1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 */ 36 Module *sqlite3VtabCreateModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 Module *pMod; 44 int nName = sqlite3Strlen30(zName); 45 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); 46 if( pMod==0 ){ 47 sqlite3OomFault(db); 48 }else{ 49 Module *pDel; 50 char *zCopy = (char *)(&pMod[1]); 51 memcpy(zCopy, zName, nName+1); 52 pMod->zName = zCopy; 53 pMod->pModule = pModule; 54 pMod->pAux = pAux; 55 pMod->xDestroy = xDestroy; 56 pMod->pEpoTab = 0; 57 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 58 assert( pDel==0 || pDel==pMod ); 59 if( pDel ){ 60 sqlite3OomFault(db); 61 sqlite3DbFree(db, pDel); 62 pMod = 0; 63 } 64 } 65 return pMod; 66 } 67 68 /* 69 ** The actual function that does the work of creating a new module. 70 ** This function implements the sqlite3_create_module() and 71 ** sqlite3_create_module_v2() interfaces. 72 */ 73 static int createModule( 74 sqlite3 *db, /* Database in which module is registered */ 75 const char *zName, /* Name assigned to this module */ 76 const sqlite3_module *pModule, /* The definition of the module */ 77 void *pAux, /* Context pointer for xCreate/xConnect */ 78 void (*xDestroy)(void *) /* Module destructor function */ 79 ){ 80 int rc = SQLITE_OK; 81 82 sqlite3_mutex_enter(db->mutex); 83 if( sqlite3HashFind(&db->aModule, zName) ){ 84 rc = SQLITE_MISUSE_BKPT; 85 }else{ 86 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 87 } 88 rc = sqlite3ApiExit(db, rc); 89 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 90 sqlite3_mutex_leave(db->mutex); 91 return rc; 92 } 93 94 95 /* 96 ** External API function used to create a new virtual-table module. 97 */ 98 int sqlite3_create_module( 99 sqlite3 *db, /* Database in which module is registered */ 100 const char *zName, /* Name assigned to this module */ 101 const sqlite3_module *pModule, /* The definition of the module */ 102 void *pAux /* Context pointer for xCreate/xConnect */ 103 ){ 104 #ifdef SQLITE_ENABLE_API_ARMOR 105 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 106 #endif 107 return createModule(db, zName, pModule, pAux, 0); 108 } 109 110 /* 111 ** External API function used to create a new virtual-table module. 112 */ 113 int sqlite3_create_module_v2( 114 sqlite3 *db, /* Database in which module is registered */ 115 const char *zName, /* Name assigned to this module */ 116 const sqlite3_module *pModule, /* The definition of the module */ 117 void *pAux, /* Context pointer for xCreate/xConnect */ 118 void (*xDestroy)(void *) /* Module destructor function */ 119 ){ 120 #ifdef SQLITE_ENABLE_API_ARMOR 121 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 122 #endif 123 return createModule(db, zName, pModule, pAux, xDestroy); 124 } 125 126 /* 127 ** Lock the virtual table so that it cannot be disconnected. 128 ** Locks nest. Every lock should have a corresponding unlock. 129 ** If an unlock is omitted, resources leaks will occur. 130 ** 131 ** If a disconnect is attempted while a virtual table is locked, 132 ** the disconnect is deferred until all locks have been removed. 133 */ 134 void sqlite3VtabLock(VTable *pVTab){ 135 pVTab->nRef++; 136 } 137 138 139 /* 140 ** pTab is a pointer to a Table structure representing a virtual-table. 141 ** Return a pointer to the VTable object used by connection db to access 142 ** this virtual-table, if one has been created, or NULL otherwise. 143 */ 144 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 145 VTable *pVtab; 146 assert( IsVirtual(pTab) ); 147 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 148 return pVtab; 149 } 150 151 /* 152 ** Decrement the ref-count on a virtual table object. When the ref-count 153 ** reaches zero, call the xDisconnect() method to delete the object. 154 */ 155 void sqlite3VtabUnlock(VTable *pVTab){ 156 sqlite3 *db = pVTab->db; 157 158 assert( db ); 159 assert( pVTab->nRef>0 ); 160 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 161 162 pVTab->nRef--; 163 if( pVTab->nRef==0 ){ 164 sqlite3_vtab *p = pVTab->pVtab; 165 if( p ){ 166 p->pModule->xDisconnect(p); 167 } 168 sqlite3DbFree(db, pVTab); 169 } 170 } 171 172 /* 173 ** Table p is a virtual table. This function moves all elements in the 174 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 175 ** database connections to be disconnected at the next opportunity. 176 ** Except, if argument db is not NULL, then the entry associated with 177 ** connection db is left in the p->pVTable list. 178 */ 179 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 180 VTable *pRet = 0; 181 VTable *pVTable = p->pVTable; 182 p->pVTable = 0; 183 184 /* Assert that the mutex (if any) associated with the BtShared database 185 ** that contains table p is held by the caller. See header comments 186 ** above function sqlite3VtabUnlockList() for an explanation of why 187 ** this makes it safe to access the sqlite3.pDisconnect list of any 188 ** database connection that may have an entry in the p->pVTable list. 189 */ 190 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 191 192 while( pVTable ){ 193 sqlite3 *db2 = pVTable->db; 194 VTable *pNext = pVTable->pNext; 195 assert( db2 ); 196 if( db2==db ){ 197 pRet = pVTable; 198 p->pVTable = pRet; 199 pRet->pNext = 0; 200 }else{ 201 pVTable->pNext = db2->pDisconnect; 202 db2->pDisconnect = pVTable; 203 } 204 pVTable = pNext; 205 } 206 207 assert( !db || pRet ); 208 return pRet; 209 } 210 211 /* 212 ** Table *p is a virtual table. This function removes the VTable object 213 ** for table *p associated with database connection db from the linked 214 ** list in p->pVTab. It also decrements the VTable ref count. This is 215 ** used when closing database connection db to free all of its VTable 216 ** objects without disturbing the rest of the Schema object (which may 217 ** be being used by other shared-cache connections). 218 */ 219 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 220 VTable **ppVTab; 221 222 assert( IsVirtual(p) ); 223 assert( sqlite3BtreeHoldsAllMutexes(db) ); 224 assert( sqlite3_mutex_held(db->mutex) ); 225 226 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 227 if( (*ppVTab)->db==db ){ 228 VTable *pVTab = *ppVTab; 229 *ppVTab = pVTab->pNext; 230 sqlite3VtabUnlock(pVTab); 231 break; 232 } 233 } 234 } 235 236 237 /* 238 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 239 ** 240 ** This function may only be called when the mutexes associated with all 241 ** shared b-tree databases opened using connection db are held by the 242 ** caller. This is done to protect the sqlite3.pDisconnect list. The 243 ** sqlite3.pDisconnect list is accessed only as follows: 244 ** 245 ** 1) By this function. In this case, all BtShared mutexes and the mutex 246 ** associated with the database handle itself must be held. 247 ** 248 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 249 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 250 ** associated with the database the virtual table is stored in is held 251 ** or, if the virtual table is stored in a non-sharable database, then 252 ** the database handle mutex is held. 253 ** 254 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 255 ** by multiple threads. It is thread-safe. 256 */ 257 void sqlite3VtabUnlockList(sqlite3 *db){ 258 VTable *p = db->pDisconnect; 259 db->pDisconnect = 0; 260 261 assert( sqlite3BtreeHoldsAllMutexes(db) ); 262 assert( sqlite3_mutex_held(db->mutex) ); 263 264 if( p ){ 265 sqlite3ExpirePreparedStatements(db, 0); 266 do { 267 VTable *pNext = p->pNext; 268 sqlite3VtabUnlock(p); 269 p = pNext; 270 }while( p ); 271 } 272 } 273 274 /* 275 ** Clear any and all virtual-table information from the Table record. 276 ** This routine is called, for example, just before deleting the Table 277 ** record. 278 ** 279 ** Since it is a virtual-table, the Table structure contains a pointer 280 ** to the head of a linked list of VTable structures. Each VTable 281 ** structure is associated with a single sqlite3* user of the schema. 282 ** The reference count of the VTable structure associated with database 283 ** connection db is decremented immediately (which may lead to the 284 ** structure being xDisconnected and free). Any other VTable structures 285 ** in the list are moved to the sqlite3.pDisconnect list of the associated 286 ** database connection. 287 */ 288 void sqlite3VtabClear(sqlite3 *db, Table *p){ 289 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 290 if( p->azModuleArg ){ 291 int i; 292 for(i=0; i<p->nModuleArg; i++){ 293 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 294 } 295 sqlite3DbFree(db, p->azModuleArg); 296 } 297 } 298 299 /* 300 ** Add a new module argument to pTable->azModuleArg[]. 301 ** The string is not copied - the pointer is stored. The 302 ** string will be freed automatically when the table is 303 ** deleted. 304 */ 305 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ 306 sqlite3_int64 nBytes = sizeof(char *)*(2+pTable->nModuleArg); 307 char **azModuleArg; 308 sqlite3 *db = pParse->db; 309 if( pTable->nModuleArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ 310 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); 311 } 312 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 313 if( azModuleArg==0 ){ 314 sqlite3DbFree(db, zArg); 315 }else{ 316 int i = pTable->nModuleArg++; 317 azModuleArg[i] = zArg; 318 azModuleArg[i+1] = 0; 319 pTable->azModuleArg = azModuleArg; 320 } 321 } 322 323 /* 324 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 325 ** statement. The module name has been parsed, but the optional list 326 ** of parameters that follow the module name are still pending. 327 */ 328 void sqlite3VtabBeginParse( 329 Parse *pParse, /* Parsing context */ 330 Token *pName1, /* Name of new table, or database name */ 331 Token *pName2, /* Name of new table or NULL */ 332 Token *pModuleName, /* Name of the module for the virtual table */ 333 int ifNotExists /* No error if the table already exists */ 334 ){ 335 Table *pTable; /* The new virtual table */ 336 sqlite3 *db; /* Database connection */ 337 338 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 339 pTable = pParse->pNewTable; 340 if( pTable==0 ) return; 341 assert( 0==pTable->pIndex ); 342 343 db = pParse->db; 344 345 assert( pTable->nModuleArg==0 ); 346 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); 347 addModuleArgument(pParse, pTable, 0); 348 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); 349 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 350 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 351 ); 352 pParse->sNameToken.n = (int)( 353 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 354 ); 355 356 #ifndef SQLITE_OMIT_AUTHORIZATION 357 /* Creating a virtual table invokes the authorization callback twice. 358 ** The first invocation, to obtain permission to INSERT a row into the 359 ** sqlite_master table, has already been made by sqlite3StartTable(). 360 ** The second call, to obtain permission to create the table, is made now. 361 */ 362 if( pTable->azModuleArg ){ 363 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 364 assert( iDb>=0 ); /* The database the table is being created in */ 365 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 366 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 367 } 368 #endif 369 } 370 371 /* 372 ** This routine takes the module argument that has been accumulating 373 ** in pParse->zArg[] and appends it to the list of arguments on the 374 ** virtual table currently under construction in pParse->pTable. 375 */ 376 static void addArgumentToVtab(Parse *pParse){ 377 if( pParse->sArg.z && pParse->pNewTable ){ 378 const char *z = (const char*)pParse->sArg.z; 379 int n = pParse->sArg.n; 380 sqlite3 *db = pParse->db; 381 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 382 } 383 } 384 385 /* 386 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 387 ** has been completely parsed. 388 */ 389 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 390 Table *pTab = pParse->pNewTable; /* The table being constructed */ 391 sqlite3 *db = pParse->db; /* The database connection */ 392 393 if( pTab==0 ) return; 394 addArgumentToVtab(pParse); 395 pParse->sArg.z = 0; 396 if( pTab->nModuleArg<1 ) return; 397 398 /* If the CREATE VIRTUAL TABLE statement is being entered for the 399 ** first time (in other words if the virtual table is actually being 400 ** created now instead of just being read out of sqlite_master) then 401 ** do additional initialization work and store the statement text 402 ** in the sqlite_master table. 403 */ 404 if( !db->init.busy ){ 405 char *zStmt; 406 char *zWhere; 407 int iDb; 408 int iReg; 409 Vdbe *v; 410 411 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 412 if( pEnd ){ 413 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 414 } 415 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 416 417 /* A slot for the record has already been allocated in the 418 ** SQLITE_MASTER table. We just need to update that slot with all 419 ** the information we've collected. 420 ** 421 ** The VM register number pParse->regRowid holds the rowid of an 422 ** entry in the sqlite_master table tht was created for this vtab 423 ** by sqlite3StartTable(). 424 */ 425 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 426 sqlite3NestedParse(pParse, 427 "UPDATE %Q.%s " 428 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 429 "WHERE rowid=#%d", 430 db->aDb[iDb].zDbSName, MASTER_NAME, 431 pTab->zName, 432 pTab->zName, 433 zStmt, 434 pParse->regRowid 435 ); 436 sqlite3DbFree(db, zStmt); 437 v = sqlite3GetVdbe(pParse); 438 sqlite3ChangeCookie(pParse, iDb); 439 440 sqlite3VdbeAddOp0(v, OP_Expire); 441 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 442 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 443 444 iReg = ++pParse->nMem; 445 sqlite3VdbeLoadString(v, iReg, pTab->zName); 446 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 447 } 448 449 /* If we are rereading the sqlite_master table create the in-memory 450 ** record of the table. The xConnect() method is not called until 451 ** the first time the virtual table is used in an SQL statement. This 452 ** allows a schema that contains virtual tables to be loaded before 453 ** the required virtual table implementations are registered. */ 454 else { 455 Table *pOld; 456 Schema *pSchema = pTab->pSchema; 457 const char *zName = pTab->zName; 458 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 459 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 460 if( pOld ){ 461 sqlite3OomFault(db); 462 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 463 return; 464 } 465 pParse->pNewTable = 0; 466 } 467 } 468 469 /* 470 ** The parser calls this routine when it sees the first token 471 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 472 */ 473 void sqlite3VtabArgInit(Parse *pParse){ 474 addArgumentToVtab(pParse); 475 pParse->sArg.z = 0; 476 pParse->sArg.n = 0; 477 } 478 479 /* 480 ** The parser calls this routine for each token after the first token 481 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 482 */ 483 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 484 Token *pArg = &pParse->sArg; 485 if( pArg->z==0 ){ 486 pArg->z = p->z; 487 pArg->n = p->n; 488 }else{ 489 assert(pArg->z <= p->z); 490 pArg->n = (int)(&p->z[p->n] - pArg->z); 491 } 492 } 493 494 /* 495 ** Invoke a virtual table constructor (either xCreate or xConnect). The 496 ** pointer to the function to invoke is passed as the fourth parameter 497 ** to this procedure. 498 */ 499 static int vtabCallConstructor( 500 sqlite3 *db, 501 Table *pTab, 502 Module *pMod, 503 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 504 char **pzErr 505 ){ 506 VtabCtx sCtx; 507 VTable *pVTable; 508 int rc; 509 const char *const*azArg = (const char *const*)pTab->azModuleArg; 510 int nArg = pTab->nModuleArg; 511 char *zErr = 0; 512 char *zModuleName; 513 int iDb; 514 VtabCtx *pCtx; 515 516 /* Check that the virtual-table is not already being initialized */ 517 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 518 if( pCtx->pTab==pTab ){ 519 *pzErr = sqlite3MPrintf(db, 520 "vtable constructor called recursively: %s", pTab->zName 521 ); 522 return SQLITE_LOCKED; 523 } 524 } 525 526 zModuleName = sqlite3DbStrDup(db, pTab->zName); 527 if( !zModuleName ){ 528 return SQLITE_NOMEM_BKPT; 529 } 530 531 pVTable = sqlite3MallocZero(sizeof(VTable)); 532 if( !pVTable ){ 533 sqlite3OomFault(db); 534 sqlite3DbFree(db, zModuleName); 535 return SQLITE_NOMEM_BKPT; 536 } 537 pVTable->db = db; 538 pVTable->pMod = pMod; 539 540 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 541 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 542 543 /* Invoke the virtual table constructor */ 544 assert( &db->pVtabCtx ); 545 assert( xConstruct ); 546 sCtx.pTab = pTab; 547 sCtx.pVTable = pVTable; 548 sCtx.pPrior = db->pVtabCtx; 549 sCtx.bDeclared = 0; 550 db->pVtabCtx = &sCtx; 551 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 552 db->pVtabCtx = sCtx.pPrior; 553 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 554 assert( sCtx.pTab==pTab ); 555 556 if( SQLITE_OK!=rc ){ 557 if( zErr==0 ){ 558 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 559 }else { 560 *pzErr = sqlite3MPrintf(db, "%s", zErr); 561 sqlite3_free(zErr); 562 } 563 sqlite3DbFree(db, pVTable); 564 }else if( ALWAYS(pVTable->pVtab) ){ 565 /* Justification of ALWAYS(): A correct vtab constructor must allocate 566 ** the sqlite3_vtab object if successful. */ 567 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 568 pVTable->pVtab->pModule = pMod->pModule; 569 pVTable->nRef = 1; 570 if( sCtx.bDeclared==0 ){ 571 const char *zFormat = "vtable constructor did not declare schema: %s"; 572 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 573 sqlite3VtabUnlock(pVTable); 574 rc = SQLITE_ERROR; 575 }else{ 576 int iCol; 577 u8 oooHidden = 0; 578 /* If everything went according to plan, link the new VTable structure 579 ** into the linked list headed by pTab->pVTable. Then loop through the 580 ** columns of the table to see if any of them contain the token "hidden". 581 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 582 ** the type string. */ 583 pVTable->pNext = pTab->pVTable; 584 pTab->pVTable = pVTable; 585 586 for(iCol=0; iCol<pTab->nCol; iCol++){ 587 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 588 int nType; 589 int i = 0; 590 nType = sqlite3Strlen30(zType); 591 for(i=0; i<nType; i++){ 592 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 593 && (i==0 || zType[i-1]==' ') 594 && (zType[i+6]=='\0' || zType[i+6]==' ') 595 ){ 596 break; 597 } 598 } 599 if( i<nType ){ 600 int j; 601 int nDel = 6 + (zType[i+6] ? 1 : 0); 602 for(j=i; (j+nDel)<=nType; j++){ 603 zType[j] = zType[j+nDel]; 604 } 605 if( zType[i]=='\0' && i>0 ){ 606 assert(zType[i-1]==' '); 607 zType[i-1] = '\0'; 608 } 609 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 610 oooHidden = TF_OOOHidden; 611 }else{ 612 pTab->tabFlags |= oooHidden; 613 } 614 } 615 } 616 } 617 618 sqlite3DbFree(db, zModuleName); 619 return rc; 620 } 621 622 /* 623 ** This function is invoked by the parser to call the xConnect() method 624 ** of the virtual table pTab. If an error occurs, an error code is returned 625 ** and an error left in pParse. 626 ** 627 ** This call is a no-op if table pTab is not a virtual table. 628 */ 629 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 630 sqlite3 *db = pParse->db; 631 const char *zMod; 632 Module *pMod; 633 int rc; 634 635 assert( pTab ); 636 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 637 return SQLITE_OK; 638 } 639 640 /* Locate the required virtual table module */ 641 zMod = pTab->azModuleArg[0]; 642 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 643 644 if( !pMod ){ 645 const char *zModule = pTab->azModuleArg[0]; 646 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 647 rc = SQLITE_ERROR; 648 }else{ 649 char *zErr = 0; 650 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 651 if( rc!=SQLITE_OK ){ 652 sqlite3ErrorMsg(pParse, "%s", zErr); 653 pParse->rc = rc; 654 } 655 sqlite3DbFree(db, zErr); 656 } 657 658 return rc; 659 } 660 /* 661 ** Grow the db->aVTrans[] array so that there is room for at least one 662 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 663 */ 664 static int growVTrans(sqlite3 *db){ 665 const int ARRAY_INCR = 5; 666 667 /* Grow the sqlite3.aVTrans array if required */ 668 if( (db->nVTrans%ARRAY_INCR)==0 ){ 669 VTable **aVTrans; 670 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* 671 ((sqlite3_int64)db->nVTrans + ARRAY_INCR); 672 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 673 if( !aVTrans ){ 674 return SQLITE_NOMEM_BKPT; 675 } 676 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 677 db->aVTrans = aVTrans; 678 } 679 680 return SQLITE_OK; 681 } 682 683 /* 684 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 685 ** have already been reserved using growVTrans(). 686 */ 687 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 688 /* Add pVtab to the end of sqlite3.aVTrans */ 689 db->aVTrans[db->nVTrans++] = pVTab; 690 sqlite3VtabLock(pVTab); 691 } 692 693 /* 694 ** This function is invoked by the vdbe to call the xCreate method 695 ** of the virtual table named zTab in database iDb. 696 ** 697 ** If an error occurs, *pzErr is set to point to an English language 698 ** description of the error and an SQLITE_XXX error code is returned. 699 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 700 */ 701 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 702 int rc = SQLITE_OK; 703 Table *pTab; 704 Module *pMod; 705 const char *zMod; 706 707 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 708 assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); 709 710 /* Locate the required virtual table module */ 711 zMod = pTab->azModuleArg[0]; 712 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 713 714 /* If the module has been registered and includes a Create method, 715 ** invoke it now. If the module has not been registered, return an 716 ** error. Otherwise, do nothing. 717 */ 718 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 719 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 720 rc = SQLITE_ERROR; 721 }else{ 722 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 723 } 724 725 /* Justification of ALWAYS(): The xConstructor method is required to 726 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 727 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 728 rc = growVTrans(db); 729 if( rc==SQLITE_OK ){ 730 addToVTrans(db, sqlite3GetVTable(db, pTab)); 731 } 732 } 733 734 return rc; 735 } 736 737 /* 738 ** This function is used to set the schema of a virtual table. It is only 739 ** valid to call this function from within the xCreate() or xConnect() of a 740 ** virtual table module. 741 */ 742 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 743 VtabCtx *pCtx; 744 int rc = SQLITE_OK; 745 Table *pTab; 746 char *zErr = 0; 747 Parse sParse; 748 749 #ifdef SQLITE_ENABLE_API_ARMOR 750 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 751 return SQLITE_MISUSE_BKPT; 752 } 753 #endif 754 sqlite3_mutex_enter(db->mutex); 755 pCtx = db->pVtabCtx; 756 if( !pCtx || pCtx->bDeclared ){ 757 sqlite3Error(db, SQLITE_MISUSE); 758 sqlite3_mutex_leave(db->mutex); 759 return SQLITE_MISUSE_BKPT; 760 } 761 pTab = pCtx->pTab; 762 assert( IsVirtual(pTab) ); 763 764 memset(&sParse, 0, sizeof(sParse)); 765 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; 766 sParse.db = db; 767 sParse.nQueryLoop = 1; 768 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 769 && sParse.pNewTable 770 && !db->mallocFailed 771 && !sParse.pNewTable->pSelect 772 && !IsVirtual(sParse.pNewTable) 773 ){ 774 if( !pTab->aCol ){ 775 Table *pNew = sParse.pNewTable; 776 Index *pIdx; 777 pTab->aCol = pNew->aCol; 778 pTab->nCol = pNew->nCol; 779 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 780 pNew->nCol = 0; 781 pNew->aCol = 0; 782 assert( pTab->pIndex==0 ); 783 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 784 if( !HasRowid(pNew) 785 && pCtx->pVTable->pMod->pModule->xUpdate!=0 786 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 787 ){ 788 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 789 ** or else must have a single-column PRIMARY KEY */ 790 rc = SQLITE_ERROR; 791 } 792 pIdx = pNew->pIndex; 793 if( pIdx ){ 794 assert( pIdx->pNext==0 ); 795 pTab->pIndex = pIdx; 796 pNew->pIndex = 0; 797 pIdx->pTable = pTab; 798 } 799 } 800 pCtx->bDeclared = 1; 801 }else{ 802 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 803 sqlite3DbFree(db, zErr); 804 rc = SQLITE_ERROR; 805 } 806 sParse.eParseMode = PARSE_MODE_NORMAL; 807 808 if( sParse.pVdbe ){ 809 sqlite3VdbeFinalize(sParse.pVdbe); 810 } 811 sqlite3DeleteTable(db, sParse.pNewTable); 812 sqlite3ParserReset(&sParse); 813 814 assert( (rc&0xff)==rc ); 815 rc = sqlite3ApiExit(db, rc); 816 sqlite3_mutex_leave(db->mutex); 817 return rc; 818 } 819 820 /* 821 ** This function is invoked by the vdbe to call the xDestroy method 822 ** of the virtual table named zTab in database iDb. This occurs 823 ** when a DROP TABLE is mentioned. 824 ** 825 ** This call is a no-op if zTab is not a virtual table. 826 */ 827 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 828 int rc = SQLITE_OK; 829 Table *pTab; 830 831 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 832 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 833 VTable *p; 834 int (*xDestroy)(sqlite3_vtab *); 835 for(p=pTab->pVTable; p; p=p->pNext){ 836 assert( p->pVtab ); 837 if( p->pVtab->nRef>0 ){ 838 return SQLITE_LOCKED; 839 } 840 } 841 p = vtabDisconnectAll(db, pTab); 842 xDestroy = p->pMod->pModule->xDestroy; 843 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 844 pTab->nTabRef++; 845 rc = xDestroy(p->pVtab); 846 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 847 if( rc==SQLITE_OK ){ 848 assert( pTab->pVTable==p && p->pNext==0 ); 849 p->pVtab = 0; 850 pTab->pVTable = 0; 851 sqlite3VtabUnlock(p); 852 } 853 sqlite3DeleteTable(db, pTab); 854 } 855 856 return rc; 857 } 858 859 /* 860 ** This function invokes either the xRollback or xCommit method 861 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 862 ** called is identified by the second argument, "offset", which is 863 ** the offset of the method to call in the sqlite3_module structure. 864 ** 865 ** The array is cleared after invoking the callbacks. 866 */ 867 static void callFinaliser(sqlite3 *db, int offset){ 868 int i; 869 if( db->aVTrans ){ 870 VTable **aVTrans = db->aVTrans; 871 db->aVTrans = 0; 872 for(i=0; i<db->nVTrans; i++){ 873 VTable *pVTab = aVTrans[i]; 874 sqlite3_vtab *p = pVTab->pVtab; 875 if( p ){ 876 int (*x)(sqlite3_vtab *); 877 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 878 if( x ) x(p); 879 } 880 pVTab->iSavepoint = 0; 881 sqlite3VtabUnlock(pVTab); 882 } 883 sqlite3DbFree(db, aVTrans); 884 db->nVTrans = 0; 885 } 886 } 887 888 /* 889 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 890 ** array. Return the error code for the first error that occurs, or 891 ** SQLITE_OK if all xSync operations are successful. 892 ** 893 ** If an error message is available, leave it in p->zErrMsg. 894 */ 895 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 896 int i; 897 int rc = SQLITE_OK; 898 VTable **aVTrans = db->aVTrans; 899 900 db->aVTrans = 0; 901 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 902 int (*x)(sqlite3_vtab *); 903 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 904 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 905 rc = x(pVtab); 906 sqlite3VtabImportErrmsg(p, pVtab); 907 } 908 } 909 db->aVTrans = aVTrans; 910 return rc; 911 } 912 913 /* 914 ** Invoke the xRollback method of all virtual tables in the 915 ** sqlite3.aVTrans array. Then clear the array itself. 916 */ 917 int sqlite3VtabRollback(sqlite3 *db){ 918 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 919 return SQLITE_OK; 920 } 921 922 /* 923 ** Invoke the xCommit method of all virtual tables in the 924 ** sqlite3.aVTrans array. Then clear the array itself. 925 */ 926 int sqlite3VtabCommit(sqlite3 *db){ 927 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 928 return SQLITE_OK; 929 } 930 931 /* 932 ** If the virtual table pVtab supports the transaction interface 933 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 934 ** not currently open, invoke the xBegin method now. 935 ** 936 ** If the xBegin call is successful, place the sqlite3_vtab pointer 937 ** in the sqlite3.aVTrans array. 938 */ 939 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 940 int rc = SQLITE_OK; 941 const sqlite3_module *pModule; 942 943 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 944 ** than zero, then this function is being called from within a 945 ** virtual module xSync() callback. It is illegal to write to 946 ** virtual module tables in this case, so return SQLITE_LOCKED. 947 */ 948 if( sqlite3VtabInSync(db) ){ 949 return SQLITE_LOCKED; 950 } 951 if( !pVTab ){ 952 return SQLITE_OK; 953 } 954 pModule = pVTab->pVtab->pModule; 955 956 if( pModule->xBegin ){ 957 int i; 958 959 /* If pVtab is already in the aVTrans array, return early */ 960 for(i=0; i<db->nVTrans; i++){ 961 if( db->aVTrans[i]==pVTab ){ 962 return SQLITE_OK; 963 } 964 } 965 966 /* Invoke the xBegin method. If successful, add the vtab to the 967 ** sqlite3.aVTrans[] array. */ 968 rc = growVTrans(db); 969 if( rc==SQLITE_OK ){ 970 rc = pModule->xBegin(pVTab->pVtab); 971 if( rc==SQLITE_OK ){ 972 int iSvpt = db->nStatement + db->nSavepoint; 973 addToVTrans(db, pVTab); 974 if( iSvpt && pModule->xSavepoint ){ 975 pVTab->iSavepoint = iSvpt; 976 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 977 } 978 } 979 } 980 } 981 return rc; 982 } 983 984 /* 985 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 986 ** virtual tables that currently have an open transaction. Pass iSavepoint 987 ** as the second argument to the virtual table method invoked. 988 ** 989 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 990 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 991 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 992 ** an open transaction is invoked. 993 ** 994 ** If any virtual table method returns an error code other than SQLITE_OK, 995 ** processing is abandoned and the error returned to the caller of this 996 ** function immediately. If all calls to virtual table methods are successful, 997 ** SQLITE_OK is returned. 998 */ 999 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 1000 int rc = SQLITE_OK; 1001 1002 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 1003 assert( iSavepoint>=-1 ); 1004 if( db->aVTrans ){ 1005 int i; 1006 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 1007 VTable *pVTab = db->aVTrans[i]; 1008 const sqlite3_module *pMod = pVTab->pMod->pModule; 1009 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1010 int (*xMethod)(sqlite3_vtab *, int); 1011 sqlite3VtabLock(pVTab); 1012 switch( op ){ 1013 case SAVEPOINT_BEGIN: 1014 xMethod = pMod->xSavepoint; 1015 pVTab->iSavepoint = iSavepoint+1; 1016 break; 1017 case SAVEPOINT_ROLLBACK: 1018 xMethod = pMod->xRollbackTo; 1019 break; 1020 default: 1021 xMethod = pMod->xRelease; 1022 break; 1023 } 1024 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1025 rc = xMethod(pVTab->pVtab, iSavepoint); 1026 } 1027 sqlite3VtabUnlock(pVTab); 1028 } 1029 } 1030 } 1031 return rc; 1032 } 1033 1034 /* 1035 ** The first parameter (pDef) is a function implementation. The 1036 ** second parameter (pExpr) is the first argument to this function. 1037 ** If pExpr is a column in a virtual table, then let the virtual 1038 ** table implementation have an opportunity to overload the function. 1039 ** 1040 ** This routine is used to allow virtual table implementations to 1041 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1042 ** 1043 ** Return either the pDef argument (indicating no change) or a 1044 ** new FuncDef structure that is marked as ephemeral using the 1045 ** SQLITE_FUNC_EPHEM flag. 1046 */ 1047 FuncDef *sqlite3VtabOverloadFunction( 1048 sqlite3 *db, /* Database connection for reporting malloc problems */ 1049 FuncDef *pDef, /* Function to possibly overload */ 1050 int nArg, /* Number of arguments to the function */ 1051 Expr *pExpr /* First argument to the function */ 1052 ){ 1053 Table *pTab; 1054 sqlite3_vtab *pVtab; 1055 sqlite3_module *pMod; 1056 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1057 void *pArg = 0; 1058 FuncDef *pNew; 1059 int rc = 0; 1060 1061 /* Check to see the left operand is a column in a virtual table */ 1062 if( NEVER(pExpr==0) ) return pDef; 1063 if( pExpr->op!=TK_COLUMN ) return pDef; 1064 pTab = pExpr->y.pTab; 1065 if( pTab==0 ) return pDef; 1066 if( !IsVirtual(pTab) ) return pDef; 1067 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1068 assert( pVtab!=0 ); 1069 assert( pVtab->pModule!=0 ); 1070 pMod = (sqlite3_module *)pVtab->pModule; 1071 if( pMod->xFindFunction==0 ) return pDef; 1072 1073 /* Call the xFindFunction method on the virtual table implementation 1074 ** to see if the implementation wants to overload this function. 1075 ** 1076 ** Though undocumented, we have historically always invoked xFindFunction 1077 ** with an all lower-case function name. Continue in this tradition to 1078 ** avoid any chance of an incompatibility. 1079 */ 1080 #ifdef SQLITE_DEBUG 1081 { 1082 int i; 1083 for(i=0; pDef->zName[i]; i++){ 1084 unsigned char x = (unsigned char)pDef->zName[i]; 1085 assert( x==sqlite3UpperToLower[x] ); 1086 } 1087 } 1088 #endif 1089 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); 1090 if( rc==0 ){ 1091 return pDef; 1092 } 1093 1094 /* Create a new ephemeral function definition for the overloaded 1095 ** function */ 1096 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1097 + sqlite3Strlen30(pDef->zName) + 1); 1098 if( pNew==0 ){ 1099 return pDef; 1100 } 1101 *pNew = *pDef; 1102 pNew->zName = (const char*)&pNew[1]; 1103 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1104 pNew->xSFunc = xSFunc; 1105 pNew->pUserData = pArg; 1106 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1107 return pNew; 1108 } 1109 1110 /* 1111 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1112 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1113 ** array if it is missing. If pTab is already in the array, this routine 1114 ** is a no-op. 1115 */ 1116 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1117 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1118 int i, n; 1119 Table **apVtabLock; 1120 1121 assert( IsVirtual(pTab) ); 1122 for(i=0; i<pToplevel->nVtabLock; i++){ 1123 if( pTab==pToplevel->apVtabLock[i] ) return; 1124 } 1125 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1126 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1127 if( apVtabLock ){ 1128 pToplevel->apVtabLock = apVtabLock; 1129 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1130 }else{ 1131 sqlite3OomFault(pToplevel->db); 1132 } 1133 } 1134 1135 /* 1136 ** Check to see if virtual table module pMod can be have an eponymous 1137 ** virtual table instance. If it can, create one if one does not already 1138 ** exist. Return non-zero if the eponymous virtual table instance exists 1139 ** when this routine returns, and return zero if it does not exist. 1140 ** 1141 ** An eponymous virtual table instance is one that is named after its 1142 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1143 ** statement in order to come into existance. Eponymous virtual table 1144 ** instances always exist. They cannot be DROP-ed. 1145 ** 1146 ** Any virtual table module for which xConnect and xCreate are the same 1147 ** method can have an eponymous virtual table instance. 1148 */ 1149 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1150 const sqlite3_module *pModule = pMod->pModule; 1151 Table *pTab; 1152 char *zErr = 0; 1153 int rc; 1154 sqlite3 *db = pParse->db; 1155 if( pMod->pEpoTab ) return 1; 1156 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1157 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1158 if( pTab==0 ) return 0; 1159 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1160 if( pTab->zName==0 ){ 1161 sqlite3DbFree(db, pTab); 1162 return 0; 1163 } 1164 pMod->pEpoTab = pTab; 1165 pTab->nTabRef = 1; 1166 pTab->pSchema = db->aDb[0].pSchema; 1167 assert( pTab->nModuleArg==0 ); 1168 pTab->iPKey = -1; 1169 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1170 addModuleArgument(pParse, pTab, 0); 1171 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1172 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1173 if( rc ){ 1174 sqlite3ErrorMsg(pParse, "%s", zErr); 1175 sqlite3DbFree(db, zErr); 1176 sqlite3VtabEponymousTableClear(db, pMod); 1177 return 0; 1178 } 1179 return 1; 1180 } 1181 1182 /* 1183 ** Erase the eponymous virtual table instance associated with 1184 ** virtual table module pMod, if it exists. 1185 */ 1186 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1187 Table *pTab = pMod->pEpoTab; 1188 if( pTab!=0 ){ 1189 /* Mark the table as Ephemeral prior to deleting it, so that the 1190 ** sqlite3DeleteTable() routine will know that it is not stored in 1191 ** the schema. */ 1192 pTab->tabFlags |= TF_Ephemeral; 1193 sqlite3DeleteTable(db, pTab); 1194 pMod->pEpoTab = 0; 1195 } 1196 } 1197 1198 /* 1199 ** Return the ON CONFLICT resolution mode in effect for the virtual 1200 ** table update operation currently in progress. 1201 ** 1202 ** The results of this routine are undefined unless it is called from 1203 ** within an xUpdate method. 1204 */ 1205 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1206 static const unsigned char aMap[] = { 1207 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1208 }; 1209 #ifdef SQLITE_ENABLE_API_ARMOR 1210 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1211 #endif 1212 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1213 assert( OE_Ignore==4 && OE_Replace==5 ); 1214 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1215 return (int)aMap[db->vtabOnConflict-1]; 1216 } 1217 1218 /* 1219 ** Call from within the xCreate() or xConnect() methods to provide 1220 ** the SQLite core with additional information about the behavior 1221 ** of the virtual table being implemented. 1222 */ 1223 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1224 va_list ap; 1225 int rc = SQLITE_OK; 1226 1227 #ifdef SQLITE_ENABLE_API_ARMOR 1228 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1229 #endif 1230 sqlite3_mutex_enter(db->mutex); 1231 va_start(ap, op); 1232 switch( op ){ 1233 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1234 VtabCtx *p = db->pVtabCtx; 1235 if( !p ){ 1236 rc = SQLITE_MISUSE_BKPT; 1237 }else{ 1238 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1239 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1240 } 1241 break; 1242 } 1243 default: 1244 rc = SQLITE_MISUSE_BKPT; 1245 break; 1246 } 1247 va_end(ap); 1248 1249 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1250 sqlite3_mutex_leave(db->mutex); 1251 return rc; 1252 } 1253 1254 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1255