[i].aIndex = aIndex;
1632       p->aSegment[i].aPgno = (u32 *)aPgno;
1633     }
1634   }
1635   sqlite3_free(aTmp);
1636 
1637   if( rc!=SQLITE_OK ){
1638     walIteratorFree(p);
1639   }
1640   *pp = p;
1641   return rc;
1642 }
1643 
1644 /*
1645 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1646 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1647 ** busy-handler function. Invoke it and retry the lock until either the
1648 ** lock is successfully obtained or the busy-handler returns 0.
1649 */
1650 static int walBusyLock(
1651   Wal *pWal,                      /* WAL connection */
1652   int (*xBusy)(void*),            /* Function to call when busy */
1653   void *pBusyArg,                 /* Context argument for xBusyHandler */
1654   int lockIdx,                    /* Offset of first byte to lock */
1655   int n                           /* Number of bytes to lock */
1656 ){
1657   int rc;
1658   do {
1659     rc = walLockExclusive(pWal, lockIdx, n);
1660   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1661   return rc;
1662 }
1663 
1664 /*
1665 ** The cache of the wal-index header must be valid to call this function.
1666 ** Return the page-size in bytes used by the database.
1667 */
1668 static int walPagesize(Wal *pWal){
1669   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1670 }
1671 
1672 /*
1673 ** The following is guaranteed when this function is called:
1674 **
1675 **   a) the WRITER lock is held,
1676 **   b) the entire log file has been checkpointed, and
1677 **   c) any existing readers are reading exclusively from the database
1678 **      file - there are no readers that may attempt to read a frame from
1679 **      the log file.
1680 **
1681 ** This function updates the shared-memory structures so that the next
1682 ** client to write to the database (which may be this one) does so by
1683 ** writing frames into the start of the log file.
1684 **
1685 ** The value of parameter salt1 is used as the aSalt[1] value in the
1686 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1687 ** one obtained from sqlite3_randomness()).
1688 */
1689 static void walRestartHdr(Wal *pWal, u32 salt1){
1690   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1691   int i;                          /* Loop counter */
1692   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1693   pWal->nCkpt++;
1694   pWal->hdr.mxFrame = 0;
1695   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1696   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1697   walIndexWriteHdr(pWal);
1698   pInfo->nBackfill = 0;
1699   pInfo->nBackfillAttempted = 0;
1700   pInfo->aReadMark[1] = 0;
1701   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1702   assert( pInfo->aReadMark[0]==0 );
1703 }
1704 
1705 /*
1706 ** Copy as much content as we can from the WAL back into the database file
1707 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1708 **
1709 ** The amount of information copies from WAL to database might be limited
1710 ** by active readers.  This routine will never overwrite a database page
1711 ** that a concurrent reader might be using.
1712 **
1713 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1714 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1715 ** checkpoints are always run by a background thread or background
1716 ** process, foreground threads will never block on a lengthy fsync call.
1717 **
1718 ** Fsync is called on the WAL before writing content out of the WAL and
1719 ** into the database.  This ensures that if the new content is persistent
1720 ** in the WAL and can be recovered following a power-loss or hard reset.
1721 **
1722 ** Fsync is also called on the database file if (and only if) the entire
1723 ** WAL content is copied into the database file.  This second fsync makes
1724 ** it safe to delete the WAL since the new content will persist in the
1725 ** database file.
1726 **
1727 ** This routine uses and updates the nBackfill field of the wal-index header.
1728 ** This is the only routine that will increase the value of nBackfill.
1729 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1730 ** its value.)
1731 **
1732 ** The caller must be holding sufficient locks to ensure that no other
1733 ** checkpoint is running (in any other thread or process) at the same
1734 ** time.
1735 */
1736 static int walCheckpoint(
1737   Wal *pWal,                      /* Wal connection */
1738   sqlite3 *db,                    /* Check for interrupts on this handle */
1739   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1740   int (*xBusy)(void*),            /* Function to call when busy */
1741   void *pBusyArg,                 /* Context argument for xBusyHandler */
1742   int sync_flags,                 /* Flags for OsSync() (or 0) */
1743   u8 *zBuf                        /* Temporary buffer to use */
1744 ){
1745   int rc = SQLITE_OK;             /* Return code */
1746   int szPage;                     /* Database page-size */
1747   WalIterator *pIter = 0;         /* Wal iterator context */
1748   u32 iDbpage = 0;                /* Next database page to write */
1749   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1750   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1751   u32 mxPage;                     /* Max database page to write */
1752   int i;                          /* Loop counter */
1753   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1754 
1755   szPage = walPagesize(pWal);
1756   testcase( szPage<=32768 );
1757   testcase( szPage>=65536 );
1758   pInfo = walCkptInfo(pWal);
1759   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1760 
1761     /* Allocate the iterator */
1762     rc = walIteratorInit(pWal, &pIter);
1763     if( rc!=SQLITE_OK ){
1764       return rc;
1765     }
1766     assert( pIter );
1767 
1768     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1769     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1770     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1771 
1772     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1773     ** safe to write into the database.  Frames beyond mxSafeFrame might
1774     ** overwrite database pages that are in use by active readers and thus
1775     ** cannot be backfilled from the WAL.
1776     */
1777     mxSafeFrame = pWal->hdr.mxFrame;
1778     mxPage = pWal->hdr.nPage;
1779     for(i=1; i<WAL_NREADER; i++){
1780       /* Thread-sanitizer reports that the following is an unsafe read,
1781       ** as some other thread may be in the process of updating the value
1782       ** of the aReadMark[] slot. The assumption here is that if that is
1783       ** happening, the other client may only be increasing the value,
1784       ** not decreasing it. So assuming either that either the "old" or
1785       ** "new" version of the value is read, and not some arbitrary value
1786       ** that would never be written by a real client, things are still
1787       ** safe.  */
1788       u32 y = pInfo->aReadMark[i];
1789       if( mxSafeFrame>y ){
1790         assert( y<=pWal->hdr.mxFrame );
1791         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1792         if( rc==SQLITE_OK ){
1793           pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1794           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1795         }else if( rc==SQLITE_BUSY ){
1796           mxSafeFrame = y;
1797           xBusy = 0;
1798         }else{
1799           goto walcheckpoint_out;
1800         }
1801       }
1802     }
1803 
1804     if( pInfo->nBackfill<mxSafeFrame
1805      && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1806     ){
1807       i64 nSize;                    /* Current size of database file */
1808       u32 nBackfill = pInfo->nBackfill;
1809 
1810       pInfo->nBackfillAttempted = mxSafeFrame;
1811 
1812       /* Sync the WAL to disk */
1813       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1814 
1815       /* If the database may grow as a result of this checkpoint, hint
1816       ** about the eventual size of the db file to the VFS layer.
1817       */
1818       if( rc==SQLITE_OK ){
1819         i64 nReq = ((i64)mxPage * szPage);
1820         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1821         if( rc==SQLITE_OK && nSize<nReq ){
1822           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1823         }
1824       }
1825 
1826 
1827       /* Iterate through the contents of the WAL, copying data to the db file */
1828       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1829         i64 iOffset;
1830         assert( walFramePgno(pWal, iFrame)==iDbpage );
1831         if( db->u1.isInterrupted ){
1832           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1833           break;
1834         }
1835         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1836           continue;
1837         }
1838         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1839         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1840         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1841         if( rc!=SQLITE_OK ) break;
1842         iOffset = (iDbpage-1)*(i64)szPage;
1843         testcase( IS_BIG_INT(iOffset) );
1844         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1845         if( rc!=SQLITE_OK ) break;
1846       }
1847 
1848       /* If work was actually accomplished... */
1849       if( rc==SQLITE_OK ){
1850         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1851           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1852           testcase( IS_BIG_INT(szDb) );
1853           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1854           if( rc==SQLITE_OK ){
1855             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1856           }
1857         }
1858         if( rc==SQLITE_OK ){
1859           pInfo->nBackfill = mxSafeFrame;
1860         }
1861       }
1862 
1863       /* Release the reader lock held while backfilling */
1864       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1865     }
1866 
1867     if( rc==SQLITE_BUSY ){
1868       /* Reset the return code so as not to report a checkpoint failure
1869       ** just because there are active readers.  */
1870       rc = SQLITE_OK;
1871     }
1872   }
1873 
1874   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1875   ** entire wal file has been copied into the database file, then block
1876   ** until all readers have finished using the wal file. This ensures that
1877   ** the next process to write to the database restarts the wal file.
1878   */
1879   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1880     assert( pWal->writeLock );
1881     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1882       rc = SQLITE_BUSY;
1883     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1884       u32 salt1;
1885       sqlite3_randomness(4, &salt1);
1886       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1887       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1888       if( rc==SQLITE_OK ){
1889         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1890           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1891           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1892           ** truncates the log file to zero bytes just prior to a
1893           ** successful return.
1894           **
1895           ** In theory, it might be safe to do this without updating the
1896           ** wal-index header in shared memory, as all subsequent reader or
1897           ** writer clients should see that the entire log file has been
1898           ** checkpointed and behave accordingly. This seems unsafe though,
1899           ** as it would leave the system in a state where the contents of
1900           ** the wal-index header do not match the contents of the
1901           ** file-system. To avoid this, update the wal-index header to
1902           ** indicate that the log file contains zero valid frames.  */
1903           walRestartHdr(pWal, salt1);
1904           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1905         }
1906         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1907       }
1908     }
1909   }
1910 
1911  walcheckpoint_out:
1912   walIteratorFree(pIter);
1913   return rc;
1914 }
1915 
1916 /*
1917 ** If the WAL file is currently larger than nMax bytes in size, truncate
1918 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1919 */
1920 static void walLimitSize(Wal *pWal, i64 nMax){
1921   i64 sz;
1922   int rx;
1923   sqlite3BeginBenignMalloc();
1924   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1925   if( rx==SQLITE_OK && (sz > nMax ) ){
1926     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1927   }
1928   sqlite3EndBenignMalloc();
1929   if( rx ){
1930     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1931   }
1932 }
1933 
1934 /*
1935 ** Close a connection to a log file.
1936 */
1937 int sqlite3WalClose(
1938   Wal *pWal,                      /* Wal to close */
1939   sqlite3 *db,                    /* For interrupt flag */
1940   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1941   int nBuf,
1942   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1943 ){
1944   int rc = SQLITE_OK;
1945   if( pWal ){
1946     int isDelete = 0;             /* True to unlink wal and wal-index files */
1947 
1948     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1949     ** ordinary, rollback-mode locking methods, this guarantees that the
1950     ** connection associated with this log file is the only connection to
1951     ** the database. In this case checkpoint the database and unlink both
1952     ** the wal and wal-index files.
1953     **
1954     ** The EXCLUSIVE lock is not released before returning.
1955     */
1956     if( zBuf!=0
1957      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1958     ){
1959       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1960         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1961       }
1962       rc = sqlite3WalCheckpoint(pWal, db,
1963           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1964       );
1965       if( rc==SQLITE_OK ){
1966         int bPersist = -1;
1967         sqlite3OsFileControlHint(
1968             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1969         );
1970         if( bPersist!=1 ){
1971           /* Try to delete the WAL file if the checkpoint completed and
1972           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1973           ** mode (!bPersist) */
1974           isDelete = 1;
1975         }else if( pWal->mxWalSize>=0 ){
1976           /* Try to truncate the WAL file to zero bytes if the checkpoint
1977           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1978           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1979           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1980           ** to zero bytes as truncating to the journal_size_limit might
1981           ** leave a corrupt WAL file on disk. */
1982           walLimitSize(pWal, 0);
1983         }
1984       }
1985     }
1986 
1987     walIndexClose(pWal, isDelete);
1988     sqlite3OsClose(pWal->pWalFd);
1989     if( isDelete ){
1990       sqlite3BeginBenignMalloc();
1991       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1992       sqlite3EndBenignMalloc();
1993     }
1994     WALTRACE(("WAL%p: closed\n", pWal));
1995     sqlite3_free((void *)pWal->apWiData);
1996     sqlite3_free(pWal);
1997   }
1998   return rc;
1999 }
2000 
2001 /*
2002 ** Try to read the wal-index header.  Return 0 on success and 1 if
2003 ** there is a problem.
2004 **
2005 ** The wal-index is in shared memory.  Another thread or process might
2006 ** be writing the header at the same time this procedure is trying to
2007 ** read it, which might result in inconsistency.  A dirty read is detected
2008 ** by verifying that both copies of the header are the same and also by
2009 ** a checksum on the header.
2010 **
2011 ** If and only if the read is consistent and the header is different from
2012 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2013 ** and *pChanged is set to 1.
2014 **
2015 ** If the checksum cannot be verified return non-zero. If the header
2016 ** is read successfully and the checksum verified, return zero.
2017 */
2018 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2019   u32 aCksum[2];                  /* Checksum on the header content */
2020   WalIndexHdr h1, h2;             /* Two copies of the header content */
2021   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2022 
2023   /* The first page of the wal-index must be mapped at this point. */
2024   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2025 
2026   /* Read the header. This might happen concurrently with a write to the
2027   ** same area of shared memory on a different CPU in a SMP,
2028   ** meaning it is possible that an inconsistent snapshot is read
2029   ** from the file. If this happens, return non-zero.
2030   **
2031   ** There are two copies of the header at the beginning of the wal-index.
2032   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2033   ** Memory barriers are used to prevent the compiler or the hardware from
2034   ** reordering the reads and writes.
2035   */
2036   aHdr = walIndexHdr(pWal);
2037   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2038   walShmBarrier(pWal);
2039   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2040 
2041   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2042     return 1;   /* Dirty read */
2043   }
2044   if( h1.isInit==0 ){
2045     return 1;   /* Malformed header - probably all zeros */
2046   }
2047   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2048   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2049     return 1;   /* Checksum does not match */
2050   }
2051 
2052   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2053     *pChanged = 1;
2054     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2055     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2056     testcase( pWal->szPage<=32768 );
2057     testcase( pWal->szPage>=65536 );
2058   }
2059 
2060   /* The header was successfully read. Return zero. */
2061   return 0;
2062 }
2063 
2064 /*
2065 ** Read the wal-index header from the wal-index and into pWal->hdr.
2066 ** If the wal-header appears to be corrupt, try to reconstruct the
2067 ** wal-index from the WAL before returning.
2068 **
2069 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2070 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2071 ** to 0.
2072 **
2073 ** If the wal-index header is successfully read, return SQLITE_OK.
2074 ** Otherwise an SQLite error code.
2075 */
2076 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2077   int rc;                         /* Return code */
2078   int badHdr;                     /* True if a header read failed */
2079   volatile u32 *page0;            /* Chunk of wal-index containing header */
2080 
2081   /* Ensure that page 0 of the wal-index (the page that contains the
2082   ** wal-index header) is mapped. Return early if an error occurs here.
2083   */
2084   assert( pChanged );
2085   rc = walIndexPage(pWal, 0, &page0);
2086   if( rc!=SQLITE_OK ){
2087     return rc;
2088   };
2089   assert( page0 || pWal->writeLock==0 );
2090 
2091   /* If the first page of the wal-index has been mapped, try to read the
2092   ** wal-index header immediately, without holding any lock. This usually
2093   ** works, but may fail if the wal-index header is corrupt or currently
2094   ** being modified by another thread or process.
2095   */
2096   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2097 
2098   /* If the first attempt failed, it might have been due to a race
2099   ** with a writer.  So get a WRITE lock and try again.
2100   */
2101   assert( badHdr==0 || pWal->writeLock==0 );
2102   if( badHdr ){
2103     if( pWal->readOnly & WAL_SHM_RDONLY ){
2104       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2105         walUnlockShared(pWal, WAL_WRITE_LOCK);
2106         rc = SQLITE_READONLY_RECOVERY;
2107       }
2108     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2109       pWal->writeLock = 1;
2110       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2111         badHdr = walIndexTryHdr(pWal, pChanged);
2112         if( badHdr ){
2113           /* If the wal-index header is still malformed even while holding
2114           ** a WRITE lock, it can only mean that the header is corrupted and
2115           ** needs to be reconstructed.  So run recovery to do exactly that.
2116           */
2117           rc = walIndexRecover(pWal);
2118           *pChanged = 1;
2119         }
2120       }
2121       pWal->writeLock = 0;
2122       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2123     }
2124   }
2125 
2126   /* If the header is read successfully, check the version number to make
2127   ** sure the wal-index was not constructed with some future format that
2128   ** this version of SQLite cannot understand.
2129   */
2130   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2131     rc = SQLITE_CANTOPEN_BKPT;
2132   }
2133 
2134   return rc;
2135 }
2136 
2137 /*
2138 ** This is the value that walTryBeginRead returns when it needs to
2139 ** be retried.
2140 */
2141 #define WAL_RETRY  (-1)
2142 
2143 /*
2144 ** Attempt to start a read transaction.  This might fail due to a race or
2145 ** other transient condition.  When that happens, it returns WAL_RETRY to
2146 ** indicate to the caller that it is safe to retry immediately.
2147 **
2148 ** On success return SQLITE_OK.  On a permanent failure (such an
2149 ** I/O error or an SQLITE_BUSY because another process is running
2150 ** recovery) return a positive error code.
2151 **
2152 ** The useWal parameter is true to force the use of the WAL and disable
2153 ** the case where the WAL is bypassed because it has been completely
2154 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2155 ** to make a copy of the wal-index header into pWal->hdr.  If the
2156 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2157 ** to the caller that the local page cache is obsolete and needs to be
2158 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2159 ** be loaded and the pChanged parameter is unused.
2160 **
2161 ** The caller must set the cnt parameter to the number of prior calls to
2162 ** this routine during the current read attempt that returned WAL_RETRY.
2163 ** This routine will start taking more aggressive measures to clear the
2164 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2165 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2166 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2167 ** and is not honoring the locking protocol.  There is a vanishingly small
2168 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2169 ** bad luck when there is lots of contention for the wal-index, but that
2170 ** possibility is so small that it can be safely neglected, we believe.
2171 **
2172 ** On success, this routine obtains a read lock on
2173 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2174 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2175 ** that means the Wal does not hold any read lock.  The reader must not
2176 ** access any database page that is modified by a WAL frame up to and
2177 ** including frame number aReadMark[pWal->readLock].  The reader will
2178 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2179 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2180 ** completely and get all content directly from the database file.
2181 ** If the useWal parameter is 1 then the WAL will never be ignored and
2182 ** this routine will always set pWal->readLock>0 on success.
2183 ** When the read transaction is completed, the caller must release the
2184 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2185 **
2186 ** This routine uses the nBackfill and aReadMark[] fields of the header
2187 ** to select a particular WAL_READ_LOCK() that strives to let the
2188 ** checkpoint process do as much work as possible.  This routine might
2189 ** update values of the aReadMark[] array in the header, but if it does
2190 ** so it takes care to hold an exclusive lock on the corresponding
2191 ** WAL_READ_LOCK() while changing values.
2192 */
2193 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2194   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2195   u32 mxReadMark;                 /* Largest aReadMark[] value */
2196   int mxI;                        /* Index of largest aReadMark[] value */
2197   int i;                          /* Loop counter */
2198   int rc = SQLITE_OK;             /* Return code  */
2199   u32 mxFrame;                    /* Wal frame to lock to */
2200 
2201   assert( pWal->readLock<0 );     /* Not currently locked */
2202 
2203   /* Take steps to avoid spinning forever if there is a protocol error.
2204   **
2205   ** Circumstances that cause a RETRY should only last for the briefest
2206   ** instances of time.  No I/O or other system calls are done while the
2207   ** locks are held, so the locks should not be held for very long. But
2208   ** if we are unlucky, another process that is holding a lock might get
2209   ** paged out or take a page-fault that is time-consuming to resolve,
2210   ** during the few nanoseconds that it is holding the lock.  In that case,
2211   ** it might take longer than normal for the lock to free.
2212   **
2213   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2214   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2215   ** is more of a scheduler yield than an actual delay.  But on the 10th
2216   ** an subsequent retries, the delays start becoming longer and longer,
2217   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2218   ** The total delay time before giving up is less than 10 seconds.
2219   */
2220   if( cnt>5 ){
2221     int nDelay = 1;                      /* Pause time in microseconds */
2222     if( cnt>100 ){
2223       VVA_ONLY( pWal->lockError = 1; )
2224       return SQLITE_PROTOCOL;
2225     }
2226     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2227     sqlite3OsSleep(pWal->pVfs, nDelay);
2228   }
2229 
2230   if( !useWal ){
2231     rc = walIndexReadHdr(pWal, pChanged);
2232     if( rc==SQLITE_BUSY ){
2233       /* If there is not a recovery running in another thread or process
2234       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2235       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2236       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2237       ** would be technically correct.  But the race is benign since with
2238       ** WAL_RETRY this routine will be called again and will probably be
2239       ** right on the second iteration.
2240       */
2241       if( pWal->apWiData[0]==0 ){
2242         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2243         ** We assume this is a transient condition, so return WAL_RETRY. The
2244         ** xShmMap() implementation used by the default unix and win32 VFS
2245         ** modules may return SQLITE_BUSY due to a race condition in the
2246         ** code that determines whether or not the shared-memory region
2247         ** must be zeroed before the requested page is returned.
2248         */
2249         rc = WAL_RETRY;
2250       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2251         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2252         rc = WAL_RETRY;
2253       }else if( rc==SQLITE_BUSY ){
2254         rc = SQLITE_BUSY_RECOVERY;
2255       }
2256     }
2257     if( rc!=SQLITE_OK ){
2258       return rc;
2259     }
2260   }
2261 
2262   pInfo = walCkptInfo(pWal);
2263   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2264 #ifdef SQLITE_ENABLE_SNAPSHOT
2265    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2266      || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2267 #endif
2268   ){
2269     /* The WAL has been completely backfilled (or it is empty).
2270     ** and can be safely ignored.
2271     */
2272     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2273     walShmBarrier(pWal);
2274     if( rc==SQLITE_OK ){
2275       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2276         /* It is not safe to allow the reader to continue here if frames
2277         ** may have been appended to the log before READ_LOCK(0) was obtained.
2278         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2279         ** which implies that the database file contains a trustworthy
2280         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2281         ** happening, this is usually correct.
2282         **
2283         ** However, if frames have been appended to the log (or if the log
2284         ** is wrapped and written for that matter) before the READ_LOCK(0)
2285         ** is obtained, that is not necessarily true. A checkpointer may
2286         ** have started to backfill the appended frames but crashed before
2287         ** it finished. Leaving a corrupt image in the database file.
2288         */
2289         walUnlockShared(pWal, WAL_READ_LOCK(0));
2290         return WAL_RETRY;
2291       }
2292       pWal->readLock = 0;
2293       return SQLITE_OK;
2294     }else if( rc!=SQLITE_BUSY ){
2295       return rc;
2296     }
2297   }
2298 
2299   /* If we get this far, it means that the reader will want to use
2300   ** the WAL to get at content from recent commits.  The job now is
2301   ** to select one of the aReadMark[] entries that is closest to
2302   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2303   */
2304   mxReadMark = 0;
2305   mxI = 0;
2306   mxFrame = pWal->hdr.mxFrame;
2307 #ifdef SQLITE_ENABLE_SNAPSHOT
2308   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2309     mxFrame = pWal->pSnapshot->mxFrame;
2310   }
2311 #endif
2312   for(i=1; i<WAL_NREADER; i++){
2313     u32 thisMark = pInfo->aReadMark[i];
2314     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2315       assert( thisMark!=READMARK_NOT_USED );
2316       mxReadMark = thisMark;
2317       mxI = i;
2318     }
2319   }
2320   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2321    && (mxReadMark<mxFrame || mxI==0)
2322   ){
2323     for(i=1; i<WAL_NREADER; i++){
2324       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2325       if( rc==SQLITE_OK ){
2326         mxReadMark = pInfo->aReadMark[i] = mxFrame;
2327         mxI = i;
2328         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2329         break;
2330       }else if( rc!=SQLITE_BUSY ){
2331         return rc;
2332       }
2333     }
2334   }
2335   if( mxI==0 ){
2336     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2337     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2338   }
2339 
2340   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2341   if( rc ){
2342     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2343   }
2344   /* Now that the read-lock has been obtained, check that neither the
2345   ** value in the aReadMark[] array or the contents of the wal-index
2346   ** header have changed.
2347   **
2348   ** It is necessary to check that the wal-index header did not change
2349   ** between the time it was read and when the shared-lock was obtained
2350   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2351   ** that the log file may have been wrapped by a writer, or that frames
2352   ** that occur later in the log than pWal->hdr.mxFrame may have been
2353   ** copied into the database by a checkpointer. If either of these things
2354   ** happened, then reading the database with the current value of
2355   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2356   ** instead.
2357   **
2358   ** Before checking that the live wal-index header has not changed
2359   ** since it was read, set Wal.minFrame to the first frame in the wal
2360   ** file that has not yet been checkpointed. This client will not need
2361   ** to read any frames earlier than minFrame from the wal file - they
2362   ** can be safely read directly from the database file.
2363   **
2364   ** Because a ShmBarrier() call is made between taking the copy of
2365   ** nBackfill and checking that the wal-header in shared-memory still
2366   ** matches the one cached in pWal->hdr, it is guaranteed that the
2367   ** checkpointer that set nBackfill was not working with a wal-index
2368   ** header newer than that cached in pWal->hdr. If it were, that could
2369   ** cause a problem. The checkpointer could omit to checkpoint
2370   ** a version of page X that lies before pWal->minFrame (call that version
2371   ** A) on the basis that there is a newer version (version B) of the same
2372   ** page later in the wal file. But if version B happens to like past
2373   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2374   ** that it can read version A from the database file. However, since
2375   ** we can guarantee that the checkpointer that set nBackfill could not
2376   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2377   */
2378   pWal->minFrame = pInfo->nBackfill+1;
2379   walShmBarrier(pWal);
2380   if( pInfo->aReadMark[mxI]!=mxReadMark
2381    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2382   ){
2383     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2384     return WAL_RETRY;
2385   }else{
2386     assert( mxReadMark<=pWal->hdr.mxFrame );
2387     pWal->readLock = (i16)mxI;
2388   }
2389   return rc;
2390 }
2391 
2392 #ifdef SQLITE_ENABLE_SNAPSHOT
2393 /*
2394 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2395 ** variable so that older snapshots can be accessed. To do this, loop
2396 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2397 ** comparing their content to the corresponding page with the database
2398 ** file, if any. Set nBackfillAttempted to the frame number of the
2399 ** first frame for which the wal file content matches the db file.
2400 **
2401 ** This is only really safe if the file-system is such that any page
2402 ** writes made by earlier checkpointers were atomic operations, which
2403 ** is not always true. It is also possible that nBackfillAttempted
2404 ** may be left set to a value larger than expected, if a wal frame
2405 ** contains content that duplicate of an earlier version of the same
2406 ** page.
2407 **
2408 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2409 ** error occurs. It is not an error if nBackfillAttempted cannot be
2410 ** decreased at all.
2411 */
2412 int sqlite3WalSnapshotRecover(Wal *pWal){
2413   int rc;
2414 
2415   assert( pWal->readLock>=0 );
2416   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2417   if( rc==SQLITE_OK ){
2418     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2419     int szPage = (int)pWal->szPage;
2420     i64 szDb;                   /* Size of db file in bytes */
2421 
2422     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2423     if( rc==SQLITE_OK ){
2424       void *pBuf1 = sqlite3_malloc(szPage);
2425       void *pBuf2 = sqlite3_malloc(szPage);
2426       if( pBuf1==0 || pBuf2==0 ){
2427         rc = SQLITE_NOMEM;
2428       }else{
2429         u32 i = pInfo->nBackfillAttempted;
2430         for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2431           volatile ht_slot *dummy;
2432           volatile u32 *aPgno;      /* Array of page numbers */
2433           u32 iZero;                /* Frame corresponding to aPgno[0] */
2434           u32 pgno;                 /* Page number in db file */
2435           i64 iDbOff;               /* Offset of db file entry */
2436           i64 iWalOff;              /* Offset of wal file entry */
2437 
2438           rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2439           if( rc!=SQLITE_OK ) break;
2440           pgno = aPgno[i-iZero];
2441           iDbOff = (i64)(pgno-1) * szPage;
2442 
2443           if( iDbOff+szPage<=szDb ){
2444             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2445             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2446 
2447             if( rc==SQLITE_OK ){
2448               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2449             }
2450 
2451             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2452               break;
2453             }
2454           }
2455 
2456           pInfo->nBackfillAttempted = i-1;
2457         }
2458       }
2459 
2460       sqlite3_free(pBuf1);
2461       sqlite3_free(pBuf2);
2462     }
2463     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2464   }
2465 
2466   return rc;
2467 }
2468 #endif /* SQLITE_ENABLE_SNAPSHOT */
2469 
2470 /*
2471 ** Begin a read transaction on the database.
2472 **
2473 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2474 ** it takes a snapshot of the state of the WAL and wal-index for the current
2475 ** instant in time.  The current thread will continue to use this snapshot.
2476 ** Other threads might append new content to the WAL and wal-index but
2477 ** that extra content is ignored by the current thread.
2478 **
2479 ** If the database contents have changes since the previous read
2480 ** transaction, then *pChanged is set to 1 before returning.  The
2481 ** Pager layer will use this to know that is cache is stale and
2482 ** needs to be flushed.
2483 */
2484 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2485   int rc;                         /* Return code */
2486   int cnt = 0;                    /* Number of TryBeginRead attempts */
2487 
2488 #ifdef SQLITE_ENABLE_SNAPSHOT
2489   int bChanged = 0;
2490   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2491   if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2492     bChanged = 1;
2493   }
2494 #endif
2495 
2496   do{
2497     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2498   }while( rc==WAL_RETRY );
2499   testcase( (rc&0xff)==SQLITE_BUSY );
2500   testcase( (rc&0xff)==SQLITE_IOERR );
2501   testcase( rc==SQLITE_PROTOCOL );
2502   testcase( rc==SQLITE_OK );
2503 
2504 #ifdef SQLITE_ENABLE_SNAPSHOT
2505   if( rc==SQLITE_OK ){
2506     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2507       /* At this point the client has a lock on an aReadMark[] slot holding
2508       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2509       ** is populated with the wal-index header corresponding to the head
2510       ** of the wal file. Verify that pSnapshot is still valid before
2511       ** continuing.  Reasons why pSnapshot might no longer be valid:
2512       **
2513       **    (1)  The WAL file has been reset since the snapshot was taken.
2514       **         In this case, the salt will have changed.
2515       **
2516       **    (2)  A checkpoint as been attempted that wrote frames past
2517       **         pSnapshot->mxFrame into the database file.  Note that the
2518       **         checkpoint need not have completed for this to cause problems.
2519       */
2520       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2521 
2522       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2523       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2524 
2525       /* It is possible that there is a checkpointer thread running
2526       ** concurrent with this code. If this is the case, it may be that the
2527       ** checkpointer has already determined that it will checkpoint
2528       ** snapshot X, where X is later in the wal file than pSnapshot, but
2529       ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2530       ** its intent. To avoid the race condition this leads to, ensure that
2531       ** there is no checkpointer process by taking a shared CKPT lock
2532       ** before checking pInfo->nBackfillAttempted.
2533       **
2534       ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2535       **       this already?
2536       */
2537       rc = walLockShared(pWal, WAL_CKPT_LOCK);
2538 
2539       if( rc==SQLITE_OK ){
2540         /* Check that the wal file has not been wrapped. Assuming that it has
2541         ** not, also check that no checkpointer has attempted to checkpoint any
2542         ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2543         ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2544         ** with *pSnapshot and set *pChanged as appropriate for opening the
2545         ** snapshot.  */
2546         if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2547          && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2548         ){
2549           assert( pWal->readLock>0 );
2550           memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2551           *pChanged = bChanged;
2552         }else{
2553           rc = SQLITE_BUSY_SNAPSHOT;
2554         }
2555 
2556         /* Release the shared CKPT lock obtained above. */
2557         walUnlockShared(pWal, WAL_CKPT_LOCK);
2558       }
2559 
2560 
2561       if( rc!=SQLITE_OK ){
2562         sqlite3WalEndReadTransaction(pWal);
2563       }
2564     }
2565   }
2566 #endif
2567   return rc;
2568 }
2569 
2570 /*
2571 ** Finish with a read transaction.  All this does is release the
2572 ** read-lock.
2573 */
2574 void sqlite3WalEndReadTransaction(Wal *pWal){
2575   sqlite3WalEndWriteTransaction(pWal);
2576   if( pWal->readLock>=0 ){
2577     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2578     pWal->readLock = -1;
2579   }
2580 }
2581 
2582 /*
2583 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2584 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2585 ** to zero.
2586 **
2587 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2588 ** error does occur, the final value of *piRead is undefined.
2589 */
2590 int sqlite3WalFindFrame(
2591   Wal *pWal,                      /* WAL handle */
2592   Pgno pgno,                      /* Database page number to read data for */
2593   u32 *piRead                     /* OUT: Frame number (or zero) */
2594 ){
2595   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2596   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2597   int iHash;                      /* Used to loop through N hash tables */
2598   int iMinHash;
2599 
2600   /* This routine is only be called from within a read transaction. */
2601   assert( pWal->readLock>=0 || pWal->lockError );
2602 
2603   /* If the "last page" field of the wal-index header snapshot is 0, then
2604   ** no data will be read from the wal under any circumstances. Return early
2605   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2606   ** then the WAL is ignored by the reader so return early, as if the
2607   ** WAL were empty.
2608   */
2609   if( iLast==0 || pWal->readLock==0 ){
2610     *piRead = 0;
2611     return SQLITE_OK;
2612   }
2613 
2614   /* Search the hash table or tables for an entry matching page number
2615   ** pgno. Each iteration of the following for() loop searches one
2616   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2617   **
2618   ** This code might run concurrently to the code in walIndexAppend()
2619   ** that adds entries to the wal-index (and possibly to this hash
2620   ** table). This means the value just read from the hash
2621   ** slot (aHash[iKey]) may have been added before or after the
2622   ** current read transaction was opened. Values added after the
2623   ** read transaction was opened may have been written incorrectly -
2624   ** i.e. these slots may contain garbage data. However, we assume
2625   ** that any slots written before the current read transaction was
2626   ** opened remain unmodified.
2627   **
2628   ** For the reasons above, the if(...) condition featured in the inner
2629   ** loop of the following block is more stringent that would be required
2630   ** if we had exclusive access to the hash-table:
2631   **
2632   **   (aPgno[iFrame]==pgno):
2633   **     This condition filters out normal hash-table collisions.
2634   **
2635   **   (iFrame<=iLast):
2636   **     This condition filters out entries that were added to the hash
2637   **     table after the current read-transaction had started.
2638   */
2639   iMinHash = walFramePage(pWal->minFrame);
2640   for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2641     volatile ht_slot *aHash;      /* Pointer to hash table */
2642     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2643     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2644     int iKey;                     /* Hash slot index */
2645     int nCollide;                 /* Number of hash collisions remaining */
2646     int rc;                       /* Error code */
2647 
2648     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2649     if( rc!=SQLITE_OK ){
2650       return rc;
2651     }
2652     nCollide = HASHTABLE_NSLOT;
2653     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2654       u32 iFrame = aHash[iKey] + iZero;
2655       if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2656         assert( iFrame>iRead || CORRUPT_DB );
2657         iRead = iFrame;
2658       }
2659       if( (nCollide--)==0 ){
2660         return SQLITE_CORRUPT_BKPT;
2661       }
2662     }
2663   }
2664 
2665 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2666   /* If expensive assert() statements are available, do a linear search
2667   ** of the wal-index file content. Make sure the results agree with the
2668   ** result obtained using the hash indexes above.  */
2669   {
2670     u32 iRead2 = 0;
2671     u32 iTest;
2672     assert( pWal->minFrame>0 );
2673     for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
2674       if( walFramePgno(pWal, iTest)==pgno ){
2675         iRead2 = iTest;
2676         break;
2677       }
2678     }
2679     assert( iRead==iRead2 );
2680   }
2681 #endif
2682 
2683   *piRead = iRead;
2684   return SQLITE_OK;
2685 }
2686 
2687 /*
2688 ** Read the contents of frame iRead from the wal file into buffer pOut
2689 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2690 ** error code otherwise.
2691 */
2692 int sqlite3WalReadFrame(
2693   Wal *pWal,                      /* WAL handle */
2694   u32 iRead,                      /* Frame to read */
2695   int nOut,                       /* Size of buffer pOut in bytes */
2696   u8 *pOut                        /* Buffer to write page data to */
2697 ){
2698   int sz;
2699   i64 iOffset;
2700   sz = pWal->hdr.szPage;
2701   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2702   testcase( sz<=32768 );
2703   testcase( sz>=65536 );
2704   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2705   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2706   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2707 }
2708 
2709 /*
2710 ** Return the size of the database in pages (or zero, if unknown).
2711 */
2712 Pgno sqlite3WalDbsize(Wal *pWal){
2713   if( pWal && ALWAYS(pWal->readLock>=0) ){
2714     return pWal->hdr.nPage;
2715   }
2716   return 0;
2717 }
2718 
2719 
2720 /*
2721 ** This function starts a write transaction on the WAL.
2722 **
2723 ** A read transaction must have already been started by a prior call
2724 ** to sqlite3WalBeginReadTransaction().
2725 **
2726 ** If another thread or process has written into the database since
2727 ** the read transaction was started, then it is not possible for this
2728 ** thread to write as doing so would cause a fork.  So this routine
2729 ** returns SQLITE_BUSY in that case and no write transaction is started.
2730 **
2731 ** There can only be a single writer active at a time.
2732 */
2733 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2734   int rc;
2735 
2736   /* Cannot start a write transaction without first holding a read
2737   ** transaction. */
2738   assert( pWal->readLock>=0 );
2739   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2740 
2741   if( pWal->readOnly ){
2742     return SQLITE_READONLY;
2743   }
2744 
2745   /* Only one writer allowed at a time.  Get the write lock.  Return
2746   ** SQLITE_BUSY if unable.
2747   */
2748   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2749   if( rc ){
2750     return rc;
2751   }
2752   pWal->writeLock = 1;
2753 
2754   /* If another connection has written to the database file since the
2755   ** time the read transaction on this connection was started, then
2756   ** the write is disallowed.
2757   */
2758   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2759     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2760     pWal->writeLock = 0;
2761     rc = SQLITE_BUSY_SNAPSHOT;
2762   }
2763 
2764   return rc;
2765 }
2766 
2767 /*
2768 ** End a write transaction.  The commit has already been done.  This
2769 ** routine merely releases the lock.
2770 */
2771 int sqlite3WalEndWriteTransaction(Wal *pWal){
2772   if( pWal->writeLock ){
2773     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2774     pWal->writeLock = 0;
2775     pWal->iReCksum = 0;
2776     pWal->truncateOnCommit = 0;
2777   }
2778   return SQLITE_OK;
2779 }
2780 
2781 /*
2782 ** If any data has been written (but not committed) to the log file, this
2783 ** function moves the write-pointer back to the start of the transaction.
2784 **
2785 ** Additionally, the callback function is invoked for each frame written
2786 ** to the WAL since the start of the transaction. If the callback returns
2787 ** other than SQLITE_OK, it is not invoked again and the error code is
2788 ** returned to the caller.
2789 **
2790 ** Otherwise, if the callback function does not return an error, this
2791 ** function returns SQLITE_OK.
2792 */
2793 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2794   int rc = SQLITE_OK;
2795   if( ALWAYS(pWal->writeLock) ){
2796     Pgno iMax = pWal->hdr.mxFrame;
2797     Pgno iFrame;
2798 
2799     /* Restore the clients cache of the wal-index header to the state it
2800     ** was in before the client began writing to the database.
2801     */
2802     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2803 
2804     for(iFrame=pWal->hdr.mxFrame+1;
2805         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2806         iFrame++
2807     ){
2808       /* This call cannot fail. Unless the page for which the page number
2809       ** is passed as the second argument is (a) in the cache and
2810       ** (b) has an outstanding reference, then xUndo is either a no-op
2811       ** (if (a) is false) or simply expels the page from the cache (if (b)
2812       ** is false).
2813       **
2814       ** If the upper layer is doing a rollback, it is guaranteed that there
2815       ** are no outstanding references to any page other than page 1. And
2816       ** page 1 is never written to the log until the transaction is
2817       ** committed. As a result, the call to xUndo may not fail.
2818       */
2819       assert( walFramePgno(pWal, iFrame)!=1 );
2820       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2821     }
2822     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2823   }
2824   return rc;
2825 }
2826 
2827 /*
2828 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2829 ** values. This function populates the array with values required to
2830 ** "rollback" the write position of the WAL handle back to the current
2831 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2832 */
2833 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2834   assert( pWal->writeLock );
2835   aWalData[0] = pWal->hdr.mxFrame;
2836   aWalData[1] = pWal->hdr.aFrameCksum[0];
2837   aWalData[2] = pWal->hdr.aFrameCksum[1];
2838   aWalData[3] = pWal->nCkpt;
2839 }
2840 
2841 /*
2842 ** Move the write position of the WAL back to the point identified by
2843 ** the values in the aWalData[] array. aWalData must point to an array
2844 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2845 ** by a call to WalSavepoint().
2846 */
2847 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2848   int rc = SQLITE_OK;
2849 
2850   assert( pWal->writeLock );
2851   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2852 
2853   if( aWalData[3]!=pWal->nCkpt ){
2854     /* This savepoint was opened immediately after the write-transaction
2855     ** was started. Right after that, the writer decided to wrap around
2856     ** to the start of the log. Update the savepoint values to match.
2857     */
2858     aWalData[0] = 0;
2859     aWalData[3] = pWal->nCkpt;
2860   }
2861 
2862   if( aWalData[0]<pWal->hdr.mxFrame ){
2863     pWal->hdr.mxFrame = aWalData[0];
2864     pWal->hdr.aFrameCksum[0] = aWalData[1];
2865     pWal->hdr.aFrameCksum[1] = aWalData[2];
2866     walCleanupHash(pWal);
2867   }
2868 
2869   return rc;
2870 }
2871 
2872 /*
2873 ** This function is called just before writing a set of frames to the log
2874 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2875 ** to the current log file, it is possible to overwrite the start of the
2876 ** existing log file with the new frames (i.e. "reset" the log). If so,
2877 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2878 ** unchanged.
2879 **
2880 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2881 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2882 ** if an error occurs.
2883 */
2884 static int walRestartLog(Wal *pWal){
2885   int rc = SQLITE_OK;
2886   int cnt;
2887 
2888   if( pWal->readLock==0 ){
2889     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2890     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2891     if( pInfo->nBackfill>0 ){
2892       u32 salt1;
2893       sqlite3_randomness(4, &salt1);
2894       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2895       if( rc==SQLITE_OK ){
2896         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2897         ** readers are currently using the WAL), then the transactions
2898         ** frames will overwrite the start of the existing log. Update the
2899         ** wal-index header to reflect this.
2900         **
2901         ** In theory it would be Ok to update the cache of the header only
2902         ** at this point. But updating the actual wal-index header is also
2903         ** safe and means there is no special case for sqlite3WalUndo()
2904         ** to handle if this transaction is rolled back.  */
2905         walRestartHdr(pWal, salt1);
2906         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2907       }else if( rc!=SQLITE_BUSY ){
2908         return rc;
2909       }
2910     }
2911     walUnlockShared(pWal, WAL_READ_LOCK(0));
2912     pWal->readLock = -1;
2913     cnt = 0;
2914     do{
2915       int notUsed;
2916       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2917     }while( rc==WAL_RETRY );
2918     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2919     testcase( (rc&0xff)==SQLITE_IOERR );
2920     testcase( rc==SQLITE_PROTOCOL );
2921     testcase( rc==SQLITE_OK );
2922   }
2923   return rc;
2924 }
2925 
2926 /*
2927 ** Information about the current state of the WAL file and where
2928 ** the next fsync should occur - passed from sqlite3WalFrames() into
2929 ** walWriteToLog().
2930 */
2931 typedef struct WalWriter {
2932   Wal *pWal;                   /* The complete WAL information */
2933   sqlite3_file *pFd;           /* The WAL file to which we write */
2934   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2935   int syncFlags;               /* Flags for the fsync */
2936   int szPage;                  /* Size of one page */
2937 } WalWriter;
2938 
2939 /*
2940 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2941 ** Do a sync when crossing the p->iSyncPoint boundary.
2942 **
2943 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2944 ** first write the part before iSyncPoint, then sync, then write the
2945 ** rest.
2946 */
2947 static int walWriteToLog(
2948   WalWriter *p,              /* WAL to write to */
2949   void *pContent,            /* Content to be written */
2950   int iAmt,                  /* Number of bytes to write */
2951   sqlite3_int64 iOffset      /* Start writing at this offset */
2952 ){
2953   int rc;
2954   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2955     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2956     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2957     if( rc ) return rc;
2958     iOffset += iFirstAmt;
2959     iAmt -= iFirstAmt;
2960     pContent = (void*)(iFirstAmt + (char*)pContent);
2961     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
2962     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
2963     if( iAmt==0 || rc ) return rc;
2964   }
2965   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2966   return rc;
2967 }
2968 
2969 /*
2970 ** Write out a single frame of the WAL
2971 */
2972 static int walWriteOneFrame(
2973   WalWriter *p,               /* Where to write the frame */
2974   PgHdr *pPage,               /* The page of the frame to be written */
2975   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2976   sqlite3_int64 iOffset       /* Byte offset at which to write */
2977 ){
2978   int rc;                         /* Result code from subfunctions */
2979   void *pData;                    /* Data actually written */
2980   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2981 #if defined(SQLITE_HAS_CODEC)
2982   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
2983 #else
2984   pData = pPage->pData;
2985 #endif
2986   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2987   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2988   if( rc ) return rc;
2989   /* Write the page data */
2990   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2991   return rc;
2992 }
2993 
2994 /*
2995 ** This function is called as part of committing a transaction within which
2996 ** one or more frames have been overwritten. It updates the checksums for
2997 ** all frames written to the wal file by the current transaction starting
2998 ** with the earliest to have been overwritten.
2999 **
3000 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3001 */
3002 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3003   const int szPage = pWal->szPage;/* Database page size */
3004   int rc = SQLITE_OK;             /* Return code */
3005   u8 *aBuf;                       /* Buffer to load data from wal file into */
3006   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3007   u32 iRead;                      /* Next frame to read from wal file */
3008   i64 iCksumOff;
3009 
3010   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3011   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3012 
3013   /* Find the checksum values to use as input for the recalculating the
3014   ** first checksum. If the first frame is frame 1 (implying that the current
3015   ** transaction restarted the wal file), these values must be read from the
3016   ** wal-file header. Otherwise, read them from the frame header of the
3017   ** previous frame.  */
3018   assert( pWal->iReCksum>0 );
3019   if( pWal->iReCksum==1 ){
3020     iCksumOff = 24;
3021   }else{
3022     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3023   }
3024   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3025   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3026   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3027 
3028   iRead = pWal->iReCksum;
3029   pWal->iReCksum = 0;
3030   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3031     i64 iOff = walFrameOffset(iRead, szPage);
3032     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3033     if( rc==SQLITE_OK ){
3034       u32 iPgno, nDbSize;
3035       iPgno = sqlite3Get4byte(aBuf);
3036       nDbSize = sqlite3Get4byte(&aBuf[4]);
3037 
3038       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3039       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3040     }
3041   }
3042 
3043   sqlite3_free(aBuf);
3044   return rc;
3045 }
3046 
3047 /*
3048 ** Write a set of frames to the log. The caller must hold the write-lock
3049 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3050 */
3051 int sqlite3WalFrames(
3052   Wal *pWal,                      /* Wal handle to write to */
3053   int szPage,                     /* Database page-size in bytes */
3054   PgHdr *pList,                   /* List of dirty pages to write */
3055   Pgno nTruncate,                 /* Database size after this commit */
3056   int isCommit,                   /* True if this is a commit */
3057   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3058 ){
3059   int rc;                         /* Used to catch return codes */
3060   u32 iFrame;                     /* Next frame address */
3061   PgHdr *p;                       /* Iterator to run through pList with. */
3062   PgHdr *pLast = 0;               /* Last frame in list */
3063   int nExtra = 0;                 /* Number of extra copies of last page */
3064   int szFrame;                    /* The size of a single frame */
3065   i64 iOffset;                    /* Next byte to write in WAL file */
3066   WalWriter w;                    /* The writer */
3067   u32 iFirst = 0;                 /* First frame that may be overwritten */
3068   WalIndexHdr *pLive;             /* Pointer to shared header */
3069 
3070   assert( pList );
3071   assert( pWal->writeLock );
3072 
3073   /* If this frame set completes a transaction, then nTruncate>0.  If
3074   ** nTruncate==0 then this frame set does not complete the transaction. */
3075   assert( (isCommit!=0)==(nTruncate!=0) );
3076 
3077 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3078   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3079     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3080               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3081   }
3082 #endif
3083 
3084   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3085   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3086     iFirst = pLive->mxFrame+1;
3087   }
3088 
3089   /* See if it is possible to write these frames into the start of the
3090   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3091   */
3092   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3093     return rc;
3094   }
3095 
3096   /* If this is the first frame written into the log, write the WAL
3097   ** header to the start of the WAL file. See comments at the top of
3098   ** this source file for a description of the WAL header format.
3099   */
3100   iFrame = pWal->hdr.mxFrame;
3101   if( iFrame==0 ){
3102     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3103     u32 aCksum[2];                /* Checksum for wal-header */
3104 
3105     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3106     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3107     sqlite3Put4byte(&aWalHdr[8], szPage);
3108     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3109     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3110     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3111     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3112     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3113     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3114 
3115     pWal->szPage = szPage;
3116     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3117     pWal->hdr.aFrameCksum[0] = aCksum[0];
3118     pWal->hdr.aFrameCksum[1] = aCksum[1];
3119     pWal->truncateOnCommit = 1;
3120 
3121     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3122     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3123     if( rc!=SQLITE_OK ){
3124       return rc;
3125     }
3126 
3127     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3128     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3129     ** an out-of-order write following a WAL restart could result in
3130     ** database corruption.  See the ticket:
3131     **
3132     **     https://sqlite.org/src/info/ff5be73dee
3133     */
3134     if( pWal->syncHeader ){
3135       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3136       if( rc ) return rc;
3137     }
3138   }
3139   assert( (int)pWal->szPage==szPage );
3140 
3141   /* Setup information needed to write frames into the WAL */
3142   w.pWal = pWal;
3143   w.pFd = pWal->pWalFd;
3144   w.iSyncPoint = 0;
3145   w.syncFlags = sync_flags;
3146   w.szPage = szPage;
3147   iOffset = walFrameOffset(iFrame+1, szPage);
3148   szFrame = szPage + WAL_FRAME_HDRSIZE;
3149 
3150   /* Write all frames into the log file exactly once */
3151   for(p=pList; p; p=p->pDirty){
3152     int nDbSize;   /* 0 normally.  Positive == commit flag */
3153 
3154     /* Check if this page has already been written into the wal file by
3155     ** the current transaction. If so, overwrite the existing frame and
3156     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3157     ** checksums must be recomputed when the transaction is committed.  */
3158     if( iFirst && (p->pDirty || isCommit==0) ){
3159       u32 iWrite = 0;
3160       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3161       assert( rc==SQLITE_OK || iWrite==0 );
3162       if( iWrite>=iFirst ){
3163         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3164         void *pData;
3165         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3166           pWal->iReCksum = iWrite;
3167         }
3168 #if defined(SQLITE_HAS_CODEC)
3169         if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3170 #else
3171         pData = p->pData;
3172 #endif
3173         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3174         if( rc ) return rc;
3175         p->flags &= ~PGHDR_WAL_APPEND;
3176         continue;
3177       }
3178     }
3179 
3180     iFrame++;
3181     assert( iOffset==walFrameOffset(iFrame, szPage) );
3182     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3183     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3184     if( rc ) return rc;
3185     pLast = p;
3186     iOffset += szFrame;
3187     p->flags |= PGHDR_WAL_APPEND;
3188   }
3189 
3190   /* Recalculate checksums within the wal file if required. */
3191   if( isCommit && pWal->iReCksum ){
3192     rc = walRewriteChecksums(pWal, iFrame);
3193     if( rc ) return rc;
3194   }
3195 
3196   /* If this is the end of a transaction, then we might need to pad
3197   ** the transaction and/or sync the WAL file.
3198   **
3199   ** Padding and syncing only occur if this set of frames complete a
3200   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3201   ** or synchronous==OFF, then no padding or syncing are needed.
3202   **
3203   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3204   ** needed and only the sync is done.  If padding is needed, then the
3205   ** final frame is repeated (with its commit mark) until the next sector
3206   ** boundary is crossed.  Only the part of the WAL prior to the last
3207   ** sector boundary is synced; the part of the last frame that extends
3208   ** past the sector boundary is written after the sync.
3209   */
3210   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3211     int bSync = 1;
3212     if( pWal->padToSectorBoundary ){
3213       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3214       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3215       bSync = (w.iSyncPoint==iOffset);
3216       testcase( bSync );
3217       while( iOffset<w.iSyncPoint ){
3218         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3219         if( rc ) return rc;
3220         iOffset += szFrame;
3221         nExtra++;
3222       }
3223     }
3224     if( bSync ){
3225       assert( rc==SQLITE_OK );
3226       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3227     }
3228   }
3229 
3230   /* If this frame set completes the first transaction in the WAL and
3231   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3232   ** journal size limit, if possible.
3233   */
3234   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3235     i64 sz = pWal->mxWalSize;
3236     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3237       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3238     }
3239     walLimitSize(pWal, sz);
3240     pWal->truncateOnCommit = 0;
3241   }
3242 
3243   /* Append data to the wal-index. It is not necessary to lock the
3244   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3245   ** guarantees that there are no other writers, and no data that may
3246   ** be in use by existing readers is being overwritten.
3247   */
3248   iFrame = pWal->hdr.mxFrame;
3249   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3250     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3251     iFrame++;
3252     rc = walIndexAppend(pWal, iFrame, p->pgno);
3253   }
3254   while( rc==SQLITE_OK && nExtra>0 ){
3255     iFrame++;
3256     nExtra--;
3257     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3258   }
3259 
3260   if( rc==SQLITE_OK ){
3261     /* Update the private copy of the header. */
3262     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3263     testcase( szPage<=32768 );
3264     testcase( szPage>=65536 );
3265     pWal->hdr.mxFrame = iFrame;
3266     if( isCommit ){
3267       pWal->hdr.iChange++;
3268       pWal->hdr.nPage = nTruncate;
3269     }
3270     /* If this is a commit, update the wal-index header too. */
3271     if( isCommit ){
3272       walIndexWriteHdr(pWal);
3273       pWal->iCallback = iFrame;
3274     }
3275   }
3276 
3277   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3278   return rc;
3279 }
3280 
3281 /*
3282 ** This routine is called to implement sqlite3_wal_checkpoint() and
3283 ** related interfaces.
3284 **
3285 ** Obtain a CHECKPOINT lock and then backfill as much information as
3286 ** we can from WAL into the database.
3287 **
3288 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3289 ** callback. In this case this function runs a blocking checkpoint.
3290 */
3291 int sqlite3WalCheckpoint(
3292   Wal *pWal,                      /* Wal connection */
3293   sqlite3 *db,                    /* Check this handle's interrupt flag */
3294   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3295   int (*xBusy)(void*),            /* Function to call when busy */
3296   void *pBusyArg,                 /* Context argument for xBusyHandler */
3297   int sync_flags,                 /* Flags to sync db file with (or 0) */
3298   int nBuf,                       /* Size of temporary buffer */
3299   u8 *zBuf,                       /* Temporary buffer to use */
3300   int *pnLog,                     /* OUT: Number of frames in WAL */
3301   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3302 ){
3303   int rc;                         /* Return code */
3304   int isChanged = 0;              /* True if a new wal-index header is loaded */
3305   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3306   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3307 
3308   assert( pWal->ckptLock==0 );
3309   assert( pWal->writeLock==0 );
3310 
3311   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3312   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3313   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3314 
3315   if( pWal->readOnly ) return SQLITE_READONLY;
3316   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3317 
3318   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3319   ** "checkpoint" lock on the database file. */
3320   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3321   if( rc ){
3322     /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3323     ** checkpoint operation at the same time, the lock cannot be obtained and
3324     ** SQLITE_BUSY is returned.
3325     ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3326     ** it will not be invoked in this case.
3327     */
3328     testcase( rc==SQLITE_BUSY );
3329     testcase( xBusy!=0 );
3330     return rc;
3331   }
3332   pWal->ckptLock = 1;
3333 
3334   /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3335   ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3336   ** file.
3337   **
3338   ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3339   ** immediately, and a busy-handler is configured, it is invoked and the
3340   ** writer lock retried until either the busy-handler returns 0 or the
3341   ** lock is successfully obtained.
3342   */
3343   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3344     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3345     if( rc==SQLITE_OK ){
3346       pWal->writeLock = 1;
3347     }else if( rc==SQLITE_BUSY ){
3348       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3349       xBusy2 = 0;
3350       rc = SQLITE_OK;
3351     }
3352   }
3353 
3354   /* Read the wal-index header. */
3355   if( rc==SQLITE_OK ){
3356     rc = walIndexReadHdr(pWal, &isChanged);
3357     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3358       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3359     }
3360   }
3361 
3362   /* Copy data from the log to the database file. */
3363   if( rc==SQLITE_OK ){
3364 
3365     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3366       rc = SQLITE_CORRUPT_BKPT;
3367     }else{
3368       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3369     }
3370 
3371     /* If no error occurred, set the output variables. */
3372     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3373       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3374       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3375     }
3376   }
3377 
3378   if( isChanged ){
3379     /* If a new wal-index header was loaded before the checkpoint was
3380     ** performed, then the pager-cache associated with pWal is now
3381     ** out of date. So zero the cached wal-index header to ensure that
3382     ** next time the pager opens a snapshot on this database it knows that
3383     ** the cache needs to be reset.
3384     */
3385     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3386   }
3387 
3388   /* Release the locks. */
3389   sqlite3WalEndWriteTransaction(pWal);
3390   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3391   pWal->ckptLock = 0;
3392   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3393   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3394 }
3395 
3396 /* Return the value to pass to a sqlite3_wal_hook callback, the
3397 ** number of frames in the WAL at the point of the last commit since
3398 ** sqlite3WalCallback() was called.  If no commits have occurred since
3399 ** the last call, then return 0.
3400 */
3401 int sqlite3WalCallback(Wal *pWal){
3402   u32 ret = 0;
3403   if( pWal ){
3404     ret = pWal->iCallback;
3405     pWal->iCallback = 0;
3406   }
3407   return (int)ret;
3408 }
3409 
3410 /*
3411 ** This function is called to change the WAL subsystem into or out
3412 ** of locking_mode=EXCLUSIVE.
3413 **
3414 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3415 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3416 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3417 ** or if the acquisition of the lock fails, then return 0.  If the
3418 ** transition out of exclusive-mode is successful, return 1.  This
3419 ** operation must occur while the pager is still holding the exclusive
3420 ** lock on the main database file.
3421 **
3422 ** If op is one, then change from locking_mode=NORMAL into
3423 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3424 ** be released.  Return 1 if the transition is made and 0 if the
3425 ** WAL is already in exclusive-locking mode - meaning that this
3426 ** routine is a no-op.  The pager must already hold the exclusive lock
3427 ** on the main database file before invoking this operation.
3428 **
3429 ** If op is negative, then do a dry-run of the op==1 case but do
3430 ** not actually change anything. The pager uses this to see if it
3431 ** should acquire the database exclusive lock prior to invoking
3432 ** the op==1 case.
3433 */
3434 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3435   int rc;
3436   assert( pWal->writeLock==0 );
3437   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3438 
3439   /* pWal->readLock is usually set, but might be -1 if there was a
3440   ** prior error while attempting to acquire are read-lock. This cannot
3441   ** happen if the connection is actually in exclusive mode (as no xShmLock
3442   ** locks are taken in this case). Nor should the pager attempt to
3443   ** upgrade to exclusive-mode following such an error.
3444   */
3445   assert( pWal->readLock>=0 || pWal->lockError );
3446   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3447 
3448   if( op==0 ){
3449     if( pWal->exclusiveMode ){
3450       pWal->exclusiveMode = 0;
3451       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3452         pWal->exclusiveMode = 1;
3453       }
3454       rc = pWal->exclusiveMode==0;
3455     }else{
3456       /* Already in locking_mode=NORMAL */
3457       rc = 0;
3458     }
3459   }else if( op>0 ){
3460     assert( pWal->exclusiveMode==0 );
3461     assert( pWal->readLock>=0 );
3462     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3463     pWal->exclusiveMode = 1;
3464     rc = 1;
3465   }else{
3466     rc = pWal->exclusiveMode==0;
3467   }
3468   return rc;
3469 }
3470 
3471 /*
3472 ** Return true if the argument is non-NULL and the WAL module is using
3473 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3474 ** WAL module is using shared-memory, return false.
3475 */
3476 int sqlite3WalHeapMemory(Wal *pWal){
3477   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3478 }
3479 
3480 #ifdef SQLITE_ENABLE_SNAPSHOT
3481 /* Create a snapshot object.  The content of a snapshot is opaque to
3482 ** every other subsystem, so the WAL module can put whatever it needs
3483 ** in the object.
3484 */
3485 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3486   int rc = SQLITE_OK;
3487   WalIndexHdr *pRet;
3488   static const u32 aZero[4] = { 0, 0, 0, 0 };
3489 
3490   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3491 
3492   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3493     *ppSnapshot = 0;
3494     return SQLITE_ERROR;
3495   }
3496   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3497   if( pRet==0 ){
3498     rc = SQLITE_NOMEM_BKPT;
3499   }else{
3500     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3501     *ppSnapshot = (sqlite3_snapshot*)pRet;
3502   }
3503 
3504   return rc;
3505 }
3506 
3507 /* Try to open on pSnapshot when the next read-transaction starts
3508 */
3509 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3510   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3511 }
3512 
3513 /*
3514 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3515 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3516 */
3517 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3518   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3519   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3520 
3521   /* aSalt[0] is a copy of the value stored in the wal file header. It
3522   ** is incremented each time the wal file is restarted.  */
3523   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3524   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3525   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3526   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3527   return 0;
3528 }
3529 #endif /* SQLITE_ENABLE_SNAPSHOT */
3530 
3531 #ifdef SQLITE_ENABLE_ZIPVFS
3532 /*
3533 ** If the argument is not NULL, it points to a Wal object that holds a
3534 ** read-lock. This function returns the database page-size if it is known,
3535 ** or zero if it is not (or if pWal is NULL).
3536 */
3537 int sqlite3WalFramesize(Wal *pWal){
3538   assert( pWal==0 || pWal->readLock>=0 );
3539   return (pWal ? pWal->szPage : 0);
3540 }
3541 #endif
3542 
3543 /* Return the sqlite3_file object for the WAL file
3544 */
3545 sqlite3_file *sqlite3WalFile(Wal *pWal){
3546   return pWal->pWalFd;
3547 }
3548 
3549 #endif /* #ifndef SQLITE_OMIT_WAL */
3550