1 /* 2 ** 2010 February 1 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains the implementation of a write-ahead log (WAL) used in 14 ** "journal_mode=WAL" mode. 15 ** 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 17 ** 18 ** A WAL file consists of a header followed by zero or more "frames". 19 ** Each frame records the revised content of a single page from the 20 ** database file. All changes to the database are recorded by writing 21 ** frames into the WAL. Transactions commit when a frame is written that 22 ** contains a commit marker. A single WAL can and usually does record 23 ** multiple transactions. Periodically, the content of the WAL is 24 ** transferred back into the database file in an operation called a 25 ** "checkpoint". 26 ** 27 ** A single WAL file can be used multiple times. In other words, the 28 ** WAL can fill up with frames and then be checkpointed and then new 29 ** frames can overwrite the old ones. A WAL always grows from beginning 30 ** toward the end. Checksums and counters attached to each frame are 31 ** used to determine which frames within the WAL are valid and which 32 ** are leftovers from prior checkpoints. 33 ** 34 ** The WAL header is 32 bytes in size and consists of the following eight 35 ** big-endian 32-bit unsigned integer values: 36 ** 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 38 ** 4: File format version. Currently 3007000 39 ** 8: Database page size. Example: 1024 40 ** 12: Checkpoint sequence number 41 ** 16: Salt-1, random integer incremented with each checkpoint 42 ** 20: Salt-2, a different random integer changing with each ckpt 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 45 ** 46 ** Immediately following the wal-header are zero or more frames. Each 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 48 ** of page data. The frame-header is six big-endian 32-bit unsigned 49 ** integer values, as follows: 50 ** 51 ** 0: Page number. 52 ** 4: For commit records, the size of the database image in pages 53 ** after the commit. For all other records, zero. 54 ** 8: Salt-1 (copied from the header) 55 ** 12: Salt-2 (copied from the header) 56 ** 16: Checksum-1. 57 ** 20: Checksum-2. 58 ** 59 ** A frame is considered valid if and only if the following conditions are 60 ** true: 61 ** 62 ** (1) The salt-1 and salt-2 values in the frame-header match 63 ** salt values in the wal-header 64 ** 65 ** (2) The checksum values in the final 8 bytes of the frame-header 66 ** exactly match the checksum computed consecutively on the 67 ** WAL header and the first 8 bytes and the content of all frames 68 ** up to and including the current frame. 69 ** 70 ** The checksum is computed using 32-bit big-endian integers if the 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 72 ** is computed using little-endian if the magic number is 0x377f0682. 73 ** The checksum values are always stored in the frame header in a 74 ** big-endian format regardless of which byte order is used to compute 75 ** the checksum. The checksum is computed by interpreting the input as 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 77 ** algorithm used for the checksum is as follows: 78 ** 79 ** for i from 0 to n-1 step 2: 80 ** s0 += x[i] + s1; 81 ** s1 += x[i+1] + s0; 82 ** endfor 83 ** 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 85 ** in reverse order (the largest fibonacci weight occurs on the first element 86 ** of the sequence being summed.) The s1 value spans all 32-bit 87 ** terms of the sequence whereas s0 omits the final term. 88 ** 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 91 ** The VFS.xSync operations serve as write barriers - all writes launched 92 ** before the xSync must complete before any write that launches after the 93 ** xSync begins. 94 ** 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 96 ** value is randomized. This prevents old and new frames in the WAL from 97 ** being considered valid at the same time and being checkpointing together 98 ** following a crash. 99 ** 100 ** READER ALGORITHM 101 ** 102 ** To read a page from the database (call it page number P), a reader 103 ** first checks the WAL to see if it contains page P. If so, then the 104 ** last valid instance of page P that is a followed by a commit frame 105 ** or is a commit frame itself becomes the value read. If the WAL 106 ** contains no copies of page P that are valid and which are a commit 107 ** frame or are followed by a commit frame, then page P is read from 108 ** the database file. 109 ** 110 ** To start a read transaction, the reader records the index of the last 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 112 ** for all subsequent read operations. New transactions can be appended 113 ** to the WAL, but as long as the reader uses its original mxFrame value 114 ** and ignores the newly appended content, it will see a consistent snapshot 115 ** of the database from a single point in time. This technique allows 116 ** multiple concurrent readers to view different versions of the database 117 ** content simultaneously. 118 ** 119 ** The reader algorithm in the previous paragraphs works correctly, but 120 ** because frames for page P can appear anywhere within the WAL, the 121 ** reader has to scan the entire WAL looking for page P frames. If the 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 123 ** and read performance suffers. To overcome this problem, a separate 124 ** data structure called the wal-index is maintained to expedite the 125 ** search for frames of a particular page. 126 ** 127 ** WAL-INDEX FORMAT 128 ** 129 ** Conceptually, the wal-index is shared memory, though VFS implementations 130 ** might choose to implement the wal-index using a mmapped file. Because 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 132 ** on a network filesystem. All users of the database must be able to 133 ** share memory. 134 ** 135 ** In the default unix and windows implementation, the wal-index is a mmapped 136 ** file whose name is the database name with a "-shm" suffix added. For that 137 ** reason, the wal-index is sometimes called the "shm" file. 138 ** 139 ** The wal-index is transient. After a crash, the wal-index can (and should 140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 141 ** to either truncate or zero the header of the wal-index when the last 142 ** connection to it closes. Because the wal-index is transient, it can 143 ** use an architecture-specific format; it does not have to be cross-platform. 144 ** Hence, unlike the database and WAL file formats which store all values 145 ** as big endian, the wal-index can store multi-byte values in the native 146 ** byte order of the host computer. 147 ** 148 ** The purpose of the wal-index is to answer this question quickly: Given 149 ** a page number P and a maximum frame index M, return the index of the 150 ** last frame in the wal before frame M for page P in the WAL, or return 151 ** NULL if there are no frames for page P in the WAL prior to M. 152 ** 153 ** The wal-index consists of a header region, followed by an one or 154 ** more index blocks. 155 ** 156 ** The wal-index header contains the total number of frames within the WAL 157 ** in the mxFrame field. 158 ** 159 ** Each index block except for the first contains information on 160 ** HASHTABLE_NPAGE frames. The first index block contains information on 161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 163 ** first index block are the same size as all other index blocks in the 164 ** wal-index. 165 ** 166 ** Each index block contains two sections, a page-mapping that contains the 167 ** database page number associated with each wal frame, and a hash-table 168 ** that allows readers to query an index block for a specific page number. 169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 170 ** for the first index block) 32-bit page numbers. The first entry in the 171 ** first index-block contains the database page number corresponding to the 172 ** first frame in the WAL file. The first entry in the second index block 173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 174 ** the log, and so on. 175 ** 176 ** The last index block in a wal-index usually contains less than the full 177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 178 ** depending on the contents of the WAL file. This does not change the 179 ** allocated size of the page-mapping array - the page-mapping array merely 180 ** contains unused entries. 181 ** 182 ** Even without using the hash table, the last frame for page P 183 ** can be found by scanning the page-mapping sections of each index block 184 ** starting with the last index block and moving toward the first, and 185 ** within each index block, starting at the end and moving toward the 186 ** beginning. The first entry that equals P corresponds to the frame 187 ** holding the content for that page. 188 ** 189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 191 ** hash table for each page number in the mapping section, so the hash 192 ** table is never more than half full. The expected number of collisions 193 ** prior to finding a match is 1. Each entry of the hash table is an 194 ** 1-based index of an entry in the mapping section of the same 195 ** index block. Let K be the 1-based index of the largest entry in 196 ** the mapping section. (For index blocks other than the last, K will 197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 199 ** contain a value of 0. 200 ** 201 ** To look for page P in the hash table, first compute a hash iKey on 202 ** P as follows: 203 ** 204 ** iKey = (P * 383) % HASHTABLE_NSLOT 205 ** 206 ** Then start scanning entries of the hash table, starting with iKey 207 ** (wrapping around to the beginning when the end of the hash table is 208 ** reached) until an unused hash slot is found. Let the first unused slot 209 ** be at index iUnused. (iUnused might be less than iKey if there was 210 ** wrap-around.) Because the hash table is never more than half full, 211 ** the search is guaranteed to eventually hit an unused entry. Let 212 ** iMax be the value between iKey and iUnused, closest to iUnused, 213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 214 ** no hash slot such that aHash[i]==p) then page P is not in the 215 ** current index block. Otherwise the iMax-th mapping entry of the 216 ** current index block corresponds to the last entry that references 217 ** page P. 218 ** 219 ** A hash search begins with the last index block and moves toward the 220 ** first index block, looking for entries corresponding to page P. On 221 ** average, only two or three slots in each index block need to be 222 ** examined in order to either find the last entry for page P, or to 223 ** establish that no such entry exists in the block. Each index block 224 ** holds over 4000 entries. So two or three index blocks are sufficient 225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 226 ** comparisons (on average) suffice to either locate a frame in the 227 ** WAL or to establish that the frame does not exist in the WAL. This 228 ** is much faster than scanning the entire 10MB WAL. 229 ** 230 ** Note that entries are added in order of increasing K. Hence, one 231 ** reader might be using some value K0 and a second reader that started 232 ** at a later time (after additional transactions were added to the WAL 233 ** and to the wal-index) might be using a different value K1, where K1>K0. 234 ** Both readers can use the same hash table and mapping section to get 235 ** the correct result. There may be entries in the hash table with 236 ** K>K0 but to the first reader, those entries will appear to be unused 237 ** slots in the hash table and so the first reader will get an answer as 238 ** if no values greater than K0 had ever been inserted into the hash table 239 ** in the first place - which is what reader one wants. Meanwhile, the 240 ** second reader using K1 will see additional values that were inserted 241 ** later, which is exactly what reader two wants. 242 ** 243 ** When a rollback occurs, the value of K is decreased. Hash table entries 244 ** that correspond to frames greater than the new K value are removed 245 ** from the hash table at this point. 246 */ 247 #ifndef SQLITE_OMIT_WAL 248 249 #include "wal.h" 250 251 /* 252 ** Trace output macros 253 */ 254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 255 int sqlite3WalTrace = 0; 256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 257 #else 258 # define WALTRACE(X) 259 #endif 260 261 /* 262 ** The maximum (and only) versions of the wal and wal-index formats 263 ** that may be interpreted by this version of SQLite. 264 ** 265 ** If a client begins recovering a WAL file and finds that (a) the checksum 266 ** values in the wal-header are correct and (b) the version field is not 267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 268 ** 269 ** Similarly, if a client successfully reads a wal-index header (i.e. the 270 ** checksum test is successful) and finds that the version field is not 271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 272 ** returns SQLITE_CANTOPEN. 273 */ 274 #define WAL_MAX_VERSION 3007000 275 #define WALINDEX_MAX_VERSION 3007000 276 277 /* 278 ** Index numbers for various locking bytes. WAL_NREADER is the number 279 ** of available reader locks and should be at least 3. The default 280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 281 ** 282 ** Technically, the various VFSes are free to implement these locks however 283 ** they see fit. However, compatibility is encouraged so that VFSes can 284 ** interoperate. The standard implemention used on both unix and windows 285 ** is for the index number to indicate a byte offset into the 286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 288 ** should be 120) is the location in the shm file for the first locking 289 ** byte. 290 */ 291 #define WAL_WRITE_LOCK 0 292 #define WAL_ALL_BUT_WRITE 1 293 #define WAL_CKPT_LOCK 1 294 #define WAL_RECOVER_LOCK 2 295 #define WAL_READ_LOCK(I) (3+(I)) 296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 297 298 299 /* Object declarations */ 300 typedef struct WalIndexHdr WalIndexHdr; 301 typedef struct WalIterator WalIterator; 302 typedef struct WalCkptInfo WalCkptInfo; 303 304 305 /* 306 ** The following object holds a copy of the wal-index header content. 307 ** 308 ** The actual header in the wal-index consists of two copies of this 309 ** object followed by one instance of the WalCkptInfo object. 310 ** For all versions of SQLite through 3.10.0 and probably beyond, 311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 312 ** the total header size is 136 bytes. 313 ** 314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 315 ** Or it can be 1 to represent a 65536-byte page. The latter case was 316 ** added in 3.7.1 when support for 64K pages was added. 317 */ 318 struct WalIndexHdr { 319 u32 iVersion; /* Wal-index version */ 320 u32 unused; /* Unused (padding) field */ 321 u32 iChange; /* Counter incremented each transaction */ 322 u8 isInit; /* 1 when initialized */ 323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 324 u16 szPage; /* Database page size in bytes. 1==64K */ 325 u32 mxFrame; /* Index of last valid frame in the WAL */ 326 u32 nPage; /* Size of database in pages */ 327 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 328 u32 aSalt[2]; /* Two salt values copied from WAL header */ 329 u32 aCksum[2]; /* Checksum over all prior fields */ 330 }; 331 332 /* 333 ** A copy of the following object occurs in the wal-index immediately 334 ** following the second copy of the WalIndexHdr. This object stores 335 ** information used by checkpoint. 336 ** 337 ** nBackfill is the number of frames in the WAL that have been written 338 ** back into the database. (We call the act of moving content from WAL to 339 ** database "backfilling".) The nBackfill number is never greater than 340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 343 ** mxFrame back to zero when the WAL is reset. 344 ** 345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 347 ** the nBackfillAttempted is set before any backfilling is done and the 348 ** nBackfill is only set after all backfilling completes. So if a checkpoint 349 ** crashes, nBackfillAttempted might be larger than nBackfill. The 350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 351 ** 352 ** The aLock[] field is a set of bytes used for locking. These bytes should 353 ** never be read or written. 354 ** 355 ** There is one entry in aReadMark[] for each reader lock. If a reader 356 ** holds read-lock K, then the value in aReadMark[K] is no greater than 357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 359 ** a special case; its value is never used and it exists as a place-holder 360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 362 ** directly from the database. 363 ** 364 ** The value of aReadMark[K] may only be changed by a thread that 365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 366 ** aReadMark[K] cannot changed while there is a reader is using that mark 367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 368 ** 369 ** The checkpointer may only transfer frames from WAL to database where 370 ** the frame numbers are less than or equal to every aReadMark[] that is 371 ** in use (that is, every aReadMark[j] for which there is a corresponding 372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 373 ** largest value and will increase an unused aReadMark[] to mxFrame if there 374 ** is not already an aReadMark[] equal to mxFrame. The exception to the 375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 376 ** in the WAL has been backfilled into the database) then new readers 377 ** will choose aReadMark[0] which has value 0 and hence such reader will 378 ** get all their all content directly from the database file and ignore 379 ** the WAL. 380 ** 381 ** Writers normally append new frames to the end of the WAL. However, 382 ** if nBackfill equals mxFrame (meaning that all WAL content has been 383 ** written back into the database) and if no readers are using the WAL 384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 385 ** the writer will first "reset" the WAL back to the beginning and start 386 ** writing new content beginning at frame 1. 387 ** 388 ** We assume that 32-bit loads are atomic and so no locks are needed in 389 ** order to read from any aReadMark[] entries. 390 */ 391 struct WalCkptInfo { 392 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 393 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 396 u32 notUsed0; /* Available for future enhancements */ 397 }; 398 #define READMARK_NOT_USED 0xffffffff 399 400 401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 403 ** only support mandatory file-locks, we do not read or write data 404 ** from the region of the file on which locks are applied. 405 */ 406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 408 409 /* Size of header before each frame in wal */ 410 #define WAL_FRAME_HDRSIZE 24 411 412 /* Size of write ahead log header, including checksum. */ 413 #define WAL_HDRSIZE 32 414 415 /* WAL magic value. Either this value, or the same value with the least 416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 417 ** big-endian format in the first 4 bytes of a WAL file. 418 ** 419 ** If the LSB is set, then the checksums for each frame within the WAL 420 ** file are calculated by treating all data as an array of 32-bit 421 ** big-endian words. Otherwise, they are calculated by interpreting 422 ** all data as 32-bit little-endian words. 423 */ 424 #define WAL_MAGIC 0x377f0682 425 426 /* 427 ** Return the offset of frame iFrame in the write-ahead log file, 428 ** assuming a database page size of szPage bytes. The offset returned 429 ** is to the start of the write-ahead log frame-header. 430 */ 431 #define walFrameOffset(iFrame, szPage) ( \ 432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 433 ) 434 435 /* 436 ** An open write-ahead log file is represented by an instance of the 437 ** following object. 438 */ 439 struct Wal { 440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 441 sqlite3_file *pDbFd; /* File handle for the database file */ 442 sqlite3_file *pWalFd; /* File handle for WAL file */ 443 u32 iCallback; /* Value to pass to log callback (or 0) */ 444 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 445 int nWiData; /* Size of array apWiData */ 446 int szFirstBlock; /* Size of first block written to WAL file */ 447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 448 u32 szPage; /* Database page size */ 449 i16 readLock; /* Which read lock is being held. -1 for none */ 450 u8 syncFlags; /* Flags to use to sync header writes */ 451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 452 u8 writeLock; /* True if in a write transaction */ 453 u8 ckptLock; /* True if holding a checkpoint lock */ 454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 455 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 456 u8 syncHeader; /* Fsync the WAL header if true */ 457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 459 WalIndexHdr hdr; /* Wal-index header for current transaction */ 460 u32 minFrame; /* Ignore wal frames before this one */ 461 u32 iReCksum; /* On commit, recalculate checksums from here */ 462 const char *zWalName; /* Name of WAL file */ 463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 464 #ifdef SQLITE_DEBUG 465 u8 lockError; /* True if a locking error has occurred */ 466 #endif 467 #ifdef SQLITE_ENABLE_SNAPSHOT 468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 469 #endif 470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 471 sqlite3 *db; 472 #endif 473 }; 474 475 /* 476 ** Candidate values for Wal.exclusiveMode. 477 */ 478 #define WAL_NORMAL_MODE 0 479 #define WAL_EXCLUSIVE_MODE 1 480 #define WAL_HEAPMEMORY_MODE 2 481 482 /* 483 ** Possible values for WAL.readOnly 484 */ 485 #define WAL_RDWR 0 /* Normal read/write connection */ 486 #define WAL_RDONLY 1 /* The WAL file is readonly */ 487 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 488 489 /* 490 ** Each page of the wal-index mapping contains a hash-table made up of 491 ** an array of HASHTABLE_NSLOT elements of the following type. 492 */ 493 typedef u16 ht_slot; 494 495 /* 496 ** This structure is used to implement an iterator that loops through 497 ** all frames in the WAL in database page order. Where two or more frames 498 ** correspond to the same database page, the iterator visits only the 499 ** frame most recently written to the WAL (in other words, the frame with 500 ** the largest index). 501 ** 502 ** The internals of this structure are only accessed by: 503 ** 504 ** walIteratorInit() - Create a new iterator, 505 ** walIteratorNext() - Step an iterator, 506 ** walIteratorFree() - Free an iterator. 507 ** 508 ** This functionality is used by the checkpoint code (see walCheckpoint()). 509 */ 510 struct WalIterator { 511 int iPrior; /* Last result returned from the iterator */ 512 int nSegment; /* Number of entries in aSegment[] */ 513 struct WalSegment { 514 int iNext; /* Next slot in aIndex[] not yet returned */ 515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 516 u32 *aPgno; /* Array of page numbers. */ 517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 518 int iZero; /* Frame number associated with aPgno[0] */ 519 } aSegment[1]; /* One for every 32KB page in the wal-index */ 520 }; 521 522 /* 523 ** Define the parameters of the hash tables in the wal-index file. There 524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 525 ** wal-index. 526 ** 527 ** Changing any of these constants will alter the wal-index format and 528 ** create incompatibilities. 529 */ 530 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 531 #define HASHTABLE_HASH_1 383 /* Should be prime */ 532 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 533 534 /* 535 ** The block of page numbers associated with the first hash-table in a 536 ** wal-index is smaller than usual. This is so that there is a complete 537 ** hash-table on each aligned 32KB page of the wal-index. 538 */ 539 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 540 541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 542 #define WALINDEX_PGSZ ( \ 543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 544 ) 545 546 /* 547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 549 ** numbered from zero. 550 ** 551 ** If the wal-index is currently smaller the iPage pages then the size 552 ** of the wal-index might be increased, but only if it is safe to do 553 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 555 ** 556 ** If this call is successful, *ppPage is set to point to the wal-index 557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 558 ** then an SQLite error code is returned and *ppPage is set to 0. 559 */ 560 static SQLITE_NOINLINE int walIndexPageRealloc( 561 Wal *pWal, /* The WAL context */ 562 int iPage, /* The page we seek */ 563 volatile u32 **ppPage /* Write the page pointer here */ 564 ){ 565 int rc = SQLITE_OK; 566 567 /* Enlarge the pWal->apWiData[] array if required */ 568 if( pWal->nWiData<=iPage ){ 569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 570 volatile u32 **apNew; 571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 572 if( !apNew ){ 573 *ppPage = 0; 574 return SQLITE_NOMEM_BKPT; 575 } 576 memset((void*)&apNew[pWal->nWiData], 0, 577 sizeof(u32*)*(iPage+1-pWal->nWiData)); 578 pWal->apWiData = apNew; 579 pWal->nWiData = iPage+1; 580 } 581 582 /* Request a pointer to the required page from the VFS */ 583 assert( pWal->apWiData[iPage]==0 ); 584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 587 }else{ 588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 590 ); 591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); 592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 593 if( (rc&0xff)==SQLITE_READONLY ){ 594 pWal->readOnly |= WAL_SHM_RDONLY; 595 if( rc==SQLITE_READONLY ){ 596 rc = SQLITE_OK; 597 } 598 } 599 } 600 601 *ppPage = pWal->apWiData[iPage]; 602 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 603 return rc; 604 } 605 static int walIndexPage( 606 Wal *pWal, /* The WAL context */ 607 int iPage, /* The page we seek */ 608 volatile u32 **ppPage /* Write the page pointer here */ 609 ){ 610 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 611 return walIndexPageRealloc(pWal, iPage, ppPage); 612 } 613 return SQLITE_OK; 614 } 615 616 /* 617 ** Return a pointer to the WalCkptInfo structure in the wal-index. 618 */ 619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 620 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 621 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 622 } 623 624 /* 625 ** Return a pointer to the WalIndexHdr structure in the wal-index. 626 */ 627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 628 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 629 return (volatile WalIndexHdr*)pWal->apWiData[0]; 630 } 631 632 /* 633 ** The argument to this macro must be of type u32. On a little-endian 634 ** architecture, it returns the u32 value that results from interpreting 635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 636 ** returns the value that would be produced by interpreting the 4 bytes 637 ** of the input value as a little-endian integer. 638 */ 639 #define BYTESWAP32(x) ( \ 640 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 641 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 642 ) 643 644 /* 645 ** Generate or extend an 8 byte checksum based on the data in 646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 647 ** initial values of 0 and 0 if aIn==NULL). 648 ** 649 ** The checksum is written back into aOut[] before returning. 650 ** 651 ** nByte must be a positive multiple of 8. 652 */ 653 static void walChecksumBytes( 654 int nativeCksum, /* True for native byte-order, false for non-native */ 655 u8 *a, /* Content to be checksummed */ 656 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 657 const u32 *aIn, /* Initial checksum value input */ 658 u32 *aOut /* OUT: Final checksum value output */ 659 ){ 660 u32 s1, s2; 661 u32 *aData = (u32 *)a; 662 u32 *aEnd = (u32 *)&a[nByte]; 663 664 if( aIn ){ 665 s1 = aIn[0]; 666 s2 = aIn[1]; 667 }else{ 668 s1 = s2 = 0; 669 } 670 671 assert( nByte>=8 ); 672 assert( (nByte&0x00000007)==0 ); 673 assert( nByte<=65536 ); 674 675 if( nativeCksum ){ 676 do { 677 s1 += *aData++ + s2; 678 s2 += *aData++ + s1; 679 }while( aData<aEnd ); 680 }else{ 681 do { 682 s1 += BYTESWAP32(aData[0]) + s2; 683 s2 += BYTESWAP32(aData[1]) + s1; 684 aData += 2; 685 }while( aData<aEnd ); 686 } 687 688 aOut[0] = s1; 689 aOut[1] = s2; 690 } 691 692 /* 693 ** If there is the possibility of concurrent access to the SHM file 694 ** from multiple threads and/or processes, then do a memory barrier. 695 */ 696 static void walShmBarrier(Wal *pWal){ 697 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 698 sqlite3OsShmBarrier(pWal->pDbFd); 699 } 700 } 701 702 /* 703 ** Write the header information in pWal->hdr into the wal-index. 704 ** 705 ** The checksum on pWal->hdr is updated before it is written. 706 */ 707 static void walIndexWriteHdr(Wal *pWal){ 708 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 709 const int nCksum = offsetof(WalIndexHdr, aCksum); 710 711 assert( pWal->writeLock ); 712 pWal->hdr.isInit = 1; 713 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 714 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 715 /* Possible TSAN false-positive. See tag-20200519-1 */ 716 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 717 walShmBarrier(pWal); 718 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 719 } 720 721 /* 722 ** This function encodes a single frame header and writes it to a buffer 723 ** supplied by the caller. A frame-header is made up of a series of 724 ** 4-byte big-endian integers, as follows: 725 ** 726 ** 0: Page number. 727 ** 4: For commit records, the size of the database image in pages 728 ** after the commit. For all other records, zero. 729 ** 8: Salt-1 (copied from the wal-header) 730 ** 12: Salt-2 (copied from the wal-header) 731 ** 16: Checksum-1. 732 ** 20: Checksum-2. 733 */ 734 static void walEncodeFrame( 735 Wal *pWal, /* The write-ahead log */ 736 u32 iPage, /* Database page number for frame */ 737 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 738 u8 *aData, /* Pointer to page data */ 739 u8 *aFrame /* OUT: Write encoded frame here */ 740 ){ 741 int nativeCksum; /* True for native byte-order checksums */ 742 u32 *aCksum = pWal->hdr.aFrameCksum; 743 assert( WAL_FRAME_HDRSIZE==24 ); 744 sqlite3Put4byte(&aFrame[0], iPage); 745 sqlite3Put4byte(&aFrame[4], nTruncate); 746 if( pWal->iReCksum==0 ){ 747 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 748 749 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 750 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 751 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 752 753 sqlite3Put4byte(&aFrame[16], aCksum[0]); 754 sqlite3Put4byte(&aFrame[20], aCksum[1]); 755 }else{ 756 memset(&aFrame[8], 0, 16); 757 } 758 } 759 760 /* 761 ** Check to see if the frame with header in aFrame[] and content 762 ** in aData[] is valid. If it is a valid frame, fill *piPage and 763 ** *pnTruncate and return true. Return if the frame is not valid. 764 */ 765 static int walDecodeFrame( 766 Wal *pWal, /* The write-ahead log */ 767 u32 *piPage, /* OUT: Database page number for frame */ 768 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 769 u8 *aData, /* Pointer to page data (for checksum) */ 770 u8 *aFrame /* Frame data */ 771 ){ 772 int nativeCksum; /* True for native byte-order checksums */ 773 u32 *aCksum = pWal->hdr.aFrameCksum; 774 u32 pgno; /* Page number of the frame */ 775 assert( WAL_FRAME_HDRSIZE==24 ); 776 777 /* A frame is only valid if the salt values in the frame-header 778 ** match the salt values in the wal-header. 779 */ 780 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 781 return 0; 782 } 783 784 /* A frame is only valid if the page number is creater than zero. 785 */ 786 pgno = sqlite3Get4byte(&aFrame[0]); 787 if( pgno==0 ){ 788 return 0; 789 } 790 791 /* A frame is only valid if a checksum of the WAL header, 792 ** all prior frams, the first 16 bytes of this frame-header, 793 ** and the frame-data matches the checksum in the last 8 794 ** bytes of this frame-header. 795 */ 796 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 797 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 798 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 799 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 800 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 801 ){ 802 /* Checksum failed. */ 803 return 0; 804 } 805 806 /* If we reach this point, the frame is valid. Return the page number 807 ** and the new database size. 808 */ 809 *piPage = pgno; 810 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 811 return 1; 812 } 813 814 815 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 816 /* 817 ** Names of locks. This routine is used to provide debugging output and is not 818 ** a part of an ordinary build. 819 */ 820 static const char *walLockName(int lockIdx){ 821 if( lockIdx==WAL_WRITE_LOCK ){ 822 return "WRITE-LOCK"; 823 }else if( lockIdx==WAL_CKPT_LOCK ){ 824 return "CKPT-LOCK"; 825 }else if( lockIdx==WAL_RECOVER_LOCK ){ 826 return "RECOVER-LOCK"; 827 }else{ 828 static char zName[15]; 829 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 830 lockIdx-WAL_READ_LOCK(0)); 831 return zName; 832 } 833 } 834 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 835 836 837 /* 838 ** Set or release locks on the WAL. Locks are either shared or exclusive. 839 ** A lock cannot be moved directly between shared and exclusive - it must go 840 ** through the unlocked state first. 841 ** 842 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 843 */ 844 static int walLockShared(Wal *pWal, int lockIdx){ 845 int rc; 846 if( pWal->exclusiveMode ) return SQLITE_OK; 847 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 848 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 849 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 850 walLockName(lockIdx), rc ? "failed" : "ok")); 851 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 852 return rc; 853 } 854 static void walUnlockShared(Wal *pWal, int lockIdx){ 855 if( pWal->exclusiveMode ) return; 856 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 857 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 858 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 859 } 860 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 861 int rc; 862 if( pWal->exclusiveMode ) return SQLITE_OK; 863 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 864 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 865 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 866 walLockName(lockIdx), n, rc ? "failed" : "ok")); 867 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 868 return rc; 869 } 870 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 871 if( pWal->exclusiveMode ) return; 872 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 873 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 874 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 875 walLockName(lockIdx), n)); 876 } 877 878 /* 879 ** Compute a hash on a page number. The resulting hash value must land 880 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 881 ** the hash to the next value in the event of a collision. 882 */ 883 static int walHash(u32 iPage){ 884 assert( iPage>0 ); 885 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 886 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 887 } 888 static int walNextHash(int iPriorHash){ 889 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 890 } 891 892 /* 893 ** An instance of the WalHashLoc object is used to describe the location 894 ** of a page hash table in the wal-index. This becomes the return value 895 ** from walHashGet(). 896 */ 897 typedef struct WalHashLoc WalHashLoc; 898 struct WalHashLoc { 899 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 900 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 901 u32 iZero; /* One less than the frame number of first indexed*/ 902 }; 903 904 /* 905 ** Return pointers to the hash table and page number array stored on 906 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 907 ** numbered starting from 0. 908 ** 909 ** Set output variable pLoc->aHash to point to the start of the hash table 910 ** in the wal-index file. Set pLoc->iZero to one less than the frame 911 ** number of the first frame indexed by this hash table. If a 912 ** slot in the hash table is set to N, it refers to frame number 913 ** (pLoc->iZero+N) in the log. 914 ** 915 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the 916 ** first frame indexed by the hash table, frame (pLoc->iZero+1). 917 */ 918 static int walHashGet( 919 Wal *pWal, /* WAL handle */ 920 int iHash, /* Find the iHash'th table */ 921 WalHashLoc *pLoc /* OUT: Hash table location */ 922 ){ 923 int rc; /* Return code */ 924 925 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 926 assert( rc==SQLITE_OK || iHash>0 ); 927 928 if( rc==SQLITE_OK ){ 929 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 930 if( iHash==0 ){ 931 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 932 pLoc->iZero = 0; 933 }else{ 934 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 935 } 936 pLoc->aPgno = &pLoc->aPgno[-1]; 937 } 938 return rc; 939 } 940 941 /* 942 ** Return the number of the wal-index page that contains the hash-table 943 ** and page-number array that contain entries corresponding to WAL frame 944 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 945 ** are numbered starting from 0. 946 */ 947 static int walFramePage(u32 iFrame){ 948 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 949 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 950 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 951 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 952 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 953 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 954 ); 955 return iHash; 956 } 957 958 /* 959 ** Return the page number associated with frame iFrame in this WAL. 960 */ 961 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 962 int iHash = walFramePage(iFrame); 963 if( iHash==0 ){ 964 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 965 } 966 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 967 } 968 969 /* 970 ** Remove entries from the hash table that point to WAL slots greater 971 ** than pWal->hdr.mxFrame. 972 ** 973 ** This function is called whenever pWal->hdr.mxFrame is decreased due 974 ** to a rollback or savepoint. 975 ** 976 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 977 ** updated. Any later hash tables will be automatically cleared when 978 ** pWal->hdr.mxFrame advances to the point where those hash tables are 979 ** actually needed. 980 */ 981 static void walCleanupHash(Wal *pWal){ 982 WalHashLoc sLoc; /* Hash table location */ 983 int iLimit = 0; /* Zero values greater than this */ 984 int nByte; /* Number of bytes to zero in aPgno[] */ 985 int i; /* Used to iterate through aHash[] */ 986 int rc; /* Return code form walHashGet() */ 987 988 assert( pWal->writeLock ); 989 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 990 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 991 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 992 993 if( pWal->hdr.mxFrame==0 ) return; 994 995 /* Obtain pointers to the hash-table and page-number array containing 996 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 997 ** that the page said hash-table and array reside on is already mapped.(1) 998 */ 999 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 1000 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 1001 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 1002 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */ 1003 1004 /* Zero all hash-table entries that correspond to frame numbers greater 1005 ** than pWal->hdr.mxFrame. 1006 */ 1007 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 1008 assert( iLimit>0 ); 1009 for(i=0; i<HASHTABLE_NSLOT; i++){ 1010 if( sLoc.aHash[i]>iLimit ){ 1011 sLoc.aHash[i] = 0; 1012 } 1013 } 1014 1015 /* Zero the entries in the aPgno array that correspond to frames with 1016 ** frame numbers greater than pWal->hdr.mxFrame. 1017 */ 1018 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]); 1019 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte); 1020 1021 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1022 /* Verify that the every entry in the mapping region is still reachable 1023 ** via the hash table even after the cleanup. 1024 */ 1025 if( iLimit ){ 1026 int j; /* Loop counter */ 1027 int iKey; /* Hash key */ 1028 for(j=1; j<=iLimit; j++){ 1029 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 1030 if( sLoc.aHash[iKey]==j ) break; 1031 } 1032 assert( sLoc.aHash[iKey]==j ); 1033 } 1034 } 1035 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1036 } 1037 1038 1039 /* 1040 ** Set an entry in the wal-index that will map database page number 1041 ** pPage into WAL frame iFrame. 1042 */ 1043 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 1044 int rc; /* Return code */ 1045 WalHashLoc sLoc; /* Wal-index hash table location */ 1046 1047 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 1048 1049 /* Assuming the wal-index file was successfully mapped, populate the 1050 ** page number array and hash table entry. 1051 */ 1052 if( rc==SQLITE_OK ){ 1053 int iKey; /* Hash table key */ 1054 int idx; /* Value to write to hash-table slot */ 1055 int nCollide; /* Number of hash collisions */ 1056 1057 idx = iFrame - sLoc.iZero; 1058 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 1059 1060 /* If this is the first entry to be added to this hash-table, zero the 1061 ** entire hash table and aPgno[] array before proceeding. 1062 */ 1063 if( idx==1 ){ 1064 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT] 1065 - (u8 *)&sLoc.aPgno[1]); 1066 memset((void*)&sLoc.aPgno[1], 0, nByte); 1067 } 1068 1069 /* If the entry in aPgno[] is already set, then the previous writer 1070 ** must have exited unexpectedly in the middle of a transaction (after 1071 ** writing one or more dirty pages to the WAL to free up memory). 1072 ** Remove the remnants of that writers uncommitted transaction from 1073 ** the hash-table before writing any new entries. 1074 */ 1075 if( sLoc.aPgno[idx] ){ 1076 walCleanupHash(pWal); 1077 assert( !sLoc.aPgno[idx] ); 1078 } 1079 1080 /* Write the aPgno[] array entry and the hash-table slot. */ 1081 nCollide = idx; 1082 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 1083 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 1084 } 1085 sLoc.aPgno[idx] = iPage; 1086 sLoc.aHash[iKey] = (ht_slot)idx; 1087 1088 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 1089 /* Verify that the number of entries in the hash table exactly equals 1090 ** the number of entries in the mapping region. 1091 */ 1092 { 1093 int i; /* Loop counter */ 1094 int nEntry = 0; /* Number of entries in the hash table */ 1095 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 1096 assert( nEntry==idx ); 1097 } 1098 1099 /* Verify that the every entry in the mapping region is reachable 1100 ** via the hash table. This turns out to be a really, really expensive 1101 ** thing to check, so only do this occasionally - not on every 1102 ** iteration. 1103 */ 1104 if( (idx&0x3ff)==0 ){ 1105 int i; /* Loop counter */ 1106 for(i=1; i<=idx; i++){ 1107 for(iKey=walHash(sLoc.aPgno[i]); 1108 sLoc.aHash[iKey]; 1109 iKey=walNextHash(iKey)){ 1110 if( sLoc.aHash[iKey]==i ) break; 1111 } 1112 assert( sLoc.aHash[iKey]==i ); 1113 } 1114 } 1115 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 1116 } 1117 1118 1119 return rc; 1120 } 1121 1122 1123 /* 1124 ** Recover the wal-index by reading the write-ahead log file. 1125 ** 1126 ** This routine first tries to establish an exclusive lock on the 1127 ** wal-index to prevent other threads/processes from doing anything 1128 ** with the WAL or wal-index while recovery is running. The 1129 ** WAL_RECOVER_LOCK is also held so that other threads will know 1130 ** that this thread is running recovery. If unable to establish 1131 ** the necessary locks, this routine returns SQLITE_BUSY. 1132 */ 1133 static int walIndexRecover(Wal *pWal){ 1134 int rc; /* Return Code */ 1135 i64 nSize; /* Size of log file */ 1136 u32 aFrameCksum[2] = {0, 0}; 1137 int iLock; /* Lock offset to lock for checkpoint */ 1138 1139 /* Obtain an exclusive lock on all byte in the locking range not already 1140 ** locked by the caller. The caller is guaranteed to have locked the 1141 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 1142 ** If successful, the same bytes that are locked here are unlocked before 1143 ** this function returns. 1144 */ 1145 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 1146 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 1147 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 1148 assert( pWal->writeLock ); 1149 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 1150 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1151 if( rc==SQLITE_OK ){ 1152 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1153 if( rc!=SQLITE_OK ){ 1154 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1155 } 1156 } 1157 if( rc ){ 1158 return rc; 1159 } 1160 1161 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 1162 1163 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 1164 1165 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 1166 if( rc!=SQLITE_OK ){ 1167 goto recovery_error; 1168 } 1169 1170 if( nSize>WAL_HDRSIZE ){ 1171 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 1172 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 1173 int szFrame; /* Number of bytes in buffer aFrame[] */ 1174 u8 *aData; /* Pointer to data part of aFrame buffer */ 1175 int iFrame; /* Index of last frame read */ 1176 i64 iOffset; /* Next offset to read from log file */ 1177 int szPage; /* Page size according to the log */ 1178 u32 magic; /* Magic value read from WAL header */ 1179 u32 version; /* Magic value read from WAL header */ 1180 int isValid; /* True if this frame is valid */ 1181 1182 /* Read in the WAL header. */ 1183 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 1184 if( rc!=SQLITE_OK ){ 1185 goto recovery_error; 1186 } 1187 1188 /* If the database page size is not a power of two, or is greater than 1189 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 1190 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 1191 ** WAL file. 1192 */ 1193 magic = sqlite3Get4byte(&aBuf[0]); 1194 szPage = sqlite3Get4byte(&aBuf[8]); 1195 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 1196 || szPage&(szPage-1) 1197 || szPage>SQLITE_MAX_PAGE_SIZE 1198 || szPage<512 1199 ){ 1200 goto finished; 1201 } 1202 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 1203 pWal->szPage = szPage; 1204 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 1205 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 1206 1207 /* Verify that the WAL header checksum is correct */ 1208 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 1209 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 1210 ); 1211 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 1212 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 1213 ){ 1214 goto finished; 1215 } 1216 1217 /* Verify that the version number on the WAL format is one that 1218 ** are able to understand */ 1219 version = sqlite3Get4byte(&aBuf[4]); 1220 if( version!=WAL_MAX_VERSION ){ 1221 rc = SQLITE_CANTOPEN_BKPT; 1222 goto finished; 1223 } 1224 1225 /* Malloc a buffer to read frames into. */ 1226 szFrame = szPage + WAL_FRAME_HDRSIZE; 1227 aFrame = (u8 *)sqlite3_malloc64(szFrame); 1228 if( !aFrame ){ 1229 rc = SQLITE_NOMEM_BKPT; 1230 goto recovery_error; 1231 } 1232 aData = &aFrame[WAL_FRAME_HDRSIZE]; 1233 1234 /* Read all frames from the log file. */ 1235 iFrame = 0; 1236 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 1237 u32 pgno; /* Database page number for frame */ 1238 u32 nTruncate; /* dbsize field from frame header */ 1239 1240 /* Read and decode the next log frame. */ 1241 iFrame++; 1242 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 1243 if( rc!=SQLITE_OK ) break; 1244 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 1245 if( !isValid ) break; 1246 rc = walIndexAppend(pWal, iFrame, pgno); 1247 if( rc!=SQLITE_OK ) break; 1248 1249 /* If nTruncate is non-zero, this is a commit record. */ 1250 if( nTruncate ){ 1251 pWal->hdr.mxFrame = iFrame; 1252 pWal->hdr.nPage = nTruncate; 1253 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 1254 testcase( szPage<=32768 ); 1255 testcase( szPage>=65536 ); 1256 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 1257 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 1258 } 1259 } 1260 1261 sqlite3_free(aFrame); 1262 } 1263 1264 finished: 1265 if( rc==SQLITE_OK ){ 1266 volatile WalCkptInfo *pInfo; 1267 int i; 1268 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 1269 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 1270 walIndexWriteHdr(pWal); 1271 1272 /* Reset the checkpoint-header. This is safe because this thread is 1273 ** currently holding locks that exclude all other readers, writers and 1274 ** checkpointers. 1275 */ 1276 pInfo = walCkptInfo(pWal); 1277 pInfo->nBackfill = 0; 1278 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 1279 pInfo->aReadMark[0] = 0; 1280 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1281 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 1282 1283 /* If more than one frame was recovered from the log file, report an 1284 ** event via sqlite3_log(). This is to help with identifying performance 1285 ** problems caused by applications routinely shutting down without 1286 ** checkpointing the log file. 1287 */ 1288 if( pWal->hdr.nPage ){ 1289 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 1290 "recovered %d frames from WAL file %s", 1291 pWal->hdr.mxFrame, pWal->zWalName 1292 ); 1293 } 1294 } 1295 1296 recovery_error: 1297 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 1298 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 1299 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 1300 return rc; 1301 } 1302 1303 /* 1304 ** Close an open wal-index. 1305 */ 1306 static void walIndexClose(Wal *pWal, int isDelete){ 1307 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 1308 int i; 1309 for(i=0; i<pWal->nWiData; i++){ 1310 sqlite3_free((void *)pWal->apWiData[i]); 1311 pWal->apWiData[i] = 0; 1312 } 1313 } 1314 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 1315 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 1316 } 1317 } 1318 1319 /* 1320 ** Open a connection to the WAL file zWalName. The database file must 1321 ** already be opened on connection pDbFd. The buffer that zWalName points 1322 ** to must remain valid for the lifetime of the returned Wal* handle. 1323 ** 1324 ** A SHARED lock should be held on the database file when this function 1325 ** is called. The purpose of this SHARED lock is to prevent any other 1326 ** client from unlinking the WAL or wal-index file. If another process 1327 ** were to do this just after this client opened one of these files, the 1328 ** system would be badly broken. 1329 ** 1330 ** If the log file is successfully opened, SQLITE_OK is returned and 1331 ** *ppWal is set to point to a new WAL handle. If an error occurs, 1332 ** an SQLite error code is returned and *ppWal is left unmodified. 1333 */ 1334 int sqlite3WalOpen( 1335 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 1336 sqlite3_file *pDbFd, /* The open database file */ 1337 const char *zWalName, /* Name of the WAL file */ 1338 int bNoShm, /* True to run in heap-memory mode */ 1339 i64 mxWalSize, /* Truncate WAL to this size on reset */ 1340 Wal **ppWal /* OUT: Allocated Wal handle */ 1341 ){ 1342 int rc; /* Return Code */ 1343 Wal *pRet; /* Object to allocate and return */ 1344 int flags; /* Flags passed to OsOpen() */ 1345 1346 assert( zWalName && zWalName[0] ); 1347 assert( pDbFd ); 1348 1349 /* In the amalgamation, the os_unix.c and os_win.c source files come before 1350 ** this source file. Verify that the #defines of the locking byte offsets 1351 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 1352 ** For that matter, if the lock offset ever changes from its initial design 1353 ** value of 120, we need to know that so there is an assert() to check it. 1354 */ 1355 assert( 120==WALINDEX_LOCK_OFFSET ); 1356 assert( 136==WALINDEX_HDR_SIZE ); 1357 #ifdef WIN_SHM_BASE 1358 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1359 #endif 1360 #ifdef UNIX_SHM_BASE 1361 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 1362 #endif 1363 1364 1365 /* Allocate an instance of struct Wal to return. */ 1366 *ppWal = 0; 1367 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 1368 if( !pRet ){ 1369 return SQLITE_NOMEM_BKPT; 1370 } 1371 1372 pRet->pVfs = pVfs; 1373 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 1374 pRet->pDbFd = pDbFd; 1375 pRet->readLock = -1; 1376 pRet->mxWalSize = mxWalSize; 1377 pRet->zWalName = zWalName; 1378 pRet->syncHeader = 1; 1379 pRet->padToSectorBoundary = 1; 1380 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 1381 1382 /* Open file handle on the write-ahead log file. */ 1383 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 1384 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 1385 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 1386 pRet->readOnly = WAL_RDONLY; 1387 } 1388 1389 if( rc!=SQLITE_OK ){ 1390 walIndexClose(pRet, 0); 1391 sqlite3OsClose(pRet->pWalFd); 1392 sqlite3_free(pRet); 1393 }else{ 1394 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 1395 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 1396 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 1397 pRet->padToSectorBoundary = 0; 1398 } 1399 *ppWal = pRet; 1400 WALTRACE(("WAL%d: opened\n", pRet)); 1401 } 1402 return rc; 1403 } 1404 1405 /* 1406 ** Change the size to which the WAL file is trucated on each reset. 1407 */ 1408 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 1409 if( pWal ) pWal->mxWalSize = iLimit; 1410 } 1411 1412 /* 1413 ** Find the smallest page number out of all pages held in the WAL that 1414 ** has not been returned by any prior invocation of this method on the 1415 ** same WalIterator object. Write into *piFrame the frame index where 1416 ** that page was last written into the WAL. Write into *piPage the page 1417 ** number. 1418 ** 1419 ** Return 0 on success. If there are no pages in the WAL with a page 1420 ** number larger than *piPage, then return 1. 1421 */ 1422 static int walIteratorNext( 1423 WalIterator *p, /* Iterator */ 1424 u32 *piPage, /* OUT: The page number of the next page */ 1425 u32 *piFrame /* OUT: Wal frame index of next page */ 1426 ){ 1427 u32 iMin; /* Result pgno must be greater than iMin */ 1428 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 1429 int i; /* For looping through segments */ 1430 1431 iMin = p->iPrior; 1432 assert( iMin<0xffffffff ); 1433 for(i=p->nSegment-1; i>=0; i--){ 1434 struct WalSegment *pSegment = &p->aSegment[i]; 1435 while( pSegment->iNext<pSegment->nEntry ){ 1436 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 1437 if( iPg>iMin ){ 1438 if( iPg<iRet ){ 1439 iRet = iPg; 1440 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 1441 } 1442 break; 1443 } 1444 pSegment->iNext++; 1445 } 1446 } 1447 1448 *piPage = p->iPrior = iRet; 1449 return (iRet==0xFFFFFFFF); 1450 } 1451 1452 /* 1453 ** This function merges two sorted lists into a single sorted list. 1454 ** 1455 ** aLeft[] and aRight[] are arrays of indices. The sort key is 1456 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 1457 ** is guaranteed for all J<K: 1458 ** 1459 ** aContent[aLeft[J]] < aContent[aLeft[K]] 1460 ** aContent[aRight[J]] < aContent[aRight[K]] 1461 ** 1462 ** This routine overwrites aRight[] with a new (probably longer) sequence 1463 ** of indices such that the aRight[] contains every index that appears in 1464 ** either aLeft[] or the old aRight[] and such that the second condition 1465 ** above is still met. 1466 ** 1467 ** The aContent[aLeft[X]] values will be unique for all X. And the 1468 ** aContent[aRight[X]] values will be unique too. But there might be 1469 ** one or more combinations of X and Y such that 1470 ** 1471 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 1472 ** 1473 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 1474 */ 1475 static void walMerge( 1476 const u32 *aContent, /* Pages in wal - keys for the sort */ 1477 ht_slot *aLeft, /* IN: Left hand input list */ 1478 int nLeft, /* IN: Elements in array *paLeft */ 1479 ht_slot **paRight, /* IN/OUT: Right hand input list */ 1480 int *pnRight, /* IN/OUT: Elements in *paRight */ 1481 ht_slot *aTmp /* Temporary buffer */ 1482 ){ 1483 int iLeft = 0; /* Current index in aLeft */ 1484 int iRight = 0; /* Current index in aRight */ 1485 int iOut = 0; /* Current index in output buffer */ 1486 int nRight = *pnRight; 1487 ht_slot *aRight = *paRight; 1488 1489 assert( nLeft>0 && nRight>0 ); 1490 while( iRight<nRight || iLeft<nLeft ){ 1491 ht_slot logpage; 1492 Pgno dbpage; 1493 1494 if( (iLeft<nLeft) 1495 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 1496 ){ 1497 logpage = aLeft[iLeft++]; 1498 }else{ 1499 logpage = aRight[iRight++]; 1500 } 1501 dbpage = aContent[logpage]; 1502 1503 aTmp[iOut++] = logpage; 1504 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 1505 1506 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 1507 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 1508 } 1509 1510 *paRight = aLeft; 1511 *pnRight = iOut; 1512 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 1513 } 1514 1515 /* 1516 ** Sort the elements in list aList using aContent[] as the sort key. 1517 ** Remove elements with duplicate keys, preferring to keep the 1518 ** larger aList[] values. 1519 ** 1520 ** The aList[] entries are indices into aContent[]. The values in 1521 ** aList[] are to be sorted so that for all J<K: 1522 ** 1523 ** aContent[aList[J]] < aContent[aList[K]] 1524 ** 1525 ** For any X and Y such that 1526 ** 1527 ** aContent[aList[X]] == aContent[aList[Y]] 1528 ** 1529 ** Keep the larger of the two values aList[X] and aList[Y] and discard 1530 ** the smaller. 1531 */ 1532 static void walMergesort( 1533 const u32 *aContent, /* Pages in wal */ 1534 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 1535 ht_slot *aList, /* IN/OUT: List to sort */ 1536 int *pnList /* IN/OUT: Number of elements in aList[] */ 1537 ){ 1538 struct Sublist { 1539 int nList; /* Number of elements in aList */ 1540 ht_slot *aList; /* Pointer to sub-list content */ 1541 }; 1542 1543 const int nList = *pnList; /* Size of input list */ 1544 int nMerge = 0; /* Number of elements in list aMerge */ 1545 ht_slot *aMerge = 0; /* List to be merged */ 1546 int iList; /* Index into input list */ 1547 u32 iSub = 0; /* Index into aSub array */ 1548 struct Sublist aSub[13]; /* Array of sub-lists */ 1549 1550 memset(aSub, 0, sizeof(aSub)); 1551 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 1552 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 1553 1554 for(iList=0; iList<nList; iList++){ 1555 nMerge = 1; 1556 aMerge = &aList[iList]; 1557 for(iSub=0; iList & (1<<iSub); iSub++){ 1558 struct Sublist *p; 1559 assert( iSub<ArraySize(aSub) ); 1560 p = &aSub[iSub]; 1561 assert( p->aList && p->nList<=(1<<iSub) ); 1562 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 1563 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1564 } 1565 aSub[iSub].aList = aMerge; 1566 aSub[iSub].nList = nMerge; 1567 } 1568 1569 for(iSub++; iSub<ArraySize(aSub); iSub++){ 1570 if( nList & (1<<iSub) ){ 1571 struct Sublist *p; 1572 assert( iSub<ArraySize(aSub) ); 1573 p = &aSub[iSub]; 1574 assert( p->nList<=(1<<iSub) ); 1575 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 1576 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 1577 } 1578 } 1579 assert( aMerge==aList ); 1580 *pnList = nMerge; 1581 1582 #ifdef SQLITE_DEBUG 1583 { 1584 int i; 1585 for(i=1; i<*pnList; i++){ 1586 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 1587 } 1588 } 1589 #endif 1590 } 1591 1592 /* 1593 ** Free an iterator allocated by walIteratorInit(). 1594 */ 1595 static void walIteratorFree(WalIterator *p){ 1596 sqlite3_free(p); 1597 } 1598 1599 /* 1600 ** Construct a WalInterator object that can be used to loop over all 1601 ** pages in the WAL following frame nBackfill in ascending order. Frames 1602 ** nBackfill or earlier may be included - excluding them is an optimization 1603 ** only. The caller must hold the checkpoint lock. 1604 ** 1605 ** On success, make *pp point to the newly allocated WalInterator object 1606 ** return SQLITE_OK. Otherwise, return an error code. If this routine 1607 ** returns an error, the value of *pp is undefined. 1608 ** 1609 ** The calling routine should invoke walIteratorFree() to destroy the 1610 ** WalIterator object when it has finished with it. 1611 */ 1612 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 1613 WalIterator *p; /* Return value */ 1614 int nSegment; /* Number of segments to merge */ 1615 u32 iLast; /* Last frame in log */ 1616 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1617 int i; /* Iterator variable */ 1618 ht_slot *aTmp; /* Temp space used by merge-sort */ 1619 int rc = SQLITE_OK; /* Return Code */ 1620 1621 /* This routine only runs while holding the checkpoint lock. And 1622 ** it only runs if there is actually content in the log (mxFrame>0). 1623 */ 1624 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 1625 iLast = pWal->hdr.mxFrame; 1626 1627 /* Allocate space for the WalIterator object. */ 1628 nSegment = walFramePage(iLast) + 1; 1629 nByte = sizeof(WalIterator) 1630 + (nSegment-1)*sizeof(struct WalSegment) 1631 + iLast*sizeof(ht_slot); 1632 p = (WalIterator *)sqlite3_malloc64(nByte); 1633 if( !p ){ 1634 return SQLITE_NOMEM_BKPT; 1635 } 1636 memset(p, 0, nByte); 1637 p->nSegment = nSegment; 1638 1639 /* Allocate temporary space used by the merge-sort routine. This block 1640 ** of memory will be freed before this function returns. 1641 */ 1642 aTmp = (ht_slot *)sqlite3_malloc64( 1643 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 1644 ); 1645 if( !aTmp ){ 1646 rc = SQLITE_NOMEM_BKPT; 1647 } 1648 1649 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 1650 WalHashLoc sLoc; 1651 1652 rc = walHashGet(pWal, i, &sLoc); 1653 if( rc==SQLITE_OK ){ 1654 int j; /* Counter variable */ 1655 int nEntry; /* Number of entries in this segment */ 1656 ht_slot *aIndex; /* Sorted index for this segment */ 1657 1658 sLoc.aPgno++; 1659 if( (i+1)==nSegment ){ 1660 nEntry = (int)(iLast - sLoc.iZero); 1661 }else{ 1662 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 1663 } 1664 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 1665 sLoc.iZero++; 1666 1667 for(j=0; j<nEntry; j++){ 1668 aIndex[j] = (ht_slot)j; 1669 } 1670 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 1671 p->aSegment[i].iZero = sLoc.iZero; 1672 p->aSegment[i].nEntry = nEntry; 1673 p->aSegment[i].aIndex = aIndex; 1674 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 1675 } 1676 } 1677 sqlite3_free(aTmp); 1678 1679 if( rc!=SQLITE_OK ){ 1680 walIteratorFree(p); 1681 p = 0; 1682 } 1683 *pp = p; 1684 return rc; 1685 } 1686 1687 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1688 /* 1689 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 1690 ** they are supported by the VFS, and (b) the database handle is configured 1691 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 1692 ** or 0 otherwise. 1693 */ 1694 static int walEnableBlocking(Wal *pWal){ 1695 int res = 0; 1696 if( pWal->db ){ 1697 int tmout = pWal->db->busyTimeout; 1698 if( tmout ){ 1699 int rc; 1700 rc = sqlite3OsFileControl( 1701 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 1702 ); 1703 res = (rc==SQLITE_OK); 1704 } 1705 } 1706 return res; 1707 } 1708 1709 /* 1710 ** Disable blocking locks. 1711 */ 1712 static void walDisableBlocking(Wal *pWal){ 1713 int tmout = 0; 1714 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 1715 } 1716 1717 /* 1718 ** If parameter bLock is true, attempt to enable blocking locks, take 1719 ** the WRITER lock, and then disable blocking locks. If blocking locks 1720 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 1721 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 1722 ** an error if blocking locks can not be enabled. 1723 ** 1724 ** If the bLock parameter is false and the WRITER lock is held, release it. 1725 */ 1726 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 1727 int rc = SQLITE_OK; 1728 assert( pWal->readLock<0 || bLock==0 ); 1729 if( bLock ){ 1730 assert( pWal->db ); 1731 if( walEnableBlocking(pWal) ){ 1732 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1733 if( rc==SQLITE_OK ){ 1734 pWal->writeLock = 1; 1735 } 1736 walDisableBlocking(pWal); 1737 } 1738 }else if( pWal->writeLock ){ 1739 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 1740 pWal->writeLock = 0; 1741 } 1742 return rc; 1743 } 1744 1745 /* 1746 ** Set the database handle used to determine if blocking locks are required. 1747 */ 1748 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 1749 pWal->db = db; 1750 } 1751 1752 /* 1753 ** Take an exclusive WRITE lock. Blocking if so configured. 1754 */ 1755 static int walLockWriter(Wal *pWal){ 1756 int rc; 1757 walEnableBlocking(pWal); 1758 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 1759 walDisableBlocking(pWal); 1760 return rc; 1761 } 1762 #else 1763 # define walEnableBlocking(x) 0 1764 # define walDisableBlocking(x) 1765 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 1766 # define sqlite3WalDb(pWal, db) 1767 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 1768 1769 1770 /* 1771 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 1772 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 1773 ** busy-handler function. Invoke it and retry the lock until either the 1774 ** lock is successfully obtained or the busy-handler returns 0. 1775 */ 1776 static int walBusyLock( 1777 Wal *pWal, /* WAL connection */ 1778 int (*xBusy)(void*), /* Function to call when busy */ 1779 void *pBusyArg, /* Context argument for xBusyHandler */ 1780 int lockIdx, /* Offset of first byte to lock */ 1781 int n /* Number of bytes to lock */ 1782 ){ 1783 int rc; 1784 do { 1785 rc = walLockExclusive(pWal, lockIdx, n); 1786 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 1787 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 1788 if( rc==SQLITE_BUSY_TIMEOUT ){ 1789 walDisableBlocking(pWal); 1790 rc = SQLITE_BUSY; 1791 } 1792 #endif 1793 return rc; 1794 } 1795 1796 /* 1797 ** The cache of the wal-index header must be valid to call this function. 1798 ** Return the page-size in bytes used by the database. 1799 */ 1800 static int walPagesize(Wal *pWal){ 1801 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 1802 } 1803 1804 /* 1805 ** The following is guaranteed when this function is called: 1806 ** 1807 ** a) the WRITER lock is held, 1808 ** b) the entire log file has been checkpointed, and 1809 ** c) any existing readers are reading exclusively from the database 1810 ** file - there are no readers that may attempt to read a frame from 1811 ** the log file. 1812 ** 1813 ** This function updates the shared-memory structures so that the next 1814 ** client to write to the database (which may be this one) does so by 1815 ** writing frames into the start of the log file. 1816 ** 1817 ** The value of parameter salt1 is used as the aSalt[1] value in the 1818 ** new wal-index header. It should be passed a pseudo-random value (i.e. 1819 ** one obtained from sqlite3_randomness()). 1820 */ 1821 static void walRestartHdr(Wal *pWal, u32 salt1){ 1822 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 1823 int i; /* Loop counter */ 1824 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 1825 pWal->nCkpt++; 1826 pWal->hdr.mxFrame = 0; 1827 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 1828 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 1829 walIndexWriteHdr(pWal); 1830 AtomicStore(&pInfo->nBackfill, 0); 1831 pInfo->nBackfillAttempted = 0; 1832 pInfo->aReadMark[1] = 0; 1833 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 1834 assert( pInfo->aReadMark[0]==0 ); 1835 } 1836 1837 /* 1838 ** Copy as much content as we can from the WAL back into the database file 1839 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 1840 ** 1841 ** The amount of information copies from WAL to database might be limited 1842 ** by active readers. This routine will never overwrite a database page 1843 ** that a concurrent reader might be using. 1844 ** 1845 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 1846 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 1847 ** checkpoints are always run by a background thread or background 1848 ** process, foreground threads will never block on a lengthy fsync call. 1849 ** 1850 ** Fsync is called on the WAL before writing content out of the WAL and 1851 ** into the database. This ensures that if the new content is persistent 1852 ** in the WAL and can be recovered following a power-loss or hard reset. 1853 ** 1854 ** Fsync is also called on the database file if (and only if) the entire 1855 ** WAL content is copied into the database file. This second fsync makes 1856 ** it safe to delete the WAL since the new content will persist in the 1857 ** database file. 1858 ** 1859 ** This routine uses and updates the nBackfill field of the wal-index header. 1860 ** This is the only routine that will increase the value of nBackfill. 1861 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 1862 ** its value.) 1863 ** 1864 ** The caller must be holding sufficient locks to ensure that no other 1865 ** checkpoint is running (in any other thread or process) at the same 1866 ** time. 1867 */ 1868 static int walCheckpoint( 1869 Wal *pWal, /* Wal connection */ 1870 sqlite3 *db, /* Check for interrupts on this handle */ 1871 int eMode, /* One of PASSIVE, FULL or RESTART */ 1872 int (*xBusy)(void*), /* Function to call when busy */ 1873 void *pBusyArg, /* Context argument for xBusyHandler */ 1874 int sync_flags, /* Flags for OsSync() (or 0) */ 1875 u8 *zBuf /* Temporary buffer to use */ 1876 ){ 1877 int rc = SQLITE_OK; /* Return code */ 1878 int szPage; /* Database page-size */ 1879 WalIterator *pIter = 0; /* Wal iterator context */ 1880 u32 iDbpage = 0; /* Next database page to write */ 1881 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 1882 u32 mxSafeFrame; /* Max frame that can be backfilled */ 1883 u32 mxPage; /* Max database page to write */ 1884 int i; /* Loop counter */ 1885 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 1886 1887 szPage = walPagesize(pWal); 1888 testcase( szPage<=32768 ); 1889 testcase( szPage>=65536 ); 1890 pInfo = walCkptInfo(pWal); 1891 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 1892 1893 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 1894 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 1895 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 1896 1897 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 1898 ** safe to write into the database. Frames beyond mxSafeFrame might 1899 ** overwrite database pages that are in use by active readers and thus 1900 ** cannot be backfilled from the WAL. 1901 */ 1902 mxSafeFrame = pWal->hdr.mxFrame; 1903 mxPage = pWal->hdr.nPage; 1904 for(i=1; i<WAL_NREADER; i++){ 1905 u32 y = AtomicLoad(pInfo->aReadMark+i); 1906 if( mxSafeFrame>y ){ 1907 assert( y<=pWal->hdr.mxFrame ); 1908 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 1909 if( rc==SQLITE_OK ){ 1910 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 1911 AtomicStore(pInfo->aReadMark+i, iMark); 1912 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 1913 }else if( rc==SQLITE_BUSY ){ 1914 mxSafeFrame = y; 1915 xBusy = 0; 1916 }else{ 1917 goto walcheckpoint_out; 1918 } 1919 } 1920 } 1921 1922 /* Allocate the iterator */ 1923 if( pInfo->nBackfill<mxSafeFrame ){ 1924 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 1925 assert( rc==SQLITE_OK || pIter==0 ); 1926 } 1927 1928 if( pIter 1929 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 1930 ){ 1931 u32 nBackfill = pInfo->nBackfill; 1932 1933 pInfo->nBackfillAttempted = mxSafeFrame; 1934 1935 /* Sync the WAL to disk */ 1936 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 1937 1938 /* If the database may grow as a result of this checkpoint, hint 1939 ** about the eventual size of the db file to the VFS layer. 1940 */ 1941 if( rc==SQLITE_OK ){ 1942 i64 nReq = ((i64)mxPage * szPage); 1943 i64 nSize; /* Current size of database file */ 1944 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 1945 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 1946 if( rc==SQLITE_OK && nSize<nReq ){ 1947 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 1948 } 1949 } 1950 1951 1952 /* Iterate through the contents of the WAL, copying data to the db file */ 1953 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 1954 i64 iOffset; 1955 assert( walFramePgno(pWal, iFrame)==iDbpage ); 1956 if( AtomicLoad(&db->u1.isInterrupted) ){ 1957 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 1958 break; 1959 } 1960 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 1961 continue; 1962 } 1963 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 1964 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 1965 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 1966 if( rc!=SQLITE_OK ) break; 1967 iOffset = (iDbpage-1)*(i64)szPage; 1968 testcase( IS_BIG_INT(iOffset) ); 1969 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 1970 if( rc!=SQLITE_OK ) break; 1971 } 1972 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 1973 1974 /* If work was actually accomplished... */ 1975 if( rc==SQLITE_OK ){ 1976 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 1977 i64 szDb = pWal->hdr.nPage*(i64)szPage; 1978 testcase( IS_BIG_INT(szDb) ); 1979 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 1980 if( rc==SQLITE_OK ){ 1981 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 1982 } 1983 } 1984 if( rc==SQLITE_OK ){ 1985 AtomicStore(&pInfo->nBackfill, mxSafeFrame); 1986 } 1987 } 1988 1989 /* Release the reader lock held while backfilling */ 1990 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 1991 } 1992 1993 if( rc==SQLITE_BUSY ){ 1994 /* Reset the return code so as not to report a checkpoint failure 1995 ** just because there are active readers. */ 1996 rc = SQLITE_OK; 1997 } 1998 } 1999 2000 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 2001 ** entire wal file has been copied into the database file, then block 2002 ** until all readers have finished using the wal file. This ensures that 2003 ** the next process to write to the database restarts the wal file. 2004 */ 2005 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 2006 assert( pWal->writeLock ); 2007 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 2008 rc = SQLITE_BUSY; 2009 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 2010 u32 salt1; 2011 sqlite3_randomness(4, &salt1); 2012 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 2013 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 2014 if( rc==SQLITE_OK ){ 2015 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 2016 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 2017 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 2018 ** truncates the log file to zero bytes just prior to a 2019 ** successful return. 2020 ** 2021 ** In theory, it might be safe to do this without updating the 2022 ** wal-index header in shared memory, as all subsequent reader or 2023 ** writer clients should see that the entire log file has been 2024 ** checkpointed and behave accordingly. This seems unsafe though, 2025 ** as it would leave the system in a state where the contents of 2026 ** the wal-index header do not match the contents of the 2027 ** file-system. To avoid this, update the wal-index header to 2028 ** indicate that the log file contains zero valid frames. */ 2029 walRestartHdr(pWal, salt1); 2030 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 2031 } 2032 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 2033 } 2034 } 2035 } 2036 2037 walcheckpoint_out: 2038 walIteratorFree(pIter); 2039 return rc; 2040 } 2041 2042 /* 2043 ** If the WAL file is currently larger than nMax bytes in size, truncate 2044 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 2045 */ 2046 static void walLimitSize(Wal *pWal, i64 nMax){ 2047 i64 sz; 2048 int rx; 2049 sqlite3BeginBenignMalloc(); 2050 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 2051 if( rx==SQLITE_OK && (sz > nMax ) ){ 2052 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 2053 } 2054 sqlite3EndBenignMalloc(); 2055 if( rx ){ 2056 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 2057 } 2058 } 2059 2060 /* 2061 ** Close a connection to a log file. 2062 */ 2063 int sqlite3WalClose( 2064 Wal *pWal, /* Wal to close */ 2065 sqlite3 *db, /* For interrupt flag */ 2066 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 2067 int nBuf, 2068 u8 *zBuf /* Buffer of at least nBuf bytes */ 2069 ){ 2070 int rc = SQLITE_OK; 2071 if( pWal ){ 2072 int isDelete = 0; /* True to unlink wal and wal-index files */ 2073 2074 /* If an EXCLUSIVE lock can be obtained on the database file (using the 2075 ** ordinary, rollback-mode locking methods, this guarantees that the 2076 ** connection associated with this log file is the only connection to 2077 ** the database. In this case checkpoint the database and unlink both 2078 ** the wal and wal-index files. 2079 ** 2080 ** The EXCLUSIVE lock is not released before returning. 2081 */ 2082 if( zBuf!=0 2083 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 2084 ){ 2085 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 2086 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 2087 } 2088 rc = sqlite3WalCheckpoint(pWal, db, 2089 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 2090 ); 2091 if( rc==SQLITE_OK ){ 2092 int bPersist = -1; 2093 sqlite3OsFileControlHint( 2094 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 2095 ); 2096 if( bPersist!=1 ){ 2097 /* Try to delete the WAL file if the checkpoint completed and 2098 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 2099 ** mode (!bPersist) */ 2100 isDelete = 1; 2101 }else if( pWal->mxWalSize>=0 ){ 2102 /* Try to truncate the WAL file to zero bytes if the checkpoint 2103 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 2104 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 2105 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 2106 ** to zero bytes as truncating to the journal_size_limit might 2107 ** leave a corrupt WAL file on disk. */ 2108 walLimitSize(pWal, 0); 2109 } 2110 } 2111 } 2112 2113 walIndexClose(pWal, isDelete); 2114 sqlite3OsClose(pWal->pWalFd); 2115 if( isDelete ){ 2116 sqlite3BeginBenignMalloc(); 2117 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 2118 sqlite3EndBenignMalloc(); 2119 } 2120 WALTRACE(("WAL%p: closed\n", pWal)); 2121 sqlite3_free((void *)pWal->apWiData); 2122 sqlite3_free(pWal); 2123 } 2124 return rc; 2125 } 2126 2127 /* 2128 ** Try to read the wal-index header. Return 0 on success and 1 if 2129 ** there is a problem. 2130 ** 2131 ** The wal-index is in shared memory. Another thread or process might 2132 ** be writing the header at the same time this procedure is trying to 2133 ** read it, which might result in inconsistency. A dirty read is detected 2134 ** by verifying that both copies of the header are the same and also by 2135 ** a checksum on the header. 2136 ** 2137 ** If and only if the read is consistent and the header is different from 2138 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 2139 ** and *pChanged is set to 1. 2140 ** 2141 ** If the checksum cannot be verified return non-zero. If the header 2142 ** is read successfully and the checksum verified, return zero. 2143 */ 2144 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 2145 u32 aCksum[2]; /* Checksum on the header content */ 2146 WalIndexHdr h1, h2; /* Two copies of the header content */ 2147 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 2148 2149 /* The first page of the wal-index must be mapped at this point. */ 2150 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2151 2152 /* Read the header. This might happen concurrently with a write to the 2153 ** same area of shared memory on a different CPU in a SMP, 2154 ** meaning it is possible that an inconsistent snapshot is read 2155 ** from the file. If this happens, return non-zero. 2156 ** 2157 ** tag-20200519-1: 2158 ** There are two copies of the header at the beginning of the wal-index. 2159 ** When reading, read [0] first then [1]. Writes are in the reverse order. 2160 ** Memory barriers are used to prevent the compiler or the hardware from 2161 ** reordering the reads and writes. TSAN and similar tools can sometimes 2162 ** give false-positive warnings about these accesses because the tools do not 2163 ** account for the double-read and the memory barrier. The use of mutexes 2164 ** here would be problematic as the memory being accessed is potentially 2165 ** shared among multiple processes and not all mutex implementions work 2166 ** reliably in that environment. 2167 */ 2168 aHdr = walIndexHdr(pWal); 2169 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 2170 walShmBarrier(pWal); 2171 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 2172 2173 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 2174 return 1; /* Dirty read */ 2175 } 2176 if( h1.isInit==0 ){ 2177 return 1; /* Malformed header - probably all zeros */ 2178 } 2179 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 2180 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 2181 return 1; /* Checksum does not match */ 2182 } 2183 2184 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 2185 *pChanged = 1; 2186 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 2187 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 2188 testcase( pWal->szPage<=32768 ); 2189 testcase( pWal->szPage>=65536 ); 2190 } 2191 2192 /* The header was successfully read. Return zero. */ 2193 return 0; 2194 } 2195 2196 /* 2197 ** This is the value that walTryBeginRead returns when it needs to 2198 ** be retried. 2199 */ 2200 #define WAL_RETRY (-1) 2201 2202 /* 2203 ** Read the wal-index header from the wal-index and into pWal->hdr. 2204 ** If the wal-header appears to be corrupt, try to reconstruct the 2205 ** wal-index from the WAL before returning. 2206 ** 2207 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 2208 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 2209 ** to 0. 2210 ** 2211 ** If the wal-index header is successfully read, return SQLITE_OK. 2212 ** Otherwise an SQLite error code. 2213 */ 2214 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 2215 int rc; /* Return code */ 2216 int badHdr; /* True if a header read failed */ 2217 volatile u32 *page0; /* Chunk of wal-index containing header */ 2218 2219 /* Ensure that page 0 of the wal-index (the page that contains the 2220 ** wal-index header) is mapped. Return early if an error occurs here. 2221 */ 2222 assert( pChanged ); 2223 rc = walIndexPage(pWal, 0, &page0); 2224 if( rc!=SQLITE_OK ){ 2225 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 2226 if( rc==SQLITE_READONLY_CANTINIT ){ 2227 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 2228 ** was openable but is not writable, and this thread is unable to 2229 ** confirm that another write-capable connection has the shared-memory 2230 ** open, and hence the content of the shared-memory is unreliable, 2231 ** since the shared-memory might be inconsistent with the WAL file 2232 ** and there is no writer on hand to fix it. */ 2233 assert( page0==0 ); 2234 assert( pWal->writeLock==0 ); 2235 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2236 pWal->bShmUnreliable = 1; 2237 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 2238 *pChanged = 1; 2239 }else{ 2240 return rc; /* Any other non-OK return is just an error */ 2241 } 2242 }else{ 2243 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 2244 ** is zero, which prevents the SHM from growing */ 2245 testcase( page0!=0 ); 2246 } 2247 assert( page0!=0 || pWal->writeLock==0 ); 2248 2249 /* If the first page of the wal-index has been mapped, try to read the 2250 ** wal-index header immediately, without holding any lock. This usually 2251 ** works, but may fail if the wal-index header is corrupt or currently 2252 ** being modified by another thread or process. 2253 */ 2254 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 2255 2256 /* If the first attempt failed, it might have been due to a race 2257 ** with a writer. So get a WRITE lock and try again. 2258 */ 2259 if( badHdr ){ 2260 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 2261 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 2262 walUnlockShared(pWal, WAL_WRITE_LOCK); 2263 rc = SQLITE_READONLY_RECOVERY; 2264 } 2265 }else{ 2266 int bWriteLock = pWal->writeLock; 2267 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 2268 pWal->writeLock = 1; 2269 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 2270 badHdr = walIndexTryHdr(pWal, pChanged); 2271 if( badHdr ){ 2272 /* If the wal-index header is still malformed even while holding 2273 ** a WRITE lock, it can only mean that the header is corrupted and 2274 ** needs to be reconstructed. So run recovery to do exactly that. 2275 */ 2276 rc = walIndexRecover(pWal); 2277 *pChanged = 1; 2278 } 2279 } 2280 if( bWriteLock==0 ){ 2281 pWal->writeLock = 0; 2282 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 2283 } 2284 } 2285 } 2286 } 2287 2288 /* If the header is read successfully, check the version number to make 2289 ** sure the wal-index was not constructed with some future format that 2290 ** this version of SQLite cannot understand. 2291 */ 2292 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 2293 rc = SQLITE_CANTOPEN_BKPT; 2294 } 2295 if( pWal->bShmUnreliable ){ 2296 if( rc!=SQLITE_OK ){ 2297 walIndexClose(pWal, 0); 2298 pWal->bShmUnreliable = 0; 2299 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 2300 /* walIndexRecover() might have returned SHORT_READ if a concurrent 2301 ** writer truncated the WAL out from under it. If that happens, it 2302 ** indicates that a writer has fixed the SHM file for us, so retry */ 2303 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 2304 } 2305 pWal->exclusiveMode = WAL_NORMAL_MODE; 2306 } 2307 2308 return rc; 2309 } 2310 2311 /* 2312 ** Open a transaction in a connection where the shared-memory is read-only 2313 ** and where we cannot verify that there is a separate write-capable connection 2314 ** on hand to keep the shared-memory up-to-date with the WAL file. 2315 ** 2316 ** This can happen, for example, when the shared-memory is implemented by 2317 ** memory-mapping a *-shm file, where a prior writer has shut down and 2318 ** left the *-shm file on disk, and now the present connection is trying 2319 ** to use that database but lacks write permission on the *-shm file. 2320 ** Other scenarios are also possible, depending on the VFS implementation. 2321 ** 2322 ** Precondition: 2323 ** 2324 ** The *-wal file has been read and an appropriate wal-index has been 2325 ** constructed in pWal->apWiData[] using heap memory instead of shared 2326 ** memory. 2327 ** 2328 ** If this function returns SQLITE_OK, then the read transaction has 2329 ** been successfully opened. In this case output variable (*pChanged) 2330 ** is set to true before returning if the caller should discard the 2331 ** contents of the page cache before proceeding. Or, if it returns 2332 ** WAL_RETRY, then the heap memory wal-index has been discarded and 2333 ** the caller should retry opening the read transaction from the 2334 ** beginning (including attempting to map the *-shm file). 2335 ** 2336 ** If an error occurs, an SQLite error code is returned. 2337 */ 2338 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 2339 i64 szWal; /* Size of wal file on disk in bytes */ 2340 i64 iOffset; /* Current offset when reading wal file */ 2341 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 2342 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 2343 int szFrame; /* Number of bytes in buffer aFrame[] */ 2344 u8 *aData; /* Pointer to data part of aFrame buffer */ 2345 volatile void *pDummy; /* Dummy argument for xShmMap */ 2346 int rc; /* Return code */ 2347 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 2348 2349 assert( pWal->bShmUnreliable ); 2350 assert( pWal->readOnly & WAL_SHM_RDONLY ); 2351 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 2352 2353 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 2354 ** writers from running a checkpoint, but does not stop them 2355 ** from running recovery. */ 2356 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2357 if( rc!=SQLITE_OK ){ 2358 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 2359 goto begin_unreliable_shm_out; 2360 } 2361 pWal->readLock = 0; 2362 2363 /* Check to see if a separate writer has attached to the shared-memory area, 2364 ** thus making the shared-memory "reliable" again. Do this by invoking 2365 ** the xShmMap() routine of the VFS and looking to see if the return 2366 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 2367 ** 2368 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 2369 ** cause the heap-memory WAL-index to be discarded and the actual 2370 ** shared memory to be used in its place. 2371 ** 2372 ** This step is important because, even though this connection is holding 2373 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 2374 ** have already checkpointed the WAL file and, while the current 2375 ** is active, wrap the WAL and start overwriting frames that this 2376 ** process wants to use. 2377 ** 2378 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 2379 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 2380 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 2381 ** even if some external agent does a "chmod" to make the shared-memory 2382 ** writable by us, until sqlite3OsShmUnmap() has been called. 2383 ** This is a requirement on the VFS implementation. 2384 */ 2385 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 2386 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 2387 if( rc!=SQLITE_READONLY_CANTINIT ){ 2388 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 2389 goto begin_unreliable_shm_out; 2390 } 2391 2392 /* We reach this point only if the real shared-memory is still unreliable. 2393 ** Assume the in-memory WAL-index substitute is correct and load it 2394 ** into pWal->hdr. 2395 */ 2396 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 2397 2398 /* Make sure some writer hasn't come in and changed the WAL file out 2399 ** from under us, then disconnected, while we were not looking. 2400 */ 2401 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 2402 if( rc!=SQLITE_OK ){ 2403 goto begin_unreliable_shm_out; 2404 } 2405 if( szWal<WAL_HDRSIZE ){ 2406 /* If the wal file is too small to contain a wal-header and the 2407 ** wal-index header has mxFrame==0, then it must be safe to proceed 2408 ** reading the database file only. However, the page cache cannot 2409 ** be trusted, as a read/write connection may have connected, written 2410 ** the db, run a checkpoint, truncated the wal file and disconnected 2411 ** since this client's last read transaction. */ 2412 *pChanged = 1; 2413 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 2414 goto begin_unreliable_shm_out; 2415 } 2416 2417 /* Check the salt keys at the start of the wal file still match. */ 2418 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 2419 if( rc!=SQLITE_OK ){ 2420 goto begin_unreliable_shm_out; 2421 } 2422 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 2423 /* Some writer has wrapped the WAL file while we were not looking. 2424 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 2425 ** rebuilt. */ 2426 rc = WAL_RETRY; 2427 goto begin_unreliable_shm_out; 2428 } 2429 2430 /* Allocate a buffer to read frames into */ 2431 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; 2432 aFrame = (u8 *)sqlite3_malloc64(szFrame); 2433 if( aFrame==0 ){ 2434 rc = SQLITE_NOMEM_BKPT; 2435 goto begin_unreliable_shm_out; 2436 } 2437 aData = &aFrame[WAL_FRAME_HDRSIZE]; 2438 2439 /* Check to see if a complete transaction has been appended to the 2440 ** wal file since the heap-memory wal-index was created. If so, the 2441 ** heap-memory wal-index is discarded and WAL_RETRY returned to 2442 ** the caller. */ 2443 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 2444 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 2445 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 2446 iOffset+szFrame<=szWal; 2447 iOffset+=szFrame 2448 ){ 2449 u32 pgno; /* Database page number for frame */ 2450 u32 nTruncate; /* dbsize field from frame header */ 2451 2452 /* Read and decode the next log frame. */ 2453 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 2454 if( rc!=SQLITE_OK ) break; 2455 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 2456 2457 /* If nTruncate is non-zero, then a complete transaction has been 2458 ** appended to this wal file. Set rc to WAL_RETRY and break out of 2459 ** the loop. */ 2460 if( nTruncate ){ 2461 rc = WAL_RETRY; 2462 break; 2463 } 2464 } 2465 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 2466 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 2467 2468 begin_unreliable_shm_out: 2469 sqlite3_free(aFrame); 2470 if( rc!=SQLITE_OK ){ 2471 int i; 2472 for(i=0; i<pWal->nWiData; i++){ 2473 sqlite3_free((void*)pWal->apWiData[i]); 2474 pWal->apWiData[i] = 0; 2475 } 2476 pWal->bShmUnreliable = 0; 2477 sqlite3WalEndReadTransaction(pWal); 2478 *pChanged = 1; 2479 } 2480 return rc; 2481 } 2482 2483 /* 2484 ** Attempt to start a read transaction. This might fail due to a race or 2485 ** other transient condition. When that happens, it returns WAL_RETRY to 2486 ** indicate to the caller that it is safe to retry immediately. 2487 ** 2488 ** On success return SQLITE_OK. On a permanent failure (such an 2489 ** I/O error or an SQLITE_BUSY because another process is running 2490 ** recovery) return a positive error code. 2491 ** 2492 ** The useWal parameter is true to force the use of the WAL and disable 2493 ** the case where the WAL is bypassed because it has been completely 2494 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 2495 ** to make a copy of the wal-index header into pWal->hdr. If the 2496 ** wal-index header has changed, *pChanged is set to 1 (as an indication 2497 ** to the caller that the local page cache is obsolete and needs to be 2498 ** flushed.) When useWal==1, the wal-index header is assumed to already 2499 ** be loaded and the pChanged parameter is unused. 2500 ** 2501 ** The caller must set the cnt parameter to the number of prior calls to 2502 ** this routine during the current read attempt that returned WAL_RETRY. 2503 ** This routine will start taking more aggressive measures to clear the 2504 ** race conditions after multiple WAL_RETRY returns, and after an excessive 2505 ** number of errors will ultimately return SQLITE_PROTOCOL. The 2506 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 2507 ** and is not honoring the locking protocol. There is a vanishingly small 2508 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 2509 ** bad luck when there is lots of contention for the wal-index, but that 2510 ** possibility is so small that it can be safely neglected, we believe. 2511 ** 2512 ** On success, this routine obtains a read lock on 2513 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 2514 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 2515 ** that means the Wal does not hold any read lock. The reader must not 2516 ** access any database page that is modified by a WAL frame up to and 2517 ** including frame number aReadMark[pWal->readLock]. The reader will 2518 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 2519 ** Or if pWal->readLock==0, then the reader will ignore the WAL 2520 ** completely and get all content directly from the database file. 2521 ** If the useWal parameter is 1 then the WAL will never be ignored and 2522 ** this routine will always set pWal->readLock>0 on success. 2523 ** When the read transaction is completed, the caller must release the 2524 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 2525 ** 2526 ** This routine uses the nBackfill and aReadMark[] fields of the header 2527 ** to select a particular WAL_READ_LOCK() that strives to let the 2528 ** checkpoint process do as much work as possible. This routine might 2529 ** update values of the aReadMark[] array in the header, but if it does 2530 ** so it takes care to hold an exclusive lock on the corresponding 2531 ** WAL_READ_LOCK() while changing values. 2532 */ 2533 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 2534 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 2535 u32 mxReadMark; /* Largest aReadMark[] value */ 2536 int mxI; /* Index of largest aReadMark[] value */ 2537 int i; /* Loop counter */ 2538 int rc = SQLITE_OK; /* Return code */ 2539 u32 mxFrame; /* Wal frame to lock to */ 2540 2541 assert( pWal->readLock<0 ); /* Not currently locked */ 2542 2543 /* useWal may only be set for read/write connections */ 2544 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 2545 2546 /* Take steps to avoid spinning forever if there is a protocol error. 2547 ** 2548 ** Circumstances that cause a RETRY should only last for the briefest 2549 ** instances of time. No I/O or other system calls are done while the 2550 ** locks are held, so the locks should not be held for very long. But 2551 ** if we are unlucky, another process that is holding a lock might get 2552 ** paged out or take a page-fault that is time-consuming to resolve, 2553 ** during the few nanoseconds that it is holding the lock. In that case, 2554 ** it might take longer than normal for the lock to free. 2555 ** 2556 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 2557 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 2558 ** is more of a scheduler yield than an actual delay. But on the 10th 2559 ** an subsequent retries, the delays start becoming longer and longer, 2560 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 2561 ** The total delay time before giving up is less than 10 seconds. 2562 */ 2563 if( cnt>5 ){ 2564 int nDelay = 1; /* Pause time in microseconds */ 2565 if( cnt>100 ){ 2566 VVA_ONLY( pWal->lockError = 1; ) 2567 return SQLITE_PROTOCOL; 2568 } 2569 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 2570 sqlite3OsSleep(pWal->pVfs, nDelay); 2571 } 2572 2573 if( !useWal ){ 2574 assert( rc==SQLITE_OK ); 2575 if( pWal->bShmUnreliable==0 ){ 2576 rc = walIndexReadHdr(pWal, pChanged); 2577 } 2578 if( rc==SQLITE_BUSY ){ 2579 /* If there is not a recovery running in another thread or process 2580 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 2581 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 2582 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 2583 ** would be technically correct. But the race is benign since with 2584 ** WAL_RETRY this routine will be called again and will probably be 2585 ** right on the second iteration. 2586 */ 2587 if( pWal->apWiData[0]==0 ){ 2588 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 2589 ** We assume this is a transient condition, so return WAL_RETRY. The 2590 ** xShmMap() implementation used by the default unix and win32 VFS 2591 ** modules may return SQLITE_BUSY due to a race condition in the 2592 ** code that determines whether or not the shared-memory region 2593 ** must be zeroed before the requested page is returned. 2594 */ 2595 rc = WAL_RETRY; 2596 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 2597 walUnlockShared(pWal, WAL_RECOVER_LOCK); 2598 rc = WAL_RETRY; 2599 }else if( rc==SQLITE_BUSY ){ 2600 rc = SQLITE_BUSY_RECOVERY; 2601 } 2602 } 2603 if( rc!=SQLITE_OK ){ 2604 return rc; 2605 } 2606 else if( pWal->bShmUnreliable ){ 2607 return walBeginShmUnreliable(pWal, pChanged); 2608 } 2609 } 2610 2611 assert( pWal->nWiData>0 ); 2612 assert( pWal->apWiData[0]!=0 ); 2613 pInfo = walCkptInfo(pWal); 2614 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 2615 #ifdef SQLITE_ENABLE_SNAPSHOT 2616 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 2617 #endif 2618 ){ 2619 /* The WAL has been completely backfilled (or it is empty). 2620 ** and can be safely ignored. 2621 */ 2622 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 2623 walShmBarrier(pWal); 2624 if( rc==SQLITE_OK ){ 2625 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 2626 /* It is not safe to allow the reader to continue here if frames 2627 ** may have been appended to the log before READ_LOCK(0) was obtained. 2628 ** When holding READ_LOCK(0), the reader ignores the entire log file, 2629 ** which implies that the database file contains a trustworthy 2630 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 2631 ** happening, this is usually correct. 2632 ** 2633 ** However, if frames have been appended to the log (or if the log 2634 ** is wrapped and written for that matter) before the READ_LOCK(0) 2635 ** is obtained, that is not necessarily true. A checkpointer may 2636 ** have started to backfill the appended frames but crashed before 2637 ** it finished. Leaving a corrupt image in the database file. 2638 */ 2639 walUnlockShared(pWal, WAL_READ_LOCK(0)); 2640 return WAL_RETRY; 2641 } 2642 pWal->readLock = 0; 2643 return SQLITE_OK; 2644 }else if( rc!=SQLITE_BUSY ){ 2645 return rc; 2646 } 2647 } 2648 2649 /* If we get this far, it means that the reader will want to use 2650 ** the WAL to get at content from recent commits. The job now is 2651 ** to select one of the aReadMark[] entries that is closest to 2652 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 2653 */ 2654 mxReadMark = 0; 2655 mxI = 0; 2656 mxFrame = pWal->hdr.mxFrame; 2657 #ifdef SQLITE_ENABLE_SNAPSHOT 2658 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 2659 mxFrame = pWal->pSnapshot->mxFrame; 2660 } 2661 #endif 2662 for(i=1; i<WAL_NREADER; i++){ 2663 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); 2664 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 2665 assert( thisMark!=READMARK_NOT_USED ); 2666 mxReadMark = thisMark; 2667 mxI = i; 2668 } 2669 } 2670 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 2671 && (mxReadMark<mxFrame || mxI==0) 2672 ){ 2673 for(i=1; i<WAL_NREADER; i++){ 2674 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 2675 if( rc==SQLITE_OK ){ 2676 AtomicStore(pInfo->aReadMark+i,mxFrame); 2677 mxReadMark = mxFrame; 2678 mxI = i; 2679 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 2680 break; 2681 }else if( rc!=SQLITE_BUSY ){ 2682 return rc; 2683 } 2684 } 2685 } 2686 if( mxI==0 ){ 2687 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 2688 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 2689 } 2690 2691 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 2692 if( rc ){ 2693 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 2694 } 2695 /* Now that the read-lock has been obtained, check that neither the 2696 ** value in the aReadMark[] array or the contents of the wal-index 2697 ** header have changed. 2698 ** 2699 ** It is necessary to check that the wal-index header did not change 2700 ** between the time it was read and when the shared-lock was obtained 2701 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 2702 ** that the log file may have been wrapped by a writer, or that frames 2703 ** that occur later in the log than pWal->hdr.mxFrame may have been 2704 ** copied into the database by a checkpointer. If either of these things 2705 ** happened, then reading the database with the current value of 2706 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 2707 ** instead. 2708 ** 2709 ** Before checking that the live wal-index header has not changed 2710 ** since it was read, set Wal.minFrame to the first frame in the wal 2711 ** file that has not yet been checkpointed. This client will not need 2712 ** to read any frames earlier than minFrame from the wal file - they 2713 ** can be safely read directly from the database file. 2714 ** 2715 ** Because a ShmBarrier() call is made between taking the copy of 2716 ** nBackfill and checking that the wal-header in shared-memory still 2717 ** matches the one cached in pWal->hdr, it is guaranteed that the 2718 ** checkpointer that set nBackfill was not working with a wal-index 2719 ** header newer than that cached in pWal->hdr. If it were, that could 2720 ** cause a problem. The checkpointer could omit to checkpoint 2721 ** a version of page X that lies before pWal->minFrame (call that version 2722 ** A) on the basis that there is a newer version (version B) of the same 2723 ** page later in the wal file. But if version B happens to like past 2724 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 2725 ** that it can read version A from the database file. However, since 2726 ** we can guarantee that the checkpointer that set nBackfill could not 2727 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 2728 */ 2729 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; 2730 walShmBarrier(pWal); 2731 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 2732 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 2733 ){ 2734 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 2735 return WAL_RETRY; 2736 }else{ 2737 assert( mxReadMark<=pWal->hdr.mxFrame ); 2738 pWal->readLock = (i16)mxI; 2739 } 2740 return rc; 2741 } 2742 2743 #ifdef SQLITE_ENABLE_SNAPSHOT 2744 /* 2745 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 2746 ** variable so that older snapshots can be accessed. To do this, loop 2747 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 2748 ** comparing their content to the corresponding page with the database 2749 ** file, if any. Set nBackfillAttempted to the frame number of the 2750 ** first frame for which the wal file content matches the db file. 2751 ** 2752 ** This is only really safe if the file-system is such that any page 2753 ** writes made by earlier checkpointers were atomic operations, which 2754 ** is not always true. It is also possible that nBackfillAttempted 2755 ** may be left set to a value larger than expected, if a wal frame 2756 ** contains content that duplicate of an earlier version of the same 2757 ** page. 2758 ** 2759 ** SQLITE_OK is returned if successful, or an SQLite error code if an 2760 ** error occurs. It is not an error if nBackfillAttempted cannot be 2761 ** decreased at all. 2762 */ 2763 int sqlite3WalSnapshotRecover(Wal *pWal){ 2764 int rc; 2765 2766 assert( pWal->readLock>=0 ); 2767 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 2768 if( rc==SQLITE_OK ){ 2769 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2770 int szPage = (int)pWal->szPage; 2771 i64 szDb; /* Size of db file in bytes */ 2772 2773 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 2774 if( rc==SQLITE_OK ){ 2775 void *pBuf1 = sqlite3_malloc(szPage); 2776 void *pBuf2 = sqlite3_malloc(szPage); 2777 if( pBuf1==0 || pBuf2==0 ){ 2778 rc = SQLITE_NOMEM; 2779 }else{ 2780 u32 i = pInfo->nBackfillAttempted; 2781 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 2782 WalHashLoc sLoc; /* Hash table location */ 2783 u32 pgno; /* Page number in db file */ 2784 i64 iDbOff; /* Offset of db file entry */ 2785 i64 iWalOff; /* Offset of wal file entry */ 2786 2787 rc = walHashGet(pWal, walFramePage(i), &sLoc); 2788 if( rc!=SQLITE_OK ) break; 2789 pgno = sLoc.aPgno[i-sLoc.iZero]; 2790 iDbOff = (i64)(pgno-1) * szPage; 2791 2792 if( iDbOff+szPage<=szDb ){ 2793 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 2794 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 2795 2796 if( rc==SQLITE_OK ){ 2797 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 2798 } 2799 2800 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 2801 break; 2802 } 2803 } 2804 2805 pInfo->nBackfillAttempted = i-1; 2806 } 2807 } 2808 2809 sqlite3_free(pBuf1); 2810 sqlite3_free(pBuf2); 2811 } 2812 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 2813 } 2814 2815 return rc; 2816 } 2817 #endif /* SQLITE_ENABLE_SNAPSHOT */ 2818 2819 /* 2820 ** Begin a read transaction on the database. 2821 ** 2822 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 2823 ** it takes a snapshot of the state of the WAL and wal-index for the current 2824 ** instant in time. The current thread will continue to use this snapshot. 2825 ** Other threads might append new content to the WAL and wal-index but 2826 ** that extra content is ignored by the current thread. 2827 ** 2828 ** If the database contents have changes since the previous read 2829 ** transaction, then *pChanged is set to 1 before returning. The 2830 ** Pager layer will use this to know that its cache is stale and 2831 ** needs to be flushed. 2832 */ 2833 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 2834 int rc; /* Return code */ 2835 int cnt = 0; /* Number of TryBeginRead attempts */ 2836 2837 assert( pWal->ckptLock==0 ); 2838 2839 #ifdef SQLITE_ENABLE_SNAPSHOT 2840 int bChanged = 0; 2841 WalIndexHdr *pSnapshot = pWal->pSnapshot; 2842 if( pSnapshot ){ 2843 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2844 bChanged = 1; 2845 } 2846 2847 /* It is possible that there is a checkpointer thread running 2848 ** concurrent with this code. If this is the case, it may be that the 2849 ** checkpointer has already determined that it will checkpoint 2850 ** snapshot X, where X is later in the wal file than pSnapshot, but 2851 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 2852 ** its intent. To avoid the race condition this leads to, ensure that 2853 ** there is no checkpointer process by taking a shared CKPT lock 2854 ** before checking pInfo->nBackfillAttempted. */ 2855 (void)walEnableBlocking(pWal); 2856 rc = walLockShared(pWal, WAL_CKPT_LOCK); 2857 walDisableBlocking(pWal); 2858 2859 if( rc!=SQLITE_OK ){ 2860 return rc; 2861 } 2862 pWal->ckptLock = 1; 2863 } 2864 #endif 2865 2866 do{ 2867 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 2868 }while( rc==WAL_RETRY ); 2869 testcase( (rc&0xff)==SQLITE_BUSY ); 2870 testcase( (rc&0xff)==SQLITE_IOERR ); 2871 testcase( rc==SQLITE_PROTOCOL ); 2872 testcase( rc==SQLITE_OK ); 2873 2874 #ifdef SQLITE_ENABLE_SNAPSHOT 2875 if( rc==SQLITE_OK ){ 2876 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 2877 /* At this point the client has a lock on an aReadMark[] slot holding 2878 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 2879 ** is populated with the wal-index header corresponding to the head 2880 ** of the wal file. Verify that pSnapshot is still valid before 2881 ** continuing. Reasons why pSnapshot might no longer be valid: 2882 ** 2883 ** (1) The WAL file has been reset since the snapshot was taken. 2884 ** In this case, the salt will have changed. 2885 ** 2886 ** (2) A checkpoint as been attempted that wrote frames past 2887 ** pSnapshot->mxFrame into the database file. Note that the 2888 ** checkpoint need not have completed for this to cause problems. 2889 */ 2890 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 2891 2892 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 2893 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 2894 2895 /* Check that the wal file has not been wrapped. Assuming that it has 2896 ** not, also check that no checkpointer has attempted to checkpoint any 2897 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 2898 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 2899 ** with *pSnapshot and set *pChanged as appropriate for opening the 2900 ** snapshot. */ 2901 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 2902 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 2903 ){ 2904 assert( pWal->readLock>0 ); 2905 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 2906 *pChanged = bChanged; 2907 }else{ 2908 rc = SQLITE_ERROR_SNAPSHOT; 2909 } 2910 2911 /* A client using a non-current snapshot may not ignore any frames 2912 ** from the start of the wal file. This is because, for a system 2913 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 2914 ** have omitted to checkpoint a frame earlier than minFrame in 2915 ** the file because there exists a frame after iSnapshot that 2916 ** is the same database page. */ 2917 pWal->minFrame = 1; 2918 2919 if( rc!=SQLITE_OK ){ 2920 sqlite3WalEndReadTransaction(pWal); 2921 } 2922 } 2923 } 2924 2925 /* Release the shared CKPT lock obtained above. */ 2926 if( pWal->ckptLock ){ 2927 assert( pSnapshot ); 2928 walUnlockShared(pWal, WAL_CKPT_LOCK); 2929 pWal->ckptLock = 0; 2930 } 2931 #endif 2932 return rc; 2933 } 2934 2935 /* 2936 ** Finish with a read transaction. All this does is release the 2937 ** read-lock. 2938 */ 2939 void sqlite3WalEndReadTransaction(Wal *pWal){ 2940 sqlite3WalEndWriteTransaction(pWal); 2941 if( pWal->readLock>=0 ){ 2942 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 2943 pWal->readLock = -1; 2944 } 2945 } 2946 2947 /* 2948 ** Search the wal file for page pgno. If found, set *piRead to the frame that 2949 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 2950 ** to zero. 2951 ** 2952 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 2953 ** error does occur, the final value of *piRead is undefined. 2954 */ 2955 int sqlite3WalFindFrame( 2956 Wal *pWal, /* WAL handle */ 2957 Pgno pgno, /* Database page number to read data for */ 2958 u32 *piRead /* OUT: Frame number (or zero) */ 2959 ){ 2960 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 2961 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 2962 int iHash; /* Used to loop through N hash tables */ 2963 int iMinHash; 2964 2965 /* This routine is only be called from within a read transaction. */ 2966 assert( pWal->readLock>=0 || pWal->lockError ); 2967 2968 /* If the "last page" field of the wal-index header snapshot is 0, then 2969 ** no data will be read from the wal under any circumstances. Return early 2970 ** in this case as an optimization. Likewise, if pWal->readLock==0, 2971 ** then the WAL is ignored by the reader so return early, as if the 2972 ** WAL were empty. 2973 */ 2974 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 2975 *piRead = 0; 2976 return SQLITE_OK; 2977 } 2978 2979 /* Search the hash table or tables for an entry matching page number 2980 ** pgno. Each iteration of the following for() loop searches one 2981 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 2982 ** 2983 ** This code might run concurrently to the code in walIndexAppend() 2984 ** that adds entries to the wal-index (and possibly to this hash 2985 ** table). This means the value just read from the hash 2986 ** slot (aHash[iKey]) may have been added before or after the 2987 ** current read transaction was opened. Values added after the 2988 ** read transaction was opened may have been written incorrectly - 2989 ** i.e. these slots may contain garbage data. However, we assume 2990 ** that any slots written before the current read transaction was 2991 ** opened remain unmodified. 2992 ** 2993 ** For the reasons above, the if(...) condition featured in the inner 2994 ** loop of the following block is more stringent that would be required 2995 ** if we had exclusive access to the hash-table: 2996 ** 2997 ** (aPgno[iFrame]==pgno): 2998 ** This condition filters out normal hash-table collisions. 2999 ** 3000 ** (iFrame<=iLast): 3001 ** This condition filters out entries that were added to the hash 3002 ** table after the current read-transaction had started. 3003 */ 3004 iMinHash = walFramePage(pWal->minFrame); 3005 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 3006 WalHashLoc sLoc; /* Hash table location */ 3007 int iKey; /* Hash slot index */ 3008 int nCollide; /* Number of hash collisions remaining */ 3009 int rc; /* Error code */ 3010 u32 iH; 3011 3012 rc = walHashGet(pWal, iHash, &sLoc); 3013 if( rc!=SQLITE_OK ){ 3014 return rc; 3015 } 3016 nCollide = HASHTABLE_NSLOT; 3017 iKey = walHash(pgno); 3018 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 3019 u32 iFrame = iH + sLoc.iZero; 3020 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){ 3021 assert( iFrame>iRead || CORRUPT_DB ); 3022 iRead = iFrame; 3023 } 3024 if( (nCollide--)==0 ){ 3025 return SQLITE_CORRUPT_BKPT; 3026 } 3027 iKey = walNextHash(iKey); 3028 } 3029 if( iRead ) break; 3030 } 3031 3032 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 3033 /* If expensive assert() statements are available, do a linear search 3034 ** of the wal-index file content. Make sure the results agree with the 3035 ** result obtained using the hash indexes above. */ 3036 { 3037 u32 iRead2 = 0; 3038 u32 iTest; 3039 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 3040 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 3041 if( walFramePgno(pWal, iTest)==pgno ){ 3042 iRead2 = iTest; 3043 break; 3044 } 3045 } 3046 assert( iRead==iRead2 ); 3047 } 3048 #endif 3049 3050 *piRead = iRead; 3051 return SQLITE_OK; 3052 } 3053 3054 /* 3055 ** Read the contents of frame iRead from the wal file into buffer pOut 3056 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 3057 ** error code otherwise. 3058 */ 3059 int sqlite3WalReadFrame( 3060 Wal *pWal, /* WAL handle */ 3061 u32 iRead, /* Frame to read */ 3062 int nOut, /* Size of buffer pOut in bytes */ 3063 u8 *pOut /* Buffer to write page data to */ 3064 ){ 3065 int sz; 3066 i64 iOffset; 3067 sz = pWal->hdr.szPage; 3068 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 3069 testcase( sz<=32768 ); 3070 testcase( sz>=65536 ); 3071 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 3072 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 3073 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 3074 } 3075 3076 /* 3077 ** Return the size of the database in pages (or zero, if unknown). 3078 */ 3079 Pgno sqlite3WalDbsize(Wal *pWal){ 3080 if( pWal && ALWAYS(pWal->readLock>=0) ){ 3081 return pWal->hdr.nPage; 3082 } 3083 return 0; 3084 } 3085 3086 3087 /* 3088 ** This function starts a write transaction on the WAL. 3089 ** 3090 ** A read transaction must have already been started by a prior call 3091 ** to sqlite3WalBeginReadTransaction(). 3092 ** 3093 ** If another thread or process has written into the database since 3094 ** the read transaction was started, then it is not possible for this 3095 ** thread to write as doing so would cause a fork. So this routine 3096 ** returns SQLITE_BUSY in that case and no write transaction is started. 3097 ** 3098 ** There can only be a single writer active at a time. 3099 */ 3100 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 3101 int rc; 3102 3103 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3104 /* If the write-lock is already held, then it was obtained before the 3105 ** read-transaction was even opened, making this call a no-op. 3106 ** Return early. */ 3107 if( pWal->writeLock ){ 3108 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 3109 return SQLITE_OK; 3110 } 3111 #endif 3112 3113 /* Cannot start a write transaction without first holding a read 3114 ** transaction. */ 3115 assert( pWal->readLock>=0 ); 3116 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 3117 3118 if( pWal->readOnly ){ 3119 return SQLITE_READONLY; 3120 } 3121 3122 /* Only one writer allowed at a time. Get the write lock. Return 3123 ** SQLITE_BUSY if unable. 3124 */ 3125 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 3126 if( rc ){ 3127 return rc; 3128 } 3129 pWal->writeLock = 1; 3130 3131 /* If another connection has written to the database file since the 3132 ** time the read transaction on this connection was started, then 3133 ** the write is disallowed. 3134 */ 3135 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 3136 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3137 pWal->writeLock = 0; 3138 rc = SQLITE_BUSY_SNAPSHOT; 3139 } 3140 3141 return rc; 3142 } 3143 3144 /* 3145 ** End a write transaction. The commit has already been done. This 3146 ** routine merely releases the lock. 3147 */ 3148 int sqlite3WalEndWriteTransaction(Wal *pWal){ 3149 if( pWal->writeLock ){ 3150 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 3151 pWal->writeLock = 0; 3152 pWal->iReCksum = 0; 3153 pWal->truncateOnCommit = 0; 3154 } 3155 return SQLITE_OK; 3156 } 3157 3158 /* 3159 ** If any data has been written (but not committed) to the log file, this 3160 ** function moves the write-pointer back to the start of the transaction. 3161 ** 3162 ** Additionally, the callback function is invoked for each frame written 3163 ** to the WAL since the start of the transaction. If the callback returns 3164 ** other than SQLITE_OK, it is not invoked again and the error code is 3165 ** returned to the caller. 3166 ** 3167 ** Otherwise, if the callback function does not return an error, this 3168 ** function returns SQLITE_OK. 3169 */ 3170 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 3171 int rc = SQLITE_OK; 3172 if( ALWAYS(pWal->writeLock) ){ 3173 Pgno iMax = pWal->hdr.mxFrame; 3174 Pgno iFrame; 3175 3176 /* Restore the clients cache of the wal-index header to the state it 3177 ** was in before the client began writing to the database. 3178 */ 3179 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 3180 3181 for(iFrame=pWal->hdr.mxFrame+1; 3182 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 3183 iFrame++ 3184 ){ 3185 /* This call cannot fail. Unless the page for which the page number 3186 ** is passed as the second argument is (a) in the cache and 3187 ** (b) has an outstanding reference, then xUndo is either a no-op 3188 ** (if (a) is false) or simply expels the page from the cache (if (b) 3189 ** is false). 3190 ** 3191 ** If the upper layer is doing a rollback, it is guaranteed that there 3192 ** are no outstanding references to any page other than page 1. And 3193 ** page 1 is never written to the log until the transaction is 3194 ** committed. As a result, the call to xUndo may not fail. 3195 */ 3196 assert( walFramePgno(pWal, iFrame)!=1 ); 3197 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 3198 } 3199 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 3200 } 3201 return rc; 3202 } 3203 3204 /* 3205 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 3206 ** values. This function populates the array with values required to 3207 ** "rollback" the write position of the WAL handle back to the current 3208 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 3209 */ 3210 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 3211 assert( pWal->writeLock ); 3212 aWalData[0] = pWal->hdr.mxFrame; 3213 aWalData[1] = pWal->hdr.aFrameCksum[0]; 3214 aWalData[2] = pWal->hdr.aFrameCksum[1]; 3215 aWalData[3] = pWal->nCkpt; 3216 } 3217 3218 /* 3219 ** Move the write position of the WAL back to the point identified by 3220 ** the values in the aWalData[] array. aWalData must point to an array 3221 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 3222 ** by a call to WalSavepoint(). 3223 */ 3224 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 3225 int rc = SQLITE_OK; 3226 3227 assert( pWal->writeLock ); 3228 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 3229 3230 if( aWalData[3]!=pWal->nCkpt ){ 3231 /* This savepoint was opened immediately after the write-transaction 3232 ** was started. Right after that, the writer decided to wrap around 3233 ** to the start of the log. Update the savepoint values to match. 3234 */ 3235 aWalData[0] = 0; 3236 aWalData[3] = pWal->nCkpt; 3237 } 3238 3239 if( aWalData[0]<pWal->hdr.mxFrame ){ 3240 pWal->hdr.mxFrame = aWalData[0]; 3241 pWal->hdr.aFrameCksum[0] = aWalData[1]; 3242 pWal->hdr.aFrameCksum[1] = aWalData[2]; 3243 walCleanupHash(pWal); 3244 } 3245 3246 return rc; 3247 } 3248 3249 /* 3250 ** This function is called just before writing a set of frames to the log 3251 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 3252 ** to the current log file, it is possible to overwrite the start of the 3253 ** existing log file with the new frames (i.e. "reset" the log). If so, 3254 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 3255 ** unchanged. 3256 ** 3257 ** SQLITE_OK is returned if no error is encountered (regardless of whether 3258 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 3259 ** if an error occurs. 3260 */ 3261 static int walRestartLog(Wal *pWal){ 3262 int rc = SQLITE_OK; 3263 int cnt; 3264 3265 if( pWal->readLock==0 ){ 3266 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 3267 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 3268 if( pInfo->nBackfill>0 ){ 3269 u32 salt1; 3270 sqlite3_randomness(4, &salt1); 3271 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3272 if( rc==SQLITE_OK ){ 3273 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 3274 ** readers are currently using the WAL), then the transactions 3275 ** frames will overwrite the start of the existing log. Update the 3276 ** wal-index header to reflect this. 3277 ** 3278 ** In theory it would be Ok to update the cache of the header only 3279 ** at this point. But updating the actual wal-index header is also 3280 ** safe and means there is no special case for sqlite3WalUndo() 3281 ** to handle if this transaction is rolled back. */ 3282 walRestartHdr(pWal, salt1); 3283 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 3284 }else if( rc!=SQLITE_BUSY ){ 3285 return rc; 3286 } 3287 } 3288 walUnlockShared(pWal, WAL_READ_LOCK(0)); 3289 pWal->readLock = -1; 3290 cnt = 0; 3291 do{ 3292 int notUsed; 3293 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 3294 }while( rc==WAL_RETRY ); 3295 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 3296 testcase( (rc&0xff)==SQLITE_IOERR ); 3297 testcase( rc==SQLITE_PROTOCOL ); 3298 testcase( rc==SQLITE_OK ); 3299 } 3300 return rc; 3301 } 3302 3303 /* 3304 ** Information about the current state of the WAL file and where 3305 ** the next fsync should occur - passed from sqlite3WalFrames() into 3306 ** walWriteToLog(). 3307 */ 3308 typedef struct WalWriter { 3309 Wal *pWal; /* The complete WAL information */ 3310 sqlite3_file *pFd; /* The WAL file to which we write */ 3311 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 3312 int syncFlags; /* Flags for the fsync */ 3313 int szPage; /* Size of one page */ 3314 } WalWriter; 3315 3316 /* 3317 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 3318 ** Do a sync when crossing the p->iSyncPoint boundary. 3319 ** 3320 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 3321 ** first write the part before iSyncPoint, then sync, then write the 3322 ** rest. 3323 */ 3324 static int walWriteToLog( 3325 WalWriter *p, /* WAL to write to */ 3326 void *pContent, /* Content to be written */ 3327 int iAmt, /* Number of bytes to write */ 3328 sqlite3_int64 iOffset /* Start writing at this offset */ 3329 ){ 3330 int rc; 3331 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 3332 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 3333 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 3334 if( rc ) return rc; 3335 iOffset += iFirstAmt; 3336 iAmt -= iFirstAmt; 3337 pContent = (void*)(iFirstAmt + (char*)pContent); 3338 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 3339 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 3340 if( iAmt==0 || rc ) return rc; 3341 } 3342 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 3343 return rc; 3344 } 3345 3346 /* 3347 ** Write out a single frame of the WAL 3348 */ 3349 static int walWriteOneFrame( 3350 WalWriter *p, /* Where to write the frame */ 3351 PgHdr *pPage, /* The page of the frame to be written */ 3352 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 3353 sqlite3_int64 iOffset /* Byte offset at which to write */ 3354 ){ 3355 int rc; /* Result code from subfunctions */ 3356 void *pData; /* Data actually written */ 3357 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 3358 pData = pPage->pData; 3359 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 3360 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 3361 if( rc ) return rc; 3362 /* Write the page data */ 3363 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 3364 return rc; 3365 } 3366 3367 /* 3368 ** This function is called as part of committing a transaction within which 3369 ** one or more frames have been overwritten. It updates the checksums for 3370 ** all frames written to the wal file by the current transaction starting 3371 ** with the earliest to have been overwritten. 3372 ** 3373 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 3374 */ 3375 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 3376 const int szPage = pWal->szPage;/* Database page size */ 3377 int rc = SQLITE_OK; /* Return code */ 3378 u8 *aBuf; /* Buffer to load data from wal file into */ 3379 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 3380 u32 iRead; /* Next frame to read from wal file */ 3381 i64 iCksumOff; 3382 3383 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 3384 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 3385 3386 /* Find the checksum values to use as input for the recalculating the 3387 ** first checksum. If the first frame is frame 1 (implying that the current 3388 ** transaction restarted the wal file), these values must be read from the 3389 ** wal-file header. Otherwise, read them from the frame header of the 3390 ** previous frame. */ 3391 assert( pWal->iReCksum>0 ); 3392 if( pWal->iReCksum==1 ){ 3393 iCksumOff = 24; 3394 }else{ 3395 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 3396 } 3397 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 3398 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 3399 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 3400 3401 iRead = pWal->iReCksum; 3402 pWal->iReCksum = 0; 3403 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 3404 i64 iOff = walFrameOffset(iRead, szPage); 3405 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 3406 if( rc==SQLITE_OK ){ 3407 u32 iPgno, nDbSize; 3408 iPgno = sqlite3Get4byte(aBuf); 3409 nDbSize = sqlite3Get4byte(&aBuf[4]); 3410 3411 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 3412 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 3413 } 3414 } 3415 3416 sqlite3_free(aBuf); 3417 return rc; 3418 } 3419 3420 /* 3421 ** Write a set of frames to the log. The caller must hold the write-lock 3422 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 3423 */ 3424 int sqlite3WalFrames( 3425 Wal *pWal, /* Wal handle to write to */ 3426 int szPage, /* Database page-size in bytes */ 3427 PgHdr *pList, /* List of dirty pages to write */ 3428 Pgno nTruncate, /* Database size after this commit */ 3429 int isCommit, /* True if this is a commit */ 3430 int sync_flags /* Flags to pass to OsSync() (or 0) */ 3431 ){ 3432 int rc; /* Used to catch return codes */ 3433 u32 iFrame; /* Next frame address */ 3434 PgHdr *p; /* Iterator to run through pList with. */ 3435 PgHdr *pLast = 0; /* Last frame in list */ 3436 int nExtra = 0; /* Number of extra copies of last page */ 3437 int szFrame; /* The size of a single frame */ 3438 i64 iOffset; /* Next byte to write in WAL file */ 3439 WalWriter w; /* The writer */ 3440 u32 iFirst = 0; /* First frame that may be overwritten */ 3441 WalIndexHdr *pLive; /* Pointer to shared header */ 3442 3443 assert( pList ); 3444 assert( pWal->writeLock ); 3445 3446 /* If this frame set completes a transaction, then nTruncate>0. If 3447 ** nTruncate==0 then this frame set does not complete the transaction. */ 3448 assert( (isCommit!=0)==(nTruncate!=0) ); 3449 3450 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 3451 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 3452 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 3453 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 3454 } 3455 #endif 3456 3457 pLive = (WalIndexHdr*)walIndexHdr(pWal); 3458 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 3459 iFirst = pLive->mxFrame+1; 3460 } 3461 3462 /* See if it is possible to write these frames into the start of the 3463 ** log file, instead of appending to it at pWal->hdr.mxFrame. 3464 */ 3465 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 3466 return rc; 3467 } 3468 3469 /* If this is the first frame written into the log, write the WAL 3470 ** header to the start of the WAL file. See comments at the top of 3471 ** this source file for a description of the WAL header format. 3472 */ 3473 iFrame = pWal->hdr.mxFrame; 3474 if( iFrame==0 ){ 3475 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 3476 u32 aCksum[2]; /* Checksum for wal-header */ 3477 3478 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 3479 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 3480 sqlite3Put4byte(&aWalHdr[8], szPage); 3481 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 3482 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 3483 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 3484 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 3485 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 3486 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 3487 3488 pWal->szPage = szPage; 3489 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 3490 pWal->hdr.aFrameCksum[0] = aCksum[0]; 3491 pWal->hdr.aFrameCksum[1] = aCksum[1]; 3492 pWal->truncateOnCommit = 1; 3493 3494 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 3495 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 3496 if( rc!=SQLITE_OK ){ 3497 return rc; 3498 } 3499 3500 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 3501 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 3502 ** an out-of-order write following a WAL restart could result in 3503 ** database corruption. See the ticket: 3504 ** 3505 ** https://sqlite.org/src/info/ff5be73dee 3506 */ 3507 if( pWal->syncHeader ){ 3508 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 3509 if( rc ) return rc; 3510 } 3511 } 3512 assert( (int)pWal->szPage==szPage ); 3513 3514 /* Setup information needed to write frames into the WAL */ 3515 w.pWal = pWal; 3516 w.pFd = pWal->pWalFd; 3517 w.iSyncPoint = 0; 3518 w.syncFlags = sync_flags; 3519 w.szPage = szPage; 3520 iOffset = walFrameOffset(iFrame+1, szPage); 3521 szFrame = szPage + WAL_FRAME_HDRSIZE; 3522 3523 /* Write all frames into the log file exactly once */ 3524 for(p=pList; p; p=p->pDirty){ 3525 int nDbSize; /* 0 normally. Positive == commit flag */ 3526 3527 /* Check if this page has already been written into the wal file by 3528 ** the current transaction. If so, overwrite the existing frame and 3529 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 3530 ** checksums must be recomputed when the transaction is committed. */ 3531 if( iFirst && (p->pDirty || isCommit==0) ){ 3532 u32 iWrite = 0; 3533 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 3534 assert( rc==SQLITE_OK || iWrite==0 ); 3535 if( iWrite>=iFirst ){ 3536 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 3537 void *pData; 3538 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 3539 pWal->iReCksum = iWrite; 3540 } 3541 pData = p->pData; 3542 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 3543 if( rc ) return rc; 3544 p->flags &= ~PGHDR_WAL_APPEND; 3545 continue; 3546 } 3547 } 3548 3549 iFrame++; 3550 assert( iOffset==walFrameOffset(iFrame, szPage) ); 3551 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 3552 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 3553 if( rc ) return rc; 3554 pLast = p; 3555 iOffset += szFrame; 3556 p->flags |= PGHDR_WAL_APPEND; 3557 } 3558 3559 /* Recalculate checksums within the wal file if required. */ 3560 if( isCommit && pWal->iReCksum ){ 3561 rc = walRewriteChecksums(pWal, iFrame); 3562 if( rc ) return rc; 3563 } 3564 3565 /* If this is the end of a transaction, then we might need to pad 3566 ** the transaction and/or sync the WAL file. 3567 ** 3568 ** Padding and syncing only occur if this set of frames complete a 3569 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 3570 ** or synchronous==OFF, then no padding or syncing are needed. 3571 ** 3572 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 3573 ** needed and only the sync is done. If padding is needed, then the 3574 ** final frame is repeated (with its commit mark) until the next sector 3575 ** boundary is crossed. Only the part of the WAL prior to the last 3576 ** sector boundary is synced; the part of the last frame that extends 3577 ** past the sector boundary is written after the sync. 3578 */ 3579 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 3580 int bSync = 1; 3581 if( pWal->padToSectorBoundary ){ 3582 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 3583 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 3584 bSync = (w.iSyncPoint==iOffset); 3585 testcase( bSync ); 3586 while( iOffset<w.iSyncPoint ){ 3587 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 3588 if( rc ) return rc; 3589 iOffset += szFrame; 3590 nExtra++; 3591 assert( pLast!=0 ); 3592 } 3593 } 3594 if( bSync ){ 3595 assert( rc==SQLITE_OK ); 3596 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 3597 } 3598 } 3599 3600 /* If this frame set completes the first transaction in the WAL and 3601 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 3602 ** journal size limit, if possible. 3603 */ 3604 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 3605 i64 sz = pWal->mxWalSize; 3606 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 3607 sz = walFrameOffset(iFrame+nExtra+1, szPage); 3608 } 3609 walLimitSize(pWal, sz); 3610 pWal->truncateOnCommit = 0; 3611 } 3612 3613 /* Append data to the wal-index. It is not necessary to lock the 3614 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 3615 ** guarantees that there are no other writers, and no data that may 3616 ** be in use by existing readers is being overwritten. 3617 */ 3618 iFrame = pWal->hdr.mxFrame; 3619 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 3620 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 3621 iFrame++; 3622 rc = walIndexAppend(pWal, iFrame, p->pgno); 3623 } 3624 assert( pLast!=0 || nExtra==0 ); 3625 while( rc==SQLITE_OK && nExtra>0 ){ 3626 iFrame++; 3627 nExtra--; 3628 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 3629 } 3630 3631 if( rc==SQLITE_OK ){ 3632 /* Update the private copy of the header. */ 3633 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 3634 testcase( szPage<=32768 ); 3635 testcase( szPage>=65536 ); 3636 pWal->hdr.mxFrame = iFrame; 3637 if( isCommit ){ 3638 pWal->hdr.iChange++; 3639 pWal->hdr.nPage = nTruncate; 3640 } 3641 /* If this is a commit, update the wal-index header too. */ 3642 if( isCommit ){ 3643 walIndexWriteHdr(pWal); 3644 pWal->iCallback = iFrame; 3645 } 3646 } 3647 3648 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 3649 return rc; 3650 } 3651 3652 /* 3653 ** This routine is called to implement sqlite3_wal_checkpoint() and 3654 ** related interfaces. 3655 ** 3656 ** Obtain a CHECKPOINT lock and then backfill as much information as 3657 ** we can from WAL into the database. 3658 ** 3659 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 3660 ** callback. In this case this function runs a blocking checkpoint. 3661 */ 3662 int sqlite3WalCheckpoint( 3663 Wal *pWal, /* Wal connection */ 3664 sqlite3 *db, /* Check this handle's interrupt flag */ 3665 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 3666 int (*xBusy)(void*), /* Function to call when busy */ 3667 void *pBusyArg, /* Context argument for xBusyHandler */ 3668 int sync_flags, /* Flags to sync db file with (or 0) */ 3669 int nBuf, /* Size of temporary buffer */ 3670 u8 *zBuf, /* Temporary buffer to use */ 3671 int *pnLog, /* OUT: Number of frames in WAL */ 3672 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 3673 ){ 3674 int rc; /* Return code */ 3675 int isChanged = 0; /* True if a new wal-index header is loaded */ 3676 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 3677 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 3678 3679 assert( pWal->ckptLock==0 ); 3680 assert( pWal->writeLock==0 ); 3681 3682 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 3683 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 3684 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 3685 3686 if( pWal->readOnly ) return SQLITE_READONLY; 3687 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 3688 3689 /* Enable blocking locks, if possible. If blocking locks are successfully 3690 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 3691 sqlite3WalDb(pWal, db); 3692 (void)walEnableBlocking(pWal); 3693 3694 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 3695 ** "checkpoint" lock on the database file. 3696 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 3697 ** checkpoint operation at the same time, the lock cannot be obtained and 3698 ** SQLITE_BUSY is returned. 3699 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 3700 ** it will not be invoked in this case. 3701 */ 3702 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 3703 testcase( rc==SQLITE_BUSY ); 3704 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 3705 if( rc==SQLITE_OK ){ 3706 pWal->ckptLock = 1; 3707 3708 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 3709 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 3710 ** file. 3711 ** 3712 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 3713 ** immediately, and a busy-handler is configured, it is invoked and the 3714 ** writer lock retried until either the busy-handler returns 0 or the 3715 ** lock is successfully obtained. 3716 */ 3717 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 3718 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 3719 if( rc==SQLITE_OK ){ 3720 pWal->writeLock = 1; 3721 }else if( rc==SQLITE_BUSY ){ 3722 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 3723 xBusy2 = 0; 3724 rc = SQLITE_OK; 3725 } 3726 } 3727 } 3728 3729 3730 /* Read the wal-index header. */ 3731 if( rc==SQLITE_OK ){ 3732 walDisableBlocking(pWal); 3733 rc = walIndexReadHdr(pWal, &isChanged); 3734 (void)walEnableBlocking(pWal); 3735 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 3736 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 3737 } 3738 } 3739 3740 /* Copy data from the log to the database file. */ 3741 if( rc==SQLITE_OK ){ 3742 3743 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 3744 rc = SQLITE_CORRUPT_BKPT; 3745 }else{ 3746 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 3747 } 3748 3749 /* If no error occurred, set the output variables. */ 3750 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 3751 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 3752 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 3753 } 3754 } 3755 3756 if( isChanged ){ 3757 /* If a new wal-index header was loaded before the checkpoint was 3758 ** performed, then the pager-cache associated with pWal is now 3759 ** out of date. So zero the cached wal-index header to ensure that 3760 ** next time the pager opens a snapshot on this database it knows that 3761 ** the cache needs to be reset. 3762 */ 3763 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 3764 } 3765 3766 walDisableBlocking(pWal); 3767 sqlite3WalDb(pWal, 0); 3768 3769 /* Release the locks. */ 3770 sqlite3WalEndWriteTransaction(pWal); 3771 if( pWal->ckptLock ){ 3772 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 3773 pWal->ckptLock = 0; 3774 } 3775 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 3776 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3777 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3778 #endif 3779 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 3780 } 3781 3782 /* Return the value to pass to a sqlite3_wal_hook callback, the 3783 ** number of frames in the WAL at the point of the last commit since 3784 ** sqlite3WalCallback() was called. If no commits have occurred since 3785 ** the last call, then return 0. 3786 */ 3787 int sqlite3WalCallback(Wal *pWal){ 3788 u32 ret = 0; 3789 if( pWal ){ 3790 ret = pWal->iCallback; 3791 pWal->iCallback = 0; 3792 } 3793 return (int)ret; 3794 } 3795 3796 /* 3797 ** This function is called to change the WAL subsystem into or out 3798 ** of locking_mode=EXCLUSIVE. 3799 ** 3800 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 3801 ** into locking_mode=NORMAL. This means that we must acquire a lock 3802 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 3803 ** or if the acquisition of the lock fails, then return 0. If the 3804 ** transition out of exclusive-mode is successful, return 1. This 3805 ** operation must occur while the pager is still holding the exclusive 3806 ** lock on the main database file. 3807 ** 3808 ** If op is one, then change from locking_mode=NORMAL into 3809 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 3810 ** be released. Return 1 if the transition is made and 0 if the 3811 ** WAL is already in exclusive-locking mode - meaning that this 3812 ** routine is a no-op. The pager must already hold the exclusive lock 3813 ** on the main database file before invoking this operation. 3814 ** 3815 ** If op is negative, then do a dry-run of the op==1 case but do 3816 ** not actually change anything. The pager uses this to see if it 3817 ** should acquire the database exclusive lock prior to invoking 3818 ** the op==1 case. 3819 */ 3820 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 3821 int rc; 3822 assert( pWal->writeLock==0 ); 3823 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 3824 3825 /* pWal->readLock is usually set, but might be -1 if there was a 3826 ** prior error while attempting to acquire are read-lock. This cannot 3827 ** happen if the connection is actually in exclusive mode (as no xShmLock 3828 ** locks are taken in this case). Nor should the pager attempt to 3829 ** upgrade to exclusive-mode following such an error. 3830 */ 3831 assert( pWal->readLock>=0 || pWal->lockError ); 3832 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 3833 3834 if( op==0 ){ 3835 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 3836 pWal->exclusiveMode = WAL_NORMAL_MODE; 3837 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 3838 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3839 } 3840 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3841 }else{ 3842 /* Already in locking_mode=NORMAL */ 3843 rc = 0; 3844 } 3845 }else if( op>0 ){ 3846 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 3847 assert( pWal->readLock>=0 ); 3848 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 3849 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 3850 rc = 1; 3851 }else{ 3852 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 3853 } 3854 return rc; 3855 } 3856 3857 /* 3858 ** Return true if the argument is non-NULL and the WAL module is using 3859 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 3860 ** WAL module is using shared-memory, return false. 3861 */ 3862 int sqlite3WalHeapMemory(Wal *pWal){ 3863 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 3864 } 3865 3866 #ifdef SQLITE_ENABLE_SNAPSHOT 3867 /* Create a snapshot object. The content of a snapshot is opaque to 3868 ** every other subsystem, so the WAL module can put whatever it needs 3869 ** in the object. 3870 */ 3871 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 3872 int rc = SQLITE_OK; 3873 WalIndexHdr *pRet; 3874 static const u32 aZero[4] = { 0, 0, 0, 0 }; 3875 3876 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 3877 3878 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 3879 *ppSnapshot = 0; 3880 return SQLITE_ERROR; 3881 } 3882 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 3883 if( pRet==0 ){ 3884 rc = SQLITE_NOMEM_BKPT; 3885 }else{ 3886 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 3887 *ppSnapshot = (sqlite3_snapshot*)pRet; 3888 } 3889 3890 return rc; 3891 } 3892 3893 /* Try to open on pSnapshot when the next read-transaction starts 3894 */ 3895 void sqlite3WalSnapshotOpen( 3896 Wal *pWal, 3897 sqlite3_snapshot *pSnapshot 3898 ){ 3899 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 3900 } 3901 3902 /* 3903 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 3904 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 3905 */ 3906 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 3907 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 3908 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 3909 3910 /* aSalt[0] is a copy of the value stored in the wal file header. It 3911 ** is incremented each time the wal file is restarted. */ 3912 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 3913 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 3914 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 3915 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 3916 return 0; 3917 } 3918 3919 /* 3920 ** The caller currently has a read transaction open on the database. 3921 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 3922 ** checks if the snapshot passed as the second argument is still 3923 ** available. If so, SQLITE_OK is returned. 3924 ** 3925 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 3926 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 3927 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 3928 ** lock is released before returning. 3929 */ 3930 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 3931 int rc; 3932 rc = walLockShared(pWal, WAL_CKPT_LOCK); 3933 if( rc==SQLITE_OK ){ 3934 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 3935 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 3936 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 3937 ){ 3938 rc = SQLITE_ERROR_SNAPSHOT; 3939 walUnlockShared(pWal, WAL_CKPT_LOCK); 3940 } 3941 } 3942 return rc; 3943 } 3944 3945 /* 3946 ** Release a lock obtained by an earlier successful call to 3947 ** sqlite3WalSnapshotCheck(). 3948 */ 3949 void sqlite3WalSnapshotUnlock(Wal *pWal){ 3950 assert( pWal ); 3951 walUnlockShared(pWal, WAL_CKPT_LOCK); 3952 } 3953 3954 3955 #endif /* SQLITE_ENABLE_SNAPSHOT */ 3956 3957 #ifdef SQLITE_ENABLE_ZIPVFS 3958 /* 3959 ** If the argument is not NULL, it points to a Wal object that holds a 3960 ** read-lock. This function returns the database page-size if it is known, 3961 ** or zero if it is not (or if pWal is NULL). 3962 */ 3963 int sqlite3WalFramesize(Wal *pWal){ 3964 assert( pWal==0 || pWal->readLock>=0 ); 3965 return (pWal ? pWal->szPage : 0); 3966 } 3967 #endif 3968 3969 /* Return the sqlite3_file object for the WAL file 3970 */ 3971 sqlite3_file *sqlite3WalFile(Wal *pWal){ 3972 return pWal->pWalFd; 3973 } 3974 3975 #endif /* #ifndef SQLITE_OMIT_WAL */ 3976