1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** The wal-index is transient. After a crash, the wal-index can (and should 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 137 ** to either truncate or zero the header of the wal-index when the last 138 ** connection to it closes. Because the wal-index is transient, it can 139 ** use an architecture-specific format; it does not have to be cross-platform. 140 ** Hence, unlike the database and WAL file formats which store all values 141 ** as big endian, the wal-index can store multi-byte values in the native 142 ** byte order of the host computer. 143 ** 144 ** The purpose of the wal-index is to answer this question quickly: Given 145 ** a page number P, return the index of the last frame for page P in the WAL, 146 ** or return NULL if there are no frames for page P in the WAL. 147 ** 148 ** The wal-index consists of a header region, followed by an one or 149 ** more index blocks. 150 ** 151 ** The wal-index header contains the total number of frames within the WAL 152 ** in the the mxFrame field. 153 ** 154 ** Each index block except for the first contains information on 155 ** HASHTABLE_NPAGE frames. The first index block contains information on 156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 158 ** first index block are the same size as all other index blocks in the 159 ** wal-index. 160 ** 161 ** Each index block contains two sections, a page-mapping that contains the 162 ** database page number associated with each wal frame, and a hash-table 163 ** that allows readers to query an index block for a specific page number. 164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 165 ** for the first index block) 32-bit page numbers. The first entry in the 166 ** first index-block contains the database page number corresponding to the 167 ** first frame in the WAL file. The first entry in the second index block 168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 169 ** the log, and so on. 170 ** 171 ** The last index block in a wal-index usually contains less than the full 172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 173 ** depending on the contents of the WAL file. This does not change the 174 ** allocated size of the page-mapping array - the page-mapping array merely 175 ** contains unused entries. 176 ** 177 ** Even without using the hash table, the last frame for page P 178 ** can be found by scanning the page-mapping sections of each index block 179 ** starting with the last index block and moving toward the first, and 180 ** within each index block, starting at the end and moving toward the 181 ** beginning. The first entry that equals P corresponds to the frame 182 ** holding the content for that page. 183 ** 184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 186 ** hash table for each page number in the mapping section, so the hash 187 ** table is never more than half full. The expected number of collisions 188 ** prior to finding a match is 1. Each entry of the hash table is an 189 ** 1-based index of an entry in the mapping section of the same 190 ** index block. Let K be the 1-based index of the largest entry in 191 ** the mapping section. (For index blocks other than the last, K will 192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 193 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 194 ** contain a value of 0. 195 ** 196 ** To look for page P in the hash table, first compute a hash iKey on 197 ** P as follows: 198 ** 199 ** iKey = (P * 383) % HASHTABLE_NSLOT 200 ** 201 ** Then start scanning entries of the hash table, starting with iKey 202 ** (wrapping around to the beginning when the end of the hash table is 203 ** reached) until an unused hash slot is found. Let the first unused slot 204 ** be at index iUnused. (iUnused might be less than iKey if there was 205 ** wrap-around.) Because the hash table is never more than half full, 206 ** the search is guaranteed to eventually hit an unused entry. Let 207 ** iMax be the value between iKey and iUnused, closest to iUnused, 208 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 209 ** no hash slot such that aHash[i]==p) then page P is not in the 210 ** current index block. Otherwise the iMax-th mapping entry of the 211 ** current index block corresponds to the last entry that references 212 ** page P. 213 ** 214 ** A hash search begins with the last index block and moves toward the 215 ** first index block, looking for entries corresponding to page P. On 216 ** average, only two or three slots in each index block need to be 217 ** examined in order to either find the last entry for page P, or to 218 ** establish that no such entry exists in the block. Each index block 219 ** holds over 4000 entries. So two or three index blocks are sufficient 220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 221 ** comparisons (on average) suffice to either locate a frame in the 222 ** WAL or to establish that the frame does not exist in the WAL. This 223 ** is much faster than scanning the entire 10MB WAL. 224 ** 225 ** Note that entries are added in order of increasing K. Hence, one 226 ** reader might be using some value K0 and a second reader that started 227 ** at a later time (after additional transactions were added to the WAL 228 ** and to the wal-index) might be using a different value K1, where K1>K0. 229 ** Both readers can use the same hash table and mapping section to get 230 ** the correct result. There may be entries in the hash table with 231 ** K>K0 but to the first reader, those entries will appear to be unused 232 ** slots in the hash table and so the first reader will get an answer as 233 ** if no values greater than K0 had ever been inserted into the hash table 234 ** in the first place - which is what reader one wants. Meanwhile, the 235 ** second reader using K1 will see additional values that were inserted 236 ** later, which is exactly what reader two wants. 237 ** 238 ** When a rollback occurs, the value of K is decreased. Hash table entries 239 ** that correspond to frames greater than the new K value are removed 240 ** from the hash table at this point. 241 */ 242 #ifndef SQLITE_OMIT_WAL 243 244 #include "wal.h" 245 246 /* 247 ** Trace output macros 248 */ 249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 250 int sqlite3WalTrace = 0; 251 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 252 #else 253 # define WALTRACE(X) 254 #endif 255 256 /* 257 ** The maximum (and only) versions of the wal and wal-index formats 258 ** that may be interpreted by this version of SQLite. 259 ** 260 ** If a client begins recovering a WAL file and finds that (a) the checksum 261 ** values in the wal-header are correct and (b) the version field is not 262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 263 ** 264 ** Similarly, if a client successfully reads a wal-index header (i.e. the 265 ** checksum test is successful) and finds that the version field is not 266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 267 ** returns SQLITE_CANTOPEN. 268 */ 269 #define WAL_MAX_VERSION 3007000 270 #define WALINDEX_MAX_VERSION 3007000 271 272 /* 273 ** Indices of various locking bytes. WAL_NREADER is the number 274 ** of available reader locks and should be at least 3. 275 */ 276 #define WAL_WRITE_LOCK 0 277 #define WAL_ALL_BUT_WRITE 1 278 #define WAL_CKPT_LOCK 1 279 #define WAL_RECOVER_LOCK 2 280 #define WAL_READ_LOCK(I) (3+(I)) 281 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 282 283 284 /* Object declarations */ 285 typedef struct WalIndexHdr WalIndexHdr; 286 typedef struct WalIterator WalIterator; 287 typedef struct WalCkptInfo WalCkptInfo; 288 289 290 /* 291 ** The following object holds a copy of the wal-index header content. 292 ** 293 ** The actual header in the wal-index consists of two copies of this 294 ** object. 295 ** 296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 297 ** Or it can be 1 to represent a 65536-byte page. The latter case was 298 ** added in 3.7.1 when support for 64K pages was added. 299 */ 300 struct WalIndexHdr { 301 u32 iVersion; /* Wal-index version */ 302 u32 unused; /* Unused (padding) field */ 303 u32 iChange; /* Counter incremented each transaction */ 304 u8 isInit; /* 1 when initialized */ 305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 306 u16 szPage; /* Database page size in bytes. 1==64K */ 307 u32 mxFrame; /* Index of last valid frame in the WAL */ 308 u32 nPage; /* Size of database in pages */ 309 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 310 u32 aSalt[2]; /* Two salt values copied from WAL header */ 311 u32 aCksum[2]; /* Checksum over all prior fields */ 312 }; 313 314 /* 315 ** A copy of the following object occurs in the wal-index immediately 316 ** following the second copy of the WalIndexHdr. This object stores 317 ** information used by checkpoint. 318 ** 319 ** nBackfill is the number of frames in the WAL that have been written 320 ** back into the database. (We call the act of moving content from WAL to 321 ** database "backfilling".) The nBackfill number is never greater than 322 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 325 ** mxFrame back to zero when the WAL is reset. 326 ** 327 ** There is one entry in aReadMark[] for each reader lock. If a reader 328 ** holds read-lock K, then the value in aReadMark[K] is no greater than 329 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 330 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 331 ** a special case; its value is never used and it exists as a place-holder 332 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 334 ** directly from the database. 335 ** 336 ** The value of aReadMark[K] may only be changed by a thread that 337 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 338 ** aReadMark[K] cannot changed while there is a reader is using that mark 339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 340 ** 341 ** The checkpointer may only transfer frames from WAL to database where 342 ** the frame numbers are less than or equal to every aReadMark[] that is 343 ** in use (that is, every aReadMark[j] for which there is a corresponding 344 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 345 ** largest value and will increase an unused aReadMark[] to mxFrame if there 346 ** is not already an aReadMark[] equal to mxFrame. The exception to the 347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 348 ** in the WAL has been backfilled into the database) then new readers 349 ** will choose aReadMark[0] which has value 0 and hence such reader will 350 ** get all their all content directly from the database file and ignore 351 ** the WAL. 352 ** 353 ** Writers normally append new frames to the end of the WAL. However, 354 ** if nBackfill equals mxFrame (meaning that all WAL content has been 355 ** written back into the database) and if no readers are using the WAL 356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 357 ** the writer will first "reset" the WAL back to the beginning and start 358 ** writing new content beginning at frame 1. 359 ** 360 ** We assume that 32-bit loads are atomic and so no locks are needed in 361 ** order to read from any aReadMark[] entries. 362 */ 363 struct WalCkptInfo { 364 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 365 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 366 }; 367 #define READMARK_NOT_USED 0xffffffff 368 369 370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 372 ** only support mandatory file-locks, we do not read or write data 373 ** from the region of the file on which locks are applied. 374 */ 375 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) 376 #define WALINDEX_LOCK_RESERVED 16 377 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) 378 379 /* Size of header before each frame in wal */ 380 #define WAL_FRAME_HDRSIZE 24 381 382 /* Size of write ahead log header, including checksum. */ 383 /* #define WAL_HDRSIZE 24 */ 384 #define WAL_HDRSIZE 32 385 386 /* WAL magic value. Either this value, or the same value with the least 387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 388 ** big-endian format in the first 4 bytes of a WAL file. 389 ** 390 ** If the LSB is set, then the checksums for each frame within the WAL 391 ** file are calculated by treating all data as an array of 32-bit 392 ** big-endian words. Otherwise, they are calculated by interpreting 393 ** all data as 32-bit little-endian words. 394 */ 395 #define WAL_MAGIC 0x377f0682 396 397 /* 398 ** Return the offset of frame iFrame in the write-ahead log file, 399 ** assuming a database page size of szPage bytes. The offset returned 400 ** is to the start of the write-ahead log frame-header. 401 */ 402 #define walFrameOffset(iFrame, szPage) ( \ 403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 404 ) 405 406 /* 407 ** An open write-ahead log file is represented by an instance of the 408 ** following object. 409 */ 410 struct Wal { 411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 412 sqlite3_file *pDbFd; /* File handle for the database file */ 413 sqlite3_file *pWalFd; /* File handle for WAL file */ 414 u32 iCallback; /* Value to pass to log callback (or 0) */ 415 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 416 int nWiData; /* Size of array apWiData */ 417 int szFirstBlock; /* Size of first block written to WAL file */ 418 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 419 u32 szPage; /* Database page size */ 420 i16 readLock; /* Which read lock is being held. -1 for none */ 421 u8 syncFlags; /* Flags to use to sync header writes */ 422 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 423 u8 writeLock; /* True if in a write transaction */ 424 u8 ckptLock; /* True if holding a checkpoint lock */ 425 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 426 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 427 u8 syncHeader; /* Fsync the WAL header if true */ 428 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 429 WalIndexHdr hdr; /* Wal-index header for current transaction */ 430 const char *zWalName; /* Name of WAL file */ 431 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 432 #ifdef SQLITE_DEBUG 433 u8 lockError; /* True if a locking error has occurred */ 434 #endif 435 }; 436 437 /* 438 ** Candidate values for Wal.exclusiveMode. 439 */ 440 #define WAL_NORMAL_MODE 0 441 #define WAL_EXCLUSIVE_MODE 1 442 #define WAL_HEAPMEMORY_MODE 2 443 444 /* 445 ** Possible values for WAL.readOnly 446 */ 447 #define WAL_RDWR 0 /* Normal read/write connection */ 448 #define WAL_RDONLY 1 /* The WAL file is readonly */ 449 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 450 451 /* 452 ** Each page of the wal-index mapping contains a hash-table made up of 453 ** an array of HASHTABLE_NSLOT elements of the following type. 454 */ 455 typedef u16 ht_slot; 456 457 /* 458 ** This structure is used to implement an iterator that loops through 459 ** all frames in the WAL in database page order. Where two or more frames 460 ** correspond to the same database page, the iterator visits only the 461 ** frame most recently written to the WAL (in other words, the frame with 462 ** the largest index). 463 ** 464 ** The internals of this structure are only accessed by: 465 ** 466 ** walIteratorInit() - Create a new iterator, 467 ** walIteratorNext() - Step an iterator, 468 ** walIteratorFree() - Free an iterator. 469 ** 470 ** This functionality is used by the checkpoint code (see walCheckpoint()). 471 */ 472 struct WalIterator { 473 int iPrior; /* Last result returned from the iterator */ 474 int nSegment; /* Number of entries in aSegment[] */ 475 struct WalSegment { 476 int iNext; /* Next slot in aIndex[] not yet returned */ 477 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 478 u32 *aPgno; /* Array of page numbers. */ 479 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 480 int iZero; /* Frame number associated with aPgno[0] */ 481 } aSegment[1]; /* One for every 32KB page in the wal-index */ 482 }; 483 484 /* 485 ** Define the parameters of the hash tables in the wal-index file. There 486 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 487 ** wal-index. 488 ** 489 ** Changing any of these constants will alter the wal-index format and 490 ** create incompatibilities. 491 */ 492 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 493 #define HASHTABLE_HASH_1 383 /* Should be prime */ 494 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 495 496 /* 497 ** The block of page numbers associated with the first hash-table in a 498 ** wal-index is smaller than usual. This is so that there is a complete 499 ** hash-table on each aligned 32KB page of the wal-index. 500 */ 501 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 502 503 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 504 #define WALINDEX_PGSZ ( \ 505 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 506 ) 507 508 /* 509 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 510 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 511 ** numbered from zero. 512 ** 513 ** If this call is successful, *ppPage is set to point to the wal-index 514 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 515 ** then an SQLite error code is returned and *ppPage is set to 0. 516 */ 517 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 518 int rc = SQLITE_OK; 519 520 /* Enlarge the pWal->apWiData[] array if required */ 521 if( pWal->nWiData<=iPage ){ 522 int nByte = sizeof(u32*)*(iPage+1); 523 volatile u32 **apNew; 524 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte); 525 if( !apNew ){ 526 *ppPage = 0; 527 return SQLITE_NOMEM; 528 } 529 memset((void*)&apNew[pWal->nWiData], 0, 530 sizeof(u32*)*(iPage+1-pWal->nWiData)); 531 pWal->apWiData = apNew; 532 pWal->nWiData = iPage+1; 533 } 534 535 /* Request a pointer to the required page from the VFS */ 536 if( pWal->apWiData[iPage]==0 ){ 537 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 538 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 539 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; 540 }else{ 541 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 542 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 543 ); 544 if( rc==SQLITE_READONLY ){ 545 pWal->readOnly |= WAL_SHM_RDONLY; 546 rc = SQLITE_OK; 547 } 548 } 549 } 550 551 *ppPage = pWal->apWiData[iPage]; 552 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 553 return rc; 554 } 555 556 /* 557 ** Return a pointer to the WalCkptInfo structure in the wal-index. 558 */ 559 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 560 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 561 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 562 } 563 564 /* 565 ** Return a pointer to the WalIndexHdr structure in the wal-index. 566 */ 567 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 568 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 569 return (volatile WalIndexHdr*)pWal->apWiData[0]; 570 } 571 572 /* 573 ** The argument to this macro must be of type u32. On a little-endian 574 ** architecture, it returns the u32 value that results from interpreting 575 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 576 ** returns the value that would be produced by intepreting the 4 bytes 577 ** of the input value as a little-endian integer. 578 */ 579 #define BYTESWAP32(x) ( \ 580 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 581 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 582 ) 583 584 /* 585 ** Generate or extend an 8 byte checksum based on the data in 586 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 587 ** initial values of 0 and 0 if aIn==NULL). 588 ** 589 ** The checksum is written back into aOut[] before returning. 590 ** 591 ** nByte must be a positive multiple of 8. 592 */ 593 static void walChecksumBytes( 594 int nativeCksum, /* True for native byte-order, false for non-native */ 595 u8 *a, /* Content to be checksummed */ 596 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 597 const u32 *aIn, /* Initial checksum value input */ 598 u32 *aOut /* OUT: Final checksum value output */ 599 ){ 600 u32 s1, s2; 601 u32 *aData = (u32 *)a; 602 u32 *aEnd = (u32 *)&a[nByte]; 603 604 if( aIn ){ 605 s1 = aIn[0]; 606 s2 = aIn[1]; 607 }else{ 608 s1 = s2 = 0; 609 } 610 611 assert( nByte>=8 ); 612 assert( (nByte&0x00000007)==0 ); 613 614 if( nativeCksum ){ 615 do { 616 s1 += *aData++ + s2; 617 s2 += *aData++ + s1; 618 }while( aData<aEnd ); 619 }else{ 620 do { 621 s1 += BYTESWAP32(aData[0]) + s2; 622 s2 += BYTESWAP32(aData[1]) + s1; 623 aData += 2; 624 }while( aData<aEnd ); 625 } 626 627 aOut[0] = s1; 628 aOut[1] = s2; 629 } 630 631 static void walShmBarrier(Wal *pWal){ 632 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 633 sqlite3OsShmBarrier(pWal->pDbFd); 634 } 635 } 636 637 /* 638 ** Write the header information in pWal->hdr into the wal-index. 639 ** 640 ** The checksum on pWal->hdr is updated before it is written. 641 */ 642 static void walIndexWriteHdr(Wal *pWal){ 643 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 644 const int nCksum = offsetof(WalIndexHdr, aCksum); 645 646 assert( pWal->writeLock ); 647 pWal->hdr.isInit = 1; 648 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 649 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 650 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); 651 walShmBarrier(pWal); 652 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); 653 } 654 655 /* 656 ** This function encodes a single frame header and writes it to a buffer 657 ** supplied by the caller. A frame-header is made up of a series of 658 ** 4-byte big-endian integers, as follows: 659 ** 660 ** 0: Page number. 661 ** 4: For commit records, the size of the database image in pages 662 ** after the commit. For all other records, zero. 663 ** 8: Salt-1 (copied from the wal-header) 664 ** 12: Salt-2 (copied from the wal-header) 665 ** 16: Checksum-1. 666 ** 20: Checksum-2. 667 */ 668 static void walEncodeFrame( 669 Wal *pWal, /* The write-ahead log */ 670 u32 iPage, /* Database page number for frame */ 671 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 672 u8 *aData, /* Pointer to page data */ 673 u8 *aFrame /* OUT: Write encoded frame here */ 674 ){ 675 int nativeCksum; /* True for native byte-order checksums */ 676 u32 *aCksum = pWal->hdr.aFrameCksum; 677 assert( WAL_FRAME_HDRSIZE==24 ); 678 sqlite3Put4byte(&aFrame[0], iPage); 679 sqlite3Put4byte(&aFrame[4], nTruncate); 680 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 681 682 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 683 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 684 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 685 686 sqlite3Put4byte(&aFrame[16], aCksum[0]); 687 sqlite3Put4byte(&aFrame[20], aCksum[1]); 688 } 689 690 /* 691 ** Check to see if the frame with header in aFrame[] and content 692 ** in aData[] is valid. If it is a valid frame, fill *piPage and 693 ** *pnTruncate and return true. Return if the frame is not valid. 694 */ 695 static int walDecodeFrame( 696 Wal *pWal, /* The write-ahead log */ 697 u32 *piPage, /* OUT: Database page number for frame */ 698 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 699 u8 *aData, /* Pointer to page data (for checksum) */ 700 u8 *aFrame /* Frame data */ 701 ){ 702 int nativeCksum; /* True for native byte-order checksums */ 703 u32 *aCksum = pWal->hdr.aFrameCksum; 704 u32 pgno; /* Page number of the frame */ 705 assert( WAL_FRAME_HDRSIZE==24 ); 706 707 /* A frame is only valid if the salt values in the frame-header 708 ** match the salt values in the wal-header. 709 */ 710 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 711 return 0; 712 } 713 714 /* A frame is only valid if the page number is creater than zero. 715 */ 716 pgno = sqlite3Get4byte(&aFrame[0]); 717 if( pgno==0 ){ 718 return 0; 719 } 720 721 /* A frame is only valid if a checksum of the WAL header, 722 ** all prior frams, the first 16 bytes of this frame-header, 723 ** and the frame-data matches the checksum in the last 8 724 ** bytes of this frame-header. 725 */ 726 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 727 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 728 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 729 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 730 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 731 ){ 732 /* Checksum failed. */ 733 return 0; 734 } 735 736 /* If we reach this point, the frame is valid. Return the page number 737 ** and the new database size. 738 */ 739 *piPage = pgno; 740 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 741 return 1; 742 } 743 744 745 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 746 /* 747 ** Names of locks. This routine is used to provide debugging output and is not 748 ** a part of an ordinary build. 749 */ 750 static const char *walLockName(int lockIdx){ 751 if( lockIdx==WAL_WRITE_LOCK ){ 752 return "WRITE-LOCK"; 753 }else if( lockIdx==WAL_CKPT_LOCK ){ 754 return "CKPT-LOCK"; 755 }else if( lockIdx==WAL_RECOVER_LOCK ){ 756 return "RECOVER-LOCK"; 757 }else{ 758 static char zName[15]; 759 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 760 lockIdx-WAL_READ_LOCK(0)); 761 return zName; 762 } 763 } 764 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 765 766 767 /* 768 ** Set or release locks on the WAL. Locks are either shared or exclusive. 769 ** A lock cannot be moved directly between shared and exclusive - it must go 770 ** through the unlocked state first. 771 ** 772 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 773 */ 774 static int walLockShared(Wal *pWal, int lockIdx){ 775 int rc; 776 if( pWal->exclusiveMode ) return SQLITE_OK; 777 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 778 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 779 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 780 walLockName(lockIdx), rc ? "failed" : "ok")); 781 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 782 return rc; 783 } 784 static void walUnlockShared(Wal *pWal, int lockIdx){ 785 if( pWal->exclusiveMode ) return; 786 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 787 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 788 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 789 } 790 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 791 int rc; 792 if( pWal->exclusiveMode ) return SQLITE_OK; 793 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 794 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 795 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 796 walLockName(lockIdx), n, rc ? "failed" : "ok")); 797 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 798 return rc; 799 } 800 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 801 if( pWal->exclusiveMode ) return; 802 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 803 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 804 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 805 walLockName(lockIdx), n)); 806 } 807 808 /* 809 ** Compute a hash on a page number. The resulting hash value must land 810 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 811 ** the hash to the next value in the event of a collision. 812 */ 813 static int walHash(u32 iPage){ 814 assert( iPage>0 ); 815 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 816 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 817 } 818 static int walNextHash(int iPriorHash){ 819 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 820 } 821 822 /* 823 ** Return pointers to the hash table and page number array stored on 824 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 825 ** numbered starting from 0. 826 ** 827 ** Set output variable *paHash to point to the start of the hash table 828 ** in the wal-index file. Set *piZero to one less than the frame 829 ** number of the first frame indexed by this hash table. If a 830 ** slot in the hash table is set to N, it refers to frame number 831 ** (*piZero+N) in the log. 832 ** 833 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 834 ** first frame indexed by the hash table, frame (*piZero+1). 835 */ 836 static int walHashGet( 837 Wal *pWal, /* WAL handle */ 838 int iHash, /* Find the iHash'th table */ 839 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 840 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 841 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 842 ){ 843 int rc; /* Return code */ 844 volatile u32 *aPgno; 845 846 rc = walIndexPage(pWal, iHash, &aPgno); 847 assert( rc==SQLITE_OK || iHash>0 ); 848 849 if( rc==SQLITE_OK ){ 850 u32 iZero; 851 volatile ht_slot *aHash; 852 853 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 854 if( iHash==0 ){ 855 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 856 iZero = 0; 857 }else{ 858 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 859 } 860 861 *paPgno = &aPgno[-1]; 862 *paHash = aHash; 863 *piZero = iZero; 864 } 865 return rc; 866 } 867 868 /* 869 ** Return the number of the wal-index page that contains the hash-table 870 ** and page-number array that contain entries corresponding to WAL frame 871 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 872 ** are numbered starting from 0. 873 */ 874 static int walFramePage(u32 iFrame){ 875 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 876 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 877 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 878 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 879 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 880 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 881 ); 882 return iHash; 883 } 884 885 /* 886 ** Return the page number associated with frame iFrame in this WAL. 887 */ 888 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 889 int iHash = walFramePage(iFrame); 890 if( iHash==0 ){ 891 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 892 } 893 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 894 } 895 896 /* 897 ** Remove entries from the hash table that point to WAL slots greater 898 ** than pWal->hdr.mxFrame. 899 ** 900 ** This function is called whenever pWal->hdr.mxFrame is decreased due 901 ** to a rollback or savepoint. 902 ** 903 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 904 ** updated. Any later hash tables will be automatically cleared when 905 ** pWal->hdr.mxFrame advances to the point where those hash tables are 906 ** actually needed. 907 */ 908 static void walCleanupHash(Wal *pWal){ 909 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 910 volatile u32 *aPgno = 0; /* Page number array for hash table */ 911 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 912 int iLimit = 0; /* Zero values greater than this */ 913 int nByte; /* Number of bytes to zero in aPgno[] */ 914 int i; /* Used to iterate through aHash[] */ 915 916 assert( pWal->writeLock ); 917 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 920 921 if( pWal->hdr.mxFrame==0 ) return; 922 923 /* Obtain pointers to the hash-table and page-number array containing 924 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 925 ** that the page said hash-table and array reside on is already mapped. 926 */ 927 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 928 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 929 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 930 931 /* Zero all hash-table entries that correspond to frame numbers greater 932 ** than pWal->hdr.mxFrame. 933 */ 934 iLimit = pWal->hdr.mxFrame - iZero; 935 assert( iLimit>0 ); 936 for(i=0; i<HASHTABLE_NSLOT; i++){ 937 if( aHash[i]>iLimit ){ 938 aHash[i] = 0; 939 } 940 } 941 942 /* Zero the entries in the aPgno array that correspond to frames with 943 ** frame numbers greater than pWal->hdr.mxFrame. 944 */ 945 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 946 memset((void *)&aPgno[iLimit+1], 0, nByte); 947 948 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 949 /* Verify that the every entry in the mapping region is still reachable 950 ** via the hash table even after the cleanup. 951 */ 952 if( iLimit ){ 953 int i; /* Loop counter */ 954 int iKey; /* Hash key */ 955 for(i=1; i<=iLimit; i++){ 956 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 957 if( aHash[iKey]==i ) break; 958 } 959 assert( aHash[iKey]==i ); 960 } 961 } 962 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 963 } 964 965 966 /* 967 ** Set an entry in the wal-index that will map database page number 968 ** pPage into WAL frame iFrame. 969 */ 970 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 971 int rc; /* Return code */ 972 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 973 volatile u32 *aPgno = 0; /* Page number array */ 974 volatile ht_slot *aHash = 0; /* Hash table */ 975 976 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 977 978 /* Assuming the wal-index file was successfully mapped, populate the 979 ** page number array and hash table entry. 980 */ 981 if( rc==SQLITE_OK ){ 982 int iKey; /* Hash table key */ 983 int idx; /* Value to write to hash-table slot */ 984 int nCollide; /* Number of hash collisions */ 985 986 idx = iFrame - iZero; 987 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 988 989 /* If this is the first entry to be added to this hash-table, zero the 990 ** entire hash table and aPgno[] array before proceding. 991 */ 992 if( idx==1 ){ 993 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 994 memset((void*)&aPgno[1], 0, nByte); 995 } 996 997 /* If the entry in aPgno[] is already set, then the previous writer 998 ** must have exited unexpectedly in the middle of a transaction (after 999 ** writing one or more dirty pages to the WAL to free up memory). 1000 ** Remove the remnants of that writers uncommitted transaction from 1001 ** the hash-table before writing any new entries. 1002 */ 1003 if( aPgno[idx] ){ 1004 walCleanupHash(pWal); 1005 assert( !aPgno[idx] ); 1006 } 1007 1008 /* Write the aPgno[] array entry and the hash-table slot. */ 1009 nCollide = idx; 1010 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 1011 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1012 } 1013 aPgno[idx] = iPage; 1014 aHash[iKey] = (ht_slot)idx; 1015 1016 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1017 /* Verify that the number of entries in the hash table exactly equals 1018 ** the number of entries in the mapping region. 1019 */ 1020 { 1021 int i; /* Loop counter */ 1022 int nEntry = 0; /* Number of entries in the hash table */ 1023 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 1024 assert( nEntry==idx ); 1025 } 1026 1027 /* Verify that the every entry in the mapping region is reachable 1028 ** via the hash table. This turns out to be a really, really expensive 1029 ** thing to check, so only do this occasionally - not on every 1030 ** iteration. 1031 */ 1032 if( (idx&0x3ff)==0 ){ 1033 int i; /* Loop counter */ 1034 for(i=1; i<=idx; i++){ 1035 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 1036 if( aHash[iKey]==i ) break; 1037 } 1038 assert( aHash[iKey]==i ); 1039 } 1040 } 1041 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1042 } 1043 1044 1045 return rc; 1046 } 1047 1048 1049 /* 1050 ** Recover the wal-index by reading the write-ahead log file. 1051 ** 1052 ** This routine first tries to establish an exclusive lock on the 1053 ** wal-index to prevent other threads/processes from doing anything 1054 ** with the WAL or wal-index while recovery is running. The 1055 ** WAL_RECOVER_LOCK is also held so that other threads will know 1056 ** that this thread is running recovery. If unable to establish 1057 ** the necessary locks, this routine returns SQLITE_BUSY. 1058 */ 1059 static int walIndexRecover(Wal *pWal){ 1060 int rc; /* Return Code */ 1061 i64 nSize; /* Size of log file */ 1062 u32 aFrameCksum[2] = {0, 0}; 1063 int iLock; /* Lock offset to lock for checkpoint */ 1064 int nLock; /* Number of locks to hold */ 1065 1066 /* Obtain an exclusive lock on all byte in the locking range not already 1067 ** locked by the caller. The caller is guaranteed to have locked the 1068 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1069 ** If successful, the same bytes that are locked here are unlocked before 1070 ** this function returns. 1071 */ 1072 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1073 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1074 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1075 assert( pWal->writeLock ); 1076 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1077 nLock = SQLITE_SHM_NLOCK - iLock; 1078 rc = walLockExclusive(pWal, iLock, nLock); 1079 if( rc ){ 1080 return rc; 1081 } 1082 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1083 1084 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1085 1086 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1087 if( rc!=SQLITE_OK ){ 1088 goto recovery_error; 1089 } 1090 1091 if( nSize>WAL_HDRSIZE ){ 1092 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1093 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1094 int szFrame; /* Number of bytes in buffer aFrame[] */ 1095 u8 *aData; /* Pointer to data part of aFrame buffer */ 1096 int iFrame; /* Index of last frame read */ 1097 i64 iOffset; /* Next offset to read from log file */ 1098 int szPage; /* Page size according to the log */ 1099 u32 magic; /* Magic value read from WAL header */ 1100 u32 version; /* Magic value read from WAL header */ 1101 int isValid; /* True if this frame is valid */ 1102 1103 /* Read in the WAL header. */ 1104 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1105 if( rc!=SQLITE_OK ){ 1106 goto recovery_error; 1107 } 1108 1109 /* If the database page size is not a power of two, or is greater than 1110 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1111 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1112 ** WAL file. 1113 */ 1114 magic = sqlite3Get4byte(&aBuf[0]); 1115 szPage = sqlite3Get4byte(&aBuf[8]); 1116 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1117 || szPage&(szPage-1) 1118 || szPage>SQLITE_MAX_PAGE_SIZE 1119 || szPage<512 1120 ){ 1121 goto finished; 1122 } 1123 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1124 pWal->szPage = szPage; 1125 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1126 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1127 1128 /* Verify that the WAL header checksum is correct */ 1129 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1130 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1131 ); 1132 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1133 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1134 ){ 1135 goto finished; 1136 } 1137 1138 /* Verify that the version number on the WAL format is one that 1139 ** are able to understand */ 1140 version = sqlite3Get4byte(&aBuf[4]); 1141 if( version!=WAL_MAX_VERSION ){ 1142 rc = SQLITE_CANTOPEN_BKPT; 1143 goto finished; 1144 } 1145 1146 /* Malloc a buffer to read frames into. */ 1147 szFrame = szPage + WAL_FRAME_HDRSIZE; 1148 aFrame = (u8 *)sqlite3_malloc(szFrame); 1149 if( !aFrame ){ 1150 rc = SQLITE_NOMEM; 1151 goto recovery_error; 1152 } 1153 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1154 1155 /* Read all frames from the log file. */ 1156 iFrame = 0; 1157 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1158 u32 pgno; /* Database page number for frame */ 1159 u32 nTruncate; /* dbsize field from frame header */ 1160 1161 /* Read and decode the next log frame. */ 1162 iFrame++; 1163 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1164 if( rc!=SQLITE_OK ) break; 1165 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1166 if( !isValid ) break; 1167 rc = walIndexAppend(pWal, iFrame, pgno); 1168 if( rc!=SQLITE_OK ) break; 1169 1170 /* If nTruncate is non-zero, this is a commit record. */ 1171 if( nTruncate ){ 1172 pWal->hdr.mxFrame = iFrame; 1173 pWal->hdr.nPage = nTruncate; 1174 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1175 testcase( szPage<=32768 ); 1176 testcase( szPage>=65536 ); 1177 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1178 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1179 } 1180 } 1181 1182 sqlite3_free(aFrame); 1183 } 1184 1185 finished: 1186 if( rc==SQLITE_OK ){ 1187 volatile WalCkptInfo *pInfo; 1188 int i; 1189 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1190 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1191 walIndexWriteHdr(pWal); 1192 1193 /* Reset the checkpoint-header. This is safe because this thread is 1194 ** currently holding locks that exclude all other readers, writers and 1195 ** checkpointers. 1196 */ 1197 pInfo = walCkptInfo(pWal); 1198 pInfo->nBackfill = 0; 1199 pInfo->aReadMark[0] = 0; 1200 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1201 1202 /* If more than one frame was recovered from the log file, report an 1203 ** event via sqlite3_log(). This is to help with identifying performance 1204 ** problems caused by applications routinely shutting down without 1205 ** checkpointing the log file. 1206 */ 1207 if( pWal->hdr.nPage ){ 1208 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s", 1209 pWal->hdr.nPage, pWal->zWalName 1210 ); 1211 } 1212 } 1213 1214 recovery_error: 1215 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1216 walUnlockExclusive(pWal, iLock, nLock); 1217 return rc; 1218 } 1219 1220 /* 1221 ** Close an open wal-index. 1222 */ 1223 static void walIndexClose(Wal *pWal, int isDelete){ 1224 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 1225 int i; 1226 for(i=0; i<pWal->nWiData; i++){ 1227 sqlite3_free((void *)pWal->apWiData[i]); 1228 pWal->apWiData[i] = 0; 1229 } 1230 }else{ 1231 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1232 } 1233 } 1234 1235 /* 1236 ** Open a connection to the WAL file zWalName. The database file must 1237 ** already be opened on connection pDbFd. The buffer that zWalName points 1238 ** to must remain valid for the lifetime of the returned Wal* handle. 1239 ** 1240 ** A SHARED lock should be held on the database file when this function 1241 ** is called. The purpose of this SHARED lock is to prevent any other 1242 ** client from unlinking the WAL or wal-index file. If another process 1243 ** were to do this just after this client opened one of these files, the 1244 ** system would be badly broken. 1245 ** 1246 ** If the log file is successfully opened, SQLITE_OK is returned and 1247 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1248 ** an SQLite error code is returned and *ppWal is left unmodified. 1249 */ 1250 int sqlite3WalOpen( 1251 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1252 sqlite3_file *pDbFd, /* The open database file */ 1253 const char *zWalName, /* Name of the WAL file */ 1254 int bNoShm, /* True to run in heap-memory mode */ 1255 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1256 Wal **ppWal /* OUT: Allocated Wal handle */ 1257 ){ 1258 int rc; /* Return Code */ 1259 Wal *pRet; /* Object to allocate and return */ 1260 int flags; /* Flags passed to OsOpen() */ 1261 1262 assert( zWalName && zWalName[0] ); 1263 assert( pDbFd ); 1264 1265 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1266 ** this source file. Verify that the #defines of the locking byte offsets 1267 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1268 */ 1269 #ifdef WIN_SHM_BASE 1270 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1271 #endif 1272 #ifdef UNIX_SHM_BASE 1273 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1274 #endif 1275 1276 1277 /* Allocate an instance of struct Wal to return. */ 1278 *ppWal = 0; 1279 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1280 if( !pRet ){ 1281 return SQLITE_NOMEM; 1282 } 1283 1284 pRet->pVfs = pVfs; 1285 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1286 pRet->pDbFd = pDbFd; 1287 pRet->readLock = -1; 1288 pRet->mxWalSize = mxWalSize; 1289 pRet->zWalName = zWalName; 1290 pRet->syncHeader = 1; 1291 pRet->padToSectorBoundary = 1; 1292 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1293 1294 /* Open file handle on the write-ahead log file. */ 1295 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1296 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1297 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1298 pRet->readOnly = WAL_RDONLY; 1299 } 1300 1301 if( rc!=SQLITE_OK ){ 1302 walIndexClose(pRet, 0); 1303 sqlite3OsClose(pRet->pWalFd); 1304 sqlite3_free(pRet); 1305 }else{ 1306 int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd); 1307 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1308 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1309 pRet->padToSectorBoundary = 0; 1310 } 1311 *ppWal = pRet; 1312 WALTRACE(("WAL%d: opened\n", pRet)); 1313 } 1314 return rc; 1315 } 1316 1317 /* 1318 ** Change the size to which the WAL file is trucated on each reset. 1319 */ 1320 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1321 if( pWal ) pWal->mxWalSize = iLimit; 1322 } 1323 1324 /* 1325 ** Find the smallest page number out of all pages held in the WAL that 1326 ** has not been returned by any prior invocation of this method on the 1327 ** same WalIterator object. Write into *piFrame the frame index where 1328 ** that page was last written into the WAL. Write into *piPage the page 1329 ** number. 1330 ** 1331 ** Return 0 on success. If there are no pages in the WAL with a page 1332 ** number larger than *piPage, then return 1. 1333 */ 1334 static int walIteratorNext( 1335 WalIterator *p, /* Iterator */ 1336 u32 *piPage, /* OUT: The page number of the next page */ 1337 u32 *piFrame /* OUT: Wal frame index of next page */ 1338 ){ 1339 u32 iMin; /* Result pgno must be greater than iMin */ 1340 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1341 int i; /* For looping through segments */ 1342 1343 iMin = p->iPrior; 1344 assert( iMin<0xffffffff ); 1345 for(i=p->nSegment-1; i>=0; i--){ 1346 struct WalSegment *pSegment = &p->aSegment[i]; 1347 while( pSegment->iNext<pSegment->nEntry ){ 1348 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1349 if( iPg>iMin ){ 1350 if( iPg<iRet ){ 1351 iRet = iPg; 1352 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1353 } 1354 break; 1355 } 1356 pSegment->iNext++; 1357 } 1358 } 1359 1360 *piPage = p->iPrior = iRet; 1361 return (iRet==0xFFFFFFFF); 1362 } 1363 1364 /* 1365 ** This function merges two sorted lists into a single sorted list. 1366 ** 1367 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1368 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1369 ** is guaranteed for all J<K: 1370 ** 1371 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1372 ** aContent[aRight[J]] < aContent[aRight[K]] 1373 ** 1374 ** This routine overwrites aRight[] with a new (probably longer) sequence 1375 ** of indices such that the aRight[] contains every index that appears in 1376 ** either aLeft[] or the old aRight[] and such that the second condition 1377 ** above is still met. 1378 ** 1379 ** The aContent[aLeft[X]] values will be unique for all X. And the 1380 ** aContent[aRight[X]] values will be unique too. But there might be 1381 ** one or more combinations of X and Y such that 1382 ** 1383 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1384 ** 1385 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1386 */ 1387 static void walMerge( 1388 const u32 *aContent, /* Pages in wal - keys for the sort */ 1389 ht_slot *aLeft, /* IN: Left hand input list */ 1390 int nLeft, /* IN: Elements in array *paLeft */ 1391 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1392 int *pnRight, /* IN/OUT: Elements in *paRight */ 1393 ht_slot *aTmp /* Temporary buffer */ 1394 ){ 1395 int iLeft = 0; /* Current index in aLeft */ 1396 int iRight = 0; /* Current index in aRight */ 1397 int iOut = 0; /* Current index in output buffer */ 1398 int nRight = *pnRight; 1399 ht_slot *aRight = *paRight; 1400 1401 assert( nLeft>0 && nRight>0 ); 1402 while( iRight<nRight || iLeft<nLeft ){ 1403 ht_slot logpage; 1404 Pgno dbpage; 1405 1406 if( (iLeft<nLeft) 1407 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1408 ){ 1409 logpage = aLeft[iLeft++]; 1410 }else{ 1411 logpage = aRight[iRight++]; 1412 } 1413 dbpage = aContent[logpage]; 1414 1415 aTmp[iOut++] = logpage; 1416 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1417 1418 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1419 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1420 } 1421 1422 *paRight = aLeft; 1423 *pnRight = iOut; 1424 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1425 } 1426 1427 /* 1428 ** Sort the elements in list aList using aContent[] as the sort key. 1429 ** Remove elements with duplicate keys, preferring to keep the 1430 ** larger aList[] values. 1431 ** 1432 ** The aList[] entries are indices into aContent[]. The values in 1433 ** aList[] are to be sorted so that for all J<K: 1434 ** 1435 ** aContent[aList[J]] < aContent[aList[K]] 1436 ** 1437 ** For any X and Y such that 1438 ** 1439 ** aContent[aList[X]] == aContent[aList[Y]] 1440 ** 1441 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1442 ** the smaller. 1443 */ 1444 static void walMergesort( 1445 const u32 *aContent, /* Pages in wal */ 1446 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1447 ht_slot *aList, /* IN/OUT: List to sort */ 1448 int *pnList /* IN/OUT: Number of elements in aList[] */ 1449 ){ 1450 struct Sublist { 1451 int nList; /* Number of elements in aList */ 1452 ht_slot *aList; /* Pointer to sub-list content */ 1453 }; 1454 1455 const int nList = *pnList; /* Size of input list */ 1456 int nMerge = 0; /* Number of elements in list aMerge */ 1457 ht_slot *aMerge = 0; /* List to be merged */ 1458 int iList; /* Index into input list */ 1459 int iSub = 0; /* Index into aSub array */ 1460 struct Sublist aSub[13]; /* Array of sub-lists */ 1461 1462 memset(aSub, 0, sizeof(aSub)); 1463 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1464 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1465 1466 for(iList=0; iList<nList; iList++){ 1467 nMerge = 1; 1468 aMerge = &aList[iList]; 1469 for(iSub=0; iList & (1<<iSub); iSub++){ 1470 struct Sublist *p = &aSub[iSub]; 1471 assert( p->aList && p->nList<=(1<<iSub) ); 1472 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1473 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1474 } 1475 aSub[iSub].aList = aMerge; 1476 aSub[iSub].nList = nMerge; 1477 } 1478 1479 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1480 if( nList & (1<<iSub) ){ 1481 struct Sublist *p = &aSub[iSub]; 1482 assert( p->nList<=(1<<iSub) ); 1483 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1484 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1485 } 1486 } 1487 assert( aMerge==aList ); 1488 *pnList = nMerge; 1489 1490 #ifdef SQLITE_DEBUG 1491 { 1492 int i; 1493 for(i=1; i<*pnList; i++){ 1494 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1495 } 1496 } 1497 #endif 1498 } 1499 1500 /* 1501 ** Free an iterator allocated by walIteratorInit(). 1502 */ 1503 static void walIteratorFree(WalIterator *p){ 1504 sqlite3ScratchFree(p); 1505 } 1506 1507 /* 1508 ** Construct a WalInterator object that can be used to loop over all 1509 ** pages in the WAL in ascending order. The caller must hold the checkpoint 1510 ** lock. 1511 ** 1512 ** On success, make *pp point to the newly allocated WalInterator object 1513 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1514 ** returns an error, the value of *pp is undefined. 1515 ** 1516 ** The calling routine should invoke walIteratorFree() to destroy the 1517 ** WalIterator object when it has finished with it. 1518 */ 1519 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 1520 WalIterator *p; /* Return value */ 1521 int nSegment; /* Number of segments to merge */ 1522 u32 iLast; /* Last frame in log */ 1523 int nByte; /* Number of bytes to allocate */ 1524 int i; /* Iterator variable */ 1525 ht_slot *aTmp; /* Temp space used by merge-sort */ 1526 int rc = SQLITE_OK; /* Return Code */ 1527 1528 /* This routine only runs while holding the checkpoint lock. And 1529 ** it only runs if there is actually content in the log (mxFrame>0). 1530 */ 1531 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1532 iLast = pWal->hdr.mxFrame; 1533 1534 /* Allocate space for the WalIterator object. */ 1535 nSegment = walFramePage(iLast) + 1; 1536 nByte = sizeof(WalIterator) 1537 + (nSegment-1)*sizeof(struct WalSegment) 1538 + iLast*sizeof(ht_slot); 1539 p = (WalIterator *)sqlite3ScratchMalloc(nByte); 1540 if( !p ){ 1541 return SQLITE_NOMEM; 1542 } 1543 memset(p, 0, nByte); 1544 p->nSegment = nSegment; 1545 1546 /* Allocate temporary space used by the merge-sort routine. This block 1547 ** of memory will be freed before this function returns. 1548 */ 1549 aTmp = (ht_slot *)sqlite3ScratchMalloc( 1550 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1551 ); 1552 if( !aTmp ){ 1553 rc = SQLITE_NOMEM; 1554 } 1555 1556 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 1557 volatile ht_slot *aHash; 1558 u32 iZero; 1559 volatile u32 *aPgno; 1560 1561 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 1562 if( rc==SQLITE_OK ){ 1563 int j; /* Counter variable */ 1564 int nEntry; /* Number of entries in this segment */ 1565 ht_slot *aIndex; /* Sorted index for this segment */ 1566 1567 aPgno++; 1568 if( (i+1)==nSegment ){ 1569 nEntry = (int)(iLast - iZero); 1570 }else{ 1571 nEntry = (int)((u32*)aHash - (u32*)aPgno); 1572 } 1573 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 1574 iZero++; 1575 1576 for(j=0; j<nEntry; j++){ 1577 aIndex[j] = (ht_slot)j; 1578 } 1579 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 1580 p->aSegment[i].iZero = iZero; 1581 p->aSegment[i].nEntry = nEntry; 1582 p->aSegment[i].aIndex = aIndex; 1583 p->aSegment[i].aPgno = (u32 *)aPgno; 1584 } 1585 } 1586 sqlite3ScratchFree(aTmp); 1587 1588 if( rc!=SQLITE_OK ){ 1589 walIteratorFree(p); 1590 } 1591 *pp = p; 1592 return rc; 1593 } 1594 1595 /* 1596 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1597 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1598 ** busy-handler function. Invoke it and retry the lock until either the 1599 ** lock is successfully obtained or the busy-handler returns 0. 1600 */ 1601 static int walBusyLock( 1602 Wal *pWal, /* WAL connection */ 1603 int (*xBusy)(void*), /* Function to call when busy */ 1604 void *pBusyArg, /* Context argument for xBusyHandler */ 1605 int lockIdx, /* Offset of first byte to lock */ 1606 int n /* Number of bytes to lock */ 1607 ){ 1608 int rc; 1609 do { 1610 rc = walLockExclusive(pWal, lockIdx, n); 1611 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1612 return rc; 1613 } 1614 1615 /* 1616 ** The cache of the wal-index header must be valid to call this function. 1617 ** Return the page-size in bytes used by the database. 1618 */ 1619 static int walPagesize(Wal *pWal){ 1620 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1621 } 1622 1623 /* 1624 ** Copy as much content as we can from the WAL back into the database file 1625 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1626 ** 1627 ** The amount of information copies from WAL to database might be limited 1628 ** by active readers. This routine will never overwrite a database page 1629 ** that a concurrent reader might be using. 1630 ** 1631 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1632 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1633 ** checkpoints are always run by a background thread or background 1634 ** process, foreground threads will never block on a lengthy fsync call. 1635 ** 1636 ** Fsync is called on the WAL before writing content out of the WAL and 1637 ** into the database. This ensures that if the new content is persistent 1638 ** in the WAL and can be recovered following a power-loss or hard reset. 1639 ** 1640 ** Fsync is also called on the database file if (and only if) the entire 1641 ** WAL content is copied into the database file. This second fsync makes 1642 ** it safe to delete the WAL since the new content will persist in the 1643 ** database file. 1644 ** 1645 ** This routine uses and updates the nBackfill field of the wal-index header. 1646 ** This is the only routine tha will increase the value of nBackfill. 1647 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1648 ** its value.) 1649 ** 1650 ** The caller must be holding sufficient locks to ensure that no other 1651 ** checkpoint is running (in any other thread or process) at the same 1652 ** time. 1653 */ 1654 static int walCheckpoint( 1655 Wal *pWal, /* Wal connection */ 1656 int eMode, /* One of PASSIVE, FULL or RESTART */ 1657 int (*xBusyCall)(void*), /* Function to call when busy */ 1658 void *pBusyArg, /* Context argument for xBusyHandler */ 1659 int sync_flags, /* Flags for OsSync() (or 0) */ 1660 u8 *zBuf /* Temporary buffer to use */ 1661 ){ 1662 int rc; /* Return code */ 1663 int szPage; /* Database page-size */ 1664 WalIterator *pIter = 0; /* Wal iterator context */ 1665 u32 iDbpage = 0; /* Next database page to write */ 1666 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1667 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1668 u32 mxPage; /* Max database page to write */ 1669 int i; /* Loop counter */ 1670 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1671 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ 1672 1673 szPage = walPagesize(pWal); 1674 testcase( szPage<=32768 ); 1675 testcase( szPage>=65536 ); 1676 pInfo = walCkptInfo(pWal); 1677 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK; 1678 1679 /* Allocate the iterator */ 1680 rc = walIteratorInit(pWal, &pIter); 1681 if( rc!=SQLITE_OK ){ 1682 return rc; 1683 } 1684 assert( pIter ); 1685 1686 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; 1687 1688 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1689 ** safe to write into the database. Frames beyond mxSafeFrame might 1690 ** overwrite database pages that are in use by active readers and thus 1691 ** cannot be backfilled from the WAL. 1692 */ 1693 mxSafeFrame = pWal->hdr.mxFrame; 1694 mxPage = pWal->hdr.nPage; 1695 for(i=1; i<WAL_NREADER; i++){ 1696 u32 y = pInfo->aReadMark[i]; 1697 if( mxSafeFrame>y ){ 1698 assert( y<=pWal->hdr.mxFrame ); 1699 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1700 if( rc==SQLITE_OK ){ 1701 pInfo->aReadMark[i] = READMARK_NOT_USED; 1702 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1703 }else if( rc==SQLITE_BUSY ){ 1704 mxSafeFrame = y; 1705 xBusy = 0; 1706 }else{ 1707 goto walcheckpoint_out; 1708 } 1709 } 1710 } 1711 1712 if( pInfo->nBackfill<mxSafeFrame 1713 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK 1714 ){ 1715 i64 nSize; /* Current size of database file */ 1716 u32 nBackfill = pInfo->nBackfill; 1717 1718 /* Sync the WAL to disk */ 1719 if( sync_flags ){ 1720 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 1721 } 1722 1723 /* If the database file may grow as a result of this checkpoint, hint 1724 ** about the eventual size of the db file to the VFS layer. 1725 */ 1726 if( rc==SQLITE_OK ){ 1727 i64 nReq = ((i64)mxPage * szPage); 1728 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1729 if( rc==SQLITE_OK && nSize<nReq ){ 1730 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1731 } 1732 } 1733 1734 /* Iterate through the contents of the WAL, copying data to the db file. */ 1735 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1736 i64 iOffset; 1737 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1738 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; 1739 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1740 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1741 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1742 if( rc!=SQLITE_OK ) break; 1743 iOffset = (iDbpage-1)*(i64)szPage; 1744 testcase( IS_BIG_INT(iOffset) ); 1745 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1746 if( rc!=SQLITE_OK ) break; 1747 } 1748 1749 /* If work was actually accomplished... */ 1750 if( rc==SQLITE_OK ){ 1751 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1752 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1753 testcase( IS_BIG_INT(szDb) ); 1754 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1755 if( rc==SQLITE_OK && sync_flags ){ 1756 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 1757 } 1758 } 1759 if( rc==SQLITE_OK ){ 1760 pInfo->nBackfill = mxSafeFrame; 1761 } 1762 } 1763 1764 /* Release the reader lock held while backfilling */ 1765 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1766 } 1767 1768 if( rc==SQLITE_BUSY ){ 1769 /* Reset the return code so as not to report a checkpoint failure 1770 ** just because there are active readers. */ 1771 rc = SQLITE_OK; 1772 } 1773 1774 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal 1775 ** file has been copied into the database file, then block until all 1776 ** readers have finished using the wal file. This ensures that the next 1777 ** process to write to the database restarts the wal file. 1778 */ 1779 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 1780 assert( pWal->writeLock ); 1781 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1782 rc = SQLITE_BUSY; 1783 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ 1784 assert( mxSafeFrame==pWal->hdr.mxFrame ); 1785 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 1786 if( rc==SQLITE_OK ){ 1787 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1788 } 1789 } 1790 } 1791 1792 walcheckpoint_out: 1793 walIteratorFree(pIter); 1794 return rc; 1795 } 1796 1797 /* 1798 ** If the WAL file is currently larger than nMax bytes in size, truncate 1799 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 1800 */ 1801 static void walLimitSize(Wal *pWal, i64 nMax){ 1802 i64 sz; 1803 int rx; 1804 sqlite3BeginBenignMalloc(); 1805 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 1806 if( rx==SQLITE_OK && (sz > nMax ) ){ 1807 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 1808 } 1809 sqlite3EndBenignMalloc(); 1810 if( rx ){ 1811 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 1812 } 1813 } 1814 1815 /* 1816 ** Close a connection to a log file. 1817 */ 1818 int sqlite3WalClose( 1819 Wal *pWal, /* Wal to close */ 1820 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 1821 int nBuf, 1822 u8 *zBuf /* Buffer of at least nBuf bytes */ 1823 ){ 1824 int rc = SQLITE_OK; 1825 if( pWal ){ 1826 int isDelete = 0; /* True to unlink wal and wal-index files */ 1827 1828 /* If an EXCLUSIVE lock can be obtained on the database file (using the 1829 ** ordinary, rollback-mode locking methods, this guarantees that the 1830 ** connection associated with this log file is the only connection to 1831 ** the database. In this case checkpoint the database and unlink both 1832 ** the wal and wal-index files. 1833 ** 1834 ** The EXCLUSIVE lock is not released before returning. 1835 */ 1836 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); 1837 if( rc==SQLITE_OK ){ 1838 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 1839 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 1840 } 1841 rc = sqlite3WalCheckpoint( 1842 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 1843 ); 1844 if( rc==SQLITE_OK ){ 1845 int bPersist = -1; 1846 sqlite3OsFileControlHint( 1847 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 1848 ); 1849 if( bPersist!=1 ){ 1850 /* Try to delete the WAL file if the checkpoint completed and 1851 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 1852 ** mode (!bPersist) */ 1853 isDelete = 1; 1854 }else if( pWal->mxWalSize>=0 ){ 1855 /* Try to truncate the WAL file to zero bytes if the checkpoint 1856 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 1857 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 1858 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 1859 ** to zero bytes as truncating to the journal_size_limit might 1860 ** leave a corrupt WAL file on disk. */ 1861 walLimitSize(pWal, 0); 1862 } 1863 } 1864 } 1865 1866 walIndexClose(pWal, isDelete); 1867 sqlite3OsClose(pWal->pWalFd); 1868 if( isDelete ){ 1869 sqlite3BeginBenignMalloc(); 1870 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 1871 sqlite3EndBenignMalloc(); 1872 } 1873 WALTRACE(("WAL%p: closed\n", pWal)); 1874 sqlite3_free((void *)pWal->apWiData); 1875 sqlite3_free(pWal); 1876 } 1877 return rc; 1878 } 1879 1880 /* 1881 ** Try to read the wal-index header. Return 0 on success and 1 if 1882 ** there is a problem. 1883 ** 1884 ** The wal-index is in shared memory. Another thread or process might 1885 ** be writing the header at the same time this procedure is trying to 1886 ** read it, which might result in inconsistency. A dirty read is detected 1887 ** by verifying that both copies of the header are the same and also by 1888 ** a checksum on the header. 1889 ** 1890 ** If and only if the read is consistent and the header is different from 1891 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 1892 ** and *pChanged is set to 1. 1893 ** 1894 ** If the checksum cannot be verified return non-zero. If the header 1895 ** is read successfully and the checksum verified, return zero. 1896 */ 1897 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 1898 u32 aCksum[2]; /* Checksum on the header content */ 1899 WalIndexHdr h1, h2; /* Two copies of the header content */ 1900 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 1901 1902 /* The first page of the wal-index must be mapped at this point. */ 1903 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 1904 1905 /* Read the header. This might happen concurrently with a write to the 1906 ** same area of shared memory on a different CPU in a SMP, 1907 ** meaning it is possible that an inconsistent snapshot is read 1908 ** from the file. If this happens, return non-zero. 1909 ** 1910 ** There are two copies of the header at the beginning of the wal-index. 1911 ** When reading, read [0] first then [1]. Writes are in the reverse order. 1912 ** Memory barriers are used to prevent the compiler or the hardware from 1913 ** reordering the reads and writes. 1914 */ 1915 aHdr = walIndexHdr(pWal); 1916 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 1917 walShmBarrier(pWal); 1918 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 1919 1920 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 1921 return 1; /* Dirty read */ 1922 } 1923 if( h1.isInit==0 ){ 1924 return 1; /* Malformed header - probably all zeros */ 1925 } 1926 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 1927 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 1928 return 1; /* Checksum does not match */ 1929 } 1930 1931 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 1932 *pChanged = 1; 1933 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 1934 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1935 testcase( pWal->szPage<=32768 ); 1936 testcase( pWal->szPage>=65536 ); 1937 } 1938 1939 /* The header was successfully read. Return zero. */ 1940 return 0; 1941 } 1942 1943 /* 1944 ** Read the wal-index header from the wal-index and into pWal->hdr. 1945 ** If the wal-header appears to be corrupt, try to reconstruct the 1946 ** wal-index from the WAL before returning. 1947 ** 1948 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 1949 ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged 1950 ** to 0. 1951 ** 1952 ** If the wal-index header is successfully read, return SQLITE_OK. 1953 ** Otherwise an SQLite error code. 1954 */ 1955 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 1956 int rc; /* Return code */ 1957 int badHdr; /* True if a header read failed */ 1958 volatile u32 *page0; /* Chunk of wal-index containing header */ 1959 1960 /* Ensure that page 0 of the wal-index (the page that contains the 1961 ** wal-index header) is mapped. Return early if an error occurs here. 1962 */ 1963 assert( pChanged ); 1964 rc = walIndexPage(pWal, 0, &page0); 1965 if( rc!=SQLITE_OK ){ 1966 return rc; 1967 }; 1968 assert( page0 || pWal->writeLock==0 ); 1969 1970 /* If the first page of the wal-index has been mapped, try to read the 1971 ** wal-index header immediately, without holding any lock. This usually 1972 ** works, but may fail if the wal-index header is corrupt or currently 1973 ** being modified by another thread or process. 1974 */ 1975 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 1976 1977 /* If the first attempt failed, it might have been due to a race 1978 ** with a writer. So get a WRITE lock and try again. 1979 */ 1980 assert( badHdr==0 || pWal->writeLock==0 ); 1981 if( badHdr ){ 1982 if( pWal->readOnly & WAL_SHM_RDONLY ){ 1983 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 1984 walUnlockShared(pWal, WAL_WRITE_LOCK); 1985 rc = SQLITE_READONLY_RECOVERY; 1986 } 1987 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 1988 pWal->writeLock = 1; 1989 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 1990 badHdr = walIndexTryHdr(pWal, pChanged); 1991 if( badHdr ){ 1992 /* If the wal-index header is still malformed even while holding 1993 ** a WRITE lock, it can only mean that the header is corrupted and 1994 ** needs to be reconstructed. So run recovery to do exactly that. 1995 */ 1996 rc = walIndexRecover(pWal); 1997 *pChanged = 1; 1998 } 1999 } 2000 pWal->writeLock = 0; 2001 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2002 } 2003 } 2004 2005 /* If the header is read successfully, check the version number to make 2006 ** sure the wal-index was not constructed with some future format that 2007 ** this version of SQLite cannot understand. 2008 */ 2009 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2010 rc = SQLITE_CANTOPEN_BKPT; 2011 } 2012 2013 return rc; 2014 } 2015 2016 /* 2017 ** This is the value that walTryBeginRead returns when it needs to 2018 ** be retried. 2019 */ 2020 #define WAL_RETRY (-1) 2021 2022 /* 2023 ** Attempt to start a read transaction. This might fail due to a race or 2024 ** other transient condition. When that happens, it returns WAL_RETRY to 2025 ** indicate to the caller that it is safe to retry immediately. 2026 ** 2027 ** On success return SQLITE_OK. On a permanent failure (such an 2028 ** I/O error or an SQLITE_BUSY because another process is running 2029 ** recovery) return a positive error code. 2030 ** 2031 ** The useWal parameter is true to force the use of the WAL and disable 2032 ** the case where the WAL is bypassed because it has been completely 2033 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2034 ** to make a copy of the wal-index header into pWal->hdr. If the 2035 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2036 ** to the caller that the local paget cache is obsolete and needs to be 2037 ** flushed.) When useWal==1, the wal-index header is assumed to already 2038 ** be loaded and the pChanged parameter is unused. 2039 ** 2040 ** The caller must set the cnt parameter to the number of prior calls to 2041 ** this routine during the current read attempt that returned WAL_RETRY. 2042 ** This routine will start taking more aggressive measures to clear the 2043 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2044 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2045 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2046 ** and is not honoring the locking protocol. There is a vanishingly small 2047 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2048 ** bad luck when there is lots of contention for the wal-index, but that 2049 ** possibility is so small that it can be safely neglected, we believe. 2050 ** 2051 ** On success, this routine obtains a read lock on 2052 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2053 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2054 ** that means the Wal does not hold any read lock. The reader must not 2055 ** access any database page that is modified by a WAL frame up to and 2056 ** including frame number aReadMark[pWal->readLock]. The reader will 2057 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2058 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2059 ** completely and get all content directly from the database file. 2060 ** If the useWal parameter is 1 then the WAL will never be ignored and 2061 ** this routine will always set pWal->readLock>0 on success. 2062 ** When the read transaction is completed, the caller must release the 2063 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2064 ** 2065 ** This routine uses the nBackfill and aReadMark[] fields of the header 2066 ** to select a particular WAL_READ_LOCK() that strives to let the 2067 ** checkpoint process do as much work as possible. This routine might 2068 ** update values of the aReadMark[] array in the header, but if it does 2069 ** so it takes care to hold an exclusive lock on the corresponding 2070 ** WAL_READ_LOCK() while changing values. 2071 */ 2072 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2073 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2074 u32 mxReadMark; /* Largest aReadMark[] value */ 2075 int mxI; /* Index of largest aReadMark[] value */ 2076 int i; /* Loop counter */ 2077 int rc = SQLITE_OK; /* Return code */ 2078 2079 assert( pWal->readLock<0 ); /* Not currently locked */ 2080 2081 /* Take steps to avoid spinning forever if there is a protocol error. 2082 ** 2083 ** Circumstances that cause a RETRY should only last for the briefest 2084 ** instances of time. No I/O or other system calls are done while the 2085 ** locks are held, so the locks should not be held for very long. But 2086 ** if we are unlucky, another process that is holding a lock might get 2087 ** paged out or take a page-fault that is time-consuming to resolve, 2088 ** during the few nanoseconds that it is holding the lock. In that case, 2089 ** it might take longer than normal for the lock to free. 2090 ** 2091 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2092 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2093 ** is more of a scheduler yield than an actual delay. But on the 10th 2094 ** an subsequent retries, the delays start becoming longer and longer, 2095 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds. 2096 ** The total delay time before giving up is less than 1 second. 2097 */ 2098 if( cnt>5 ){ 2099 int nDelay = 1; /* Pause time in microseconds */ 2100 if( cnt>100 ){ 2101 VVA_ONLY( pWal->lockError = 1; ) 2102 return SQLITE_PROTOCOL; 2103 } 2104 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */ 2105 sqlite3OsSleep(pWal->pVfs, nDelay); 2106 } 2107 2108 if( !useWal ){ 2109 rc = walIndexReadHdr(pWal, pChanged); 2110 if( rc==SQLITE_BUSY ){ 2111 /* If there is not a recovery running in another thread or process 2112 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2113 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2114 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2115 ** would be technically correct. But the race is benign since with 2116 ** WAL_RETRY this routine will be called again and will probably be 2117 ** right on the second iteration. 2118 */ 2119 if( pWal->apWiData[0]==0 ){ 2120 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2121 ** We assume this is a transient condition, so return WAL_RETRY. The 2122 ** xShmMap() implementation used by the default unix and win32 VFS 2123 ** modules may return SQLITE_BUSY due to a race condition in the 2124 ** code that determines whether or not the shared-memory region 2125 ** must be zeroed before the requested page is returned. 2126 */ 2127 rc = WAL_RETRY; 2128 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2129 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2130 rc = WAL_RETRY; 2131 }else if( rc==SQLITE_BUSY ){ 2132 rc = SQLITE_BUSY_RECOVERY; 2133 } 2134 } 2135 if( rc!=SQLITE_OK ){ 2136 return rc; 2137 } 2138 } 2139 2140 pInfo = walCkptInfo(pWal); 2141 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ 2142 /* The WAL has been completely backfilled (or it is empty). 2143 ** and can be safely ignored. 2144 */ 2145 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2146 walShmBarrier(pWal); 2147 if( rc==SQLITE_OK ){ 2148 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2149 /* It is not safe to allow the reader to continue here if frames 2150 ** may have been appended to the log before READ_LOCK(0) was obtained. 2151 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2152 ** which implies that the database file contains a trustworthy 2153 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from 2154 ** happening, this is usually correct. 2155 ** 2156 ** However, if frames have been appended to the log (or if the log 2157 ** is wrapped and written for that matter) before the READ_LOCK(0) 2158 ** is obtained, that is not necessarily true. A checkpointer may 2159 ** have started to backfill the appended frames but crashed before 2160 ** it finished. Leaving a corrupt image in the database file. 2161 */ 2162 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2163 return WAL_RETRY; 2164 } 2165 pWal->readLock = 0; 2166 return SQLITE_OK; 2167 }else if( rc!=SQLITE_BUSY ){ 2168 return rc; 2169 } 2170 } 2171 2172 /* If we get this far, it means that the reader will want to use 2173 ** the WAL to get at content from recent commits. The job now is 2174 ** to select one of the aReadMark[] entries that is closest to 2175 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2176 */ 2177 mxReadMark = 0; 2178 mxI = 0; 2179 for(i=1; i<WAL_NREADER; i++){ 2180 u32 thisMark = pInfo->aReadMark[i]; 2181 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ 2182 assert( thisMark!=READMARK_NOT_USED ); 2183 mxReadMark = thisMark; 2184 mxI = i; 2185 } 2186 } 2187 /* There was once an "if" here. The extra "{" is to preserve indentation. */ 2188 { 2189 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2190 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) 2191 ){ 2192 for(i=1; i<WAL_NREADER; i++){ 2193 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2194 if( rc==SQLITE_OK ){ 2195 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; 2196 mxI = i; 2197 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2198 break; 2199 }else if( rc!=SQLITE_BUSY ){ 2200 return rc; 2201 } 2202 } 2203 } 2204 if( mxI==0 ){ 2205 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2206 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 2207 } 2208 2209 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2210 if( rc ){ 2211 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2212 } 2213 /* Now that the read-lock has been obtained, check that neither the 2214 ** value in the aReadMark[] array or the contents of the wal-index 2215 ** header have changed. 2216 ** 2217 ** It is necessary to check that the wal-index header did not change 2218 ** between the time it was read and when the shared-lock was obtained 2219 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2220 ** that the log file may have been wrapped by a writer, or that frames 2221 ** that occur later in the log than pWal->hdr.mxFrame may have been 2222 ** copied into the database by a checkpointer. If either of these things 2223 ** happened, then reading the database with the current value of 2224 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2225 ** instead. 2226 ** 2227 ** This does not guarantee that the copy of the wal-index header is up to 2228 ** date before proceeding. That would not be possible without somehow 2229 ** blocking writers. It only guarantees that a dangerous checkpoint or 2230 ** log-wrap (either of which would require an exclusive lock on 2231 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. 2232 */ 2233 walShmBarrier(pWal); 2234 if( pInfo->aReadMark[mxI]!=mxReadMark 2235 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2236 ){ 2237 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2238 return WAL_RETRY; 2239 }else{ 2240 assert( mxReadMark<=pWal->hdr.mxFrame ); 2241 pWal->readLock = (i16)mxI; 2242 } 2243 } 2244 return rc; 2245 } 2246 2247 /* 2248 ** Begin a read transaction on the database. 2249 ** 2250 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2251 ** it takes a snapshot of the state of the WAL and wal-index for the current 2252 ** instant in time. The current thread will continue to use this snapshot. 2253 ** Other threads might append new content to the WAL and wal-index but 2254 ** that extra content is ignored by the current thread. 2255 ** 2256 ** If the database contents have changes since the previous read 2257 ** transaction, then *pChanged is set to 1 before returning. The 2258 ** Pager layer will use this to know that is cache is stale and 2259 ** needs to be flushed. 2260 */ 2261 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2262 int rc; /* Return code */ 2263 int cnt = 0; /* Number of TryBeginRead attempts */ 2264 2265 do{ 2266 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2267 }while( rc==WAL_RETRY ); 2268 testcase( (rc&0xff)==SQLITE_BUSY ); 2269 testcase( (rc&0xff)==SQLITE_IOERR ); 2270 testcase( rc==SQLITE_PROTOCOL ); 2271 testcase( rc==SQLITE_OK ); 2272 return rc; 2273 } 2274 2275 /* 2276 ** Finish with a read transaction. All this does is release the 2277 ** read-lock. 2278 */ 2279 void sqlite3WalEndReadTransaction(Wal *pWal){ 2280 sqlite3WalEndWriteTransaction(pWal); 2281 if( pWal->readLock>=0 ){ 2282 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2283 pWal->readLock = -1; 2284 } 2285 } 2286 2287 /* 2288 ** Read a page from the WAL, if it is present in the WAL and if the 2289 ** current read transaction is configured to use the WAL. 2290 ** 2291 ** The *pInWal is set to 1 if the requested page is in the WAL and 2292 ** has been loaded. Or *pInWal is set to 0 if the page was not in 2293 ** the WAL and needs to be read out of the database. 2294 */ 2295 int sqlite3WalRead( 2296 Wal *pWal, /* WAL handle */ 2297 Pgno pgno, /* Database page number to read data for */ 2298 int *pInWal, /* OUT: True if data is read from WAL */ 2299 int nOut, /* Size of buffer pOut in bytes */ 2300 u8 *pOut /* Buffer to write page data to */ 2301 ){ 2302 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2303 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2304 int iHash; /* Used to loop through N hash tables */ 2305 2306 /* This routine is only be called from within a read transaction. */ 2307 assert( pWal->readLock>=0 || pWal->lockError ); 2308 2309 /* If the "last page" field of the wal-index header snapshot is 0, then 2310 ** no data will be read from the wal under any circumstances. Return early 2311 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2312 ** then the WAL is ignored by the reader so return early, as if the 2313 ** WAL were empty. 2314 */ 2315 if( iLast==0 || pWal->readLock==0 ){ 2316 *pInWal = 0; 2317 return SQLITE_OK; 2318 } 2319 2320 /* Search the hash table or tables for an entry matching page number 2321 ** pgno. Each iteration of the following for() loop searches one 2322 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2323 ** 2324 ** This code might run concurrently to the code in walIndexAppend() 2325 ** that adds entries to the wal-index (and possibly to this hash 2326 ** table). This means the value just read from the hash 2327 ** slot (aHash[iKey]) may have been added before or after the 2328 ** current read transaction was opened. Values added after the 2329 ** read transaction was opened may have been written incorrectly - 2330 ** i.e. these slots may contain garbage data. However, we assume 2331 ** that any slots written before the current read transaction was 2332 ** opened remain unmodified. 2333 ** 2334 ** For the reasons above, the if(...) condition featured in the inner 2335 ** loop of the following block is more stringent that would be required 2336 ** if we had exclusive access to the hash-table: 2337 ** 2338 ** (aPgno[iFrame]==pgno): 2339 ** This condition filters out normal hash-table collisions. 2340 ** 2341 ** (iFrame<=iLast): 2342 ** This condition filters out entries that were added to the hash 2343 ** table after the current read-transaction had started. 2344 */ 2345 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ 2346 volatile ht_slot *aHash; /* Pointer to hash table */ 2347 volatile u32 *aPgno; /* Pointer to array of page numbers */ 2348 u32 iZero; /* Frame number corresponding to aPgno[0] */ 2349 int iKey; /* Hash slot index */ 2350 int nCollide; /* Number of hash collisions remaining */ 2351 int rc; /* Error code */ 2352 2353 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 2354 if( rc!=SQLITE_OK ){ 2355 return rc; 2356 } 2357 nCollide = HASHTABLE_NSLOT; 2358 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 2359 u32 iFrame = aHash[iKey] + iZero; 2360 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ 2361 /* assert( iFrame>iRead ); -- not true if there is corruption */ 2362 iRead = iFrame; 2363 } 2364 if( (nCollide--)==0 ){ 2365 return SQLITE_CORRUPT_BKPT; 2366 } 2367 } 2368 } 2369 2370 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 2371 /* If expensive assert() statements are available, do a linear search 2372 ** of the wal-index file content. Make sure the results agree with the 2373 ** result obtained using the hash indexes above. */ 2374 { 2375 u32 iRead2 = 0; 2376 u32 iTest; 2377 for(iTest=iLast; iTest>0; iTest--){ 2378 if( walFramePgno(pWal, iTest)==pgno ){ 2379 iRead2 = iTest; 2380 break; 2381 } 2382 } 2383 assert( iRead==iRead2 ); 2384 } 2385 #endif 2386 2387 /* If iRead is non-zero, then it is the log frame number that contains the 2388 ** required page. Read and return data from the log file. 2389 */ 2390 if( iRead ){ 2391 int sz; 2392 i64 iOffset; 2393 sz = pWal->hdr.szPage; 2394 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 2395 testcase( sz<=32768 ); 2396 testcase( sz>=65536 ); 2397 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 2398 *pInWal = 1; 2399 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 2400 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 2401 } 2402 2403 *pInWal = 0; 2404 return SQLITE_OK; 2405 } 2406 2407 2408 /* 2409 ** Return the size of the database in pages (or zero, if unknown). 2410 */ 2411 Pgno sqlite3WalDbsize(Wal *pWal){ 2412 if( pWal && ALWAYS(pWal->readLock>=0) ){ 2413 return pWal->hdr.nPage; 2414 } 2415 return 0; 2416 } 2417 2418 2419 /* 2420 ** This function starts a write transaction on the WAL. 2421 ** 2422 ** A read transaction must have already been started by a prior call 2423 ** to sqlite3WalBeginReadTransaction(). 2424 ** 2425 ** If another thread or process has written into the database since 2426 ** the read transaction was started, then it is not possible for this 2427 ** thread to write as doing so would cause a fork. So this routine 2428 ** returns SQLITE_BUSY in that case and no write transaction is started. 2429 ** 2430 ** There can only be a single writer active at a time. 2431 */ 2432 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 2433 int rc; 2434 2435 /* Cannot start a write transaction without first holding a read 2436 ** transaction. */ 2437 assert( pWal->readLock>=0 ); 2438 2439 if( pWal->readOnly ){ 2440 return SQLITE_READONLY; 2441 } 2442 2443 /* Only one writer allowed at a time. Get the write lock. Return 2444 ** SQLITE_BUSY if unable. 2445 */ 2446 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 2447 if( rc ){ 2448 return rc; 2449 } 2450 pWal->writeLock = 1; 2451 2452 /* If another connection has written to the database file since the 2453 ** time the read transaction on this connection was started, then 2454 ** the write is disallowed. 2455 */ 2456 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 2457 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2458 pWal->writeLock = 0; 2459 rc = SQLITE_BUSY; 2460 } 2461 2462 return rc; 2463 } 2464 2465 /* 2466 ** End a write transaction. The commit has already been done. This 2467 ** routine merely releases the lock. 2468 */ 2469 int sqlite3WalEndWriteTransaction(Wal *pWal){ 2470 if( pWal->writeLock ){ 2471 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2472 pWal->writeLock = 0; 2473 pWal->truncateOnCommit = 0; 2474 } 2475 return SQLITE_OK; 2476 } 2477 2478 /* 2479 ** If any data has been written (but not committed) to the log file, this 2480 ** function moves the write-pointer back to the start of the transaction. 2481 ** 2482 ** Additionally, the callback function is invoked for each frame written 2483 ** to the WAL since the start of the transaction. If the callback returns 2484 ** other than SQLITE_OK, it is not invoked again and the error code is 2485 ** returned to the caller. 2486 ** 2487 ** Otherwise, if the callback function does not return an error, this 2488 ** function returns SQLITE_OK. 2489 */ 2490 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 2491 int rc = SQLITE_OK; 2492 if( ALWAYS(pWal->writeLock) ){ 2493 Pgno iMax = pWal->hdr.mxFrame; 2494 Pgno iFrame; 2495 2496 /* Restore the clients cache of the wal-index header to the state it 2497 ** was in before the client began writing to the database. 2498 */ 2499 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2500 2501 for(iFrame=pWal->hdr.mxFrame+1; 2502 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 2503 iFrame++ 2504 ){ 2505 /* This call cannot fail. Unless the page for which the page number 2506 ** is passed as the second argument is (a) in the cache and 2507 ** (b) has an outstanding reference, then xUndo is either a no-op 2508 ** (if (a) is false) or simply expels the page from the cache (if (b) 2509 ** is false). 2510 ** 2511 ** If the upper layer is doing a rollback, it is guaranteed that there 2512 ** are no outstanding references to any page other than page 1. And 2513 ** page 1 is never written to the log until the transaction is 2514 ** committed. As a result, the call to xUndo may not fail. 2515 */ 2516 assert( walFramePgno(pWal, iFrame)!=1 ); 2517 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 2518 } 2519 walCleanupHash(pWal); 2520 } 2521 assert( rc==SQLITE_OK ); 2522 return rc; 2523 } 2524 2525 /* 2526 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 2527 ** values. This function populates the array with values required to 2528 ** "rollback" the write position of the WAL handle back to the current 2529 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 2530 */ 2531 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 2532 assert( pWal->writeLock ); 2533 aWalData[0] = pWal->hdr.mxFrame; 2534 aWalData[1] = pWal->hdr.aFrameCksum[0]; 2535 aWalData[2] = pWal->hdr.aFrameCksum[1]; 2536 aWalData[3] = pWal->nCkpt; 2537 } 2538 2539 /* 2540 ** Move the write position of the WAL back to the point identified by 2541 ** the values in the aWalData[] array. aWalData must point to an array 2542 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 2543 ** by a call to WalSavepoint(). 2544 */ 2545 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 2546 int rc = SQLITE_OK; 2547 2548 assert( pWal->writeLock ); 2549 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 2550 2551 if( aWalData[3]!=pWal->nCkpt ){ 2552 /* This savepoint was opened immediately after the write-transaction 2553 ** was started. Right after that, the writer decided to wrap around 2554 ** to the start of the log. Update the savepoint values to match. 2555 */ 2556 aWalData[0] = 0; 2557 aWalData[3] = pWal->nCkpt; 2558 } 2559 2560 if( aWalData[0]<pWal->hdr.mxFrame ){ 2561 pWal->hdr.mxFrame = aWalData[0]; 2562 pWal->hdr.aFrameCksum[0] = aWalData[1]; 2563 pWal->hdr.aFrameCksum[1] = aWalData[2]; 2564 walCleanupHash(pWal); 2565 } 2566 2567 return rc; 2568 } 2569 2570 2571 /* 2572 ** This function is called just before writing a set of frames to the log 2573 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 2574 ** to the current log file, it is possible to overwrite the start of the 2575 ** existing log file with the new frames (i.e. "reset" the log). If so, 2576 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 2577 ** unchanged. 2578 ** 2579 ** SQLITE_OK is returned if no error is encountered (regardless of whether 2580 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 2581 ** if an error occurs. 2582 */ 2583 static int walRestartLog(Wal *pWal){ 2584 int rc = SQLITE_OK; 2585 int cnt; 2586 2587 if( pWal->readLock==0 ){ 2588 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2589 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2590 if( pInfo->nBackfill>0 ){ 2591 u32 salt1; 2592 sqlite3_randomness(4, &salt1); 2593 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2594 if( rc==SQLITE_OK ){ 2595 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 2596 ** readers are currently using the WAL), then the transactions 2597 ** frames will overwrite the start of the existing log. Update the 2598 ** wal-index header to reflect this. 2599 ** 2600 ** In theory it would be Ok to update the cache of the header only 2601 ** at this point. But updating the actual wal-index header is also 2602 ** safe and means there is no special case for sqlite3WalUndo() 2603 ** to handle if this transaction is rolled back. 2604 */ 2605 int i; /* Loop counter */ 2606 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 2607 2608 pWal->nCkpt++; 2609 pWal->hdr.mxFrame = 0; 2610 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 2611 aSalt[1] = salt1; 2612 walIndexWriteHdr(pWal); 2613 pInfo->nBackfill = 0; 2614 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 2615 assert( pInfo->aReadMark[0]==0 ); 2616 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2617 }else if( rc!=SQLITE_BUSY ){ 2618 return rc; 2619 } 2620 } 2621 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2622 pWal->readLock = -1; 2623 cnt = 0; 2624 do{ 2625 int notUsed; 2626 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 2627 }while( rc==WAL_RETRY ); 2628 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 2629 testcase( (rc&0xff)==SQLITE_IOERR ); 2630 testcase( rc==SQLITE_PROTOCOL ); 2631 testcase( rc==SQLITE_OK ); 2632 } 2633 return rc; 2634 } 2635 2636 /* 2637 ** Information about the current state of the WAL file and where 2638 ** the next fsync should occur - passed from sqlite3WalFrames() into 2639 ** walWriteToLog(). 2640 */ 2641 typedef struct WalWriter { 2642 Wal *pWal; /* The complete WAL information */ 2643 sqlite3_file *pFd; /* The WAL file to which we write */ 2644 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 2645 int syncFlags; /* Flags for the fsync */ 2646 int szPage; /* Size of one page */ 2647 } WalWriter; 2648 2649 /* 2650 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 2651 ** Do a sync when crossing the p->iSyncPoint boundary. 2652 ** 2653 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 2654 ** first write the part before iSyncPoint, then sync, then write the 2655 ** rest. 2656 */ 2657 static int walWriteToLog( 2658 WalWriter *p, /* WAL to write to */ 2659 void *pContent, /* Content to be written */ 2660 int iAmt, /* Number of bytes to write */ 2661 sqlite3_int64 iOffset /* Start writing at this offset */ 2662 ){ 2663 int rc; 2664 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 2665 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 2666 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 2667 if( rc ) return rc; 2668 iOffset += iFirstAmt; 2669 iAmt -= iFirstAmt; 2670 pContent = (void*)(iFirstAmt + (char*)pContent); 2671 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 2672 rc = sqlite3OsSync(p->pFd, p->syncFlags); 2673 if( iAmt==0 || rc ) return rc; 2674 } 2675 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 2676 return rc; 2677 } 2678 2679 /* 2680 ** Write out a single frame of the WAL 2681 */ 2682 static int walWriteOneFrame( 2683 WalWriter *p, /* Where to write the frame */ 2684 PgHdr *pPage, /* The page of the frame to be written */ 2685 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 2686 sqlite3_int64 iOffset /* Byte offset at which to write */ 2687 ){ 2688 int rc; /* Result code from subfunctions */ 2689 void *pData; /* Data actually written */ 2690 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 2691 #if defined(SQLITE_HAS_CODEC) 2692 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; 2693 #else 2694 pData = pPage->pData; 2695 #endif 2696 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 2697 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 2698 if( rc ) return rc; 2699 /* Write the page data */ 2700 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 2701 return rc; 2702 } 2703 2704 /* 2705 ** Write a set of frames to the log. The caller must hold the write-lock 2706 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 2707 */ 2708 int sqlite3WalFrames( 2709 Wal *pWal, /* Wal handle to write to */ 2710 int szPage, /* Database page-size in bytes */ 2711 PgHdr *pList, /* List of dirty pages to write */ 2712 Pgno nTruncate, /* Database size after this commit */ 2713 int isCommit, /* True if this is a commit */ 2714 int sync_flags /* Flags to pass to OsSync() (or 0) */ 2715 ){ 2716 int rc; /* Used to catch return codes */ 2717 u32 iFrame; /* Next frame address */ 2718 PgHdr *p; /* Iterator to run through pList with. */ 2719 PgHdr *pLast = 0; /* Last frame in list */ 2720 int nExtra = 0; /* Number of extra copies of last page */ 2721 int szFrame; /* The size of a single frame */ 2722 i64 iOffset; /* Next byte to write in WAL file */ 2723 WalWriter w; /* The writer */ 2724 2725 assert( pList ); 2726 assert( pWal->writeLock ); 2727 2728 /* If this frame set completes a transaction, then nTruncate>0. If 2729 ** nTruncate==0 then this frame set does not complete the transaction. */ 2730 assert( (isCommit!=0)==(nTruncate!=0) ); 2731 2732 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 2733 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 2734 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 2735 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 2736 } 2737 #endif 2738 2739 /* See if it is possible to write these frames into the start of the 2740 ** log file, instead of appending to it at pWal->hdr.mxFrame. 2741 */ 2742 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 2743 return rc; 2744 } 2745 2746 /* If this is the first frame written into the log, write the WAL 2747 ** header to the start of the WAL file. See comments at the top of 2748 ** this source file for a description of the WAL header format. 2749 */ 2750 iFrame = pWal->hdr.mxFrame; 2751 if( iFrame==0 ){ 2752 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 2753 u32 aCksum[2]; /* Checksum for wal-header */ 2754 2755 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 2756 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 2757 sqlite3Put4byte(&aWalHdr[8], szPage); 2758 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 2759 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 2760 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 2761 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 2762 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 2763 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 2764 2765 pWal->szPage = szPage; 2766 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 2767 pWal->hdr.aFrameCksum[0] = aCksum[0]; 2768 pWal->hdr.aFrameCksum[1] = aCksum[1]; 2769 pWal->truncateOnCommit = 1; 2770 2771 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 2772 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 2773 if( rc!=SQLITE_OK ){ 2774 return rc; 2775 } 2776 2777 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 2778 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 2779 ** an out-of-order write following a WAL restart could result in 2780 ** database corruption. See the ticket: 2781 ** 2782 ** http://localhost:591/sqlite/info/ff5be73dee 2783 */ 2784 if( pWal->syncHeader && sync_flags ){ 2785 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 2786 if( rc ) return rc; 2787 } 2788 } 2789 assert( (int)pWal->szPage==szPage ); 2790 2791 /* Setup information needed to write frames into the WAL */ 2792 w.pWal = pWal; 2793 w.pFd = pWal->pWalFd; 2794 w.iSyncPoint = 0; 2795 w.syncFlags = sync_flags; 2796 w.szPage = szPage; 2797 iOffset = walFrameOffset(iFrame+1, szPage); 2798 szFrame = szPage + WAL_FRAME_HDRSIZE; 2799 2800 /* Write all frames into the log file exactly once */ 2801 for(p=pList; p; p=p->pDirty){ 2802 int nDbSize; /* 0 normally. Positive == commit flag */ 2803 iFrame++; 2804 assert( iOffset==walFrameOffset(iFrame, szPage) ); 2805 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 2806 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 2807 if( rc ) return rc; 2808 pLast = p; 2809 iOffset += szFrame; 2810 } 2811 2812 /* If this is the end of a transaction, then we might need to pad 2813 ** the transaction and/or sync the WAL file. 2814 ** 2815 ** Padding and syncing only occur if this set of frames complete a 2816 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 2817 ** or synchonous==OFF, then no padding or syncing are needed. 2818 ** 2819 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 2820 ** needed and only the sync is done. If padding is needed, then the 2821 ** final frame is repeated (with its commit mark) until the next sector 2822 ** boundary is crossed. Only the part of the WAL prior to the last 2823 ** sector boundary is synced; the part of the last frame that extends 2824 ** past the sector boundary is written after the sync. 2825 */ 2826 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 2827 if( pWal->padToSectorBoundary ){ 2828 int sectorSize = sqlite3OsSectorSize(pWal->pWalFd); 2829 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 2830 while( iOffset<w.iSyncPoint ){ 2831 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 2832 if( rc ) return rc; 2833 iOffset += szFrame; 2834 nExtra++; 2835 } 2836 }else{ 2837 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 2838 } 2839 } 2840 2841 /* If this frame set completes the first transaction in the WAL and 2842 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 2843 ** journal size limit, if possible. 2844 */ 2845 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 2846 i64 sz = pWal->mxWalSize; 2847 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 2848 sz = walFrameOffset(iFrame+nExtra+1, szPage); 2849 } 2850 walLimitSize(pWal, sz); 2851 pWal->truncateOnCommit = 0; 2852 } 2853 2854 /* Append data to the wal-index. It is not necessary to lock the 2855 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 2856 ** guarantees that there are no other writers, and no data that may 2857 ** be in use by existing readers is being overwritten. 2858 */ 2859 iFrame = pWal->hdr.mxFrame; 2860 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 2861 iFrame++; 2862 rc = walIndexAppend(pWal, iFrame, p->pgno); 2863 } 2864 while( rc==SQLITE_OK && nExtra>0 ){ 2865 iFrame++; 2866 nExtra--; 2867 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 2868 } 2869 2870 if( rc==SQLITE_OK ){ 2871 /* Update the private copy of the header. */ 2872 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 2873 testcase( szPage<=32768 ); 2874 testcase( szPage>=65536 ); 2875 pWal->hdr.mxFrame = iFrame; 2876 if( isCommit ){ 2877 pWal->hdr.iChange++; 2878 pWal->hdr.nPage = nTruncate; 2879 } 2880 /* If this is a commit, update the wal-index header too. */ 2881 if( isCommit ){ 2882 walIndexWriteHdr(pWal); 2883 pWal->iCallback = iFrame; 2884 } 2885 } 2886 2887 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 2888 return rc; 2889 } 2890 2891 /* 2892 ** This routine is called to implement sqlite3_wal_checkpoint() and 2893 ** related interfaces. 2894 ** 2895 ** Obtain a CHECKPOINT lock and then backfill as much information as 2896 ** we can from WAL into the database. 2897 ** 2898 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 2899 ** callback. In this case this function runs a blocking checkpoint. 2900 */ 2901 int sqlite3WalCheckpoint( 2902 Wal *pWal, /* Wal connection */ 2903 int eMode, /* PASSIVE, FULL or RESTART */ 2904 int (*xBusy)(void*), /* Function to call when busy */ 2905 void *pBusyArg, /* Context argument for xBusyHandler */ 2906 int sync_flags, /* Flags to sync db file with (or 0) */ 2907 int nBuf, /* Size of temporary buffer */ 2908 u8 *zBuf, /* Temporary buffer to use */ 2909 int *pnLog, /* OUT: Number of frames in WAL */ 2910 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 2911 ){ 2912 int rc; /* Return code */ 2913 int isChanged = 0; /* True if a new wal-index header is loaded */ 2914 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 2915 2916 assert( pWal->ckptLock==0 ); 2917 assert( pWal->writeLock==0 ); 2918 2919 if( pWal->readOnly ) return SQLITE_READONLY; 2920 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 2921 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2922 if( rc ){ 2923 /* Usually this is SQLITE_BUSY meaning that another thread or process 2924 ** is already running a checkpoint, or maybe a recovery. But it might 2925 ** also be SQLITE_IOERR. */ 2926 return rc; 2927 } 2928 pWal->ckptLock = 1; 2929 2930 /* If this is a blocking-checkpoint, then obtain the write-lock as well 2931 ** to prevent any writers from running while the checkpoint is underway. 2932 ** This has to be done before the call to walIndexReadHdr() below. 2933 ** 2934 ** If the writer lock cannot be obtained, then a passive checkpoint is 2935 ** run instead. Since the checkpointer is not holding the writer lock, 2936 ** there is no point in blocking waiting for any readers. Assuming no 2937 ** other error occurs, this function will return SQLITE_BUSY to the caller. 2938 */ 2939 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2940 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 2941 if( rc==SQLITE_OK ){ 2942 pWal->writeLock = 1; 2943 }else if( rc==SQLITE_BUSY ){ 2944 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 2945 rc = SQLITE_OK; 2946 } 2947 } 2948 2949 /* Read the wal-index header. */ 2950 if( rc==SQLITE_OK ){ 2951 rc = walIndexReadHdr(pWal, &isChanged); 2952 } 2953 2954 /* Copy data from the log to the database file. */ 2955 if( rc==SQLITE_OK ){ 2956 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 2957 rc = SQLITE_CORRUPT_BKPT; 2958 }else{ 2959 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); 2960 } 2961 2962 /* If no error occurred, set the output variables. */ 2963 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 2964 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 2965 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 2966 } 2967 } 2968 2969 if( isChanged ){ 2970 /* If a new wal-index header was loaded before the checkpoint was 2971 ** performed, then the pager-cache associated with pWal is now 2972 ** out of date. So zero the cached wal-index header to ensure that 2973 ** next time the pager opens a snapshot on this database it knows that 2974 ** the cache needs to be reset. 2975 */ 2976 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 2977 } 2978 2979 /* Release the locks. */ 2980 sqlite3WalEndWriteTransaction(pWal); 2981 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2982 pWal->ckptLock = 0; 2983 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 2984 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 2985 } 2986 2987 /* Return the value to pass to a sqlite3_wal_hook callback, the 2988 ** number of frames in the WAL at the point of the last commit since 2989 ** sqlite3WalCallback() was called. If no commits have occurred since 2990 ** the last call, then return 0. 2991 */ 2992 int sqlite3WalCallback(Wal *pWal){ 2993 u32 ret = 0; 2994 if( pWal ){ 2995 ret = pWal->iCallback; 2996 pWal->iCallback = 0; 2997 } 2998 return (int)ret; 2999 } 3000 3001 /* 3002 ** This function is called to change the WAL subsystem into or out 3003 ** of locking_mode=EXCLUSIVE. 3004 ** 3005 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3006 ** into locking_mode=NORMAL. This means that we must acquire a lock 3007 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3008 ** or if the acquisition of the lock fails, then return 0. If the 3009 ** transition out of exclusive-mode is successful, return 1. This 3010 ** operation must occur while the pager is still holding the exclusive 3011 ** lock on the main database file. 3012 ** 3013 ** If op is one, then change from locking_mode=NORMAL into 3014 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3015 ** be released. Return 1 if the transition is made and 0 if the 3016 ** WAL is already in exclusive-locking mode - meaning that this 3017 ** routine is a no-op. The pager must already hold the exclusive lock 3018 ** on the main database file before invoking this operation. 3019 ** 3020 ** If op is negative, then do a dry-run of the op==1 case but do 3021 ** not actually change anything. The pager uses this to see if it 3022 ** should acquire the database exclusive lock prior to invoking 3023 ** the op==1 case. 3024 */ 3025 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3026 int rc; 3027 assert( pWal->writeLock==0 ); 3028 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3029 3030 /* pWal->readLock is usually set, but might be -1 if there was a 3031 ** prior error while attempting to acquire are read-lock. This cannot 3032 ** happen if the connection is actually in exclusive mode (as no xShmLock 3033 ** locks are taken in this case). Nor should the pager attempt to 3034 ** upgrade to exclusive-mode following such an error. 3035 */ 3036 assert( pWal->readLock>=0 || pWal->lockError ); 3037 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3038 3039 if( op==0 ){ 3040 if( pWal->exclusiveMode ){ 3041 pWal->exclusiveMode = 0; 3042 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3043 pWal->exclusiveMode = 1; 3044 } 3045 rc = pWal->exclusiveMode==0; 3046 }else{ 3047 /* Already in locking_mode=NORMAL */ 3048 rc = 0; 3049 } 3050 }else if( op>0 ){ 3051 assert( pWal->exclusiveMode==0 ); 3052 assert( pWal->readLock>=0 ); 3053 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3054 pWal->exclusiveMode = 1; 3055 rc = 1; 3056 }else{ 3057 rc = pWal->exclusiveMode==0; 3058 } 3059 return rc; 3060 } 3061 3062 /* 3063 ** Return true if the argument is non-NULL and the WAL module is using 3064 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3065 ** WAL module is using shared-memory, return false. 3066 */ 3067 int sqlite3WalHeapMemory(Wal *pWal){ 3068 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3069 } 3070 3071 #ifdef SQLITE_ENABLE_ZIPVFS 3072 /* 3073 ** If the argument is not NULL, it points to a Wal object that holds a 3074 ** read-lock. This function returns the database page-size if it is known, 3075 ** or zero if it is not (or if pWal is NULL). 3076 */ 3077 int sqlite3WalFramesize(Wal *pWal){ 3078 assert( pWal==0 || pWal->readLock>=0 ); 3079 return (pWal ? pWal->szPage : 0); 3080 } 3081 #endif 3082 3083 #endif /* #ifndef SQLITE_OMIT_WAL */ 3084