1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 ** 36 ** If there already exists a module with zName, replace it with the new one. 37 ** If pModule==0, then delete the module zName if it exists. 38 */ 39 Module *sqlite3VtabCreateModule( 40 sqlite3 *db, /* Database in which module is registered */ 41 const char *zName, /* Name assigned to this module */ 42 const sqlite3_module *pModule, /* The definition of the module */ 43 void *pAux, /* Context pointer for xCreate/xConnect */ 44 void (*xDestroy)(void *) /* Module destructor function */ 45 ){ 46 Module *pMod; 47 Module *pDel; 48 char *zCopy; 49 if( pModule==0 ){ 50 zCopy = (char*)zName; 51 pMod = 0; 52 }else{ 53 int nName = sqlite3Strlen30(zName); 54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); 55 if( pMod==0 ){ 56 sqlite3OomFault(db); 57 return 0; 58 } 59 zCopy = (char *)(&pMod[1]); 60 memcpy(zCopy, zName, nName+1); 61 pMod->zName = zCopy; 62 pMod->pModule = pModule; 63 pMod->pAux = pAux; 64 pMod->xDestroy = xDestroy; 65 pMod->pEpoTab = 0; 66 pMod->nRefModule = 1; 67 } 68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 69 if( pDel ){ 70 if( pDel==pMod ){ 71 sqlite3OomFault(db); 72 sqlite3DbFree(db, pDel); 73 pMod = 0; 74 }else{ 75 sqlite3VtabEponymousTableClear(db, pDel); 76 sqlite3VtabModuleUnref(db, pDel); 77 } 78 } 79 return pMod; 80 } 81 82 /* 83 ** The actual function that does the work of creating a new module. 84 ** This function implements the sqlite3_create_module() and 85 ** sqlite3_create_module_v2() interfaces. 86 */ 87 static int createModule( 88 sqlite3 *db, /* Database in which module is registered */ 89 const char *zName, /* Name assigned to this module */ 90 const sqlite3_module *pModule, /* The definition of the module */ 91 void *pAux, /* Context pointer for xCreate/xConnect */ 92 void (*xDestroy)(void *) /* Module destructor function */ 93 ){ 94 int rc = SQLITE_OK; 95 96 sqlite3_mutex_enter(db->mutex); 97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 98 rc = sqlite3ApiExit(db, rc); 99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 100 sqlite3_mutex_leave(db->mutex); 101 return rc; 102 } 103 104 105 /* 106 ** External API function used to create a new virtual-table module. 107 */ 108 int sqlite3_create_module( 109 sqlite3 *db, /* Database in which module is registered */ 110 const char *zName, /* Name assigned to this module */ 111 const sqlite3_module *pModule, /* The definition of the module */ 112 void *pAux /* Context pointer for xCreate/xConnect */ 113 ){ 114 #ifdef SQLITE_ENABLE_API_ARMOR 115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 116 #endif 117 return createModule(db, zName, pModule, pAux, 0); 118 } 119 120 /* 121 ** External API function used to create a new virtual-table module. 122 */ 123 int sqlite3_create_module_v2( 124 sqlite3 *db, /* Database in which module is registered */ 125 const char *zName, /* Name assigned to this module */ 126 const sqlite3_module *pModule, /* The definition of the module */ 127 void *pAux, /* Context pointer for xCreate/xConnect */ 128 void (*xDestroy)(void *) /* Module destructor function */ 129 ){ 130 #ifdef SQLITE_ENABLE_API_ARMOR 131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 132 #endif 133 return createModule(db, zName, pModule, pAux, xDestroy); 134 } 135 136 /* 137 ** External API to drop all virtual-table modules, except those named 138 ** on the azNames list. 139 */ 140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ 141 HashElem *pThis, *pNext; 142 #ifdef SQLITE_ENABLE_API_ARMOR 143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 144 #endif 145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ 146 Module *pMod = (Module*)sqliteHashData(pThis); 147 pNext = sqliteHashNext(pThis); 148 if( azNames ){ 149 int ii; 150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} 151 if( azNames[ii]!=0 ) continue; 152 } 153 createModule(db, pMod->zName, 0, 0, 0); 154 } 155 return SQLITE_OK; 156 } 157 158 /* 159 ** Decrement the reference count on a Module object. Destroy the 160 ** module when the reference count reaches zero. 161 */ 162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ 163 assert( pMod->nRefModule>0 ); 164 pMod->nRefModule--; 165 if( pMod->nRefModule==0 ){ 166 if( pMod->xDestroy ){ 167 pMod->xDestroy(pMod->pAux); 168 } 169 assert( pMod->pEpoTab==0 ); 170 sqlite3DbFree(db, pMod); 171 } 172 } 173 174 /* 175 ** Lock the virtual table so that it cannot be disconnected. 176 ** Locks nest. Every lock should have a corresponding unlock. 177 ** If an unlock is omitted, resources leaks will occur. 178 ** 179 ** If a disconnect is attempted while a virtual table is locked, 180 ** the disconnect is deferred until all locks have been removed. 181 */ 182 void sqlite3VtabLock(VTable *pVTab){ 183 pVTab->nRef++; 184 } 185 186 187 /* 188 ** pTab is a pointer to a Table structure representing a virtual-table. 189 ** Return a pointer to the VTable object used by connection db to access 190 ** this virtual-table, if one has been created, or NULL otherwise. 191 */ 192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 193 VTable *pVtab; 194 assert( IsVirtual(pTab) ); 195 for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 196 return pVtab; 197 } 198 199 /* 200 ** Decrement the ref-count on a virtual table object. When the ref-count 201 ** reaches zero, call the xDisconnect() method to delete the object. 202 */ 203 void sqlite3VtabUnlock(VTable *pVTab){ 204 sqlite3 *db = pVTab->db; 205 206 assert( db ); 207 assert( pVTab->nRef>0 ); 208 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 209 210 pVTab->nRef--; 211 if( pVTab->nRef==0 ){ 212 sqlite3_vtab *p = pVTab->pVtab; 213 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); 214 if( p ){ 215 p->pModule->xDisconnect(p); 216 } 217 sqlite3DbFree(db, pVTab); 218 } 219 } 220 221 /* 222 ** Table p is a virtual table. This function moves all elements in the 223 ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated 224 ** database connections to be disconnected at the next opportunity. 225 ** Except, if argument db is not NULL, then the entry associated with 226 ** connection db is left in the p->u.vtab.p list. 227 */ 228 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 229 VTable *pRet = 0; 230 VTable *pVTable = p->u.vtab.p; 231 p->u.vtab.p = 0; 232 233 /* Assert that the mutex (if any) associated with the BtShared database 234 ** that contains table p is held by the caller. See header comments 235 ** above function sqlite3VtabUnlockList() for an explanation of why 236 ** this makes it safe to access the sqlite3.pDisconnect list of any 237 ** database connection that may have an entry in the p->u.vtab.p list. 238 */ 239 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 240 241 while( pVTable ){ 242 sqlite3 *db2 = pVTable->db; 243 VTable *pNext = pVTable->pNext; 244 assert( db2 ); 245 if( db2==db ){ 246 pRet = pVTable; 247 p->u.vtab.p = pRet; 248 pRet->pNext = 0; 249 }else{ 250 pVTable->pNext = db2->pDisconnect; 251 db2->pDisconnect = pVTable; 252 } 253 pVTable = pNext; 254 } 255 256 assert( !db || pRet ); 257 return pRet; 258 } 259 260 /* 261 ** Table *p is a virtual table. This function removes the VTable object 262 ** for table *p associated with database connection db from the linked 263 ** list in p->pVTab. It also decrements the VTable ref count. This is 264 ** used when closing database connection db to free all of its VTable 265 ** objects without disturbing the rest of the Schema object (which may 266 ** be being used by other shared-cache connections). 267 */ 268 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 269 VTable **ppVTab; 270 271 assert( IsVirtual(p) ); 272 assert( sqlite3BtreeHoldsAllMutexes(db) ); 273 assert( sqlite3_mutex_held(db->mutex) ); 274 275 for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 276 if( (*ppVTab)->db==db ){ 277 VTable *pVTab = *ppVTab; 278 *ppVTab = pVTab->pNext; 279 sqlite3VtabUnlock(pVTab); 280 break; 281 } 282 } 283 } 284 285 286 /* 287 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 288 ** 289 ** This function may only be called when the mutexes associated with all 290 ** shared b-tree databases opened using connection db are held by the 291 ** caller. This is done to protect the sqlite3.pDisconnect list. The 292 ** sqlite3.pDisconnect list is accessed only as follows: 293 ** 294 ** 1) By this function. In this case, all BtShared mutexes and the mutex 295 ** associated with the database handle itself must be held. 296 ** 297 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 298 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 299 ** associated with the database the virtual table is stored in is held 300 ** or, if the virtual table is stored in a non-sharable database, then 301 ** the database handle mutex is held. 302 ** 303 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 304 ** by multiple threads. It is thread-safe. 305 */ 306 void sqlite3VtabUnlockList(sqlite3 *db){ 307 VTable *p = db->pDisconnect; 308 309 assert( sqlite3BtreeHoldsAllMutexes(db) ); 310 assert( sqlite3_mutex_held(db->mutex) ); 311 312 if( p ){ 313 db->pDisconnect = 0; 314 sqlite3ExpirePreparedStatements(db, 0); 315 do { 316 VTable *pNext = p->pNext; 317 sqlite3VtabUnlock(p); 318 p = pNext; 319 }while( p ); 320 } 321 } 322 323 /* 324 ** Clear any and all virtual-table information from the Table record. 325 ** This routine is called, for example, just before deleting the Table 326 ** record. 327 ** 328 ** Since it is a virtual-table, the Table structure contains a pointer 329 ** to the head of a linked list of VTable structures. Each VTable 330 ** structure is associated with a single sqlite3* user of the schema. 331 ** The reference count of the VTable structure associated with database 332 ** connection db is decremented immediately (which may lead to the 333 ** structure being xDisconnected and free). Any other VTable structures 334 ** in the list are moved to the sqlite3.pDisconnect list of the associated 335 ** database connection. 336 */ 337 void sqlite3VtabClear(sqlite3 *db, Table *p){ 338 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 339 if( p->u.vtab.azArg ){ 340 int i; 341 for(i=0; i<p->u.vtab.nArg; i++){ 342 if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); 343 } 344 sqlite3DbFree(db, p->u.vtab.azArg); 345 } 346 } 347 348 /* 349 ** Add a new module argument to pTable->u.vtab.azArg[]. 350 ** The string is not copied - the pointer is stored. The 351 ** string will be freed automatically when the table is 352 ** deleted. 353 */ 354 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ 355 sqlite3_int64 nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg); 356 char **azModuleArg; 357 sqlite3 *db = pParse->db; 358 if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ 359 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); 360 } 361 azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes); 362 if( azModuleArg==0 ){ 363 sqlite3DbFree(db, zArg); 364 }else{ 365 int i = pTable->u.vtab.nArg++; 366 azModuleArg[i] = zArg; 367 azModuleArg[i+1] = 0; 368 pTable->u.vtab.azArg = azModuleArg; 369 } 370 } 371 372 /* 373 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 374 ** statement. The module name has been parsed, but the optional list 375 ** of parameters that follow the module name are still pending. 376 */ 377 void sqlite3VtabBeginParse( 378 Parse *pParse, /* Parsing context */ 379 Token *pName1, /* Name of new table, or database name */ 380 Token *pName2, /* Name of new table or NULL */ 381 Token *pModuleName, /* Name of the module for the virtual table */ 382 int ifNotExists /* No error if the table already exists */ 383 ){ 384 Table *pTable; /* The new virtual table */ 385 sqlite3 *db; /* Database connection */ 386 387 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 388 pTable = pParse->pNewTable; 389 if( pTable==0 ) return; 390 assert( 0==pTable->pIndex ); 391 pTable->eTabType = TABTYP_VTAB; 392 393 db = pParse->db; 394 395 assert( pTable->u.vtab.nArg==0 ); 396 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); 397 addModuleArgument(pParse, pTable, 0); 398 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); 399 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 400 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 401 ); 402 pParse->sNameToken.n = (int)( 403 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 404 ); 405 406 #ifndef SQLITE_OMIT_AUTHORIZATION 407 /* Creating a virtual table invokes the authorization callback twice. 408 ** The first invocation, to obtain permission to INSERT a row into the 409 ** sqlite_schema table, has already been made by sqlite3StartTable(). 410 ** The second call, to obtain permission to create the table, is made now. 411 */ 412 if( pTable->u.vtab.azArg ){ 413 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 414 assert( iDb>=0 ); /* The database the table is being created in */ 415 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 416 pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName); 417 } 418 #endif 419 } 420 421 /* 422 ** This routine takes the module argument that has been accumulating 423 ** in pParse->zArg[] and appends it to the list of arguments on the 424 ** virtual table currently under construction in pParse->pTable. 425 */ 426 static void addArgumentToVtab(Parse *pParse){ 427 if( pParse->sArg.z && pParse->pNewTable ){ 428 const char *z = (const char*)pParse->sArg.z; 429 int n = pParse->sArg.n; 430 sqlite3 *db = pParse->db; 431 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 432 } 433 } 434 435 /* 436 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 437 ** has been completely parsed. 438 */ 439 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 440 Table *pTab = pParse->pNewTable; /* The table being constructed */ 441 sqlite3 *db = pParse->db; /* The database connection */ 442 443 if( pTab==0 ) return; 444 addArgumentToVtab(pParse); 445 pParse->sArg.z = 0; 446 if( pTab->u.vtab.nArg<1 ) return; 447 448 /* If the CREATE VIRTUAL TABLE statement is being entered for the 449 ** first time (in other words if the virtual table is actually being 450 ** created now instead of just being read out of sqlite_schema) then 451 ** do additional initialization work and store the statement text 452 ** in the sqlite_schema table. 453 */ 454 if( !db->init.busy ){ 455 char *zStmt; 456 char *zWhere; 457 int iDb; 458 int iReg; 459 Vdbe *v; 460 461 sqlite3MayAbort(pParse); 462 463 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 464 if( pEnd ){ 465 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 466 } 467 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 468 469 /* A slot for the record has already been allocated in the 470 ** schema table. We just need to update that slot with all 471 ** the information we've collected. 472 ** 473 ** The VM register number pParse->regRowid holds the rowid of an 474 ** entry in the sqlite_schema table tht was created for this vtab 475 ** by sqlite3StartTable(). 476 */ 477 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 478 sqlite3NestedParse(pParse, 479 "UPDATE %Q." DFLT_SCHEMA_TABLE " " 480 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 481 "WHERE rowid=#%d", 482 db->aDb[iDb].zDbSName, 483 pTab->zName, 484 pTab->zName, 485 zStmt, 486 pParse->regRowid 487 ); 488 v = sqlite3GetVdbe(pParse); 489 sqlite3ChangeCookie(pParse, iDb); 490 491 sqlite3VdbeAddOp0(v, OP_Expire); 492 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt); 493 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0); 494 sqlite3DbFree(db, zStmt); 495 496 iReg = ++pParse->nMem; 497 sqlite3VdbeLoadString(v, iReg, pTab->zName); 498 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 499 } 500 501 /* If we are rereading the sqlite_schema table create the in-memory 502 ** record of the table. The xConnect() method is not called until 503 ** the first time the virtual table is used in an SQL statement. This 504 ** allows a schema that contains virtual tables to be loaded before 505 ** the required virtual table implementations are registered. */ 506 else { 507 Table *pOld; 508 Schema *pSchema = pTab->pSchema; 509 const char *zName = pTab->zName; 510 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 511 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 512 if( pOld ){ 513 sqlite3OomFault(db); 514 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 515 return; 516 } 517 pParse->pNewTable = 0; 518 } 519 } 520 521 /* 522 ** The parser calls this routine when it sees the first token 523 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 524 */ 525 void sqlite3VtabArgInit(Parse *pParse){ 526 addArgumentToVtab(pParse); 527 pParse->sArg.z = 0; 528 pParse->sArg.n = 0; 529 } 530 531 /* 532 ** The parser calls this routine for each token after the first token 533 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 534 */ 535 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 536 Token *pArg = &pParse->sArg; 537 if( pArg->z==0 ){ 538 pArg->z = p->z; 539 pArg->n = p->n; 540 }else{ 541 assert(pArg->z <= p->z); 542 pArg->n = (int)(&p->z[p->n] - pArg->z); 543 } 544 } 545 546 /* 547 ** Invoke a virtual table constructor (either xCreate or xConnect). The 548 ** pointer to the function to invoke is passed as the fourth parameter 549 ** to this procedure. 550 */ 551 static int vtabCallConstructor( 552 sqlite3 *db, 553 Table *pTab, 554 Module *pMod, 555 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 556 char **pzErr 557 ){ 558 VtabCtx sCtx; 559 VTable *pVTable; 560 int rc; 561 const char *const*azArg = (const char *const*)pTab->u.vtab.azArg; 562 int nArg = pTab->u.vtab.nArg; 563 char *zErr = 0; 564 char *zModuleName; 565 int iDb; 566 VtabCtx *pCtx; 567 568 /* Check that the virtual-table is not already being initialized */ 569 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 570 if( pCtx->pTab==pTab ){ 571 *pzErr = sqlite3MPrintf(db, 572 "vtable constructor called recursively: %s", pTab->zName 573 ); 574 return SQLITE_LOCKED; 575 } 576 } 577 578 zModuleName = sqlite3DbStrDup(db, pTab->zName); 579 if( !zModuleName ){ 580 return SQLITE_NOMEM_BKPT; 581 } 582 583 pVTable = sqlite3MallocZero(sizeof(VTable)); 584 if( !pVTable ){ 585 sqlite3OomFault(db); 586 sqlite3DbFree(db, zModuleName); 587 return SQLITE_NOMEM_BKPT; 588 } 589 pVTable->db = db; 590 pVTable->pMod = pMod; 591 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal; 592 593 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 594 pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName; 595 596 /* Invoke the virtual table constructor */ 597 assert( &db->pVtabCtx ); 598 assert( xConstruct ); 599 sCtx.pTab = pTab; 600 sCtx.pVTable = pVTable; 601 sCtx.pPrior = db->pVtabCtx; 602 sCtx.bDeclared = 0; 603 db->pVtabCtx = &sCtx; 604 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 605 db->pVtabCtx = sCtx.pPrior; 606 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 607 assert( sCtx.pTab==pTab ); 608 609 if( SQLITE_OK!=rc ){ 610 if( zErr==0 ){ 611 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 612 }else { 613 *pzErr = sqlite3MPrintf(db, "%s", zErr); 614 sqlite3_free(zErr); 615 } 616 sqlite3DbFree(db, pVTable); 617 }else if( ALWAYS(pVTable->pVtab) ){ 618 /* Justification of ALWAYS(): A correct vtab constructor must allocate 619 ** the sqlite3_vtab object if successful. */ 620 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 621 pVTable->pVtab->pModule = pMod->pModule; 622 pMod->nRefModule++; 623 pVTable->nRef = 1; 624 if( sCtx.bDeclared==0 ){ 625 const char *zFormat = "vtable constructor did not declare schema: %s"; 626 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 627 sqlite3VtabUnlock(pVTable); 628 rc = SQLITE_ERROR; 629 }else{ 630 int iCol; 631 u16 oooHidden = 0; 632 /* If everything went according to plan, link the new VTable structure 633 ** into the linked list headed by pTab->u.vtab.p. Then loop through the 634 ** columns of the table to see if any of them contain the token "hidden". 635 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 636 ** the type string. */ 637 pVTable->pNext = pTab->u.vtab.p; 638 pTab->u.vtab.p = pVTable; 639 640 for(iCol=0; iCol<pTab->nCol; iCol++){ 641 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 642 int nType; 643 int i = 0; 644 nType = sqlite3Strlen30(zType); 645 for(i=0; i<nType; i++){ 646 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 647 && (i==0 || zType[i-1]==' ') 648 && (zType[i+6]=='\0' || zType[i+6]==' ') 649 ){ 650 break; 651 } 652 } 653 if( i<nType ){ 654 int j; 655 int nDel = 6 + (zType[i+6] ? 1 : 0); 656 for(j=i; (j+nDel)<=nType; j++){ 657 zType[j] = zType[j+nDel]; 658 } 659 if( zType[i]=='\0' && i>0 ){ 660 assert(zType[i-1]==' '); 661 zType[i-1] = '\0'; 662 } 663 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 664 pTab->tabFlags |= TF_HasHidden; 665 oooHidden = TF_OOOHidden; 666 }else{ 667 pTab->tabFlags |= oooHidden; 668 } 669 } 670 } 671 } 672 673 sqlite3DbFree(db, zModuleName); 674 return rc; 675 } 676 677 /* 678 ** This function is invoked by the parser to call the xConnect() method 679 ** of the virtual table pTab. If an error occurs, an error code is returned 680 ** and an error left in pParse. 681 ** 682 ** This call is a no-op if table pTab is not a virtual table. 683 */ 684 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 685 sqlite3 *db = pParse->db; 686 const char *zMod; 687 Module *pMod; 688 int rc; 689 690 assert( pTab ); 691 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 692 return SQLITE_OK; 693 } 694 695 /* Locate the required virtual table module */ 696 zMod = pTab->u.vtab.azArg[0]; 697 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 698 699 if( !pMod ){ 700 const char *zModule = pTab->u.vtab.azArg[0]; 701 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 702 rc = SQLITE_ERROR; 703 }else{ 704 char *zErr = 0; 705 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 706 if( rc!=SQLITE_OK ){ 707 sqlite3ErrorMsg(pParse, "%s", zErr); 708 pParse->rc = rc; 709 } 710 sqlite3DbFree(db, zErr); 711 } 712 713 return rc; 714 } 715 /* 716 ** Grow the db->aVTrans[] array so that there is room for at least one 717 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 718 */ 719 static int growVTrans(sqlite3 *db){ 720 const int ARRAY_INCR = 5; 721 722 /* Grow the sqlite3.aVTrans array if required */ 723 if( (db->nVTrans%ARRAY_INCR)==0 ){ 724 VTable **aVTrans; 725 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* 726 ((sqlite3_int64)db->nVTrans + ARRAY_INCR); 727 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 728 if( !aVTrans ){ 729 return SQLITE_NOMEM_BKPT; 730 } 731 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 732 db->aVTrans = aVTrans; 733 } 734 735 return SQLITE_OK; 736 } 737 738 /* 739 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 740 ** have already been reserved using growVTrans(). 741 */ 742 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 743 /* Add pVtab to the end of sqlite3.aVTrans */ 744 db->aVTrans[db->nVTrans++] = pVTab; 745 sqlite3VtabLock(pVTab); 746 } 747 748 /* 749 ** This function is invoked by the vdbe to call the xCreate method 750 ** of the virtual table named zTab in database iDb. 751 ** 752 ** If an error occurs, *pzErr is set to point to an English language 753 ** description of the error and an SQLITE_XXX error code is returned. 754 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 755 */ 756 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 757 int rc = SQLITE_OK; 758 Table *pTab; 759 Module *pMod; 760 const char *zMod; 761 762 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 763 assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p ); 764 765 /* Locate the required virtual table module */ 766 zMod = pTab->u.vtab.azArg[0]; 767 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 768 769 /* If the module has been registered and includes a Create method, 770 ** invoke it now. If the module has not been registered, return an 771 ** error. Otherwise, do nothing. 772 */ 773 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 774 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 775 rc = SQLITE_ERROR; 776 }else{ 777 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 778 } 779 780 /* Justification of ALWAYS(): The xConstructor method is required to 781 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 782 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 783 rc = growVTrans(db); 784 if( rc==SQLITE_OK ){ 785 addToVTrans(db, sqlite3GetVTable(db, pTab)); 786 } 787 } 788 789 return rc; 790 } 791 792 /* 793 ** This function is used to set the schema of a virtual table. It is only 794 ** valid to call this function from within the xCreate() or xConnect() of a 795 ** virtual table module. 796 */ 797 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 798 VtabCtx *pCtx; 799 int rc = SQLITE_OK; 800 Table *pTab; 801 char *zErr = 0; 802 Parse sParse; 803 804 #ifdef SQLITE_ENABLE_API_ARMOR 805 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 806 return SQLITE_MISUSE_BKPT; 807 } 808 #endif 809 sqlite3_mutex_enter(db->mutex); 810 pCtx = db->pVtabCtx; 811 if( !pCtx || pCtx->bDeclared ){ 812 sqlite3Error(db, SQLITE_MISUSE); 813 sqlite3_mutex_leave(db->mutex); 814 return SQLITE_MISUSE_BKPT; 815 } 816 pTab = pCtx->pTab; 817 assert( IsVirtual(pTab) ); 818 819 memset(&sParse, 0, sizeof(sParse)); 820 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; 821 sParse.db = db; 822 sParse.nQueryLoop = 1; 823 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 824 && sParse.pNewTable 825 && !db->mallocFailed 826 && IsOrdinaryTable(sParse.pNewTable) 827 ){ 828 if( !pTab->aCol ){ 829 Table *pNew = sParse.pNewTable; 830 Index *pIdx; 831 pTab->aCol = pNew->aCol; 832 sqlite3ExprListDelete(db, pNew->u.tab.pDfltList); 833 pTab->nNVCol = pTab->nCol = pNew->nCol; 834 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 835 pNew->nCol = 0; 836 pNew->aCol = 0; 837 assert( pTab->pIndex==0 ); 838 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 839 if( !HasRowid(pNew) 840 && pCtx->pVTable->pMod->pModule->xUpdate!=0 841 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 842 ){ 843 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 844 ** or else must have a single-column PRIMARY KEY */ 845 rc = SQLITE_ERROR; 846 } 847 pIdx = pNew->pIndex; 848 if( pIdx ){ 849 assert( pIdx->pNext==0 ); 850 pTab->pIndex = pIdx; 851 pNew->pIndex = 0; 852 pIdx->pTable = pTab; 853 } 854 } 855 pCtx->bDeclared = 1; 856 }else{ 857 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 858 sqlite3DbFree(db, zErr); 859 rc = SQLITE_ERROR; 860 } 861 sParse.eParseMode = PARSE_MODE_NORMAL; 862 863 if( sParse.pVdbe ){ 864 sqlite3VdbeFinalize(sParse.pVdbe); 865 } 866 sqlite3DeleteTable(db, sParse.pNewTable); 867 sqlite3ParserReset(&sParse); 868 869 assert( (rc&0xff)==rc ); 870 rc = sqlite3ApiExit(db, rc); 871 sqlite3_mutex_leave(db->mutex); 872 return rc; 873 } 874 875 /* 876 ** This function is invoked by the vdbe to call the xDestroy method 877 ** of the virtual table named zTab in database iDb. This occurs 878 ** when a DROP TABLE is mentioned. 879 ** 880 ** This call is a no-op if zTab is not a virtual table. 881 */ 882 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 883 int rc = SQLITE_OK; 884 Table *pTab; 885 886 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 887 if( pTab!=0 && ALWAYS(pTab->u.vtab.p!=0) ){ 888 VTable *p; 889 int (*xDestroy)(sqlite3_vtab *); 890 for(p=pTab->u.vtab.p; p; p=p->pNext){ 891 assert( p->pVtab ); 892 if( p->pVtab->nRef>0 ){ 893 return SQLITE_LOCKED; 894 } 895 } 896 p = vtabDisconnectAll(db, pTab); 897 xDestroy = p->pMod->pModule->xDestroy; 898 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect; 899 assert( xDestroy!=0 ); 900 pTab->nTabRef++; 901 rc = xDestroy(p->pVtab); 902 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 903 if( rc==SQLITE_OK ){ 904 assert( pTab->u.vtab.p==p && p->pNext==0 ); 905 p->pVtab = 0; 906 pTab->u.vtab.p = 0; 907 sqlite3VtabUnlock(p); 908 } 909 sqlite3DeleteTable(db, pTab); 910 } 911 912 return rc; 913 } 914 915 /* 916 ** This function invokes either the xRollback or xCommit method 917 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 918 ** called is identified by the second argument, "offset", which is 919 ** the offset of the method to call in the sqlite3_module structure. 920 ** 921 ** The array is cleared after invoking the callbacks. 922 */ 923 static void callFinaliser(sqlite3 *db, int offset){ 924 int i; 925 if( db->aVTrans ){ 926 VTable **aVTrans = db->aVTrans; 927 db->aVTrans = 0; 928 for(i=0; i<db->nVTrans; i++){ 929 VTable *pVTab = aVTrans[i]; 930 sqlite3_vtab *p = pVTab->pVtab; 931 if( p ){ 932 int (*x)(sqlite3_vtab *); 933 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 934 if( x ) x(p); 935 } 936 pVTab->iSavepoint = 0; 937 sqlite3VtabUnlock(pVTab); 938 } 939 sqlite3DbFree(db, aVTrans); 940 db->nVTrans = 0; 941 } 942 } 943 944 /* 945 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 946 ** array. Return the error code for the first error that occurs, or 947 ** SQLITE_OK if all xSync operations are successful. 948 ** 949 ** If an error message is available, leave it in p->zErrMsg. 950 */ 951 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 952 int i; 953 int rc = SQLITE_OK; 954 VTable **aVTrans = db->aVTrans; 955 956 db->aVTrans = 0; 957 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 958 int (*x)(sqlite3_vtab *); 959 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 960 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 961 rc = x(pVtab); 962 sqlite3VtabImportErrmsg(p, pVtab); 963 } 964 } 965 db->aVTrans = aVTrans; 966 return rc; 967 } 968 969 /* 970 ** Invoke the xRollback method of all virtual tables in the 971 ** sqlite3.aVTrans array. Then clear the array itself. 972 */ 973 int sqlite3VtabRollback(sqlite3 *db){ 974 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 975 return SQLITE_OK; 976 } 977 978 /* 979 ** Invoke the xCommit method of all virtual tables in the 980 ** sqlite3.aVTrans array. Then clear the array itself. 981 */ 982 int sqlite3VtabCommit(sqlite3 *db){ 983 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 984 return SQLITE_OK; 985 } 986 987 /* 988 ** If the virtual table pVtab supports the transaction interface 989 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 990 ** not currently open, invoke the xBegin method now. 991 ** 992 ** If the xBegin call is successful, place the sqlite3_vtab pointer 993 ** in the sqlite3.aVTrans array. 994 */ 995 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 996 int rc = SQLITE_OK; 997 const sqlite3_module *pModule; 998 999 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 1000 ** than zero, then this function is being called from within a 1001 ** virtual module xSync() callback. It is illegal to write to 1002 ** virtual module tables in this case, so return SQLITE_LOCKED. 1003 */ 1004 if( sqlite3VtabInSync(db) ){ 1005 return SQLITE_LOCKED; 1006 } 1007 if( !pVTab ){ 1008 return SQLITE_OK; 1009 } 1010 pModule = pVTab->pVtab->pModule; 1011 1012 if( pModule->xBegin ){ 1013 int i; 1014 1015 /* If pVtab is already in the aVTrans array, return early */ 1016 for(i=0; i<db->nVTrans; i++){ 1017 if( db->aVTrans[i]==pVTab ){ 1018 return SQLITE_OK; 1019 } 1020 } 1021 1022 /* Invoke the xBegin method. If successful, add the vtab to the 1023 ** sqlite3.aVTrans[] array. */ 1024 rc = growVTrans(db); 1025 if( rc==SQLITE_OK ){ 1026 rc = pModule->xBegin(pVTab->pVtab); 1027 if( rc==SQLITE_OK ){ 1028 int iSvpt = db->nStatement + db->nSavepoint; 1029 addToVTrans(db, pVTab); 1030 if( iSvpt && pModule->xSavepoint ){ 1031 pVTab->iSavepoint = iSvpt; 1032 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 1033 } 1034 } 1035 } 1036 } 1037 return rc; 1038 } 1039 1040 /* 1041 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 1042 ** virtual tables that currently have an open transaction. Pass iSavepoint 1043 ** as the second argument to the virtual table method invoked. 1044 ** 1045 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 1046 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 1047 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 1048 ** an open transaction is invoked. 1049 ** 1050 ** If any virtual table method returns an error code other than SQLITE_OK, 1051 ** processing is abandoned and the error returned to the caller of this 1052 ** function immediately. If all calls to virtual table methods are successful, 1053 ** SQLITE_OK is returned. 1054 */ 1055 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 1056 int rc = SQLITE_OK; 1057 1058 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 1059 assert( iSavepoint>=-1 ); 1060 if( db->aVTrans ){ 1061 int i; 1062 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 1063 VTable *pVTab = db->aVTrans[i]; 1064 const sqlite3_module *pMod = pVTab->pMod->pModule; 1065 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1066 int (*xMethod)(sqlite3_vtab *, int); 1067 sqlite3VtabLock(pVTab); 1068 switch( op ){ 1069 case SAVEPOINT_BEGIN: 1070 xMethod = pMod->xSavepoint; 1071 pVTab->iSavepoint = iSavepoint+1; 1072 break; 1073 case SAVEPOINT_ROLLBACK: 1074 xMethod = pMod->xRollbackTo; 1075 break; 1076 default: 1077 xMethod = pMod->xRelease; 1078 break; 1079 } 1080 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1081 rc = xMethod(pVTab->pVtab, iSavepoint); 1082 } 1083 sqlite3VtabUnlock(pVTab); 1084 } 1085 } 1086 } 1087 return rc; 1088 } 1089 1090 /* 1091 ** The first parameter (pDef) is a function implementation. The 1092 ** second parameter (pExpr) is the first argument to this function. 1093 ** If pExpr is a column in a virtual table, then let the virtual 1094 ** table implementation have an opportunity to overload the function. 1095 ** 1096 ** This routine is used to allow virtual table implementations to 1097 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1098 ** 1099 ** Return either the pDef argument (indicating no change) or a 1100 ** new FuncDef structure that is marked as ephemeral using the 1101 ** SQLITE_FUNC_EPHEM flag. 1102 */ 1103 FuncDef *sqlite3VtabOverloadFunction( 1104 sqlite3 *db, /* Database connection for reporting malloc problems */ 1105 FuncDef *pDef, /* Function to possibly overload */ 1106 int nArg, /* Number of arguments to the function */ 1107 Expr *pExpr /* First argument to the function */ 1108 ){ 1109 Table *pTab; 1110 sqlite3_vtab *pVtab; 1111 sqlite3_module *pMod; 1112 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1113 void *pArg = 0; 1114 FuncDef *pNew; 1115 int rc = 0; 1116 1117 /* Check to see the left operand is a column in a virtual table */ 1118 if( NEVER(pExpr==0) ) return pDef; 1119 if( pExpr->op!=TK_COLUMN ) return pDef; 1120 pTab = pExpr->y.pTab; 1121 if( pTab==0 ) return pDef; 1122 if( !IsVirtual(pTab) ) return pDef; 1123 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1124 assert( pVtab!=0 ); 1125 assert( pVtab->pModule!=0 ); 1126 pMod = (sqlite3_module *)pVtab->pModule; 1127 if( pMod->xFindFunction==0 ) return pDef; 1128 1129 /* Call the xFindFunction method on the virtual table implementation 1130 ** to see if the implementation wants to overload this function. 1131 ** 1132 ** Though undocumented, we have historically always invoked xFindFunction 1133 ** with an all lower-case function name. Continue in this tradition to 1134 ** avoid any chance of an incompatibility. 1135 */ 1136 #ifdef SQLITE_DEBUG 1137 { 1138 int i; 1139 for(i=0; pDef->zName[i]; i++){ 1140 unsigned char x = (unsigned char)pDef->zName[i]; 1141 assert( x==sqlite3UpperToLower[x] ); 1142 } 1143 } 1144 #endif 1145 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); 1146 if( rc==0 ){ 1147 return pDef; 1148 } 1149 1150 /* Create a new ephemeral function definition for the overloaded 1151 ** function */ 1152 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1153 + sqlite3Strlen30(pDef->zName) + 1); 1154 if( pNew==0 ){ 1155 return pDef; 1156 } 1157 *pNew = *pDef; 1158 pNew->zName = (const char*)&pNew[1]; 1159 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1160 pNew->xSFunc = xSFunc; 1161 pNew->pUserData = pArg; 1162 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1163 return pNew; 1164 } 1165 1166 /* 1167 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1168 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1169 ** array if it is missing. If pTab is already in the array, this routine 1170 ** is a no-op. 1171 */ 1172 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1173 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1174 int i, n; 1175 Table **apVtabLock; 1176 1177 assert( IsVirtual(pTab) ); 1178 for(i=0; i<pToplevel->nVtabLock; i++){ 1179 if( pTab==pToplevel->apVtabLock[i] ) return; 1180 } 1181 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1182 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n); 1183 if( apVtabLock ){ 1184 pToplevel->apVtabLock = apVtabLock; 1185 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1186 }else{ 1187 sqlite3OomFault(pToplevel->db); 1188 } 1189 } 1190 1191 /* 1192 ** Check to see if virtual table module pMod can be have an eponymous 1193 ** virtual table instance. If it can, create one if one does not already 1194 ** exist. Return non-zero if either the eponymous virtual table instance 1195 ** exists when this routine returns or if an attempt to create it failed 1196 ** and an error message was left in pParse. 1197 ** 1198 ** An eponymous virtual table instance is one that is named after its 1199 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1200 ** statement in order to come into existance. Eponymous virtual table 1201 ** instances always exist. They cannot be DROP-ed. 1202 ** 1203 ** Any virtual table module for which xConnect and xCreate are the same 1204 ** method can have an eponymous virtual table instance. 1205 */ 1206 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1207 const sqlite3_module *pModule = pMod->pModule; 1208 Table *pTab; 1209 char *zErr = 0; 1210 int rc; 1211 sqlite3 *db = pParse->db; 1212 if( pMod->pEpoTab ) return 1; 1213 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1214 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1215 if( pTab==0 ) return 0; 1216 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1217 if( pTab->zName==0 ){ 1218 sqlite3DbFree(db, pTab); 1219 return 0; 1220 } 1221 pMod->pEpoTab = pTab; 1222 pTab->nTabRef = 1; 1223 pTab->eTabType = TABTYP_VTAB; 1224 pTab->pSchema = db->aDb[0].pSchema; 1225 assert( pTab->u.vtab.nArg==0 ); 1226 pTab->iPKey = -1; 1227 pTab->tabFlags |= TF_Eponymous; 1228 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1229 addModuleArgument(pParse, pTab, 0); 1230 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1231 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1232 if( rc ){ 1233 sqlite3ErrorMsg(pParse, "%s", zErr); 1234 sqlite3DbFree(db, zErr); 1235 sqlite3VtabEponymousTableClear(db, pMod); 1236 } 1237 return 1; 1238 } 1239 1240 /* 1241 ** Erase the eponymous virtual table instance associated with 1242 ** virtual table module pMod, if it exists. 1243 */ 1244 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1245 Table *pTab = pMod->pEpoTab; 1246 if( pTab!=0 ){ 1247 /* Mark the table as Ephemeral prior to deleting it, so that the 1248 ** sqlite3DeleteTable() routine will know that it is not stored in 1249 ** the schema. */ 1250 pTab->tabFlags |= TF_Ephemeral; 1251 sqlite3DeleteTable(db, pTab); 1252 pMod->pEpoTab = 0; 1253 } 1254 } 1255 1256 /* 1257 ** Return the ON CONFLICT resolution mode in effect for the virtual 1258 ** table update operation currently in progress. 1259 ** 1260 ** The results of this routine are undefined unless it is called from 1261 ** within an xUpdate method. 1262 */ 1263 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1264 static const unsigned char aMap[] = { 1265 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1266 }; 1267 #ifdef SQLITE_ENABLE_API_ARMOR 1268 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1269 #endif 1270 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1271 assert( OE_Ignore==4 && OE_Replace==5 ); 1272 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1273 return (int)aMap[db->vtabOnConflict-1]; 1274 } 1275 1276 /* 1277 ** Call from within the xCreate() or xConnect() methods to provide 1278 ** the SQLite core with additional information about the behavior 1279 ** of the virtual table being implemented. 1280 */ 1281 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1282 va_list ap; 1283 int rc = SQLITE_OK; 1284 VtabCtx *p; 1285 1286 #ifdef SQLITE_ENABLE_API_ARMOR 1287 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1288 #endif 1289 sqlite3_mutex_enter(db->mutex); 1290 p = db->pVtabCtx; 1291 if( !p ){ 1292 rc = SQLITE_MISUSE_BKPT; 1293 }else{ 1294 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1295 va_start(ap, op); 1296 switch( op ){ 1297 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1298 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1299 break; 1300 } 1301 case SQLITE_VTAB_INNOCUOUS: { 1302 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low; 1303 break; 1304 } 1305 case SQLITE_VTAB_DIRECTONLY: { 1306 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High; 1307 break; 1308 } 1309 default: { 1310 rc = SQLITE_MISUSE_BKPT; 1311 break; 1312 } 1313 } 1314 va_end(ap); 1315 } 1316 1317 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1318 sqlite3_mutex_leave(db->mutex); 1319 return rc; 1320 } 1321 1322 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1323