xref: /sqlite-3.40.0/src/wal.c (revision 1a7feefa)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added.  For that
137 ** reason, the wal-index is sometimes called the "shm" file.
138 **
139 ** The wal-index is transient.  After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes.  Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
147 **
148 ** The purpose of the wal-index is to answer this question quickly:  Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
152 **
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
155 **
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
158 **
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
165 **
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
175 **
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
181 **
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning.  The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
188 **
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full.  The expected number of collisions
193 ** prior to finding a match is 1.  Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block.   Let K be the 1-based index of the largest entry in
196 ** the mapping section.  (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
199 ** contain a value of 0.
200 **
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
203 **
204 **      iKey = (P * 383) % HASHTABLE_NSLOT
205 **
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused.  (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry.  Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block.  Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
218 **
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P.  On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block.  Each index block
224 ** holds over 4000 entries.  So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL.  This
228 ** is much faster than scanning the entire 10MB WAL.
229 **
230 ** Note that entries are added in order of increasing K.  Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result.  There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants.  Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
242 **
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
246 */
247 #ifndef SQLITE_OMIT_WAL
248 
249 #include "wal.h"
250 
251 /*
252 ** Trace output macros
253 */
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
260 
261 /*
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
264 **
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268 **
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
273 */
274 #define WAL_MAX_VERSION      3007000
275 #define WALINDEX_MAX_VERSION 3007000
276 
277 /*
278 ** Index numbers for various locking bytes.   WAL_NREADER is the number
279 ** of available reader locks and should be at least 3.  The default
280 ** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
281 **
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit.  However, compatibility is encouraged so that VFSes can
284 ** interoperate.  The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
287 ** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
290 */
291 #define WAL_WRITE_LOCK         0
292 #define WAL_ALL_BUT_WRITE      1
293 #define WAL_CKPT_LOCK          1
294 #define WAL_RECOVER_LOCK       2
295 #define WAL_READ_LOCK(I)       (3+(I))
296 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
297 
298 
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
303 
304 
305 /*
306 ** The following object holds a copy of the wal-index header content.
307 **
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
313 **
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
317 */
318 struct WalIndexHdr {
319   u32 iVersion;                   /* Wal-index version */
320   u32 unused;                     /* Unused (padding) field */
321   u32 iChange;                    /* Counter incremented each transaction */
322   u8 isInit;                      /* 1 when initialized */
323   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
324   u16 szPage;                     /* Database page size in bytes. 1==64K */
325   u32 mxFrame;                    /* Index of last valid frame in the WAL */
326   u32 nPage;                      /* Size of database in pages */
327   u32 aFrameCksum[2];             /* Checksum of last frame in log */
328   u32 aSalt[2];                   /* Two salt values copied from WAL header */
329   u32 aCksum[2];                  /* Checksum over all prior fields */
330 };
331 
332 /*
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr.  This object stores
335 ** information used by checkpoint.
336 **
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".)  The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
344 **
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes.  So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill.  The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351 **
352 ** The aLock[] field is a set of bytes used for locking.  These bytes should
353 ** never be read or written.
354 **
355 ** There is one entry in aReadMark[] for each reader lock.  If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
363 **
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368 **
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
380 **
381 ** Writers normally append new frames to the end of the WAL.  However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
387 **
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
390 */
391 struct WalCkptInfo {
392   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
393   u32 aReadMark[WAL_NREADER];     /* Reader marks */
394   u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
395   u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
396   u32 notUsed0;                   /* Available for future enhancements */
397 };
398 #define READMARK_NOT_USED  0xffffffff
399 
400 
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
405 */
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
408 
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
411 
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
414 
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
418 **
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
423 */
424 #define WAL_MAGIC 0x377f0682
425 
426 /*
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
430 */
431 #define walFrameOffset(iFrame, szPage) (                               \
432   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
433 )
434 
435 /*
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
438 */
439 struct Wal {
440   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
441   sqlite3_file *pDbFd;       /* File handle for the database file */
442   sqlite3_file *pWalFd;      /* File handle for WAL file */
443   u32 iCallback;             /* Value to pass to log callback (or 0) */
444   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
445   int nWiData;               /* Size of array apWiData */
446   int szFirstBlock;          /* Size of first block written to WAL file */
447   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
448   u32 szPage;                /* Database page size */
449   i16 readLock;              /* Which read lock is being held.  -1 for none */
450   u8 syncFlags;              /* Flags to use to sync header writes */
451   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
452   u8 writeLock;              /* True if in a write transaction */
453   u8 ckptLock;               /* True if holding a checkpoint lock */
454   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
456   u8 syncHeader;             /* Fsync the WAL header if true */
457   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
458   u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
459   WalIndexHdr hdr;           /* Wal-index header for current transaction */
460   u32 minFrame;              /* Ignore wal frames before this one */
461   u32 iReCksum;              /* On commit, recalculate checksums from here */
462   const char *zWalName;      /* Name of WAL file */
463   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465   u8 lockError;              /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468   WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
469 #endif
470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471   sqlite3 *db;
472 #endif
473 };
474 
475 /*
476 ** Candidate values for Wal.exclusiveMode.
477 */
478 #define WAL_NORMAL_MODE     0
479 #define WAL_EXCLUSIVE_MODE  1
480 #define WAL_HEAPMEMORY_MODE 2
481 
482 /*
483 ** Possible values for WAL.readOnly
484 */
485 #define WAL_RDWR        0    /* Normal read/write connection */
486 #define WAL_RDONLY      1    /* The WAL file is readonly */
487 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
488 
489 /*
490 ** Each page of the wal-index mapping contains a hash-table made up of
491 ** an array of HASHTABLE_NSLOT elements of the following type.
492 */
493 typedef u16 ht_slot;
494 
495 /*
496 ** This structure is used to implement an iterator that loops through
497 ** all frames in the WAL in database page order. Where two or more frames
498 ** correspond to the same database page, the iterator visits only the
499 ** frame most recently written to the WAL (in other words, the frame with
500 ** the largest index).
501 **
502 ** The internals of this structure are only accessed by:
503 **
504 **   walIteratorInit() - Create a new iterator,
505 **   walIteratorNext() - Step an iterator,
506 **   walIteratorFree() - Free an iterator.
507 **
508 ** This functionality is used by the checkpoint code (see walCheckpoint()).
509 */
510 struct WalIterator {
511   int iPrior;                     /* Last result returned from the iterator */
512   int nSegment;                   /* Number of entries in aSegment[] */
513   struct WalSegment {
514     int iNext;                    /* Next slot in aIndex[] not yet returned */
515     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
516     u32 *aPgno;                   /* Array of page numbers. */
517     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
518     int iZero;                    /* Frame number associated with aPgno[0] */
519   } aSegment[1];                  /* One for every 32KB page in the wal-index */
520 };
521 
522 /*
523 ** Define the parameters of the hash tables in the wal-index file. There
524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525 ** wal-index.
526 **
527 ** Changing any of these constants will alter the wal-index format and
528 ** create incompatibilities.
529 */
530 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
531 #define HASHTABLE_HASH_1     383                  /* Should be prime */
532 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
533 
534 /*
535 ** The block of page numbers associated with the first hash-table in a
536 ** wal-index is smaller than usual. This is so that there is a complete
537 ** hash-table on each aligned 32KB page of the wal-index.
538 */
539 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
540 
541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542 #define WALINDEX_PGSZ   (                                         \
543     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544 )
545 
546 /*
547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
549 ** numbered from zero.
550 **
551 ** If the wal-index is currently smaller the iPage pages then the size
552 ** of the wal-index might be increased, but only if it is safe to do
553 ** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555 **
556 ** If this call is successful, *ppPage is set to point to the wal-index
557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558 ** then an SQLite error code is returned and *ppPage is set to 0.
559 */
560 static SQLITE_NOINLINE int walIndexPageRealloc(
561   Wal *pWal,               /* The WAL context */
562   int iPage,               /* The page we seek */
563   volatile u32 **ppPage    /* Write the page pointer here */
564 ){
565   int rc = SQLITE_OK;
566 
567   /* Enlarge the pWal->apWiData[] array if required */
568   if( pWal->nWiData<=iPage ){
569     sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
570     volatile u32 **apNew;
571     apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
572     if( !apNew ){
573       *ppPage = 0;
574       return SQLITE_NOMEM_BKPT;
575     }
576     memset((void*)&apNew[pWal->nWiData], 0,
577            sizeof(u32*)*(iPage+1-pWal->nWiData));
578     pWal->apWiData = apNew;
579     pWal->nWiData = iPage+1;
580   }
581 
582   /* Request a pointer to the required page from the VFS */
583   assert( pWal->apWiData[iPage]==0 );
584   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585     pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586     if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587   }else{
588     rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589         pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590     );
591     assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592     testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
593     if( (rc&0xff)==SQLITE_READONLY ){
594       pWal->readOnly |= WAL_SHM_RDONLY;
595       if( rc==SQLITE_READONLY ){
596         rc = SQLITE_OK;
597       }
598     }
599   }
600 
601   *ppPage = pWal->apWiData[iPage];
602   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
603   return rc;
604 }
605 static int walIndexPage(
606   Wal *pWal,               /* The WAL context */
607   int iPage,               /* The page we seek */
608   volatile u32 **ppPage    /* Write the page pointer here */
609 ){
610   if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
611     return walIndexPageRealloc(pWal, iPage, ppPage);
612   }
613   return SQLITE_OK;
614 }
615 
616 /*
617 ** Return a pointer to the WalCkptInfo structure in the wal-index.
618 */
619 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
620   assert( pWal->nWiData>0 && pWal->apWiData[0] );
621   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
622 }
623 
624 /*
625 ** Return a pointer to the WalIndexHdr structure in the wal-index.
626 */
627 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
628   assert( pWal->nWiData>0 && pWal->apWiData[0] );
629   return (volatile WalIndexHdr*)pWal->apWiData[0];
630 }
631 
632 /*
633 ** The argument to this macro must be of type u32. On a little-endian
634 ** architecture, it returns the u32 value that results from interpreting
635 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
636 ** returns the value that would be produced by interpreting the 4 bytes
637 ** of the input value as a little-endian integer.
638 */
639 #define BYTESWAP32(x) ( \
640     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
641   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
642 )
643 
644 /*
645 ** Generate or extend an 8 byte checksum based on the data in
646 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
647 ** initial values of 0 and 0 if aIn==NULL).
648 **
649 ** The checksum is written back into aOut[] before returning.
650 **
651 ** nByte must be a positive multiple of 8.
652 */
653 static void walChecksumBytes(
654   int nativeCksum, /* True for native byte-order, false for non-native */
655   u8 *a,           /* Content to be checksummed */
656   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
657   const u32 *aIn,  /* Initial checksum value input */
658   u32 *aOut        /* OUT: Final checksum value output */
659 ){
660   u32 s1, s2;
661   u32 *aData = (u32 *)a;
662   u32 *aEnd = (u32 *)&a[nByte];
663 
664   if( aIn ){
665     s1 = aIn[0];
666     s2 = aIn[1];
667   }else{
668     s1 = s2 = 0;
669   }
670 
671   assert( nByte>=8 );
672   assert( (nByte&0x00000007)==0 );
673   assert( nByte<=65536 );
674 
675   if( nativeCksum ){
676     do {
677       s1 += *aData++ + s2;
678       s2 += *aData++ + s1;
679     }while( aData<aEnd );
680   }else{
681     do {
682       s1 += BYTESWAP32(aData[0]) + s2;
683       s2 += BYTESWAP32(aData[1]) + s1;
684       aData += 2;
685     }while( aData<aEnd );
686   }
687 
688   aOut[0] = s1;
689   aOut[1] = s2;
690 }
691 
692 /*
693 ** If there is the possibility of concurrent access to the SHM file
694 ** from multiple threads and/or processes, then do a memory barrier.
695 */
696 static void walShmBarrier(Wal *pWal){
697   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
698     sqlite3OsShmBarrier(pWal->pDbFd);
699   }
700 }
701 
702 /*
703 ** Write the header information in pWal->hdr into the wal-index.
704 **
705 ** The checksum on pWal->hdr is updated before it is written.
706 */
707 static void walIndexWriteHdr(Wal *pWal){
708   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
709   const int nCksum = offsetof(WalIndexHdr, aCksum);
710 
711   assert( pWal->writeLock );
712   pWal->hdr.isInit = 1;
713   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
714   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
715   /* Possible TSAN false-positive.  See tag-20200519-1 */
716   memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
717   walShmBarrier(pWal);
718   memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
719 }
720 
721 /*
722 ** This function encodes a single frame header and writes it to a buffer
723 ** supplied by the caller. A frame-header is made up of a series of
724 ** 4-byte big-endian integers, as follows:
725 **
726 **     0: Page number.
727 **     4: For commit records, the size of the database image in pages
728 **        after the commit. For all other records, zero.
729 **     8: Salt-1 (copied from the wal-header)
730 **    12: Salt-2 (copied from the wal-header)
731 **    16: Checksum-1.
732 **    20: Checksum-2.
733 */
734 static void walEncodeFrame(
735   Wal *pWal,                      /* The write-ahead log */
736   u32 iPage,                      /* Database page number for frame */
737   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
738   u8 *aData,                      /* Pointer to page data */
739   u8 *aFrame                      /* OUT: Write encoded frame here */
740 ){
741   int nativeCksum;                /* True for native byte-order checksums */
742   u32 *aCksum = pWal->hdr.aFrameCksum;
743   assert( WAL_FRAME_HDRSIZE==24 );
744   sqlite3Put4byte(&aFrame[0], iPage);
745   sqlite3Put4byte(&aFrame[4], nTruncate);
746   if( pWal->iReCksum==0 ){
747     memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
748 
749     nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
750     walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
751     walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
752 
753     sqlite3Put4byte(&aFrame[16], aCksum[0]);
754     sqlite3Put4byte(&aFrame[20], aCksum[1]);
755   }else{
756     memset(&aFrame[8], 0, 16);
757   }
758 }
759 
760 /*
761 ** Check to see if the frame with header in aFrame[] and content
762 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
763 ** *pnTruncate and return true.  Return if the frame is not valid.
764 */
765 static int walDecodeFrame(
766   Wal *pWal,                      /* The write-ahead log */
767   u32 *piPage,                    /* OUT: Database page number for frame */
768   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
769   u8 *aData,                      /* Pointer to page data (for checksum) */
770   u8 *aFrame                      /* Frame data */
771 ){
772   int nativeCksum;                /* True for native byte-order checksums */
773   u32 *aCksum = pWal->hdr.aFrameCksum;
774   u32 pgno;                       /* Page number of the frame */
775   assert( WAL_FRAME_HDRSIZE==24 );
776 
777   /* A frame is only valid if the salt values in the frame-header
778   ** match the salt values in the wal-header.
779   */
780   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
781     return 0;
782   }
783 
784   /* A frame is only valid if the page number is creater than zero.
785   */
786   pgno = sqlite3Get4byte(&aFrame[0]);
787   if( pgno==0 ){
788     return 0;
789   }
790 
791   /* A frame is only valid if a checksum of the WAL header,
792   ** all prior frams, the first 16 bytes of this frame-header,
793   ** and the frame-data matches the checksum in the last 8
794   ** bytes of this frame-header.
795   */
796   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
797   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
798   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
799   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
800    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
801   ){
802     /* Checksum failed. */
803     return 0;
804   }
805 
806   /* If we reach this point, the frame is valid.  Return the page number
807   ** and the new database size.
808   */
809   *piPage = pgno;
810   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
811   return 1;
812 }
813 
814 
815 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
816 /*
817 ** Names of locks.  This routine is used to provide debugging output and is not
818 ** a part of an ordinary build.
819 */
820 static const char *walLockName(int lockIdx){
821   if( lockIdx==WAL_WRITE_LOCK ){
822     return "WRITE-LOCK";
823   }else if( lockIdx==WAL_CKPT_LOCK ){
824     return "CKPT-LOCK";
825   }else if( lockIdx==WAL_RECOVER_LOCK ){
826     return "RECOVER-LOCK";
827   }else{
828     static char zName[15];
829     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
830                      lockIdx-WAL_READ_LOCK(0));
831     return zName;
832   }
833 }
834 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
835 
836 
837 /*
838 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
839 ** A lock cannot be moved directly between shared and exclusive - it must go
840 ** through the unlocked state first.
841 **
842 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
843 */
844 static int walLockShared(Wal *pWal, int lockIdx){
845   int rc;
846   if( pWal->exclusiveMode ) return SQLITE_OK;
847   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
848                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
849   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
850             walLockName(lockIdx), rc ? "failed" : "ok"));
851   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
852   return rc;
853 }
854 static void walUnlockShared(Wal *pWal, int lockIdx){
855   if( pWal->exclusiveMode ) return;
856   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
857                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
858   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
859 }
860 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
861   int rc;
862   if( pWal->exclusiveMode ) return SQLITE_OK;
863   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
864                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
865   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
866             walLockName(lockIdx), n, rc ? "failed" : "ok"));
867   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
868   return rc;
869 }
870 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
871   if( pWal->exclusiveMode ) return;
872   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
873                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
874   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
875              walLockName(lockIdx), n));
876 }
877 
878 /*
879 ** Compute a hash on a page number.  The resulting hash value must land
880 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
881 ** the hash to the next value in the event of a collision.
882 */
883 static int walHash(u32 iPage){
884   assert( iPage>0 );
885   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
886   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
887 }
888 static int walNextHash(int iPriorHash){
889   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
890 }
891 
892 /*
893 ** An instance of the WalHashLoc object is used to describe the location
894 ** of a page hash table in the wal-index.  This becomes the return value
895 ** from walHashGet().
896 */
897 typedef struct WalHashLoc WalHashLoc;
898 struct WalHashLoc {
899   volatile ht_slot *aHash;  /* Start of the wal-index hash table */
900   volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
901   u32 iZero;                /* One less than the frame number of first indexed*/
902 };
903 
904 /*
905 ** Return pointers to the hash table and page number array stored on
906 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
907 ** numbered starting from 0.
908 **
909 ** Set output variable pLoc->aHash to point to the start of the hash table
910 ** in the wal-index file. Set pLoc->iZero to one less than the frame
911 ** number of the first frame indexed by this hash table. If a
912 ** slot in the hash table is set to N, it refers to frame number
913 ** (pLoc->iZero+N) in the log.
914 **
915 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
916 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
917 */
918 static int walHashGet(
919   Wal *pWal,                      /* WAL handle */
920   int iHash,                      /* Find the iHash'th table */
921   WalHashLoc *pLoc                /* OUT: Hash table location */
922 ){
923   int rc;                         /* Return code */
924 
925   rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
926   assert( rc==SQLITE_OK || iHash>0 );
927 
928   if( rc==SQLITE_OK ){
929     pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
930     if( iHash==0 ){
931       pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
932       pLoc->iZero = 0;
933     }else{
934       pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
935     }
936     pLoc->aPgno = &pLoc->aPgno[-1];
937   }
938   return rc;
939 }
940 
941 /*
942 ** Return the number of the wal-index page that contains the hash-table
943 ** and page-number array that contain entries corresponding to WAL frame
944 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
945 ** are numbered starting from 0.
946 */
947 static int walFramePage(u32 iFrame){
948   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
949   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
950        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
951        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
952        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
953        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
954   );
955   return iHash;
956 }
957 
958 /*
959 ** Return the page number associated with frame iFrame in this WAL.
960 */
961 static u32 walFramePgno(Wal *pWal, u32 iFrame){
962   int iHash = walFramePage(iFrame);
963   if( iHash==0 ){
964     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
965   }
966   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
967 }
968 
969 /*
970 ** Remove entries from the hash table that point to WAL slots greater
971 ** than pWal->hdr.mxFrame.
972 **
973 ** This function is called whenever pWal->hdr.mxFrame is decreased due
974 ** to a rollback or savepoint.
975 **
976 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
977 ** updated.  Any later hash tables will be automatically cleared when
978 ** pWal->hdr.mxFrame advances to the point where those hash tables are
979 ** actually needed.
980 */
981 static void walCleanupHash(Wal *pWal){
982   WalHashLoc sLoc;                /* Hash table location */
983   int iLimit = 0;                 /* Zero values greater than this */
984   int nByte;                      /* Number of bytes to zero in aPgno[] */
985   int i;                          /* Used to iterate through aHash[] */
986   int rc;                         /* Return code form walHashGet() */
987 
988   assert( pWal->writeLock );
989   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
990   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
991   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
992 
993   if( pWal->hdr.mxFrame==0 ) return;
994 
995   /* Obtain pointers to the hash-table and page-number array containing
996   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
997   ** that the page said hash-table and array reside on is already mapped.(1)
998   */
999   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1000   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1001   rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1002   if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1003 
1004   /* Zero all hash-table entries that correspond to frame numbers greater
1005   ** than pWal->hdr.mxFrame.
1006   */
1007   iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1008   assert( iLimit>0 );
1009   for(i=0; i<HASHTABLE_NSLOT; i++){
1010     if( sLoc.aHash[i]>iLimit ){
1011       sLoc.aHash[i] = 0;
1012     }
1013   }
1014 
1015   /* Zero the entries in the aPgno array that correspond to frames with
1016   ** frame numbers greater than pWal->hdr.mxFrame.
1017   */
1018   nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1019   memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1020 
1021 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1022   /* Verify that the every entry in the mapping region is still reachable
1023   ** via the hash table even after the cleanup.
1024   */
1025   if( iLimit ){
1026     int j;           /* Loop counter */
1027     int iKey;        /* Hash key */
1028     for(j=1; j<=iLimit; j++){
1029       for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1030         if( sLoc.aHash[iKey]==j ) break;
1031       }
1032       assert( sLoc.aHash[iKey]==j );
1033     }
1034   }
1035 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1036 }
1037 
1038 
1039 /*
1040 ** Set an entry in the wal-index that will map database page number
1041 ** pPage into WAL frame iFrame.
1042 */
1043 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1044   int rc;                         /* Return code */
1045   WalHashLoc sLoc;                /* Wal-index hash table location */
1046 
1047   rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1048 
1049   /* Assuming the wal-index file was successfully mapped, populate the
1050   ** page number array and hash table entry.
1051   */
1052   if( rc==SQLITE_OK ){
1053     int iKey;                     /* Hash table key */
1054     int idx;                      /* Value to write to hash-table slot */
1055     int nCollide;                 /* Number of hash collisions */
1056 
1057     idx = iFrame - sLoc.iZero;
1058     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1059 
1060     /* If this is the first entry to be added to this hash-table, zero the
1061     ** entire hash table and aPgno[] array before proceeding.
1062     */
1063     if( idx==1 ){
1064       int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1065                                - (u8 *)&sLoc.aPgno[1]);
1066       memset((void*)&sLoc.aPgno[1], 0, nByte);
1067     }
1068 
1069     /* If the entry in aPgno[] is already set, then the previous writer
1070     ** must have exited unexpectedly in the middle of a transaction (after
1071     ** writing one or more dirty pages to the WAL to free up memory).
1072     ** Remove the remnants of that writers uncommitted transaction from
1073     ** the hash-table before writing any new entries.
1074     */
1075     if( sLoc.aPgno[idx] ){
1076       walCleanupHash(pWal);
1077       assert( !sLoc.aPgno[idx] );
1078     }
1079 
1080     /* Write the aPgno[] array entry and the hash-table slot. */
1081     nCollide = idx;
1082     for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1083       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1084     }
1085     sLoc.aPgno[idx] = iPage;
1086     sLoc.aHash[iKey] = (ht_slot)idx;
1087 
1088 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1089     /* Verify that the number of entries in the hash table exactly equals
1090     ** the number of entries in the mapping region.
1091     */
1092     {
1093       int i;           /* Loop counter */
1094       int nEntry = 0;  /* Number of entries in the hash table */
1095       for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1096       assert( nEntry==idx );
1097     }
1098 
1099     /* Verify that the every entry in the mapping region is reachable
1100     ** via the hash table.  This turns out to be a really, really expensive
1101     ** thing to check, so only do this occasionally - not on every
1102     ** iteration.
1103     */
1104     if( (idx&0x3ff)==0 ){
1105       int i;           /* Loop counter */
1106       for(i=1; i<=idx; i++){
1107         for(iKey=walHash(sLoc.aPgno[i]);
1108             sLoc.aHash[iKey];
1109             iKey=walNextHash(iKey)){
1110           if( sLoc.aHash[iKey]==i ) break;
1111         }
1112         assert( sLoc.aHash[iKey]==i );
1113       }
1114     }
1115 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1116   }
1117 
1118 
1119   return rc;
1120 }
1121 
1122 
1123 /*
1124 ** Recover the wal-index by reading the write-ahead log file.
1125 **
1126 ** This routine first tries to establish an exclusive lock on the
1127 ** wal-index to prevent other threads/processes from doing anything
1128 ** with the WAL or wal-index while recovery is running.  The
1129 ** WAL_RECOVER_LOCK is also held so that other threads will know
1130 ** that this thread is running recovery.  If unable to establish
1131 ** the necessary locks, this routine returns SQLITE_BUSY.
1132 */
1133 static int walIndexRecover(Wal *pWal){
1134   int rc;                         /* Return Code */
1135   i64 nSize;                      /* Size of log file */
1136   u32 aFrameCksum[2] = {0, 0};
1137   int iLock;                      /* Lock offset to lock for checkpoint */
1138 
1139   /* Obtain an exclusive lock on all byte in the locking range not already
1140   ** locked by the caller. The caller is guaranteed to have locked the
1141   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1142   ** If successful, the same bytes that are locked here are unlocked before
1143   ** this function returns.
1144   */
1145   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1146   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1147   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1148   assert( pWal->writeLock );
1149   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1150   rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1151   if( rc==SQLITE_OK ){
1152     rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1153     if( rc!=SQLITE_OK ){
1154       walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1155     }
1156   }
1157   if( rc ){
1158     return rc;
1159   }
1160 
1161   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1162 
1163   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1164 
1165   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1166   if( rc!=SQLITE_OK ){
1167     goto recovery_error;
1168   }
1169 
1170   if( nSize>WAL_HDRSIZE ){
1171     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1172     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1173     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1174     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1175     int iFrame;                   /* Index of last frame read */
1176     i64 iOffset;                  /* Next offset to read from log file */
1177     int szPage;                   /* Page size according to the log */
1178     u32 magic;                    /* Magic value read from WAL header */
1179     u32 version;                  /* Magic value read from WAL header */
1180     int isValid;                  /* True if this frame is valid */
1181 
1182     /* Read in the WAL header. */
1183     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1184     if( rc!=SQLITE_OK ){
1185       goto recovery_error;
1186     }
1187 
1188     /* If the database page size is not a power of two, or is greater than
1189     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1190     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1191     ** WAL file.
1192     */
1193     magic = sqlite3Get4byte(&aBuf[0]);
1194     szPage = sqlite3Get4byte(&aBuf[8]);
1195     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1196      || szPage&(szPage-1)
1197      || szPage>SQLITE_MAX_PAGE_SIZE
1198      || szPage<512
1199     ){
1200       goto finished;
1201     }
1202     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1203     pWal->szPage = szPage;
1204     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1205     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1206 
1207     /* Verify that the WAL header checksum is correct */
1208     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1209         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1210     );
1211     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1212      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1213     ){
1214       goto finished;
1215     }
1216 
1217     /* Verify that the version number on the WAL format is one that
1218     ** are able to understand */
1219     version = sqlite3Get4byte(&aBuf[4]);
1220     if( version!=WAL_MAX_VERSION ){
1221       rc = SQLITE_CANTOPEN_BKPT;
1222       goto finished;
1223     }
1224 
1225     /* Malloc a buffer to read frames into. */
1226     szFrame = szPage + WAL_FRAME_HDRSIZE;
1227     aFrame = (u8 *)sqlite3_malloc64(szFrame);
1228     if( !aFrame ){
1229       rc = SQLITE_NOMEM_BKPT;
1230       goto recovery_error;
1231     }
1232     aData = &aFrame[WAL_FRAME_HDRSIZE];
1233 
1234     /* Read all frames from the log file. */
1235     iFrame = 0;
1236     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1237       u32 pgno;                   /* Database page number for frame */
1238       u32 nTruncate;              /* dbsize field from frame header */
1239 
1240       /* Read and decode the next log frame. */
1241       iFrame++;
1242       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1243       if( rc!=SQLITE_OK ) break;
1244       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1245       if( !isValid ) break;
1246       rc = walIndexAppend(pWal, iFrame, pgno);
1247       if( rc!=SQLITE_OK ) break;
1248 
1249       /* If nTruncate is non-zero, this is a commit record. */
1250       if( nTruncate ){
1251         pWal->hdr.mxFrame = iFrame;
1252         pWal->hdr.nPage = nTruncate;
1253         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1254         testcase( szPage<=32768 );
1255         testcase( szPage>=65536 );
1256         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1257         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1258       }
1259     }
1260 
1261     sqlite3_free(aFrame);
1262   }
1263 
1264 finished:
1265   if( rc==SQLITE_OK ){
1266     volatile WalCkptInfo *pInfo;
1267     int i;
1268     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1269     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1270     walIndexWriteHdr(pWal);
1271 
1272     /* Reset the checkpoint-header. This is safe because this thread is
1273     ** currently holding locks that exclude all other readers, writers and
1274     ** checkpointers.
1275     */
1276     pInfo = walCkptInfo(pWal);
1277     pInfo->nBackfill = 0;
1278     pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1279     pInfo->aReadMark[0] = 0;
1280     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1281     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1282 
1283     /* If more than one frame was recovered from the log file, report an
1284     ** event via sqlite3_log(). This is to help with identifying performance
1285     ** problems caused by applications routinely shutting down without
1286     ** checkpointing the log file.
1287     */
1288     if( pWal->hdr.nPage ){
1289       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1290           "recovered %d frames from WAL file %s",
1291           pWal->hdr.mxFrame, pWal->zWalName
1292       );
1293     }
1294   }
1295 
1296 recovery_error:
1297   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1298   walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1299   walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1300   return rc;
1301 }
1302 
1303 /*
1304 ** Close an open wal-index.
1305 */
1306 static void walIndexClose(Wal *pWal, int isDelete){
1307   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1308     int i;
1309     for(i=0; i<pWal->nWiData; i++){
1310       sqlite3_free((void *)pWal->apWiData[i]);
1311       pWal->apWiData[i] = 0;
1312     }
1313   }
1314   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1315     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1316   }
1317 }
1318 
1319 /*
1320 ** Open a connection to the WAL file zWalName. The database file must
1321 ** already be opened on connection pDbFd. The buffer that zWalName points
1322 ** to must remain valid for the lifetime of the returned Wal* handle.
1323 **
1324 ** A SHARED lock should be held on the database file when this function
1325 ** is called. The purpose of this SHARED lock is to prevent any other
1326 ** client from unlinking the WAL or wal-index file. If another process
1327 ** were to do this just after this client opened one of these files, the
1328 ** system would be badly broken.
1329 **
1330 ** If the log file is successfully opened, SQLITE_OK is returned and
1331 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1332 ** an SQLite error code is returned and *ppWal is left unmodified.
1333 */
1334 int sqlite3WalOpen(
1335   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1336   sqlite3_file *pDbFd,            /* The open database file */
1337   const char *zWalName,           /* Name of the WAL file */
1338   int bNoShm,                     /* True to run in heap-memory mode */
1339   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
1340   Wal **ppWal                     /* OUT: Allocated Wal handle */
1341 ){
1342   int rc;                         /* Return Code */
1343   Wal *pRet;                      /* Object to allocate and return */
1344   int flags;                      /* Flags passed to OsOpen() */
1345 
1346   assert( zWalName && zWalName[0] );
1347   assert( pDbFd );
1348 
1349   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1350   ** this source file.  Verify that the #defines of the locking byte offsets
1351   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1352   ** For that matter, if the lock offset ever changes from its initial design
1353   ** value of 120, we need to know that so there is an assert() to check it.
1354   */
1355   assert( 120==WALINDEX_LOCK_OFFSET );
1356   assert( 136==WALINDEX_HDR_SIZE );
1357 #ifdef WIN_SHM_BASE
1358   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1359 #endif
1360 #ifdef UNIX_SHM_BASE
1361   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1362 #endif
1363 
1364 
1365   /* Allocate an instance of struct Wal to return. */
1366   *ppWal = 0;
1367   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1368   if( !pRet ){
1369     return SQLITE_NOMEM_BKPT;
1370   }
1371 
1372   pRet->pVfs = pVfs;
1373   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1374   pRet->pDbFd = pDbFd;
1375   pRet->readLock = -1;
1376   pRet->mxWalSize = mxWalSize;
1377   pRet->zWalName = zWalName;
1378   pRet->syncHeader = 1;
1379   pRet->padToSectorBoundary = 1;
1380   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1381 
1382   /* Open file handle on the write-ahead log file. */
1383   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1384   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1385   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1386     pRet->readOnly = WAL_RDONLY;
1387   }
1388 
1389   if( rc!=SQLITE_OK ){
1390     walIndexClose(pRet, 0);
1391     sqlite3OsClose(pRet->pWalFd);
1392     sqlite3_free(pRet);
1393   }else{
1394     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1395     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1396     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1397       pRet->padToSectorBoundary = 0;
1398     }
1399     *ppWal = pRet;
1400     WALTRACE(("WAL%d: opened\n", pRet));
1401   }
1402   return rc;
1403 }
1404 
1405 /*
1406 ** Change the size to which the WAL file is trucated on each reset.
1407 */
1408 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1409   if( pWal ) pWal->mxWalSize = iLimit;
1410 }
1411 
1412 /*
1413 ** Find the smallest page number out of all pages held in the WAL that
1414 ** has not been returned by any prior invocation of this method on the
1415 ** same WalIterator object.   Write into *piFrame the frame index where
1416 ** that page was last written into the WAL.  Write into *piPage the page
1417 ** number.
1418 **
1419 ** Return 0 on success.  If there are no pages in the WAL with a page
1420 ** number larger than *piPage, then return 1.
1421 */
1422 static int walIteratorNext(
1423   WalIterator *p,               /* Iterator */
1424   u32 *piPage,                  /* OUT: The page number of the next page */
1425   u32 *piFrame                  /* OUT: Wal frame index of next page */
1426 ){
1427   u32 iMin;                     /* Result pgno must be greater than iMin */
1428   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1429   int i;                        /* For looping through segments */
1430 
1431   iMin = p->iPrior;
1432   assert( iMin<0xffffffff );
1433   for(i=p->nSegment-1; i>=0; i--){
1434     struct WalSegment *pSegment = &p->aSegment[i];
1435     while( pSegment->iNext<pSegment->nEntry ){
1436       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1437       if( iPg>iMin ){
1438         if( iPg<iRet ){
1439           iRet = iPg;
1440           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1441         }
1442         break;
1443       }
1444       pSegment->iNext++;
1445     }
1446   }
1447 
1448   *piPage = p->iPrior = iRet;
1449   return (iRet==0xFFFFFFFF);
1450 }
1451 
1452 /*
1453 ** This function merges two sorted lists into a single sorted list.
1454 **
1455 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1456 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1457 ** is guaranteed for all J<K:
1458 **
1459 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1460 **        aContent[aRight[J]] < aContent[aRight[K]]
1461 **
1462 ** This routine overwrites aRight[] with a new (probably longer) sequence
1463 ** of indices such that the aRight[] contains every index that appears in
1464 ** either aLeft[] or the old aRight[] and such that the second condition
1465 ** above is still met.
1466 **
1467 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1468 ** aContent[aRight[X]] values will be unique too.  But there might be
1469 ** one or more combinations of X and Y such that
1470 **
1471 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1472 **
1473 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1474 */
1475 static void walMerge(
1476   const u32 *aContent,            /* Pages in wal - keys for the sort */
1477   ht_slot *aLeft,                 /* IN: Left hand input list */
1478   int nLeft,                      /* IN: Elements in array *paLeft */
1479   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1480   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1481   ht_slot *aTmp                   /* Temporary buffer */
1482 ){
1483   int iLeft = 0;                  /* Current index in aLeft */
1484   int iRight = 0;                 /* Current index in aRight */
1485   int iOut = 0;                   /* Current index in output buffer */
1486   int nRight = *pnRight;
1487   ht_slot *aRight = *paRight;
1488 
1489   assert( nLeft>0 && nRight>0 );
1490   while( iRight<nRight || iLeft<nLeft ){
1491     ht_slot logpage;
1492     Pgno dbpage;
1493 
1494     if( (iLeft<nLeft)
1495      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1496     ){
1497       logpage = aLeft[iLeft++];
1498     }else{
1499       logpage = aRight[iRight++];
1500     }
1501     dbpage = aContent[logpage];
1502 
1503     aTmp[iOut++] = logpage;
1504     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1505 
1506     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1507     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1508   }
1509 
1510   *paRight = aLeft;
1511   *pnRight = iOut;
1512   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1513 }
1514 
1515 /*
1516 ** Sort the elements in list aList using aContent[] as the sort key.
1517 ** Remove elements with duplicate keys, preferring to keep the
1518 ** larger aList[] values.
1519 **
1520 ** The aList[] entries are indices into aContent[].  The values in
1521 ** aList[] are to be sorted so that for all J<K:
1522 **
1523 **      aContent[aList[J]] < aContent[aList[K]]
1524 **
1525 ** For any X and Y such that
1526 **
1527 **      aContent[aList[X]] == aContent[aList[Y]]
1528 **
1529 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1530 ** the smaller.
1531 */
1532 static void walMergesort(
1533   const u32 *aContent,            /* Pages in wal */
1534   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1535   ht_slot *aList,                 /* IN/OUT: List to sort */
1536   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1537 ){
1538   struct Sublist {
1539     int nList;                    /* Number of elements in aList */
1540     ht_slot *aList;               /* Pointer to sub-list content */
1541   };
1542 
1543   const int nList = *pnList;      /* Size of input list */
1544   int nMerge = 0;                 /* Number of elements in list aMerge */
1545   ht_slot *aMerge = 0;            /* List to be merged */
1546   int iList;                      /* Index into input list */
1547   u32 iSub = 0;                   /* Index into aSub array */
1548   struct Sublist aSub[13];        /* Array of sub-lists */
1549 
1550   memset(aSub, 0, sizeof(aSub));
1551   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1552   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1553 
1554   for(iList=0; iList<nList; iList++){
1555     nMerge = 1;
1556     aMerge = &aList[iList];
1557     for(iSub=0; iList & (1<<iSub); iSub++){
1558       struct Sublist *p;
1559       assert( iSub<ArraySize(aSub) );
1560       p = &aSub[iSub];
1561       assert( p->aList && p->nList<=(1<<iSub) );
1562       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1563       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1564     }
1565     aSub[iSub].aList = aMerge;
1566     aSub[iSub].nList = nMerge;
1567   }
1568 
1569   for(iSub++; iSub<ArraySize(aSub); iSub++){
1570     if( nList & (1<<iSub) ){
1571       struct Sublist *p;
1572       assert( iSub<ArraySize(aSub) );
1573       p = &aSub[iSub];
1574       assert( p->nList<=(1<<iSub) );
1575       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1576       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1577     }
1578   }
1579   assert( aMerge==aList );
1580   *pnList = nMerge;
1581 
1582 #ifdef SQLITE_DEBUG
1583   {
1584     int i;
1585     for(i=1; i<*pnList; i++){
1586       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1587     }
1588   }
1589 #endif
1590 }
1591 
1592 /*
1593 ** Free an iterator allocated by walIteratorInit().
1594 */
1595 static void walIteratorFree(WalIterator *p){
1596   sqlite3_free(p);
1597 }
1598 
1599 /*
1600 ** Construct a WalInterator object that can be used to loop over all
1601 ** pages in the WAL following frame nBackfill in ascending order. Frames
1602 ** nBackfill or earlier may be included - excluding them is an optimization
1603 ** only. The caller must hold the checkpoint lock.
1604 **
1605 ** On success, make *pp point to the newly allocated WalInterator object
1606 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1607 ** returns an error, the value of *pp is undefined.
1608 **
1609 ** The calling routine should invoke walIteratorFree() to destroy the
1610 ** WalIterator object when it has finished with it.
1611 */
1612 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1613   WalIterator *p;                 /* Return value */
1614   int nSegment;                   /* Number of segments to merge */
1615   u32 iLast;                      /* Last frame in log */
1616   sqlite3_int64 nByte;            /* Number of bytes to allocate */
1617   int i;                          /* Iterator variable */
1618   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1619   int rc = SQLITE_OK;             /* Return Code */
1620 
1621   /* This routine only runs while holding the checkpoint lock. And
1622   ** it only runs if there is actually content in the log (mxFrame>0).
1623   */
1624   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1625   iLast = pWal->hdr.mxFrame;
1626 
1627   /* Allocate space for the WalIterator object. */
1628   nSegment = walFramePage(iLast) + 1;
1629   nByte = sizeof(WalIterator)
1630         + (nSegment-1)*sizeof(struct WalSegment)
1631         + iLast*sizeof(ht_slot);
1632   p = (WalIterator *)sqlite3_malloc64(nByte);
1633   if( !p ){
1634     return SQLITE_NOMEM_BKPT;
1635   }
1636   memset(p, 0, nByte);
1637   p->nSegment = nSegment;
1638 
1639   /* Allocate temporary space used by the merge-sort routine. This block
1640   ** of memory will be freed before this function returns.
1641   */
1642   aTmp = (ht_slot *)sqlite3_malloc64(
1643       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1644   );
1645   if( !aTmp ){
1646     rc = SQLITE_NOMEM_BKPT;
1647   }
1648 
1649   for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1650     WalHashLoc sLoc;
1651 
1652     rc = walHashGet(pWal, i, &sLoc);
1653     if( rc==SQLITE_OK ){
1654       int j;                      /* Counter variable */
1655       int nEntry;                 /* Number of entries in this segment */
1656       ht_slot *aIndex;            /* Sorted index for this segment */
1657 
1658       sLoc.aPgno++;
1659       if( (i+1)==nSegment ){
1660         nEntry = (int)(iLast - sLoc.iZero);
1661       }else{
1662         nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1663       }
1664       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1665       sLoc.iZero++;
1666 
1667       for(j=0; j<nEntry; j++){
1668         aIndex[j] = (ht_slot)j;
1669       }
1670       walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1671       p->aSegment[i].iZero = sLoc.iZero;
1672       p->aSegment[i].nEntry = nEntry;
1673       p->aSegment[i].aIndex = aIndex;
1674       p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1675     }
1676   }
1677   sqlite3_free(aTmp);
1678 
1679   if( rc!=SQLITE_OK ){
1680     walIteratorFree(p);
1681     p = 0;
1682   }
1683   *pp = p;
1684   return rc;
1685 }
1686 
1687 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1688 /*
1689 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1690 ** they are supported by the VFS, and (b) the database handle is configured
1691 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1692 ** or 0 otherwise.
1693 */
1694 static int walEnableBlocking(Wal *pWal){
1695   int res = 0;
1696   if( pWal->db ){
1697     int tmout = pWal->db->busyTimeout;
1698     if( tmout ){
1699       int rc;
1700       rc = sqlite3OsFileControl(
1701           pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1702       );
1703       res = (rc==SQLITE_OK);
1704     }
1705   }
1706   return res;
1707 }
1708 
1709 /*
1710 ** Disable blocking locks.
1711 */
1712 static void walDisableBlocking(Wal *pWal){
1713   int tmout = 0;
1714   sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1715 }
1716 
1717 /*
1718 ** If parameter bLock is true, attempt to enable blocking locks, take
1719 ** the WRITER lock, and then disable blocking locks. If blocking locks
1720 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1721 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1722 ** an error if blocking locks can not be enabled.
1723 **
1724 ** If the bLock parameter is false and the WRITER lock is held, release it.
1725 */
1726 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1727   int rc = SQLITE_OK;
1728   assert( pWal->readLock<0 || bLock==0 );
1729   if( bLock ){
1730     assert( pWal->db );
1731     if( walEnableBlocking(pWal) ){
1732       rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1733       if( rc==SQLITE_OK ){
1734         pWal->writeLock = 1;
1735       }
1736       walDisableBlocking(pWal);
1737     }
1738   }else if( pWal->writeLock ){
1739     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1740     pWal->writeLock = 0;
1741   }
1742   return rc;
1743 }
1744 
1745 /*
1746 ** Set the database handle used to determine if blocking locks are required.
1747 */
1748 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1749   pWal->db = db;
1750 }
1751 
1752 /*
1753 ** Take an exclusive WRITE lock. Blocking if so configured.
1754 */
1755 static int walLockWriter(Wal *pWal){
1756   int rc;
1757   walEnableBlocking(pWal);
1758   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1759   walDisableBlocking(pWal);
1760   return rc;
1761 }
1762 #else
1763 # define walEnableBlocking(x) 0
1764 # define walDisableBlocking(x)
1765 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1766 # define sqlite3WalDb(pWal, db)
1767 #endif   /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1768 
1769 
1770 /*
1771 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1772 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1773 ** busy-handler function. Invoke it and retry the lock until either the
1774 ** lock is successfully obtained or the busy-handler returns 0.
1775 */
1776 static int walBusyLock(
1777   Wal *pWal,                      /* WAL connection */
1778   int (*xBusy)(void*),            /* Function to call when busy */
1779   void *pBusyArg,                 /* Context argument for xBusyHandler */
1780   int lockIdx,                    /* Offset of first byte to lock */
1781   int n                           /* Number of bytes to lock */
1782 ){
1783   int rc;
1784   do {
1785     rc = walLockExclusive(pWal, lockIdx, n);
1786   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1787 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1788   if( rc==SQLITE_BUSY_TIMEOUT ){
1789     walDisableBlocking(pWal);
1790     rc = SQLITE_BUSY;
1791   }
1792 #endif
1793   return rc;
1794 }
1795 
1796 /*
1797 ** The cache of the wal-index header must be valid to call this function.
1798 ** Return the page-size in bytes used by the database.
1799 */
1800 static int walPagesize(Wal *pWal){
1801   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1802 }
1803 
1804 /*
1805 ** The following is guaranteed when this function is called:
1806 **
1807 **   a) the WRITER lock is held,
1808 **   b) the entire log file has been checkpointed, and
1809 **   c) any existing readers are reading exclusively from the database
1810 **      file - there are no readers that may attempt to read a frame from
1811 **      the log file.
1812 **
1813 ** This function updates the shared-memory structures so that the next
1814 ** client to write to the database (which may be this one) does so by
1815 ** writing frames into the start of the log file.
1816 **
1817 ** The value of parameter salt1 is used as the aSalt[1] value in the
1818 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1819 ** one obtained from sqlite3_randomness()).
1820 */
1821 static void walRestartHdr(Wal *pWal, u32 salt1){
1822   volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1823   int i;                          /* Loop counter */
1824   u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
1825   pWal->nCkpt++;
1826   pWal->hdr.mxFrame = 0;
1827   sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1828   memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1829   walIndexWriteHdr(pWal);
1830   AtomicStore(&pInfo->nBackfill, 0);
1831   pInfo->nBackfillAttempted = 0;
1832   pInfo->aReadMark[1] = 0;
1833   for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1834   assert( pInfo->aReadMark[0]==0 );
1835 }
1836 
1837 /*
1838 ** Copy as much content as we can from the WAL back into the database file
1839 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1840 **
1841 ** The amount of information copies from WAL to database might be limited
1842 ** by active readers.  This routine will never overwrite a database page
1843 ** that a concurrent reader might be using.
1844 **
1845 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1846 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1847 ** checkpoints are always run by a background thread or background
1848 ** process, foreground threads will never block on a lengthy fsync call.
1849 **
1850 ** Fsync is called on the WAL before writing content out of the WAL and
1851 ** into the database.  This ensures that if the new content is persistent
1852 ** in the WAL and can be recovered following a power-loss or hard reset.
1853 **
1854 ** Fsync is also called on the database file if (and only if) the entire
1855 ** WAL content is copied into the database file.  This second fsync makes
1856 ** it safe to delete the WAL since the new content will persist in the
1857 ** database file.
1858 **
1859 ** This routine uses and updates the nBackfill field of the wal-index header.
1860 ** This is the only routine that will increase the value of nBackfill.
1861 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1862 ** its value.)
1863 **
1864 ** The caller must be holding sufficient locks to ensure that no other
1865 ** checkpoint is running (in any other thread or process) at the same
1866 ** time.
1867 */
1868 static int walCheckpoint(
1869   Wal *pWal,                      /* Wal connection */
1870   sqlite3 *db,                    /* Check for interrupts on this handle */
1871   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1872   int (*xBusy)(void*),            /* Function to call when busy */
1873   void *pBusyArg,                 /* Context argument for xBusyHandler */
1874   int sync_flags,                 /* Flags for OsSync() (or 0) */
1875   u8 *zBuf                        /* Temporary buffer to use */
1876 ){
1877   int rc = SQLITE_OK;             /* Return code */
1878   int szPage;                     /* Database page-size */
1879   WalIterator *pIter = 0;         /* Wal iterator context */
1880   u32 iDbpage = 0;                /* Next database page to write */
1881   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1882   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1883   u32 mxPage;                     /* Max database page to write */
1884   int i;                          /* Loop counter */
1885   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1886 
1887   szPage = walPagesize(pWal);
1888   testcase( szPage<=32768 );
1889   testcase( szPage>=65536 );
1890   pInfo = walCkptInfo(pWal);
1891   if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1892 
1893     /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1894     ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1895     assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1896 
1897     /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1898     ** safe to write into the database.  Frames beyond mxSafeFrame might
1899     ** overwrite database pages that are in use by active readers and thus
1900     ** cannot be backfilled from the WAL.
1901     */
1902     mxSafeFrame = pWal->hdr.mxFrame;
1903     mxPage = pWal->hdr.nPage;
1904     for(i=1; i<WAL_NREADER; i++){
1905       u32 y = AtomicLoad(pInfo->aReadMark+i);
1906       if( mxSafeFrame>y ){
1907         assert( y<=pWal->hdr.mxFrame );
1908         rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1909         if( rc==SQLITE_OK ){
1910           u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1911           AtomicStore(pInfo->aReadMark+i, iMark);
1912           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1913         }else if( rc==SQLITE_BUSY ){
1914           mxSafeFrame = y;
1915           xBusy = 0;
1916         }else{
1917           goto walcheckpoint_out;
1918         }
1919       }
1920     }
1921 
1922     /* Allocate the iterator */
1923     if( pInfo->nBackfill<mxSafeFrame ){
1924       rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1925       assert( rc==SQLITE_OK || pIter==0 );
1926     }
1927 
1928     if( pIter
1929      && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
1930     ){
1931       u32 nBackfill = pInfo->nBackfill;
1932 
1933       pInfo->nBackfillAttempted = mxSafeFrame;
1934 
1935       /* Sync the WAL to disk */
1936       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1937 
1938       /* If the database may grow as a result of this checkpoint, hint
1939       ** about the eventual size of the db file to the VFS layer.
1940       */
1941       if( rc==SQLITE_OK ){
1942         i64 nReq = ((i64)mxPage * szPage);
1943         i64 nSize;                    /* Current size of database file */
1944         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
1945         rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1946         if( rc==SQLITE_OK && nSize<nReq ){
1947           sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1948         }
1949       }
1950 
1951 
1952       /* Iterate through the contents of the WAL, copying data to the db file */
1953       while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1954         i64 iOffset;
1955         assert( walFramePgno(pWal, iFrame)==iDbpage );
1956         if( AtomicLoad(&db->u1.isInterrupted) ){
1957           rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1958           break;
1959         }
1960         if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1961           continue;
1962         }
1963         iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1964         /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1965         rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1966         if( rc!=SQLITE_OK ) break;
1967         iOffset = (iDbpage-1)*(i64)szPage;
1968         testcase( IS_BIG_INT(iOffset) );
1969         rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1970         if( rc!=SQLITE_OK ) break;
1971       }
1972       sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
1973 
1974       /* If work was actually accomplished... */
1975       if( rc==SQLITE_OK ){
1976         if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1977           i64 szDb = pWal->hdr.nPage*(i64)szPage;
1978           testcase( IS_BIG_INT(szDb) );
1979           rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1980           if( rc==SQLITE_OK ){
1981             rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1982           }
1983         }
1984         if( rc==SQLITE_OK ){
1985           AtomicStore(&pInfo->nBackfill, mxSafeFrame);
1986         }
1987       }
1988 
1989       /* Release the reader lock held while backfilling */
1990       walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1991     }
1992 
1993     if( rc==SQLITE_BUSY ){
1994       /* Reset the return code so as not to report a checkpoint failure
1995       ** just because there are active readers.  */
1996       rc = SQLITE_OK;
1997     }
1998   }
1999 
2000   /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2001   ** entire wal file has been copied into the database file, then block
2002   ** until all readers have finished using the wal file. This ensures that
2003   ** the next process to write to the database restarts the wal file.
2004   */
2005   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2006     assert( pWal->writeLock );
2007     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2008       rc = SQLITE_BUSY;
2009     }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2010       u32 salt1;
2011       sqlite3_randomness(4, &salt1);
2012       assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2013       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2014       if( rc==SQLITE_OK ){
2015         if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2016           /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2017           ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2018           ** truncates the log file to zero bytes just prior to a
2019           ** successful return.
2020           **
2021           ** In theory, it might be safe to do this without updating the
2022           ** wal-index header in shared memory, as all subsequent reader or
2023           ** writer clients should see that the entire log file has been
2024           ** checkpointed and behave accordingly. This seems unsafe though,
2025           ** as it would leave the system in a state where the contents of
2026           ** the wal-index header do not match the contents of the
2027           ** file-system. To avoid this, update the wal-index header to
2028           ** indicate that the log file contains zero valid frames.  */
2029           walRestartHdr(pWal, salt1);
2030           rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2031         }
2032         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2033       }
2034     }
2035   }
2036 
2037  walcheckpoint_out:
2038   walIteratorFree(pIter);
2039   return rc;
2040 }
2041 
2042 /*
2043 ** If the WAL file is currently larger than nMax bytes in size, truncate
2044 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2045 */
2046 static void walLimitSize(Wal *pWal, i64 nMax){
2047   i64 sz;
2048   int rx;
2049   sqlite3BeginBenignMalloc();
2050   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2051   if( rx==SQLITE_OK && (sz > nMax ) ){
2052     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2053   }
2054   sqlite3EndBenignMalloc();
2055   if( rx ){
2056     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2057   }
2058 }
2059 
2060 /*
2061 ** Close a connection to a log file.
2062 */
2063 int sqlite3WalClose(
2064   Wal *pWal,                      /* Wal to close */
2065   sqlite3 *db,                    /* For interrupt flag */
2066   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
2067   int nBuf,
2068   u8 *zBuf                        /* Buffer of at least nBuf bytes */
2069 ){
2070   int rc = SQLITE_OK;
2071   if( pWal ){
2072     int isDelete = 0;             /* True to unlink wal and wal-index files */
2073 
2074     /* If an EXCLUSIVE lock can be obtained on the database file (using the
2075     ** ordinary, rollback-mode locking methods, this guarantees that the
2076     ** connection associated with this log file is the only connection to
2077     ** the database. In this case checkpoint the database and unlink both
2078     ** the wal and wal-index files.
2079     **
2080     ** The EXCLUSIVE lock is not released before returning.
2081     */
2082     if( zBuf!=0
2083      && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2084     ){
2085       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2086         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2087       }
2088       rc = sqlite3WalCheckpoint(pWal, db,
2089           SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2090       );
2091       if( rc==SQLITE_OK ){
2092         int bPersist = -1;
2093         sqlite3OsFileControlHint(
2094             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2095         );
2096         if( bPersist!=1 ){
2097           /* Try to delete the WAL file if the checkpoint completed and
2098           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2099           ** mode (!bPersist) */
2100           isDelete = 1;
2101         }else if( pWal->mxWalSize>=0 ){
2102           /* Try to truncate the WAL file to zero bytes if the checkpoint
2103           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2104           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2105           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
2106           ** to zero bytes as truncating to the journal_size_limit might
2107           ** leave a corrupt WAL file on disk. */
2108           walLimitSize(pWal, 0);
2109         }
2110       }
2111     }
2112 
2113     walIndexClose(pWal, isDelete);
2114     sqlite3OsClose(pWal->pWalFd);
2115     if( isDelete ){
2116       sqlite3BeginBenignMalloc();
2117       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2118       sqlite3EndBenignMalloc();
2119     }
2120     WALTRACE(("WAL%p: closed\n", pWal));
2121     sqlite3_free((void *)pWal->apWiData);
2122     sqlite3_free(pWal);
2123   }
2124   return rc;
2125 }
2126 
2127 /*
2128 ** Try to read the wal-index header.  Return 0 on success and 1 if
2129 ** there is a problem.
2130 **
2131 ** The wal-index is in shared memory.  Another thread or process might
2132 ** be writing the header at the same time this procedure is trying to
2133 ** read it, which might result in inconsistency.  A dirty read is detected
2134 ** by verifying that both copies of the header are the same and also by
2135 ** a checksum on the header.
2136 **
2137 ** If and only if the read is consistent and the header is different from
2138 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2139 ** and *pChanged is set to 1.
2140 **
2141 ** If the checksum cannot be verified return non-zero. If the header
2142 ** is read successfully and the checksum verified, return zero.
2143 */
2144 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2145   u32 aCksum[2];                  /* Checksum on the header content */
2146   WalIndexHdr h1, h2;             /* Two copies of the header content */
2147   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
2148 
2149   /* The first page of the wal-index must be mapped at this point. */
2150   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2151 
2152   /* Read the header. This might happen concurrently with a write to the
2153   ** same area of shared memory on a different CPU in a SMP,
2154   ** meaning it is possible that an inconsistent snapshot is read
2155   ** from the file. If this happens, return non-zero.
2156   **
2157   ** tag-20200519-1:
2158   ** There are two copies of the header at the beginning of the wal-index.
2159   ** When reading, read [0] first then [1].  Writes are in the reverse order.
2160   ** Memory barriers are used to prevent the compiler or the hardware from
2161   ** reordering the reads and writes.  TSAN and similar tools can sometimes
2162   ** give false-positive warnings about these accesses because the tools do not
2163   ** account for the double-read and the memory barrier. The use of mutexes
2164   ** here would be problematic as the memory being accessed is potentially
2165   ** shared among multiple processes and not all mutex implementions work
2166   ** reliably in that environment.
2167   */
2168   aHdr = walIndexHdr(pWal);
2169   memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2170   walShmBarrier(pWal);
2171   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2172 
2173   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2174     return 1;   /* Dirty read */
2175   }
2176   if( h1.isInit==0 ){
2177     return 1;   /* Malformed header - probably all zeros */
2178   }
2179   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2180   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2181     return 1;   /* Checksum does not match */
2182   }
2183 
2184   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2185     *pChanged = 1;
2186     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2187     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2188     testcase( pWal->szPage<=32768 );
2189     testcase( pWal->szPage>=65536 );
2190   }
2191 
2192   /* The header was successfully read. Return zero. */
2193   return 0;
2194 }
2195 
2196 /*
2197 ** This is the value that walTryBeginRead returns when it needs to
2198 ** be retried.
2199 */
2200 #define WAL_RETRY  (-1)
2201 
2202 /*
2203 ** Read the wal-index header from the wal-index and into pWal->hdr.
2204 ** If the wal-header appears to be corrupt, try to reconstruct the
2205 ** wal-index from the WAL before returning.
2206 **
2207 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2208 ** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
2209 ** to 0.
2210 **
2211 ** If the wal-index header is successfully read, return SQLITE_OK.
2212 ** Otherwise an SQLite error code.
2213 */
2214 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2215   int rc;                         /* Return code */
2216   int badHdr;                     /* True if a header read failed */
2217   volatile u32 *page0;            /* Chunk of wal-index containing header */
2218 
2219   /* Ensure that page 0 of the wal-index (the page that contains the
2220   ** wal-index header) is mapped. Return early if an error occurs here.
2221   */
2222   assert( pChanged );
2223   rc = walIndexPage(pWal, 0, &page0);
2224   if( rc!=SQLITE_OK ){
2225     assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2226     if( rc==SQLITE_READONLY_CANTINIT ){
2227       /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2228       ** was openable but is not writable, and this thread is unable to
2229       ** confirm that another write-capable connection has the shared-memory
2230       ** open, and hence the content of the shared-memory is unreliable,
2231       ** since the shared-memory might be inconsistent with the WAL file
2232       ** and there is no writer on hand to fix it. */
2233       assert( page0==0 );
2234       assert( pWal->writeLock==0 );
2235       assert( pWal->readOnly & WAL_SHM_RDONLY );
2236       pWal->bShmUnreliable = 1;
2237       pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2238       *pChanged = 1;
2239     }else{
2240       return rc; /* Any other non-OK return is just an error */
2241     }
2242   }else{
2243     /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2244     ** is zero, which prevents the SHM from growing */
2245     testcase( page0!=0 );
2246   }
2247   assert( page0!=0 || pWal->writeLock==0 );
2248 
2249   /* If the first page of the wal-index has been mapped, try to read the
2250   ** wal-index header immediately, without holding any lock. This usually
2251   ** works, but may fail if the wal-index header is corrupt or currently
2252   ** being modified by another thread or process.
2253   */
2254   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2255 
2256   /* If the first attempt failed, it might have been due to a race
2257   ** with a writer.  So get a WRITE lock and try again.
2258   */
2259   if( badHdr ){
2260     if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2261       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2262         walUnlockShared(pWal, WAL_WRITE_LOCK);
2263         rc = SQLITE_READONLY_RECOVERY;
2264       }
2265     }else{
2266       int bWriteLock = pWal->writeLock;
2267       if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2268         pWal->writeLock = 1;
2269         if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2270           badHdr = walIndexTryHdr(pWal, pChanged);
2271           if( badHdr ){
2272             /* If the wal-index header is still malformed even while holding
2273             ** a WRITE lock, it can only mean that the header is corrupted and
2274             ** needs to be reconstructed.  So run recovery to do exactly that.
2275             */
2276             rc = walIndexRecover(pWal);
2277             *pChanged = 1;
2278           }
2279         }
2280         if( bWriteLock==0 ){
2281           pWal->writeLock = 0;
2282           walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2283         }
2284       }
2285     }
2286   }
2287 
2288   /* If the header is read successfully, check the version number to make
2289   ** sure the wal-index was not constructed with some future format that
2290   ** this version of SQLite cannot understand.
2291   */
2292   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2293     rc = SQLITE_CANTOPEN_BKPT;
2294   }
2295   if( pWal->bShmUnreliable ){
2296     if( rc!=SQLITE_OK ){
2297       walIndexClose(pWal, 0);
2298       pWal->bShmUnreliable = 0;
2299       assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2300       /* walIndexRecover() might have returned SHORT_READ if a concurrent
2301       ** writer truncated the WAL out from under it.  If that happens, it
2302       ** indicates that a writer has fixed the SHM file for us, so retry */
2303       if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2304     }
2305     pWal->exclusiveMode = WAL_NORMAL_MODE;
2306   }
2307 
2308   return rc;
2309 }
2310 
2311 /*
2312 ** Open a transaction in a connection where the shared-memory is read-only
2313 ** and where we cannot verify that there is a separate write-capable connection
2314 ** on hand to keep the shared-memory up-to-date with the WAL file.
2315 **
2316 ** This can happen, for example, when the shared-memory is implemented by
2317 ** memory-mapping a *-shm file, where a prior writer has shut down and
2318 ** left the *-shm file on disk, and now the present connection is trying
2319 ** to use that database but lacks write permission on the *-shm file.
2320 ** Other scenarios are also possible, depending on the VFS implementation.
2321 **
2322 ** Precondition:
2323 **
2324 **    The *-wal file has been read and an appropriate wal-index has been
2325 **    constructed in pWal->apWiData[] using heap memory instead of shared
2326 **    memory.
2327 **
2328 ** If this function returns SQLITE_OK, then the read transaction has
2329 ** been successfully opened. In this case output variable (*pChanged)
2330 ** is set to true before returning if the caller should discard the
2331 ** contents of the page cache before proceeding. Or, if it returns
2332 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2333 ** the caller should retry opening the read transaction from the
2334 ** beginning (including attempting to map the *-shm file).
2335 **
2336 ** If an error occurs, an SQLite error code is returned.
2337 */
2338 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2339   i64 szWal;                      /* Size of wal file on disk in bytes */
2340   i64 iOffset;                    /* Current offset when reading wal file */
2341   u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
2342   u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
2343   int szFrame;                    /* Number of bytes in buffer aFrame[] */
2344   u8 *aData;                      /* Pointer to data part of aFrame buffer */
2345   volatile void *pDummy;          /* Dummy argument for xShmMap */
2346   int rc;                         /* Return code */
2347   u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */
2348 
2349   assert( pWal->bShmUnreliable );
2350   assert( pWal->readOnly & WAL_SHM_RDONLY );
2351   assert( pWal->nWiData>0 && pWal->apWiData[0] );
2352 
2353   /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2354   ** writers from running a checkpoint, but does not stop them
2355   ** from running recovery.  */
2356   rc = walLockShared(pWal, WAL_READ_LOCK(0));
2357   if( rc!=SQLITE_OK ){
2358     if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2359     goto begin_unreliable_shm_out;
2360   }
2361   pWal->readLock = 0;
2362 
2363   /* Check to see if a separate writer has attached to the shared-memory area,
2364   ** thus making the shared-memory "reliable" again.  Do this by invoking
2365   ** the xShmMap() routine of the VFS and looking to see if the return
2366   ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2367   **
2368   ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2369   ** cause the heap-memory WAL-index to be discarded and the actual
2370   ** shared memory to be used in its place.
2371   **
2372   ** This step is important because, even though this connection is holding
2373   ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2374   ** have already checkpointed the WAL file and, while the current
2375   ** is active, wrap the WAL and start overwriting frames that this
2376   ** process wants to use.
2377   **
2378   ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2379   ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2380   ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2381   ** even if some external agent does a "chmod" to make the shared-memory
2382   ** writable by us, until sqlite3OsShmUnmap() has been called.
2383   ** This is a requirement on the VFS implementation.
2384    */
2385   rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2386   assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2387   if( rc!=SQLITE_READONLY_CANTINIT ){
2388     rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2389     goto begin_unreliable_shm_out;
2390   }
2391 
2392   /* We reach this point only if the real shared-memory is still unreliable.
2393   ** Assume the in-memory WAL-index substitute is correct and load it
2394   ** into pWal->hdr.
2395   */
2396   memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2397 
2398   /* Make sure some writer hasn't come in and changed the WAL file out
2399   ** from under us, then disconnected, while we were not looking.
2400   */
2401   rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2402   if( rc!=SQLITE_OK ){
2403     goto begin_unreliable_shm_out;
2404   }
2405   if( szWal<WAL_HDRSIZE ){
2406     /* If the wal file is too small to contain a wal-header and the
2407     ** wal-index header has mxFrame==0, then it must be safe to proceed
2408     ** reading the database file only. However, the page cache cannot
2409     ** be trusted, as a read/write connection may have connected, written
2410     ** the db, run a checkpoint, truncated the wal file and disconnected
2411     ** since this client's last read transaction.  */
2412     *pChanged = 1;
2413     rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2414     goto begin_unreliable_shm_out;
2415   }
2416 
2417   /* Check the salt keys at the start of the wal file still match. */
2418   rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2419   if( rc!=SQLITE_OK ){
2420     goto begin_unreliable_shm_out;
2421   }
2422   if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2423     /* Some writer has wrapped the WAL file while we were not looking.
2424     ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2425     ** rebuilt. */
2426     rc = WAL_RETRY;
2427     goto begin_unreliable_shm_out;
2428   }
2429 
2430   /* Allocate a buffer to read frames into */
2431   szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2432   aFrame = (u8 *)sqlite3_malloc64(szFrame);
2433   if( aFrame==0 ){
2434     rc = SQLITE_NOMEM_BKPT;
2435     goto begin_unreliable_shm_out;
2436   }
2437   aData = &aFrame[WAL_FRAME_HDRSIZE];
2438 
2439   /* Check to see if a complete transaction has been appended to the
2440   ** wal file since the heap-memory wal-index was created. If so, the
2441   ** heap-memory wal-index is discarded and WAL_RETRY returned to
2442   ** the caller.  */
2443   aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2444   aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2445   for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2446       iOffset+szFrame<=szWal;
2447       iOffset+=szFrame
2448   ){
2449     u32 pgno;                   /* Database page number for frame */
2450     u32 nTruncate;              /* dbsize field from frame header */
2451 
2452     /* Read and decode the next log frame. */
2453     rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2454     if( rc!=SQLITE_OK ) break;
2455     if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2456 
2457     /* If nTruncate is non-zero, then a complete transaction has been
2458     ** appended to this wal file. Set rc to WAL_RETRY and break out of
2459     ** the loop.  */
2460     if( nTruncate ){
2461       rc = WAL_RETRY;
2462       break;
2463     }
2464   }
2465   pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2466   pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2467 
2468  begin_unreliable_shm_out:
2469   sqlite3_free(aFrame);
2470   if( rc!=SQLITE_OK ){
2471     int i;
2472     for(i=0; i<pWal->nWiData; i++){
2473       sqlite3_free((void*)pWal->apWiData[i]);
2474       pWal->apWiData[i] = 0;
2475     }
2476     pWal->bShmUnreliable = 0;
2477     sqlite3WalEndReadTransaction(pWal);
2478     *pChanged = 1;
2479   }
2480   return rc;
2481 }
2482 
2483 /*
2484 ** Attempt to start a read transaction.  This might fail due to a race or
2485 ** other transient condition.  When that happens, it returns WAL_RETRY to
2486 ** indicate to the caller that it is safe to retry immediately.
2487 **
2488 ** On success return SQLITE_OK.  On a permanent failure (such an
2489 ** I/O error or an SQLITE_BUSY because another process is running
2490 ** recovery) return a positive error code.
2491 **
2492 ** The useWal parameter is true to force the use of the WAL and disable
2493 ** the case where the WAL is bypassed because it has been completely
2494 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
2495 ** to make a copy of the wal-index header into pWal->hdr.  If the
2496 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2497 ** to the caller that the local page cache is obsolete and needs to be
2498 ** flushed.)  When useWal==1, the wal-index header is assumed to already
2499 ** be loaded and the pChanged parameter is unused.
2500 **
2501 ** The caller must set the cnt parameter to the number of prior calls to
2502 ** this routine during the current read attempt that returned WAL_RETRY.
2503 ** This routine will start taking more aggressive measures to clear the
2504 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2505 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
2506 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2507 ** and is not honoring the locking protocol.  There is a vanishingly small
2508 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2509 ** bad luck when there is lots of contention for the wal-index, but that
2510 ** possibility is so small that it can be safely neglected, we believe.
2511 **
2512 ** On success, this routine obtains a read lock on
2513 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
2514 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
2515 ** that means the Wal does not hold any read lock.  The reader must not
2516 ** access any database page that is modified by a WAL frame up to and
2517 ** including frame number aReadMark[pWal->readLock].  The reader will
2518 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2519 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2520 ** completely and get all content directly from the database file.
2521 ** If the useWal parameter is 1 then the WAL will never be ignored and
2522 ** this routine will always set pWal->readLock>0 on success.
2523 ** When the read transaction is completed, the caller must release the
2524 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2525 **
2526 ** This routine uses the nBackfill and aReadMark[] fields of the header
2527 ** to select a particular WAL_READ_LOCK() that strives to let the
2528 ** checkpoint process do as much work as possible.  This routine might
2529 ** update values of the aReadMark[] array in the header, but if it does
2530 ** so it takes care to hold an exclusive lock on the corresponding
2531 ** WAL_READ_LOCK() while changing values.
2532 */
2533 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2534   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
2535   u32 mxReadMark;                 /* Largest aReadMark[] value */
2536   int mxI;                        /* Index of largest aReadMark[] value */
2537   int i;                          /* Loop counter */
2538   int rc = SQLITE_OK;             /* Return code  */
2539   u32 mxFrame;                    /* Wal frame to lock to */
2540 
2541   assert( pWal->readLock<0 );     /* Not currently locked */
2542 
2543   /* useWal may only be set for read/write connections */
2544   assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2545 
2546   /* Take steps to avoid spinning forever if there is a protocol error.
2547   **
2548   ** Circumstances that cause a RETRY should only last for the briefest
2549   ** instances of time.  No I/O or other system calls are done while the
2550   ** locks are held, so the locks should not be held for very long. But
2551   ** if we are unlucky, another process that is holding a lock might get
2552   ** paged out or take a page-fault that is time-consuming to resolve,
2553   ** during the few nanoseconds that it is holding the lock.  In that case,
2554   ** it might take longer than normal for the lock to free.
2555   **
2556   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2557   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2558   ** is more of a scheduler yield than an actual delay.  But on the 10th
2559   ** an subsequent retries, the delays start becoming longer and longer,
2560   ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2561   ** The total delay time before giving up is less than 10 seconds.
2562   */
2563   if( cnt>5 ){
2564     int nDelay = 1;                      /* Pause time in microseconds */
2565     if( cnt>100 ){
2566       VVA_ONLY( pWal->lockError = 1; )
2567       return SQLITE_PROTOCOL;
2568     }
2569     if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2570     sqlite3OsSleep(pWal->pVfs, nDelay);
2571   }
2572 
2573   if( !useWal ){
2574     assert( rc==SQLITE_OK );
2575     if( pWal->bShmUnreliable==0 ){
2576       rc = walIndexReadHdr(pWal, pChanged);
2577     }
2578     if( rc==SQLITE_BUSY ){
2579       /* If there is not a recovery running in another thread or process
2580       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2581       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2582       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2583       ** would be technically correct.  But the race is benign since with
2584       ** WAL_RETRY this routine will be called again and will probably be
2585       ** right on the second iteration.
2586       */
2587       if( pWal->apWiData[0]==0 ){
2588         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2589         ** We assume this is a transient condition, so return WAL_RETRY. The
2590         ** xShmMap() implementation used by the default unix and win32 VFS
2591         ** modules may return SQLITE_BUSY due to a race condition in the
2592         ** code that determines whether or not the shared-memory region
2593         ** must be zeroed before the requested page is returned.
2594         */
2595         rc = WAL_RETRY;
2596       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2597         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2598         rc = WAL_RETRY;
2599       }else if( rc==SQLITE_BUSY ){
2600         rc = SQLITE_BUSY_RECOVERY;
2601       }
2602     }
2603     if( rc!=SQLITE_OK ){
2604       return rc;
2605     }
2606     else if( pWal->bShmUnreliable ){
2607       return walBeginShmUnreliable(pWal, pChanged);
2608     }
2609   }
2610 
2611   assert( pWal->nWiData>0 );
2612   assert( pWal->apWiData[0]!=0 );
2613   pInfo = walCkptInfo(pWal);
2614   if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2615 #ifdef SQLITE_ENABLE_SNAPSHOT
2616    && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2617 #endif
2618   ){
2619     /* The WAL has been completely backfilled (or it is empty).
2620     ** and can be safely ignored.
2621     */
2622     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2623     walShmBarrier(pWal);
2624     if( rc==SQLITE_OK ){
2625       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2626         /* It is not safe to allow the reader to continue here if frames
2627         ** may have been appended to the log before READ_LOCK(0) was obtained.
2628         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2629         ** which implies that the database file contains a trustworthy
2630         ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2631         ** happening, this is usually correct.
2632         **
2633         ** However, if frames have been appended to the log (or if the log
2634         ** is wrapped and written for that matter) before the READ_LOCK(0)
2635         ** is obtained, that is not necessarily true. A checkpointer may
2636         ** have started to backfill the appended frames but crashed before
2637         ** it finished. Leaving a corrupt image in the database file.
2638         */
2639         walUnlockShared(pWal, WAL_READ_LOCK(0));
2640         return WAL_RETRY;
2641       }
2642       pWal->readLock = 0;
2643       return SQLITE_OK;
2644     }else if( rc!=SQLITE_BUSY ){
2645       return rc;
2646     }
2647   }
2648 
2649   /* If we get this far, it means that the reader will want to use
2650   ** the WAL to get at content from recent commits.  The job now is
2651   ** to select one of the aReadMark[] entries that is closest to
2652   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2653   */
2654   mxReadMark = 0;
2655   mxI = 0;
2656   mxFrame = pWal->hdr.mxFrame;
2657 #ifdef SQLITE_ENABLE_SNAPSHOT
2658   if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2659     mxFrame = pWal->pSnapshot->mxFrame;
2660   }
2661 #endif
2662   for(i=1; i<WAL_NREADER; i++){
2663     u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2664     if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2665       assert( thisMark!=READMARK_NOT_USED );
2666       mxReadMark = thisMark;
2667       mxI = i;
2668     }
2669   }
2670   if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2671    && (mxReadMark<mxFrame || mxI==0)
2672   ){
2673     for(i=1; i<WAL_NREADER; i++){
2674       rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2675       if( rc==SQLITE_OK ){
2676         AtomicStore(pInfo->aReadMark+i,mxFrame);
2677         mxReadMark = mxFrame;
2678         mxI = i;
2679         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2680         break;
2681       }else if( rc!=SQLITE_BUSY ){
2682         return rc;
2683       }
2684     }
2685   }
2686   if( mxI==0 ){
2687     assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2688     return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2689   }
2690 
2691   rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2692   if( rc ){
2693     return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2694   }
2695   /* Now that the read-lock has been obtained, check that neither the
2696   ** value in the aReadMark[] array or the contents of the wal-index
2697   ** header have changed.
2698   **
2699   ** It is necessary to check that the wal-index header did not change
2700   ** between the time it was read and when the shared-lock was obtained
2701   ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2702   ** that the log file may have been wrapped by a writer, or that frames
2703   ** that occur later in the log than pWal->hdr.mxFrame may have been
2704   ** copied into the database by a checkpointer. If either of these things
2705   ** happened, then reading the database with the current value of
2706   ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2707   ** instead.
2708   **
2709   ** Before checking that the live wal-index header has not changed
2710   ** since it was read, set Wal.minFrame to the first frame in the wal
2711   ** file that has not yet been checkpointed. This client will not need
2712   ** to read any frames earlier than minFrame from the wal file - they
2713   ** can be safely read directly from the database file.
2714   **
2715   ** Because a ShmBarrier() call is made between taking the copy of
2716   ** nBackfill and checking that the wal-header in shared-memory still
2717   ** matches the one cached in pWal->hdr, it is guaranteed that the
2718   ** checkpointer that set nBackfill was not working with a wal-index
2719   ** header newer than that cached in pWal->hdr. If it were, that could
2720   ** cause a problem. The checkpointer could omit to checkpoint
2721   ** a version of page X that lies before pWal->minFrame (call that version
2722   ** A) on the basis that there is a newer version (version B) of the same
2723   ** page later in the wal file. But if version B happens to like past
2724   ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2725   ** that it can read version A from the database file. However, since
2726   ** we can guarantee that the checkpointer that set nBackfill could not
2727   ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2728   */
2729   pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2730   walShmBarrier(pWal);
2731   if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2732    || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2733   ){
2734     walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2735     return WAL_RETRY;
2736   }else{
2737     assert( mxReadMark<=pWal->hdr.mxFrame );
2738     pWal->readLock = (i16)mxI;
2739   }
2740   return rc;
2741 }
2742 
2743 #ifdef SQLITE_ENABLE_SNAPSHOT
2744 /*
2745 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2746 ** variable so that older snapshots can be accessed. To do this, loop
2747 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2748 ** comparing their content to the corresponding page with the database
2749 ** file, if any. Set nBackfillAttempted to the frame number of the
2750 ** first frame for which the wal file content matches the db file.
2751 **
2752 ** This is only really safe if the file-system is such that any page
2753 ** writes made by earlier checkpointers were atomic operations, which
2754 ** is not always true. It is also possible that nBackfillAttempted
2755 ** may be left set to a value larger than expected, if a wal frame
2756 ** contains content that duplicate of an earlier version of the same
2757 ** page.
2758 **
2759 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2760 ** error occurs. It is not an error if nBackfillAttempted cannot be
2761 ** decreased at all.
2762 */
2763 int sqlite3WalSnapshotRecover(Wal *pWal){
2764   int rc;
2765 
2766   assert( pWal->readLock>=0 );
2767   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2768   if( rc==SQLITE_OK ){
2769     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2770     int szPage = (int)pWal->szPage;
2771     i64 szDb;                   /* Size of db file in bytes */
2772 
2773     rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2774     if( rc==SQLITE_OK ){
2775       void *pBuf1 = sqlite3_malloc(szPage);
2776       void *pBuf2 = sqlite3_malloc(szPage);
2777       if( pBuf1==0 || pBuf2==0 ){
2778         rc = SQLITE_NOMEM;
2779       }else{
2780         u32 i = pInfo->nBackfillAttempted;
2781         for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2782           WalHashLoc sLoc;          /* Hash table location */
2783           u32 pgno;                 /* Page number in db file */
2784           i64 iDbOff;               /* Offset of db file entry */
2785           i64 iWalOff;              /* Offset of wal file entry */
2786 
2787           rc = walHashGet(pWal, walFramePage(i), &sLoc);
2788           if( rc!=SQLITE_OK ) break;
2789           pgno = sLoc.aPgno[i-sLoc.iZero];
2790           iDbOff = (i64)(pgno-1) * szPage;
2791 
2792           if( iDbOff+szPage<=szDb ){
2793             iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2794             rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2795 
2796             if( rc==SQLITE_OK ){
2797               rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2798             }
2799 
2800             if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2801               break;
2802             }
2803           }
2804 
2805           pInfo->nBackfillAttempted = i-1;
2806         }
2807       }
2808 
2809       sqlite3_free(pBuf1);
2810       sqlite3_free(pBuf2);
2811     }
2812     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2813   }
2814 
2815   return rc;
2816 }
2817 #endif /* SQLITE_ENABLE_SNAPSHOT */
2818 
2819 /*
2820 ** Begin a read transaction on the database.
2821 **
2822 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2823 ** it takes a snapshot of the state of the WAL and wal-index for the current
2824 ** instant in time.  The current thread will continue to use this snapshot.
2825 ** Other threads might append new content to the WAL and wal-index but
2826 ** that extra content is ignored by the current thread.
2827 **
2828 ** If the database contents have changes since the previous read
2829 ** transaction, then *pChanged is set to 1 before returning.  The
2830 ** Pager layer will use this to know that its cache is stale and
2831 ** needs to be flushed.
2832 */
2833 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2834   int rc;                         /* Return code */
2835   int cnt = 0;                    /* Number of TryBeginRead attempts */
2836 
2837   assert( pWal->ckptLock==0 );
2838 
2839 #ifdef SQLITE_ENABLE_SNAPSHOT
2840   int bChanged = 0;
2841   WalIndexHdr *pSnapshot = pWal->pSnapshot;
2842   if( pSnapshot ){
2843     if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2844       bChanged = 1;
2845     }
2846 
2847     /* It is possible that there is a checkpointer thread running
2848     ** concurrent with this code. If this is the case, it may be that the
2849     ** checkpointer has already determined that it will checkpoint
2850     ** snapshot X, where X is later in the wal file than pSnapshot, but
2851     ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2852     ** its intent. To avoid the race condition this leads to, ensure that
2853     ** there is no checkpointer process by taking a shared CKPT lock
2854     ** before checking pInfo->nBackfillAttempted.  */
2855     (void)walEnableBlocking(pWal);
2856     rc = walLockShared(pWal, WAL_CKPT_LOCK);
2857     walDisableBlocking(pWal);
2858 
2859     if( rc!=SQLITE_OK ){
2860       return rc;
2861     }
2862     pWal->ckptLock = 1;
2863   }
2864 #endif
2865 
2866   do{
2867     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2868   }while( rc==WAL_RETRY );
2869   testcase( (rc&0xff)==SQLITE_BUSY );
2870   testcase( (rc&0xff)==SQLITE_IOERR );
2871   testcase( rc==SQLITE_PROTOCOL );
2872   testcase( rc==SQLITE_OK );
2873 
2874 #ifdef SQLITE_ENABLE_SNAPSHOT
2875   if( rc==SQLITE_OK ){
2876     if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2877       /* At this point the client has a lock on an aReadMark[] slot holding
2878       ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2879       ** is populated with the wal-index header corresponding to the head
2880       ** of the wal file. Verify that pSnapshot is still valid before
2881       ** continuing.  Reasons why pSnapshot might no longer be valid:
2882       **
2883       **    (1)  The WAL file has been reset since the snapshot was taken.
2884       **         In this case, the salt will have changed.
2885       **
2886       **    (2)  A checkpoint as been attempted that wrote frames past
2887       **         pSnapshot->mxFrame into the database file.  Note that the
2888       **         checkpoint need not have completed for this to cause problems.
2889       */
2890       volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2891 
2892       assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2893       assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2894 
2895       /* Check that the wal file has not been wrapped. Assuming that it has
2896       ** not, also check that no checkpointer has attempted to checkpoint any
2897       ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2898       ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2899       ** with *pSnapshot and set *pChanged as appropriate for opening the
2900       ** snapshot.  */
2901       if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2902        && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2903       ){
2904         assert( pWal->readLock>0 );
2905         memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2906         *pChanged = bChanged;
2907       }else{
2908         rc = SQLITE_ERROR_SNAPSHOT;
2909       }
2910 
2911       /* A client using a non-current snapshot may not ignore any frames
2912       ** from the start of the wal file. This is because, for a system
2913       ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2914       ** have omitted to checkpoint a frame earlier than minFrame in
2915       ** the file because there exists a frame after iSnapshot that
2916       ** is the same database page.  */
2917       pWal->minFrame = 1;
2918 
2919       if( rc!=SQLITE_OK ){
2920         sqlite3WalEndReadTransaction(pWal);
2921       }
2922     }
2923   }
2924 
2925   /* Release the shared CKPT lock obtained above. */
2926   if( pWal->ckptLock ){
2927     assert( pSnapshot );
2928     walUnlockShared(pWal, WAL_CKPT_LOCK);
2929     pWal->ckptLock = 0;
2930   }
2931 #endif
2932   return rc;
2933 }
2934 
2935 /*
2936 ** Finish with a read transaction.  All this does is release the
2937 ** read-lock.
2938 */
2939 void sqlite3WalEndReadTransaction(Wal *pWal){
2940   sqlite3WalEndWriteTransaction(pWal);
2941   if( pWal->readLock>=0 ){
2942     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2943     pWal->readLock = -1;
2944   }
2945 }
2946 
2947 /*
2948 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2949 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2950 ** to zero.
2951 **
2952 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2953 ** error does occur, the final value of *piRead is undefined.
2954 */
2955 int sqlite3WalFindFrame(
2956   Wal *pWal,                      /* WAL handle */
2957   Pgno pgno,                      /* Database page number to read data for */
2958   u32 *piRead                     /* OUT: Frame number (or zero) */
2959 ){
2960   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2961   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2962   int iHash;                      /* Used to loop through N hash tables */
2963   int iMinHash;
2964 
2965   /* This routine is only be called from within a read transaction. */
2966   assert( pWal->readLock>=0 || pWal->lockError );
2967 
2968   /* If the "last page" field of the wal-index header snapshot is 0, then
2969   ** no data will be read from the wal under any circumstances. Return early
2970   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2971   ** then the WAL is ignored by the reader so return early, as if the
2972   ** WAL were empty.
2973   */
2974   if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2975     *piRead = 0;
2976     return SQLITE_OK;
2977   }
2978 
2979   /* Search the hash table or tables for an entry matching page number
2980   ** pgno. Each iteration of the following for() loop searches one
2981   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2982   **
2983   ** This code might run concurrently to the code in walIndexAppend()
2984   ** that adds entries to the wal-index (and possibly to this hash
2985   ** table). This means the value just read from the hash
2986   ** slot (aHash[iKey]) may have been added before or after the
2987   ** current read transaction was opened. Values added after the
2988   ** read transaction was opened may have been written incorrectly -
2989   ** i.e. these slots may contain garbage data. However, we assume
2990   ** that any slots written before the current read transaction was
2991   ** opened remain unmodified.
2992   **
2993   ** For the reasons above, the if(...) condition featured in the inner
2994   ** loop of the following block is more stringent that would be required
2995   ** if we had exclusive access to the hash-table:
2996   **
2997   **   (aPgno[iFrame]==pgno):
2998   **     This condition filters out normal hash-table collisions.
2999   **
3000   **   (iFrame<=iLast):
3001   **     This condition filters out entries that were added to the hash
3002   **     table after the current read-transaction had started.
3003   */
3004   iMinHash = walFramePage(pWal->minFrame);
3005   for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3006     WalHashLoc sLoc;              /* Hash table location */
3007     int iKey;                     /* Hash slot index */
3008     int nCollide;                 /* Number of hash collisions remaining */
3009     int rc;                       /* Error code */
3010     u32 iH;
3011 
3012     rc = walHashGet(pWal, iHash, &sLoc);
3013     if( rc!=SQLITE_OK ){
3014       return rc;
3015     }
3016     nCollide = HASHTABLE_NSLOT;
3017     iKey = walHash(pgno);
3018     while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3019       u32 iFrame = iH + sLoc.iZero;
3020       if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3021         assert( iFrame>iRead || CORRUPT_DB );
3022         iRead = iFrame;
3023       }
3024       if( (nCollide--)==0 ){
3025         return SQLITE_CORRUPT_BKPT;
3026       }
3027       iKey = walNextHash(iKey);
3028     }
3029     if( iRead ) break;
3030   }
3031 
3032 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3033   /* If expensive assert() statements are available, do a linear search
3034   ** of the wal-index file content. Make sure the results agree with the
3035   ** result obtained using the hash indexes above.  */
3036   {
3037     u32 iRead2 = 0;
3038     u32 iTest;
3039     assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3040     for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3041       if( walFramePgno(pWal, iTest)==pgno ){
3042         iRead2 = iTest;
3043         break;
3044       }
3045     }
3046     assert( iRead==iRead2 );
3047   }
3048 #endif
3049 
3050   *piRead = iRead;
3051   return SQLITE_OK;
3052 }
3053 
3054 /*
3055 ** Read the contents of frame iRead from the wal file into buffer pOut
3056 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3057 ** error code otherwise.
3058 */
3059 int sqlite3WalReadFrame(
3060   Wal *pWal,                      /* WAL handle */
3061   u32 iRead,                      /* Frame to read */
3062   int nOut,                       /* Size of buffer pOut in bytes */
3063   u8 *pOut                        /* Buffer to write page data to */
3064 ){
3065   int sz;
3066   i64 iOffset;
3067   sz = pWal->hdr.szPage;
3068   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3069   testcase( sz<=32768 );
3070   testcase( sz>=65536 );
3071   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3072   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3073   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3074 }
3075 
3076 /*
3077 ** Return the size of the database in pages (or zero, if unknown).
3078 */
3079 Pgno sqlite3WalDbsize(Wal *pWal){
3080   if( pWal && ALWAYS(pWal->readLock>=0) ){
3081     return pWal->hdr.nPage;
3082   }
3083   return 0;
3084 }
3085 
3086 
3087 /*
3088 ** This function starts a write transaction on the WAL.
3089 **
3090 ** A read transaction must have already been started by a prior call
3091 ** to sqlite3WalBeginReadTransaction().
3092 **
3093 ** If another thread or process has written into the database since
3094 ** the read transaction was started, then it is not possible for this
3095 ** thread to write as doing so would cause a fork.  So this routine
3096 ** returns SQLITE_BUSY in that case and no write transaction is started.
3097 **
3098 ** There can only be a single writer active at a time.
3099 */
3100 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3101   int rc;
3102 
3103 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3104   /* If the write-lock is already held, then it was obtained before the
3105   ** read-transaction was even opened, making this call a no-op.
3106   ** Return early. */
3107   if( pWal->writeLock ){
3108     assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3109     return SQLITE_OK;
3110   }
3111 #endif
3112 
3113   /* Cannot start a write transaction without first holding a read
3114   ** transaction. */
3115   assert( pWal->readLock>=0 );
3116   assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3117 
3118   if( pWal->readOnly ){
3119     return SQLITE_READONLY;
3120   }
3121 
3122   /* Only one writer allowed at a time.  Get the write lock.  Return
3123   ** SQLITE_BUSY if unable.
3124   */
3125   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3126   if( rc ){
3127     return rc;
3128   }
3129   pWal->writeLock = 1;
3130 
3131   /* If another connection has written to the database file since the
3132   ** time the read transaction on this connection was started, then
3133   ** the write is disallowed.
3134   */
3135   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3136     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3137     pWal->writeLock = 0;
3138     rc = SQLITE_BUSY_SNAPSHOT;
3139   }
3140 
3141   return rc;
3142 }
3143 
3144 /*
3145 ** End a write transaction.  The commit has already been done.  This
3146 ** routine merely releases the lock.
3147 */
3148 int sqlite3WalEndWriteTransaction(Wal *pWal){
3149   if( pWal->writeLock ){
3150     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3151     pWal->writeLock = 0;
3152     pWal->iReCksum = 0;
3153     pWal->truncateOnCommit = 0;
3154   }
3155   return SQLITE_OK;
3156 }
3157 
3158 /*
3159 ** If any data has been written (but not committed) to the log file, this
3160 ** function moves the write-pointer back to the start of the transaction.
3161 **
3162 ** Additionally, the callback function is invoked for each frame written
3163 ** to the WAL since the start of the transaction. If the callback returns
3164 ** other than SQLITE_OK, it is not invoked again and the error code is
3165 ** returned to the caller.
3166 **
3167 ** Otherwise, if the callback function does not return an error, this
3168 ** function returns SQLITE_OK.
3169 */
3170 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3171   int rc = SQLITE_OK;
3172   if( ALWAYS(pWal->writeLock) ){
3173     Pgno iMax = pWal->hdr.mxFrame;
3174     Pgno iFrame;
3175 
3176     /* Restore the clients cache of the wal-index header to the state it
3177     ** was in before the client began writing to the database.
3178     */
3179     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3180 
3181     for(iFrame=pWal->hdr.mxFrame+1;
3182         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3183         iFrame++
3184     ){
3185       /* This call cannot fail. Unless the page for which the page number
3186       ** is passed as the second argument is (a) in the cache and
3187       ** (b) has an outstanding reference, then xUndo is either a no-op
3188       ** (if (a) is false) or simply expels the page from the cache (if (b)
3189       ** is false).
3190       **
3191       ** If the upper layer is doing a rollback, it is guaranteed that there
3192       ** are no outstanding references to any page other than page 1. And
3193       ** page 1 is never written to the log until the transaction is
3194       ** committed. As a result, the call to xUndo may not fail.
3195       */
3196       assert( walFramePgno(pWal, iFrame)!=1 );
3197       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3198     }
3199     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3200   }
3201   return rc;
3202 }
3203 
3204 /*
3205 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3206 ** values. This function populates the array with values required to
3207 ** "rollback" the write position of the WAL handle back to the current
3208 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3209 */
3210 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3211   assert( pWal->writeLock );
3212   aWalData[0] = pWal->hdr.mxFrame;
3213   aWalData[1] = pWal->hdr.aFrameCksum[0];
3214   aWalData[2] = pWal->hdr.aFrameCksum[1];
3215   aWalData[3] = pWal->nCkpt;
3216 }
3217 
3218 /*
3219 ** Move the write position of the WAL back to the point identified by
3220 ** the values in the aWalData[] array. aWalData must point to an array
3221 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3222 ** by a call to WalSavepoint().
3223 */
3224 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3225   int rc = SQLITE_OK;
3226 
3227   assert( pWal->writeLock );
3228   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3229 
3230   if( aWalData[3]!=pWal->nCkpt ){
3231     /* This savepoint was opened immediately after the write-transaction
3232     ** was started. Right after that, the writer decided to wrap around
3233     ** to the start of the log. Update the savepoint values to match.
3234     */
3235     aWalData[0] = 0;
3236     aWalData[3] = pWal->nCkpt;
3237   }
3238 
3239   if( aWalData[0]<pWal->hdr.mxFrame ){
3240     pWal->hdr.mxFrame = aWalData[0];
3241     pWal->hdr.aFrameCksum[0] = aWalData[1];
3242     pWal->hdr.aFrameCksum[1] = aWalData[2];
3243     walCleanupHash(pWal);
3244   }
3245 
3246   return rc;
3247 }
3248 
3249 /*
3250 ** This function is called just before writing a set of frames to the log
3251 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3252 ** to the current log file, it is possible to overwrite the start of the
3253 ** existing log file with the new frames (i.e. "reset" the log). If so,
3254 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3255 ** unchanged.
3256 **
3257 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3258 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3259 ** if an error occurs.
3260 */
3261 static int walRestartLog(Wal *pWal){
3262   int rc = SQLITE_OK;
3263   int cnt;
3264 
3265   if( pWal->readLock==0 ){
3266     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3267     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3268     if( pInfo->nBackfill>0 ){
3269       u32 salt1;
3270       sqlite3_randomness(4, &salt1);
3271       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3272       if( rc==SQLITE_OK ){
3273         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3274         ** readers are currently using the WAL), then the transactions
3275         ** frames will overwrite the start of the existing log. Update the
3276         ** wal-index header to reflect this.
3277         **
3278         ** In theory it would be Ok to update the cache of the header only
3279         ** at this point. But updating the actual wal-index header is also
3280         ** safe and means there is no special case for sqlite3WalUndo()
3281         ** to handle if this transaction is rolled back.  */
3282         walRestartHdr(pWal, salt1);
3283         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3284       }else if( rc!=SQLITE_BUSY ){
3285         return rc;
3286       }
3287     }
3288     walUnlockShared(pWal, WAL_READ_LOCK(0));
3289     pWal->readLock = -1;
3290     cnt = 0;
3291     do{
3292       int notUsed;
3293       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3294     }while( rc==WAL_RETRY );
3295     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3296     testcase( (rc&0xff)==SQLITE_IOERR );
3297     testcase( rc==SQLITE_PROTOCOL );
3298     testcase( rc==SQLITE_OK );
3299   }
3300   return rc;
3301 }
3302 
3303 /*
3304 ** Information about the current state of the WAL file and where
3305 ** the next fsync should occur - passed from sqlite3WalFrames() into
3306 ** walWriteToLog().
3307 */
3308 typedef struct WalWriter {
3309   Wal *pWal;                   /* The complete WAL information */
3310   sqlite3_file *pFd;           /* The WAL file to which we write */
3311   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
3312   int syncFlags;               /* Flags for the fsync */
3313   int szPage;                  /* Size of one page */
3314 } WalWriter;
3315 
3316 /*
3317 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3318 ** Do a sync when crossing the p->iSyncPoint boundary.
3319 **
3320 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3321 ** first write the part before iSyncPoint, then sync, then write the
3322 ** rest.
3323 */
3324 static int walWriteToLog(
3325   WalWriter *p,              /* WAL to write to */
3326   void *pContent,            /* Content to be written */
3327   int iAmt,                  /* Number of bytes to write */
3328   sqlite3_int64 iOffset      /* Start writing at this offset */
3329 ){
3330   int rc;
3331   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3332     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3333     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3334     if( rc ) return rc;
3335     iOffset += iFirstAmt;
3336     iAmt -= iFirstAmt;
3337     pContent = (void*)(iFirstAmt + (char*)pContent);
3338     assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3339     rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3340     if( iAmt==0 || rc ) return rc;
3341   }
3342   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3343   return rc;
3344 }
3345 
3346 /*
3347 ** Write out a single frame of the WAL
3348 */
3349 static int walWriteOneFrame(
3350   WalWriter *p,               /* Where to write the frame */
3351   PgHdr *pPage,               /* The page of the frame to be written */
3352   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
3353   sqlite3_int64 iOffset       /* Byte offset at which to write */
3354 ){
3355   int rc;                         /* Result code from subfunctions */
3356   void *pData;                    /* Data actually written */
3357   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
3358   pData = pPage->pData;
3359   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3360   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3361   if( rc ) return rc;
3362   /* Write the page data */
3363   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3364   return rc;
3365 }
3366 
3367 /*
3368 ** This function is called as part of committing a transaction within which
3369 ** one or more frames have been overwritten. It updates the checksums for
3370 ** all frames written to the wal file by the current transaction starting
3371 ** with the earliest to have been overwritten.
3372 **
3373 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3374 */
3375 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3376   const int szPage = pWal->szPage;/* Database page size */
3377   int rc = SQLITE_OK;             /* Return code */
3378   u8 *aBuf;                       /* Buffer to load data from wal file into */
3379   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
3380   u32 iRead;                      /* Next frame to read from wal file */
3381   i64 iCksumOff;
3382 
3383   aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3384   if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3385 
3386   /* Find the checksum values to use as input for the recalculating the
3387   ** first checksum. If the first frame is frame 1 (implying that the current
3388   ** transaction restarted the wal file), these values must be read from the
3389   ** wal-file header. Otherwise, read them from the frame header of the
3390   ** previous frame.  */
3391   assert( pWal->iReCksum>0 );
3392   if( pWal->iReCksum==1 ){
3393     iCksumOff = 24;
3394   }else{
3395     iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3396   }
3397   rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3398   pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3399   pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3400 
3401   iRead = pWal->iReCksum;
3402   pWal->iReCksum = 0;
3403   for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3404     i64 iOff = walFrameOffset(iRead, szPage);
3405     rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3406     if( rc==SQLITE_OK ){
3407       u32 iPgno, nDbSize;
3408       iPgno = sqlite3Get4byte(aBuf);
3409       nDbSize = sqlite3Get4byte(&aBuf[4]);
3410 
3411       walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3412       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3413     }
3414   }
3415 
3416   sqlite3_free(aBuf);
3417   return rc;
3418 }
3419 
3420 /*
3421 ** Write a set of frames to the log. The caller must hold the write-lock
3422 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3423 */
3424 int sqlite3WalFrames(
3425   Wal *pWal,                      /* Wal handle to write to */
3426   int szPage,                     /* Database page-size in bytes */
3427   PgHdr *pList,                   /* List of dirty pages to write */
3428   Pgno nTruncate,                 /* Database size after this commit */
3429   int isCommit,                   /* True if this is a commit */
3430   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
3431 ){
3432   int rc;                         /* Used to catch return codes */
3433   u32 iFrame;                     /* Next frame address */
3434   PgHdr *p;                       /* Iterator to run through pList with. */
3435   PgHdr *pLast = 0;               /* Last frame in list */
3436   int nExtra = 0;                 /* Number of extra copies of last page */
3437   int szFrame;                    /* The size of a single frame */
3438   i64 iOffset;                    /* Next byte to write in WAL file */
3439   WalWriter w;                    /* The writer */
3440   u32 iFirst = 0;                 /* First frame that may be overwritten */
3441   WalIndexHdr *pLive;             /* Pointer to shared header */
3442 
3443   assert( pList );
3444   assert( pWal->writeLock );
3445 
3446   /* If this frame set completes a transaction, then nTruncate>0.  If
3447   ** nTruncate==0 then this frame set does not complete the transaction. */
3448   assert( (isCommit!=0)==(nTruncate!=0) );
3449 
3450 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3451   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3452     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3453               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3454   }
3455 #endif
3456 
3457   pLive = (WalIndexHdr*)walIndexHdr(pWal);
3458   if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3459     iFirst = pLive->mxFrame+1;
3460   }
3461 
3462   /* See if it is possible to write these frames into the start of the
3463   ** log file, instead of appending to it at pWal->hdr.mxFrame.
3464   */
3465   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3466     return rc;
3467   }
3468 
3469   /* If this is the first frame written into the log, write the WAL
3470   ** header to the start of the WAL file. See comments at the top of
3471   ** this source file for a description of the WAL header format.
3472   */
3473   iFrame = pWal->hdr.mxFrame;
3474   if( iFrame==0 ){
3475     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
3476     u32 aCksum[2];                /* Checksum for wal-header */
3477 
3478     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3479     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3480     sqlite3Put4byte(&aWalHdr[8], szPage);
3481     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3482     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3483     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3484     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3485     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3486     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3487 
3488     pWal->szPage = szPage;
3489     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3490     pWal->hdr.aFrameCksum[0] = aCksum[0];
3491     pWal->hdr.aFrameCksum[1] = aCksum[1];
3492     pWal->truncateOnCommit = 1;
3493 
3494     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3495     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3496     if( rc!=SQLITE_OK ){
3497       return rc;
3498     }
3499 
3500     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3501     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
3502     ** an out-of-order write following a WAL restart could result in
3503     ** database corruption.  See the ticket:
3504     **
3505     **     https://sqlite.org/src/info/ff5be73dee
3506     */
3507     if( pWal->syncHeader ){
3508       rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3509       if( rc ) return rc;
3510     }
3511   }
3512   assert( (int)pWal->szPage==szPage );
3513 
3514   /* Setup information needed to write frames into the WAL */
3515   w.pWal = pWal;
3516   w.pFd = pWal->pWalFd;
3517   w.iSyncPoint = 0;
3518   w.syncFlags = sync_flags;
3519   w.szPage = szPage;
3520   iOffset = walFrameOffset(iFrame+1, szPage);
3521   szFrame = szPage + WAL_FRAME_HDRSIZE;
3522 
3523   /* Write all frames into the log file exactly once */
3524   for(p=pList; p; p=p->pDirty){
3525     int nDbSize;   /* 0 normally.  Positive == commit flag */
3526 
3527     /* Check if this page has already been written into the wal file by
3528     ** the current transaction. If so, overwrite the existing frame and
3529     ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3530     ** checksums must be recomputed when the transaction is committed.  */
3531     if( iFirst && (p->pDirty || isCommit==0) ){
3532       u32 iWrite = 0;
3533       VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3534       assert( rc==SQLITE_OK || iWrite==0 );
3535       if( iWrite>=iFirst ){
3536         i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3537         void *pData;
3538         if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3539           pWal->iReCksum = iWrite;
3540         }
3541         pData = p->pData;
3542         rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3543         if( rc ) return rc;
3544         p->flags &= ~PGHDR_WAL_APPEND;
3545         continue;
3546       }
3547     }
3548 
3549     iFrame++;
3550     assert( iOffset==walFrameOffset(iFrame, szPage) );
3551     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3552     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3553     if( rc ) return rc;
3554     pLast = p;
3555     iOffset += szFrame;
3556     p->flags |= PGHDR_WAL_APPEND;
3557   }
3558 
3559   /* Recalculate checksums within the wal file if required. */
3560   if( isCommit && pWal->iReCksum ){
3561     rc = walRewriteChecksums(pWal, iFrame);
3562     if( rc ) return rc;
3563   }
3564 
3565   /* If this is the end of a transaction, then we might need to pad
3566   ** the transaction and/or sync the WAL file.
3567   **
3568   ** Padding and syncing only occur if this set of frames complete a
3569   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
3570   ** or synchronous==OFF, then no padding or syncing are needed.
3571   **
3572   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3573   ** needed and only the sync is done.  If padding is needed, then the
3574   ** final frame is repeated (with its commit mark) until the next sector
3575   ** boundary is crossed.  Only the part of the WAL prior to the last
3576   ** sector boundary is synced; the part of the last frame that extends
3577   ** past the sector boundary is written after the sync.
3578   */
3579   if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3580     int bSync = 1;
3581     if( pWal->padToSectorBoundary ){
3582       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3583       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3584       bSync = (w.iSyncPoint==iOffset);
3585       testcase( bSync );
3586       while( iOffset<w.iSyncPoint ){
3587         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3588         if( rc ) return rc;
3589         iOffset += szFrame;
3590         nExtra++;
3591         assert( pLast!=0 );
3592       }
3593     }
3594     if( bSync ){
3595       assert( rc==SQLITE_OK );
3596       rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3597     }
3598   }
3599 
3600   /* If this frame set completes the first transaction in the WAL and
3601   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3602   ** journal size limit, if possible.
3603   */
3604   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3605     i64 sz = pWal->mxWalSize;
3606     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3607       sz = walFrameOffset(iFrame+nExtra+1, szPage);
3608     }
3609     walLimitSize(pWal, sz);
3610     pWal->truncateOnCommit = 0;
3611   }
3612 
3613   /* Append data to the wal-index. It is not necessary to lock the
3614   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3615   ** guarantees that there are no other writers, and no data that may
3616   ** be in use by existing readers is being overwritten.
3617   */
3618   iFrame = pWal->hdr.mxFrame;
3619   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3620     if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3621     iFrame++;
3622     rc = walIndexAppend(pWal, iFrame, p->pgno);
3623   }
3624   assert( pLast!=0 || nExtra==0 );
3625   while( rc==SQLITE_OK && nExtra>0 ){
3626     iFrame++;
3627     nExtra--;
3628     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3629   }
3630 
3631   if( rc==SQLITE_OK ){
3632     /* Update the private copy of the header. */
3633     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3634     testcase( szPage<=32768 );
3635     testcase( szPage>=65536 );
3636     pWal->hdr.mxFrame = iFrame;
3637     if( isCommit ){
3638       pWal->hdr.iChange++;
3639       pWal->hdr.nPage = nTruncate;
3640     }
3641     /* If this is a commit, update the wal-index header too. */
3642     if( isCommit ){
3643       walIndexWriteHdr(pWal);
3644       pWal->iCallback = iFrame;
3645     }
3646   }
3647 
3648   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3649   return rc;
3650 }
3651 
3652 /*
3653 ** This routine is called to implement sqlite3_wal_checkpoint() and
3654 ** related interfaces.
3655 **
3656 ** Obtain a CHECKPOINT lock and then backfill as much information as
3657 ** we can from WAL into the database.
3658 **
3659 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3660 ** callback. In this case this function runs a blocking checkpoint.
3661 */
3662 int sqlite3WalCheckpoint(
3663   Wal *pWal,                      /* Wal connection */
3664   sqlite3 *db,                    /* Check this handle's interrupt flag */
3665   int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
3666   int (*xBusy)(void*),            /* Function to call when busy */
3667   void *pBusyArg,                 /* Context argument for xBusyHandler */
3668   int sync_flags,                 /* Flags to sync db file with (or 0) */
3669   int nBuf,                       /* Size of temporary buffer */
3670   u8 *zBuf,                       /* Temporary buffer to use */
3671   int *pnLog,                     /* OUT: Number of frames in WAL */
3672   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
3673 ){
3674   int rc;                         /* Return code */
3675   int isChanged = 0;              /* True if a new wal-index header is loaded */
3676   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
3677   int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */
3678 
3679   assert( pWal->ckptLock==0 );
3680   assert( pWal->writeLock==0 );
3681 
3682   /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3683   ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3684   assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3685 
3686   if( pWal->readOnly ) return SQLITE_READONLY;
3687   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3688 
3689   /* Enable blocking locks, if possible. If blocking locks are successfully
3690   ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3691   sqlite3WalDb(pWal, db);
3692   (void)walEnableBlocking(pWal);
3693 
3694   /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3695   ** "checkpoint" lock on the database file.
3696   ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3697   ** checkpoint operation at the same time, the lock cannot be obtained and
3698   ** SQLITE_BUSY is returned.
3699   ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3700   ** it will not be invoked in this case.
3701   */
3702   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3703   testcase( rc==SQLITE_BUSY );
3704   testcase( rc!=SQLITE_OK && xBusy2!=0 );
3705   if( rc==SQLITE_OK ){
3706     pWal->ckptLock = 1;
3707 
3708     /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3709     ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3710     ** file.
3711     **
3712     ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3713     ** immediately, and a busy-handler is configured, it is invoked and the
3714     ** writer lock retried until either the busy-handler returns 0 or the
3715     ** lock is successfully obtained.
3716     */
3717     if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3718       rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3719       if( rc==SQLITE_OK ){
3720         pWal->writeLock = 1;
3721       }else if( rc==SQLITE_BUSY ){
3722         eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3723         xBusy2 = 0;
3724         rc = SQLITE_OK;
3725       }
3726     }
3727   }
3728 
3729 
3730   /* Read the wal-index header. */
3731   if( rc==SQLITE_OK ){
3732     walDisableBlocking(pWal);
3733     rc = walIndexReadHdr(pWal, &isChanged);
3734     (void)walEnableBlocking(pWal);
3735     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3736       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3737     }
3738   }
3739 
3740   /* Copy data from the log to the database file. */
3741   if( rc==SQLITE_OK ){
3742 
3743     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3744       rc = SQLITE_CORRUPT_BKPT;
3745     }else{
3746       rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3747     }
3748 
3749     /* If no error occurred, set the output variables. */
3750     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3751       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3752       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3753     }
3754   }
3755 
3756   if( isChanged ){
3757     /* If a new wal-index header was loaded before the checkpoint was
3758     ** performed, then the pager-cache associated with pWal is now
3759     ** out of date. So zero the cached wal-index header to ensure that
3760     ** next time the pager opens a snapshot on this database it knows that
3761     ** the cache needs to be reset.
3762     */
3763     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3764   }
3765 
3766   walDisableBlocking(pWal);
3767   sqlite3WalDb(pWal, 0);
3768 
3769   /* Release the locks. */
3770   sqlite3WalEndWriteTransaction(pWal);
3771   if( pWal->ckptLock ){
3772     walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3773     pWal->ckptLock = 0;
3774   }
3775   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3776 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3777   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3778 #endif
3779   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3780 }
3781 
3782 /* Return the value to pass to a sqlite3_wal_hook callback, the
3783 ** number of frames in the WAL at the point of the last commit since
3784 ** sqlite3WalCallback() was called.  If no commits have occurred since
3785 ** the last call, then return 0.
3786 */
3787 int sqlite3WalCallback(Wal *pWal){
3788   u32 ret = 0;
3789   if( pWal ){
3790     ret = pWal->iCallback;
3791     pWal->iCallback = 0;
3792   }
3793   return (int)ret;
3794 }
3795 
3796 /*
3797 ** This function is called to change the WAL subsystem into or out
3798 ** of locking_mode=EXCLUSIVE.
3799 **
3800 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3801 ** into locking_mode=NORMAL.  This means that we must acquire a lock
3802 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
3803 ** or if the acquisition of the lock fails, then return 0.  If the
3804 ** transition out of exclusive-mode is successful, return 1.  This
3805 ** operation must occur while the pager is still holding the exclusive
3806 ** lock on the main database file.
3807 **
3808 ** If op is one, then change from locking_mode=NORMAL into
3809 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
3810 ** be released.  Return 1 if the transition is made and 0 if the
3811 ** WAL is already in exclusive-locking mode - meaning that this
3812 ** routine is a no-op.  The pager must already hold the exclusive lock
3813 ** on the main database file before invoking this operation.
3814 **
3815 ** If op is negative, then do a dry-run of the op==1 case but do
3816 ** not actually change anything. The pager uses this to see if it
3817 ** should acquire the database exclusive lock prior to invoking
3818 ** the op==1 case.
3819 */
3820 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3821   int rc;
3822   assert( pWal->writeLock==0 );
3823   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3824 
3825   /* pWal->readLock is usually set, but might be -1 if there was a
3826   ** prior error while attempting to acquire are read-lock. This cannot
3827   ** happen if the connection is actually in exclusive mode (as no xShmLock
3828   ** locks are taken in this case). Nor should the pager attempt to
3829   ** upgrade to exclusive-mode following such an error.
3830   */
3831   assert( pWal->readLock>=0 || pWal->lockError );
3832   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3833 
3834   if( op==0 ){
3835     if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3836       pWal->exclusiveMode = WAL_NORMAL_MODE;
3837       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3838         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3839       }
3840       rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3841     }else{
3842       /* Already in locking_mode=NORMAL */
3843       rc = 0;
3844     }
3845   }else if( op>0 ){
3846     assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3847     assert( pWal->readLock>=0 );
3848     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3849     pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3850     rc = 1;
3851   }else{
3852     rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3853   }
3854   return rc;
3855 }
3856 
3857 /*
3858 ** Return true if the argument is non-NULL and the WAL module is using
3859 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3860 ** WAL module is using shared-memory, return false.
3861 */
3862 int sqlite3WalHeapMemory(Wal *pWal){
3863   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3864 }
3865 
3866 #ifdef SQLITE_ENABLE_SNAPSHOT
3867 /* Create a snapshot object.  The content of a snapshot is opaque to
3868 ** every other subsystem, so the WAL module can put whatever it needs
3869 ** in the object.
3870 */
3871 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3872   int rc = SQLITE_OK;
3873   WalIndexHdr *pRet;
3874   static const u32 aZero[4] = { 0, 0, 0, 0 };
3875 
3876   assert( pWal->readLock>=0 && pWal->writeLock==0 );
3877 
3878   if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3879     *ppSnapshot = 0;
3880     return SQLITE_ERROR;
3881   }
3882   pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3883   if( pRet==0 ){
3884     rc = SQLITE_NOMEM_BKPT;
3885   }else{
3886     memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3887     *ppSnapshot = (sqlite3_snapshot*)pRet;
3888   }
3889 
3890   return rc;
3891 }
3892 
3893 /* Try to open on pSnapshot when the next read-transaction starts
3894 */
3895 void sqlite3WalSnapshotOpen(
3896   Wal *pWal,
3897   sqlite3_snapshot *pSnapshot
3898 ){
3899   pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3900 }
3901 
3902 /*
3903 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3904 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3905 */
3906 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3907   WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3908   WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3909 
3910   /* aSalt[0] is a copy of the value stored in the wal file header. It
3911   ** is incremented each time the wal file is restarted.  */
3912   if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3913   if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3914   if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3915   if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3916   return 0;
3917 }
3918 
3919 /*
3920 ** The caller currently has a read transaction open on the database.
3921 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3922 ** checks if the snapshot passed as the second argument is still
3923 ** available. If so, SQLITE_OK is returned.
3924 **
3925 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3926 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3927 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3928 ** lock is released before returning.
3929 */
3930 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3931   int rc;
3932   rc = walLockShared(pWal, WAL_CKPT_LOCK);
3933   if( rc==SQLITE_OK ){
3934     WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3935     if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3936      || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3937     ){
3938       rc = SQLITE_ERROR_SNAPSHOT;
3939       walUnlockShared(pWal, WAL_CKPT_LOCK);
3940     }
3941   }
3942   return rc;
3943 }
3944 
3945 /*
3946 ** Release a lock obtained by an earlier successful call to
3947 ** sqlite3WalSnapshotCheck().
3948 */
3949 void sqlite3WalSnapshotUnlock(Wal *pWal){
3950   assert( pWal );
3951   walUnlockShared(pWal, WAL_CKPT_LOCK);
3952 }
3953 
3954 
3955 #endif /* SQLITE_ENABLE_SNAPSHOT */
3956 
3957 #ifdef SQLITE_ENABLE_ZIPVFS
3958 /*
3959 ** If the argument is not NULL, it points to a Wal object that holds a
3960 ** read-lock. This function returns the database page-size if it is known,
3961 ** or zero if it is not (or if pWal is NULL).
3962 */
3963 int sqlite3WalFramesize(Wal *pWal){
3964   assert( pWal==0 || pWal->readLock>=0 );
3965   return (pWal ? pWal->szPage : 0);
3966 }
3967 #endif
3968 
3969 /* Return the sqlite3_file object for the WAL file
3970 */
3971 sqlite3_file *sqlite3WalFile(Wal *pWal){
3972   return pWal->pWalFd;
3973 }
3974 
3975 #endif /* #ifndef SQLITE_OMIT_WAL */
3976