xref: /sqlite-3.40.0/src/wal.c (revision 20de9f6c)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.  The values are:
165 **
166 **   HASHTABLE_NPAGE      4096
167 **   HASHTABLE_NPAGE_ONE  4062
168 **
169 ** Each index block contains two sections, a page-mapping that contains the
170 ** database page number associated with each wal frame, and a hash-table
171 ** that allows readers to query an index block for a specific page number.
172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
173 ** for the first index block) 32-bit page numbers. The first entry in the
174 ** first index-block contains the database page number corresponding to the
175 ** first frame in the WAL file. The first entry in the second index block
176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
177 ** the log, and so on.
178 **
179 ** The last index block in a wal-index usually contains less than the full
180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
181 ** depending on the contents of the WAL file. This does not change the
182 ** allocated size of the page-mapping array - the page-mapping array merely
183 ** contains unused entries.
184 **
185 ** Even without using the hash table, the last frame for page P
186 ** can be found by scanning the page-mapping sections of each index block
187 ** starting with the last index block and moving toward the first, and
188 ** within each index block, starting at the end and moving toward the
189 ** beginning.  The first entry that equals P corresponds to the frame
190 ** holding the content for that page.
191 **
192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
194 ** hash table for each page number in the mapping section, so the hash
195 ** table is never more than half full.  The expected number of collisions
196 ** prior to finding a match is 1.  Each entry of the hash table is an
197 ** 1-based index of an entry in the mapping section of the same
198 ** index block.   Let K be the 1-based index of the largest entry in
199 ** the mapping section.  (For index blocks other than the last, K will
200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
201 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
202 ** contain a value of 0.
203 **
204 ** To look for page P in the hash table, first compute a hash iKey on
205 ** P as follows:
206 **
207 **      iKey = (P * 383) % HASHTABLE_NSLOT
208 **
209 ** Then start scanning entries of the hash table, starting with iKey
210 ** (wrapping around to the beginning when the end of the hash table is
211 ** reached) until an unused hash slot is found. Let the first unused slot
212 ** be at index iUnused.  (iUnused might be less than iKey if there was
213 ** wrap-around.) Because the hash table is never more than half full,
214 ** the search is guaranteed to eventually hit an unused entry.  Let
215 ** iMax be the value between iKey and iUnused, closest to iUnused,
216 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
217 ** no hash slot such that aHash[i]==p) then page P is not in the
218 ** current index block.  Otherwise the iMax-th mapping entry of the
219 ** current index block corresponds to the last entry that references
220 ** page P.
221 **
222 ** A hash search begins with the last index block and moves toward the
223 ** first index block, looking for entries corresponding to page P.  On
224 ** average, only two or three slots in each index block need to be
225 ** examined in order to either find the last entry for page P, or to
226 ** establish that no such entry exists in the block.  Each index block
227 ** holds over 4000 entries.  So two or three index blocks are sufficient
228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
229 ** comparisons (on average) suffice to either locate a frame in the
230 ** WAL or to establish that the frame does not exist in the WAL.  This
231 ** is much faster than scanning the entire 10MB WAL.
232 **
233 ** Note that entries are added in order of increasing K.  Hence, one
234 ** reader might be using some value K0 and a second reader that started
235 ** at a later time (after additional transactions were added to the WAL
236 ** and to the wal-index) might be using a different value K1, where K1>K0.
237 ** Both readers can use the same hash table and mapping section to get
238 ** the correct result.  There may be entries in the hash table with
239 ** K>K0 but to the first reader, those entries will appear to be unused
240 ** slots in the hash table and so the first reader will get an answer as
241 ** if no values greater than K0 had ever been inserted into the hash table
242 ** in the first place - which is what reader one wants.  Meanwhile, the
243 ** second reader using K1 will see additional values that were inserted
244 ** later, which is exactly what reader two wants.
245 **
246 ** When a rollback occurs, the value of K is decreased. Hash table entries
247 ** that correspond to frames greater than the new K value are removed
248 ** from the hash table at this point.
249 */
250 #ifndef SQLITE_OMIT_WAL
251 
252 #include "wal.h"
253 
254 /*
255 ** Trace output macros
256 */
257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
258 int sqlite3WalTrace = 0;
259 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
260 #else
261 # define WALTRACE(X)
262 #endif
263 
264 /*
265 ** The maximum (and only) versions of the wal and wal-index formats
266 ** that may be interpreted by this version of SQLite.
267 **
268 ** If a client begins recovering a WAL file and finds that (a) the checksum
269 ** values in the wal-header are correct and (b) the version field is not
270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
271 **
272 ** Similarly, if a client successfully reads a wal-index header (i.e. the
273 ** checksum test is successful) and finds that the version field is not
274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
275 ** returns SQLITE_CANTOPEN.
276 */
277 #define WAL_MAX_VERSION      3007000
278 #define WALINDEX_MAX_VERSION 3007000
279 
280 /*
281 ** Index numbers for various locking bytes.   WAL_NREADER is the number
282 ** of available reader locks and should be at least 3.  The default
283 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
284 **
285 ** Technically, the various VFSes are free to implement these locks however
286 ** they see fit.  However, compatibility is encouraged so that VFSes can
287 ** interoperate.  The standard implemention used on both unix and windows
288 ** is for the index number to indicate a byte offset into the
289 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
290 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
291 ** should be 120) is the location in the shm file for the first locking
292 ** byte.
293 */
294 #define WAL_WRITE_LOCK         0
295 #define WAL_ALL_BUT_WRITE      1
296 #define WAL_CKPT_LOCK          1
297 #define WAL_RECOVER_LOCK       2
298 #define WAL_READ_LOCK(I)       (3+(I))
299 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
300 
301 
302 /* Object declarations */
303 typedef struct WalIndexHdr WalIndexHdr;
304 typedef struct WalIterator WalIterator;
305 typedef struct WalCkptInfo WalCkptInfo;
306 
307 
308 /*
309 ** The following object holds a copy of the wal-index header content.
310 **
311 ** The actual header in the wal-index consists of two copies of this
312 ** object followed by one instance of the WalCkptInfo object.
313 ** For all versions of SQLite through 3.10.0 and probably beyond,
314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
315 ** the total header size is 136 bytes.
316 **
317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
318 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
319 ** added in 3.7.1 when support for 64K pages was added.
320 */
321 struct WalIndexHdr {
322   u32 iVersion;                   /* Wal-index version */
323   u32 unused;                     /* Unused (padding) field */
324   u32 iChange;                    /* Counter incremented each transaction */
325   u8 isInit;                      /* 1 when initialized */
326   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
327   u16 szPage;                     /* Database page size in bytes. 1==64K */
328   u32 mxFrame;                    /* Index of last valid frame in the WAL */
329   u32 nPage;                      /* Size of database in pages */
330   u32 aFrameCksum[2];             /* Checksum of last frame in log */
331   u32 aSalt[2];                   /* Two salt values copied from WAL header */
332   u32 aCksum[2];                  /* Checksum over all prior fields */
333 };
334 
335 /*
336 ** A copy of the following object occurs in the wal-index immediately
337 ** following the second copy of the WalIndexHdr.  This object stores
338 ** information used by checkpoint.
339 **
340 ** nBackfill is the number of frames in the WAL that have been written
341 ** back into the database. (We call the act of moving content from WAL to
342 ** database "backfilling".)  The nBackfill number is never greater than
343 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
346 ** mxFrame back to zero when the WAL is reset.
347 **
348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
349 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
350 ** the nBackfillAttempted is set before any backfilling is done and the
351 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
352 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
354 **
355 ** The aLock[] field is a set of bytes used for locking.  These bytes should
356 ** never be read or written.
357 **
358 ** There is one entry in aReadMark[] for each reader lock.  If a reader
359 ** holds read-lock K, then the value in aReadMark[K] is no greater than
360 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
361 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
362 ** a special case; its value is never used and it exists as a place-holder
363 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
365 ** directly from the database.
366 **
367 ** The value of aReadMark[K] may only be changed by a thread that
368 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
369 ** aReadMark[K] cannot changed while there is a reader is using that mark
370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
371 **
372 ** The checkpointer may only transfer frames from WAL to database where
373 ** the frame numbers are less than or equal to every aReadMark[] that is
374 ** in use (that is, every aReadMark[j] for which there is a corresponding
375 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
376 ** largest value and will increase an unused aReadMark[] to mxFrame if there
377 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
379 ** in the WAL has been backfilled into the database) then new readers
380 ** will choose aReadMark[0] which has value 0 and hence such reader will
381 ** get all their all content directly from the database file and ignore
382 ** the WAL.
383 **
384 ** Writers normally append new frames to the end of the WAL.  However,
385 ** if nBackfill equals mxFrame (meaning that all WAL content has been
386 ** written back into the database) and if no readers are using the WAL
387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
388 ** the writer will first "reset" the WAL back to the beginning and start
389 ** writing new content beginning at frame 1.
390 **
391 ** We assume that 32-bit loads are atomic and so no locks are needed in
392 ** order to read from any aReadMark[] entries.
393 */
394 struct WalCkptInfo {
395   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
396   u32 aReadMark[WAL_NREADER];     /* Reader marks */
397   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
398   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
399   u32 notUsed0;                   /* Available for future enhancements */
400 };
401 #define READMARK_NOT_USED  0xffffffff
402 
403 
404 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
405 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
406 ** only support mandatory file-locks, we do not read or write data
407 ** from the region of the file on which locks are applied.
408 */
409 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
410 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
411 
412 /* Size of header before each frame in wal */
413 #define WAL_FRAME_HDRSIZE 24
414 
415 /* Size of write ahead log header, including checksum. */
416 #define WAL_HDRSIZE 32
417 
418 /* WAL magic value. Either this value, or the same value with the least
419 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
420 ** big-endian format in the first 4 bytes of a WAL file.
421 **
422 ** If the LSB is set, then the checksums for each frame within the WAL
423 ** file are calculated by treating all data as an array of 32-bit
424 ** big-endian words. Otherwise, they are calculated by interpreting
425 ** all data as 32-bit little-endian words.
426 */
427 #define WAL_MAGIC 0x377f0682
428 
429 /*
430 ** Return the offset of frame iFrame in the write-ahead log file,
431 ** assuming a database page size of szPage bytes. The offset returned
432 ** is to the start of the write-ahead log frame-header.
433 */
434 #define walFrameOffset(iFrame, szPage) (                               \
435   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
436 )
437 
438 /*
439 ** An open write-ahead log file is represented by an instance of the
440 ** following object.
441 */
442 struct Wal {
443   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
444   sqlite3_file *pDbFd;       /* File handle for the database file */
445   sqlite3_file *pWalFd;      /* File handle for WAL file */
446   u32 iCallback;             /* Value to pass to log callback (or 0) */
447   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
448   int nWiData;               /* Size of array apWiData */
449   int szFirstBlock;          /* Size of first block written to WAL file */
450   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
451   u32 szPage;                /* Database page size */
452   i16 readLock;              /* Which read lock is being held.  -1 for none */
453   u8 syncFlags;              /* Flags to use to sync header writes */
454   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
455   u8 writeLock;              /* True if in a write transaction */
456   u8 ckptLock;               /* True if holding a checkpoint lock */
457   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
458   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
459   u8 syncHeader;             /* Fsync the WAL header if true */
460   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
461   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
462   WalIndexHdr hdr;           /* Wal-index header for current transaction */
463   u32 minFrame;              /* Ignore wal frames before this one */
464   u32 iReCksum;              /* On commit, recalculate checksums from here */
465   const char *zWalName;      /* Name of WAL file */
466   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
467 #ifdef SQLITE_DEBUG
468   u8 lockError;              /* True if a locking error has occurred */
469 #endif
470 #ifdef SQLITE_ENABLE_SNAPSHOT
471   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
472 #endif
473 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
474   sqlite3 *db;
475 #endif
476 };
477 
478 /*
479 ** Candidate values for Wal.exclusiveMode.
480 */
481 #define WAL_NORMAL_MODE     0
482 #define WAL_EXCLUSIVE_MODE  1
483 #define WAL_HEAPMEMORY_MODE 2
484 
485 /*
486 ** Possible values for WAL.readOnly
487 */
488 #define WAL_RDWR        0    /* Normal read/write connection */
489 #define WAL_RDONLY      1    /* The WAL file is readonly */
490 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
491 
492 /*
493 ** Each page of the wal-index mapping contains a hash-table made up of
494 ** an array of HASHTABLE_NSLOT elements of the following type.
495 */
496 typedef u16 ht_slot;
497 
498 /*
499 ** This structure is used to implement an iterator that loops through
500 ** all frames in the WAL in database page order. Where two or more frames
501 ** correspond to the same database page, the iterator visits only the
502 ** frame most recently written to the WAL (in other words, the frame with
503 ** the largest index).
504 **
505 ** The internals of this structure are only accessed by:
506 **
507 **   walIteratorInit() - Create a new iterator,
508 **   walIteratorNext() - Step an iterator,
509 **   walIteratorFree() - Free an iterator.
510 **
511 ** This functionality is used by the checkpoint code (see walCheckpoint()).
512 */
513 struct WalIterator {
514   u32 iPrior;                     /* Last result returned from the iterator */
515   int nSegment;                   /* Number of entries in aSegment[] */
516   struct WalSegment {
517     int iNext;                    /* Next slot in aIndex[] not yet returned */
518     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
519     u32 *aPgno;                   /* Array of page numbers. */
520     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
521     int iZero;                    /* Frame number associated with aPgno[0] */
522   } aSegment[1];                  /* One for every 32KB page in the wal-index */
523 };
524 
525 /*
526 ** Define the parameters of the hash tables in the wal-index file. There
527 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
528 ** wal-index.
529 **
530 ** Changing any of these constants will alter the wal-index format and
531 ** create incompatibilities.
532 */
533 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
534 #define HASHTABLE_HASH_1     383                  /* Should be prime */
535 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
536 
537 /*
538 ** The block of page numbers associated with the first hash-table in a
539 ** wal-index is smaller than usual. This is so that there is a complete
540 ** hash-table on each aligned 32KB page of the wal-index.
541 */
542 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
543 
544 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
545 #define WALINDEX_PGSZ   (                                         \
546     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
547 )
548 
549 /*
550 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
551 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
552 ** numbered from zero.
553 **
554 ** If the wal-index is currently smaller the iPage pages then the size
555 ** of the wal-index might be increased, but only if it is safe to do
556 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
557 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
558 **
559 ** If this call is successful, *ppPage is set to point to the wal-index
560 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
561 ** then an SQLite error code is returned and *ppPage is set to 0.
562 */
563 static SQLITE_NOINLINE int walIndexPageRealloc(
564   Wal *pWal,               /* The WAL context */
565   int iPage,               /* The page we seek */
566   volatile u32 **ppPage    /* Write the page pointer here */
567 ){
568   int rc = SQLITE_OK;
569 
570   /* Enlarge the pWal->apWiData[] array if required */
571   if( pWal->nWiData<=iPage ){
572     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
573     volatile u32 **apNew;
574     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
575     if( !apNew ){
576       *ppPage = 0;
577       return SQLITE_NOMEM_BKPT;
578     }
579     memset((void*)&apNew[pWal->nWiData], 0,
580            sizeof(u32*)*(iPage+1-pWal->nWiData));
581     pWal->apWiData = apNew;
582     pWal->nWiData = iPage+1;
583   }
584 
585   /* Request a pointer to the required page from the VFS */
586   assert( pWal->apWiData[iPage]==0 );
587   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
588     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
589     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
590   }else{
591     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
592         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
593     );
594     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
595     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
596     if( rc==SQLITE_OK ){
597       if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
598     }else if( (rc&0xff)==SQLITE_READONLY ){
599       pWal->readOnly |= WAL_SHM_RDONLY;
600       if( rc==SQLITE_READONLY ){
601         rc = SQLITE_OK;
602       }
603     }
604   }
605 
606   *ppPage = pWal->apWiData[iPage];
607   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
608   return rc;
609 }
610 static int walIndexPage(
611   Wal *pWal,               /* The WAL context */
612   int iPage,               /* The page we seek */
613   volatile u32 **ppPage    /* Write the page pointer here */
614 ){
615   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
616     return walIndexPageRealloc(pWal, iPage, ppPage);
617   }
618   return SQLITE_OK;
619 }
620 
621 /*
622 ** Return a pointer to the WalCkptInfo structure in the wal-index.
623 */
624 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
625   assert( pWal->nWiData>0 && pWal->apWiData[0] );
626   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
627 }
628 
629 /*
630 ** Return a pointer to the WalIndexHdr structure in the wal-index.
631 */
632 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
633   assert( pWal->nWiData>0 && pWal->apWiData[0] );
634   return (volatile WalIndexHdr*)pWal->apWiData[0];
635 }
636 
637 /*
638 ** The argument to this macro must be of type u32. On a little-endian
639 ** architecture, it returns the u32 value that results from interpreting
640 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
641 ** returns the value that would be produced by interpreting the 4 bytes
642 ** of the input value as a little-endian integer.
643 */
644 #define BYTESWAP32(x) ( \
645     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
646   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
647 )
648 
649 /*
650 ** Generate or extend an 8 byte checksum based on the data in
651 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
652 ** initial values of 0 and 0 if aIn==NULL).
653 **
654 ** The checksum is written back into aOut[] before returning.
655 **
656 ** nByte must be a positive multiple of 8.
657 */
658 static void walChecksumBytes(
659   int nativeCksum, /* True for native byte-order, false for non-native */
660   u8 *a,           /* Content to be checksummed */
661   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
662   const u32 *aIn,  /* Initial checksum value input */
663   u32 *aOut        /* OUT: Final checksum value output */
664 ){
665   u32 s1, s2;
666   u32 *aData = (u32 *)a;
667   u32 *aEnd = (u32 *)&a[nByte];
668 
669   if( aIn ){
670     s1 = aIn[0];
671     s2 = aIn[1];
672   }else{
673     s1 = s2 = 0;
674   }
675 
676   assert( nByte>=8 );
677   assert( (nByte&0x00000007)==0 );
678   assert( nByte<=65536 );
679 
680   if( nativeCksum ){
681     do {
682       s1 += *aData++ + s2;
683       s2 += *aData++ + s1;
684     }while( aData<aEnd );
685   }else{
686     do {
687       s1 += BYTESWAP32(aData[0]) + s2;
688       s2 += BYTESWAP32(aData[1]) + s1;
689       aData += 2;
690     }while( aData<aEnd );
691   }
692 
693   aOut[0] = s1;
694   aOut[1] = s2;
695 }
696 
697 /*
698 ** If there is the possibility of concurrent access to the SHM file
699 ** from multiple threads and/or processes, then do a memory barrier.
700 */
701 static void walShmBarrier(Wal *pWal){
702   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703     sqlite3OsShmBarrier(pWal->pDbFd);
704   }
705 }
706 
707 /*
708 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
709 ** definition as a hint that the function contains constructs that
710 ** might give false-positive TSAN warnings.
711 **
712 ** See tag-20200519-1.
713 */
714 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
715 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
716 #else
717 # define SQLITE_NO_TSAN
718 #endif
719 
720 /*
721 ** Write the header information in pWal->hdr into the wal-index.
722 **
723 ** The checksum on pWal->hdr is updated before it is written.
724 */
725 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
726   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
727   const int nCksum = offsetof(WalIndexHdr, aCksum);
728 
729   assert( pWal->writeLock );
730   pWal->hdr.isInit = 1;
731   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
732   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
733   /* Possible TSAN false-positive.  See tag-20200519-1 */
734   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
735   walShmBarrier(pWal);
736   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
737 }
738 
739 /*
740 ** This function encodes a single frame header and writes it to a buffer
741 ** supplied by the caller. A frame-header is made up of a series of
742 ** 4-byte big-endian integers, as follows:
743 **
744 **     0: Page number.
745 **     4: For commit records, the size of the database image in pages
746 **        after the commit. For all other records, zero.
747 **     8: Salt-1 (copied from the wal-header)
748 **    12: Salt-2 (copied from the wal-header)
749 **    16: Checksum-1.
750 **    20: Checksum-2.
751 */
752 static void walEncodeFrame(
753   Wal *pWal,                      /* The write-ahead log */
754   u32 iPage,                      /* Database page number for frame */
755   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
756   u8 *aData,                      /* Pointer to page data */
757   u8 *aFrame                      /* OUT: Write encoded frame here */
758 ){
759   int nativeCksum;                /* True for native byte-order checksums */
760   u32 *aCksum = pWal->hdr.aFrameCksum;
761   assert( WAL_FRAME_HDRSIZE==24 );
762   sqlite3Put4byte(&aFrame[0], iPage);
763   sqlite3Put4byte(&aFrame[4], nTruncate);
764   if( pWal->iReCksum==0 ){
765     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
766 
767     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
768     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
769     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
770 
771     sqlite3Put4byte(&aFrame[16], aCksum[0]);
772     sqlite3Put4byte(&aFrame[20], aCksum[1]);
773   }else{
774     memset(&aFrame[8], 0, 16);
775   }
776 }
777 
778 /*
779 ** Check to see if the frame with header in aFrame[] and content
780 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
781 ** *pnTruncate and return true.  Return if the frame is not valid.
782 */
783 static int walDecodeFrame(
784   Wal *pWal,                      /* The write-ahead log */
785   u32 *piPage,                    /* OUT: Database page number for frame */
786   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
787   u8 *aData,                      /* Pointer to page data (for checksum) */
788   u8 *aFrame                      /* Frame data */
789 ){
790   int nativeCksum;                /* True for native byte-order checksums */
791   u32 *aCksum = pWal->hdr.aFrameCksum;
792   u32 pgno;                       /* Page number of the frame */
793   assert( WAL_FRAME_HDRSIZE==24 );
794 
795   /* A frame is only valid if the salt values in the frame-header
796   ** match the salt values in the wal-header.
797   */
798   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
799     return 0;
800   }
801 
802   /* A frame is only valid if the page number is creater than zero.
803   */
804   pgno = sqlite3Get4byte(&aFrame[0]);
805   if( pgno==0 ){
806     return 0;
807   }
808 
809   /* A frame is only valid if a checksum of the WAL header,
810   ** all prior frams, the first 16 bytes of this frame-header,
811   ** and the frame-data matches the checksum in the last 8
812   ** bytes of this frame-header.
813   */
814   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
815   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
816   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
817   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
818    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
819   ){
820     /* Checksum failed. */
821     return 0;
822   }
823 
824   /* If we reach this point, the frame is valid.  Return the page number
825   ** and the new database size.
826   */
827   *piPage = pgno;
828   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
829   return 1;
830 }
831 
832 
833 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
834 /*
835 ** Names of locks.  This routine is used to provide debugging output and is not
836 ** a part of an ordinary build.
837 */
838 static const char *walLockName(int lockIdx){
839   if( lockIdx==WAL_WRITE_LOCK ){
840     return "WRITE-LOCK";
841   }else if( lockIdx==WAL_CKPT_LOCK ){
842     return "CKPT-LOCK";
843   }else if( lockIdx==WAL_RECOVER_LOCK ){
844     return "RECOVER-LOCK";
845   }else{
846     static char zName[15];
847     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
848                      lockIdx-WAL_READ_LOCK(0));
849     return zName;
850   }
851 }
852 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
853 
854 
855 /*
856 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
857 ** A lock cannot be moved directly between shared and exclusive - it must go
858 ** through the unlocked state first.
859 **
860 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
861 */
862 static int walLockShared(Wal *pWal, int lockIdx){
863   int rc;
864   if( pWal->exclusiveMode ) return SQLITE_OK;
865   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
866                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
867   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
868             walLockName(lockIdx), rc ? "failed" : "ok"));
869   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
870   return rc;
871 }
872 static void walUnlockShared(Wal *pWal, int lockIdx){
873   if( pWal->exclusiveMode ) return;
874   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
875                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
876   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
877 }
878 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
879   int rc;
880   if( pWal->exclusiveMode ) return SQLITE_OK;
881   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
882                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
883   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
884             walLockName(lockIdx), n, rc ? "failed" : "ok"));
885   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
886   return rc;
887 }
888 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
889   if( pWal->exclusiveMode ) return;
890   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
891                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
892   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
893              walLockName(lockIdx), n));
894 }
895 
896 /*
897 ** Compute a hash on a page number.  The resulting hash value must land
898 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
899 ** the hash to the next value in the event of a collision.
900 */
901 static int walHash(u32 iPage){
902   assert( iPage>0 );
903   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
904   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
905 }
906 static int walNextHash(int iPriorHash){
907   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
908 }
909 
910 /*
911 ** An instance of the WalHashLoc object is used to describe the location
912 ** of a page hash table in the wal-index.  This becomes the return value
913 ** from walHashGet().
914 */
915 typedef struct WalHashLoc WalHashLoc;
916 struct WalHashLoc {
917   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
918   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
919   u32 iZero;                /* One less than the frame number of first indexed*/
920 };
921 
922 /*
923 ** Return pointers to the hash table and page number array stored on
924 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
925 ** numbered starting from 0.
926 **
927 ** Set output variable pLoc->aHash to point to the start of the hash table
928 ** in the wal-index file. Set pLoc->iZero to one less than the frame
929 ** number of the first frame indexed by this hash table. If a
930 ** slot in the hash table is set to N, it refers to frame number
931 ** (pLoc->iZero+N) in the log.
932 **
933 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
934 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
935 */
936 static int walHashGet(
937   Wal *pWal,                      /* WAL handle */
938   int iHash,                      /* Find the iHash'th table */
939   WalHashLoc *pLoc                /* OUT: Hash table location */
940 ){
941   int rc;                         /* Return code */
942 
943   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
944   assert( rc==SQLITE_OK || iHash>0 );
945 
946   if( rc==SQLITE_OK ){
947     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
948     if( iHash==0 ){
949       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
950       pLoc->iZero = 0;
951     }else{
952       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
953     }
954     pLoc->aPgno = &pLoc->aPgno[-1];
955   }
956   return rc;
957 }
958 
959 /*
960 ** Return the number of the wal-index page that contains the hash-table
961 ** and page-number array that contain entries corresponding to WAL frame
962 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
963 ** are numbered starting from 0.
964 */
965 static int walFramePage(u32 iFrame){
966   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
967   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
968        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
969        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
970        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
971        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
972   );
973   assert( iHash>=0 );
974   return iHash;
975 }
976 
977 /*
978 ** Return the page number associated with frame iFrame in this WAL.
979 */
980 static u32 walFramePgno(Wal *pWal, u32 iFrame){
981   int iHash = walFramePage(iFrame);
982   if( iHash==0 ){
983     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
984   }
985   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
986 }
987 
988 /*
989 ** Remove entries from the hash table that point to WAL slots greater
990 ** than pWal->hdr.mxFrame.
991 **
992 ** This function is called whenever pWal->hdr.mxFrame is decreased due
993 ** to a rollback or savepoint.
994 **
995 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
996 ** updated.  Any later hash tables will be automatically cleared when
997 ** pWal->hdr.mxFrame advances to the point where those hash tables are
998 ** actually needed.
999 */
1000 static void walCleanupHash(Wal *pWal){
1001   WalHashLoc sLoc;                /* Hash table location */
1002   int iLimit = 0;                 /* Zero values greater than this */
1003   int nByte;                      /* Number of bytes to zero in aPgno[] */
1004   int i;                          /* Used to iterate through aHash[] */
1005 
1006   assert( pWal->writeLock );
1007   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1008   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1009   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1010 
1011   if( pWal->hdr.mxFrame==0 ) return;
1012 
1013   /* Obtain pointers to the hash-table and page-number array containing
1014   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1015   ** that the page said hash-table and array reside on is already mapped.(1)
1016   */
1017   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1018   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1019   i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1020   if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
1021 
1022   /* Zero all hash-table entries that correspond to frame numbers greater
1023   ** than pWal->hdr.mxFrame.
1024   */
1025   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1026   assert( iLimit>0 );
1027   for(i=0; i<HASHTABLE_NSLOT; i++){
1028     if( sLoc.aHash[i]>iLimit ){
1029       sLoc.aHash[i] = 0;
1030     }
1031   }
1032 
1033   /* Zero the entries in the aPgno array that correspond to frames with
1034   ** frame numbers greater than pWal->hdr.mxFrame.
1035   */
1036   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1037   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1038 
1039 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1040   /* Verify that the every entry in the mapping region is still reachable
1041   ** via the hash table even after the cleanup.
1042   */
1043   if( iLimit ){
1044     int j;           /* Loop counter */
1045     int iKey;        /* Hash key */
1046     for(j=1; j<=iLimit; j++){
1047       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1048         if( sLoc.aHash[iKey]==j ) break;
1049       }
1050       assert( sLoc.aHash[iKey]==j );
1051     }
1052   }
1053 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1054 }
1055 
1056 
1057 /*
1058 ** Set an entry in the wal-index that will map database page number
1059 ** pPage into WAL frame iFrame.
1060 */
1061 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1062   int rc;                         /* Return code */
1063   WalHashLoc sLoc;                /* Wal-index hash table location */
1064 
1065   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1066 
1067   /* Assuming the wal-index file was successfully mapped, populate the
1068   ** page number array and hash table entry.
1069   */
1070   if( rc==SQLITE_OK ){
1071     int iKey;                     /* Hash table key */
1072     int idx;                      /* Value to write to hash-table slot */
1073     int nCollide;                 /* Number of hash collisions */
1074 
1075     idx = iFrame - sLoc.iZero;
1076     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1077 
1078     /* If this is the first entry to be added to this hash-table, zero the
1079     ** entire hash table and aPgno[] array before proceeding.
1080     */
1081     if( idx==1 ){
1082       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1083                                - (u8 *)&sLoc.aPgno[1]);
1084       memset((void*)&sLoc.aPgno[1], 0, nByte);
1085     }
1086 
1087     /* If the entry in aPgno[] is already set, then the previous writer
1088     ** must have exited unexpectedly in the middle of a transaction (after
1089     ** writing one or more dirty pages to the WAL to free up memory).
1090     ** Remove the remnants of that writers uncommitted transaction from
1091     ** the hash-table before writing any new entries.
1092     */
1093     if( sLoc.aPgno[idx] ){
1094       walCleanupHash(pWal);
1095       assert( !sLoc.aPgno[idx] );
1096     }
1097 
1098     /* Write the aPgno[] array entry and the hash-table slot. */
1099     nCollide = idx;
1100     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1101       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1102     }
1103     sLoc.aPgno[idx] = iPage;
1104     AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1105 
1106 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1107     /* Verify that the number of entries in the hash table exactly equals
1108     ** the number of entries in the mapping region.
1109     */
1110     {
1111       int i;           /* Loop counter */
1112       int nEntry = 0;  /* Number of entries in the hash table */
1113       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1114       assert( nEntry==idx );
1115     }
1116 
1117     /* Verify that the every entry in the mapping region is reachable
1118     ** via the hash table.  This turns out to be a really, really expensive
1119     ** thing to check, so only do this occasionally - not on every
1120     ** iteration.
1121     */
1122     if( (idx&0x3ff)==0 ){
1123       int i;           /* Loop counter */
1124       for(i=1; i<=idx; i++){
1125         for(iKey=walHash(sLoc.aPgno[i]);
1126             sLoc.aHash[iKey];
1127             iKey=walNextHash(iKey)){
1128           if( sLoc.aHash[iKey]==i ) break;
1129         }
1130         assert( sLoc.aHash[iKey]==i );
1131       }
1132     }
1133 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1134   }
1135 
1136 
1137   return rc;
1138 }
1139 
1140 
1141 /*
1142 ** Recover the wal-index by reading the write-ahead log file.
1143 **
1144 ** This routine first tries to establish an exclusive lock on the
1145 ** wal-index to prevent other threads/processes from doing anything
1146 ** with the WAL or wal-index while recovery is running.  The
1147 ** WAL_RECOVER_LOCK is also held so that other threads will know
1148 ** that this thread is running recovery.  If unable to establish
1149 ** the necessary locks, this routine returns SQLITE_BUSY.
1150 */
1151 static int walIndexRecover(Wal *pWal){
1152   int rc;                         /* Return Code */
1153   i64 nSize;                      /* Size of log file */
1154   u32 aFrameCksum[2] = {0, 0};
1155   int iLock;                      /* Lock offset to lock for checkpoint */
1156 
1157   /* Obtain an exclusive lock on all byte in the locking range not already
1158   ** locked by the caller. The caller is guaranteed to have locked the
1159   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1160   ** If successful, the same bytes that are locked here are unlocked before
1161   ** this function returns.
1162   */
1163   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1164   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1165   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1166   assert( pWal->writeLock );
1167   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1168   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1169   if( rc ){
1170     return rc;
1171   }
1172 
1173   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1174 
1175   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1176 
1177   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1178   if( rc!=SQLITE_OK ){
1179     goto recovery_error;
1180   }
1181 
1182   if( nSize>WAL_HDRSIZE ){
1183     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1184     u32 *aPrivate = 0;            /* Heap copy of *-shm hash being populated */
1185     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1186     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1187     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1188     int szPage;                   /* Page size according to the log */
1189     u32 magic;                    /* Magic value read from WAL header */
1190     u32 version;                  /* Magic value read from WAL header */
1191     int isValid;                  /* True if this frame is valid */
1192     u32 iPg;                      /* Current 32KB wal-index page */
1193     u32 iLastFrame;               /* Last frame in wal, based on nSize alone */
1194 
1195     /* Read in the WAL header. */
1196     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1197     if( rc!=SQLITE_OK ){
1198       goto recovery_error;
1199     }
1200 
1201     /* If the database page size is not a power of two, or is greater than
1202     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1203     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1204     ** WAL file.
1205     */
1206     magic = sqlite3Get4byte(&aBuf[0]);
1207     szPage = sqlite3Get4byte(&aBuf[8]);
1208     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1209      || szPage&(szPage-1)
1210      || szPage>SQLITE_MAX_PAGE_SIZE
1211      || szPage<512
1212     ){
1213       goto finished;
1214     }
1215     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1216     pWal->szPage = szPage;
1217     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1218     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1219 
1220     /* Verify that the WAL header checksum is correct */
1221     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1222         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1223     );
1224     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1225      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1226     ){
1227       goto finished;
1228     }
1229 
1230     /* Verify that the version number on the WAL format is one that
1231     ** are able to understand */
1232     version = sqlite3Get4byte(&aBuf[4]);
1233     if( version!=WAL_MAX_VERSION ){
1234       rc = SQLITE_CANTOPEN_BKPT;
1235       goto finished;
1236     }
1237 
1238     /* Malloc a buffer to read frames into. */
1239     szFrame = szPage + WAL_FRAME_HDRSIZE;
1240     aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1241     if( !aFrame ){
1242       rc = SQLITE_NOMEM_BKPT;
1243       goto recovery_error;
1244     }
1245     aData = &aFrame[WAL_FRAME_HDRSIZE];
1246     aPrivate = (u32*)&aData[szPage];
1247 
1248     /* Read all frames from the log file. */
1249     iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1250     for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1251       u32 *aShare;
1252       u32 iFrame;                 /* Index of last frame read */
1253       u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1254       u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1255       u32 nHdr, nHdr32;
1256       rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1257       if( rc ) break;
1258       pWal->apWiData[iPg] = aPrivate;
1259 
1260       for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1261         i64 iOffset = walFrameOffset(iFrame, szPage);
1262         u32 pgno;                 /* Database page number for frame */
1263         u32 nTruncate;            /* dbsize field from frame header */
1264 
1265         /* Read and decode the next log frame. */
1266         rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1267         if( rc!=SQLITE_OK ) break;
1268         isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1269         if( !isValid ) break;
1270         rc = walIndexAppend(pWal, iFrame, pgno);
1271         if( NEVER(rc!=SQLITE_OK) ) break;
1272 
1273         /* If nTruncate is non-zero, this is a commit record. */
1274         if( nTruncate ){
1275           pWal->hdr.mxFrame = iFrame;
1276           pWal->hdr.nPage = nTruncate;
1277           pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1278           testcase( szPage<=32768 );
1279           testcase( szPage>=65536 );
1280           aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1281           aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1282         }
1283       }
1284       pWal->apWiData[iPg] = aShare;
1285       nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1286       nHdr32 = nHdr / sizeof(u32);
1287 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1288       /* Memcpy() should work fine here, on all reasonable implementations.
1289       ** Technically, memcpy() might change the destination to some
1290       ** intermediate value before setting to the final value, and that might
1291       ** cause a concurrent reader to malfunction.  Memcpy() is allowed to
1292       ** do that, according to the spec, but no memcpy() implementation that
1293       ** we know of actually does that, which is why we say that memcpy()
1294       ** is safe for this.  Memcpy() is certainly a lot faster.
1295       */
1296       memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1297 #else
1298       /* In the event that some platform is found for which memcpy()
1299       ** changes the destination to some intermediate value before
1300       ** setting the final value, this alternative copy routine is
1301       ** provided.
1302       */
1303       {
1304         int i;
1305         for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1306           if( aShare[i]!=aPrivate[i] ){
1307             /* Atomic memory operations are not required here because if
1308             ** the value needs to be changed, that means it is not being
1309             ** accessed concurrently. */
1310             aShare[i] = aPrivate[i];
1311           }
1312         }
1313       }
1314 #endif
1315       if( iFrame<=iLast ) break;
1316     }
1317 
1318     sqlite3_free(aFrame);
1319   }
1320 
1321 finished:
1322   if( rc==SQLITE_OK ){
1323     volatile WalCkptInfo *pInfo;
1324     int i;
1325     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1326     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1327     walIndexWriteHdr(pWal);
1328 
1329     /* Reset the checkpoint-header. This is safe because this thread is
1330     ** currently holding locks that exclude all other writers and
1331     ** checkpointers. Then set the values of read-mark slots 1 through N.
1332     */
1333     pInfo = walCkptInfo(pWal);
1334     pInfo->nBackfill = 0;
1335     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1336     pInfo->aReadMark[0] = 0;
1337     for(i=1; i<WAL_NREADER; i++){
1338       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1339       if( rc==SQLITE_OK ){
1340         if( i==1 && pWal->hdr.mxFrame ){
1341           pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1342         }else{
1343           pInfo->aReadMark[i] = READMARK_NOT_USED;
1344         }
1345         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1346       }else if( rc!=SQLITE_BUSY ){
1347         goto recovery_error;
1348       }
1349     }
1350 
1351     /* If more than one frame was recovered from the log file, report an
1352     ** event via sqlite3_log(). This is to help with identifying performance
1353     ** problems caused by applications routinely shutting down without
1354     ** checkpointing the log file.
1355     */
1356     if( pWal->hdr.nPage ){
1357       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1358           "recovered %d frames from WAL file %s",
1359           pWal->hdr.mxFrame, pWal->zWalName
1360       );
1361     }
1362   }
1363 
1364 recovery_error:
1365   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1366   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1367   return rc;
1368 }
1369 
1370 /*
1371 ** Close an open wal-index.
1372 */
1373 static void walIndexClose(Wal *pWal, int isDelete){
1374   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1375     int i;
1376     for(i=0; i<pWal->nWiData; i++){
1377       sqlite3_free((void *)pWal->apWiData[i]);
1378       pWal->apWiData[i] = 0;
1379     }
1380   }
1381   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1382     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1383   }
1384 }
1385 
1386 /*
1387 ** Open a connection to the WAL file zWalName. The database file must
1388 ** already be opened on connection pDbFd. The buffer that zWalName points
1389 ** to must remain valid for the lifetime of the returned Wal* handle.
1390 **
1391 ** A SHARED lock should be held on the database file when this function
1392 ** is called. The purpose of this SHARED lock is to prevent any other
1393 ** client from unlinking the WAL or wal-index file. If another process
1394 ** were to do this just after this client opened one of these files, the
1395 ** system would be badly broken.
1396 **
1397 ** If the log file is successfully opened, SQLITE_OK is returned and
1398 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1399 ** an SQLite error code is returned and *ppWal is left unmodified.
1400 */
1401 int sqlite3WalOpen(
1402   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1403   sqlite3_file *pDbFd,            /* The open database file */
1404   const char *zWalName,           /* Name of the WAL file */
1405   int bNoShm,                     /* True to run in heap-memory mode */
1406   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1407   Wal **ppWal                     /* OUT: Allocated Wal handle */
1408 ){
1409   int rc;                         /* Return Code */
1410   Wal *pRet;                      /* Object to allocate and return */
1411   int flags;                      /* Flags passed to OsOpen() */
1412 
1413   assert( zWalName && zWalName[0] );
1414   assert( pDbFd );
1415 
1416   /* Verify the values of various constants.  Any changes to the values
1417   ** of these constants would result in an incompatible on-disk format
1418   ** for the -shm file.  Any change that causes one of these asserts to
1419   ** fail is a backward compatibility problem, even if the change otherwise
1420   ** works.
1421   **
1422   ** This table also serves as a helpful cross-reference when trying to
1423   ** interpret hex dumps of the -shm file.
1424   */
1425   assert(    48 ==  sizeof(WalIndexHdr)  );
1426   assert(    40 ==  sizeof(WalCkptInfo)  );
1427   assert(   120 ==  WALINDEX_LOCK_OFFSET );
1428   assert(   136 ==  WALINDEX_HDR_SIZE    );
1429   assert(  4096 ==  HASHTABLE_NPAGE      );
1430   assert(  4062 ==  HASHTABLE_NPAGE_ONE  );
1431   assert(  8192 ==  HASHTABLE_NSLOT      );
1432   assert(   383 ==  HASHTABLE_HASH_1     );
1433   assert( 32768 ==  WALINDEX_PGSZ        );
1434   assert(     8 ==  SQLITE_SHM_NLOCK     );
1435   assert(     5 ==  WAL_NREADER          );
1436   assert(    24 ==  WAL_HDRSIZE          );
1437   assert(   120 ==  WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK   );
1438   assert(   121 ==  WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK    );
1439   assert(   122 ==  WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
1440   assert(   123 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
1441   assert(   124 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
1442   assert(   125 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
1443   assert(   126 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
1444   assert(   127 ==  WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
1445 
1446   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1447   ** this source file.  Verify that the #defines of the locking byte offsets
1448   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1449   ** For that matter, if the lock offset ever changes from its initial design
1450   ** value of 120, we need to know that so there is an assert() to check it.
1451   */
1452 #ifdef WIN_SHM_BASE
1453   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1454 #endif
1455 #ifdef UNIX_SHM_BASE
1456   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1457 #endif
1458 
1459 
1460   /* Allocate an instance of struct Wal to return. */
1461   *ppWal = 0;
1462   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1463   if( !pRet ){
1464     return SQLITE_NOMEM_BKPT;
1465   }
1466 
1467   pRet->pVfs = pVfs;
1468   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1469   pRet->pDbFd = pDbFd;
1470   pRet->readLock = -1;
1471   pRet->mxWalSize = mxWalSize;
1472   pRet->zWalName = zWalName;
1473   pRet->syncHeader = 1;
1474   pRet->padToSectorBoundary = 1;
1475   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1476 
1477   /* Open file handle on the write-ahead log file. */
1478   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1479   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1480   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1481     pRet->readOnly = WAL_RDONLY;
1482   }
1483 
1484   if( rc!=SQLITE_OK ){
1485     walIndexClose(pRet, 0);
1486     sqlite3OsClose(pRet->pWalFd);
1487     sqlite3_free(pRet);
1488   }else{
1489     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1490     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1491     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1492       pRet->padToSectorBoundary = 0;
1493     }
1494     *ppWal = pRet;
1495     WALTRACE(("WAL%d: opened\n", pRet));
1496   }
1497   return rc;
1498 }
1499 
1500 /*
1501 ** Change the size to which the WAL file is trucated on each reset.
1502 */
1503 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1504   if( pWal ) pWal->mxWalSize = iLimit;
1505 }
1506 
1507 /*
1508 ** Find the smallest page number out of all pages held in the WAL that
1509 ** has not been returned by any prior invocation of this method on the
1510 ** same WalIterator object.   Write into *piFrame the frame index where
1511 ** that page was last written into the WAL.  Write into *piPage the page
1512 ** number.
1513 **
1514 ** Return 0 on success.  If there are no pages in the WAL with a page
1515 ** number larger than *piPage, then return 1.
1516 */
1517 static int walIteratorNext(
1518   WalIterator *p,               /* Iterator */
1519   u32 *piPage,                  /* OUT: The page number of the next page */
1520   u32 *piFrame                  /* OUT: Wal frame index of next page */
1521 ){
1522   u32 iMin;                     /* Result pgno must be greater than iMin */
1523   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1524   int i;                        /* For looping through segments */
1525 
1526   iMin = p->iPrior;
1527   assert( iMin<0xffffffff );
1528   for(i=p->nSegment-1; i>=0; i--){
1529     struct WalSegment *pSegment = &p->aSegment[i];
1530     while( pSegment->iNext<pSegment->nEntry ){
1531       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1532       if( iPg>iMin ){
1533         if( iPg<iRet ){
1534           iRet = iPg;
1535           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1536         }
1537         break;
1538       }
1539       pSegment->iNext++;
1540     }
1541   }
1542 
1543   *piPage = p->iPrior = iRet;
1544   return (iRet==0xFFFFFFFF);
1545 }
1546 
1547 /*
1548 ** This function merges two sorted lists into a single sorted list.
1549 **
1550 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1551 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1552 ** is guaranteed for all J<K:
1553 **
1554 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1555 **        aContent[aRight[J]] < aContent[aRight[K]]
1556 **
1557 ** This routine overwrites aRight[] with a new (probably longer) sequence
1558 ** of indices such that the aRight[] contains every index that appears in
1559 ** either aLeft[] or the old aRight[] and such that the second condition
1560 ** above is still met.
1561 **
1562 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1563 ** aContent[aRight[X]] values will be unique too.  But there might be
1564 ** one or more combinations of X and Y such that
1565 **
1566 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1567 **
1568 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1569 */
1570 static void walMerge(
1571   const u32 *aContent,            /* Pages in wal - keys for the sort */
1572   ht_slot *aLeft,                 /* IN: Left hand input list */
1573   int nLeft,                      /* IN: Elements in array *paLeft */
1574   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1575   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1576   ht_slot *aTmp                   /* Temporary buffer */
1577 ){
1578   int iLeft = 0;                  /* Current index in aLeft */
1579   int iRight = 0;                 /* Current index in aRight */
1580   int iOut = 0;                   /* Current index in output buffer */
1581   int nRight = *pnRight;
1582   ht_slot *aRight = *paRight;
1583 
1584   assert( nLeft>0 && nRight>0 );
1585   while( iRight<nRight || iLeft<nLeft ){
1586     ht_slot logpage;
1587     Pgno dbpage;
1588 
1589     if( (iLeft<nLeft)
1590      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1591     ){
1592       logpage = aLeft[iLeft++];
1593     }else{
1594       logpage = aRight[iRight++];
1595     }
1596     dbpage = aContent[logpage];
1597 
1598     aTmp[iOut++] = logpage;
1599     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1600 
1601     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1602     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1603   }
1604 
1605   *paRight = aLeft;
1606   *pnRight = iOut;
1607   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1608 }
1609 
1610 /*
1611 ** Sort the elements in list aList using aContent[] as the sort key.
1612 ** Remove elements with duplicate keys, preferring to keep the
1613 ** larger aList[] values.
1614 **
1615 ** The aList[] entries are indices into aContent[].  The values in
1616 ** aList[] are to be sorted so that for all J<K:
1617 **
1618 **      aContent[aList[J]] < aContent[aList[K]]
1619 **
1620 ** For any X and Y such that
1621 **
1622 **      aContent[aList[X]] == aContent[aList[Y]]
1623 **
1624 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1625 ** the smaller.
1626 */
1627 static void walMergesort(
1628   const u32 *aContent,            /* Pages in wal */
1629   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1630   ht_slot *aList,                 /* IN/OUT: List to sort */
1631   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1632 ){
1633   struct Sublist {
1634     int nList;                    /* Number of elements in aList */
1635     ht_slot *aList;               /* Pointer to sub-list content */
1636   };
1637 
1638   const int nList = *pnList;      /* Size of input list */
1639   int nMerge = 0;                 /* Number of elements in list aMerge */
1640   ht_slot *aMerge = 0;            /* List to be merged */
1641   int iList;                      /* Index into input list */
1642   u32 iSub = 0;                   /* Index into aSub array */
1643   struct Sublist aSub[13];        /* Array of sub-lists */
1644 
1645   memset(aSub, 0, sizeof(aSub));
1646   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1647   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1648 
1649   for(iList=0; iList<nList; iList++){
1650     nMerge = 1;
1651     aMerge = &aList[iList];
1652     for(iSub=0; iList & (1<<iSub); iSub++){
1653       struct Sublist *p;
1654       assert( iSub<ArraySize(aSub) );
1655       p = &aSub[iSub];
1656       assert( p->aList && p->nList<=(1<<iSub) );
1657       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1658       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1659     }
1660     aSub[iSub].aList = aMerge;
1661     aSub[iSub].nList = nMerge;
1662   }
1663 
1664   for(iSub++; iSub<ArraySize(aSub); iSub++){
1665     if( nList & (1<<iSub) ){
1666       struct Sublist *p;
1667       assert( iSub<ArraySize(aSub) );
1668       p = &aSub[iSub];
1669       assert( p->nList<=(1<<iSub) );
1670       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1671       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1672     }
1673   }
1674   assert( aMerge==aList );
1675   *pnList = nMerge;
1676 
1677 #ifdef SQLITE_DEBUG
1678   {
1679     int i;
1680     for(i=1; i<*pnList; i++){
1681       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1682     }
1683   }
1684 #endif
1685 }
1686 
1687 /*
1688 ** Free an iterator allocated by walIteratorInit().
1689 */
1690 static void walIteratorFree(WalIterator *p){
1691   sqlite3_free(p);
1692 }
1693 
1694 /*
1695 ** Construct a WalInterator object that can be used to loop over all
1696 ** pages in the WAL following frame nBackfill in ascending order. Frames
1697 ** nBackfill or earlier may be included - excluding them is an optimization
1698 ** only. The caller must hold the checkpoint lock.
1699 **
1700 ** On success, make *pp point to the newly allocated WalInterator object
1701 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1702 ** returns an error, the value of *pp is undefined.
1703 **
1704 ** The calling routine should invoke walIteratorFree() to destroy the
1705 ** WalIterator object when it has finished with it.
1706 */
1707 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1708   WalIterator *p;                 /* Return value */
1709   int nSegment;                   /* Number of segments to merge */
1710   u32 iLast;                      /* Last frame in log */
1711   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1712   int i;                          /* Iterator variable */
1713   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1714   int rc = SQLITE_OK;             /* Return Code */
1715 
1716   /* This routine only runs while holding the checkpoint lock. And
1717   ** it only runs if there is actually content in the log (mxFrame>0).
1718   */
1719   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1720   iLast = pWal->hdr.mxFrame;
1721 
1722   /* Allocate space for the WalIterator object. */
1723   nSegment = walFramePage(iLast) + 1;
1724   nByte = sizeof(WalIterator)
1725         + (nSegment-1)*sizeof(struct WalSegment)
1726         + iLast*sizeof(ht_slot);
1727   p = (WalIterator *)sqlite3_malloc64(nByte);
1728   if( !p ){
1729     return SQLITE_NOMEM_BKPT;
1730   }
1731   memset(p, 0, nByte);
1732   p->nSegment = nSegment;
1733 
1734   /* Allocate temporary space used by the merge-sort routine. This block
1735   ** of memory will be freed before this function returns.
1736   */
1737   aTmp = (ht_slot *)sqlite3_malloc64(
1738       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1739   );
1740   if( !aTmp ){
1741     rc = SQLITE_NOMEM_BKPT;
1742   }
1743 
1744   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1745     WalHashLoc sLoc;
1746 
1747     rc = walHashGet(pWal, i, &sLoc);
1748     if( rc==SQLITE_OK ){
1749       int j;                      /* Counter variable */
1750       int nEntry;                 /* Number of entries in this segment */
1751       ht_slot *aIndex;            /* Sorted index for this segment */
1752 
1753       sLoc.aPgno++;
1754       if( (i+1)==nSegment ){
1755         nEntry = (int)(iLast - sLoc.iZero);
1756       }else{
1757         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1758       }
1759       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1760       sLoc.iZero++;
1761 
1762       for(j=0; j<nEntry; j++){
1763         aIndex[j] = (ht_slot)j;
1764       }
1765       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1766       p->aSegment[i].iZero = sLoc.iZero;
1767       p->aSegment[i].nEntry = nEntry;
1768       p->aSegment[i].aIndex = aIndex;
1769       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1770     }
1771   }
1772   sqlite3_free(aTmp);
1773 
1774   if( rc!=SQLITE_OK ){
1775     walIteratorFree(p);
1776     p = 0;
1777   }
1778   *pp = p;
1779   return rc;
1780 }
1781 
1782 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1783 /*
1784 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1785 ** they are supported by the VFS, and (b) the database handle is configured
1786 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1787 ** or 0 otherwise.
1788 */
1789 static int walEnableBlocking(Wal *pWal){
1790   int res = 0;
1791   if( pWal->db ){
1792     int tmout = pWal->db->busyTimeout;
1793     if( tmout ){
1794       int rc;
1795       rc = sqlite3OsFileControl(
1796           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1797       );
1798       res = (rc==SQLITE_OK);
1799     }
1800   }
1801   return res;
1802 }
1803 
1804 /*
1805 ** Disable blocking locks.
1806 */
1807 static void walDisableBlocking(Wal *pWal){
1808   int tmout = 0;
1809   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1810 }
1811 
1812 /*
1813 ** If parameter bLock is true, attempt to enable blocking locks, take
1814 ** the WRITER lock, and then disable blocking locks. If blocking locks
1815 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1816 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1817 ** an error if blocking locks can not be enabled.
1818 **
1819 ** If the bLock parameter is false and the WRITER lock is held, release it.
1820 */
1821 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1822   int rc = SQLITE_OK;
1823   assert( pWal->readLock<0 || bLock==0 );
1824   if( bLock ){
1825     assert( pWal->db );
1826     if( walEnableBlocking(pWal) ){
1827       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1828       if( rc==SQLITE_OK ){
1829         pWal->writeLock = 1;
1830       }
1831       walDisableBlocking(pWal);
1832     }
1833   }else if( pWal->writeLock ){
1834     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1835     pWal->writeLock = 0;
1836   }
1837   return rc;
1838 }
1839 
1840 /*
1841 ** Set the database handle used to determine if blocking locks are required.
1842 */
1843 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1844   pWal->db = db;
1845 }
1846 
1847 /*
1848 ** Take an exclusive WRITE lock. Blocking if so configured.
1849 */
1850 static int walLockWriter(Wal *pWal){
1851   int rc;
1852   walEnableBlocking(pWal);
1853   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1854   walDisableBlocking(pWal);
1855   return rc;
1856 }
1857 #else
1858 # define walEnableBlocking(x) 0
1859 # define walDisableBlocking(x)
1860 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1861 # define sqlite3WalDb(pWal, db)
1862 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1863 
1864 
1865 /*
1866 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1867 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1868 ** busy-handler function. Invoke it and retry the lock until either the
1869 ** lock is successfully obtained or the busy-handler returns 0.
1870 */
1871 static int walBusyLock(
1872   Wal *pWal,                      /* WAL connection */
1873   int (*xBusy)(void*),            /* Function to call when busy */
1874   void *pBusyArg,                 /* Context argument for xBusyHandler */
1875   int lockIdx,                    /* Offset of first byte to lock */
1876   int n                           /* Number of bytes to lock */
1877 ){
1878   int rc;
1879   do {
1880     rc = walLockExclusive(pWal, lockIdx, n);
1881   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1882 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1883   if( rc==SQLITE_BUSY_TIMEOUT ){
1884     walDisableBlocking(pWal);
1885     rc = SQLITE_BUSY;
1886   }
1887 #endif
1888   return rc;
1889 }
1890 
1891 /*
1892 ** The cache of the wal-index header must be valid to call this function.
1893 ** Return the page-size in bytes used by the database.
1894 */
1895 static int walPagesize(Wal *pWal){
1896   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1897 }
1898 
1899 /*
1900 ** The following is guaranteed when this function is called:
1901 **
1902 **   a) the WRITER lock is held,
1903 **   b) the entire log file has been checkpointed, and
1904 **   c) any existing readers are reading exclusively from the database
1905 **      file - there are no readers that may attempt to read a frame from
1906 **      the log file.
1907 **
1908 ** This function updates the shared-memory structures so that the next
1909 ** client to write to the database (which may be this one) does so by
1910 ** writing frames into the start of the log file.
1911 **
1912 ** The value of parameter salt1 is used as the aSalt[1] value in the
1913 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1914 ** one obtained from sqlite3_randomness()).
1915 */
1916 static void walRestartHdr(Wal *pWal, u32 salt1){
1917   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1918   int i;                          /* Loop counter */
1919   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1920   pWal->nCkpt++;
1921   pWal->hdr.mxFrame = 0;
1922   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1923   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1924   walIndexWriteHdr(pWal);
1925   AtomicStore(&pInfo->nBackfill, 0);
1926   pInfo->nBackfillAttempted = 0;
1927   pInfo->aReadMark[1] = 0;
1928   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1929   assert( pInfo->aReadMark[0]==0 );
1930 }
1931 
1932 /*
1933 ** Copy as much content as we can from the WAL back into the database file
1934 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1935 **
1936 ** The amount of information copies from WAL to database might be limited
1937 ** by active readers.  This routine will never overwrite a database page
1938 ** that a concurrent reader might be using.
1939 **
1940 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1941 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1942 ** checkpoints are always run by a background thread or background
1943 ** process, foreground threads will never block on a lengthy fsync call.
1944 **
1945 ** Fsync is called on the WAL before writing content out of the WAL and
1946 ** into the database.  This ensures that if the new content is persistent
1947 ** in the WAL and can be recovered following a power-loss or hard reset.
1948 **
1949 ** Fsync is also called on the database file if (and only if) the entire
1950 ** WAL content is copied into the database file.  This second fsync makes
1951 ** it safe to delete the WAL since the new content will persist in the
1952 ** database file.
1953 **
1954 ** This routine uses and updates the nBackfill field of the wal-index header.
1955 ** This is the only routine that will increase the value of nBackfill.
1956 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1957 ** its value.)
1958 **
1959 ** The caller must be holding sufficient locks to ensure that no other
1960 ** checkpoint is running (in any other thread or process) at the same
1961 ** time.
1962 */
1963 static int walCheckpoint(
1964   Wal *pWal,                      /* Wal connection */
1965   sqlite3 *db,                    /* Check for interrupts on this handle */
1966   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1967   int (*xBusy)(void*),            /* Function to call when busy */
1968   void *pBusyArg,                 /* Context argument for xBusyHandler */
1969   int sync_flags,                 /* Flags for OsSync() (or 0) */
1970   u8 *zBuf                        /* Temporary buffer to use */
1971 ){
1972   int rc = SQLITE_OK;             /* Return code */
1973   int szPage;                     /* Database page-size */
1974   WalIterator *pIter = 0;         /* Wal iterator context */
1975   u32 iDbpage = 0;                /* Next database page to write */
1976   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1977   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1978   u32 mxPage;                     /* Max database page to write */
1979   int i;                          /* Loop counter */
1980   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1981 
1982   szPage = walPagesize(pWal);
1983   testcase( szPage<=32768 );
1984   testcase( szPage>=65536 );
1985   pInfo = walCkptInfo(pWal);
1986   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1987 
1988     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1989     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1990     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1991 
1992     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1993     ** safe to write into the database.  Frames beyond mxSafeFrame might
1994     ** overwrite database pages that are in use by active readers and thus
1995     ** cannot be backfilled from the WAL.
1996     */
1997     mxSafeFrame = pWal->hdr.mxFrame;
1998     mxPage = pWal->hdr.nPage;
1999     for(i=1; i<WAL_NREADER; i++){
2000       u32 y = AtomicLoad(pInfo->aReadMark+i);
2001       if( mxSafeFrame>y ){
2002         assert( y<=pWal->hdr.mxFrame );
2003         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
2004         if( rc==SQLITE_OK ){
2005           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
2006           AtomicStore(pInfo->aReadMark+i, iMark);
2007           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2008         }else if( rc==SQLITE_BUSY ){
2009           mxSafeFrame = y;
2010           xBusy = 0;
2011         }else{
2012           goto walcheckpoint_out;
2013         }
2014       }
2015     }
2016 
2017     /* Allocate the iterator */
2018     if( pInfo->nBackfill<mxSafeFrame ){
2019       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
2020       assert( rc==SQLITE_OK || pIter==0 );
2021     }
2022 
2023     if( pIter
2024      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
2025     ){
2026       u32 nBackfill = pInfo->nBackfill;
2027 
2028       pInfo->nBackfillAttempted = mxSafeFrame;
2029 
2030       /* Sync the WAL to disk */
2031       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2032 
2033       /* If the database may grow as a result of this checkpoint, hint
2034       ** about the eventual size of the db file to the VFS layer.
2035       */
2036       if( rc==SQLITE_OK ){
2037         i64 nReq = ((i64)mxPage * szPage);
2038         i64 nSize;                    /* Current size of database file */
2039         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2040         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2041         if( rc==SQLITE_OK && nSize<nReq ){
2042           if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2043             /* If the size of the final database is larger than the current
2044             ** database plus the amount of data in the wal file, plus the
2045             ** maximum size of the pending-byte page (65536 bytes), then
2046             ** must be corruption somewhere.  */
2047             rc = SQLITE_CORRUPT_BKPT;
2048           }else{
2049             sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2050           }
2051         }
2052 
2053       }
2054 
2055       /* Iterate through the contents of the WAL, copying data to the db file */
2056       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2057         i64 iOffset;
2058         assert( walFramePgno(pWal, iFrame)==iDbpage );
2059         if( AtomicLoad(&db->u1.isInterrupted) ){
2060           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2061           break;
2062         }
2063         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2064           continue;
2065         }
2066         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2067         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2068         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2069         if( rc!=SQLITE_OK ) break;
2070         iOffset = (iDbpage-1)*(i64)szPage;
2071         testcase( IS_BIG_INT(iOffset) );
2072         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2073         if( rc!=SQLITE_OK ) break;
2074       }
2075       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2076 
2077       /* If work was actually accomplished... */
2078       if( rc==SQLITE_OK ){
2079         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2080           i64 szDb = pWal->hdr.nPage*(i64)szPage;
2081           testcase( IS_BIG_INT(szDb) );
2082           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2083           if( rc==SQLITE_OK ){
2084             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2085           }
2086         }
2087         if( rc==SQLITE_OK ){
2088           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2089         }
2090       }
2091 
2092       /* Release the reader lock held while backfilling */
2093       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2094     }
2095 
2096     if( rc==SQLITE_BUSY ){
2097       /* Reset the return code so as not to report a checkpoint failure
2098       ** just because there are active readers.  */
2099       rc = SQLITE_OK;
2100     }
2101   }
2102 
2103   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2104   ** entire wal file has been copied into the database file, then block
2105   ** until all readers have finished using the wal file. This ensures that
2106   ** the next process to write to the database restarts the wal file.
2107   */
2108   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2109     assert( pWal->writeLock );
2110     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2111       rc = SQLITE_BUSY;
2112     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2113       u32 salt1;
2114       sqlite3_randomness(4, &salt1);
2115       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2116       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2117       if( rc==SQLITE_OK ){
2118         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2119           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2120           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2121           ** truncates the log file to zero bytes just prior to a
2122           ** successful return.
2123           **
2124           ** In theory, it might be safe to do this without updating the
2125           ** wal-index header in shared memory, as all subsequent reader or
2126           ** writer clients should see that the entire log file has been
2127           ** checkpointed and behave accordingly. This seems unsafe though,
2128           ** as it would leave the system in a state where the contents of
2129           ** the wal-index header do not match the contents of the
2130           ** file-system. To avoid this, update the wal-index header to
2131           ** indicate that the log file contains zero valid frames.  */
2132           walRestartHdr(pWal, salt1);
2133           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2134         }
2135         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2136       }
2137     }
2138   }
2139 
2140  walcheckpoint_out:
2141   walIteratorFree(pIter);
2142   return rc;
2143 }
2144 
2145 /*
2146 ** If the WAL file is currently larger than nMax bytes in size, truncate
2147 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2148 */
2149 static void walLimitSize(Wal *pWal, i64 nMax){
2150   i64 sz;
2151   int rx;
2152   sqlite3BeginBenignMalloc();
2153   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2154   if( rx==SQLITE_OK && (sz > nMax ) ){
2155     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2156   }
2157   sqlite3EndBenignMalloc();
2158   if( rx ){
2159     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2160   }
2161 }
2162 
2163 /*
2164 ** Close a connection to a log file.
2165 */
2166 int sqlite3WalClose(
2167   Wal *pWal,                      /* Wal to close */
2168   sqlite3 *db,                    /* For interrupt flag */
2169   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2170   int nBuf,
2171   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2172 ){
2173   int rc = SQLITE_OK;
2174   if( pWal ){
2175     int isDelete = 0;             /* True to unlink wal and wal-index files */
2176 
2177     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2178     ** ordinary, rollback-mode locking methods, this guarantees that the
2179     ** connection associated with this log file is the only connection to
2180     ** the database. In this case checkpoint the database and unlink both
2181     ** the wal and wal-index files.
2182     **
2183     ** The EXCLUSIVE lock is not released before returning.
2184     */
2185     if( zBuf!=0
2186      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2187     ){
2188       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2189         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2190       }
2191       rc = sqlite3WalCheckpoint(pWal, db,
2192           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2193       );
2194       if( rc==SQLITE_OK ){
2195         int bPersist = -1;
2196         sqlite3OsFileControlHint(
2197             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2198         );
2199         if( bPersist!=1 ){
2200           /* Try to delete the WAL file if the checkpoint completed and
2201           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2202           ** mode (!bPersist) */
2203           isDelete = 1;
2204         }else if( pWal->mxWalSize>=0 ){
2205           /* Try to truncate the WAL file to zero bytes if the checkpoint
2206           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2207           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2208           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2209           ** to zero bytes as truncating to the journal_size_limit might
2210           ** leave a corrupt WAL file on disk. */
2211           walLimitSize(pWal, 0);
2212         }
2213       }
2214     }
2215 
2216     walIndexClose(pWal, isDelete);
2217     sqlite3OsClose(pWal->pWalFd);
2218     if( isDelete ){
2219       sqlite3BeginBenignMalloc();
2220       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2221       sqlite3EndBenignMalloc();
2222     }
2223     WALTRACE(("WAL%p: closed\n", pWal));
2224     sqlite3_free((void *)pWal->apWiData);
2225     sqlite3_free(pWal);
2226   }
2227   return rc;
2228 }
2229 
2230 /*
2231 ** Try to read the wal-index header.  Return 0 on success and 1 if
2232 ** there is a problem.
2233 **
2234 ** The wal-index is in shared memory.  Another thread or process might
2235 ** be writing the header at the same time this procedure is trying to
2236 ** read it, which might result in inconsistency.  A dirty read is detected
2237 ** by verifying that both copies of the header are the same and also by
2238 ** a checksum on the header.
2239 **
2240 ** If and only if the read is consistent and the header is different from
2241 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2242 ** and *pChanged is set to 1.
2243 **
2244 ** If the checksum cannot be verified return non-zero. If the header
2245 ** is read successfully and the checksum verified, return zero.
2246 */
2247 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2248   u32 aCksum[2];                  /* Checksum on the header content */
2249   WalIndexHdr h1, h2;             /* Two copies of the header content */
2250   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2251 
2252   /* The first page of the wal-index must be mapped at this point. */
2253   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2254 
2255   /* Read the header. This might happen concurrently with a write to the
2256   ** same area of shared memory on a different CPU in a SMP,
2257   ** meaning it is possible that an inconsistent snapshot is read
2258   ** from the file. If this happens, return non-zero.
2259   **
2260   ** tag-20200519-1:
2261   ** There are two copies of the header at the beginning of the wal-index.
2262   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2263   ** Memory barriers are used to prevent the compiler or the hardware from
2264   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2265   ** give false-positive warnings about these accesses because the tools do not
2266   ** account for the double-read and the memory barrier. The use of mutexes
2267   ** here would be problematic as the memory being accessed is potentially
2268   ** shared among multiple processes and not all mutex implementions work
2269   ** reliably in that environment.
2270   */
2271   aHdr = walIndexHdr(pWal);
2272   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2273   walShmBarrier(pWal);
2274   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2275 
2276   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2277     return 1;   /* Dirty read */
2278   }
2279   if( h1.isInit==0 ){
2280     return 1;   /* Malformed header - probably all zeros */
2281   }
2282   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2283   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2284     return 1;   /* Checksum does not match */
2285   }
2286 
2287   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2288     *pChanged = 1;
2289     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2290     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2291     testcase( pWal->szPage<=32768 );
2292     testcase( pWal->szPage>=65536 );
2293   }
2294 
2295   /* The header was successfully read. Return zero. */
2296   return 0;
2297 }
2298 
2299 /*
2300 ** This is the value that walTryBeginRead returns when it needs to
2301 ** be retried.
2302 */
2303 #define WAL_RETRY  (-1)
2304 
2305 /*
2306 ** Read the wal-index header from the wal-index and into pWal->hdr.
2307 ** If the wal-header appears to be corrupt, try to reconstruct the
2308 ** wal-index from the WAL before returning.
2309 **
2310 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2311 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2312 ** to 0.
2313 **
2314 ** If the wal-index header is successfully read, return SQLITE_OK.
2315 ** Otherwise an SQLite error code.
2316 */
2317 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2318   int rc;                         /* Return code */
2319   int badHdr;                     /* True if a header read failed */
2320   volatile u32 *page0;            /* Chunk of wal-index containing header */
2321 
2322   /* Ensure that page 0 of the wal-index (the page that contains the
2323   ** wal-index header) is mapped. Return early if an error occurs here.
2324   */
2325   assert( pChanged );
2326   rc = walIndexPage(pWal, 0, &page0);
2327   if( rc!=SQLITE_OK ){
2328     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2329     if( rc==SQLITE_READONLY_CANTINIT ){
2330       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2331       ** was openable but is not writable, and this thread is unable to
2332       ** confirm that another write-capable connection has the shared-memory
2333       ** open, and hence the content of the shared-memory is unreliable,
2334       ** since the shared-memory might be inconsistent with the WAL file
2335       ** and there is no writer on hand to fix it. */
2336       assert( page0==0 );
2337       assert( pWal->writeLock==0 );
2338       assert( pWal->readOnly & WAL_SHM_RDONLY );
2339       pWal->bShmUnreliable = 1;
2340       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2341       *pChanged = 1;
2342     }else{
2343       return rc; /* Any other non-OK return is just an error */
2344     }
2345   }else{
2346     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2347     ** is zero, which prevents the SHM from growing */
2348     testcase( page0!=0 );
2349   }
2350   assert( page0!=0 || pWal->writeLock==0 );
2351 
2352   /* If the first page of the wal-index has been mapped, try to read the
2353   ** wal-index header immediately, without holding any lock. This usually
2354   ** works, but may fail if the wal-index header is corrupt or currently
2355   ** being modified by another thread or process.
2356   */
2357   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2358 
2359   /* If the first attempt failed, it might have been due to a race
2360   ** with a writer.  So get a WRITE lock and try again.
2361   */
2362   if( badHdr ){
2363     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2364       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2365         walUnlockShared(pWal, WAL_WRITE_LOCK);
2366         rc = SQLITE_READONLY_RECOVERY;
2367       }
2368     }else{
2369       int bWriteLock = pWal->writeLock;
2370       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2371         pWal->writeLock = 1;
2372         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2373           badHdr = walIndexTryHdr(pWal, pChanged);
2374           if( badHdr ){
2375             /* If the wal-index header is still malformed even while holding
2376             ** a WRITE lock, it can only mean that the header is corrupted and
2377             ** needs to be reconstructed.  So run recovery to do exactly that.
2378             */
2379             rc = walIndexRecover(pWal);
2380             *pChanged = 1;
2381           }
2382         }
2383         if( bWriteLock==0 ){
2384           pWal->writeLock = 0;
2385           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2386         }
2387       }
2388     }
2389   }
2390 
2391   /* If the header is read successfully, check the version number to make
2392   ** sure the wal-index was not constructed with some future format that
2393   ** this version of SQLite cannot understand.
2394   */
2395   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2396     rc = SQLITE_CANTOPEN_BKPT;
2397   }
2398   if( pWal->bShmUnreliable ){
2399     if( rc!=SQLITE_OK ){
2400       walIndexClose(pWal, 0);
2401       pWal->bShmUnreliable = 0;
2402       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2403       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2404       ** writer truncated the WAL out from under it.  If that happens, it
2405       ** indicates that a writer has fixed the SHM file for us, so retry */
2406       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2407     }
2408     pWal->exclusiveMode = WAL_NORMAL_MODE;
2409   }
2410 
2411   return rc;
2412 }
2413 
2414 /*
2415 ** Open a transaction in a connection where the shared-memory is read-only
2416 ** and where we cannot verify that there is a separate write-capable connection
2417 ** on hand to keep the shared-memory up-to-date with the WAL file.
2418 **
2419 ** This can happen, for example, when the shared-memory is implemented by
2420 ** memory-mapping a *-shm file, where a prior writer has shut down and
2421 ** left the *-shm file on disk, and now the present connection is trying
2422 ** to use that database but lacks write permission on the *-shm file.
2423 ** Other scenarios are also possible, depending on the VFS implementation.
2424 **
2425 ** Precondition:
2426 **
2427 **    The *-wal file has been read and an appropriate wal-index has been
2428 **    constructed in pWal->apWiData[] using heap memory instead of shared
2429 **    memory.
2430 **
2431 ** If this function returns SQLITE_OK, then the read transaction has
2432 ** been successfully opened. In this case output variable (*pChanged)
2433 ** is set to true before returning if the caller should discard the
2434 ** contents of the page cache before proceeding. Or, if it returns
2435 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2436 ** the caller should retry opening the read transaction from the
2437 ** beginning (including attempting to map the *-shm file).
2438 **
2439 ** If an error occurs, an SQLite error code is returned.
2440 */
2441 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2442   i64 szWal;                      /* Size of wal file on disk in bytes */
2443   i64 iOffset;                    /* Current offset when reading wal file */
2444   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2445   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2446   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2447   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2448   volatile void *pDummy;          /* Dummy argument for xShmMap */
2449   int rc;                         /* Return code */
2450   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2451 
2452   assert( pWal->bShmUnreliable );
2453   assert( pWal->readOnly & WAL_SHM_RDONLY );
2454   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2455 
2456   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2457   ** writers from running a checkpoint, but does not stop them
2458   ** from running recovery.  */
2459   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2460   if( rc!=SQLITE_OK ){
2461     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2462     goto begin_unreliable_shm_out;
2463   }
2464   pWal->readLock = 0;
2465 
2466   /* Check to see if a separate writer has attached to the shared-memory area,
2467   ** thus making the shared-memory "reliable" again.  Do this by invoking
2468   ** the xShmMap() routine of the VFS and looking to see if the return
2469   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2470   **
2471   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2472   ** cause the heap-memory WAL-index to be discarded and the actual
2473   ** shared memory to be used in its place.
2474   **
2475   ** This step is important because, even though this connection is holding
2476   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2477   ** have already checkpointed the WAL file and, while the current
2478   ** is active, wrap the WAL and start overwriting frames that this
2479   ** process wants to use.
2480   **
2481   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2482   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2483   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2484   ** even if some external agent does a "chmod" to make the shared-memory
2485   ** writable by us, until sqlite3OsShmUnmap() has been called.
2486   ** This is a requirement on the VFS implementation.
2487    */
2488   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2489   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2490   if( rc!=SQLITE_READONLY_CANTINIT ){
2491     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2492     goto begin_unreliable_shm_out;
2493   }
2494 
2495   /* We reach this point only if the real shared-memory is still unreliable.
2496   ** Assume the in-memory WAL-index substitute is correct and load it
2497   ** into pWal->hdr.
2498   */
2499   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2500 
2501   /* Make sure some writer hasn't come in and changed the WAL file out
2502   ** from under us, then disconnected, while we were not looking.
2503   */
2504   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2505   if( rc!=SQLITE_OK ){
2506     goto begin_unreliable_shm_out;
2507   }
2508   if( szWal<WAL_HDRSIZE ){
2509     /* If the wal file is too small to contain a wal-header and the
2510     ** wal-index header has mxFrame==0, then it must be safe to proceed
2511     ** reading the database file only. However, the page cache cannot
2512     ** be trusted, as a read/write connection may have connected, written
2513     ** the db, run a checkpoint, truncated the wal file and disconnected
2514     ** since this client's last read transaction.  */
2515     *pChanged = 1;
2516     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2517     goto begin_unreliable_shm_out;
2518   }
2519 
2520   /* Check the salt keys at the start of the wal file still match. */
2521   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2522   if( rc!=SQLITE_OK ){
2523     goto begin_unreliable_shm_out;
2524   }
2525   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2526     /* Some writer has wrapped the WAL file while we were not looking.
2527     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2528     ** rebuilt. */
2529     rc = WAL_RETRY;
2530     goto begin_unreliable_shm_out;
2531   }
2532 
2533   /* Allocate a buffer to read frames into */
2534   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2535   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2536   if( aFrame==0 ){
2537     rc = SQLITE_NOMEM_BKPT;
2538     goto begin_unreliable_shm_out;
2539   }
2540   aData = &aFrame[WAL_FRAME_HDRSIZE];
2541 
2542   /* Check to see if a complete transaction has been appended to the
2543   ** wal file since the heap-memory wal-index was created. If so, the
2544   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2545   ** the caller.  */
2546   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2547   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2548   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2549       iOffset+szFrame<=szWal;
2550       iOffset+=szFrame
2551   ){
2552     u32 pgno;                   /* Database page number for frame */
2553     u32 nTruncate;              /* dbsize field from frame header */
2554 
2555     /* Read and decode the next log frame. */
2556     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2557     if( rc!=SQLITE_OK ) break;
2558     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2559 
2560     /* If nTruncate is non-zero, then a complete transaction has been
2561     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2562     ** the loop.  */
2563     if( nTruncate ){
2564       rc = WAL_RETRY;
2565       break;
2566     }
2567   }
2568   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2569   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2570 
2571  begin_unreliable_shm_out:
2572   sqlite3_free(aFrame);
2573   if( rc!=SQLITE_OK ){
2574     int i;
2575     for(i=0; i<pWal->nWiData; i++){
2576       sqlite3_free((void*)pWal->apWiData[i]);
2577       pWal->apWiData[i] = 0;
2578     }
2579     pWal->bShmUnreliable = 0;
2580     sqlite3WalEndReadTransaction(pWal);
2581     *pChanged = 1;
2582   }
2583   return rc;
2584 }
2585 
2586 /*
2587 ** Attempt to start a read transaction.  This might fail due to a race or
2588 ** other transient condition.  When that happens, it returns WAL_RETRY to
2589 ** indicate to the caller that it is safe to retry immediately.
2590 **
2591 ** On success return SQLITE_OK.  On a permanent failure (such an
2592 ** I/O error or an SQLITE_BUSY because another process is running
2593 ** recovery) return a positive error code.
2594 **
2595 ** The useWal parameter is true to force the use of the WAL and disable
2596 ** the case where the WAL is bypassed because it has been completely
2597 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2598 ** to make a copy of the wal-index header into pWal->hdr.  If the
2599 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2600 ** to the caller that the local page cache is obsolete and needs to be
2601 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2602 ** be loaded and the pChanged parameter is unused.
2603 **
2604 ** The caller must set the cnt parameter to the number of prior calls to
2605 ** this routine during the current read attempt that returned WAL_RETRY.
2606 ** This routine will start taking more aggressive measures to clear the
2607 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2608 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2609 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2610 ** and is not honoring the locking protocol.  There is a vanishingly small
2611 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2612 ** bad luck when there is lots of contention for the wal-index, but that
2613 ** possibility is so small that it can be safely neglected, we believe.
2614 **
2615 ** On success, this routine obtains a read lock on
2616 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2617 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2618 ** that means the Wal does not hold any read lock.  The reader must not
2619 ** access any database page that is modified by a WAL frame up to and
2620 ** including frame number aReadMark[pWal->readLock].  The reader will
2621 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2622 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2623 ** completely and get all content directly from the database file.
2624 ** If the useWal parameter is 1 then the WAL will never be ignored and
2625 ** this routine will always set pWal->readLock>0 on success.
2626 ** When the read transaction is completed, the caller must release the
2627 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2628 **
2629 ** This routine uses the nBackfill and aReadMark[] fields of the header
2630 ** to select a particular WAL_READ_LOCK() that strives to let the
2631 ** checkpoint process do as much work as possible.  This routine might
2632 ** update values of the aReadMark[] array in the header, but if it does
2633 ** so it takes care to hold an exclusive lock on the corresponding
2634 ** WAL_READ_LOCK() while changing values.
2635 */
2636 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2637   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2638   u32 mxReadMark;                 /* Largest aReadMark[] value */
2639   int mxI;                        /* Index of largest aReadMark[] value */
2640   int i;                          /* Loop counter */
2641   int rc = SQLITE_OK;             /* Return code  */
2642   u32 mxFrame;                    /* Wal frame to lock to */
2643 
2644   assert( pWal->readLock<0 );     /* Not currently locked */
2645 
2646   /* useWal may only be set for read/write connections */
2647   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2648 
2649   /* Take steps to avoid spinning forever if there is a protocol error.
2650   **
2651   ** Circumstances that cause a RETRY should only last for the briefest
2652   ** instances of time.  No I/O or other system calls are done while the
2653   ** locks are held, so the locks should not be held for very long. But
2654   ** if we are unlucky, another process that is holding a lock might get
2655   ** paged out or take a page-fault that is time-consuming to resolve,
2656   ** during the few nanoseconds that it is holding the lock.  In that case,
2657   ** it might take longer than normal for the lock to free.
2658   **
2659   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2660   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2661   ** is more of a scheduler yield than an actual delay.  But on the 10th
2662   ** an subsequent retries, the delays start becoming longer and longer,
2663   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2664   ** The total delay time before giving up is less than 10 seconds.
2665   */
2666   if( cnt>5 ){
2667     int nDelay = 1;                      /* Pause time in microseconds */
2668     if( cnt>100 ){
2669       VVA_ONLY( pWal->lockError = 1; )
2670       return SQLITE_PROTOCOL;
2671     }
2672     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2673     sqlite3OsSleep(pWal->pVfs, nDelay);
2674   }
2675 
2676   if( !useWal ){
2677     assert( rc==SQLITE_OK );
2678     if( pWal->bShmUnreliable==0 ){
2679       rc = walIndexReadHdr(pWal, pChanged);
2680     }
2681     if( rc==SQLITE_BUSY ){
2682       /* If there is not a recovery running in another thread or process
2683       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2684       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2685       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2686       ** would be technically correct.  But the race is benign since with
2687       ** WAL_RETRY this routine will be called again and will probably be
2688       ** right on the second iteration.
2689       */
2690       if( pWal->apWiData[0]==0 ){
2691         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2692         ** We assume this is a transient condition, so return WAL_RETRY. The
2693         ** xShmMap() implementation used by the default unix and win32 VFS
2694         ** modules may return SQLITE_BUSY due to a race condition in the
2695         ** code that determines whether or not the shared-memory region
2696         ** must be zeroed before the requested page is returned.
2697         */
2698         rc = WAL_RETRY;
2699       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2700         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2701         rc = WAL_RETRY;
2702       }else if( rc==SQLITE_BUSY ){
2703         rc = SQLITE_BUSY_RECOVERY;
2704       }
2705     }
2706     if( rc!=SQLITE_OK ){
2707       return rc;
2708     }
2709     else if( pWal->bShmUnreliable ){
2710       return walBeginShmUnreliable(pWal, pChanged);
2711     }
2712   }
2713 
2714   assert( pWal->nWiData>0 );
2715   assert( pWal->apWiData[0]!=0 );
2716   pInfo = walCkptInfo(pWal);
2717   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2718 #ifdef SQLITE_ENABLE_SNAPSHOT
2719    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2720 #endif
2721   ){
2722     /* The WAL has been completely backfilled (or it is empty).
2723     ** and can be safely ignored.
2724     */
2725     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2726     walShmBarrier(pWal);
2727     if( rc==SQLITE_OK ){
2728       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2729         /* It is not safe to allow the reader to continue here if frames
2730         ** may have been appended to the log before READ_LOCK(0) was obtained.
2731         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2732         ** which implies that the database file contains a trustworthy
2733         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2734         ** happening, this is usually correct.
2735         **
2736         ** However, if frames have been appended to the log (or if the log
2737         ** is wrapped and written for that matter) before the READ_LOCK(0)
2738         ** is obtained, that is not necessarily true. A checkpointer may
2739         ** have started to backfill the appended frames but crashed before
2740         ** it finished. Leaving a corrupt image in the database file.
2741         */
2742         walUnlockShared(pWal, WAL_READ_LOCK(0));
2743         return WAL_RETRY;
2744       }
2745       pWal->readLock = 0;
2746       return SQLITE_OK;
2747     }else if( rc!=SQLITE_BUSY ){
2748       return rc;
2749     }
2750   }
2751 
2752   /* If we get this far, it means that the reader will want to use
2753   ** the WAL to get at content from recent commits.  The job now is
2754   ** to select one of the aReadMark[] entries that is closest to
2755   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2756   */
2757   mxReadMark = 0;
2758   mxI = 0;
2759   mxFrame = pWal->hdr.mxFrame;
2760 #ifdef SQLITE_ENABLE_SNAPSHOT
2761   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2762     mxFrame = pWal->pSnapshot->mxFrame;
2763   }
2764 #endif
2765   for(i=1; i<WAL_NREADER; i++){
2766     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2767     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2768       assert( thisMark!=READMARK_NOT_USED );
2769       mxReadMark = thisMark;
2770       mxI = i;
2771     }
2772   }
2773   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2774    && (mxReadMark<mxFrame || mxI==0)
2775   ){
2776     for(i=1; i<WAL_NREADER; i++){
2777       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2778       if( rc==SQLITE_OK ){
2779         AtomicStore(pInfo->aReadMark+i,mxFrame);
2780         mxReadMark = mxFrame;
2781         mxI = i;
2782         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2783         break;
2784       }else if( rc!=SQLITE_BUSY ){
2785         return rc;
2786       }
2787     }
2788   }
2789   if( mxI==0 ){
2790     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2791     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2792   }
2793 
2794   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2795   if( rc ){
2796     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2797   }
2798   /* Now that the read-lock has been obtained, check that neither the
2799   ** value in the aReadMark[] array or the contents of the wal-index
2800   ** header have changed.
2801   **
2802   ** It is necessary to check that the wal-index header did not change
2803   ** between the time it was read and when the shared-lock was obtained
2804   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2805   ** that the log file may have been wrapped by a writer, or that frames
2806   ** that occur later in the log than pWal->hdr.mxFrame may have been
2807   ** copied into the database by a checkpointer. If either of these things
2808   ** happened, then reading the database with the current value of
2809   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2810   ** instead.
2811   **
2812   ** Before checking that the live wal-index header has not changed
2813   ** since it was read, set Wal.minFrame to the first frame in the wal
2814   ** file that has not yet been checkpointed. This client will not need
2815   ** to read any frames earlier than minFrame from the wal file - they
2816   ** can be safely read directly from the database file.
2817   **
2818   ** Because a ShmBarrier() call is made between taking the copy of
2819   ** nBackfill and checking that the wal-header in shared-memory still
2820   ** matches the one cached in pWal->hdr, it is guaranteed that the
2821   ** checkpointer that set nBackfill was not working with a wal-index
2822   ** header newer than that cached in pWal->hdr. If it were, that could
2823   ** cause a problem. The checkpointer could omit to checkpoint
2824   ** a version of page X that lies before pWal->minFrame (call that version
2825   ** A) on the basis that there is a newer version (version B) of the same
2826   ** page later in the wal file. But if version B happens to like past
2827   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2828   ** that it can read version A from the database file. However, since
2829   ** we can guarantee that the checkpointer that set nBackfill could not
2830   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2831   */
2832   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2833   walShmBarrier(pWal);
2834   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2835    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2836   ){
2837     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2838     return WAL_RETRY;
2839   }else{
2840     assert( mxReadMark<=pWal->hdr.mxFrame );
2841     pWal->readLock = (i16)mxI;
2842   }
2843   return rc;
2844 }
2845 
2846 #ifdef SQLITE_ENABLE_SNAPSHOT
2847 /*
2848 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2849 ** variable so that older snapshots can be accessed. To do this, loop
2850 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2851 ** comparing their content to the corresponding page with the database
2852 ** file, if any. Set nBackfillAttempted to the frame number of the
2853 ** first frame for which the wal file content matches the db file.
2854 **
2855 ** This is only really safe if the file-system is such that any page
2856 ** writes made by earlier checkpointers were atomic operations, which
2857 ** is not always true. It is also possible that nBackfillAttempted
2858 ** may be left set to a value larger than expected, if a wal frame
2859 ** contains content that duplicate of an earlier version of the same
2860 ** page.
2861 **
2862 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2863 ** error occurs. It is not an error if nBackfillAttempted cannot be
2864 ** decreased at all.
2865 */
2866 int sqlite3WalSnapshotRecover(Wal *pWal){
2867   int rc;
2868 
2869   assert( pWal->readLock>=0 );
2870   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2871   if( rc==SQLITE_OK ){
2872     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2873     int szPage = (int)pWal->szPage;
2874     i64 szDb;                   /* Size of db file in bytes */
2875 
2876     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2877     if( rc==SQLITE_OK ){
2878       void *pBuf1 = sqlite3_malloc(szPage);
2879       void *pBuf2 = sqlite3_malloc(szPage);
2880       if( pBuf1==0 || pBuf2==0 ){
2881         rc = SQLITE_NOMEM;
2882       }else{
2883         u32 i = pInfo->nBackfillAttempted;
2884         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2885           WalHashLoc sLoc;          /* Hash table location */
2886           u32 pgno;                 /* Page number in db file */
2887           i64 iDbOff;               /* Offset of db file entry */
2888           i64 iWalOff;              /* Offset of wal file entry */
2889 
2890           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2891           if( rc!=SQLITE_OK ) break;
2892           pgno = sLoc.aPgno[i-sLoc.iZero];
2893           iDbOff = (i64)(pgno-1) * szPage;
2894 
2895           if( iDbOff+szPage<=szDb ){
2896             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2897             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2898 
2899             if( rc==SQLITE_OK ){
2900               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2901             }
2902 
2903             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2904               break;
2905             }
2906           }
2907 
2908           pInfo->nBackfillAttempted = i-1;
2909         }
2910       }
2911 
2912       sqlite3_free(pBuf1);
2913       sqlite3_free(pBuf2);
2914     }
2915     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2916   }
2917 
2918   return rc;
2919 }
2920 #endif /* SQLITE_ENABLE_SNAPSHOT */
2921 
2922 /*
2923 ** Begin a read transaction on the database.
2924 **
2925 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2926 ** it takes a snapshot of the state of the WAL and wal-index for the current
2927 ** instant in time.  The current thread will continue to use this snapshot.
2928 ** Other threads might append new content to the WAL and wal-index but
2929 ** that extra content is ignored by the current thread.
2930 **
2931 ** If the database contents have changes since the previous read
2932 ** transaction, then *pChanged is set to 1 before returning.  The
2933 ** Pager layer will use this to know that its cache is stale and
2934 ** needs to be flushed.
2935 */
2936 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2937   int rc;                         /* Return code */
2938   int cnt = 0;                    /* Number of TryBeginRead attempts */
2939 #ifdef SQLITE_ENABLE_SNAPSHOT
2940   int bChanged = 0;
2941   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2942 #endif
2943 
2944   assert( pWal->ckptLock==0 );
2945 
2946 #ifdef SQLITE_ENABLE_SNAPSHOT
2947   if( pSnapshot ){
2948     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2949       bChanged = 1;
2950     }
2951 
2952     /* It is possible that there is a checkpointer thread running
2953     ** concurrent with this code. If this is the case, it may be that the
2954     ** checkpointer has already determined that it will checkpoint
2955     ** snapshot X, where X is later in the wal file than pSnapshot, but
2956     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2957     ** its intent. To avoid the race condition this leads to, ensure that
2958     ** there is no checkpointer process by taking a shared CKPT lock
2959     ** before checking pInfo->nBackfillAttempted.  */
2960     (void)walEnableBlocking(pWal);
2961     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2962     walDisableBlocking(pWal);
2963 
2964     if( rc!=SQLITE_OK ){
2965       return rc;
2966     }
2967     pWal->ckptLock = 1;
2968   }
2969 #endif
2970 
2971   do{
2972     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2973   }while( rc==WAL_RETRY );
2974   testcase( (rc&0xff)==SQLITE_BUSY );
2975   testcase( (rc&0xff)==SQLITE_IOERR );
2976   testcase( rc==SQLITE_PROTOCOL );
2977   testcase( rc==SQLITE_OK );
2978 
2979 #ifdef SQLITE_ENABLE_SNAPSHOT
2980   if( rc==SQLITE_OK ){
2981     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2982       /* At this point the client has a lock on an aReadMark[] slot holding
2983       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2984       ** is populated with the wal-index header corresponding to the head
2985       ** of the wal file. Verify that pSnapshot is still valid before
2986       ** continuing.  Reasons why pSnapshot might no longer be valid:
2987       **
2988       **    (1)  The WAL file has been reset since the snapshot was taken.
2989       **         In this case, the salt will have changed.
2990       **
2991       **    (2)  A checkpoint as been attempted that wrote frames past
2992       **         pSnapshot->mxFrame into the database file.  Note that the
2993       **         checkpoint need not have completed for this to cause problems.
2994       */
2995       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2996 
2997       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2998       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2999 
3000       /* Check that the wal file has not been wrapped. Assuming that it has
3001       ** not, also check that no checkpointer has attempted to checkpoint any
3002       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
3003       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
3004       ** with *pSnapshot and set *pChanged as appropriate for opening the
3005       ** snapshot.  */
3006       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3007        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
3008       ){
3009         assert( pWal->readLock>0 );
3010         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
3011         *pChanged = bChanged;
3012       }else{
3013         rc = SQLITE_ERROR_SNAPSHOT;
3014       }
3015 
3016       /* A client using a non-current snapshot may not ignore any frames
3017       ** from the start of the wal file. This is because, for a system
3018       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3019       ** have omitted to checkpoint a frame earlier than minFrame in
3020       ** the file because there exists a frame after iSnapshot that
3021       ** is the same database page.  */
3022       pWal->minFrame = 1;
3023 
3024       if( rc!=SQLITE_OK ){
3025         sqlite3WalEndReadTransaction(pWal);
3026       }
3027     }
3028   }
3029 
3030   /* Release the shared CKPT lock obtained above. */
3031   if( pWal->ckptLock ){
3032     assert( pSnapshot );
3033     walUnlockShared(pWal, WAL_CKPT_LOCK);
3034     pWal->ckptLock = 0;
3035   }
3036 #endif
3037   return rc;
3038 }
3039 
3040 /*
3041 ** Finish with a read transaction.  All this does is release the
3042 ** read-lock.
3043 */
3044 void sqlite3WalEndReadTransaction(Wal *pWal){
3045   sqlite3WalEndWriteTransaction(pWal);
3046   if( pWal->readLock>=0 ){
3047     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3048     pWal->readLock = -1;
3049   }
3050 }
3051 
3052 /*
3053 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3054 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3055 ** to zero.
3056 **
3057 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3058 ** error does occur, the final value of *piRead is undefined.
3059 */
3060 int sqlite3WalFindFrame(
3061   Wal *pWal,                      /* WAL handle */
3062   Pgno pgno,                      /* Database page number to read data for */
3063   u32 *piRead                     /* OUT: Frame number (or zero) */
3064 ){
3065   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
3066   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
3067   int iHash;                      /* Used to loop through N hash tables */
3068   int iMinHash;
3069 
3070   /* This routine is only be called from within a read transaction. */
3071   assert( pWal->readLock>=0 || pWal->lockError );
3072 
3073   /* If the "last page" field of the wal-index header snapshot is 0, then
3074   ** no data will be read from the wal under any circumstances. Return early
3075   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
3076   ** then the WAL is ignored by the reader so return early, as if the
3077   ** WAL were empty.
3078   */
3079   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3080     *piRead = 0;
3081     return SQLITE_OK;
3082   }
3083 
3084   /* Search the hash table or tables for an entry matching page number
3085   ** pgno. Each iteration of the following for() loop searches one
3086   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3087   **
3088   ** This code might run concurrently to the code in walIndexAppend()
3089   ** that adds entries to the wal-index (and possibly to this hash
3090   ** table). This means the value just read from the hash
3091   ** slot (aHash[iKey]) may have been added before or after the
3092   ** current read transaction was opened. Values added after the
3093   ** read transaction was opened may have been written incorrectly -
3094   ** i.e. these slots may contain garbage data. However, we assume
3095   ** that any slots written before the current read transaction was
3096   ** opened remain unmodified.
3097   **
3098   ** For the reasons above, the if(...) condition featured in the inner
3099   ** loop of the following block is more stringent that would be required
3100   ** if we had exclusive access to the hash-table:
3101   **
3102   **   (aPgno[iFrame]==pgno):
3103   **     This condition filters out normal hash-table collisions.
3104   **
3105   **   (iFrame<=iLast):
3106   **     This condition filters out entries that were added to the hash
3107   **     table after the current read-transaction had started.
3108   */
3109   iMinHash = walFramePage(pWal->minFrame);
3110   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3111     WalHashLoc sLoc;              /* Hash table location */
3112     int iKey;                     /* Hash slot index */
3113     int nCollide;                 /* Number of hash collisions remaining */
3114     int rc;                       /* Error code */
3115     u32 iH;
3116 
3117     rc = walHashGet(pWal, iHash, &sLoc);
3118     if( rc!=SQLITE_OK ){
3119       return rc;
3120     }
3121     nCollide = HASHTABLE_NSLOT;
3122     iKey = walHash(pgno);
3123     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3124       u32 iFrame = iH + sLoc.iZero;
3125       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3126         assert( iFrame>iRead || CORRUPT_DB );
3127         iRead = iFrame;
3128       }
3129       if( (nCollide--)==0 ){
3130         return SQLITE_CORRUPT_BKPT;
3131       }
3132       iKey = walNextHash(iKey);
3133     }
3134     if( iRead ) break;
3135   }
3136 
3137 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3138   /* If expensive assert() statements are available, do a linear search
3139   ** of the wal-index file content. Make sure the results agree with the
3140   ** result obtained using the hash indexes above.  */
3141   {
3142     u32 iRead2 = 0;
3143     u32 iTest;
3144     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3145     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3146       if( walFramePgno(pWal, iTest)==pgno ){
3147         iRead2 = iTest;
3148         break;
3149       }
3150     }
3151     assert( iRead==iRead2 );
3152   }
3153 #endif
3154 
3155   *piRead = iRead;
3156   return SQLITE_OK;
3157 }
3158 
3159 /*
3160 ** Read the contents of frame iRead from the wal file into buffer pOut
3161 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3162 ** error code otherwise.
3163 */
3164 int sqlite3WalReadFrame(
3165   Wal *pWal,                      /* WAL handle */
3166   u32 iRead,                      /* Frame to read */
3167   int nOut,                       /* Size of buffer pOut in bytes */
3168   u8 *pOut                        /* Buffer to write page data to */
3169 ){
3170   int sz;
3171   i64 iOffset;
3172   sz = pWal->hdr.szPage;
3173   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3174   testcase( sz<=32768 );
3175   testcase( sz>=65536 );
3176   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3177   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3178   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3179 }
3180 
3181 /*
3182 ** Return the size of the database in pages (or zero, if unknown).
3183 */
3184 Pgno sqlite3WalDbsize(Wal *pWal){
3185   if( pWal && ALWAYS(pWal->readLock>=0) ){
3186     return pWal->hdr.nPage;
3187   }
3188   return 0;
3189 }
3190 
3191 
3192 /*
3193 ** This function starts a write transaction on the WAL.
3194 **
3195 ** A read transaction must have already been started by a prior call
3196 ** to sqlite3WalBeginReadTransaction().
3197 **
3198 ** If another thread or process has written into the database since
3199 ** the read transaction was started, then it is not possible for this
3200 ** thread to write as doing so would cause a fork.  So this routine
3201 ** returns SQLITE_BUSY in that case and no write transaction is started.
3202 **
3203 ** There can only be a single writer active at a time.
3204 */
3205 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3206   int rc;
3207 
3208 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3209   /* If the write-lock is already held, then it was obtained before the
3210   ** read-transaction was even opened, making this call a no-op.
3211   ** Return early. */
3212   if( pWal->writeLock ){
3213     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3214     return SQLITE_OK;
3215   }
3216 #endif
3217 
3218   /* Cannot start a write transaction without first holding a read
3219   ** transaction. */
3220   assert( pWal->readLock>=0 );
3221   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3222 
3223   if( pWal->readOnly ){
3224     return SQLITE_READONLY;
3225   }
3226 
3227   /* Only one writer allowed at a time.  Get the write lock.  Return
3228   ** SQLITE_BUSY if unable.
3229   */
3230   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3231   if( rc ){
3232     return rc;
3233   }
3234   pWal->writeLock = 1;
3235 
3236   /* If another connection has written to the database file since the
3237   ** time the read transaction on this connection was started, then
3238   ** the write is disallowed.
3239   */
3240   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3241     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3242     pWal->writeLock = 0;
3243     rc = SQLITE_BUSY_SNAPSHOT;
3244   }
3245 
3246   return rc;
3247 }
3248 
3249 /*
3250 ** End a write transaction.  The commit has already been done.  This
3251 ** routine merely releases the lock.
3252 */
3253 int sqlite3WalEndWriteTransaction(Wal *pWal){
3254   if( pWal->writeLock ){
3255     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3256     pWal->writeLock = 0;
3257     pWal->iReCksum = 0;
3258     pWal->truncateOnCommit = 0;
3259   }
3260   return SQLITE_OK;
3261 }
3262 
3263 /*
3264 ** If any data has been written (but not committed) to the log file, this
3265 ** function moves the write-pointer back to the start of the transaction.
3266 **
3267 ** Additionally, the callback function is invoked for each frame written
3268 ** to the WAL since the start of the transaction. If the callback returns
3269 ** other than SQLITE_OK, it is not invoked again and the error code is
3270 ** returned to the caller.
3271 **
3272 ** Otherwise, if the callback function does not return an error, this
3273 ** function returns SQLITE_OK.
3274 */
3275 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3276   int rc = SQLITE_OK;
3277   if( ALWAYS(pWal->writeLock) ){
3278     Pgno iMax = pWal->hdr.mxFrame;
3279     Pgno iFrame;
3280 
3281     /* Restore the clients cache of the wal-index header to the state it
3282     ** was in before the client began writing to the database.
3283     */
3284     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3285 
3286     for(iFrame=pWal->hdr.mxFrame+1;
3287         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3288         iFrame++
3289     ){
3290       /* This call cannot fail. Unless the page for which the page number
3291       ** is passed as the second argument is (a) in the cache and
3292       ** (b) has an outstanding reference, then xUndo is either a no-op
3293       ** (if (a) is false) or simply expels the page from the cache (if (b)
3294       ** is false).
3295       **
3296       ** If the upper layer is doing a rollback, it is guaranteed that there
3297       ** are no outstanding references to any page other than page 1. And
3298       ** page 1 is never written to the log until the transaction is
3299       ** committed. As a result, the call to xUndo may not fail.
3300       */
3301       assert( walFramePgno(pWal, iFrame)!=1 );
3302       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3303     }
3304     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3305   }
3306   return rc;
3307 }
3308 
3309 /*
3310 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3311 ** values. This function populates the array with values required to
3312 ** "rollback" the write position of the WAL handle back to the current
3313 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3314 */
3315 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3316   assert( pWal->writeLock );
3317   aWalData[0] = pWal->hdr.mxFrame;
3318   aWalData[1] = pWal->hdr.aFrameCksum[0];
3319   aWalData[2] = pWal->hdr.aFrameCksum[1];
3320   aWalData[3] = pWal->nCkpt;
3321 }
3322 
3323 /*
3324 ** Move the write position of the WAL back to the point identified by
3325 ** the values in the aWalData[] array. aWalData must point to an array
3326 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3327 ** by a call to WalSavepoint().
3328 */
3329 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3330   int rc = SQLITE_OK;
3331 
3332   assert( pWal->writeLock );
3333   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3334 
3335   if( aWalData[3]!=pWal->nCkpt ){
3336     /* This savepoint was opened immediately after the write-transaction
3337     ** was started. Right after that, the writer decided to wrap around
3338     ** to the start of the log. Update the savepoint values to match.
3339     */
3340     aWalData[0] = 0;
3341     aWalData[3] = pWal->nCkpt;
3342   }
3343 
3344   if( aWalData[0]<pWal->hdr.mxFrame ){
3345     pWal->hdr.mxFrame = aWalData[0];
3346     pWal->hdr.aFrameCksum[0] = aWalData[1];
3347     pWal->hdr.aFrameCksum[1] = aWalData[2];
3348     walCleanupHash(pWal);
3349   }
3350 
3351   return rc;
3352 }
3353 
3354 /*
3355 ** This function is called just before writing a set of frames to the log
3356 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3357 ** to the current log file, it is possible to overwrite the start of the
3358 ** existing log file with the new frames (i.e. "reset" the log). If so,
3359 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3360 ** unchanged.
3361 **
3362 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3363 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3364 ** if an error occurs.
3365 */
3366 static int walRestartLog(Wal *pWal){
3367   int rc = SQLITE_OK;
3368   int cnt;
3369 
3370   if( pWal->readLock==0 ){
3371     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3372     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3373     if( pInfo->nBackfill>0 ){
3374       u32 salt1;
3375       sqlite3_randomness(4, &salt1);
3376       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3377       if( rc==SQLITE_OK ){
3378         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3379         ** readers are currently using the WAL), then the transactions
3380         ** frames will overwrite the start of the existing log. Update the
3381         ** wal-index header to reflect this.
3382         **
3383         ** In theory it would be Ok to update the cache of the header only
3384         ** at this point. But updating the actual wal-index header is also
3385         ** safe and means there is no special case for sqlite3WalUndo()
3386         ** to handle if this transaction is rolled back.  */
3387         walRestartHdr(pWal, salt1);
3388         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3389       }else if( rc!=SQLITE_BUSY ){
3390         return rc;
3391       }
3392     }
3393     walUnlockShared(pWal, WAL_READ_LOCK(0));
3394     pWal->readLock = -1;
3395     cnt = 0;
3396     do{
3397       int notUsed;
3398       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3399     }while( rc==WAL_RETRY );
3400     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3401     testcase( (rc&0xff)==SQLITE_IOERR );
3402     testcase( rc==SQLITE_PROTOCOL );
3403     testcase( rc==SQLITE_OK );
3404   }
3405   return rc;
3406 }
3407 
3408 /*
3409 ** Information about the current state of the WAL file and where
3410 ** the next fsync should occur - passed from sqlite3WalFrames() into
3411 ** walWriteToLog().
3412 */
3413 typedef struct WalWriter {
3414   Wal *pWal;                   /* The complete WAL information */
3415   sqlite3_file *pFd;           /* The WAL file to which we write */
3416   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3417   int syncFlags;               /* Flags for the fsync */
3418   int szPage;                  /* Size of one page */
3419 } WalWriter;
3420 
3421 /*
3422 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3423 ** Do a sync when crossing the p->iSyncPoint boundary.
3424 **
3425 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3426 ** first write the part before iSyncPoint, then sync, then write the
3427 ** rest.
3428 */
3429 static int walWriteToLog(
3430   WalWriter *p,              /* WAL to write to */
3431   void *pContent,            /* Content to be written */
3432   int iAmt,                  /* Number of bytes to write */
3433   sqlite3_int64 iOffset      /* Start writing at this offset */
3434 ){
3435   int rc;
3436   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3437     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3438     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3439     if( rc ) return rc;
3440     iOffset += iFirstAmt;
3441     iAmt -= iFirstAmt;
3442     pContent = (void*)(iFirstAmt + (char*)pContent);
3443     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3444     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3445     if( iAmt==0 || rc ) return rc;
3446   }
3447   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3448   return rc;
3449 }
3450 
3451 /*
3452 ** Write out a single frame of the WAL
3453 */
3454 static int walWriteOneFrame(
3455   WalWriter *p,               /* Where to write the frame */
3456   PgHdr *pPage,               /* The page of the frame to be written */
3457   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3458   sqlite3_int64 iOffset       /* Byte offset at which to write */
3459 ){
3460   int rc;                         /* Result code from subfunctions */
3461   void *pData;                    /* Data actually written */
3462   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3463   pData = pPage->pData;
3464   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3465   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3466   if( rc ) return rc;
3467   /* Write the page data */
3468   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3469   return rc;
3470 }
3471 
3472 /*
3473 ** This function is called as part of committing a transaction within which
3474 ** one or more frames have been overwritten. It updates the checksums for
3475 ** all frames written to the wal file by the current transaction starting
3476 ** with the earliest to have been overwritten.
3477 **
3478 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3479 */
3480 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3481   const int szPage = pWal->szPage;/* Database page size */
3482   int rc = SQLITE_OK;             /* Return code */
3483   u8 *aBuf;                       /* Buffer to load data from wal file into */
3484   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3485   u32 iRead;                      /* Next frame to read from wal file */
3486   i64 iCksumOff;
3487 
3488   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3489   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3490 
3491   /* Find the checksum values to use as input for the recalculating the
3492   ** first checksum. If the first frame is frame 1 (implying that the current
3493   ** transaction restarted the wal file), these values must be read from the
3494   ** wal-file header. Otherwise, read them from the frame header of the
3495   ** previous frame.  */
3496   assert( pWal->iReCksum>0 );
3497   if( pWal->iReCksum==1 ){
3498     iCksumOff = 24;
3499   }else{
3500     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3501   }
3502   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3503   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3504   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3505 
3506   iRead = pWal->iReCksum;
3507   pWal->iReCksum = 0;
3508   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3509     i64 iOff = walFrameOffset(iRead, szPage);
3510     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3511     if( rc==SQLITE_OK ){
3512       u32 iPgno, nDbSize;
3513       iPgno = sqlite3Get4byte(aBuf);
3514       nDbSize = sqlite3Get4byte(&aBuf[4]);
3515 
3516       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3517       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3518     }
3519   }
3520 
3521   sqlite3_free(aBuf);
3522   return rc;
3523 }
3524 
3525 /*
3526 ** Write a set of frames to the log. The caller must hold the write-lock
3527 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3528 */
3529 int sqlite3WalFrames(
3530   Wal *pWal,                      /* Wal handle to write to */
3531   int szPage,                     /* Database page-size in bytes */
3532   PgHdr *pList,                   /* List of dirty pages to write */
3533   Pgno nTruncate,                 /* Database size after this commit */
3534   int isCommit,                   /* True if this is a commit */
3535   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3536 ){
3537   int rc;                         /* Used to catch return codes */
3538   u32 iFrame;                     /* Next frame address */
3539   PgHdr *p;                       /* Iterator to run through pList with. */
3540   PgHdr *pLast = 0;               /* Last frame in list */
3541   int nExtra = 0;                 /* Number of extra copies of last page */
3542   int szFrame;                    /* The size of a single frame */
3543   i64 iOffset;                    /* Next byte to write in WAL file */
3544   WalWriter w;                    /* The writer */
3545   u32 iFirst = 0;                 /* First frame that may be overwritten */
3546   WalIndexHdr *pLive;             /* Pointer to shared header */
3547 
3548   assert( pList );
3549   assert( pWal->writeLock );
3550 
3551   /* If this frame set completes a transaction, then nTruncate>0.  If
3552   ** nTruncate==0 then this frame set does not complete the transaction. */
3553   assert( (isCommit!=0)==(nTruncate!=0) );
3554 
3555 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3556   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3557     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3558               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3559   }
3560 #endif
3561 
3562   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3563   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3564     iFirst = pLive->mxFrame+1;
3565   }
3566 
3567   /* See if it is possible to write these frames into the start of the
3568   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3569   */
3570   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3571     return rc;
3572   }
3573 
3574   /* If this is the first frame written into the log, write the WAL
3575   ** header to the start of the WAL file. See comments at the top of
3576   ** this source file for a description of the WAL header format.
3577   */
3578   iFrame = pWal->hdr.mxFrame;
3579   if( iFrame==0 ){
3580     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3581     u32 aCksum[2];                /* Checksum for wal-header */
3582 
3583     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3584     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3585     sqlite3Put4byte(&aWalHdr[8], szPage);
3586     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3587     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3588     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3589     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3590     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3591     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3592 
3593     pWal->szPage = szPage;
3594     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3595     pWal->hdr.aFrameCksum[0] = aCksum[0];
3596     pWal->hdr.aFrameCksum[1] = aCksum[1];
3597     pWal->truncateOnCommit = 1;
3598 
3599     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3600     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3601     if( rc!=SQLITE_OK ){
3602       return rc;
3603     }
3604 
3605     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3606     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3607     ** an out-of-order write following a WAL restart could result in
3608     ** database corruption.  See the ticket:
3609     **
3610     **     https://sqlite.org/src/info/ff5be73dee
3611     */
3612     if( pWal->syncHeader ){
3613       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3614       if( rc ) return rc;
3615     }
3616   }
3617   assert( (int)pWal->szPage==szPage );
3618 
3619   /* Setup information needed to write frames into the WAL */
3620   w.pWal = pWal;
3621   w.pFd = pWal->pWalFd;
3622   w.iSyncPoint = 0;
3623   w.syncFlags = sync_flags;
3624   w.szPage = szPage;
3625   iOffset = walFrameOffset(iFrame+1, szPage);
3626   szFrame = szPage + WAL_FRAME_HDRSIZE;
3627 
3628   /* Write all frames into the log file exactly once */
3629   for(p=pList; p; p=p->pDirty){
3630     int nDbSize;   /* 0 normally.  Positive == commit flag */
3631 
3632     /* Check if this page has already been written into the wal file by
3633     ** the current transaction. If so, overwrite the existing frame and
3634     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3635     ** checksums must be recomputed when the transaction is committed.  */
3636     if( iFirst && (p->pDirty || isCommit==0) ){
3637       u32 iWrite = 0;
3638       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3639       assert( rc==SQLITE_OK || iWrite==0 );
3640       if( iWrite>=iFirst ){
3641         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3642         void *pData;
3643         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3644           pWal->iReCksum = iWrite;
3645         }
3646         pData = p->pData;
3647         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3648         if( rc ) return rc;
3649         p->flags &= ~PGHDR_WAL_APPEND;
3650         continue;
3651       }
3652     }
3653 
3654     iFrame++;
3655     assert( iOffset==walFrameOffset(iFrame, szPage) );
3656     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3657     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3658     if( rc ) return rc;
3659     pLast = p;
3660     iOffset += szFrame;
3661     p->flags |= PGHDR_WAL_APPEND;
3662   }
3663 
3664   /* Recalculate checksums within the wal file if required. */
3665   if( isCommit && pWal->iReCksum ){
3666     rc = walRewriteChecksums(pWal, iFrame);
3667     if( rc ) return rc;
3668   }
3669 
3670   /* If this is the end of a transaction, then we might need to pad
3671   ** the transaction and/or sync the WAL file.
3672   **
3673   ** Padding and syncing only occur if this set of frames complete a
3674   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3675   ** or synchronous==OFF, then no padding or syncing are needed.
3676   **
3677   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3678   ** needed and only the sync is done.  If padding is needed, then the
3679   ** final frame is repeated (with its commit mark) until the next sector
3680   ** boundary is crossed.  Only the part of the WAL prior to the last
3681   ** sector boundary is synced; the part of the last frame that extends
3682   ** past the sector boundary is written after the sync.
3683   */
3684   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3685     int bSync = 1;
3686     if( pWal->padToSectorBoundary ){
3687       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3688       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3689       bSync = (w.iSyncPoint==iOffset);
3690       testcase( bSync );
3691       while( iOffset<w.iSyncPoint ){
3692         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3693         if( rc ) return rc;
3694         iOffset += szFrame;
3695         nExtra++;
3696         assert( pLast!=0 );
3697       }
3698     }
3699     if( bSync ){
3700       assert( rc==SQLITE_OK );
3701       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3702     }
3703   }
3704 
3705   /* If this frame set completes the first transaction in the WAL and
3706   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3707   ** journal size limit, if possible.
3708   */
3709   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3710     i64 sz = pWal->mxWalSize;
3711     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3712       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3713     }
3714     walLimitSize(pWal, sz);
3715     pWal->truncateOnCommit = 0;
3716   }
3717 
3718   /* Append data to the wal-index. It is not necessary to lock the
3719   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3720   ** guarantees that there are no other writers, and no data that may
3721   ** be in use by existing readers is being overwritten.
3722   */
3723   iFrame = pWal->hdr.mxFrame;
3724   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3725     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3726     iFrame++;
3727     rc = walIndexAppend(pWal, iFrame, p->pgno);
3728   }
3729   assert( pLast!=0 || nExtra==0 );
3730   while( rc==SQLITE_OK && nExtra>0 ){
3731     iFrame++;
3732     nExtra--;
3733     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3734   }
3735 
3736   if( rc==SQLITE_OK ){
3737     /* Update the private copy of the header. */
3738     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3739     testcase( szPage<=32768 );
3740     testcase( szPage>=65536 );
3741     pWal->hdr.mxFrame = iFrame;
3742     if( isCommit ){
3743       pWal->hdr.iChange++;
3744       pWal->hdr.nPage = nTruncate;
3745     }
3746     /* If this is a commit, update the wal-index header too. */
3747     if( isCommit ){
3748       walIndexWriteHdr(pWal);
3749       pWal->iCallback = iFrame;
3750     }
3751   }
3752 
3753   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3754   return rc;
3755 }
3756 
3757 /*
3758 ** This routine is called to implement sqlite3_wal_checkpoint() and
3759 ** related interfaces.
3760 **
3761 ** Obtain a CHECKPOINT lock and then backfill as much information as
3762 ** we can from WAL into the database.
3763 **
3764 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3765 ** callback. In this case this function runs a blocking checkpoint.
3766 */
3767 int sqlite3WalCheckpoint(
3768   Wal *pWal,                      /* Wal connection */
3769   sqlite3 *db,                    /* Check this handle's interrupt flag */
3770   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3771   int (*xBusy)(void*),            /* Function to call when busy */
3772   void *pBusyArg,                 /* Context argument for xBusyHandler */
3773   int sync_flags,                 /* Flags to sync db file with (or 0) */
3774   int nBuf,                       /* Size of temporary buffer */
3775   u8 *zBuf,                       /* Temporary buffer to use */
3776   int *pnLog,                     /* OUT: Number of frames in WAL */
3777   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3778 ){
3779   int rc;                         /* Return code */
3780   int isChanged = 0;              /* True if a new wal-index header is loaded */
3781   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3782   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3783 
3784   assert( pWal->ckptLock==0 );
3785   assert( pWal->writeLock==0 );
3786 
3787   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3788   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3789   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3790 
3791   if( pWal->readOnly ) return SQLITE_READONLY;
3792   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3793 
3794   /* Enable blocking locks, if possible. If blocking locks are successfully
3795   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3796   sqlite3WalDb(pWal, db);
3797   (void)walEnableBlocking(pWal);
3798 
3799   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3800   ** "checkpoint" lock on the database file.
3801   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3802   ** checkpoint operation at the same time, the lock cannot be obtained and
3803   ** SQLITE_BUSY is returned.
3804   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3805   ** it will not be invoked in this case.
3806   */
3807   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3808   testcase( rc==SQLITE_BUSY );
3809   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3810   if( rc==SQLITE_OK ){
3811     pWal->ckptLock = 1;
3812 
3813     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3814     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3815     ** file.
3816     **
3817     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3818     ** immediately, and a busy-handler is configured, it is invoked and the
3819     ** writer lock retried until either the busy-handler returns 0 or the
3820     ** lock is successfully obtained.
3821     */
3822     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3823       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3824       if( rc==SQLITE_OK ){
3825         pWal->writeLock = 1;
3826       }else if( rc==SQLITE_BUSY ){
3827         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3828         xBusy2 = 0;
3829         rc = SQLITE_OK;
3830       }
3831     }
3832   }
3833 
3834 
3835   /* Read the wal-index header. */
3836   if( rc==SQLITE_OK ){
3837     walDisableBlocking(pWal);
3838     rc = walIndexReadHdr(pWal, &isChanged);
3839     (void)walEnableBlocking(pWal);
3840     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3841       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3842     }
3843   }
3844 
3845   /* Copy data from the log to the database file. */
3846   if( rc==SQLITE_OK ){
3847 
3848     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3849       rc = SQLITE_CORRUPT_BKPT;
3850     }else{
3851       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3852     }
3853 
3854     /* If no error occurred, set the output variables. */
3855     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3856       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3857       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3858     }
3859   }
3860 
3861   if( isChanged ){
3862     /* If a new wal-index header was loaded before the checkpoint was
3863     ** performed, then the pager-cache associated with pWal is now
3864     ** out of date. So zero the cached wal-index header to ensure that
3865     ** next time the pager opens a snapshot on this database it knows that
3866     ** the cache needs to be reset.
3867     */
3868     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3869   }
3870 
3871   walDisableBlocking(pWal);
3872   sqlite3WalDb(pWal, 0);
3873 
3874   /* Release the locks. */
3875   sqlite3WalEndWriteTransaction(pWal);
3876   if( pWal->ckptLock ){
3877     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3878     pWal->ckptLock = 0;
3879   }
3880   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3881 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3882   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3883 #endif
3884   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3885 }
3886 
3887 /* Return the value to pass to a sqlite3_wal_hook callback, the
3888 ** number of frames in the WAL at the point of the last commit since
3889 ** sqlite3WalCallback() was called.  If no commits have occurred since
3890 ** the last call, then return 0.
3891 */
3892 int sqlite3WalCallback(Wal *pWal){
3893   u32 ret = 0;
3894   if( pWal ){
3895     ret = pWal->iCallback;
3896     pWal->iCallback = 0;
3897   }
3898   return (int)ret;
3899 }
3900 
3901 /*
3902 ** This function is called to change the WAL subsystem into or out
3903 ** of locking_mode=EXCLUSIVE.
3904 **
3905 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3906 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3907 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3908 ** or if the acquisition of the lock fails, then return 0.  If the
3909 ** transition out of exclusive-mode is successful, return 1.  This
3910 ** operation must occur while the pager is still holding the exclusive
3911 ** lock on the main database file.
3912 **
3913 ** If op is one, then change from locking_mode=NORMAL into
3914 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3915 ** be released.  Return 1 if the transition is made and 0 if the
3916 ** WAL is already in exclusive-locking mode - meaning that this
3917 ** routine is a no-op.  The pager must already hold the exclusive lock
3918 ** on the main database file before invoking this operation.
3919 **
3920 ** If op is negative, then do a dry-run of the op==1 case but do
3921 ** not actually change anything. The pager uses this to see if it
3922 ** should acquire the database exclusive lock prior to invoking
3923 ** the op==1 case.
3924 */
3925 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3926   int rc;
3927   assert( pWal->writeLock==0 );
3928   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3929 
3930   /* pWal->readLock is usually set, but might be -1 if there was a
3931   ** prior error while attempting to acquire are read-lock. This cannot
3932   ** happen if the connection is actually in exclusive mode (as no xShmLock
3933   ** locks are taken in this case). Nor should the pager attempt to
3934   ** upgrade to exclusive-mode following such an error.
3935   */
3936   assert( pWal->readLock>=0 || pWal->lockError );
3937   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3938 
3939   if( op==0 ){
3940     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3941       pWal->exclusiveMode = WAL_NORMAL_MODE;
3942       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3943         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3944       }
3945       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3946     }else{
3947       /* Already in locking_mode=NORMAL */
3948       rc = 0;
3949     }
3950   }else if( op>0 ){
3951     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3952     assert( pWal->readLock>=0 );
3953     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3954     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3955     rc = 1;
3956   }else{
3957     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3958   }
3959   return rc;
3960 }
3961 
3962 /*
3963 ** Return true if the argument is non-NULL and the WAL module is using
3964 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3965 ** WAL module is using shared-memory, return false.
3966 */
3967 int sqlite3WalHeapMemory(Wal *pWal){
3968   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3969 }
3970 
3971 #ifdef SQLITE_ENABLE_SNAPSHOT
3972 /* Create a snapshot object.  The content of a snapshot is opaque to
3973 ** every other subsystem, so the WAL module can put whatever it needs
3974 ** in the object.
3975 */
3976 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3977   int rc = SQLITE_OK;
3978   WalIndexHdr *pRet;
3979   static const u32 aZero[4] = { 0, 0, 0, 0 };
3980 
3981   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3982 
3983   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3984     *ppSnapshot = 0;
3985     return SQLITE_ERROR;
3986   }
3987   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3988   if( pRet==0 ){
3989     rc = SQLITE_NOMEM_BKPT;
3990   }else{
3991     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3992     *ppSnapshot = (sqlite3_snapshot*)pRet;
3993   }
3994 
3995   return rc;
3996 }
3997 
3998 /* Try to open on pSnapshot when the next read-transaction starts
3999 */
4000 void sqlite3WalSnapshotOpen(
4001   Wal *pWal,
4002   sqlite3_snapshot *pSnapshot
4003 ){
4004   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4005 }
4006 
4007 /*
4008 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4009 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4010 */
4011 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4012   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4013   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4014 
4015   /* aSalt[0] is a copy of the value stored in the wal file header. It
4016   ** is incremented each time the wal file is restarted.  */
4017   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4018   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4019   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4020   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4021   return 0;
4022 }
4023 
4024 /*
4025 ** The caller currently has a read transaction open on the database.
4026 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4027 ** checks if the snapshot passed as the second argument is still
4028 ** available. If so, SQLITE_OK is returned.
4029 **
4030 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4031 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4032 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4033 ** lock is released before returning.
4034 */
4035 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4036   int rc;
4037   rc = walLockShared(pWal, WAL_CKPT_LOCK);
4038   if( rc==SQLITE_OK ){
4039     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4040     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4041      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4042     ){
4043       rc = SQLITE_ERROR_SNAPSHOT;
4044       walUnlockShared(pWal, WAL_CKPT_LOCK);
4045     }
4046   }
4047   return rc;
4048 }
4049 
4050 /*
4051 ** Release a lock obtained by an earlier successful call to
4052 ** sqlite3WalSnapshotCheck().
4053 */
4054 void sqlite3WalSnapshotUnlock(Wal *pWal){
4055   assert( pWal );
4056   walUnlockShared(pWal, WAL_CKPT_LOCK);
4057 }
4058 
4059 
4060 #endif /* SQLITE_ENABLE_SNAPSHOT */
4061 
4062 #ifdef SQLITE_ENABLE_ZIPVFS
4063 /*
4064 ** If the argument is not NULL, it points to a Wal object that holds a
4065 ** read-lock. This function returns the database page-size if it is known,
4066 ** or zero if it is not (or if pWal is NULL).
4067 */
4068 int sqlite3WalFramesize(Wal *pWal){
4069   assert( pWal==0 || pWal->readLock>=0 );
4070   return (pWal ? pWal->szPage : 0);
4071 }
4072 #endif
4073 
4074 /* Return the sqlite3_file object for the WAL file
4075 */
4076 sqlite3_file *sqlite3WalFile(Wal *pWal){
4077   return pWal->pWalFd;
4078 }
4079 
4080 #endif /* #ifndef SQLITE_OMIT_WAL */
4081