xref: /sqlite-3.40.0/src/wal.c (revision 3d403c71)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P, return the index of the last frame for page P in the WAL,
146 ** or return NULL if there are no frames for page P in the WAL.
147 **
148 ** The wal-index consists of a header region, followed by an one or
149 ** more index blocks.
150 **
151 ** The wal-index header contains the total number of frames within the WAL
152 ** in the the mxFrame field.
153 **
154 ** Each index block except for the first contains information on
155 ** HASHTABLE_NPAGE frames. The first index block contains information on
156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
158 ** first index block are the same size as all other index blocks in the
159 ** wal-index.
160 **
161 ** Each index block contains two sections, a page-mapping that contains the
162 ** database page number associated with each wal frame, and a hash-table
163 ** that allows readers to query an index block for a specific page number.
164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165 ** for the first index block) 32-bit page numbers. The first entry in the
166 ** first index-block contains the database page number corresponding to the
167 ** first frame in the WAL file. The first entry in the second index block
168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169 ** the log, and so on.
170 **
171 ** The last index block in a wal-index usually contains less than the full
172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173 ** depending on the contents of the WAL file. This does not change the
174 ** allocated size of the page-mapping array - the page-mapping array merely
175 ** contains unused entries.
176 **
177 ** Even without using the hash table, the last frame for page P
178 ** can be found by scanning the page-mapping sections of each index block
179 ** starting with the last index block and moving toward the first, and
180 ** within each index block, starting at the end and moving toward the
181 ** beginning.  The first entry that equals P corresponds to the frame
182 ** holding the content for that page.
183 **
184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186 ** hash table for each page number in the mapping section, so the hash
187 ** table is never more than half full.  The expected number of collisions
188 ** prior to finding a match is 1.  Each entry of the hash table is an
189 ** 1-based index of an entry in the mapping section of the same
190 ** index block.   Let K be the 1-based index of the largest entry in
191 ** the mapping section.  (For index blocks other than the last, K will
192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
194 ** contain a value of 0.
195 **
196 ** To look for page P in the hash table, first compute a hash iKey on
197 ** P as follows:
198 **
199 **      iKey = (P * 383) % HASHTABLE_NSLOT
200 **
201 ** Then start scanning entries of the hash table, starting with iKey
202 ** (wrapping around to the beginning when the end of the hash table is
203 ** reached) until an unused hash slot is found. Let the first unused slot
204 ** be at index iUnused.  (iUnused might be less than iKey if there was
205 ** wrap-around.) Because the hash table is never more than half full,
206 ** the search is guaranteed to eventually hit an unused entry.  Let
207 ** iMax be the value between iKey and iUnused, closest to iUnused,
208 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
209 ** no hash slot such that aHash[i]==p) then page P is not in the
210 ** current index block.  Otherwise the iMax-th mapping entry of the
211 ** current index block corresponds to the last entry that references
212 ** page P.
213 **
214 ** A hash search begins with the last index block and moves toward the
215 ** first index block, looking for entries corresponding to page P.  On
216 ** average, only two or three slots in each index block need to be
217 ** examined in order to either find the last entry for page P, or to
218 ** establish that no such entry exists in the block.  Each index block
219 ** holds over 4000 entries.  So two or three index blocks are sufficient
220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
221 ** comparisons (on average) suffice to either locate a frame in the
222 ** WAL or to establish that the frame does not exist in the WAL.  This
223 ** is much faster than scanning the entire 10MB WAL.
224 **
225 ** Note that entries are added in order of increasing K.  Hence, one
226 ** reader might be using some value K0 and a second reader that started
227 ** at a later time (after additional transactions were added to the WAL
228 ** and to the wal-index) might be using a different value K1, where K1>K0.
229 ** Both readers can use the same hash table and mapping section to get
230 ** the correct result.  There may be entries in the hash table with
231 ** K>K0 but to the first reader, those entries will appear to be unused
232 ** slots in the hash table and so the first reader will get an answer as
233 ** if no values greater than K0 had ever been inserted into the hash table
234 ** in the first place - which is what reader one wants.  Meanwhile, the
235 ** second reader using K1 will see additional values that were inserted
236 ** later, which is exactly what reader two wants.
237 **
238 ** When a rollback occurs, the value of K is decreased. Hash table entries
239 ** that correspond to frames greater than the new K value are removed
240 ** from the hash table at this point.
241 */
242 #ifndef SQLITE_OMIT_WAL
243 
244 #include "wal.h"
245 
246 /*
247 ** Trace output macros
248 */
249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
250 int sqlite3WalTrace = 0;
251 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
252 #else
253 # define WALTRACE(X)
254 #endif
255 
256 /*
257 ** The maximum (and only) versions of the wal and wal-index formats
258 ** that may be interpreted by this version of SQLite.
259 **
260 ** If a client begins recovering a WAL file and finds that (a) the checksum
261 ** values in the wal-header are correct and (b) the version field is not
262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263 **
264 ** Similarly, if a client successfully reads a wal-index header (i.e. the
265 ** checksum test is successful) and finds that the version field is not
266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267 ** returns SQLITE_CANTOPEN.
268 */
269 #define WAL_MAX_VERSION      3007000
270 #define WALINDEX_MAX_VERSION 3007000
271 
272 /*
273 ** Indices of various locking bytes.   WAL_NREADER is the number
274 ** of available reader locks and should be at least 3.
275 */
276 #define WAL_WRITE_LOCK         0
277 #define WAL_ALL_BUT_WRITE      1
278 #define WAL_CKPT_LOCK          1
279 #define WAL_RECOVER_LOCK       2
280 #define WAL_READ_LOCK(I)       (3+(I))
281 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
282 
283 
284 /* Object declarations */
285 typedef struct WalIndexHdr WalIndexHdr;
286 typedef struct WalIterator WalIterator;
287 typedef struct WalCkptInfo WalCkptInfo;
288 
289 
290 /*
291 ** The following object holds a copy of the wal-index header content.
292 **
293 ** The actual header in the wal-index consists of two copies of this
294 ** object.
295 **
296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
298 ** added in 3.7.1 when support for 64K pages was added.
299 */
300 struct WalIndexHdr {
301   u32 iVersion;                   /* Wal-index version */
302   u32 unused;                     /* Unused (padding) field */
303   u32 iChange;                    /* Counter incremented each transaction */
304   u8 isInit;                      /* 1 when initialized */
305   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
306   u16 szPage;                     /* Database page size in bytes. 1==64K */
307   u32 mxFrame;                    /* Index of last valid frame in the WAL */
308   u32 nPage;                      /* Size of database in pages */
309   u32 aFrameCksum[2];             /* Checksum of last frame in log */
310   u32 aSalt[2];                   /* Two salt values copied from WAL header */
311   u32 aCksum[2];                  /* Checksum over all prior fields */
312 };
313 
314 /*
315 ** A copy of the following object occurs in the wal-index immediately
316 ** following the second copy of the WalIndexHdr.  This object stores
317 ** information used by checkpoint.
318 **
319 ** nBackfill is the number of frames in the WAL that have been written
320 ** back into the database. (We call the act of moving content from WAL to
321 ** database "backfilling".)  The nBackfill number is never greater than
322 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325 ** mxFrame back to zero when the WAL is reset.
326 **
327 ** There is one entry in aReadMark[] for each reader lock.  If a reader
328 ** holds read-lock K, then the value in aReadMark[K] is no greater than
329 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
330 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
331 ** a special case; its value is never used and it exists as a place-holder
332 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334 ** directly from the database.
335 **
336 ** The value of aReadMark[K] may only be changed by a thread that
337 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
338 ** aReadMark[K] cannot changed while there is a reader is using that mark
339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340 **
341 ** The checkpointer may only transfer frames from WAL to database where
342 ** the frame numbers are less than or equal to every aReadMark[] that is
343 ** in use (that is, every aReadMark[j] for which there is a corresponding
344 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
345 ** largest value and will increase an unused aReadMark[] to mxFrame if there
346 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
348 ** in the WAL has been backfilled into the database) then new readers
349 ** will choose aReadMark[0] which has value 0 and hence such reader will
350 ** get all their all content directly from the database file and ignore
351 ** the WAL.
352 **
353 ** Writers normally append new frames to the end of the WAL.  However,
354 ** if nBackfill equals mxFrame (meaning that all WAL content has been
355 ** written back into the database) and if no readers are using the WAL
356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357 ** the writer will first "reset" the WAL back to the beginning and start
358 ** writing new content beginning at frame 1.
359 **
360 ** We assume that 32-bit loads are atomic and so no locks are needed in
361 ** order to read from any aReadMark[] entries.
362 */
363 struct WalCkptInfo {
364   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
365   u32 aReadMark[WAL_NREADER];     /* Reader marks */
366 };
367 #define READMARK_NOT_USED  0xffffffff
368 
369 
370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372 ** only support mandatory file-locks, we do not read or write data
373 ** from the region of the file on which locks are applied.
374 */
375 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376 #define WALINDEX_LOCK_RESERVED 16
377 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
378 
379 /* Size of header before each frame in wal */
380 #define WAL_FRAME_HDRSIZE 24
381 
382 /* Size of write ahead log header, including checksum. */
383 /* #define WAL_HDRSIZE 24 */
384 #define WAL_HDRSIZE 32
385 
386 /* WAL magic value. Either this value, or the same value with the least
387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388 ** big-endian format in the first 4 bytes of a WAL file.
389 **
390 ** If the LSB is set, then the checksums for each frame within the WAL
391 ** file are calculated by treating all data as an array of 32-bit
392 ** big-endian words. Otherwise, they are calculated by interpreting
393 ** all data as 32-bit little-endian words.
394 */
395 #define WAL_MAGIC 0x377f0682
396 
397 /*
398 ** Return the offset of frame iFrame in the write-ahead log file,
399 ** assuming a database page size of szPage bytes. The offset returned
400 ** is to the start of the write-ahead log frame-header.
401 */
402 #define walFrameOffset(iFrame, szPage) (                               \
403   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
404 )
405 
406 /*
407 ** An open write-ahead log file is represented by an instance of the
408 ** following object.
409 */
410 struct Wal {
411   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
412   sqlite3_file *pDbFd;       /* File handle for the database file */
413   sqlite3_file *pWalFd;      /* File handle for WAL file */
414   u32 iCallback;             /* Value to pass to log callback (or 0) */
415   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
416   int nWiData;               /* Size of array apWiData */
417   int szFirstBlock;          /* Size of first block written to WAL file */
418   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
419   u32 szPage;                /* Database page size */
420   i16 readLock;              /* Which read lock is being held.  -1 for none */
421   u8 syncFlags;              /* Flags to use to sync header writes */
422   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
423   u8 writeLock;              /* True if in a write transaction */
424   u8 ckptLock;               /* True if holding a checkpoint lock */
425   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
426   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
427   u8 syncHeader;             /* Fsync the WAL header if true */
428   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
429   WalIndexHdr hdr;           /* Wal-index header for current transaction */
430   const char *zWalName;      /* Name of WAL file */
431   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
432 #ifdef SQLITE_DEBUG
433   u8 lockError;              /* True if a locking error has occurred */
434 #endif
435 };
436 
437 /*
438 ** Candidate values for Wal.exclusiveMode.
439 */
440 #define WAL_NORMAL_MODE     0
441 #define WAL_EXCLUSIVE_MODE  1
442 #define WAL_HEAPMEMORY_MODE 2
443 
444 /*
445 ** Possible values for WAL.readOnly
446 */
447 #define WAL_RDWR        0    /* Normal read/write connection */
448 #define WAL_RDONLY      1    /* The WAL file is readonly */
449 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
450 
451 /*
452 ** Each page of the wal-index mapping contains a hash-table made up of
453 ** an array of HASHTABLE_NSLOT elements of the following type.
454 */
455 typedef u16 ht_slot;
456 
457 /*
458 ** This structure is used to implement an iterator that loops through
459 ** all frames in the WAL in database page order. Where two or more frames
460 ** correspond to the same database page, the iterator visits only the
461 ** frame most recently written to the WAL (in other words, the frame with
462 ** the largest index).
463 **
464 ** The internals of this structure are only accessed by:
465 **
466 **   walIteratorInit() - Create a new iterator,
467 **   walIteratorNext() - Step an iterator,
468 **   walIteratorFree() - Free an iterator.
469 **
470 ** This functionality is used by the checkpoint code (see walCheckpoint()).
471 */
472 struct WalIterator {
473   int iPrior;                     /* Last result returned from the iterator */
474   int nSegment;                   /* Number of entries in aSegment[] */
475   struct WalSegment {
476     int iNext;                    /* Next slot in aIndex[] not yet returned */
477     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
478     u32 *aPgno;                   /* Array of page numbers. */
479     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
480     int iZero;                    /* Frame number associated with aPgno[0] */
481   } aSegment[1];                  /* One for every 32KB page in the wal-index */
482 };
483 
484 /*
485 ** Define the parameters of the hash tables in the wal-index file. There
486 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
487 ** wal-index.
488 **
489 ** Changing any of these constants will alter the wal-index format and
490 ** create incompatibilities.
491 */
492 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
493 #define HASHTABLE_HASH_1     383                  /* Should be prime */
494 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
495 
496 /*
497 ** The block of page numbers associated with the first hash-table in a
498 ** wal-index is smaller than usual. This is so that there is a complete
499 ** hash-table on each aligned 32KB page of the wal-index.
500 */
501 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
502 
503 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
504 #define WALINDEX_PGSZ   (                                         \
505     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
506 )
507 
508 /*
509 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
510 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
511 ** numbered from zero.
512 **
513 ** If this call is successful, *ppPage is set to point to the wal-index
514 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
515 ** then an SQLite error code is returned and *ppPage is set to 0.
516 */
517 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
518   int rc = SQLITE_OK;
519 
520   /* Enlarge the pWal->apWiData[] array if required */
521   if( pWal->nWiData<=iPage ){
522     int nByte = sizeof(u32*)*(iPage+1);
523     volatile u32 **apNew;
524     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
525     if( !apNew ){
526       *ppPage = 0;
527       return SQLITE_NOMEM;
528     }
529     memset((void*)&apNew[pWal->nWiData], 0,
530            sizeof(u32*)*(iPage+1-pWal->nWiData));
531     pWal->apWiData = apNew;
532     pWal->nWiData = iPage+1;
533   }
534 
535   /* Request a pointer to the required page from the VFS */
536   if( pWal->apWiData[iPage]==0 ){
537     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
538       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
539       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
540     }else{
541       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
542           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
543       );
544       if( rc==SQLITE_READONLY ){
545         pWal->readOnly |= WAL_SHM_RDONLY;
546         rc = SQLITE_OK;
547       }
548     }
549   }
550 
551   *ppPage = pWal->apWiData[iPage];
552   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
553   return rc;
554 }
555 
556 /*
557 ** Return a pointer to the WalCkptInfo structure in the wal-index.
558 */
559 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
560   assert( pWal->nWiData>0 && pWal->apWiData[0] );
561   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
562 }
563 
564 /*
565 ** Return a pointer to the WalIndexHdr structure in the wal-index.
566 */
567 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
568   assert( pWal->nWiData>0 && pWal->apWiData[0] );
569   return (volatile WalIndexHdr*)pWal->apWiData[0];
570 }
571 
572 /*
573 ** The argument to this macro must be of type u32. On a little-endian
574 ** architecture, it returns the u32 value that results from interpreting
575 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
576 ** returns the value that would be produced by intepreting the 4 bytes
577 ** of the input value as a little-endian integer.
578 */
579 #define BYTESWAP32(x) ( \
580     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
581   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
582 )
583 
584 /*
585 ** Generate or extend an 8 byte checksum based on the data in
586 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
587 ** initial values of 0 and 0 if aIn==NULL).
588 **
589 ** The checksum is written back into aOut[] before returning.
590 **
591 ** nByte must be a positive multiple of 8.
592 */
593 static void walChecksumBytes(
594   int nativeCksum, /* True for native byte-order, false for non-native */
595   u8 *a,           /* Content to be checksummed */
596   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
597   const u32 *aIn,  /* Initial checksum value input */
598   u32 *aOut        /* OUT: Final checksum value output */
599 ){
600   u32 s1, s2;
601   u32 *aData = (u32 *)a;
602   u32 *aEnd = (u32 *)&a[nByte];
603 
604   if( aIn ){
605     s1 = aIn[0];
606     s2 = aIn[1];
607   }else{
608     s1 = s2 = 0;
609   }
610 
611   assert( nByte>=8 );
612   assert( (nByte&0x00000007)==0 );
613 
614   if( nativeCksum ){
615     do {
616       s1 += *aData++ + s2;
617       s2 += *aData++ + s1;
618     }while( aData<aEnd );
619   }else{
620     do {
621       s1 += BYTESWAP32(aData[0]) + s2;
622       s2 += BYTESWAP32(aData[1]) + s1;
623       aData += 2;
624     }while( aData<aEnd );
625   }
626 
627   aOut[0] = s1;
628   aOut[1] = s2;
629 }
630 
631 static void walShmBarrier(Wal *pWal){
632   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
633     sqlite3OsShmBarrier(pWal->pDbFd);
634   }
635 }
636 
637 /*
638 ** Write the header information in pWal->hdr into the wal-index.
639 **
640 ** The checksum on pWal->hdr is updated before it is written.
641 */
642 static void walIndexWriteHdr(Wal *pWal){
643   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
644   const int nCksum = offsetof(WalIndexHdr, aCksum);
645 
646   assert( pWal->writeLock );
647   pWal->hdr.isInit = 1;
648   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
649   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
650   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
651   walShmBarrier(pWal);
652   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
653 }
654 
655 /*
656 ** This function encodes a single frame header and writes it to a buffer
657 ** supplied by the caller. A frame-header is made up of a series of
658 ** 4-byte big-endian integers, as follows:
659 **
660 **     0: Page number.
661 **     4: For commit records, the size of the database image in pages
662 **        after the commit. For all other records, zero.
663 **     8: Salt-1 (copied from the wal-header)
664 **    12: Salt-2 (copied from the wal-header)
665 **    16: Checksum-1.
666 **    20: Checksum-2.
667 */
668 static void walEncodeFrame(
669   Wal *pWal,                      /* The write-ahead log */
670   u32 iPage,                      /* Database page number for frame */
671   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
672   u8 *aData,                      /* Pointer to page data */
673   u8 *aFrame                      /* OUT: Write encoded frame here */
674 ){
675   int nativeCksum;                /* True for native byte-order checksums */
676   u32 *aCksum = pWal->hdr.aFrameCksum;
677   assert( WAL_FRAME_HDRSIZE==24 );
678   sqlite3Put4byte(&aFrame[0], iPage);
679   sqlite3Put4byte(&aFrame[4], nTruncate);
680   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
681 
682   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
683   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
684   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
685 
686   sqlite3Put4byte(&aFrame[16], aCksum[0]);
687   sqlite3Put4byte(&aFrame[20], aCksum[1]);
688 }
689 
690 /*
691 ** Check to see if the frame with header in aFrame[] and content
692 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
693 ** *pnTruncate and return true.  Return if the frame is not valid.
694 */
695 static int walDecodeFrame(
696   Wal *pWal,                      /* The write-ahead log */
697   u32 *piPage,                    /* OUT: Database page number for frame */
698   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
699   u8 *aData,                      /* Pointer to page data (for checksum) */
700   u8 *aFrame                      /* Frame data */
701 ){
702   int nativeCksum;                /* True for native byte-order checksums */
703   u32 *aCksum = pWal->hdr.aFrameCksum;
704   u32 pgno;                       /* Page number of the frame */
705   assert( WAL_FRAME_HDRSIZE==24 );
706 
707   /* A frame is only valid if the salt values in the frame-header
708   ** match the salt values in the wal-header.
709   */
710   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
711     return 0;
712   }
713 
714   /* A frame is only valid if the page number is creater than zero.
715   */
716   pgno = sqlite3Get4byte(&aFrame[0]);
717   if( pgno==0 ){
718     return 0;
719   }
720 
721   /* A frame is only valid if a checksum of the WAL header,
722   ** all prior frams, the first 16 bytes of this frame-header,
723   ** and the frame-data matches the checksum in the last 8
724   ** bytes of this frame-header.
725   */
726   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
727   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
728   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
729   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
730    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
731   ){
732     /* Checksum failed. */
733     return 0;
734   }
735 
736   /* If we reach this point, the frame is valid.  Return the page number
737   ** and the new database size.
738   */
739   *piPage = pgno;
740   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
741   return 1;
742 }
743 
744 
745 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
746 /*
747 ** Names of locks.  This routine is used to provide debugging output and is not
748 ** a part of an ordinary build.
749 */
750 static const char *walLockName(int lockIdx){
751   if( lockIdx==WAL_WRITE_LOCK ){
752     return "WRITE-LOCK";
753   }else if( lockIdx==WAL_CKPT_LOCK ){
754     return "CKPT-LOCK";
755   }else if( lockIdx==WAL_RECOVER_LOCK ){
756     return "RECOVER-LOCK";
757   }else{
758     static char zName[15];
759     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
760                      lockIdx-WAL_READ_LOCK(0));
761     return zName;
762   }
763 }
764 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
765 
766 
767 /*
768 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
769 ** A lock cannot be moved directly between shared and exclusive - it must go
770 ** through the unlocked state first.
771 **
772 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
773 */
774 static int walLockShared(Wal *pWal, int lockIdx){
775   int rc;
776   if( pWal->exclusiveMode ) return SQLITE_OK;
777   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
778                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
779   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
780             walLockName(lockIdx), rc ? "failed" : "ok"));
781   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
782   return rc;
783 }
784 static void walUnlockShared(Wal *pWal, int lockIdx){
785   if( pWal->exclusiveMode ) return;
786   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
787                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
788   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
789 }
790 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
791   int rc;
792   if( pWal->exclusiveMode ) return SQLITE_OK;
793   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
794                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
795   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
796             walLockName(lockIdx), n, rc ? "failed" : "ok"));
797   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
798   return rc;
799 }
800 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
801   if( pWal->exclusiveMode ) return;
802   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
803                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
804   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
805              walLockName(lockIdx), n));
806 }
807 
808 /*
809 ** Compute a hash on a page number.  The resulting hash value must land
810 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
811 ** the hash to the next value in the event of a collision.
812 */
813 static int walHash(u32 iPage){
814   assert( iPage>0 );
815   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
816   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
817 }
818 static int walNextHash(int iPriorHash){
819   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
820 }
821 
822 /*
823 ** Return pointers to the hash table and page number array stored on
824 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
825 ** numbered starting from 0.
826 **
827 ** Set output variable *paHash to point to the start of the hash table
828 ** in the wal-index file. Set *piZero to one less than the frame
829 ** number of the first frame indexed by this hash table. If a
830 ** slot in the hash table is set to N, it refers to frame number
831 ** (*piZero+N) in the log.
832 **
833 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
834 ** first frame indexed by the hash table, frame (*piZero+1).
835 */
836 static int walHashGet(
837   Wal *pWal,                      /* WAL handle */
838   int iHash,                      /* Find the iHash'th table */
839   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
840   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
841   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
842 ){
843   int rc;                         /* Return code */
844   volatile u32 *aPgno;
845 
846   rc = walIndexPage(pWal, iHash, &aPgno);
847   assert( rc==SQLITE_OK || iHash>0 );
848 
849   if( rc==SQLITE_OK ){
850     u32 iZero;
851     volatile ht_slot *aHash;
852 
853     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
854     if( iHash==0 ){
855       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
856       iZero = 0;
857     }else{
858       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
859     }
860 
861     *paPgno = &aPgno[-1];
862     *paHash = aHash;
863     *piZero = iZero;
864   }
865   return rc;
866 }
867 
868 /*
869 ** Return the number of the wal-index page that contains the hash-table
870 ** and page-number array that contain entries corresponding to WAL frame
871 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
872 ** are numbered starting from 0.
873 */
874 static int walFramePage(u32 iFrame){
875   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
876   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
877        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
878        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
879        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
880        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
881   );
882   return iHash;
883 }
884 
885 /*
886 ** Return the page number associated with frame iFrame in this WAL.
887 */
888 static u32 walFramePgno(Wal *pWal, u32 iFrame){
889   int iHash = walFramePage(iFrame);
890   if( iHash==0 ){
891     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
892   }
893   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
894 }
895 
896 /*
897 ** Remove entries from the hash table that point to WAL slots greater
898 ** than pWal->hdr.mxFrame.
899 **
900 ** This function is called whenever pWal->hdr.mxFrame is decreased due
901 ** to a rollback or savepoint.
902 **
903 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
904 ** updated.  Any later hash tables will be automatically cleared when
905 ** pWal->hdr.mxFrame advances to the point where those hash tables are
906 ** actually needed.
907 */
908 static void walCleanupHash(Wal *pWal){
909   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
910   volatile u32 *aPgno = 0;        /* Page number array for hash table */
911   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
912   int iLimit = 0;                 /* Zero values greater than this */
913   int nByte;                      /* Number of bytes to zero in aPgno[] */
914   int i;                          /* Used to iterate through aHash[] */
915 
916   assert( pWal->writeLock );
917   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
918   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
919   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
920 
921   if( pWal->hdr.mxFrame==0 ) return;
922 
923   /* Obtain pointers to the hash-table and page-number array containing
924   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
925   ** that the page said hash-table and array reside on is already mapped.
926   */
927   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
928   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
929   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
930 
931   /* Zero all hash-table entries that correspond to frame numbers greater
932   ** than pWal->hdr.mxFrame.
933   */
934   iLimit = pWal->hdr.mxFrame - iZero;
935   assert( iLimit>0 );
936   for(i=0; i<HASHTABLE_NSLOT; i++){
937     if( aHash[i]>iLimit ){
938       aHash[i] = 0;
939     }
940   }
941 
942   /* Zero the entries in the aPgno array that correspond to frames with
943   ** frame numbers greater than pWal->hdr.mxFrame.
944   */
945   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
946   memset((void *)&aPgno[iLimit+1], 0, nByte);
947 
948 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
949   /* Verify that the every entry in the mapping region is still reachable
950   ** via the hash table even after the cleanup.
951   */
952   if( iLimit ){
953     int i;           /* Loop counter */
954     int iKey;        /* Hash key */
955     for(i=1; i<=iLimit; i++){
956       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
957         if( aHash[iKey]==i ) break;
958       }
959       assert( aHash[iKey]==i );
960     }
961   }
962 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
963 }
964 
965 
966 /*
967 ** Set an entry in the wal-index that will map database page number
968 ** pPage into WAL frame iFrame.
969 */
970 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
971   int rc;                         /* Return code */
972   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
973   volatile u32 *aPgno = 0;        /* Page number array */
974   volatile ht_slot *aHash = 0;    /* Hash table */
975 
976   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
977 
978   /* Assuming the wal-index file was successfully mapped, populate the
979   ** page number array and hash table entry.
980   */
981   if( rc==SQLITE_OK ){
982     int iKey;                     /* Hash table key */
983     int idx;                      /* Value to write to hash-table slot */
984     int nCollide;                 /* Number of hash collisions */
985 
986     idx = iFrame - iZero;
987     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
988 
989     /* If this is the first entry to be added to this hash-table, zero the
990     ** entire hash table and aPgno[] array before proceding.
991     */
992     if( idx==1 ){
993       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
994       memset((void*)&aPgno[1], 0, nByte);
995     }
996 
997     /* If the entry in aPgno[] is already set, then the previous writer
998     ** must have exited unexpectedly in the middle of a transaction (after
999     ** writing one or more dirty pages to the WAL to free up memory).
1000     ** Remove the remnants of that writers uncommitted transaction from
1001     ** the hash-table before writing any new entries.
1002     */
1003     if( aPgno[idx] ){
1004       walCleanupHash(pWal);
1005       assert( !aPgno[idx] );
1006     }
1007 
1008     /* Write the aPgno[] array entry and the hash-table slot. */
1009     nCollide = idx;
1010     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1011       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1012     }
1013     aPgno[idx] = iPage;
1014     aHash[iKey] = (ht_slot)idx;
1015 
1016 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1017     /* Verify that the number of entries in the hash table exactly equals
1018     ** the number of entries in the mapping region.
1019     */
1020     {
1021       int i;           /* Loop counter */
1022       int nEntry = 0;  /* Number of entries in the hash table */
1023       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1024       assert( nEntry==idx );
1025     }
1026 
1027     /* Verify that the every entry in the mapping region is reachable
1028     ** via the hash table.  This turns out to be a really, really expensive
1029     ** thing to check, so only do this occasionally - not on every
1030     ** iteration.
1031     */
1032     if( (idx&0x3ff)==0 ){
1033       int i;           /* Loop counter */
1034       for(i=1; i<=idx; i++){
1035         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1036           if( aHash[iKey]==i ) break;
1037         }
1038         assert( aHash[iKey]==i );
1039       }
1040     }
1041 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1042   }
1043 
1044 
1045   return rc;
1046 }
1047 
1048 
1049 /*
1050 ** Recover the wal-index by reading the write-ahead log file.
1051 **
1052 ** This routine first tries to establish an exclusive lock on the
1053 ** wal-index to prevent other threads/processes from doing anything
1054 ** with the WAL or wal-index while recovery is running.  The
1055 ** WAL_RECOVER_LOCK is also held so that other threads will know
1056 ** that this thread is running recovery.  If unable to establish
1057 ** the necessary locks, this routine returns SQLITE_BUSY.
1058 */
1059 static int walIndexRecover(Wal *pWal){
1060   int rc;                         /* Return Code */
1061   i64 nSize;                      /* Size of log file */
1062   u32 aFrameCksum[2] = {0, 0};
1063   int iLock;                      /* Lock offset to lock for checkpoint */
1064   int nLock;                      /* Number of locks to hold */
1065 
1066   /* Obtain an exclusive lock on all byte in the locking range not already
1067   ** locked by the caller. The caller is guaranteed to have locked the
1068   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1069   ** If successful, the same bytes that are locked here are unlocked before
1070   ** this function returns.
1071   */
1072   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1073   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1074   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1075   assert( pWal->writeLock );
1076   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1077   nLock = SQLITE_SHM_NLOCK - iLock;
1078   rc = walLockExclusive(pWal, iLock, nLock);
1079   if( rc ){
1080     return rc;
1081   }
1082   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1083 
1084   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1085 
1086   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1087   if( rc!=SQLITE_OK ){
1088     goto recovery_error;
1089   }
1090 
1091   if( nSize>WAL_HDRSIZE ){
1092     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1093     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1094     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1095     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1096     int iFrame;                   /* Index of last frame read */
1097     i64 iOffset;                  /* Next offset to read from log file */
1098     int szPage;                   /* Page size according to the log */
1099     u32 magic;                    /* Magic value read from WAL header */
1100     u32 version;                  /* Magic value read from WAL header */
1101     int isValid;                  /* True if this frame is valid */
1102 
1103     /* Read in the WAL header. */
1104     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1105     if( rc!=SQLITE_OK ){
1106       goto recovery_error;
1107     }
1108 
1109     /* If the database page size is not a power of two, or is greater than
1110     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1111     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1112     ** WAL file.
1113     */
1114     magic = sqlite3Get4byte(&aBuf[0]);
1115     szPage = sqlite3Get4byte(&aBuf[8]);
1116     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1117      || szPage&(szPage-1)
1118      || szPage>SQLITE_MAX_PAGE_SIZE
1119      || szPage<512
1120     ){
1121       goto finished;
1122     }
1123     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1124     pWal->szPage = szPage;
1125     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1126     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1127 
1128     /* Verify that the WAL header checksum is correct */
1129     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1130         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1131     );
1132     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1133      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1134     ){
1135       goto finished;
1136     }
1137 
1138     /* Verify that the version number on the WAL format is one that
1139     ** are able to understand */
1140     version = sqlite3Get4byte(&aBuf[4]);
1141     if( version!=WAL_MAX_VERSION ){
1142       rc = SQLITE_CANTOPEN_BKPT;
1143       goto finished;
1144     }
1145 
1146     /* Malloc a buffer to read frames into. */
1147     szFrame = szPage + WAL_FRAME_HDRSIZE;
1148     aFrame = (u8 *)sqlite3_malloc(szFrame);
1149     if( !aFrame ){
1150       rc = SQLITE_NOMEM;
1151       goto recovery_error;
1152     }
1153     aData = &aFrame[WAL_FRAME_HDRSIZE];
1154 
1155     /* Read all frames from the log file. */
1156     iFrame = 0;
1157     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1158       u32 pgno;                   /* Database page number for frame */
1159       u32 nTruncate;              /* dbsize field from frame header */
1160 
1161       /* Read and decode the next log frame. */
1162       iFrame++;
1163       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1164       if( rc!=SQLITE_OK ) break;
1165       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1166       if( !isValid ) break;
1167       rc = walIndexAppend(pWal, iFrame, pgno);
1168       if( rc!=SQLITE_OK ) break;
1169 
1170       /* If nTruncate is non-zero, this is a commit record. */
1171       if( nTruncate ){
1172         pWal->hdr.mxFrame = iFrame;
1173         pWal->hdr.nPage = nTruncate;
1174         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1175         testcase( szPage<=32768 );
1176         testcase( szPage>=65536 );
1177         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1178         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1179       }
1180     }
1181 
1182     sqlite3_free(aFrame);
1183   }
1184 
1185 finished:
1186   if( rc==SQLITE_OK ){
1187     volatile WalCkptInfo *pInfo;
1188     int i;
1189     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1190     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1191     walIndexWriteHdr(pWal);
1192 
1193     /* Reset the checkpoint-header. This is safe because this thread is
1194     ** currently holding locks that exclude all other readers, writers and
1195     ** checkpointers.
1196     */
1197     pInfo = walCkptInfo(pWal);
1198     pInfo->nBackfill = 0;
1199     pInfo->aReadMark[0] = 0;
1200     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1201 
1202     /* If more than one frame was recovered from the log file, report an
1203     ** event via sqlite3_log(). This is to help with identifying performance
1204     ** problems caused by applications routinely shutting down without
1205     ** checkpointing the log file.
1206     */
1207     if( pWal->hdr.nPage ){
1208       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1209           pWal->hdr.nPage, pWal->zWalName
1210       );
1211     }
1212   }
1213 
1214 recovery_error:
1215   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1216   walUnlockExclusive(pWal, iLock, nLock);
1217   return rc;
1218 }
1219 
1220 /*
1221 ** Close an open wal-index.
1222 */
1223 static void walIndexClose(Wal *pWal, int isDelete){
1224   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1225     int i;
1226     for(i=0; i<pWal->nWiData; i++){
1227       sqlite3_free((void *)pWal->apWiData[i]);
1228       pWal->apWiData[i] = 0;
1229     }
1230   }else{
1231     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1232   }
1233 }
1234 
1235 /*
1236 ** Open a connection to the WAL file zWalName. The database file must
1237 ** already be opened on connection pDbFd. The buffer that zWalName points
1238 ** to must remain valid for the lifetime of the returned Wal* handle.
1239 **
1240 ** A SHARED lock should be held on the database file when this function
1241 ** is called. The purpose of this SHARED lock is to prevent any other
1242 ** client from unlinking the WAL or wal-index file. If another process
1243 ** were to do this just after this client opened one of these files, the
1244 ** system would be badly broken.
1245 **
1246 ** If the log file is successfully opened, SQLITE_OK is returned and
1247 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1248 ** an SQLite error code is returned and *ppWal is left unmodified.
1249 */
1250 int sqlite3WalOpen(
1251   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1252   sqlite3_file *pDbFd,            /* The open database file */
1253   const char *zWalName,           /* Name of the WAL file */
1254   int bNoShm,                     /* True to run in heap-memory mode */
1255   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1256   Wal **ppWal                     /* OUT: Allocated Wal handle */
1257 ){
1258   int rc;                         /* Return Code */
1259   Wal *pRet;                      /* Object to allocate and return */
1260   int flags;                      /* Flags passed to OsOpen() */
1261 
1262   assert( zWalName && zWalName[0] );
1263   assert( pDbFd );
1264 
1265   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1266   ** this source file.  Verify that the #defines of the locking byte offsets
1267   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1268   */
1269 #ifdef WIN_SHM_BASE
1270   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1271 #endif
1272 #ifdef UNIX_SHM_BASE
1273   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1274 #endif
1275 
1276 
1277   /* Allocate an instance of struct Wal to return. */
1278   *ppWal = 0;
1279   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1280   if( !pRet ){
1281     return SQLITE_NOMEM;
1282   }
1283 
1284   pRet->pVfs = pVfs;
1285   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1286   pRet->pDbFd = pDbFd;
1287   pRet->readLock = -1;
1288   pRet->mxWalSize = mxWalSize;
1289   pRet->zWalName = zWalName;
1290   pRet->syncHeader = 1;
1291   pRet->padToSectorBoundary = 1;
1292   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1293 
1294   /* Open file handle on the write-ahead log file. */
1295   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1296   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1297   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1298     pRet->readOnly = WAL_RDONLY;
1299   }
1300 
1301   if( rc!=SQLITE_OK ){
1302     walIndexClose(pRet, 0);
1303     sqlite3OsClose(pRet->pWalFd);
1304     sqlite3_free(pRet);
1305   }else{
1306     int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
1307     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1308     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1309       pRet->padToSectorBoundary = 0;
1310     }
1311     *ppWal = pRet;
1312     WALTRACE(("WAL%d: opened\n", pRet));
1313   }
1314   return rc;
1315 }
1316 
1317 /*
1318 ** Change the size to which the WAL file is trucated on each reset.
1319 */
1320 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1321   if( pWal ) pWal->mxWalSize = iLimit;
1322 }
1323 
1324 /*
1325 ** Find the smallest page number out of all pages held in the WAL that
1326 ** has not been returned by any prior invocation of this method on the
1327 ** same WalIterator object.   Write into *piFrame the frame index where
1328 ** that page was last written into the WAL.  Write into *piPage the page
1329 ** number.
1330 **
1331 ** Return 0 on success.  If there are no pages in the WAL with a page
1332 ** number larger than *piPage, then return 1.
1333 */
1334 static int walIteratorNext(
1335   WalIterator *p,               /* Iterator */
1336   u32 *piPage,                  /* OUT: The page number of the next page */
1337   u32 *piFrame                  /* OUT: Wal frame index of next page */
1338 ){
1339   u32 iMin;                     /* Result pgno must be greater than iMin */
1340   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1341   int i;                        /* For looping through segments */
1342 
1343   iMin = p->iPrior;
1344   assert( iMin<0xffffffff );
1345   for(i=p->nSegment-1; i>=0; i--){
1346     struct WalSegment *pSegment = &p->aSegment[i];
1347     while( pSegment->iNext<pSegment->nEntry ){
1348       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1349       if( iPg>iMin ){
1350         if( iPg<iRet ){
1351           iRet = iPg;
1352           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1353         }
1354         break;
1355       }
1356       pSegment->iNext++;
1357     }
1358   }
1359 
1360   *piPage = p->iPrior = iRet;
1361   return (iRet==0xFFFFFFFF);
1362 }
1363 
1364 /*
1365 ** This function merges two sorted lists into a single sorted list.
1366 **
1367 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1368 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1369 ** is guaranteed for all J<K:
1370 **
1371 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1372 **        aContent[aRight[J]] < aContent[aRight[K]]
1373 **
1374 ** This routine overwrites aRight[] with a new (probably longer) sequence
1375 ** of indices such that the aRight[] contains every index that appears in
1376 ** either aLeft[] or the old aRight[] and such that the second condition
1377 ** above is still met.
1378 **
1379 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1380 ** aContent[aRight[X]] values will be unique too.  But there might be
1381 ** one or more combinations of X and Y such that
1382 **
1383 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1384 **
1385 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1386 */
1387 static void walMerge(
1388   const u32 *aContent,            /* Pages in wal - keys for the sort */
1389   ht_slot *aLeft,                 /* IN: Left hand input list */
1390   int nLeft,                      /* IN: Elements in array *paLeft */
1391   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1392   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1393   ht_slot *aTmp                   /* Temporary buffer */
1394 ){
1395   int iLeft = 0;                  /* Current index in aLeft */
1396   int iRight = 0;                 /* Current index in aRight */
1397   int iOut = 0;                   /* Current index in output buffer */
1398   int nRight = *pnRight;
1399   ht_slot *aRight = *paRight;
1400 
1401   assert( nLeft>0 && nRight>0 );
1402   while( iRight<nRight || iLeft<nLeft ){
1403     ht_slot logpage;
1404     Pgno dbpage;
1405 
1406     if( (iLeft<nLeft)
1407      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1408     ){
1409       logpage = aLeft[iLeft++];
1410     }else{
1411       logpage = aRight[iRight++];
1412     }
1413     dbpage = aContent[logpage];
1414 
1415     aTmp[iOut++] = logpage;
1416     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1417 
1418     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1419     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1420   }
1421 
1422   *paRight = aLeft;
1423   *pnRight = iOut;
1424   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1425 }
1426 
1427 /*
1428 ** Sort the elements in list aList using aContent[] as the sort key.
1429 ** Remove elements with duplicate keys, preferring to keep the
1430 ** larger aList[] values.
1431 **
1432 ** The aList[] entries are indices into aContent[].  The values in
1433 ** aList[] are to be sorted so that for all J<K:
1434 **
1435 **      aContent[aList[J]] < aContent[aList[K]]
1436 **
1437 ** For any X and Y such that
1438 **
1439 **      aContent[aList[X]] == aContent[aList[Y]]
1440 **
1441 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1442 ** the smaller.
1443 */
1444 static void walMergesort(
1445   const u32 *aContent,            /* Pages in wal */
1446   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1447   ht_slot *aList,                 /* IN/OUT: List to sort */
1448   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1449 ){
1450   struct Sublist {
1451     int nList;                    /* Number of elements in aList */
1452     ht_slot *aList;               /* Pointer to sub-list content */
1453   };
1454 
1455   const int nList = *pnList;      /* Size of input list */
1456   int nMerge = 0;                 /* Number of elements in list aMerge */
1457   ht_slot *aMerge = 0;            /* List to be merged */
1458   int iList;                      /* Index into input list */
1459   int iSub = 0;                   /* Index into aSub array */
1460   struct Sublist aSub[13];        /* Array of sub-lists */
1461 
1462   memset(aSub, 0, sizeof(aSub));
1463   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1464   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1465 
1466   for(iList=0; iList<nList; iList++){
1467     nMerge = 1;
1468     aMerge = &aList[iList];
1469     for(iSub=0; iList & (1<<iSub); iSub++){
1470       struct Sublist *p = &aSub[iSub];
1471       assert( p->aList && p->nList<=(1<<iSub) );
1472       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1473       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1474     }
1475     aSub[iSub].aList = aMerge;
1476     aSub[iSub].nList = nMerge;
1477   }
1478 
1479   for(iSub++; iSub<ArraySize(aSub); iSub++){
1480     if( nList & (1<<iSub) ){
1481       struct Sublist *p = &aSub[iSub];
1482       assert( p->nList<=(1<<iSub) );
1483       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1484       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1485     }
1486   }
1487   assert( aMerge==aList );
1488   *pnList = nMerge;
1489 
1490 #ifdef SQLITE_DEBUG
1491   {
1492     int i;
1493     for(i=1; i<*pnList; i++){
1494       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1495     }
1496   }
1497 #endif
1498 }
1499 
1500 /*
1501 ** Free an iterator allocated by walIteratorInit().
1502 */
1503 static void walIteratorFree(WalIterator *p){
1504   sqlite3ScratchFree(p);
1505 }
1506 
1507 /*
1508 ** Construct a WalInterator object that can be used to loop over all
1509 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1510 ** lock.
1511 **
1512 ** On success, make *pp point to the newly allocated WalInterator object
1513 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1514 ** returns an error, the value of *pp is undefined.
1515 **
1516 ** The calling routine should invoke walIteratorFree() to destroy the
1517 ** WalIterator object when it has finished with it.
1518 */
1519 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1520   WalIterator *p;                 /* Return value */
1521   int nSegment;                   /* Number of segments to merge */
1522   u32 iLast;                      /* Last frame in log */
1523   int nByte;                      /* Number of bytes to allocate */
1524   int i;                          /* Iterator variable */
1525   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1526   int rc = SQLITE_OK;             /* Return Code */
1527 
1528   /* This routine only runs while holding the checkpoint lock. And
1529   ** it only runs if there is actually content in the log (mxFrame>0).
1530   */
1531   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1532   iLast = pWal->hdr.mxFrame;
1533 
1534   /* Allocate space for the WalIterator object. */
1535   nSegment = walFramePage(iLast) + 1;
1536   nByte = sizeof(WalIterator)
1537         + (nSegment-1)*sizeof(struct WalSegment)
1538         + iLast*sizeof(ht_slot);
1539   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
1540   if( !p ){
1541     return SQLITE_NOMEM;
1542   }
1543   memset(p, 0, nByte);
1544   p->nSegment = nSegment;
1545 
1546   /* Allocate temporary space used by the merge-sort routine. This block
1547   ** of memory will be freed before this function returns.
1548   */
1549   aTmp = (ht_slot *)sqlite3ScratchMalloc(
1550       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1551   );
1552   if( !aTmp ){
1553     rc = SQLITE_NOMEM;
1554   }
1555 
1556   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1557     volatile ht_slot *aHash;
1558     u32 iZero;
1559     volatile u32 *aPgno;
1560 
1561     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1562     if( rc==SQLITE_OK ){
1563       int j;                      /* Counter variable */
1564       int nEntry;                 /* Number of entries in this segment */
1565       ht_slot *aIndex;            /* Sorted index for this segment */
1566 
1567       aPgno++;
1568       if( (i+1)==nSegment ){
1569         nEntry = (int)(iLast - iZero);
1570       }else{
1571         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1572       }
1573       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1574       iZero++;
1575 
1576       for(j=0; j<nEntry; j++){
1577         aIndex[j] = (ht_slot)j;
1578       }
1579       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1580       p->aSegment[i].iZero = iZero;
1581       p->aSegment[i].nEntry = nEntry;
1582       p->aSegment[i].aIndex = aIndex;
1583       p->aSegment[i].aPgno = (u32 *)aPgno;
1584     }
1585   }
1586   sqlite3ScratchFree(aTmp);
1587 
1588   if( rc!=SQLITE_OK ){
1589     walIteratorFree(p);
1590   }
1591   *pp = p;
1592   return rc;
1593 }
1594 
1595 /*
1596 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1597 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1598 ** busy-handler function. Invoke it and retry the lock until either the
1599 ** lock is successfully obtained or the busy-handler returns 0.
1600 */
1601 static int walBusyLock(
1602   Wal *pWal,                      /* WAL connection */
1603   int (*xBusy)(void*),            /* Function to call when busy */
1604   void *pBusyArg,                 /* Context argument for xBusyHandler */
1605   int lockIdx,                    /* Offset of first byte to lock */
1606   int n                           /* Number of bytes to lock */
1607 ){
1608   int rc;
1609   do {
1610     rc = walLockExclusive(pWal, lockIdx, n);
1611   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1612   return rc;
1613 }
1614 
1615 /*
1616 ** The cache of the wal-index header must be valid to call this function.
1617 ** Return the page-size in bytes used by the database.
1618 */
1619 static int walPagesize(Wal *pWal){
1620   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1621 }
1622 
1623 /*
1624 ** Copy as much content as we can from the WAL back into the database file
1625 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1626 **
1627 ** The amount of information copies from WAL to database might be limited
1628 ** by active readers.  This routine will never overwrite a database page
1629 ** that a concurrent reader might be using.
1630 **
1631 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1632 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1633 ** checkpoints are always run by a background thread or background
1634 ** process, foreground threads will never block on a lengthy fsync call.
1635 **
1636 ** Fsync is called on the WAL before writing content out of the WAL and
1637 ** into the database.  This ensures that if the new content is persistent
1638 ** in the WAL and can be recovered following a power-loss or hard reset.
1639 **
1640 ** Fsync is also called on the database file if (and only if) the entire
1641 ** WAL content is copied into the database file.  This second fsync makes
1642 ** it safe to delete the WAL since the new content will persist in the
1643 ** database file.
1644 **
1645 ** This routine uses and updates the nBackfill field of the wal-index header.
1646 ** This is the only routine tha will increase the value of nBackfill.
1647 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1648 ** its value.)
1649 **
1650 ** The caller must be holding sufficient locks to ensure that no other
1651 ** checkpoint is running (in any other thread or process) at the same
1652 ** time.
1653 */
1654 static int walCheckpoint(
1655   Wal *pWal,                      /* Wal connection */
1656   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1657   int (*xBusyCall)(void*),        /* Function to call when busy */
1658   void *pBusyArg,                 /* Context argument for xBusyHandler */
1659   int sync_flags,                 /* Flags for OsSync() (or 0) */
1660   u8 *zBuf                        /* Temporary buffer to use */
1661 ){
1662   int rc;                         /* Return code */
1663   int szPage;                     /* Database page-size */
1664   WalIterator *pIter = 0;         /* Wal iterator context */
1665   u32 iDbpage = 0;                /* Next database page to write */
1666   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1667   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1668   u32 mxPage;                     /* Max database page to write */
1669   int i;                          /* Loop counter */
1670   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1671   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
1672 
1673   szPage = walPagesize(pWal);
1674   testcase( szPage<=32768 );
1675   testcase( szPage>=65536 );
1676   pInfo = walCkptInfo(pWal);
1677   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
1678 
1679   /* Allocate the iterator */
1680   rc = walIteratorInit(pWal, &pIter);
1681   if( rc!=SQLITE_OK ){
1682     return rc;
1683   }
1684   assert( pIter );
1685 
1686   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
1687 
1688   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1689   ** safe to write into the database.  Frames beyond mxSafeFrame might
1690   ** overwrite database pages that are in use by active readers and thus
1691   ** cannot be backfilled from the WAL.
1692   */
1693   mxSafeFrame = pWal->hdr.mxFrame;
1694   mxPage = pWal->hdr.nPage;
1695   for(i=1; i<WAL_NREADER; i++){
1696     u32 y = pInfo->aReadMark[i];
1697     if( mxSafeFrame>y ){
1698       assert( y<=pWal->hdr.mxFrame );
1699       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1700       if( rc==SQLITE_OK ){
1701         pInfo->aReadMark[i] = READMARK_NOT_USED;
1702         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1703       }else if( rc==SQLITE_BUSY ){
1704         mxSafeFrame = y;
1705         xBusy = 0;
1706       }else{
1707         goto walcheckpoint_out;
1708       }
1709     }
1710   }
1711 
1712   if( pInfo->nBackfill<mxSafeFrame
1713    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
1714   ){
1715     i64 nSize;                    /* Current size of database file */
1716     u32 nBackfill = pInfo->nBackfill;
1717 
1718     /* Sync the WAL to disk */
1719     if( sync_flags ){
1720       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1721     }
1722 
1723     /* If the database file may grow as a result of this checkpoint, hint
1724     ** about the eventual size of the db file to the VFS layer.
1725     */
1726     if( rc==SQLITE_OK ){
1727       i64 nReq = ((i64)mxPage * szPage);
1728       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1729       if( rc==SQLITE_OK && nSize<nReq ){
1730         sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1731       }
1732     }
1733 
1734     /* Iterate through the contents of the WAL, copying data to the db file. */
1735     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1736       i64 iOffset;
1737       assert( walFramePgno(pWal, iFrame)==iDbpage );
1738       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
1739       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1740       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1741       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1742       if( rc!=SQLITE_OK ) break;
1743       iOffset = (iDbpage-1)*(i64)szPage;
1744       testcase( IS_BIG_INT(iOffset) );
1745       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1746       if( rc!=SQLITE_OK ) break;
1747     }
1748 
1749     /* If work was actually accomplished... */
1750     if( rc==SQLITE_OK ){
1751       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1752         i64 szDb = pWal->hdr.nPage*(i64)szPage;
1753         testcase( IS_BIG_INT(szDb) );
1754         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1755         if( rc==SQLITE_OK && sync_flags ){
1756           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1757         }
1758       }
1759       if( rc==SQLITE_OK ){
1760         pInfo->nBackfill = mxSafeFrame;
1761       }
1762     }
1763 
1764     /* Release the reader lock held while backfilling */
1765     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1766   }
1767 
1768   if( rc==SQLITE_BUSY ){
1769     /* Reset the return code so as not to report a checkpoint failure
1770     ** just because there are active readers.  */
1771     rc = SQLITE_OK;
1772   }
1773 
1774   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1775   ** file has been copied into the database file, then block until all
1776   ** readers have finished using the wal file. This ensures that the next
1777   ** process to write to the database restarts the wal file.
1778   */
1779   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1780     assert( pWal->writeLock );
1781     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1782       rc = SQLITE_BUSY;
1783     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1784       assert( mxSafeFrame==pWal->hdr.mxFrame );
1785       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1786       if( rc==SQLITE_OK ){
1787         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1788       }
1789     }
1790   }
1791 
1792  walcheckpoint_out:
1793   walIteratorFree(pIter);
1794   return rc;
1795 }
1796 
1797 /*
1798 ** If the WAL file is currently larger than nMax bytes in size, truncate
1799 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1800 */
1801 static void walLimitSize(Wal *pWal, i64 nMax){
1802   i64 sz;
1803   int rx;
1804   sqlite3BeginBenignMalloc();
1805   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1806   if( rx==SQLITE_OK && (sz > nMax ) ){
1807     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1808   }
1809   sqlite3EndBenignMalloc();
1810   if( rx ){
1811     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1812   }
1813 }
1814 
1815 /*
1816 ** Close a connection to a log file.
1817 */
1818 int sqlite3WalClose(
1819   Wal *pWal,                      /* Wal to close */
1820   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1821   int nBuf,
1822   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1823 ){
1824   int rc = SQLITE_OK;
1825   if( pWal ){
1826     int isDelete = 0;             /* True to unlink wal and wal-index files */
1827 
1828     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1829     ** ordinary, rollback-mode locking methods, this guarantees that the
1830     ** connection associated with this log file is the only connection to
1831     ** the database. In this case checkpoint the database and unlink both
1832     ** the wal and wal-index files.
1833     **
1834     ** The EXCLUSIVE lock is not released before returning.
1835     */
1836     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1837     if( rc==SQLITE_OK ){
1838       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1839         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1840       }
1841       rc = sqlite3WalCheckpoint(
1842           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1843       );
1844       if( rc==SQLITE_OK ){
1845         int bPersist = -1;
1846         sqlite3OsFileControlHint(
1847             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1848         );
1849         if( bPersist!=1 ){
1850           /* Try to delete the WAL file if the checkpoint completed and
1851           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1852           ** mode (!bPersist) */
1853           isDelete = 1;
1854         }else if( pWal->mxWalSize>=0 ){
1855           /* Try to truncate the WAL file to zero bytes if the checkpoint
1856           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1857           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1858           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
1859           ** to zero bytes as truncating to the journal_size_limit might
1860           ** leave a corrupt WAL file on disk. */
1861           walLimitSize(pWal, 0);
1862         }
1863       }
1864     }
1865 
1866     walIndexClose(pWal, isDelete);
1867     sqlite3OsClose(pWal->pWalFd);
1868     if( isDelete ){
1869       sqlite3BeginBenignMalloc();
1870       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1871       sqlite3EndBenignMalloc();
1872     }
1873     WALTRACE(("WAL%p: closed\n", pWal));
1874     sqlite3_free((void *)pWal->apWiData);
1875     sqlite3_free(pWal);
1876   }
1877   return rc;
1878 }
1879 
1880 /*
1881 ** Try to read the wal-index header.  Return 0 on success and 1 if
1882 ** there is a problem.
1883 **
1884 ** The wal-index is in shared memory.  Another thread or process might
1885 ** be writing the header at the same time this procedure is trying to
1886 ** read it, which might result in inconsistency.  A dirty read is detected
1887 ** by verifying that both copies of the header are the same and also by
1888 ** a checksum on the header.
1889 **
1890 ** If and only if the read is consistent and the header is different from
1891 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1892 ** and *pChanged is set to 1.
1893 **
1894 ** If the checksum cannot be verified return non-zero. If the header
1895 ** is read successfully and the checksum verified, return zero.
1896 */
1897 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1898   u32 aCksum[2];                  /* Checksum on the header content */
1899   WalIndexHdr h1, h2;             /* Two copies of the header content */
1900   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
1901 
1902   /* The first page of the wal-index must be mapped at this point. */
1903   assert( pWal->nWiData>0 && pWal->apWiData[0] );
1904 
1905   /* Read the header. This might happen concurrently with a write to the
1906   ** same area of shared memory on a different CPU in a SMP,
1907   ** meaning it is possible that an inconsistent snapshot is read
1908   ** from the file. If this happens, return non-zero.
1909   **
1910   ** There are two copies of the header at the beginning of the wal-index.
1911   ** When reading, read [0] first then [1].  Writes are in the reverse order.
1912   ** Memory barriers are used to prevent the compiler or the hardware from
1913   ** reordering the reads and writes.
1914   */
1915   aHdr = walIndexHdr(pWal);
1916   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1917   walShmBarrier(pWal);
1918   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1919 
1920   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1921     return 1;   /* Dirty read */
1922   }
1923   if( h1.isInit==0 ){
1924     return 1;   /* Malformed header - probably all zeros */
1925   }
1926   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
1927   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1928     return 1;   /* Checksum does not match */
1929   }
1930 
1931   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
1932     *pChanged = 1;
1933     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
1934     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1935     testcase( pWal->szPage<=32768 );
1936     testcase( pWal->szPage>=65536 );
1937   }
1938 
1939   /* The header was successfully read. Return zero. */
1940   return 0;
1941 }
1942 
1943 /*
1944 ** Read the wal-index header from the wal-index and into pWal->hdr.
1945 ** If the wal-header appears to be corrupt, try to reconstruct the
1946 ** wal-index from the WAL before returning.
1947 **
1948 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1949 ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
1950 ** to 0.
1951 **
1952 ** If the wal-index header is successfully read, return SQLITE_OK.
1953 ** Otherwise an SQLite error code.
1954 */
1955 static int walIndexReadHdr(Wal *pWal, int *pChanged){
1956   int rc;                         /* Return code */
1957   int badHdr;                     /* True if a header read failed */
1958   volatile u32 *page0;            /* Chunk of wal-index containing header */
1959 
1960   /* Ensure that page 0 of the wal-index (the page that contains the
1961   ** wal-index header) is mapped. Return early if an error occurs here.
1962   */
1963   assert( pChanged );
1964   rc = walIndexPage(pWal, 0, &page0);
1965   if( rc!=SQLITE_OK ){
1966     return rc;
1967   };
1968   assert( page0 || pWal->writeLock==0 );
1969 
1970   /* If the first page of the wal-index has been mapped, try to read the
1971   ** wal-index header immediately, without holding any lock. This usually
1972   ** works, but may fail if the wal-index header is corrupt or currently
1973   ** being modified by another thread or process.
1974   */
1975   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
1976 
1977   /* If the first attempt failed, it might have been due to a race
1978   ** with a writer.  So get a WRITE lock and try again.
1979   */
1980   assert( badHdr==0 || pWal->writeLock==0 );
1981   if( badHdr ){
1982     if( pWal->readOnly & WAL_SHM_RDONLY ){
1983       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
1984         walUnlockShared(pWal, WAL_WRITE_LOCK);
1985         rc = SQLITE_READONLY_RECOVERY;
1986       }
1987     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1988       pWal->writeLock = 1;
1989       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1990         badHdr = walIndexTryHdr(pWal, pChanged);
1991         if( badHdr ){
1992           /* If the wal-index header is still malformed even while holding
1993           ** a WRITE lock, it can only mean that the header is corrupted and
1994           ** needs to be reconstructed.  So run recovery to do exactly that.
1995           */
1996           rc = walIndexRecover(pWal);
1997           *pChanged = 1;
1998         }
1999       }
2000       pWal->writeLock = 0;
2001       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2002     }
2003   }
2004 
2005   /* If the header is read successfully, check the version number to make
2006   ** sure the wal-index was not constructed with some future format that
2007   ** this version of SQLite cannot understand.
2008   */
2009   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2010     rc = SQLITE_CANTOPEN_BKPT;
2011   }
2012 
2013   return rc;
2014 }
2015 
2016 /*
2017 ** This is the value that walTryBeginRead returns when it needs to
2018 ** be retried.
2019 */
2020 #define WAL_RETRY  (-1)
2021 
2022 /*
2023 ** Attempt to start a read transaction.  This might fail due to a race or
2024 ** other transient condition.  When that happens, it returns WAL_RETRY to
2025 ** indicate to the caller that it is safe to retry immediately.
2026 **
2027 ** On success return SQLITE_OK.  On a permanent failure (such an
2028 ** I/O error or an SQLITE_BUSY because another process is running
2029 ** recovery) return a positive error code.
2030 **
2031 ** The useWal parameter is true to force the use of the WAL and disable
2032 ** the case where the WAL is bypassed because it has been completely
2033 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2034 ** to make a copy of the wal-index header into pWal->hdr.  If the
2035 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2036 ** to the caller that the local paget cache is obsolete and needs to be
2037 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2038 ** be loaded and the pChanged parameter is unused.
2039 **
2040 ** The caller must set the cnt parameter to the number of prior calls to
2041 ** this routine during the current read attempt that returned WAL_RETRY.
2042 ** This routine will start taking more aggressive measures to clear the
2043 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2044 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2045 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2046 ** and is not honoring the locking protocol.  There is a vanishingly small
2047 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2048 ** bad luck when there is lots of contention for the wal-index, but that
2049 ** possibility is so small that it can be safely neglected, we believe.
2050 **
2051 ** On success, this routine obtains a read lock on
2052 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2053 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2054 ** that means the Wal does not hold any read lock.  The reader must not
2055 ** access any database page that is modified by a WAL frame up to and
2056 ** including frame number aReadMark[pWal->readLock].  The reader will
2057 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2058 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2059 ** completely and get all content directly from the database file.
2060 ** If the useWal parameter is 1 then the WAL will never be ignored and
2061 ** this routine will always set pWal->readLock>0 on success.
2062 ** When the read transaction is completed, the caller must release the
2063 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2064 **
2065 ** This routine uses the nBackfill and aReadMark[] fields of the header
2066 ** to select a particular WAL_READ_LOCK() that strives to let the
2067 ** checkpoint process do as much work as possible.  This routine might
2068 ** update values of the aReadMark[] array in the header, but if it does
2069 ** so it takes care to hold an exclusive lock on the corresponding
2070 ** WAL_READ_LOCK() while changing values.
2071 */
2072 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2073   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2074   u32 mxReadMark;                 /* Largest aReadMark[] value */
2075   int mxI;                        /* Index of largest aReadMark[] value */
2076   int i;                          /* Loop counter */
2077   int rc = SQLITE_OK;             /* Return code  */
2078 
2079   assert( pWal->readLock<0 );     /* Not currently locked */
2080 
2081   /* Take steps to avoid spinning forever if there is a protocol error.
2082   **
2083   ** Circumstances that cause a RETRY should only last for the briefest
2084   ** instances of time.  No I/O or other system calls are done while the
2085   ** locks are held, so the locks should not be held for very long. But
2086   ** if we are unlucky, another process that is holding a lock might get
2087   ** paged out or take a page-fault that is time-consuming to resolve,
2088   ** during the few nanoseconds that it is holding the lock.  In that case,
2089   ** it might take longer than normal for the lock to free.
2090   **
2091   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2092   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2093   ** is more of a scheduler yield than an actual delay.  But on the 10th
2094   ** an subsequent retries, the delays start becoming longer and longer,
2095   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2096   ** The total delay time before giving up is less than 1 second.
2097   */
2098   if( cnt>5 ){
2099     int nDelay = 1;                      /* Pause time in microseconds */
2100     if( cnt>100 ){
2101       VVA_ONLY( pWal->lockError = 1; )
2102       return SQLITE_PROTOCOL;
2103     }
2104     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
2105     sqlite3OsSleep(pWal->pVfs, nDelay);
2106   }
2107 
2108   if( !useWal ){
2109     rc = walIndexReadHdr(pWal, pChanged);
2110     if( rc==SQLITE_BUSY ){
2111       /* If there is not a recovery running in another thread or process
2112       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2113       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2114       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2115       ** would be technically correct.  But the race is benign since with
2116       ** WAL_RETRY this routine will be called again and will probably be
2117       ** right on the second iteration.
2118       */
2119       if( pWal->apWiData[0]==0 ){
2120         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2121         ** We assume this is a transient condition, so return WAL_RETRY. The
2122         ** xShmMap() implementation used by the default unix and win32 VFS
2123         ** modules may return SQLITE_BUSY due to a race condition in the
2124         ** code that determines whether or not the shared-memory region
2125         ** must be zeroed before the requested page is returned.
2126         */
2127         rc = WAL_RETRY;
2128       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2129         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2130         rc = WAL_RETRY;
2131       }else if( rc==SQLITE_BUSY ){
2132         rc = SQLITE_BUSY_RECOVERY;
2133       }
2134     }
2135     if( rc!=SQLITE_OK ){
2136       return rc;
2137     }
2138   }
2139 
2140   pInfo = walCkptInfo(pWal);
2141   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2142     /* The WAL has been completely backfilled (or it is empty).
2143     ** and can be safely ignored.
2144     */
2145     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2146     walShmBarrier(pWal);
2147     if( rc==SQLITE_OK ){
2148       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2149         /* It is not safe to allow the reader to continue here if frames
2150         ** may have been appended to the log before READ_LOCK(0) was obtained.
2151         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2152         ** which implies that the database file contains a trustworthy
2153         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2154         ** happening, this is usually correct.
2155         **
2156         ** However, if frames have been appended to the log (or if the log
2157         ** is wrapped and written for that matter) before the READ_LOCK(0)
2158         ** is obtained, that is not necessarily true. A checkpointer may
2159         ** have started to backfill the appended frames but crashed before
2160         ** it finished. Leaving a corrupt image in the database file.
2161         */
2162         walUnlockShared(pWal, WAL_READ_LOCK(0));
2163         return WAL_RETRY;
2164       }
2165       pWal->readLock = 0;
2166       return SQLITE_OK;
2167     }else if( rc!=SQLITE_BUSY ){
2168       return rc;
2169     }
2170   }
2171 
2172   /* If we get this far, it means that the reader will want to use
2173   ** the WAL to get at content from recent commits.  The job now is
2174   ** to select one of the aReadMark[] entries that is closest to
2175   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2176   */
2177   mxReadMark = 0;
2178   mxI = 0;
2179   for(i=1; i<WAL_NREADER; i++){
2180     u32 thisMark = pInfo->aReadMark[i];
2181     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2182       assert( thisMark!=READMARK_NOT_USED );
2183       mxReadMark = thisMark;
2184       mxI = i;
2185     }
2186   }
2187   /* There was once an "if" here. The extra "{" is to preserve indentation. */
2188   {
2189     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2190      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2191     ){
2192       for(i=1; i<WAL_NREADER; i++){
2193         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2194         if( rc==SQLITE_OK ){
2195           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2196           mxI = i;
2197           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2198           break;
2199         }else if( rc!=SQLITE_BUSY ){
2200           return rc;
2201         }
2202       }
2203     }
2204     if( mxI==0 ){
2205       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2206       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2207     }
2208 
2209     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2210     if( rc ){
2211       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2212     }
2213     /* Now that the read-lock has been obtained, check that neither the
2214     ** value in the aReadMark[] array or the contents of the wal-index
2215     ** header have changed.
2216     **
2217     ** It is necessary to check that the wal-index header did not change
2218     ** between the time it was read and when the shared-lock was obtained
2219     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2220     ** that the log file may have been wrapped by a writer, or that frames
2221     ** that occur later in the log than pWal->hdr.mxFrame may have been
2222     ** copied into the database by a checkpointer. If either of these things
2223     ** happened, then reading the database with the current value of
2224     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2225     ** instead.
2226     **
2227     ** This does not guarantee that the copy of the wal-index header is up to
2228     ** date before proceeding. That would not be possible without somehow
2229     ** blocking writers. It only guarantees that a dangerous checkpoint or
2230     ** log-wrap (either of which would require an exclusive lock on
2231     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2232     */
2233     walShmBarrier(pWal);
2234     if( pInfo->aReadMark[mxI]!=mxReadMark
2235      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2236     ){
2237       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2238       return WAL_RETRY;
2239     }else{
2240       assert( mxReadMark<=pWal->hdr.mxFrame );
2241       pWal->readLock = (i16)mxI;
2242     }
2243   }
2244   return rc;
2245 }
2246 
2247 /*
2248 ** Begin a read transaction on the database.
2249 **
2250 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2251 ** it takes a snapshot of the state of the WAL and wal-index for the current
2252 ** instant in time.  The current thread will continue to use this snapshot.
2253 ** Other threads might append new content to the WAL and wal-index but
2254 ** that extra content is ignored by the current thread.
2255 **
2256 ** If the database contents have changes since the previous read
2257 ** transaction, then *pChanged is set to 1 before returning.  The
2258 ** Pager layer will use this to know that is cache is stale and
2259 ** needs to be flushed.
2260 */
2261 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2262   int rc;                         /* Return code */
2263   int cnt = 0;                    /* Number of TryBeginRead attempts */
2264 
2265   do{
2266     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2267   }while( rc==WAL_RETRY );
2268   testcase( (rc&0xff)==SQLITE_BUSY );
2269   testcase( (rc&0xff)==SQLITE_IOERR );
2270   testcase( rc==SQLITE_PROTOCOL );
2271   testcase( rc==SQLITE_OK );
2272   return rc;
2273 }
2274 
2275 /*
2276 ** Finish with a read transaction.  All this does is release the
2277 ** read-lock.
2278 */
2279 void sqlite3WalEndReadTransaction(Wal *pWal){
2280   sqlite3WalEndWriteTransaction(pWal);
2281   if( pWal->readLock>=0 ){
2282     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2283     pWal->readLock = -1;
2284   }
2285 }
2286 
2287 /*
2288 ** Read a page from the WAL, if it is present in the WAL and if the
2289 ** current read transaction is configured to use the WAL.
2290 **
2291 ** The *pInWal is set to 1 if the requested page is in the WAL and
2292 ** has been loaded.  Or *pInWal is set to 0 if the page was not in
2293 ** the WAL and needs to be read out of the database.
2294 */
2295 int sqlite3WalRead(
2296   Wal *pWal,                      /* WAL handle */
2297   Pgno pgno,                      /* Database page number to read data for */
2298   int *pInWal,                    /* OUT: True if data is read from WAL */
2299   int nOut,                       /* Size of buffer pOut in bytes */
2300   u8 *pOut                        /* Buffer to write page data to */
2301 ){
2302   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2303   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2304   int iHash;                      /* Used to loop through N hash tables */
2305 
2306   /* This routine is only be called from within a read transaction. */
2307   assert( pWal->readLock>=0 || pWal->lockError );
2308 
2309   /* If the "last page" field of the wal-index header snapshot is 0, then
2310   ** no data will be read from the wal under any circumstances. Return early
2311   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2312   ** then the WAL is ignored by the reader so return early, as if the
2313   ** WAL were empty.
2314   */
2315   if( iLast==0 || pWal->readLock==0 ){
2316     *pInWal = 0;
2317     return SQLITE_OK;
2318   }
2319 
2320   /* Search the hash table or tables for an entry matching page number
2321   ** pgno. Each iteration of the following for() loop searches one
2322   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2323   **
2324   ** This code might run concurrently to the code in walIndexAppend()
2325   ** that adds entries to the wal-index (and possibly to this hash
2326   ** table). This means the value just read from the hash
2327   ** slot (aHash[iKey]) may have been added before or after the
2328   ** current read transaction was opened. Values added after the
2329   ** read transaction was opened may have been written incorrectly -
2330   ** i.e. these slots may contain garbage data. However, we assume
2331   ** that any slots written before the current read transaction was
2332   ** opened remain unmodified.
2333   **
2334   ** For the reasons above, the if(...) condition featured in the inner
2335   ** loop of the following block is more stringent that would be required
2336   ** if we had exclusive access to the hash-table:
2337   **
2338   **   (aPgno[iFrame]==pgno):
2339   **     This condition filters out normal hash-table collisions.
2340   **
2341   **   (iFrame<=iLast):
2342   **     This condition filters out entries that were added to the hash
2343   **     table after the current read-transaction had started.
2344   */
2345   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
2346     volatile ht_slot *aHash;      /* Pointer to hash table */
2347     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2348     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2349     int iKey;                     /* Hash slot index */
2350     int nCollide;                 /* Number of hash collisions remaining */
2351     int rc;                       /* Error code */
2352 
2353     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2354     if( rc!=SQLITE_OK ){
2355       return rc;
2356     }
2357     nCollide = HASHTABLE_NSLOT;
2358     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2359       u32 iFrame = aHash[iKey] + iZero;
2360       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
2361         /* assert( iFrame>iRead ); -- not true if there is corruption */
2362         iRead = iFrame;
2363       }
2364       if( (nCollide--)==0 ){
2365         return SQLITE_CORRUPT_BKPT;
2366       }
2367     }
2368   }
2369 
2370 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2371   /* If expensive assert() statements are available, do a linear search
2372   ** of the wal-index file content. Make sure the results agree with the
2373   ** result obtained using the hash indexes above.  */
2374   {
2375     u32 iRead2 = 0;
2376     u32 iTest;
2377     for(iTest=iLast; iTest>0; iTest--){
2378       if( walFramePgno(pWal, iTest)==pgno ){
2379         iRead2 = iTest;
2380         break;
2381       }
2382     }
2383     assert( iRead==iRead2 );
2384   }
2385 #endif
2386 
2387   /* If iRead is non-zero, then it is the log frame number that contains the
2388   ** required page. Read and return data from the log file.
2389   */
2390   if( iRead ){
2391     int sz;
2392     i64 iOffset;
2393     sz = pWal->hdr.szPage;
2394     sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2395     testcase( sz<=32768 );
2396     testcase( sz>=65536 );
2397     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2398     *pInWal = 1;
2399     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2400     return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2401   }
2402 
2403   *pInWal = 0;
2404   return SQLITE_OK;
2405 }
2406 
2407 
2408 /*
2409 ** Return the size of the database in pages (or zero, if unknown).
2410 */
2411 Pgno sqlite3WalDbsize(Wal *pWal){
2412   if( pWal && ALWAYS(pWal->readLock>=0) ){
2413     return pWal->hdr.nPage;
2414   }
2415   return 0;
2416 }
2417 
2418 
2419 /*
2420 ** This function starts a write transaction on the WAL.
2421 **
2422 ** A read transaction must have already been started by a prior call
2423 ** to sqlite3WalBeginReadTransaction().
2424 **
2425 ** If another thread or process has written into the database since
2426 ** the read transaction was started, then it is not possible for this
2427 ** thread to write as doing so would cause a fork.  So this routine
2428 ** returns SQLITE_BUSY in that case and no write transaction is started.
2429 **
2430 ** There can only be a single writer active at a time.
2431 */
2432 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2433   int rc;
2434 
2435   /* Cannot start a write transaction without first holding a read
2436   ** transaction. */
2437   assert( pWal->readLock>=0 );
2438 
2439   if( pWal->readOnly ){
2440     return SQLITE_READONLY;
2441   }
2442 
2443   /* Only one writer allowed at a time.  Get the write lock.  Return
2444   ** SQLITE_BUSY if unable.
2445   */
2446   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2447   if( rc ){
2448     return rc;
2449   }
2450   pWal->writeLock = 1;
2451 
2452   /* If another connection has written to the database file since the
2453   ** time the read transaction on this connection was started, then
2454   ** the write is disallowed.
2455   */
2456   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2457     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2458     pWal->writeLock = 0;
2459     rc = SQLITE_BUSY;
2460   }
2461 
2462   return rc;
2463 }
2464 
2465 /*
2466 ** End a write transaction.  The commit has already been done.  This
2467 ** routine merely releases the lock.
2468 */
2469 int sqlite3WalEndWriteTransaction(Wal *pWal){
2470   if( pWal->writeLock ){
2471     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2472     pWal->writeLock = 0;
2473     pWal->truncateOnCommit = 0;
2474   }
2475   return SQLITE_OK;
2476 }
2477 
2478 /*
2479 ** If any data has been written (but not committed) to the log file, this
2480 ** function moves the write-pointer back to the start of the transaction.
2481 **
2482 ** Additionally, the callback function is invoked for each frame written
2483 ** to the WAL since the start of the transaction. If the callback returns
2484 ** other than SQLITE_OK, it is not invoked again and the error code is
2485 ** returned to the caller.
2486 **
2487 ** Otherwise, if the callback function does not return an error, this
2488 ** function returns SQLITE_OK.
2489 */
2490 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2491   int rc = SQLITE_OK;
2492   if( ALWAYS(pWal->writeLock) ){
2493     Pgno iMax = pWal->hdr.mxFrame;
2494     Pgno iFrame;
2495 
2496     /* Restore the clients cache of the wal-index header to the state it
2497     ** was in before the client began writing to the database.
2498     */
2499     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2500 
2501     for(iFrame=pWal->hdr.mxFrame+1;
2502         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2503         iFrame++
2504     ){
2505       /* This call cannot fail. Unless the page for which the page number
2506       ** is passed as the second argument is (a) in the cache and
2507       ** (b) has an outstanding reference, then xUndo is either a no-op
2508       ** (if (a) is false) or simply expels the page from the cache (if (b)
2509       ** is false).
2510       **
2511       ** If the upper layer is doing a rollback, it is guaranteed that there
2512       ** are no outstanding references to any page other than page 1. And
2513       ** page 1 is never written to the log until the transaction is
2514       ** committed. As a result, the call to xUndo may not fail.
2515       */
2516       assert( walFramePgno(pWal, iFrame)!=1 );
2517       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2518     }
2519     walCleanupHash(pWal);
2520   }
2521   assert( rc==SQLITE_OK );
2522   return rc;
2523 }
2524 
2525 /*
2526 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2527 ** values. This function populates the array with values required to
2528 ** "rollback" the write position of the WAL handle back to the current
2529 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2530 */
2531 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2532   assert( pWal->writeLock );
2533   aWalData[0] = pWal->hdr.mxFrame;
2534   aWalData[1] = pWal->hdr.aFrameCksum[0];
2535   aWalData[2] = pWal->hdr.aFrameCksum[1];
2536   aWalData[3] = pWal->nCkpt;
2537 }
2538 
2539 /*
2540 ** Move the write position of the WAL back to the point identified by
2541 ** the values in the aWalData[] array. aWalData must point to an array
2542 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2543 ** by a call to WalSavepoint().
2544 */
2545 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2546   int rc = SQLITE_OK;
2547 
2548   assert( pWal->writeLock );
2549   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2550 
2551   if( aWalData[3]!=pWal->nCkpt ){
2552     /* This savepoint was opened immediately after the write-transaction
2553     ** was started. Right after that, the writer decided to wrap around
2554     ** to the start of the log. Update the savepoint values to match.
2555     */
2556     aWalData[0] = 0;
2557     aWalData[3] = pWal->nCkpt;
2558   }
2559 
2560   if( aWalData[0]<pWal->hdr.mxFrame ){
2561     pWal->hdr.mxFrame = aWalData[0];
2562     pWal->hdr.aFrameCksum[0] = aWalData[1];
2563     pWal->hdr.aFrameCksum[1] = aWalData[2];
2564     walCleanupHash(pWal);
2565   }
2566 
2567   return rc;
2568 }
2569 
2570 
2571 /*
2572 ** This function is called just before writing a set of frames to the log
2573 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2574 ** to the current log file, it is possible to overwrite the start of the
2575 ** existing log file with the new frames (i.e. "reset" the log). If so,
2576 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2577 ** unchanged.
2578 **
2579 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2580 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2581 ** if an error occurs.
2582 */
2583 static int walRestartLog(Wal *pWal){
2584   int rc = SQLITE_OK;
2585   int cnt;
2586 
2587   if( pWal->readLock==0 ){
2588     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2589     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2590     if( pInfo->nBackfill>0 ){
2591       u32 salt1;
2592       sqlite3_randomness(4, &salt1);
2593       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2594       if( rc==SQLITE_OK ){
2595         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2596         ** readers are currently using the WAL), then the transactions
2597         ** frames will overwrite the start of the existing log. Update the
2598         ** wal-index header to reflect this.
2599         **
2600         ** In theory it would be Ok to update the cache of the header only
2601         ** at this point. But updating the actual wal-index header is also
2602         ** safe and means there is no special case for sqlite3WalUndo()
2603         ** to handle if this transaction is rolled back.
2604         */
2605         int i;                    /* Loop counter */
2606         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
2607 
2608         pWal->nCkpt++;
2609         pWal->hdr.mxFrame = 0;
2610         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2611         aSalt[1] = salt1;
2612         walIndexWriteHdr(pWal);
2613         pInfo->nBackfill = 0;
2614         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2615         assert( pInfo->aReadMark[0]==0 );
2616         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2617       }else if( rc!=SQLITE_BUSY ){
2618         return rc;
2619       }
2620     }
2621     walUnlockShared(pWal, WAL_READ_LOCK(0));
2622     pWal->readLock = -1;
2623     cnt = 0;
2624     do{
2625       int notUsed;
2626       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2627     }while( rc==WAL_RETRY );
2628     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2629     testcase( (rc&0xff)==SQLITE_IOERR );
2630     testcase( rc==SQLITE_PROTOCOL );
2631     testcase( rc==SQLITE_OK );
2632   }
2633   return rc;
2634 }
2635 
2636 /*
2637 ** Information about the current state of the WAL file and where
2638 ** the next fsync should occur - passed from sqlite3WalFrames() into
2639 ** walWriteToLog().
2640 */
2641 typedef struct WalWriter {
2642   Wal *pWal;                   /* The complete WAL information */
2643   sqlite3_file *pFd;           /* The WAL file to which we write */
2644   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
2645   int syncFlags;               /* Flags for the fsync */
2646   int szPage;                  /* Size of one page */
2647 } WalWriter;
2648 
2649 /*
2650 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2651 ** Do a sync when crossing the p->iSyncPoint boundary.
2652 **
2653 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2654 ** first write the part before iSyncPoint, then sync, then write the
2655 ** rest.
2656 */
2657 static int walWriteToLog(
2658   WalWriter *p,              /* WAL to write to */
2659   void *pContent,            /* Content to be written */
2660   int iAmt,                  /* Number of bytes to write */
2661   sqlite3_int64 iOffset      /* Start writing at this offset */
2662 ){
2663   int rc;
2664   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2665     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2666     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2667     if( rc ) return rc;
2668     iOffset += iFirstAmt;
2669     iAmt -= iFirstAmt;
2670     pContent = (void*)(iFirstAmt + (char*)pContent);
2671     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2672     rc = sqlite3OsSync(p->pFd, p->syncFlags);
2673     if( iAmt==0 || rc ) return rc;
2674   }
2675   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2676   return rc;
2677 }
2678 
2679 /*
2680 ** Write out a single frame of the WAL
2681 */
2682 static int walWriteOneFrame(
2683   WalWriter *p,               /* Where to write the frame */
2684   PgHdr *pPage,               /* The page of the frame to be written */
2685   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
2686   sqlite3_int64 iOffset       /* Byte offset at which to write */
2687 ){
2688   int rc;                         /* Result code from subfunctions */
2689   void *pData;                    /* Data actually written */
2690   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2691 #if defined(SQLITE_HAS_CODEC)
2692   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2693 #else
2694   pData = pPage->pData;
2695 #endif
2696   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2697   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2698   if( rc ) return rc;
2699   /* Write the page data */
2700   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2701   return rc;
2702 }
2703 
2704 /*
2705 ** Write a set of frames to the log. The caller must hold the write-lock
2706 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2707 */
2708 int sqlite3WalFrames(
2709   Wal *pWal,                      /* Wal handle to write to */
2710   int szPage,                     /* Database page-size in bytes */
2711   PgHdr *pList,                   /* List of dirty pages to write */
2712   Pgno nTruncate,                 /* Database size after this commit */
2713   int isCommit,                   /* True if this is a commit */
2714   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2715 ){
2716   int rc;                         /* Used to catch return codes */
2717   u32 iFrame;                     /* Next frame address */
2718   PgHdr *p;                       /* Iterator to run through pList with. */
2719   PgHdr *pLast = 0;               /* Last frame in list */
2720   int nExtra = 0;                 /* Number of extra copies of last page */
2721   int szFrame;                    /* The size of a single frame */
2722   i64 iOffset;                    /* Next byte to write in WAL file */
2723   WalWriter w;                    /* The writer */
2724 
2725   assert( pList );
2726   assert( pWal->writeLock );
2727 
2728   /* If this frame set completes a transaction, then nTruncate>0.  If
2729   ** nTruncate==0 then this frame set does not complete the transaction. */
2730   assert( (isCommit!=0)==(nTruncate!=0) );
2731 
2732 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2733   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2734     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2735               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2736   }
2737 #endif
2738 
2739   /* See if it is possible to write these frames into the start of the
2740   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2741   */
2742   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2743     return rc;
2744   }
2745 
2746   /* If this is the first frame written into the log, write the WAL
2747   ** header to the start of the WAL file. See comments at the top of
2748   ** this source file for a description of the WAL header format.
2749   */
2750   iFrame = pWal->hdr.mxFrame;
2751   if( iFrame==0 ){
2752     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2753     u32 aCksum[2];                /* Checksum for wal-header */
2754 
2755     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2756     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2757     sqlite3Put4byte(&aWalHdr[8], szPage);
2758     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2759     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
2760     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2761     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2762     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2763     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2764 
2765     pWal->szPage = szPage;
2766     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2767     pWal->hdr.aFrameCksum[0] = aCksum[0];
2768     pWal->hdr.aFrameCksum[1] = aCksum[1];
2769     pWal->truncateOnCommit = 1;
2770 
2771     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2772     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2773     if( rc!=SQLITE_OK ){
2774       return rc;
2775     }
2776 
2777     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2778     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
2779     ** an out-of-order write following a WAL restart could result in
2780     ** database corruption.  See the ticket:
2781     **
2782     **     http://localhost:591/sqlite/info/ff5be73dee
2783     */
2784     if( pWal->syncHeader && sync_flags ){
2785       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2786       if( rc ) return rc;
2787     }
2788   }
2789   assert( (int)pWal->szPage==szPage );
2790 
2791   /* Setup information needed to write frames into the WAL */
2792   w.pWal = pWal;
2793   w.pFd = pWal->pWalFd;
2794   w.iSyncPoint = 0;
2795   w.syncFlags = sync_flags;
2796   w.szPage = szPage;
2797   iOffset = walFrameOffset(iFrame+1, szPage);
2798   szFrame = szPage + WAL_FRAME_HDRSIZE;
2799 
2800   /* Write all frames into the log file exactly once */
2801   for(p=pList; p; p=p->pDirty){
2802     int nDbSize;   /* 0 normally.  Positive == commit flag */
2803     iFrame++;
2804     assert( iOffset==walFrameOffset(iFrame, szPage) );
2805     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2806     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2807     if( rc ) return rc;
2808     pLast = p;
2809     iOffset += szFrame;
2810   }
2811 
2812   /* If this is the end of a transaction, then we might need to pad
2813   ** the transaction and/or sync the WAL file.
2814   **
2815   ** Padding and syncing only occur if this set of frames complete a
2816   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
2817   ** or synchonous==OFF, then no padding or syncing are needed.
2818   **
2819   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2820   ** needed and only the sync is done.  If padding is needed, then the
2821   ** final frame is repeated (with its commit mark) until the next sector
2822   ** boundary is crossed.  Only the part of the WAL prior to the last
2823   ** sector boundary is synced; the part of the last frame that extends
2824   ** past the sector boundary is written after the sync.
2825   */
2826   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
2827     if( pWal->padToSectorBoundary ){
2828       int sectorSize = sqlite3OsSectorSize(pWal->pWalFd);
2829       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2830       while( iOffset<w.iSyncPoint ){
2831         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2832         if( rc ) return rc;
2833         iOffset += szFrame;
2834         nExtra++;
2835       }
2836     }else{
2837       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
2838     }
2839   }
2840 
2841   /* If this frame set completes the first transaction in the WAL and
2842   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2843   ** journal size limit, if possible.
2844   */
2845   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2846     i64 sz = pWal->mxWalSize;
2847     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2848       sz = walFrameOffset(iFrame+nExtra+1, szPage);
2849     }
2850     walLimitSize(pWal, sz);
2851     pWal->truncateOnCommit = 0;
2852   }
2853 
2854   /* Append data to the wal-index. It is not necessary to lock the
2855   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2856   ** guarantees that there are no other writers, and no data that may
2857   ** be in use by existing readers is being overwritten.
2858   */
2859   iFrame = pWal->hdr.mxFrame;
2860   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2861     iFrame++;
2862     rc = walIndexAppend(pWal, iFrame, p->pgno);
2863   }
2864   while( rc==SQLITE_OK && nExtra>0 ){
2865     iFrame++;
2866     nExtra--;
2867     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2868   }
2869 
2870   if( rc==SQLITE_OK ){
2871     /* Update the private copy of the header. */
2872     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2873     testcase( szPage<=32768 );
2874     testcase( szPage>=65536 );
2875     pWal->hdr.mxFrame = iFrame;
2876     if( isCommit ){
2877       pWal->hdr.iChange++;
2878       pWal->hdr.nPage = nTruncate;
2879     }
2880     /* If this is a commit, update the wal-index header too. */
2881     if( isCommit ){
2882       walIndexWriteHdr(pWal);
2883       pWal->iCallback = iFrame;
2884     }
2885   }
2886 
2887   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2888   return rc;
2889 }
2890 
2891 /*
2892 ** This routine is called to implement sqlite3_wal_checkpoint() and
2893 ** related interfaces.
2894 **
2895 ** Obtain a CHECKPOINT lock and then backfill as much information as
2896 ** we can from WAL into the database.
2897 **
2898 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2899 ** callback. In this case this function runs a blocking checkpoint.
2900 */
2901 int sqlite3WalCheckpoint(
2902   Wal *pWal,                      /* Wal connection */
2903   int eMode,                      /* PASSIVE, FULL or RESTART */
2904   int (*xBusy)(void*),            /* Function to call when busy */
2905   void *pBusyArg,                 /* Context argument for xBusyHandler */
2906   int sync_flags,                 /* Flags to sync db file with (or 0) */
2907   int nBuf,                       /* Size of temporary buffer */
2908   u8 *zBuf,                       /* Temporary buffer to use */
2909   int *pnLog,                     /* OUT: Number of frames in WAL */
2910   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
2911 ){
2912   int rc;                         /* Return code */
2913   int isChanged = 0;              /* True if a new wal-index header is loaded */
2914   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
2915 
2916   assert( pWal->ckptLock==0 );
2917   assert( pWal->writeLock==0 );
2918 
2919   if( pWal->readOnly ) return SQLITE_READONLY;
2920   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
2921   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2922   if( rc ){
2923     /* Usually this is SQLITE_BUSY meaning that another thread or process
2924     ** is already running a checkpoint, or maybe a recovery.  But it might
2925     ** also be SQLITE_IOERR. */
2926     return rc;
2927   }
2928   pWal->ckptLock = 1;
2929 
2930   /* If this is a blocking-checkpoint, then obtain the write-lock as well
2931   ** to prevent any writers from running while the checkpoint is underway.
2932   ** This has to be done before the call to walIndexReadHdr() below.
2933   **
2934   ** If the writer lock cannot be obtained, then a passive checkpoint is
2935   ** run instead. Since the checkpointer is not holding the writer lock,
2936   ** there is no point in blocking waiting for any readers. Assuming no
2937   ** other error occurs, this function will return SQLITE_BUSY to the caller.
2938   */
2939   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2940     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
2941     if( rc==SQLITE_OK ){
2942       pWal->writeLock = 1;
2943     }else if( rc==SQLITE_BUSY ){
2944       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2945       rc = SQLITE_OK;
2946     }
2947   }
2948 
2949   /* Read the wal-index header. */
2950   if( rc==SQLITE_OK ){
2951     rc = walIndexReadHdr(pWal, &isChanged);
2952   }
2953 
2954   /* Copy data from the log to the database file. */
2955   if( rc==SQLITE_OK ){
2956     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
2957       rc = SQLITE_CORRUPT_BKPT;
2958     }else{
2959       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2960     }
2961 
2962     /* If no error occurred, set the output variables. */
2963     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
2964       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
2965       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
2966     }
2967   }
2968 
2969   if( isChanged ){
2970     /* If a new wal-index header was loaded before the checkpoint was
2971     ** performed, then the pager-cache associated with pWal is now
2972     ** out of date. So zero the cached wal-index header to ensure that
2973     ** next time the pager opens a snapshot on this database it knows that
2974     ** the cache needs to be reset.
2975     */
2976     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2977   }
2978 
2979   /* Release the locks. */
2980   sqlite3WalEndWriteTransaction(pWal);
2981   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2982   pWal->ckptLock = 0;
2983   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
2984   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
2985 }
2986 
2987 /* Return the value to pass to a sqlite3_wal_hook callback, the
2988 ** number of frames in the WAL at the point of the last commit since
2989 ** sqlite3WalCallback() was called.  If no commits have occurred since
2990 ** the last call, then return 0.
2991 */
2992 int sqlite3WalCallback(Wal *pWal){
2993   u32 ret = 0;
2994   if( pWal ){
2995     ret = pWal->iCallback;
2996     pWal->iCallback = 0;
2997   }
2998   return (int)ret;
2999 }
3000 
3001 /*
3002 ** This function is called to change the WAL subsystem into or out
3003 ** of locking_mode=EXCLUSIVE.
3004 **
3005 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3006 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3007 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3008 ** or if the acquisition of the lock fails, then return 0.  If the
3009 ** transition out of exclusive-mode is successful, return 1.  This
3010 ** operation must occur while the pager is still holding the exclusive
3011 ** lock on the main database file.
3012 **
3013 ** If op is one, then change from locking_mode=NORMAL into
3014 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3015 ** be released.  Return 1 if the transition is made and 0 if the
3016 ** WAL is already in exclusive-locking mode - meaning that this
3017 ** routine is a no-op.  The pager must already hold the exclusive lock
3018 ** on the main database file before invoking this operation.
3019 **
3020 ** If op is negative, then do a dry-run of the op==1 case but do
3021 ** not actually change anything. The pager uses this to see if it
3022 ** should acquire the database exclusive lock prior to invoking
3023 ** the op==1 case.
3024 */
3025 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3026   int rc;
3027   assert( pWal->writeLock==0 );
3028   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3029 
3030   /* pWal->readLock is usually set, but might be -1 if there was a
3031   ** prior error while attempting to acquire are read-lock. This cannot
3032   ** happen if the connection is actually in exclusive mode (as no xShmLock
3033   ** locks are taken in this case). Nor should the pager attempt to
3034   ** upgrade to exclusive-mode following such an error.
3035   */
3036   assert( pWal->readLock>=0 || pWal->lockError );
3037   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3038 
3039   if( op==0 ){
3040     if( pWal->exclusiveMode ){
3041       pWal->exclusiveMode = 0;
3042       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3043         pWal->exclusiveMode = 1;
3044       }
3045       rc = pWal->exclusiveMode==0;
3046     }else{
3047       /* Already in locking_mode=NORMAL */
3048       rc = 0;
3049     }
3050   }else if( op>0 ){
3051     assert( pWal->exclusiveMode==0 );
3052     assert( pWal->readLock>=0 );
3053     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3054     pWal->exclusiveMode = 1;
3055     rc = 1;
3056   }else{
3057     rc = pWal->exclusiveMode==0;
3058   }
3059   return rc;
3060 }
3061 
3062 /*
3063 ** Return true if the argument is non-NULL and the WAL module is using
3064 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3065 ** WAL module is using shared-memory, return false.
3066 */
3067 int sqlite3WalHeapMemory(Wal *pWal){
3068   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3069 }
3070 
3071 #ifdef SQLITE_ENABLE_ZIPVFS
3072 /*
3073 ** If the argument is not NULL, it points to a Wal object that holds a
3074 ** read-lock. This function returns the database page-size if it is known,
3075 ** or zero if it is not (or if pWal is NULL).
3076 */
3077 int sqlite3WalFramesize(Wal *pWal){
3078   assert( pWal==0 || pWal->readLock>=0 );
3079   return (pWal ? pWal->szPage : 0);
3080 }
3081 #endif
3082 
3083 #endif /* #ifndef SQLITE_OMIT_WAL */
3084