1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. The values are: 165 ** 166 ** HASHTABLE_NPAGE 4096 167 ** HASHTABLE_NPAGE_ONE 4062 168 ** 169 ** Each index block contains two sections, a page-mapping that contains the 170 ** database page number associated with each wal frame, and a hash-table 171 ** that allows readers to query an index block for a specific page number. 172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 173 ** for the first index block) 32-bit page numbers. The first entry in the 174 ** first index-block contains the database page number corresponding to the 175 ** first frame in the WAL file. The first entry in the second index block 176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 177 ** the log, and so on. 178 ** 179 ** The last index block in a wal-index usually contains less than the full 180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 181 ** depending on the contents of the WAL file. This does not change the 182 ** allocated size of the page-mapping array - the page-mapping array merely 183 ** contains unused entries. 184 ** 185 ** Even without using the hash table, the last frame for page P 186 ** can be found by scanning the page-mapping sections of each index block 187 ** starting with the last index block and moving toward the first, and 188 ** within each index block, starting at the end and moving toward the 189 ** beginning. The first entry that equals P corresponds to the frame 190 ** holding the content for that page. 191 ** 192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 194 ** hash table for each page number in the mapping section, so the hash 195 ** table is never more than half full. The expected number of collisions 196 ** prior to finding a match is 1. Each entry of the hash table is an 197 ** 1-based index of an entry in the mapping section of the same 198 ** index block. Let K be the 1-based index of the largest entry in 199 ** the mapping section. (For index blocks other than the last, K will 200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 202 ** contain a value of 0. 203 ** 204 ** To look for page P in the hash table, first compute a hash iKey on 205 ** P as follows: 206 ** 207 ** iKey = (P * 383) % HASHTABLE_NSLOT 208 ** 209 ** Then start scanning entries of the hash table, starting with iKey 210 ** (wrapping around to the beginning when the end of the hash table is 211 ** reached) until an unused hash slot is found. Let the first unused slot 212 ** be at index iUnused. (iUnused might be less than iKey if there was 213 ** wrap-around.) Because the hash table is never more than half full, 214 ** the search is guaranteed to eventually hit an unused entry. Let 215 ** iMax be the value between iKey and iUnused, closest to iUnused, 216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 217 ** no hash slot such that aHash[i]==p) then page P is not in the 218 ** current index block. Otherwise the iMax-th mapping entry of the 219 ** current index block corresponds to the last entry that references 220 ** page P. 221 ** 222 ** A hash search begins with the last index block and moves toward the 223 ** first index block, looking for entries corresponding to page P. On 224 ** average, only two or three slots in each index block need to be 225 ** examined in order to either find the last entry for page P, or to 226 ** establish that no such entry exists in the block. Each index block 227 ** holds over 4000 entries. So two or three index blocks are sufficient 228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 229 ** comparisons (on average) suffice to either locate a frame in the 230 ** WAL or to establish that the frame does not exist in the WAL. This 231 ** is much faster than scanning the entire 10MB WAL. 232 ** 233 ** Note that entries are added in order of increasing K. Hence, one 234 ** reader might be using some value K0 and a second reader that started 235 ** at a later time (after additional transactions were added to the WAL 236 ** and to the wal-index) might be using a different value K1, where K1>K0. 237 ** Both readers can use the same hash table and mapping section to get 238 ** the correct result. There may be entries in the hash table with 239 ** K>K0 but to the first reader, those entries will appear to be unused 240 ** slots in the hash table and so the first reader will get an answer as 241 ** if no values greater than K0 had ever been inserted into the hash table 242 ** in the first place - which is what reader one wants. Meanwhile, the 243 ** second reader using K1 will see additional values that were inserted 244 ** later, which is exactly what reader two wants. 245 ** 246 ** When a rollback occurs, the value of K is decreased. Hash table entries 247 ** that correspond to frames greater than the new K value are removed 248 ** from the hash table at this point. 249 */ 250 #ifndef SQLITE_OMIT_WAL 251 252 #include "wal.h" 253 254 /* 255 ** Trace output macros 256 */ 257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 258 int sqlite3WalTrace = 0; 259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 260 #else 261 # define WALTRACE(X) 262 #endif 263 264 /* 265 ** The maximum (and only) versions of the wal and wal-index formats 266 ** that may be interpreted by this version of SQLite. 267 ** 268 ** If a client begins recovering a WAL file and finds that (a) the checksum 269 ** values in the wal-header are correct and (b) the version field is not 270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 271 ** 272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 273 ** checksum test is successful) and finds that the version field is not 274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 275 ** returns SQLITE_CANTOPEN. 276 */ 277 #define WAL_MAX_VERSION 3007000 278 #define WALINDEX_MAX_VERSION 3007000 279 280 /* 281 ** Index numbers for various locking bytes. WAL_NREADER is the number 282 ** of available reader locks and should be at least 3. The default 283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 284 ** 285 ** Technically, the various VFSes are free to implement these locks however 286 ** they see fit. However, compatibility is encouraged so that VFSes can 287 ** interoperate. The standard implemention used on both unix and windows 288 ** is for the index number to indicate a byte offset into the 289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 291 ** should be 120) is the location in the shm file for the first locking 292 ** byte. 293 */ 294 #define WAL_WRITE_LOCK 0 295 #define WAL_ALL_BUT_WRITE 1 296 #define WAL_CKPT_LOCK 1 297 #define WAL_RECOVER_LOCK 2 298 #define WAL_READ_LOCK(I) (3+(I)) 299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 300 301 302 /* Object declarations */ 303 typedef struct WalIndexHdr WalIndexHdr; 304 typedef struct WalIterator WalIterator; 305 typedef struct WalCkptInfo WalCkptInfo; 306 307 308 /* 309 ** The following object holds a copy of the wal-index header content. 310 ** 311 ** The actual header in the wal-index consists of two copies of this 312 ** object followed by one instance of the WalCkptInfo object. 313 ** For all versions of SQLite through 3.10.0 and probably beyond, 314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 315 ** the total header size is 136 bytes. 316 ** 317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 319 ** added in 3.7.1 when support for 64K pages was added. 320 */ 321 struct WalIndexHdr { 322 u32 iVersion; /* Wal-index version */ 323 u32 unused; /* Unused (padding) field */ 324 u32 iChange; /* Counter incremented each transaction */ 325 u8 isInit; /* 1 when initialized */ 326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 327 u16 szPage; /* Database page size in bytes. 1==64K */ 328 u32 mxFrame; /* Index of last valid frame in the WAL */ 329 u32 nPage; /* Size of database in pages */ 330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 332 u32 aCksum[2]; /* Checksum over all prior fields */ 333 }; 334 335 /* 336 ** A copy of the following object occurs in the wal-index immediately 337 ** following the second copy of the WalIndexHdr. This object stores 338 ** information used by checkpoint. 339 ** 340 ** nBackfill is the number of frames in the WAL that have been written 341 ** back into the database. (We call the act of moving content from WAL to 342 ** database "backfilling".) The nBackfill number is never greater than 343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 346 ** mxFrame back to zero when the WAL is reset. 347 ** 348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 350 ** the nBackfillAttempted is set before any backfilling is done and the 351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 354 ** 355 ** The aLock[] field is a set of bytes used for locking. These bytes should 356 ** never be read or written. 357 ** 358 ** There is one entry in aReadMark[] for each reader lock. If a reader 359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 362 ** a special case; its value is never used and it exists as a place-holder 363 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 365 ** directly from the database. 366 ** 367 ** The value of aReadMark[K] may only be changed by a thread that 368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 369 ** aReadMark[K] cannot changed while there is a reader is using that mark 370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 371 ** 372 ** The checkpointer may only transfer frames from WAL to database where 373 ** the frame numbers are less than or equal to every aReadMark[] that is 374 ** in use (that is, every aReadMark[j] for which there is a corresponding 375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 379 ** in the WAL has been backfilled into the database) then new readers 380 ** will choose aReadMark[0] which has value 0 and hence such reader will 381 ** get all their all content directly from the database file and ignore 382 ** the WAL. 383 ** 384 ** Writers normally append new frames to the end of the WAL. However, 385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 386 ** written back into the database) and if no readers are using the WAL 387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 388 ** the writer will first "reset" the WAL back to the beginning and start 389 ** writing new content beginning at frame 1. 390 ** 391 ** We assume that 32-bit loads are atomic and so no locks are needed in 392 ** order to read from any aReadMark[] entries. 393 */ 394 struct WalCkptInfo { 395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 399 u32 notUsed0; /* Available for future enhancements */ 400 }; 401 #define READMARK_NOT_USED 0xffffffff 402 403 404 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 405 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 406 ** only support mandatory file-locks, we do not read or write data 407 ** from the region of the file on which locks are applied. 408 */ 409 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 410 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 411 412 /* Size of header before each frame in wal */ 413 #define WAL_FRAME_HDRSIZE 24 414 415 /* Size of write ahead log header, including checksum. */ 416 #define WAL_HDRSIZE 32 417 418 /* WAL magic value. Either this value, or the same value with the least 419 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 420 ** big-endian format in the first 4 bytes of a WAL file. 421 ** 422 ** If the LSB is set, then the checksums for each frame within the WAL 423 ** file are calculated by treating all data as an array of 32-bit 424 ** big-endian words. Otherwise, they are calculated by interpreting 425 ** all data as 32-bit little-endian words. 426 */ 427 #define WAL_MAGIC 0x377f0682 428 429 /* 430 ** Return the offset of frame iFrame in the write-ahead log file, 431 ** assuming a database page size of szPage bytes. The offset returned 432 ** is to the start of the write-ahead log frame-header. 433 */ 434 #define walFrameOffset(iFrame, szPage) ( \ 435 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 436 ) 437 438 /* 439 ** An open write-ahead log file is represented by an instance of the 440 ** following object. 441 */ 442 struct Wal { 443 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 444 sqlite3_file *pDbFd; /* File handle for the database file */ 445 sqlite3_file *pWalFd; /* File handle for WAL file */ 446 u32 iCallback; /* Value to pass to log callback (or 0) */ 447 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 448 int nWiData; /* Size of array apWiData */ 449 int szFirstBlock; /* Size of first block written to WAL file */ 450 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 451 u32 szPage; /* Database page size */ 452 i16 readLock; /* Which read lock is being held. -1 for none */ 453 u8 syncFlags; /* Flags to use to sync header writes */ 454 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 455 u8 writeLock; /* True if in a write transaction */ 456 u8 ckptLock; /* True if holding a checkpoint lock */ 457 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 458 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 459 u8 syncHeader; /* Fsync the WAL header if true */ 460 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 461 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 462 WalIndexHdr hdr; /* Wal-index header for current transaction */ 463 u32 minFrame; /* Ignore wal frames before this one */ 464 u32 iReCksum; /* On commit, recalculate checksums from here */ 465 const char *zWalName; /* Name of WAL file */ 466 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 467 #ifdef SQLITE_DEBUG 468 u8 lockError; /* True if a locking error has occurred */ 469 #endif 470 #ifdef SQLITE_ENABLE_SNAPSHOT 471 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 472 #endif 473 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 474 sqlite3 *db; 475 #endif 476 }; 477 478 /* 479 ** Candidate values for Wal.exclusiveMode. 480 */ 481 #define WAL_NORMAL_MODE 0 482 #define WAL_EXCLUSIVE_MODE 1 483 #define WAL_HEAPMEMORY_MODE 2 484 485 /* 486 ** Possible values for WAL.readOnly 487 */ 488 #define WAL_RDWR 0 /* Normal read/write connection */ 489 #define WAL_RDONLY 1 /* The WAL file is readonly */ 490 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 491 492 /* 493 ** Each page of the wal-index mapping contains a hash-table made up of 494 ** an array of HASHTABLE_NSLOT elements of the following type. 495 */ 496 typedef u16 ht_slot; 497 498 /* 499 ** This structure is used to implement an iterator that loops through 500 ** all frames in the WAL in database page order. Where two or more frames 501 ** correspond to the same database page, the iterator visits only the 502 ** frame most recently written to the WAL (in other words, the frame with 503 ** the largest index). 504 ** 505 ** The internals of this structure are only accessed by: 506 ** 507 ** walIteratorInit() - Create a new iterator, 508 ** walIteratorNext() - Step an iterator, 509 ** walIteratorFree() - Free an iterator. 510 ** 511 ** This functionality is used by the checkpoint code (see walCheckpoint()). 512 */ 513 struct WalIterator { 514 u32 iPrior; /* Last result returned from the iterator */ 515 int nSegment; /* Number of entries in aSegment[] */ 516 struct WalSegment { 517 int iNext; /* Next slot in aIndex[] not yet returned */ 518 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 519 u32 *aPgno; /* Array of page numbers. */ 520 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 521 int iZero; /* Frame number associated with aPgno[0] */ 522 } aSegment[1]; /* One for every 32KB page in the wal-index */ 523 }; 524 525 /* 526 ** Define the parameters of the hash tables in the wal-index file. There 527 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 528 ** wal-index. 529 ** 530 ** Changing any of these constants will alter the wal-index format and 531 ** create incompatibilities. 532 */ 533 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 534 #define HASHTABLE_HASH_1 383 /* Should be prime */ 535 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 536 537 /* 538 ** The block of page numbers associated with the first hash-table in a 539 ** wal-index is smaller than usual. This is so that there is a complete 540 ** hash-table on each aligned 32KB page of the wal-index. 541 */ 542 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 543 544 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 545 #define WALINDEX_PGSZ ( \ 546 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 547 ) 548 549 /* 550 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 551 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 552 ** numbered from zero. 553 ** 554 ** If the wal-index is currently smaller the iPage pages then the size 555 ** of the wal-index might be increased, but only if it is safe to do 556 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 557 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 558 ** 559 ** If this call is successful, *ppPage is set to point to the wal-index 560 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 561 ** then an SQLite error code is returned and *ppPage is set to 0. 562 */ 563 static SQLITE_NOINLINE int walIndexPageRealloc( 564 Wal *pWal, /* The WAL context */ 565 int iPage, /* The page we seek */ 566 volatile u32 **ppPage /* Write the page pointer here */ 567 ){ 568 int rc = SQLITE_OK; 569 570 /* Enlarge the pWal->apWiData[] array if required */ 571 if( pWal->nWiData<=iPage ){ 572 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 573 volatile u32 **apNew; 574 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 575 if( !apNew ){ 576 *ppPage = 0; 577 return SQLITE_NOMEM_BKPT; 578 } 579 memset((void*)&apNew[pWal->nWiData], 0, 580 sizeof(u32*)*(iPage+1-pWal->nWiData)); 581 pWal->apWiData = apNew; 582 pWal->nWiData = iPage+1; 583 } 584 585 /* Request a pointer to the required page from the VFS */ 586 assert( pWal->apWiData[iPage]==0 ); 587 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 588 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 589 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 590 }else{ 591 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 592 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 593 ); 594 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 595 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 596 if( rc==SQLITE_OK ){ 597 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 598 }else if( (rc&0xff)==SQLITE_READONLY ){ 599 pWal->readOnly |= WAL_SHM_RDONLY; 600 if( rc==SQLITE_READONLY ){ 601 rc = SQLITE_OK; 602 } 603 } 604 } 605 606 *ppPage = pWal->apWiData[iPage]; 607 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 608 return rc; 609 } 610 static int walIndexPage( 611 Wal *pWal, /* The WAL context */ 612 int iPage, /* The page we seek */ 613 volatile u32 **ppPage /* Write the page pointer here */ 614 ){ 615 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 616 return walIndexPageRealloc(pWal, iPage, ppPage); 617 } 618 return SQLITE_OK; 619 } 620 621 /* 622 ** Return a pointer to the WalCkptInfo structure in the wal-index. 623 */ 624 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 625 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 626 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 627 } 628 629 /* 630 ** Return a pointer to the WalIndexHdr structure in the wal-index. 631 */ 632 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 633 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 634 return (volatile WalIndexHdr*)pWal->apWiData[0]; 635 } 636 637 /* 638 ** The argument to this macro must be of type u32. On a little-endian 639 ** architecture, it returns the u32 value that results from interpreting 640 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 641 ** returns the value that would be produced by interpreting the 4 bytes 642 ** of the input value as a little-endian integer. 643 */ 644 #define BYTESWAP32(x) ( \ 645 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 646 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 647 ) 648 649 /* 650 ** Generate or extend an 8 byte checksum based on the data in 651 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 652 ** initial values of 0 and 0 if aIn==NULL). 653 ** 654 ** The checksum is written back into aOut[] before returning. 655 ** 656 ** nByte must be a positive multiple of 8. 657 */ 658 static void walChecksumBytes( 659 int nativeCksum, /* True for native byte-order, false for non-native */ 660 u8 *a, /* Content to be checksummed */ 661 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 662 const u32 *aIn, /* Initial checksum value input */ 663 u32 *aOut /* OUT: Final checksum value output */ 664 ){ 665 u32 s1, s2; 666 u32 *aData = (u32 *)a; 667 u32 *aEnd = (u32 *)&a[nByte]; 668 669 if( aIn ){ 670 s1 = aIn[0]; 671 s2 = aIn[1]; 672 }else{ 673 s1 = s2 = 0; 674 } 675 676 assert( nByte>=8 ); 677 assert( (nByte&0x00000007)==0 ); 678 assert( nByte<=65536 ); 679 680 if( nativeCksum ){ 681 do { 682 s1 += *aData++ + s2; 683 s2 += *aData++ + s1; 684 }while( aData<aEnd ); 685 }else{ 686 do { 687 s1 += BYTESWAP32(aData[0]) + s2; 688 s2 += BYTESWAP32(aData[1]) + s1; 689 aData += 2; 690 }while( aData<aEnd ); 691 } 692 693 aOut[0] = s1; 694 aOut[1] = s2; 695 } 696 697 /* 698 ** If there is the possibility of concurrent access to the SHM file 699 ** from multiple threads and/or processes, then do a memory barrier. 700 */ 701 static void walShmBarrier(Wal *pWal){ 702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 703 sqlite3OsShmBarrier(pWal->pDbFd); 704 } 705 } 706 707 /* 708 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 709 ** definition as a hint that the function contains constructs that 710 ** might give false-positive TSAN warnings. 711 ** 712 ** See tag-20200519-1. 713 */ 714 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 715 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 716 #else 717 # define SQLITE_NO_TSAN 718 #endif 719 720 /* 721 ** Write the header information in pWal->hdr into the wal-index. 722 ** 723 ** The checksum on pWal->hdr is updated before it is written. 724 */ 725 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 726 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 727 const int nCksum = offsetof(WalIndexHdr, aCksum); 728 729 assert( pWal->writeLock ); 730 pWal->hdr.isInit = 1; 731 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 732 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 733 /* Possible TSAN false-positive. See tag-20200519-1 */ 734 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 735 walShmBarrier(pWal); 736 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 737 } 738 739 /* 740 ** This function encodes a single frame header and writes it to a buffer 741 ** supplied by the caller. A frame-header is made up of a series of 742 ** 4-byte big-endian integers, as follows: 743 ** 744 ** 0: Page number. 745 ** 4: For commit records, the size of the database image in pages 746 ** after the commit. For all other records, zero. 747 ** 8: Salt-1 (copied from the wal-header) 748 ** 12: Salt-2 (copied from the wal-header) 749 ** 16: Checksum-1. 750 ** 20: Checksum-2. 751 */ 752 static void walEncodeFrame( 753 Wal *pWal, /* The write-ahead log */ 754 u32 iPage, /* Database page number for frame */ 755 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 756 u8 *aData, /* Pointer to page data */ 757 u8 *aFrame /* OUT: Write encoded frame here */ 758 ){ 759 int nativeCksum; /* True for native byte-order checksums */ 760 u32 *aCksum = pWal->hdr.aFrameCksum; 761 assert( WAL_FRAME_HDRSIZE==24 ); 762 sqlite3Put4byte(&aFrame[0], iPage); 763 sqlite3Put4byte(&aFrame[4], nTruncate); 764 if( pWal->iReCksum==0 ){ 765 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 766 767 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 768 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 769 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 770 771 sqlite3Put4byte(&aFrame[16], aCksum[0]); 772 sqlite3Put4byte(&aFrame[20], aCksum[1]); 773 }else{ 774 memset(&aFrame[8], 0, 16); 775 } 776 } 777 778 /* 779 ** Check to see if the frame with header in aFrame[] and content 780 ** in aData[] is valid. If it is a valid frame, fill *piPage and 781 ** *pnTruncate and return true. Return if the frame is not valid. 782 */ 783 static int walDecodeFrame( 784 Wal *pWal, /* The write-ahead log */ 785 u32 *piPage, /* OUT: Database page number for frame */ 786 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 787 u8 *aData, /* Pointer to page data (for checksum) */ 788 u8 *aFrame /* Frame data */ 789 ){ 790 int nativeCksum; /* True for native byte-order checksums */ 791 u32 *aCksum = pWal->hdr.aFrameCksum; 792 u32 pgno; /* Page number of the frame */ 793 assert( WAL_FRAME_HDRSIZE==24 ); 794 795 /* A frame is only valid if the salt values in the frame-header 796 ** match the salt values in the wal-header. 797 */ 798 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 799 return 0; 800 } 801 802 /* A frame is only valid if the page number is creater than zero. 803 */ 804 pgno = sqlite3Get4byte(&aFrame[0]); 805 if( pgno==0 ){ 806 return 0; 807 } 808 809 /* A frame is only valid if a checksum of the WAL header, 810 ** all prior frams, the first 16 bytes of this frame-header, 811 ** and the frame-data matches the checksum in the last 8 812 ** bytes of this frame-header. 813 */ 814 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 815 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 816 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 817 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 818 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 819 ){ 820 /* Checksum failed. */ 821 return 0; 822 } 823 824 /* If we reach this point, the frame is valid. Return the page number 825 ** and the new database size. 826 */ 827 *piPage = pgno; 828 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 829 return 1; 830 } 831 832 833 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 834 /* 835 ** Names of locks. This routine is used to provide debugging output and is not 836 ** a part of an ordinary build. 837 */ 838 static const char *walLockName(int lockIdx){ 839 if( lockIdx==WAL_WRITE_LOCK ){ 840 return "WRITE-LOCK"; 841 }else if( lockIdx==WAL_CKPT_LOCK ){ 842 return "CKPT-LOCK"; 843 }else if( lockIdx==WAL_RECOVER_LOCK ){ 844 return "RECOVER-LOCK"; 845 }else{ 846 static char zName[15]; 847 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 848 lockIdx-WAL_READ_LOCK(0)); 849 return zName; 850 } 851 } 852 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 853 854 855 /* 856 ** Set or release locks on the WAL. Locks are either shared or exclusive. 857 ** A lock cannot be moved directly between shared and exclusive - it must go 858 ** through the unlocked state first. 859 ** 860 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 861 */ 862 static int walLockShared(Wal *pWal, int lockIdx){ 863 int rc; 864 if( pWal->exclusiveMode ) return SQLITE_OK; 865 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 866 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 867 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 868 walLockName(lockIdx), rc ? "failed" : "ok")); 869 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 870 return rc; 871 } 872 static void walUnlockShared(Wal *pWal, int lockIdx){ 873 if( pWal->exclusiveMode ) return; 874 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 875 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 876 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 877 } 878 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 879 int rc; 880 if( pWal->exclusiveMode ) return SQLITE_OK; 881 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 882 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 883 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 884 walLockName(lockIdx), n, rc ? "failed" : "ok")); 885 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 886 return rc; 887 } 888 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 889 if( pWal->exclusiveMode ) return; 890 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 891 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 892 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 893 walLockName(lockIdx), n)); 894 } 895 896 /* 897 ** Compute a hash on a page number. The resulting hash value must land 898 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 899 ** the hash to the next value in the event of a collision. 900 */ 901 static int walHash(u32 iPage){ 902 assert( iPage>0 ); 903 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 904 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 905 } 906 static int walNextHash(int iPriorHash){ 907 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 908 } 909 910 /* 911 ** An instance of the WalHashLoc object is used to describe the location 912 ** of a page hash table in the wal-index. This becomes the return value 913 ** from walHashGet(). 914 */ 915 typedef struct WalHashLoc WalHashLoc; 916 struct WalHashLoc { 917 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 918 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 919 u32 iZero; /* One less than the frame number of first indexed*/ 920 }; 921 922 /* 923 ** Return pointers to the hash table and page number array stored on 924 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 925 ** numbered starting from 0. 926 ** 927 ** Set output variable pLoc->aHash to point to the start of the hash table 928 ** in the wal-index file. Set pLoc->iZero to one less than the frame 929 ** number of the first frame indexed by this hash table. If a 930 ** slot in the hash table is set to N, it refers to frame number 931 ** (pLoc->iZero+N) in the log. 932 ** 933 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 934 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 935 */ 936 static int walHashGet( 937 Wal *pWal, /* WAL handle */ 938 int iHash, /* Find the iHash'th table */ 939 WalHashLoc *pLoc /* OUT: Hash table location */ 940 ){ 941 int rc; /* Return code */ 942 943 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 944 assert( rc==SQLITE_OK || iHash>0 ); 945 946 if( rc==SQLITE_OK ){ 947 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 948 if( iHash==0 ){ 949 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 950 pLoc->iZero = 0; 951 }else{ 952 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 953 } 954 pLoc->aPgno = &pLoc->aPgno[-1]; 955 } 956 return rc; 957 } 958 959 /* 960 ** Return the number of the wal-index page that contains the hash-table 961 ** and page-number array that contain entries corresponding to WAL frame 962 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 963 ** are numbered starting from 0. 964 */ 965 static int walFramePage(u32 iFrame){ 966 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 967 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 968 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 969 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 970 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 971 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 972 ); 973 assert( iHash>=0 ); 974 return iHash; 975 } 976 977 /* 978 ** Return the page number associated with frame iFrame in this WAL. 979 */ 980 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 981 int iHash = walFramePage(iFrame); 982 if( iHash==0 ){ 983 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 984 } 985 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 986 } 987 988 /* 989 ** Remove entries from the hash table that point to WAL slots greater 990 ** than pWal->hdr.mxFrame. 991 ** 992 ** This function is called whenever pWal->hdr.mxFrame is decreased due 993 ** to a rollback or savepoint. 994 ** 995 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 996 ** updated. Any later hash tables will be automatically cleared when 997 ** pWal->hdr.mxFrame advances to the point where those hash tables are 998 ** actually needed. 999 */ 1000 static void walCleanupHash(Wal *pWal){ 1001 WalHashLoc sLoc; /* Hash table location */ 1002 int iLimit = 0; /* Zero values greater than this */ 1003 int nByte; /* Number of bytes to zero in aPgno[] */ 1004 int i; /* Used to iterate through aHash[] */ 1005 1006 assert( pWal->writeLock ); 1007 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 1008 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 1009 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 1010 1011 if( pWal->hdr.mxFrame==0 ) return; 1012 1013 /* Obtain pointers to the hash-table and page-number array containing 1014 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 1015 ** that the page said hash-table and array reside on is already mapped.(1) 1016 */ 1017 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1018 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1019 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1020 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1021 1022 /* Zero all hash-table entries that correspond to frame numbers greater 1023 ** than pWal->hdr.mxFrame. 1024 */ 1025 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1026 assert( iLimit>0 ); 1027 for(i=0; i<HASHTABLE_NSLOT; i++){ 1028 if( sLoc.aHash[i]>iLimit ){ 1029 sLoc.aHash[i] = 0; 1030 } 1031 } 1032 1033 /* Zero the entries in the aPgno array that correspond to frames with 1034 ** frame numbers greater than pWal->hdr.mxFrame. 1035 */ 1036 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1037 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1038 1039 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1040 /* Verify that the every entry in the mapping region is still reachable 1041 ** via the hash table even after the cleanup. 1042 */ 1043 if( iLimit ){ 1044 int j; /* Loop counter */ 1045 int iKey; /* Hash key */ 1046 for(j=1; j<=iLimit; j++){ 1047 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1048 if( sLoc.aHash[iKey]==j ) break; 1049 } 1050 assert( sLoc.aHash[iKey]==j ); 1051 } 1052 } 1053 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1054 } 1055 1056 1057 /* 1058 ** Set an entry in the wal-index that will map database page number 1059 ** pPage into WAL frame iFrame. 1060 */ 1061 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1062 int rc; /* Return code */ 1063 WalHashLoc sLoc; /* Wal-index hash table location */ 1064 1065 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1066 1067 /* Assuming the wal-index file was successfully mapped, populate the 1068 ** page number array and hash table entry. 1069 */ 1070 if( rc==SQLITE_OK ){ 1071 int iKey; /* Hash table key */ 1072 int idx; /* Value to write to hash-table slot */ 1073 int nCollide; /* Number of hash collisions */ 1074 1075 idx = iFrame - sLoc.iZero; 1076 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1077 1078 /* If this is the first entry to be added to this hash-table, zero the 1079 ** entire hash table and aPgno[] array before proceeding. 1080 */ 1081 if( idx==1 ){ 1082 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1083 - (u8 *)&sLoc.aPgno[1]); 1084 memset((void*)&sLoc.aPgno[1], 0, nByte); 1085 } 1086 1087 /* If the entry in aPgno[] is already set, then the previous writer 1088 ** must have exited unexpectedly in the middle of a transaction (after 1089 ** writing one or more dirty pages to the WAL to free up memory). 1090 ** Remove the remnants of that writers uncommitted transaction from 1091 ** the hash-table before writing any new entries. 1092 */ 1093 if( sLoc.aPgno[idx] ){ 1094 walCleanupHash(pWal); 1095 assert( !sLoc.aPgno[idx] ); 1096 } 1097 1098 /* Write the aPgno[] array entry and the hash-table slot. */ 1099 nCollide = idx; 1100 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1101 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1102 } 1103 sLoc.aPgno[idx] = iPage; 1104 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 1105 1106 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1107 /* Verify that the number of entries in the hash table exactly equals 1108 ** the number of entries in the mapping region. 1109 */ 1110 { 1111 int i; /* Loop counter */ 1112 int nEntry = 0; /* Number of entries in the hash table */ 1113 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1114 assert( nEntry==idx ); 1115 } 1116 1117 /* Verify that the every entry in the mapping region is reachable 1118 ** via the hash table. This turns out to be a really, really expensive 1119 ** thing to check, so only do this occasionally - not on every 1120 ** iteration. 1121 */ 1122 if( (idx&0x3ff)==0 ){ 1123 int i; /* Loop counter */ 1124 for(i=1; i<=idx; i++){ 1125 for(iKey=walHash(sLoc.aPgno[i]); 1126 sLoc.aHash[iKey]; 1127 iKey=walNextHash(iKey)){ 1128 if( sLoc.aHash[iKey]==i ) break; 1129 } 1130 assert( sLoc.aHash[iKey]==i ); 1131 } 1132 } 1133 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1134 } 1135 1136 1137 return rc; 1138 } 1139 1140 1141 /* 1142 ** Recover the wal-index by reading the write-ahead log file. 1143 ** 1144 ** This routine first tries to establish an exclusive lock on the 1145 ** wal-index to prevent other threads/processes from doing anything 1146 ** with the WAL or wal-index while recovery is running. The 1147 ** WAL_RECOVER_LOCK is also held so that other threads will know 1148 ** that this thread is running recovery. If unable to establish 1149 ** the necessary locks, this routine returns SQLITE_BUSY. 1150 */ 1151 static int walIndexRecover(Wal *pWal){ 1152 int rc; /* Return Code */ 1153 i64 nSize; /* Size of log file */ 1154 u32 aFrameCksum[2] = {0, 0}; 1155 int iLock; /* Lock offset to lock for checkpoint */ 1156 1157 /* Obtain an exclusive lock on all byte in the locking range not already 1158 ** locked by the caller. The caller is guaranteed to have locked the 1159 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1160 ** If successful, the same bytes that are locked here are unlocked before 1161 ** this function returns. 1162 */ 1163 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1164 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1165 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1166 assert( pWal->writeLock ); 1167 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1168 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1169 if( rc ){ 1170 return rc; 1171 } 1172 1173 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1174 1175 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1176 1177 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1178 if( rc!=SQLITE_OK ){ 1179 goto recovery_error; 1180 } 1181 1182 if( nSize>WAL_HDRSIZE ){ 1183 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1184 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 1185 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1186 int szFrame; /* Number of bytes in buffer aFrame[] */ 1187 u8 *aData; /* Pointer to data part of aFrame buffer */ 1188 int szPage; /* Page size according to the log */ 1189 u32 magic; /* Magic value read from WAL header */ 1190 u32 version; /* Magic value read from WAL header */ 1191 int isValid; /* True if this frame is valid */ 1192 u32 iPg; /* Current 32KB wal-index page */ 1193 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 1194 1195 /* Read in the WAL header. */ 1196 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1197 if( rc!=SQLITE_OK ){ 1198 goto recovery_error; 1199 } 1200 1201 /* If the database page size is not a power of two, or is greater than 1202 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1203 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1204 ** WAL file. 1205 */ 1206 magic = sqlite3Get4byte(&aBuf[0]); 1207 szPage = sqlite3Get4byte(&aBuf[8]); 1208 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1209 || szPage&(szPage-1) 1210 || szPage>SQLITE_MAX_PAGE_SIZE 1211 || szPage<512 1212 ){ 1213 goto finished; 1214 } 1215 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1216 pWal->szPage = szPage; 1217 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1218 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1219 1220 /* Verify that the WAL header checksum is correct */ 1221 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1222 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1223 ); 1224 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1225 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1226 ){ 1227 goto finished; 1228 } 1229 1230 /* Verify that the version number on the WAL format is one that 1231 ** are able to understand */ 1232 version = sqlite3Get4byte(&aBuf[4]); 1233 if( version!=WAL_MAX_VERSION ){ 1234 rc = SQLITE_CANTOPEN_BKPT; 1235 goto finished; 1236 } 1237 1238 /* Malloc a buffer to read frames into. */ 1239 szFrame = szPage + WAL_FRAME_HDRSIZE; 1240 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 1241 if( !aFrame ){ 1242 rc = SQLITE_NOMEM_BKPT; 1243 goto recovery_error; 1244 } 1245 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1246 aPrivate = (u32*)&aData[szPage]; 1247 1248 /* Read all frames from the log file. */ 1249 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 1250 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 1251 u32 *aShare; 1252 u32 iFrame; /* Index of last frame read */ 1253 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 1254 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 1255 u32 nHdr, nHdr32; 1256 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 1257 if( rc ) break; 1258 pWal->apWiData[iPg] = aPrivate; 1259 1260 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 1261 i64 iOffset = walFrameOffset(iFrame, szPage); 1262 u32 pgno; /* Database page number for frame */ 1263 u32 nTruncate; /* dbsize field from frame header */ 1264 1265 /* Read and decode the next log frame. */ 1266 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1267 if( rc!=SQLITE_OK ) break; 1268 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1269 if( !isValid ) break; 1270 rc = walIndexAppend(pWal, iFrame, pgno); 1271 if( NEVER(rc!=SQLITE_OK) ) break; 1272 1273 /* If nTruncate is non-zero, this is a commit record. */ 1274 if( nTruncate ){ 1275 pWal->hdr.mxFrame = iFrame; 1276 pWal->hdr.nPage = nTruncate; 1277 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1278 testcase( szPage<=32768 ); 1279 testcase( szPage>=65536 ); 1280 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1281 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1282 } 1283 } 1284 pWal->apWiData[iPg] = aShare; 1285 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 1286 nHdr32 = nHdr / sizeof(u32); 1287 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 1288 /* Memcpy() should work fine here, on all reasonable implementations. 1289 ** Technically, memcpy() might change the destination to some 1290 ** intermediate value before setting to the final value, and that might 1291 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 1292 ** do that, according to the spec, but no memcpy() implementation that 1293 ** we know of actually does that, which is why we say that memcpy() 1294 ** is safe for this. Memcpy() is certainly a lot faster. 1295 */ 1296 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 1297 #else 1298 /* In the event that some platform is found for which memcpy() 1299 ** changes the destination to some intermediate value before 1300 ** setting the final value, this alternative copy routine is 1301 ** provided. 1302 */ 1303 { 1304 int i; 1305 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 1306 if( aShare[i]!=aPrivate[i] ){ 1307 /* Atomic memory operations are not required here because if 1308 ** the value needs to be changed, that means it is not being 1309 ** accessed concurrently. */ 1310 aShare[i] = aPrivate[i]; 1311 } 1312 } 1313 } 1314 #endif 1315 if( iFrame<=iLast ) break; 1316 } 1317 1318 sqlite3_free(aFrame); 1319 } 1320 1321 finished: 1322 if( rc==SQLITE_OK ){ 1323 volatile WalCkptInfo *pInfo; 1324 int i; 1325 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1326 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1327 walIndexWriteHdr(pWal); 1328 1329 /* Reset the checkpoint-header. This is safe because this thread is 1330 ** currently holding locks that exclude all other writers and 1331 ** checkpointers. Then set the values of read-mark slots 1 through N. 1332 */ 1333 pInfo = walCkptInfo(pWal); 1334 pInfo->nBackfill = 0; 1335 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1336 pInfo->aReadMark[0] = 0; 1337 for(i=1; i<WAL_NREADER; i++){ 1338 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 1339 if( rc==SQLITE_OK ){ 1340 if( i==1 && pWal->hdr.mxFrame ){ 1341 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 1342 }else{ 1343 pInfo->aReadMark[i] = READMARK_NOT_USED; 1344 } 1345 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1346 }else if( rc!=SQLITE_BUSY ){ 1347 goto recovery_error; 1348 } 1349 } 1350 1351 /* If more than one frame was recovered from the log file, report an 1352 ** event via sqlite3_log(). This is to help with identifying performance 1353 ** problems caused by applications routinely shutting down without 1354 ** checkpointing the log file. 1355 */ 1356 if( pWal->hdr.nPage ){ 1357 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1358 "recovered %d frames from WAL file %s", 1359 pWal->hdr.mxFrame, pWal->zWalName 1360 ); 1361 } 1362 } 1363 1364 recovery_error: 1365 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1366 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1367 return rc; 1368 } 1369 1370 /* 1371 ** Close an open wal-index. 1372 */ 1373 static void walIndexClose(Wal *pWal, int isDelete){ 1374 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1375 int i; 1376 for(i=0; i<pWal->nWiData; i++){ 1377 sqlite3_free((void *)pWal->apWiData[i]); 1378 pWal->apWiData[i] = 0; 1379 } 1380 } 1381 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1382 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1383 } 1384 } 1385 1386 /* 1387 ** Open a connection to the WAL file zWalName. The database file must 1388 ** already be opened on connection pDbFd. The buffer that zWalName points 1389 ** to must remain valid for the lifetime of the returned Wal* handle. 1390 ** 1391 ** A SHARED lock should be held on the database file when this function 1392 ** is called. The purpose of this SHARED lock is to prevent any other 1393 ** client from unlinking the WAL or wal-index file. If another process 1394 ** were to do this just after this client opened one of these files, the 1395 ** system would be badly broken. 1396 ** 1397 ** If the log file is successfully opened, SQLITE_OK is returned and 1398 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1399 ** an SQLite error code is returned and *ppWal is left unmodified. 1400 */ 1401 int sqlite3WalOpen( 1402 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1403 sqlite3_file *pDbFd, /* The open database file */ 1404 const char *zWalName, /* Name of the WAL file */ 1405 int bNoShm, /* True to run in heap-memory mode */ 1406 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1407 Wal **ppWal /* OUT: Allocated Wal handle */ 1408 ){ 1409 int rc; /* Return Code */ 1410 Wal *pRet; /* Object to allocate and return */ 1411 int flags; /* Flags passed to OsOpen() */ 1412 1413 assert( zWalName && zWalName[0] ); 1414 assert( pDbFd ); 1415 1416 /* Verify the values of various constants. Any changes to the values 1417 ** of these constants would result in an incompatible on-disk format 1418 ** for the -shm file. Any change that causes one of these asserts to 1419 ** fail is a backward compatibility problem, even if the change otherwise 1420 ** works. 1421 ** 1422 ** This table also serves as a helpful cross-reference when trying to 1423 ** interpret hex dumps of the -shm file. 1424 */ 1425 assert( 48 == sizeof(WalIndexHdr) ); 1426 assert( 40 == sizeof(WalCkptInfo) ); 1427 assert( 120 == WALINDEX_LOCK_OFFSET ); 1428 assert( 136 == WALINDEX_HDR_SIZE ); 1429 assert( 4096 == HASHTABLE_NPAGE ); 1430 assert( 4062 == HASHTABLE_NPAGE_ONE ); 1431 assert( 8192 == HASHTABLE_NSLOT ); 1432 assert( 383 == HASHTABLE_HASH_1 ); 1433 assert( 32768 == WALINDEX_PGSZ ); 1434 assert( 8 == SQLITE_SHM_NLOCK ); 1435 assert( 5 == WAL_NREADER ); 1436 assert( 24 == WAL_HDRSIZE ); 1437 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 1438 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 1439 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 1440 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 1441 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 1442 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 1443 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 1444 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 1445 1446 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1447 ** this source file. Verify that the #defines of the locking byte offsets 1448 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1449 ** For that matter, if the lock offset ever changes from its initial design 1450 ** value of 120, we need to know that so there is an assert() to check it. 1451 */ 1452 #ifdef WIN_SHM_BASE 1453 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1454 #endif 1455 #ifdef UNIX_SHM_BASE 1456 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1457 #endif 1458 1459 1460 /* Allocate an instance of struct Wal to return. */ 1461 *ppWal = 0; 1462 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1463 if( !pRet ){ 1464 return SQLITE_NOMEM_BKPT; 1465 } 1466 1467 pRet->pVfs = pVfs; 1468 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1469 pRet->pDbFd = pDbFd; 1470 pRet->readLock = -1; 1471 pRet->mxWalSize = mxWalSize; 1472 pRet->zWalName = zWalName; 1473 pRet->syncHeader = 1; 1474 pRet->padToSectorBoundary = 1; 1475 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1476 1477 /* Open file handle on the write-ahead log file. */ 1478 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1479 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1480 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1481 pRet->readOnly = WAL_RDONLY; 1482 } 1483 1484 if( rc!=SQLITE_OK ){ 1485 walIndexClose(pRet, 0); 1486 sqlite3OsClose(pRet->pWalFd); 1487 sqlite3_free(pRet); 1488 }else{ 1489 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1490 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1491 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1492 pRet->padToSectorBoundary = 0; 1493 } 1494 *ppWal = pRet; 1495 WALTRACE(("WAL%d: opened\n", pRet)); 1496 } 1497 return rc; 1498 } 1499 1500 /* 1501 ** Change the size to which the WAL file is trucated on each reset. 1502 */ 1503 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1504 if( pWal ) pWal->mxWalSize = iLimit; 1505 } 1506 1507 /* 1508 ** Find the smallest page number out of all pages held in the WAL that 1509 ** has not been returned by any prior invocation of this method on the 1510 ** same WalIterator object. Write into *piFrame the frame index where 1511 ** that page was last written into the WAL. Write into *piPage the page 1512 ** number. 1513 ** 1514 ** Return 0 on success. If there are no pages in the WAL with a page 1515 ** number larger than *piPage, then return 1. 1516 */ 1517 static int walIteratorNext( 1518 WalIterator *p, /* Iterator */ 1519 u32 *piPage, /* OUT: The page number of the next page */ 1520 u32 *piFrame /* OUT: Wal frame index of next page */ 1521 ){ 1522 u32 iMin; /* Result pgno must be greater than iMin */ 1523 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1524 int i; /* For looping through segments */ 1525 1526 iMin = p->iPrior; 1527 assert( iMin<0xffffffff ); 1528 for(i=p->nSegment-1; i>=0; i--){ 1529 struct WalSegment *pSegment = &p->aSegment[i]; 1530 while( pSegment->iNext<pSegment->nEntry ){ 1531 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1532 if( iPg>iMin ){ 1533 if( iPg<iRet ){ 1534 iRet = iPg; 1535 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1536 } 1537 break; 1538 } 1539 pSegment->iNext++; 1540 } 1541 } 1542 1543 *piPage = p->iPrior = iRet; 1544 return (iRet==0xFFFFFFFF); 1545 } 1546 1547 /* 1548 ** This function merges two sorted lists into a single sorted list. 1549 ** 1550 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1551 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1552 ** is guaranteed for all J<K: 1553 ** 1554 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1555 ** aContent[aRight[J]] < aContent[aRight[K]] 1556 ** 1557 ** This routine overwrites aRight[] with a new (probably longer) sequence 1558 ** of indices such that the aRight[] contains every index that appears in 1559 ** either aLeft[] or the old aRight[] and such that the second condition 1560 ** above is still met. 1561 ** 1562 ** The aContent[aLeft[X]] values will be unique for all X. And the 1563 ** aContent[aRight[X]] values will be unique too. But there might be 1564 ** one or more combinations of X and Y such that 1565 ** 1566 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1567 ** 1568 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1569 */ 1570 static void walMerge( 1571 const u32 *aContent, /* Pages in wal - keys for the sort */ 1572 ht_slot *aLeft, /* IN: Left hand input list */ 1573 int nLeft, /* IN: Elements in array *paLeft */ 1574 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1575 int *pnRight, /* IN/OUT: Elements in *paRight */ 1576 ht_slot *aTmp /* Temporary buffer */ 1577 ){ 1578 int iLeft = 0; /* Current index in aLeft */ 1579 int iRight = 0; /* Current index in aRight */ 1580 int iOut = 0; /* Current index in output buffer */ 1581 int nRight = *pnRight; 1582 ht_slot *aRight = *paRight; 1583 1584 assert( nLeft>0 && nRight>0 ); 1585 while( iRight<nRight || iLeft<nLeft ){ 1586 ht_slot logpage; 1587 Pgno dbpage; 1588 1589 if( (iLeft<nLeft) 1590 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1591 ){ 1592 logpage = aLeft[iLeft++]; 1593 }else{ 1594 logpage = aRight[iRight++]; 1595 } 1596 dbpage = aContent[logpage]; 1597 1598 aTmp[iOut++] = logpage; 1599 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1600 1601 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1602 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1603 } 1604 1605 *paRight = aLeft; 1606 *pnRight = iOut; 1607 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1608 } 1609 1610 /* 1611 ** Sort the elements in list aList using aContent[] as the sort key. 1612 ** Remove elements with duplicate keys, preferring to keep the 1613 ** larger aList[] values. 1614 ** 1615 ** The aList[] entries are indices into aContent[]. The values in 1616 ** aList[] are to be sorted so that for all J<K: 1617 ** 1618 ** aContent[aList[J]] < aContent[aList[K]] 1619 ** 1620 ** For any X and Y such that 1621 ** 1622 ** aContent[aList[X]] == aContent[aList[Y]] 1623 ** 1624 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1625 ** the smaller. 1626 */ 1627 static void walMergesort( 1628 const u32 *aContent, /* Pages in wal */ 1629 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1630 ht_slot *aList, /* IN/OUT: List to sort */ 1631 int *pnList /* IN/OUT: Number of elements in aList[] */ 1632 ){ 1633 struct Sublist { 1634 int nList; /* Number of elements in aList */ 1635 ht_slot *aList; /* Pointer to sub-list content */ 1636 }; 1637 1638 const int nList = *pnList; /* Size of input list */ 1639 int nMerge = 0; /* Number of elements in list aMerge */ 1640 ht_slot *aMerge = 0; /* List to be merged */ 1641 int iList; /* Index into input list */ 1642 u32 iSub = 0; /* Index into aSub array */ 1643 struct Sublist aSub[13]; /* Array of sub-lists */ 1644 1645 memset(aSub, 0, sizeof(aSub)); 1646 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1647 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1648 1649 for(iList=0; iList<nList; iList++){ 1650 nMerge = 1; 1651 aMerge = &aList[iList]; 1652 for(iSub=0; iList & (1<<iSub); iSub++){ 1653 struct Sublist *p; 1654 assert( iSub<ArraySize(aSub) ); 1655 p = &aSub[iSub]; 1656 assert( p->aList && p->nList<=(1<<iSub) ); 1657 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1658 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1659 } 1660 aSub[iSub].aList = aMerge; 1661 aSub[iSub].nList = nMerge; 1662 } 1663 1664 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1665 if( nList & (1<<iSub) ){ 1666 struct Sublist *p; 1667 assert( iSub<ArraySize(aSub) ); 1668 p = &aSub[iSub]; 1669 assert( p->nList<=(1<<iSub) ); 1670 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1671 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1672 } 1673 } 1674 assert( aMerge==aList ); 1675 *pnList = nMerge; 1676 1677 #ifdef SQLITE_DEBUG 1678 { 1679 int i; 1680 for(i=1; i<*pnList; i++){ 1681 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1682 } 1683 } 1684 #endif 1685 } 1686 1687 /* 1688 ** Free an iterator allocated by walIteratorInit(). 1689 */ 1690 static void walIteratorFree(WalIterator *p){ 1691 sqlite3_free(p); 1692 } 1693 1694 /* 1695 ** Construct a WalInterator object that can be used to loop over all 1696 ** pages in the WAL following frame nBackfill in ascending order. Frames 1697 ** nBackfill or earlier may be included - excluding them is an optimization 1698 ** only. The caller must hold the checkpoint lock. 1699 ** 1700 ** On success, make *pp point to the newly allocated WalInterator object 1701 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1702 ** returns an error, the value of *pp is undefined. 1703 ** 1704 ** The calling routine should invoke walIteratorFree() to destroy the 1705 ** WalIterator object when it has finished with it. 1706 */ 1707 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1708 WalIterator *p; /* Return value */ 1709 int nSegment; /* Number of segments to merge */ 1710 u32 iLast; /* Last frame in log */ 1711 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1712 int i; /* Iterator variable */ 1713 ht_slot *aTmp; /* Temp space used by merge-sort */ 1714 int rc = SQLITE_OK; /* Return Code */ 1715 1716 /* This routine only runs while holding the checkpoint lock. And 1717 ** it only runs if there is actually content in the log (mxFrame>0). 1718 */ 1719 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1720 iLast = pWal->hdr.mxFrame; 1721 1722 /* Allocate space for the WalIterator object. */ 1723 nSegment = walFramePage(iLast) + 1; 1724 nByte = sizeof(WalIterator) 1725 + (nSegment-1)*sizeof(struct WalSegment) 1726 + iLast*sizeof(ht_slot); 1727 p = (WalIterator *)sqlite3_malloc64(nByte); 1728 if( !p ){ 1729 return SQLITE_NOMEM_BKPT; 1730 } 1731 memset(p, 0, nByte); 1732 p->nSegment = nSegment; 1733 1734 /* Allocate temporary space used by the merge-sort routine. This block 1735 ** of memory will be freed before this function returns. 1736 */ 1737 aTmp = (ht_slot *)sqlite3_malloc64( 1738 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1739 ); 1740 if( !aTmp ){ 1741 rc = SQLITE_NOMEM_BKPT; 1742 } 1743 1744 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1745 WalHashLoc sLoc; 1746 1747 rc = walHashGet(pWal, i, &sLoc); 1748 if( rc==SQLITE_OK ){ 1749 int j; /* Counter variable */ 1750 int nEntry; /* Number of entries in this segment */ 1751 ht_slot *aIndex; /* Sorted index for this segment */ 1752 1753 sLoc.aPgno++; 1754 if( (i+1)==nSegment ){ 1755 nEntry = (int)(iLast - sLoc.iZero); 1756 }else{ 1757 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1758 } 1759 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1760 sLoc.iZero++; 1761 1762 for(j=0; j<nEntry; j++){ 1763 aIndex[j] = (ht_slot)j; 1764 } 1765 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1766 p->aSegment[i].iZero = sLoc.iZero; 1767 p->aSegment[i].nEntry = nEntry; 1768 p->aSegment[i].aIndex = aIndex; 1769 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1770 } 1771 } 1772 sqlite3_free(aTmp); 1773 1774 if( rc!=SQLITE_OK ){ 1775 walIteratorFree(p); 1776 p = 0; 1777 } 1778 *pp = p; 1779 return rc; 1780 } 1781 1782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1783 /* 1784 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1785 ** they are supported by the VFS, and (b) the database handle is configured 1786 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1787 ** or 0 otherwise. 1788 */ 1789 static int walEnableBlocking(Wal *pWal){ 1790 int res = 0; 1791 if( pWal->db ){ 1792 int tmout = pWal->db->busyTimeout; 1793 if( tmout ){ 1794 int rc; 1795 rc = sqlite3OsFileControl( 1796 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1797 ); 1798 res = (rc==SQLITE_OK); 1799 } 1800 } 1801 return res; 1802 } 1803 1804 /* 1805 ** Disable blocking locks. 1806 */ 1807 static void walDisableBlocking(Wal *pWal){ 1808 int tmout = 0; 1809 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1810 } 1811 1812 /* 1813 ** If parameter bLock is true, attempt to enable blocking locks, take 1814 ** the WRITER lock, and then disable blocking locks. If blocking locks 1815 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1816 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1817 ** an error if blocking locks can not be enabled. 1818 ** 1819 ** If the bLock parameter is false and the WRITER lock is held, release it. 1820 */ 1821 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1822 int rc = SQLITE_OK; 1823 assert( pWal->readLock<0 || bLock==0 ); 1824 if( bLock ){ 1825 assert( pWal->db ); 1826 if( walEnableBlocking(pWal) ){ 1827 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1828 if( rc==SQLITE_OK ){ 1829 pWal->writeLock = 1; 1830 } 1831 walDisableBlocking(pWal); 1832 } 1833 }else if( pWal->writeLock ){ 1834 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1835 pWal->writeLock = 0; 1836 } 1837 return rc; 1838 } 1839 1840 /* 1841 ** Set the database handle used to determine if blocking locks are required. 1842 */ 1843 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1844 pWal->db = db; 1845 } 1846 1847 /* 1848 ** Take an exclusive WRITE lock. Blocking if so configured. 1849 */ 1850 static int walLockWriter(Wal *pWal){ 1851 int rc; 1852 walEnableBlocking(pWal); 1853 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1854 walDisableBlocking(pWal); 1855 return rc; 1856 } 1857 #else 1858 # define walEnableBlocking(x) 0 1859 # define walDisableBlocking(x) 1860 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1861 # define sqlite3WalDb(pWal, db) 1862 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1863 1864 1865 /* 1866 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1867 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1868 ** busy-handler function. Invoke it and retry the lock until either the 1869 ** lock is successfully obtained or the busy-handler returns 0. 1870 */ 1871 static int walBusyLock( 1872 Wal *pWal, /* WAL connection */ 1873 int (*xBusy)(void*), /* Function to call when busy */ 1874 void *pBusyArg, /* Context argument for xBusyHandler */ 1875 int lockIdx, /* Offset of first byte to lock */ 1876 int n /* Number of bytes to lock */ 1877 ){ 1878 int rc; 1879 do { 1880 rc = walLockExclusive(pWal, lockIdx, n); 1881 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1882 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1883 if( rc==SQLITE_BUSY_TIMEOUT ){ 1884 walDisableBlocking(pWal); 1885 rc = SQLITE_BUSY; 1886 } 1887 #endif 1888 return rc; 1889 } 1890 1891 /* 1892 ** The cache of the wal-index header must be valid to call this function. 1893 ** Return the page-size in bytes used by the database. 1894 */ 1895 static int walPagesize(Wal *pWal){ 1896 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1897 } 1898 1899 /* 1900 ** The following is guaranteed when this function is called: 1901 ** 1902 ** a) the WRITER lock is held, 1903 ** b) the entire log file has been checkpointed, and 1904 ** c) any existing readers are reading exclusively from the database 1905 ** file - there are no readers that may attempt to read a frame from 1906 ** the log file. 1907 ** 1908 ** This function updates the shared-memory structures so that the next 1909 ** client to write to the database (which may be this one) does so by 1910 ** writing frames into the start of the log file. 1911 ** 1912 ** The value of parameter salt1 is used as the aSalt[1] value in the 1913 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1914 ** one obtained from sqlite3_randomness()). 1915 */ 1916 static void walRestartHdr(Wal *pWal, u32 salt1){ 1917 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1918 int i; /* Loop counter */ 1919 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1920 pWal->nCkpt++; 1921 pWal->hdr.mxFrame = 0; 1922 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1923 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1924 walIndexWriteHdr(pWal); 1925 AtomicStore(&pInfo->nBackfill, 0); 1926 pInfo->nBackfillAttempted = 0; 1927 pInfo->aReadMark[1] = 0; 1928 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1929 assert( pInfo->aReadMark[0]==0 ); 1930 } 1931 1932 /* 1933 ** Copy as much content as we can from the WAL back into the database file 1934 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1935 ** 1936 ** The amount of information copies from WAL to database might be limited 1937 ** by active readers. This routine will never overwrite a database page 1938 ** that a concurrent reader might be using. 1939 ** 1940 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1941 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1942 ** checkpoints are always run by a background thread or background 1943 ** process, foreground threads will never block on a lengthy fsync call. 1944 ** 1945 ** Fsync is called on the WAL before writing content out of the WAL and 1946 ** into the database. This ensures that if the new content is persistent 1947 ** in the WAL and can be recovered following a power-loss or hard reset. 1948 ** 1949 ** Fsync is also called on the database file if (and only if) the entire 1950 ** WAL content is copied into the database file. This second fsync makes 1951 ** it safe to delete the WAL since the new content will persist in the 1952 ** database file. 1953 ** 1954 ** This routine uses and updates the nBackfill field of the wal-index header. 1955 ** This is the only routine that will increase the value of nBackfill. 1956 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1957 ** its value.) 1958 ** 1959 ** The caller must be holding sufficient locks to ensure that no other 1960 ** checkpoint is running (in any other thread or process) at the same 1961 ** time. 1962 */ 1963 static int walCheckpoint( 1964 Wal *pWal, /* Wal connection */ 1965 sqlite3 *db, /* Check for interrupts on this handle */ 1966 int eMode, /* One of PASSIVE, FULL or RESTART */ 1967 int (*xBusy)(void*), /* Function to call when busy */ 1968 void *pBusyArg, /* Context argument for xBusyHandler */ 1969 int sync_flags, /* Flags for OsSync() (or 0) */ 1970 u8 *zBuf /* Temporary buffer to use */ 1971 ){ 1972 int rc = SQLITE_OK; /* Return code */ 1973 int szPage; /* Database page-size */ 1974 WalIterator *pIter = 0; /* Wal iterator context */ 1975 u32 iDbpage = 0; /* Next database page to write */ 1976 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1977 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1978 u32 mxPage; /* Max database page to write */ 1979 int i; /* Loop counter */ 1980 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1981 1982 szPage = walPagesize(pWal); 1983 testcase( szPage<=32768 ); 1984 testcase( szPage>=65536 ); 1985 pInfo = walCkptInfo(pWal); 1986 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1987 1988 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1989 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1990 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1991 1992 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1993 ** safe to write into the database. Frames beyond mxSafeFrame might 1994 ** overwrite database pages that are in use by active readers and thus 1995 ** cannot be backfilled from the WAL. 1996 */ 1997 mxSafeFrame = pWal->hdr.mxFrame; 1998 mxPage = pWal->hdr.nPage; 1999 for(i=1; i<WAL_NREADER; i++){ 2000 u32 y = AtomicLoad(pInfo->aReadMark+i); 2001 if( mxSafeFrame>y ){ 2002 assert( y<=pWal->hdr.mxFrame ); 2003 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 2004 if( rc==SQLITE_OK ){ 2005 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 2006 AtomicStore(pInfo->aReadMark+i, iMark); 2007 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2008 }else if( rc==SQLITE_BUSY ){ 2009 mxSafeFrame = y; 2010 xBusy = 0; 2011 }else{ 2012 goto walcheckpoint_out; 2013 } 2014 } 2015 } 2016 2017 /* Allocate the iterator */ 2018 if( pInfo->nBackfill<mxSafeFrame ){ 2019 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 2020 assert( rc==SQLITE_OK || pIter==0 ); 2021 } 2022 2023 if( pIter 2024 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 2025 ){ 2026 u32 nBackfill = pInfo->nBackfill; 2027 2028 pInfo->nBackfillAttempted = mxSafeFrame; 2029 2030 /* Sync the WAL to disk */ 2031 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 2032 2033 /* If the database may grow as a result of this checkpoint, hint 2034 ** about the eventual size of the db file to the VFS layer. 2035 */ 2036 if( rc==SQLITE_OK ){ 2037 i64 nReq = ((i64)mxPage * szPage); 2038 i64 nSize; /* Current size of database file */ 2039 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 2040 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 2041 if( rc==SQLITE_OK && nSize<nReq ){ 2042 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 2043 /* If the size of the final database is larger than the current 2044 ** database plus the amount of data in the wal file, plus the 2045 ** maximum size of the pending-byte page (65536 bytes), then 2046 ** must be corruption somewhere. */ 2047 rc = SQLITE_CORRUPT_BKPT; 2048 }else{ 2049 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 2050 } 2051 } 2052 2053 } 2054 2055 /* Iterate through the contents of the WAL, copying data to the db file */ 2056 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 2057 i64 iOffset; 2058 assert( walFramePgno(pWal, iFrame)==iDbpage ); 2059 if( AtomicLoad(&db->u1.isInterrupted) ){ 2060 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 2061 break; 2062 } 2063 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 2064 continue; 2065 } 2066 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 2067 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 2068 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 2069 if( rc!=SQLITE_OK ) break; 2070 iOffset = (iDbpage-1)*(i64)szPage; 2071 testcase( IS_BIG_INT(iOffset) ); 2072 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 2073 if( rc!=SQLITE_OK ) break; 2074 } 2075 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 2076 2077 /* If work was actually accomplished... */ 2078 if( rc==SQLITE_OK ){ 2079 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 2080 i64 szDb = pWal->hdr.nPage*(i64)szPage; 2081 testcase( IS_BIG_INT(szDb) ); 2082 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 2083 if( rc==SQLITE_OK ){ 2084 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 2085 } 2086 } 2087 if( rc==SQLITE_OK ){ 2088 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 2089 } 2090 } 2091 2092 /* Release the reader lock held while backfilling */ 2093 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 2094 } 2095 2096 if( rc==SQLITE_BUSY ){ 2097 /* Reset the return code so as not to report a checkpoint failure 2098 ** just because there are active readers. */ 2099 rc = SQLITE_OK; 2100 } 2101 } 2102 2103 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2104 ** entire wal file has been copied into the database file, then block 2105 ** until all readers have finished using the wal file. This ensures that 2106 ** the next process to write to the database restarts the wal file. 2107 */ 2108 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2109 assert( pWal->writeLock ); 2110 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2111 rc = SQLITE_BUSY; 2112 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2113 u32 salt1; 2114 sqlite3_randomness(4, &salt1); 2115 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2116 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2117 if( rc==SQLITE_OK ){ 2118 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2119 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2120 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2121 ** truncates the log file to zero bytes just prior to a 2122 ** successful return. 2123 ** 2124 ** In theory, it might be safe to do this without updating the 2125 ** wal-index header in shared memory, as all subsequent reader or 2126 ** writer clients should see that the entire log file has been 2127 ** checkpointed and behave accordingly. This seems unsafe though, 2128 ** as it would leave the system in a state where the contents of 2129 ** the wal-index header do not match the contents of the 2130 ** file-system. To avoid this, update the wal-index header to 2131 ** indicate that the log file contains zero valid frames. */ 2132 walRestartHdr(pWal, salt1); 2133 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2134 } 2135 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2136 } 2137 } 2138 } 2139 2140 walcheckpoint_out: 2141 walIteratorFree(pIter); 2142 return rc; 2143 } 2144 2145 /* 2146 ** If the WAL file is currently larger than nMax bytes in size, truncate 2147 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2148 */ 2149 static void walLimitSize(Wal *pWal, i64 nMax){ 2150 i64 sz; 2151 int rx; 2152 sqlite3BeginBenignMalloc(); 2153 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2154 if( rx==SQLITE_OK && (sz > nMax ) ){ 2155 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2156 } 2157 sqlite3EndBenignMalloc(); 2158 if( rx ){ 2159 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2160 } 2161 } 2162 2163 /* 2164 ** Close a connection to a log file. 2165 */ 2166 int sqlite3WalClose( 2167 Wal *pWal, /* Wal to close */ 2168 sqlite3 *db, /* For interrupt flag */ 2169 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2170 int nBuf, 2171 u8 *zBuf /* Buffer of at least nBuf bytes */ 2172 ){ 2173 int rc = SQLITE_OK; 2174 if( pWal ){ 2175 int isDelete = 0; /* True to unlink wal and wal-index files */ 2176 2177 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2178 ** ordinary, rollback-mode locking methods, this guarantees that the 2179 ** connection associated with this log file is the only connection to 2180 ** the database. In this case checkpoint the database and unlink both 2181 ** the wal and wal-index files. 2182 ** 2183 ** The EXCLUSIVE lock is not released before returning. 2184 */ 2185 if( zBuf!=0 2186 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2187 ){ 2188 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2189 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2190 } 2191 rc = sqlite3WalCheckpoint(pWal, db, 2192 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2193 ); 2194 if( rc==SQLITE_OK ){ 2195 int bPersist = -1; 2196 sqlite3OsFileControlHint( 2197 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2198 ); 2199 if( bPersist!=1 ){ 2200 /* Try to delete the WAL file if the checkpoint completed and 2201 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2202 ** mode (!bPersist) */ 2203 isDelete = 1; 2204 }else if( pWal->mxWalSize>=0 ){ 2205 /* Try to truncate the WAL file to zero bytes if the checkpoint 2206 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2207 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2208 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2209 ** to zero bytes as truncating to the journal_size_limit might 2210 ** leave a corrupt WAL file on disk. */ 2211 walLimitSize(pWal, 0); 2212 } 2213 } 2214 } 2215 2216 walIndexClose(pWal, isDelete); 2217 sqlite3OsClose(pWal->pWalFd); 2218 if( isDelete ){ 2219 sqlite3BeginBenignMalloc(); 2220 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2221 sqlite3EndBenignMalloc(); 2222 } 2223 WALTRACE(("WAL%p: closed\n", pWal)); 2224 sqlite3_free((void *)pWal->apWiData); 2225 sqlite3_free(pWal); 2226 } 2227 return rc; 2228 } 2229 2230 /* 2231 ** Try to read the wal-index header. Return 0 on success and 1 if 2232 ** there is a problem. 2233 ** 2234 ** The wal-index is in shared memory. Another thread or process might 2235 ** be writing the header at the same time this procedure is trying to 2236 ** read it, which might result in inconsistency. A dirty read is detected 2237 ** by verifying that both copies of the header are the same and also by 2238 ** a checksum on the header. 2239 ** 2240 ** If and only if the read is consistent and the header is different from 2241 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2242 ** and *pChanged is set to 1. 2243 ** 2244 ** If the checksum cannot be verified return non-zero. If the header 2245 ** is read successfully and the checksum verified, return zero. 2246 */ 2247 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 2248 u32 aCksum[2]; /* Checksum on the header content */ 2249 WalIndexHdr h1, h2; /* Two copies of the header content */ 2250 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2251 2252 /* The first page of the wal-index must be mapped at this point. */ 2253 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2254 2255 /* Read the header. This might happen concurrently with a write to the 2256 ** same area of shared memory on a different CPU in a SMP, 2257 ** meaning it is possible that an inconsistent snapshot is read 2258 ** from the file. If this happens, return non-zero. 2259 ** 2260 ** tag-20200519-1: 2261 ** There are two copies of the header at the beginning of the wal-index. 2262 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2263 ** Memory barriers are used to prevent the compiler or the hardware from 2264 ** reordering the reads and writes. TSAN and similar tools can sometimes 2265 ** give false-positive warnings about these accesses because the tools do not 2266 ** account for the double-read and the memory barrier. The use of mutexes 2267 ** here would be problematic as the memory being accessed is potentially 2268 ** shared among multiple processes and not all mutex implementions work 2269 ** reliably in that environment. 2270 */ 2271 aHdr = walIndexHdr(pWal); 2272 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2273 walShmBarrier(pWal); 2274 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2275 2276 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2277 return 1; /* Dirty read */ 2278 } 2279 if( h1.isInit==0 ){ 2280 return 1; /* Malformed header - probably all zeros */ 2281 } 2282 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2283 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2284 return 1; /* Checksum does not match */ 2285 } 2286 2287 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2288 *pChanged = 1; 2289 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2290 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2291 testcase( pWal->szPage<=32768 ); 2292 testcase( pWal->szPage>=65536 ); 2293 } 2294 2295 /* The header was successfully read. Return zero. */ 2296 return 0; 2297 } 2298 2299 /* 2300 ** This is the value that walTryBeginRead returns when it needs to 2301 ** be retried. 2302 */ 2303 #define WAL_RETRY (-1) 2304 2305 /* 2306 ** Read the wal-index header from the wal-index and into pWal->hdr. 2307 ** If the wal-header appears to be corrupt, try to reconstruct the 2308 ** wal-index from the WAL before returning. 2309 ** 2310 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2311 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2312 ** to 0. 2313 ** 2314 ** If the wal-index header is successfully read, return SQLITE_OK. 2315 ** Otherwise an SQLite error code. 2316 */ 2317 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2318 int rc; /* Return code */ 2319 int badHdr; /* True if a header read failed */ 2320 volatile u32 *page0; /* Chunk of wal-index containing header */ 2321 2322 /* Ensure that page 0 of the wal-index (the page that contains the 2323 ** wal-index header) is mapped. Return early if an error occurs here. 2324 */ 2325 assert( pChanged ); 2326 rc = walIndexPage(pWal, 0, &page0); 2327 if( rc!=SQLITE_OK ){ 2328 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2329 if( rc==SQLITE_READONLY_CANTINIT ){ 2330 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2331 ** was openable but is not writable, and this thread is unable to 2332 ** confirm that another write-capable connection has the shared-memory 2333 ** open, and hence the content of the shared-memory is unreliable, 2334 ** since the shared-memory might be inconsistent with the WAL file 2335 ** and there is no writer on hand to fix it. */ 2336 assert( page0==0 ); 2337 assert( pWal->writeLock==0 ); 2338 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2339 pWal->bShmUnreliable = 1; 2340 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2341 *pChanged = 1; 2342 }else{ 2343 return rc; /* Any other non-OK return is just an error */ 2344 } 2345 }else{ 2346 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2347 ** is zero, which prevents the SHM from growing */ 2348 testcase( page0!=0 ); 2349 } 2350 assert( page0!=0 || pWal->writeLock==0 ); 2351 2352 /* If the first page of the wal-index has been mapped, try to read the 2353 ** wal-index header immediately, without holding any lock. This usually 2354 ** works, but may fail if the wal-index header is corrupt or currently 2355 ** being modified by another thread or process. 2356 */ 2357 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2358 2359 /* If the first attempt failed, it might have been due to a race 2360 ** with a writer. So get a WRITE lock and try again. 2361 */ 2362 if( badHdr ){ 2363 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2364 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2365 walUnlockShared(pWal, WAL_WRITE_LOCK); 2366 rc = SQLITE_READONLY_RECOVERY; 2367 } 2368 }else{ 2369 int bWriteLock = pWal->writeLock; 2370 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2371 pWal->writeLock = 1; 2372 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2373 badHdr = walIndexTryHdr(pWal, pChanged); 2374 if( badHdr ){ 2375 /* If the wal-index header is still malformed even while holding 2376 ** a WRITE lock, it can only mean that the header is corrupted and 2377 ** needs to be reconstructed. So run recovery to do exactly that. 2378 */ 2379 rc = walIndexRecover(pWal); 2380 *pChanged = 1; 2381 } 2382 } 2383 if( bWriteLock==0 ){ 2384 pWal->writeLock = 0; 2385 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2386 } 2387 } 2388 } 2389 } 2390 2391 /* If the header is read successfully, check the version number to make 2392 ** sure the wal-index was not constructed with some future format that 2393 ** this version of SQLite cannot understand. 2394 */ 2395 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2396 rc = SQLITE_CANTOPEN_BKPT; 2397 } 2398 if( pWal->bShmUnreliable ){ 2399 if( rc!=SQLITE_OK ){ 2400 walIndexClose(pWal, 0); 2401 pWal->bShmUnreliable = 0; 2402 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2403 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2404 ** writer truncated the WAL out from under it. If that happens, it 2405 ** indicates that a writer has fixed the SHM file for us, so retry */ 2406 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2407 } 2408 pWal->exclusiveMode = WAL_NORMAL_MODE; 2409 } 2410 2411 return rc; 2412 } 2413 2414 /* 2415 ** Open a transaction in a connection where the shared-memory is read-only 2416 ** and where we cannot verify that there is a separate write-capable connection 2417 ** on hand to keep the shared-memory up-to-date with the WAL file. 2418 ** 2419 ** This can happen, for example, when the shared-memory is implemented by 2420 ** memory-mapping a *-shm file, where a prior writer has shut down and 2421 ** left the *-shm file on disk, and now the present connection is trying 2422 ** to use that database but lacks write permission on the *-shm file. 2423 ** Other scenarios are also possible, depending on the VFS implementation. 2424 ** 2425 ** Precondition: 2426 ** 2427 ** The *-wal file has been read and an appropriate wal-index has been 2428 ** constructed in pWal->apWiData[] using heap memory instead of shared 2429 ** memory. 2430 ** 2431 ** If this function returns SQLITE_OK, then the read transaction has 2432 ** been successfully opened. In this case output variable (*pChanged) 2433 ** is set to true before returning if the caller should discard the 2434 ** contents of the page cache before proceeding. Or, if it returns 2435 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2436 ** the caller should retry opening the read transaction from the 2437 ** beginning (including attempting to map the *-shm file). 2438 ** 2439 ** If an error occurs, an SQLite error code is returned. 2440 */ 2441 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2442 i64 szWal; /* Size of wal file on disk in bytes */ 2443 i64 iOffset; /* Current offset when reading wal file */ 2444 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2445 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2446 int szFrame; /* Number of bytes in buffer aFrame[] */ 2447 u8 *aData; /* Pointer to data part of aFrame buffer */ 2448 volatile void *pDummy; /* Dummy argument for xShmMap */ 2449 int rc; /* Return code */ 2450 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2451 2452 assert( pWal->bShmUnreliable ); 2453 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2454 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2455 2456 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2457 ** writers from running a checkpoint, but does not stop them 2458 ** from running recovery. */ 2459 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2460 if( rc!=SQLITE_OK ){ 2461 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2462 goto begin_unreliable_shm_out; 2463 } 2464 pWal->readLock = 0; 2465 2466 /* Check to see if a separate writer has attached to the shared-memory area, 2467 ** thus making the shared-memory "reliable" again. Do this by invoking 2468 ** the xShmMap() routine of the VFS and looking to see if the return 2469 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2470 ** 2471 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2472 ** cause the heap-memory WAL-index to be discarded and the actual 2473 ** shared memory to be used in its place. 2474 ** 2475 ** This step is important because, even though this connection is holding 2476 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2477 ** have already checkpointed the WAL file and, while the current 2478 ** is active, wrap the WAL and start overwriting frames that this 2479 ** process wants to use. 2480 ** 2481 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2482 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2483 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2484 ** even if some external agent does a "chmod" to make the shared-memory 2485 ** writable by us, until sqlite3OsShmUnmap() has been called. 2486 ** This is a requirement on the VFS implementation. 2487 */ 2488 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2489 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2490 if( rc!=SQLITE_READONLY_CANTINIT ){ 2491 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2492 goto begin_unreliable_shm_out; 2493 } 2494 2495 /* We reach this point only if the real shared-memory is still unreliable. 2496 ** Assume the in-memory WAL-index substitute is correct and load it 2497 ** into pWal->hdr. 2498 */ 2499 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2500 2501 /* Make sure some writer hasn't come in and changed the WAL file out 2502 ** from under us, then disconnected, while we were not looking. 2503 */ 2504 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2505 if( rc!=SQLITE_OK ){ 2506 goto begin_unreliable_shm_out; 2507 } 2508 if( szWal<WAL_HDRSIZE ){ 2509 /* If the wal file is too small to contain a wal-header and the 2510 ** wal-index header has mxFrame==0, then it must be safe to proceed 2511 ** reading the database file only. However, the page cache cannot 2512 ** be trusted, as a read/write connection may have connected, written 2513 ** the db, run a checkpoint, truncated the wal file and disconnected 2514 ** since this client's last read transaction. */ 2515 *pChanged = 1; 2516 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2517 goto begin_unreliable_shm_out; 2518 } 2519 2520 /* Check the salt keys at the start of the wal file still match. */ 2521 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2522 if( rc!=SQLITE_OK ){ 2523 goto begin_unreliable_shm_out; 2524 } 2525 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2526 /* Some writer has wrapped the WAL file while we were not looking. 2527 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2528 ** rebuilt. */ 2529 rc = WAL_RETRY; 2530 goto begin_unreliable_shm_out; 2531 } 2532 2533 /* Allocate a buffer to read frames into */ 2534 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2535 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2536 if( aFrame==0 ){ 2537 rc = SQLITE_NOMEM_BKPT; 2538 goto begin_unreliable_shm_out; 2539 } 2540 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2541 2542 /* Check to see if a complete transaction has been appended to the 2543 ** wal file since the heap-memory wal-index was created. If so, the 2544 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2545 ** the caller. */ 2546 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2547 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2548 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2549 iOffset+szFrame<=szWal; 2550 iOffset+=szFrame 2551 ){ 2552 u32 pgno; /* Database page number for frame */ 2553 u32 nTruncate; /* dbsize field from frame header */ 2554 2555 /* Read and decode the next log frame. */ 2556 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2557 if( rc!=SQLITE_OK ) break; 2558 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2559 2560 /* If nTruncate is non-zero, then a complete transaction has been 2561 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2562 ** the loop. */ 2563 if( nTruncate ){ 2564 rc = WAL_RETRY; 2565 break; 2566 } 2567 } 2568 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2569 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2570 2571 begin_unreliable_shm_out: 2572 sqlite3_free(aFrame); 2573 if( rc!=SQLITE_OK ){ 2574 int i; 2575 for(i=0; i<pWal->nWiData; i++){ 2576 sqlite3_free((void*)pWal->apWiData[i]); 2577 pWal->apWiData[i] = 0; 2578 } 2579 pWal->bShmUnreliable = 0; 2580 sqlite3WalEndReadTransaction(pWal); 2581 *pChanged = 1; 2582 } 2583 return rc; 2584 } 2585 2586 /* 2587 ** Attempt to start a read transaction. This might fail due to a race or 2588 ** other transient condition. When that happens, it returns WAL_RETRY to 2589 ** indicate to the caller that it is safe to retry immediately. 2590 ** 2591 ** On success return SQLITE_OK. On a permanent failure (such an 2592 ** I/O error or an SQLITE_BUSY because another process is running 2593 ** recovery) return a positive error code. 2594 ** 2595 ** The useWal parameter is true to force the use of the WAL and disable 2596 ** the case where the WAL is bypassed because it has been completely 2597 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2598 ** to make a copy of the wal-index header into pWal->hdr. If the 2599 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2600 ** to the caller that the local page cache is obsolete and needs to be 2601 ** flushed.) When useWal==1, the wal-index header is assumed to already 2602 ** be loaded and the pChanged parameter is unused. 2603 ** 2604 ** The caller must set the cnt parameter to the number of prior calls to 2605 ** this routine during the current read attempt that returned WAL_RETRY. 2606 ** This routine will start taking more aggressive measures to clear the 2607 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2608 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2609 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2610 ** and is not honoring the locking protocol. There is a vanishingly small 2611 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2612 ** bad luck when there is lots of contention for the wal-index, but that 2613 ** possibility is so small that it can be safely neglected, we believe. 2614 ** 2615 ** On success, this routine obtains a read lock on 2616 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2617 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2618 ** that means the Wal does not hold any read lock. The reader must not 2619 ** access any database page that is modified by a WAL frame up to and 2620 ** including frame number aReadMark[pWal->readLock]. The reader will 2621 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2622 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2623 ** completely and get all content directly from the database file. 2624 ** If the useWal parameter is 1 then the WAL will never be ignored and 2625 ** this routine will always set pWal->readLock>0 on success. 2626 ** When the read transaction is completed, the caller must release the 2627 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2628 ** 2629 ** This routine uses the nBackfill and aReadMark[] fields of the header 2630 ** to select a particular WAL_READ_LOCK() that strives to let the 2631 ** checkpoint process do as much work as possible. This routine might 2632 ** update values of the aReadMark[] array in the header, but if it does 2633 ** so it takes care to hold an exclusive lock on the corresponding 2634 ** WAL_READ_LOCK() while changing values. 2635 */ 2636 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2637 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2638 u32 mxReadMark; /* Largest aReadMark[] value */ 2639 int mxI; /* Index of largest aReadMark[] value */ 2640 int i; /* Loop counter */ 2641 int rc = SQLITE_OK; /* Return code */ 2642 u32 mxFrame; /* Wal frame to lock to */ 2643 2644 assert( pWal->readLock<0 ); /* Not currently locked */ 2645 2646 /* useWal may only be set for read/write connections */ 2647 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2648 2649 /* Take steps to avoid spinning forever if there is a protocol error. 2650 ** 2651 ** Circumstances that cause a RETRY should only last for the briefest 2652 ** instances of time. No I/O or other system calls are done while the 2653 ** locks are held, so the locks should not be held for very long. But 2654 ** if we are unlucky, another process that is holding a lock might get 2655 ** paged out or take a page-fault that is time-consuming to resolve, 2656 ** during the few nanoseconds that it is holding the lock. In that case, 2657 ** it might take longer than normal for the lock to free. 2658 ** 2659 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2660 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2661 ** is more of a scheduler yield than an actual delay. But on the 10th 2662 ** an subsequent retries, the delays start becoming longer and longer, 2663 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2664 ** The total delay time before giving up is less than 10 seconds. 2665 */ 2666 if( cnt>5 ){ 2667 int nDelay = 1; /* Pause time in microseconds */ 2668 if( cnt>100 ){ 2669 VVA_ONLY( pWal->lockError = 1; ) 2670 return SQLITE_PROTOCOL; 2671 } 2672 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2673 sqlite3OsSleep(pWal->pVfs, nDelay); 2674 } 2675 2676 if( !useWal ){ 2677 assert( rc==SQLITE_OK ); 2678 if( pWal->bShmUnreliable==0 ){ 2679 rc = walIndexReadHdr(pWal, pChanged); 2680 } 2681 if( rc==SQLITE_BUSY ){ 2682 /* If there is not a recovery running in another thread or process 2683 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2684 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2685 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2686 ** would be technically correct. But the race is benign since with 2687 ** WAL_RETRY this routine will be called again and will probably be 2688 ** right on the second iteration. 2689 */ 2690 if( pWal->apWiData[0]==0 ){ 2691 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2692 ** We assume this is a transient condition, so return WAL_RETRY. The 2693 ** xShmMap() implementation used by the default unix and win32 VFS 2694 ** modules may return SQLITE_BUSY due to a race condition in the 2695 ** code that determines whether or not the shared-memory region 2696 ** must be zeroed before the requested page is returned. 2697 */ 2698 rc = WAL_RETRY; 2699 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2700 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2701 rc = WAL_RETRY; 2702 }else if( rc==SQLITE_BUSY ){ 2703 rc = SQLITE_BUSY_RECOVERY; 2704 } 2705 } 2706 if( rc!=SQLITE_OK ){ 2707 return rc; 2708 } 2709 else if( pWal->bShmUnreliable ){ 2710 return walBeginShmUnreliable(pWal, pChanged); 2711 } 2712 } 2713 2714 assert( pWal->nWiData>0 ); 2715 assert( pWal->apWiData[0]!=0 ); 2716 pInfo = walCkptInfo(pWal); 2717 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2718 #ifdef SQLITE_ENABLE_SNAPSHOT 2719 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2720 #endif 2721 ){ 2722 /* The WAL has been completely backfilled (or it is empty). 2723 ** and can be safely ignored. 2724 */ 2725 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2726 walShmBarrier(pWal); 2727 if( rc==SQLITE_OK ){ 2728 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2729 /* It is not safe to allow the reader to continue here if frames 2730 ** may have been appended to the log before READ_LOCK(0) was obtained. 2731 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2732 ** which implies that the database file contains a trustworthy 2733 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2734 ** happening, this is usually correct. 2735 ** 2736 ** However, if frames have been appended to the log (or if the log 2737 ** is wrapped and written for that matter) before the READ_LOCK(0) 2738 ** is obtained, that is not necessarily true. A checkpointer may 2739 ** have started to backfill the appended frames but crashed before 2740 ** it finished. Leaving a corrupt image in the database file. 2741 */ 2742 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2743 return WAL_RETRY; 2744 } 2745 pWal->readLock = 0; 2746 return SQLITE_OK; 2747 }else if( rc!=SQLITE_BUSY ){ 2748 return rc; 2749 } 2750 } 2751 2752 /* If we get this far, it means that the reader will want to use 2753 ** the WAL to get at content from recent commits. The job now is 2754 ** to select one of the aReadMark[] entries that is closest to 2755 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2756 */ 2757 mxReadMark = 0; 2758 mxI = 0; 2759 mxFrame = pWal->hdr.mxFrame; 2760 #ifdef SQLITE_ENABLE_SNAPSHOT 2761 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2762 mxFrame = pWal->pSnapshot->mxFrame; 2763 } 2764 #endif 2765 for(i=1; i<WAL_NREADER; i++){ 2766 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2767 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2768 assert( thisMark!=READMARK_NOT_USED ); 2769 mxReadMark = thisMark; 2770 mxI = i; 2771 } 2772 } 2773 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2774 && (mxReadMark<mxFrame || mxI==0) 2775 ){ 2776 for(i=1; i<WAL_NREADER; i++){ 2777 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2778 if( rc==SQLITE_OK ){ 2779 AtomicStore(pInfo->aReadMark+i,mxFrame); 2780 mxReadMark = mxFrame; 2781 mxI = i; 2782 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2783 break; 2784 }else if( rc!=SQLITE_BUSY ){ 2785 return rc; 2786 } 2787 } 2788 } 2789 if( mxI==0 ){ 2790 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2791 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2792 } 2793 2794 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2795 if( rc ){ 2796 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2797 } 2798 /* Now that the read-lock has been obtained, check that neither the 2799 ** value in the aReadMark[] array or the contents of the wal-index 2800 ** header have changed. 2801 ** 2802 ** It is necessary to check that the wal-index header did not change 2803 ** between the time it was read and when the shared-lock was obtained 2804 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2805 ** that the log file may have been wrapped by a writer, or that frames 2806 ** that occur later in the log than pWal->hdr.mxFrame may have been 2807 ** copied into the database by a checkpointer. If either of these things 2808 ** happened, then reading the database with the current value of 2809 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2810 ** instead. 2811 ** 2812 ** Before checking that the live wal-index header has not changed 2813 ** since it was read, set Wal.minFrame to the first frame in the wal 2814 ** file that has not yet been checkpointed. This client will not need 2815 ** to read any frames earlier than minFrame from the wal file - they 2816 ** can be safely read directly from the database file. 2817 ** 2818 ** Because a ShmBarrier() call is made between taking the copy of 2819 ** nBackfill and checking that the wal-header in shared-memory still 2820 ** matches the one cached in pWal->hdr, it is guaranteed that the 2821 ** checkpointer that set nBackfill was not working with a wal-index 2822 ** header newer than that cached in pWal->hdr. If it were, that could 2823 ** cause a problem. The checkpointer could omit to checkpoint 2824 ** a version of page X that lies before pWal->minFrame (call that version 2825 ** A) on the basis that there is a newer version (version B) of the same 2826 ** page later in the wal file. But if version B happens to like past 2827 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2828 ** that it can read version A from the database file. However, since 2829 ** we can guarantee that the checkpointer that set nBackfill could not 2830 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2831 */ 2832 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2833 walShmBarrier(pWal); 2834 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2835 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2836 ){ 2837 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2838 return WAL_RETRY; 2839 }else{ 2840 assert( mxReadMark<=pWal->hdr.mxFrame ); 2841 pWal->readLock = (i16)mxI; 2842 } 2843 return rc; 2844 } 2845 2846 #ifdef SQLITE_ENABLE_SNAPSHOT 2847 /* 2848 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2849 ** variable so that older snapshots can be accessed. To do this, loop 2850 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2851 ** comparing their content to the corresponding page with the database 2852 ** file, if any. Set nBackfillAttempted to the frame number of the 2853 ** first frame for which the wal file content matches the db file. 2854 ** 2855 ** This is only really safe if the file-system is such that any page 2856 ** writes made by earlier checkpointers were atomic operations, which 2857 ** is not always true. It is also possible that nBackfillAttempted 2858 ** may be left set to a value larger than expected, if a wal frame 2859 ** contains content that duplicate of an earlier version of the same 2860 ** page. 2861 ** 2862 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2863 ** error occurs. It is not an error if nBackfillAttempted cannot be 2864 ** decreased at all. 2865 */ 2866 int sqlite3WalSnapshotRecover(Wal *pWal){ 2867 int rc; 2868 2869 assert( pWal->readLock>=0 ); 2870 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2871 if( rc==SQLITE_OK ){ 2872 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2873 int szPage = (int)pWal->szPage; 2874 i64 szDb; /* Size of db file in bytes */ 2875 2876 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2877 if( rc==SQLITE_OK ){ 2878 void *pBuf1 = sqlite3_malloc(szPage); 2879 void *pBuf2 = sqlite3_malloc(szPage); 2880 if( pBuf1==0 || pBuf2==0 ){ 2881 rc = SQLITE_NOMEM; 2882 }else{ 2883 u32 i = pInfo->nBackfillAttempted; 2884 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2885 WalHashLoc sLoc; /* Hash table location */ 2886 u32 pgno; /* Page number in db file */ 2887 i64 iDbOff; /* Offset of db file entry */ 2888 i64 iWalOff; /* Offset of wal file entry */ 2889 2890 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2891 if( rc!=SQLITE_OK ) break; 2892 pgno = sLoc.aPgno[i-sLoc.iZero]; 2893 iDbOff = (i64)(pgno-1) * szPage; 2894 2895 if( iDbOff+szPage<=szDb ){ 2896 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2897 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2898 2899 if( rc==SQLITE_OK ){ 2900 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2901 } 2902 2903 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2904 break; 2905 } 2906 } 2907 2908 pInfo->nBackfillAttempted = i-1; 2909 } 2910 } 2911 2912 sqlite3_free(pBuf1); 2913 sqlite3_free(pBuf2); 2914 } 2915 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2916 } 2917 2918 return rc; 2919 } 2920 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2921 2922 /* 2923 ** Begin a read transaction on the database. 2924 ** 2925 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2926 ** it takes a snapshot of the state of the WAL and wal-index for the current 2927 ** instant in time. The current thread will continue to use this snapshot. 2928 ** Other threads might append new content to the WAL and wal-index but 2929 ** that extra content is ignored by the current thread. 2930 ** 2931 ** If the database contents have changes since the previous read 2932 ** transaction, then *pChanged is set to 1 before returning. The 2933 ** Pager layer will use this to know that its cache is stale and 2934 ** needs to be flushed. 2935 */ 2936 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2937 int rc; /* Return code */ 2938 int cnt = 0; /* Number of TryBeginRead attempts */ 2939 #ifdef SQLITE_ENABLE_SNAPSHOT 2940 int bChanged = 0; 2941 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2942 #endif 2943 2944 assert( pWal->ckptLock==0 ); 2945 2946 #ifdef SQLITE_ENABLE_SNAPSHOT 2947 if( pSnapshot ){ 2948 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2949 bChanged = 1; 2950 } 2951 2952 /* It is possible that there is a checkpointer thread running 2953 ** concurrent with this code. If this is the case, it may be that the 2954 ** checkpointer has already determined that it will checkpoint 2955 ** snapshot X, where X is later in the wal file than pSnapshot, but 2956 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2957 ** its intent. To avoid the race condition this leads to, ensure that 2958 ** there is no checkpointer process by taking a shared CKPT lock 2959 ** before checking pInfo->nBackfillAttempted. */ 2960 (void)walEnableBlocking(pWal); 2961 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2962 walDisableBlocking(pWal); 2963 2964 if( rc!=SQLITE_OK ){ 2965 return rc; 2966 } 2967 pWal->ckptLock = 1; 2968 } 2969 #endif 2970 2971 do{ 2972 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2973 }while( rc==WAL_RETRY ); 2974 testcase( (rc&0xff)==SQLITE_BUSY ); 2975 testcase( (rc&0xff)==SQLITE_IOERR ); 2976 testcase( rc==SQLITE_PROTOCOL ); 2977 testcase( rc==SQLITE_OK ); 2978 2979 #ifdef SQLITE_ENABLE_SNAPSHOT 2980 if( rc==SQLITE_OK ){ 2981 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2982 /* At this point the client has a lock on an aReadMark[] slot holding 2983 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2984 ** is populated with the wal-index header corresponding to the head 2985 ** of the wal file. Verify that pSnapshot is still valid before 2986 ** continuing. Reasons why pSnapshot might no longer be valid: 2987 ** 2988 ** (1) The WAL file has been reset since the snapshot was taken. 2989 ** In this case, the salt will have changed. 2990 ** 2991 ** (2) A checkpoint as been attempted that wrote frames past 2992 ** pSnapshot->mxFrame into the database file. Note that the 2993 ** checkpoint need not have completed for this to cause problems. 2994 */ 2995 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2996 2997 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2998 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2999 3000 /* Check that the wal file has not been wrapped. Assuming that it has 3001 ** not, also check that no checkpointer has attempted to checkpoint any 3002 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 3003 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 3004 ** with *pSnapshot and set *pChanged as appropriate for opening the 3005 ** snapshot. */ 3006 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3007 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 3008 ){ 3009 assert( pWal->readLock>0 ); 3010 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 3011 *pChanged = bChanged; 3012 }else{ 3013 rc = SQLITE_ERROR_SNAPSHOT; 3014 } 3015 3016 /* A client using a non-current snapshot may not ignore any frames 3017 ** from the start of the wal file. This is because, for a system 3018 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 3019 ** have omitted to checkpoint a frame earlier than minFrame in 3020 ** the file because there exists a frame after iSnapshot that 3021 ** is the same database page. */ 3022 pWal->minFrame = 1; 3023 3024 if( rc!=SQLITE_OK ){ 3025 sqlite3WalEndReadTransaction(pWal); 3026 } 3027 } 3028 } 3029 3030 /* Release the shared CKPT lock obtained above. */ 3031 if( pWal->ckptLock ){ 3032 assert( pSnapshot ); 3033 walUnlockShared(pWal, WAL_CKPT_LOCK); 3034 pWal->ckptLock = 0; 3035 } 3036 #endif 3037 return rc; 3038 } 3039 3040 /* 3041 ** Finish with a read transaction. All this does is release the 3042 ** read-lock. 3043 */ 3044 void sqlite3WalEndReadTransaction(Wal *pWal){ 3045 sqlite3WalEndWriteTransaction(pWal); 3046 if( pWal->readLock>=0 ){ 3047 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3048 pWal->readLock = -1; 3049 } 3050 } 3051 3052 /* 3053 ** Search the wal file for page pgno. If found, set *piRead to the frame that 3054 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 3055 ** to zero. 3056 ** 3057 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 3058 ** error does occur, the final value of *piRead is undefined. 3059 */ 3060 int sqlite3WalFindFrame( 3061 Wal *pWal, /* WAL handle */ 3062 Pgno pgno, /* Database page number to read data for */ 3063 u32 *piRead /* OUT: Frame number (or zero) */ 3064 ){ 3065 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 3066 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 3067 int iHash; /* Used to loop through N hash tables */ 3068 int iMinHash; 3069 3070 /* This routine is only be called from within a read transaction. */ 3071 assert( pWal->readLock>=0 || pWal->lockError ); 3072 3073 /* If the "last page" field of the wal-index header snapshot is 0, then 3074 ** no data will be read from the wal under any circumstances. Return early 3075 ** in this case as an optimization. Likewise, if pWal->readLock==0, 3076 ** then the WAL is ignored by the reader so return early, as if the 3077 ** WAL were empty. 3078 */ 3079 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 3080 *piRead = 0; 3081 return SQLITE_OK; 3082 } 3083 3084 /* Search the hash table or tables for an entry matching page number 3085 ** pgno. Each iteration of the following for() loop searches one 3086 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 3087 ** 3088 ** This code might run concurrently to the code in walIndexAppend() 3089 ** that adds entries to the wal-index (and possibly to this hash 3090 ** table). This means the value just read from the hash 3091 ** slot (aHash[iKey]) may have been added before or after the 3092 ** current read transaction was opened. Values added after the 3093 ** read transaction was opened may have been written incorrectly - 3094 ** i.e. these slots may contain garbage data. However, we assume 3095 ** that any slots written before the current read transaction was 3096 ** opened remain unmodified. 3097 ** 3098 ** For the reasons above, the if(...) condition featured in the inner 3099 ** loop of the following block is more stringent that would be required 3100 ** if we had exclusive access to the hash-table: 3101 ** 3102 ** (aPgno[iFrame]==pgno): 3103 ** This condition filters out normal hash-table collisions. 3104 ** 3105 ** (iFrame<=iLast): 3106 ** This condition filters out entries that were added to the hash 3107 ** table after the current read-transaction had started. 3108 */ 3109 iMinHash = walFramePage(pWal->minFrame); 3110 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3111 WalHashLoc sLoc; /* Hash table location */ 3112 int iKey; /* Hash slot index */ 3113 int nCollide; /* Number of hash collisions remaining */ 3114 int rc; /* Error code */ 3115 u32 iH; 3116 3117 rc = walHashGet(pWal, iHash, &sLoc); 3118 if( rc!=SQLITE_OK ){ 3119 return rc; 3120 } 3121 nCollide = HASHTABLE_NSLOT; 3122 iKey = walHash(pgno); 3123 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3124 u32 iFrame = iH + sLoc.iZero; 3125 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3126 assert( iFrame>iRead || CORRUPT_DB ); 3127 iRead = iFrame; 3128 } 3129 if( (nCollide--)==0 ){ 3130 return SQLITE_CORRUPT_BKPT; 3131 } 3132 iKey = walNextHash(iKey); 3133 } 3134 if( iRead ) break; 3135 } 3136 3137 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3138 /* If expensive assert() statements are available, do a linear search 3139 ** of the wal-index file content. Make sure the results agree with the 3140 ** result obtained using the hash indexes above. */ 3141 { 3142 u32 iRead2 = 0; 3143 u32 iTest; 3144 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3145 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3146 if( walFramePgno(pWal, iTest)==pgno ){ 3147 iRead2 = iTest; 3148 break; 3149 } 3150 } 3151 assert( iRead==iRead2 ); 3152 } 3153 #endif 3154 3155 *piRead = iRead; 3156 return SQLITE_OK; 3157 } 3158 3159 /* 3160 ** Read the contents of frame iRead from the wal file into buffer pOut 3161 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3162 ** error code otherwise. 3163 */ 3164 int sqlite3WalReadFrame( 3165 Wal *pWal, /* WAL handle */ 3166 u32 iRead, /* Frame to read */ 3167 int nOut, /* Size of buffer pOut in bytes */ 3168 u8 *pOut /* Buffer to write page data to */ 3169 ){ 3170 int sz; 3171 i64 iOffset; 3172 sz = pWal->hdr.szPage; 3173 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3174 testcase( sz<=32768 ); 3175 testcase( sz>=65536 ); 3176 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3177 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3178 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3179 } 3180 3181 /* 3182 ** Return the size of the database in pages (or zero, if unknown). 3183 */ 3184 Pgno sqlite3WalDbsize(Wal *pWal){ 3185 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3186 return pWal->hdr.nPage; 3187 } 3188 return 0; 3189 } 3190 3191 3192 /* 3193 ** This function starts a write transaction on the WAL. 3194 ** 3195 ** A read transaction must have already been started by a prior call 3196 ** to sqlite3WalBeginReadTransaction(). 3197 ** 3198 ** If another thread or process has written into the database since 3199 ** the read transaction was started, then it is not possible for this 3200 ** thread to write as doing so would cause a fork. So this routine 3201 ** returns SQLITE_BUSY in that case and no write transaction is started. 3202 ** 3203 ** There can only be a single writer active at a time. 3204 */ 3205 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3206 int rc; 3207 3208 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3209 /* If the write-lock is already held, then it was obtained before the 3210 ** read-transaction was even opened, making this call a no-op. 3211 ** Return early. */ 3212 if( pWal->writeLock ){ 3213 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3214 return SQLITE_OK; 3215 } 3216 #endif 3217 3218 /* Cannot start a write transaction without first holding a read 3219 ** transaction. */ 3220 assert( pWal->readLock>=0 ); 3221 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3222 3223 if( pWal->readOnly ){ 3224 return SQLITE_READONLY; 3225 } 3226 3227 /* Only one writer allowed at a time. Get the write lock. Return 3228 ** SQLITE_BUSY if unable. 3229 */ 3230 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3231 if( rc ){ 3232 return rc; 3233 } 3234 pWal->writeLock = 1; 3235 3236 /* If another connection has written to the database file since the 3237 ** time the read transaction on this connection was started, then 3238 ** the write is disallowed. 3239 */ 3240 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3241 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3242 pWal->writeLock = 0; 3243 rc = SQLITE_BUSY_SNAPSHOT; 3244 } 3245 3246 return rc; 3247 } 3248 3249 /* 3250 ** End a write transaction. The commit has already been done. This 3251 ** routine merely releases the lock. 3252 */ 3253 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3254 if( pWal->writeLock ){ 3255 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3256 pWal->writeLock = 0; 3257 pWal->iReCksum = 0; 3258 pWal->truncateOnCommit = 0; 3259 } 3260 return SQLITE_OK; 3261 } 3262 3263 /* 3264 ** If any data has been written (but not committed) to the log file, this 3265 ** function moves the write-pointer back to the start of the transaction. 3266 ** 3267 ** Additionally, the callback function is invoked for each frame written 3268 ** to the WAL since the start of the transaction. If the callback returns 3269 ** other than SQLITE_OK, it is not invoked again and the error code is 3270 ** returned to the caller. 3271 ** 3272 ** Otherwise, if the callback function does not return an error, this 3273 ** function returns SQLITE_OK. 3274 */ 3275 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3276 int rc = SQLITE_OK; 3277 if( ALWAYS(pWal->writeLock) ){ 3278 Pgno iMax = pWal->hdr.mxFrame; 3279 Pgno iFrame; 3280 3281 /* Restore the clients cache of the wal-index header to the state it 3282 ** was in before the client began writing to the database. 3283 */ 3284 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3285 3286 for(iFrame=pWal->hdr.mxFrame+1; 3287 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3288 iFrame++ 3289 ){ 3290 /* This call cannot fail. Unless the page for which the page number 3291 ** is passed as the second argument is (a) in the cache and 3292 ** (b) has an outstanding reference, then xUndo is either a no-op 3293 ** (if (a) is false) or simply expels the page from the cache (if (b) 3294 ** is false). 3295 ** 3296 ** If the upper layer is doing a rollback, it is guaranteed that there 3297 ** are no outstanding references to any page other than page 1. And 3298 ** page 1 is never written to the log until the transaction is 3299 ** committed. As a result, the call to xUndo may not fail. 3300 */ 3301 assert( walFramePgno(pWal, iFrame)!=1 ); 3302 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3303 } 3304 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3305 } 3306 return rc; 3307 } 3308 3309 /* 3310 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3311 ** values. This function populates the array with values required to 3312 ** "rollback" the write position of the WAL handle back to the current 3313 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3314 */ 3315 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3316 assert( pWal->writeLock ); 3317 aWalData[0] = pWal->hdr.mxFrame; 3318 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3319 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3320 aWalData[3] = pWal->nCkpt; 3321 } 3322 3323 /* 3324 ** Move the write position of the WAL back to the point identified by 3325 ** the values in the aWalData[] array. aWalData must point to an array 3326 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3327 ** by a call to WalSavepoint(). 3328 */ 3329 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3330 int rc = SQLITE_OK; 3331 3332 assert( pWal->writeLock ); 3333 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3334 3335 if( aWalData[3]!=pWal->nCkpt ){ 3336 /* This savepoint was opened immediately after the write-transaction 3337 ** was started. Right after that, the writer decided to wrap around 3338 ** to the start of the log. Update the savepoint values to match. 3339 */ 3340 aWalData[0] = 0; 3341 aWalData[3] = pWal->nCkpt; 3342 } 3343 3344 if( aWalData[0]<pWal->hdr.mxFrame ){ 3345 pWal->hdr.mxFrame = aWalData[0]; 3346 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3347 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3348 walCleanupHash(pWal); 3349 } 3350 3351 return rc; 3352 } 3353 3354 /* 3355 ** This function is called just before writing a set of frames to the log 3356 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3357 ** to the current log file, it is possible to overwrite the start of the 3358 ** existing log file with the new frames (i.e. "reset" the log). If so, 3359 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3360 ** unchanged. 3361 ** 3362 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3363 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3364 ** if an error occurs. 3365 */ 3366 static int walRestartLog(Wal *pWal){ 3367 int rc = SQLITE_OK; 3368 int cnt; 3369 3370 if( pWal->readLock==0 ){ 3371 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3372 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3373 if( pInfo->nBackfill>0 ){ 3374 u32 salt1; 3375 sqlite3_randomness(4, &salt1); 3376 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3377 if( rc==SQLITE_OK ){ 3378 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3379 ** readers are currently using the WAL), then the transactions 3380 ** frames will overwrite the start of the existing log. Update the 3381 ** wal-index header to reflect this. 3382 ** 3383 ** In theory it would be Ok to update the cache of the header only 3384 ** at this point. But updating the actual wal-index header is also 3385 ** safe and means there is no special case for sqlite3WalUndo() 3386 ** to handle if this transaction is rolled back. */ 3387 walRestartHdr(pWal, salt1); 3388 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3389 }else if( rc!=SQLITE_BUSY ){ 3390 return rc; 3391 } 3392 } 3393 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3394 pWal->readLock = -1; 3395 cnt = 0; 3396 do{ 3397 int notUsed; 3398 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3399 }while( rc==WAL_RETRY ); 3400 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3401 testcase( (rc&0xff)==SQLITE_IOERR ); 3402 testcase( rc==SQLITE_PROTOCOL ); 3403 testcase( rc==SQLITE_OK ); 3404 } 3405 return rc; 3406 } 3407 3408 /* 3409 ** Information about the current state of the WAL file and where 3410 ** the next fsync should occur - passed from sqlite3WalFrames() into 3411 ** walWriteToLog(). 3412 */ 3413 typedef struct WalWriter { 3414 Wal *pWal; /* The complete WAL information */ 3415 sqlite3_file *pFd; /* The WAL file to which we write */ 3416 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3417 int syncFlags; /* Flags for the fsync */ 3418 int szPage; /* Size of one page */ 3419 } WalWriter; 3420 3421 /* 3422 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3423 ** Do a sync when crossing the p->iSyncPoint boundary. 3424 ** 3425 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3426 ** first write the part before iSyncPoint, then sync, then write the 3427 ** rest. 3428 */ 3429 static int walWriteToLog( 3430 WalWriter *p, /* WAL to write to */ 3431 void *pContent, /* Content to be written */ 3432 int iAmt, /* Number of bytes to write */ 3433 sqlite3_int64 iOffset /* Start writing at this offset */ 3434 ){ 3435 int rc; 3436 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3437 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3438 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3439 if( rc ) return rc; 3440 iOffset += iFirstAmt; 3441 iAmt -= iFirstAmt; 3442 pContent = (void*)(iFirstAmt + (char*)pContent); 3443 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3444 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3445 if( iAmt==0 || rc ) return rc; 3446 } 3447 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3448 return rc; 3449 } 3450 3451 /* 3452 ** Write out a single frame of the WAL 3453 */ 3454 static int walWriteOneFrame( 3455 WalWriter *p, /* Where to write the frame */ 3456 PgHdr *pPage, /* The page of the frame to be written */ 3457 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3458 sqlite3_int64 iOffset /* Byte offset at which to write */ 3459 ){ 3460 int rc; /* Result code from subfunctions */ 3461 void *pData; /* Data actually written */ 3462 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3463 pData = pPage->pData; 3464 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3465 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3466 if( rc ) return rc; 3467 /* Write the page data */ 3468 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3469 return rc; 3470 } 3471 3472 /* 3473 ** This function is called as part of committing a transaction within which 3474 ** one or more frames have been overwritten. It updates the checksums for 3475 ** all frames written to the wal file by the current transaction starting 3476 ** with the earliest to have been overwritten. 3477 ** 3478 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3479 */ 3480 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3481 const int szPage = pWal->szPage;/* Database page size */ 3482 int rc = SQLITE_OK; /* Return code */ 3483 u8 *aBuf; /* Buffer to load data from wal file into */ 3484 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3485 u32 iRead; /* Next frame to read from wal file */ 3486 i64 iCksumOff; 3487 3488 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3489 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3490 3491 /* Find the checksum values to use as input for the recalculating the 3492 ** first checksum. If the first frame is frame 1 (implying that the current 3493 ** transaction restarted the wal file), these values must be read from the 3494 ** wal-file header. Otherwise, read them from the frame header of the 3495 ** previous frame. */ 3496 assert( pWal->iReCksum>0 ); 3497 if( pWal->iReCksum==1 ){ 3498 iCksumOff = 24; 3499 }else{ 3500 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3501 } 3502 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3503 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3504 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3505 3506 iRead = pWal->iReCksum; 3507 pWal->iReCksum = 0; 3508 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3509 i64 iOff = walFrameOffset(iRead, szPage); 3510 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3511 if( rc==SQLITE_OK ){ 3512 u32 iPgno, nDbSize; 3513 iPgno = sqlite3Get4byte(aBuf); 3514 nDbSize = sqlite3Get4byte(&aBuf[4]); 3515 3516 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3517 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3518 } 3519 } 3520 3521 sqlite3_free(aBuf); 3522 return rc; 3523 } 3524 3525 /* 3526 ** Write a set of frames to the log. The caller must hold the write-lock 3527 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3528 */ 3529 int sqlite3WalFrames( 3530 Wal *pWal, /* Wal handle to write to */ 3531 int szPage, /* Database page-size in bytes */ 3532 PgHdr *pList, /* List of dirty pages to write */ 3533 Pgno nTruncate, /* Database size after this commit */ 3534 int isCommit, /* True if this is a commit */ 3535 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3536 ){ 3537 int rc; /* Used to catch return codes */ 3538 u32 iFrame; /* Next frame address */ 3539 PgHdr *p; /* Iterator to run through pList with. */ 3540 PgHdr *pLast = 0; /* Last frame in list */ 3541 int nExtra = 0; /* Number of extra copies of last page */ 3542 int szFrame; /* The size of a single frame */ 3543 i64 iOffset; /* Next byte to write in WAL file */ 3544 WalWriter w; /* The writer */ 3545 u32 iFirst = 0; /* First frame that may be overwritten */ 3546 WalIndexHdr *pLive; /* Pointer to shared header */ 3547 3548 assert( pList ); 3549 assert( pWal->writeLock ); 3550 3551 /* If this frame set completes a transaction, then nTruncate>0. If 3552 ** nTruncate==0 then this frame set does not complete the transaction. */ 3553 assert( (isCommit!=0)==(nTruncate!=0) ); 3554 3555 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3556 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3557 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3558 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3559 } 3560 #endif 3561 3562 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3563 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3564 iFirst = pLive->mxFrame+1; 3565 } 3566 3567 /* See if it is possible to write these frames into the start of the 3568 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3569 */ 3570 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3571 return rc; 3572 } 3573 3574 /* If this is the first frame written into the log, write the WAL 3575 ** header to the start of the WAL file. See comments at the top of 3576 ** this source file for a description of the WAL header format. 3577 */ 3578 iFrame = pWal->hdr.mxFrame; 3579 if( iFrame==0 ){ 3580 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3581 u32 aCksum[2]; /* Checksum for wal-header */ 3582 3583 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3584 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3585 sqlite3Put4byte(&aWalHdr[8], szPage); 3586 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3587 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3588 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3589 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3590 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3591 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3592 3593 pWal->szPage = szPage; 3594 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3595 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3596 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3597 pWal->truncateOnCommit = 1; 3598 3599 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3600 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3601 if( rc!=SQLITE_OK ){ 3602 return rc; 3603 } 3604 3605 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3606 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3607 ** an out-of-order write following a WAL restart could result in 3608 ** database corruption. See the ticket: 3609 ** 3610 ** https://sqlite.org/src/info/ff5be73dee 3611 */ 3612 if( pWal->syncHeader ){ 3613 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3614 if( rc ) return rc; 3615 } 3616 } 3617 assert( (int)pWal->szPage==szPage ); 3618 3619 /* Setup information needed to write frames into the WAL */ 3620 w.pWal = pWal; 3621 w.pFd = pWal->pWalFd; 3622 w.iSyncPoint = 0; 3623 w.syncFlags = sync_flags; 3624 w.szPage = szPage; 3625 iOffset = walFrameOffset(iFrame+1, szPage); 3626 szFrame = szPage + WAL_FRAME_HDRSIZE; 3627 3628 /* Write all frames into the log file exactly once */ 3629 for(p=pList; p; p=p->pDirty){ 3630 int nDbSize; /* 0 normally. Positive == commit flag */ 3631 3632 /* Check if this page has already been written into the wal file by 3633 ** the current transaction. If so, overwrite the existing frame and 3634 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3635 ** checksums must be recomputed when the transaction is committed. */ 3636 if( iFirst && (p->pDirty || isCommit==0) ){ 3637 u32 iWrite = 0; 3638 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3639 assert( rc==SQLITE_OK || iWrite==0 ); 3640 if( iWrite>=iFirst ){ 3641 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3642 void *pData; 3643 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3644 pWal->iReCksum = iWrite; 3645 } 3646 pData = p->pData; 3647 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3648 if( rc ) return rc; 3649 p->flags &= ~PGHDR_WAL_APPEND; 3650 continue; 3651 } 3652 } 3653 3654 iFrame++; 3655 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3656 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3657 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3658 if( rc ) return rc; 3659 pLast = p; 3660 iOffset += szFrame; 3661 p->flags |= PGHDR_WAL_APPEND; 3662 } 3663 3664 /* Recalculate checksums within the wal file if required. */ 3665 if( isCommit && pWal->iReCksum ){ 3666 rc = walRewriteChecksums(pWal, iFrame); 3667 if( rc ) return rc; 3668 } 3669 3670 /* If this is the end of a transaction, then we might need to pad 3671 ** the transaction and/or sync the WAL file. 3672 ** 3673 ** Padding and syncing only occur if this set of frames complete a 3674 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3675 ** or synchronous==OFF, then no padding or syncing are needed. 3676 ** 3677 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3678 ** needed and only the sync is done. If padding is needed, then the 3679 ** final frame is repeated (with its commit mark) until the next sector 3680 ** boundary is crossed. Only the part of the WAL prior to the last 3681 ** sector boundary is synced; the part of the last frame that extends 3682 ** past the sector boundary is written after the sync. 3683 */ 3684 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3685 int bSync = 1; 3686 if( pWal->padToSectorBoundary ){ 3687 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3688 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3689 bSync = (w.iSyncPoint==iOffset); 3690 testcase( bSync ); 3691 while( iOffset<w.iSyncPoint ){ 3692 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3693 if( rc ) return rc; 3694 iOffset += szFrame; 3695 nExtra++; 3696 assert( pLast!=0 ); 3697 } 3698 } 3699 if( bSync ){ 3700 assert( rc==SQLITE_OK ); 3701 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3702 } 3703 } 3704 3705 /* If this frame set completes the first transaction in the WAL and 3706 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3707 ** journal size limit, if possible. 3708 */ 3709 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3710 i64 sz = pWal->mxWalSize; 3711 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3712 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3713 } 3714 walLimitSize(pWal, sz); 3715 pWal->truncateOnCommit = 0; 3716 } 3717 3718 /* Append data to the wal-index. It is not necessary to lock the 3719 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3720 ** guarantees that there are no other writers, and no data that may 3721 ** be in use by existing readers is being overwritten. 3722 */ 3723 iFrame = pWal->hdr.mxFrame; 3724 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3725 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3726 iFrame++; 3727 rc = walIndexAppend(pWal, iFrame, p->pgno); 3728 } 3729 assert( pLast!=0 || nExtra==0 ); 3730 while( rc==SQLITE_OK && nExtra>0 ){ 3731 iFrame++; 3732 nExtra--; 3733 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3734 } 3735 3736 if( rc==SQLITE_OK ){ 3737 /* Update the private copy of the header. */ 3738 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3739 testcase( szPage<=32768 ); 3740 testcase( szPage>=65536 ); 3741 pWal->hdr.mxFrame = iFrame; 3742 if( isCommit ){ 3743 pWal->hdr.iChange++; 3744 pWal->hdr.nPage = nTruncate; 3745 } 3746 /* If this is a commit, update the wal-index header too. */ 3747 if( isCommit ){ 3748 walIndexWriteHdr(pWal); 3749 pWal->iCallback = iFrame; 3750 } 3751 } 3752 3753 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3754 return rc; 3755 } 3756 3757 /* 3758 ** This routine is called to implement sqlite3_wal_checkpoint() and 3759 ** related interfaces. 3760 ** 3761 ** Obtain a CHECKPOINT lock and then backfill as much information as 3762 ** we can from WAL into the database. 3763 ** 3764 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3765 ** callback. In this case this function runs a blocking checkpoint. 3766 */ 3767 int sqlite3WalCheckpoint( 3768 Wal *pWal, /* Wal connection */ 3769 sqlite3 *db, /* Check this handle's interrupt flag */ 3770 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3771 int (*xBusy)(void*), /* Function to call when busy */ 3772 void *pBusyArg, /* Context argument for xBusyHandler */ 3773 int sync_flags, /* Flags to sync db file with (or 0) */ 3774 int nBuf, /* Size of temporary buffer */ 3775 u8 *zBuf, /* Temporary buffer to use */ 3776 int *pnLog, /* OUT: Number of frames in WAL */ 3777 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3778 ){ 3779 int rc; /* Return code */ 3780 int isChanged = 0; /* True if a new wal-index header is loaded */ 3781 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3782 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3783 3784 assert( pWal->ckptLock==0 ); 3785 assert( pWal->writeLock==0 ); 3786 3787 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3788 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3789 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3790 3791 if( pWal->readOnly ) return SQLITE_READONLY; 3792 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3793 3794 /* Enable blocking locks, if possible. If blocking locks are successfully 3795 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3796 sqlite3WalDb(pWal, db); 3797 (void)walEnableBlocking(pWal); 3798 3799 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3800 ** "checkpoint" lock on the database file. 3801 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3802 ** checkpoint operation at the same time, the lock cannot be obtained and 3803 ** SQLITE_BUSY is returned. 3804 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3805 ** it will not be invoked in this case. 3806 */ 3807 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3808 testcase( rc==SQLITE_BUSY ); 3809 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3810 if( rc==SQLITE_OK ){ 3811 pWal->ckptLock = 1; 3812 3813 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3814 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3815 ** file. 3816 ** 3817 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3818 ** immediately, and a busy-handler is configured, it is invoked and the 3819 ** writer lock retried until either the busy-handler returns 0 or the 3820 ** lock is successfully obtained. 3821 */ 3822 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3823 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3824 if( rc==SQLITE_OK ){ 3825 pWal->writeLock = 1; 3826 }else if( rc==SQLITE_BUSY ){ 3827 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3828 xBusy2 = 0; 3829 rc = SQLITE_OK; 3830 } 3831 } 3832 } 3833 3834 3835 /* Read the wal-index header. */ 3836 if( rc==SQLITE_OK ){ 3837 walDisableBlocking(pWal); 3838 rc = walIndexReadHdr(pWal, &isChanged); 3839 (void)walEnableBlocking(pWal); 3840 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3841 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3842 } 3843 } 3844 3845 /* Copy data from the log to the database file. */ 3846 if( rc==SQLITE_OK ){ 3847 3848 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3849 rc = SQLITE_CORRUPT_BKPT; 3850 }else{ 3851 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3852 } 3853 3854 /* If no error occurred, set the output variables. */ 3855 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3856 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3857 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3858 } 3859 } 3860 3861 if( isChanged ){ 3862 /* If a new wal-index header was loaded before the checkpoint was 3863 ** performed, then the pager-cache associated with pWal is now 3864 ** out of date. So zero the cached wal-index header to ensure that 3865 ** next time the pager opens a snapshot on this database it knows that 3866 ** the cache needs to be reset. 3867 */ 3868 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3869 } 3870 3871 walDisableBlocking(pWal); 3872 sqlite3WalDb(pWal, 0); 3873 3874 /* Release the locks. */ 3875 sqlite3WalEndWriteTransaction(pWal); 3876 if( pWal->ckptLock ){ 3877 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3878 pWal->ckptLock = 0; 3879 } 3880 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3881 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3882 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3883 #endif 3884 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3885 } 3886 3887 /* Return the value to pass to a sqlite3_wal_hook callback, the 3888 ** number of frames in the WAL at the point of the last commit since 3889 ** sqlite3WalCallback() was called. If no commits have occurred since 3890 ** the last call, then return 0. 3891 */ 3892 int sqlite3WalCallback(Wal *pWal){ 3893 u32 ret = 0; 3894 if( pWal ){ 3895 ret = pWal->iCallback; 3896 pWal->iCallback = 0; 3897 } 3898 return (int)ret; 3899 } 3900 3901 /* 3902 ** This function is called to change the WAL subsystem into or out 3903 ** of locking_mode=EXCLUSIVE. 3904 ** 3905 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3906 ** into locking_mode=NORMAL. This means that we must acquire a lock 3907 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3908 ** or if the acquisition of the lock fails, then return 0. If the 3909 ** transition out of exclusive-mode is successful, return 1. This 3910 ** operation must occur while the pager is still holding the exclusive 3911 ** lock on the main database file. 3912 ** 3913 ** If op is one, then change from locking_mode=NORMAL into 3914 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3915 ** be released. Return 1 if the transition is made and 0 if the 3916 ** WAL is already in exclusive-locking mode - meaning that this 3917 ** routine is a no-op. The pager must already hold the exclusive lock 3918 ** on the main database file before invoking this operation. 3919 ** 3920 ** If op is negative, then do a dry-run of the op==1 case but do 3921 ** not actually change anything. The pager uses this to see if it 3922 ** should acquire the database exclusive lock prior to invoking 3923 ** the op==1 case. 3924 */ 3925 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3926 int rc; 3927 assert( pWal->writeLock==0 ); 3928 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3929 3930 /* pWal->readLock is usually set, but might be -1 if there was a 3931 ** prior error while attempting to acquire are read-lock. This cannot 3932 ** happen if the connection is actually in exclusive mode (as no xShmLock 3933 ** locks are taken in this case). Nor should the pager attempt to 3934 ** upgrade to exclusive-mode following such an error. 3935 */ 3936 assert( pWal->readLock>=0 || pWal->lockError ); 3937 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3938 3939 if( op==0 ){ 3940 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3941 pWal->exclusiveMode = WAL_NORMAL_MODE; 3942 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3943 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3944 } 3945 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3946 }else{ 3947 /* Already in locking_mode=NORMAL */ 3948 rc = 0; 3949 } 3950 }else if( op>0 ){ 3951 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3952 assert( pWal->readLock>=0 ); 3953 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3954 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3955 rc = 1; 3956 }else{ 3957 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3958 } 3959 return rc; 3960 } 3961 3962 /* 3963 ** Return true if the argument is non-NULL and the WAL module is using 3964 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3965 ** WAL module is using shared-memory, return false. 3966 */ 3967 int sqlite3WalHeapMemory(Wal *pWal){ 3968 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3969 } 3970 3971 #ifdef SQLITE_ENABLE_SNAPSHOT 3972 /* Create a snapshot object. The content of a snapshot is opaque to 3973 ** every other subsystem, so the WAL module can put whatever it needs 3974 ** in the object. 3975 */ 3976 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3977 int rc = SQLITE_OK; 3978 WalIndexHdr *pRet; 3979 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3980 3981 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3982 3983 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3984 *ppSnapshot = 0; 3985 return SQLITE_ERROR; 3986 } 3987 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3988 if( pRet==0 ){ 3989 rc = SQLITE_NOMEM_BKPT; 3990 }else{ 3991 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3992 *ppSnapshot = (sqlite3_snapshot*)pRet; 3993 } 3994 3995 return rc; 3996 } 3997 3998 /* Try to open on pSnapshot when the next read-transaction starts 3999 */ 4000 void sqlite3WalSnapshotOpen( 4001 Wal *pWal, 4002 sqlite3_snapshot *pSnapshot 4003 ){ 4004 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 4005 } 4006 4007 /* 4008 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 4009 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 4010 */ 4011 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 4012 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 4013 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 4014 4015 /* aSalt[0] is a copy of the value stored in the wal file header. It 4016 ** is incremented each time the wal file is restarted. */ 4017 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 4018 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 4019 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 4020 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 4021 return 0; 4022 } 4023 4024 /* 4025 ** The caller currently has a read transaction open on the database. 4026 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 4027 ** checks if the snapshot passed as the second argument is still 4028 ** available. If so, SQLITE_OK is returned. 4029 ** 4030 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 4031 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 4032 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 4033 ** lock is released before returning. 4034 */ 4035 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 4036 int rc; 4037 rc = walLockShared(pWal, WAL_CKPT_LOCK); 4038 if( rc==SQLITE_OK ){ 4039 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 4040 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 4041 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 4042 ){ 4043 rc = SQLITE_ERROR_SNAPSHOT; 4044 walUnlockShared(pWal, WAL_CKPT_LOCK); 4045 } 4046 } 4047 return rc; 4048 } 4049 4050 /* 4051 ** Release a lock obtained by an earlier successful call to 4052 ** sqlite3WalSnapshotCheck(). 4053 */ 4054 void sqlite3WalSnapshotUnlock(Wal *pWal){ 4055 assert( pWal ); 4056 walUnlockShared(pWal, WAL_CKPT_LOCK); 4057 } 4058 4059 4060 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4061 4062 #ifdef SQLITE_ENABLE_ZIPVFS 4063 /* 4064 ** If the argument is not NULL, it points to a Wal object that holds a 4065 ** read-lock. This function returns the database page-size if it is known, 4066 ** or zero if it is not (or if pWal is NULL). 4067 */ 4068 int sqlite3WalFramesize(Wal *pWal){ 4069 assert( pWal==0 || pWal->readLock>=0 ); 4070 return (pWal ? pWal->szPage : 0); 4071 } 4072 #endif 4073 4074 /* Return the sqlite3_file object for the WAL file 4075 */ 4076 sqlite3_file *sqlite3WalFile(Wal *pWal){ 4077 return pWal->pWalFd; 4078 } 4079 4080 #endif /* #ifndef SQLITE_OMIT_WAL */ 4081