1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 */ 36 Module *sqlite3VtabCreateModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 Module *pMod; 44 int nName = sqlite3Strlen30(zName); 45 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); 46 if( pMod==0 ){ 47 sqlite3OomFault(db); 48 }else{ 49 Module *pDel; 50 char *zCopy = (char *)(&pMod[1]); 51 memcpy(zCopy, zName, nName+1); 52 pMod->zName = zCopy; 53 pMod->pModule = pModule; 54 pMod->pAux = pAux; 55 pMod->xDestroy = xDestroy; 56 pMod->pEpoTab = 0; 57 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 58 assert( pDel==0 || pDel==pMod ); 59 if( pDel ){ 60 sqlite3OomFault(db); 61 sqlite3DbFree(db, pDel); 62 pMod = 0; 63 } 64 } 65 return pMod; 66 } 67 68 /* 69 ** The actual function that does the work of creating a new module. 70 ** This function implements the sqlite3_create_module() and 71 ** sqlite3_create_module_v2() interfaces. 72 */ 73 static int createModule( 74 sqlite3 *db, /* Database in which module is registered */ 75 const char *zName, /* Name assigned to this module */ 76 const sqlite3_module *pModule, /* The definition of the module */ 77 void *pAux, /* Context pointer for xCreate/xConnect */ 78 void (*xDestroy)(void *) /* Module destructor function */ 79 ){ 80 int rc = SQLITE_OK; 81 82 sqlite3_mutex_enter(db->mutex); 83 if( sqlite3HashFind(&db->aModule, zName) ){ 84 rc = SQLITE_MISUSE_BKPT; 85 }else{ 86 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 87 } 88 rc = sqlite3ApiExit(db, rc); 89 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 90 sqlite3_mutex_leave(db->mutex); 91 return rc; 92 } 93 94 95 /* 96 ** External API function used to create a new virtual-table module. 97 */ 98 int sqlite3_create_module( 99 sqlite3 *db, /* Database in which module is registered */ 100 const char *zName, /* Name assigned to this module */ 101 const sqlite3_module *pModule, /* The definition of the module */ 102 void *pAux /* Context pointer for xCreate/xConnect */ 103 ){ 104 #ifdef SQLITE_ENABLE_API_ARMOR 105 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 106 #endif 107 return createModule(db, zName, pModule, pAux, 0); 108 } 109 110 /* 111 ** External API function used to create a new virtual-table module. 112 */ 113 int sqlite3_create_module_v2( 114 sqlite3 *db, /* Database in which module is registered */ 115 const char *zName, /* Name assigned to this module */ 116 const sqlite3_module *pModule, /* The definition of the module */ 117 void *pAux, /* Context pointer for xCreate/xConnect */ 118 void (*xDestroy)(void *) /* Module destructor function */ 119 ){ 120 #ifdef SQLITE_ENABLE_API_ARMOR 121 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 122 #endif 123 return createModule(db, zName, pModule, pAux, xDestroy); 124 } 125 126 /* 127 ** Lock the virtual table so that it cannot be disconnected. 128 ** Locks nest. Every lock should have a corresponding unlock. 129 ** If an unlock is omitted, resources leaks will occur. 130 ** 131 ** If a disconnect is attempted while a virtual table is locked, 132 ** the disconnect is deferred until all locks have been removed. 133 */ 134 void sqlite3VtabLock(VTable *pVTab){ 135 pVTab->nRef++; 136 } 137 138 139 /* 140 ** pTab is a pointer to a Table structure representing a virtual-table. 141 ** Return a pointer to the VTable object used by connection db to access 142 ** this virtual-table, if one has been created, or NULL otherwise. 143 */ 144 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 145 VTable *pVtab; 146 assert( IsVirtual(pTab) ); 147 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 148 return pVtab; 149 } 150 151 /* 152 ** Decrement the ref-count on a virtual table object. When the ref-count 153 ** reaches zero, call the xDisconnect() method to delete the object. 154 */ 155 void sqlite3VtabUnlock(VTable *pVTab){ 156 sqlite3 *db = pVTab->db; 157 158 assert( db ); 159 assert( pVTab->nRef>0 ); 160 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 161 162 pVTab->nRef--; 163 if( pVTab->nRef==0 ){ 164 sqlite3_vtab *p = pVTab->pVtab; 165 if( p ){ 166 p->pModule->xDisconnect(p); 167 } 168 sqlite3DbFree(db, pVTab); 169 } 170 } 171 172 /* 173 ** Table p is a virtual table. This function moves all elements in the 174 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 175 ** database connections to be disconnected at the next opportunity. 176 ** Except, if argument db is not NULL, then the entry associated with 177 ** connection db is left in the p->pVTable list. 178 */ 179 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 180 VTable *pRet = 0; 181 VTable *pVTable = p->pVTable; 182 p->pVTable = 0; 183 184 /* Assert that the mutex (if any) associated with the BtShared database 185 ** that contains table p is held by the caller. See header comments 186 ** above function sqlite3VtabUnlockList() for an explanation of why 187 ** this makes it safe to access the sqlite3.pDisconnect list of any 188 ** database connection that may have an entry in the p->pVTable list. 189 */ 190 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 191 192 while( pVTable ){ 193 sqlite3 *db2 = pVTable->db; 194 VTable *pNext = pVTable->pNext; 195 assert( db2 ); 196 if( db2==db ){ 197 pRet = pVTable; 198 p->pVTable = pRet; 199 pRet->pNext = 0; 200 }else{ 201 pVTable->pNext = db2->pDisconnect; 202 db2->pDisconnect = pVTable; 203 } 204 pVTable = pNext; 205 } 206 207 assert( !db || pRet ); 208 return pRet; 209 } 210 211 /* 212 ** Table *p is a virtual table. This function removes the VTable object 213 ** for table *p associated with database connection db from the linked 214 ** list in p->pVTab. It also decrements the VTable ref count. This is 215 ** used when closing database connection db to free all of its VTable 216 ** objects without disturbing the rest of the Schema object (which may 217 ** be being used by other shared-cache connections). 218 */ 219 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 220 VTable **ppVTab; 221 222 assert( IsVirtual(p) ); 223 assert( sqlite3BtreeHoldsAllMutexes(db) ); 224 assert( sqlite3_mutex_held(db->mutex) ); 225 226 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 227 if( (*ppVTab)->db==db ){ 228 VTable *pVTab = *ppVTab; 229 *ppVTab = pVTab->pNext; 230 sqlite3VtabUnlock(pVTab); 231 break; 232 } 233 } 234 } 235 236 237 /* 238 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 239 ** 240 ** This function may only be called when the mutexes associated with all 241 ** shared b-tree databases opened using connection db are held by the 242 ** caller. This is done to protect the sqlite3.pDisconnect list. The 243 ** sqlite3.pDisconnect list is accessed only as follows: 244 ** 245 ** 1) By this function. In this case, all BtShared mutexes and the mutex 246 ** associated with the database handle itself must be held. 247 ** 248 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 249 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 250 ** associated with the database the virtual table is stored in is held 251 ** or, if the virtual table is stored in a non-sharable database, then 252 ** the database handle mutex is held. 253 ** 254 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 255 ** by multiple threads. It is thread-safe. 256 */ 257 void sqlite3VtabUnlockList(sqlite3 *db){ 258 VTable *p = db->pDisconnect; 259 db->pDisconnect = 0; 260 261 assert( sqlite3BtreeHoldsAllMutexes(db) ); 262 assert( sqlite3_mutex_held(db->mutex) ); 263 264 if( p ){ 265 sqlite3ExpirePreparedStatements(db); 266 do { 267 VTable *pNext = p->pNext; 268 sqlite3VtabUnlock(p); 269 p = pNext; 270 }while( p ); 271 } 272 } 273 274 /* 275 ** Clear any and all virtual-table information from the Table record. 276 ** This routine is called, for example, just before deleting the Table 277 ** record. 278 ** 279 ** Since it is a virtual-table, the Table structure contains a pointer 280 ** to the head of a linked list of VTable structures. Each VTable 281 ** structure is associated with a single sqlite3* user of the schema. 282 ** The reference count of the VTable structure associated with database 283 ** connection db is decremented immediately (which may lead to the 284 ** structure being xDisconnected and free). Any other VTable structures 285 ** in the list are moved to the sqlite3.pDisconnect list of the associated 286 ** database connection. 287 */ 288 void sqlite3VtabClear(sqlite3 *db, Table *p){ 289 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 290 if( p->azModuleArg ){ 291 int i; 292 for(i=0; i<p->nModuleArg; i++){ 293 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 294 } 295 sqlite3DbFree(db, p->azModuleArg); 296 } 297 } 298 299 /* 300 ** Add a new module argument to pTable->azModuleArg[]. 301 ** The string is not copied - the pointer is stored. The 302 ** string will be freed automatically when the table is 303 ** deleted. 304 */ 305 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 306 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); 307 char **azModuleArg; 308 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 309 if( azModuleArg==0 ){ 310 sqlite3DbFree(db, zArg); 311 }else{ 312 int i = pTable->nModuleArg++; 313 azModuleArg[i] = zArg; 314 azModuleArg[i+1] = 0; 315 pTable->azModuleArg = azModuleArg; 316 } 317 } 318 319 /* 320 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 321 ** statement. The module name has been parsed, but the optional list 322 ** of parameters that follow the module name are still pending. 323 */ 324 void sqlite3VtabBeginParse( 325 Parse *pParse, /* Parsing context */ 326 Token *pName1, /* Name of new table, or database name */ 327 Token *pName2, /* Name of new table or NULL */ 328 Token *pModuleName, /* Name of the module for the virtual table */ 329 int ifNotExists /* No error if the table already exists */ 330 ){ 331 int iDb; /* The database the table is being created in */ 332 Table *pTable; /* The new virtual table */ 333 sqlite3 *db; /* Database connection */ 334 335 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 336 pTable = pParse->pNewTable; 337 if( pTable==0 ) return; 338 assert( 0==pTable->pIndex ); 339 340 db = pParse->db; 341 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 342 assert( iDb>=0 ); 343 344 assert( pTable->nModuleArg==0 ); 345 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 346 addModuleArgument(db, pTable, 0); 347 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 348 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 349 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 350 ); 351 pParse->sNameToken.n = (int)( 352 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 353 ); 354 355 #ifndef SQLITE_OMIT_AUTHORIZATION 356 /* Creating a virtual table invokes the authorization callback twice. 357 ** The first invocation, to obtain permission to INSERT a row into the 358 ** sqlite_master table, has already been made by sqlite3StartTable(). 359 ** The second call, to obtain permission to create the table, is made now. 360 */ 361 if( pTable->azModuleArg ){ 362 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 363 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 364 } 365 #endif 366 } 367 368 /* 369 ** This routine takes the module argument that has been accumulating 370 ** in pParse->zArg[] and appends it to the list of arguments on the 371 ** virtual table currently under construction in pParse->pTable. 372 */ 373 static void addArgumentToVtab(Parse *pParse){ 374 if( pParse->sArg.z && pParse->pNewTable ){ 375 const char *z = (const char*)pParse->sArg.z; 376 int n = pParse->sArg.n; 377 sqlite3 *db = pParse->db; 378 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 379 } 380 } 381 382 /* 383 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 384 ** has been completely parsed. 385 */ 386 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 387 Table *pTab = pParse->pNewTable; /* The table being constructed */ 388 sqlite3 *db = pParse->db; /* The database connection */ 389 390 if( pTab==0 ) return; 391 addArgumentToVtab(pParse); 392 pParse->sArg.z = 0; 393 if( pTab->nModuleArg<1 ) return; 394 395 /* If the CREATE VIRTUAL TABLE statement is being entered for the 396 ** first time (in other words if the virtual table is actually being 397 ** created now instead of just being read out of sqlite_master) then 398 ** do additional initialization work and store the statement text 399 ** in the sqlite_master table. 400 */ 401 if( !db->init.busy ){ 402 char *zStmt; 403 char *zWhere; 404 int iDb; 405 int iReg; 406 Vdbe *v; 407 408 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 409 if( pEnd ){ 410 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 411 } 412 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 413 414 /* A slot for the record has already been allocated in the 415 ** SQLITE_MASTER table. We just need to update that slot with all 416 ** the information we've collected. 417 ** 418 ** The VM register number pParse->regRowid holds the rowid of an 419 ** entry in the sqlite_master table tht was created for this vtab 420 ** by sqlite3StartTable(). 421 */ 422 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 423 sqlite3NestedParse(pParse, 424 "UPDATE %Q.%s " 425 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 426 "WHERE rowid=#%d", 427 db->aDb[iDb].zDbSName, MASTER_NAME, 428 pTab->zName, 429 pTab->zName, 430 zStmt, 431 pParse->regRowid 432 ); 433 sqlite3DbFree(db, zStmt); 434 v = sqlite3GetVdbe(pParse); 435 sqlite3ChangeCookie(pParse, iDb); 436 437 sqlite3VdbeAddOp0(v, OP_Expire); 438 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 439 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 440 441 iReg = ++pParse->nMem; 442 sqlite3VdbeLoadString(v, iReg, pTab->zName); 443 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 444 } 445 446 /* If we are rereading the sqlite_master table create the in-memory 447 ** record of the table. The xConnect() method is not called until 448 ** the first time the virtual table is used in an SQL statement. This 449 ** allows a schema that contains virtual tables to be loaded before 450 ** the required virtual table implementations are registered. */ 451 else { 452 Table *pOld; 453 Schema *pSchema = pTab->pSchema; 454 const char *zName = pTab->zName; 455 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 456 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 457 if( pOld ){ 458 sqlite3OomFault(db); 459 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 460 return; 461 } 462 pParse->pNewTable = 0; 463 } 464 } 465 466 /* 467 ** The parser calls this routine when it sees the first token 468 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 469 */ 470 void sqlite3VtabArgInit(Parse *pParse){ 471 addArgumentToVtab(pParse); 472 pParse->sArg.z = 0; 473 pParse->sArg.n = 0; 474 } 475 476 /* 477 ** The parser calls this routine for each token after the first token 478 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 479 */ 480 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 481 Token *pArg = &pParse->sArg; 482 if( pArg->z==0 ){ 483 pArg->z = p->z; 484 pArg->n = p->n; 485 }else{ 486 assert(pArg->z <= p->z); 487 pArg->n = (int)(&p->z[p->n] - pArg->z); 488 } 489 } 490 491 /* 492 ** Invoke a virtual table constructor (either xCreate or xConnect). The 493 ** pointer to the function to invoke is passed as the fourth parameter 494 ** to this procedure. 495 */ 496 static int vtabCallConstructor( 497 sqlite3 *db, 498 Table *pTab, 499 Module *pMod, 500 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 501 char **pzErr 502 ){ 503 VtabCtx sCtx; 504 VTable *pVTable; 505 int rc; 506 const char *const*azArg = (const char *const*)pTab->azModuleArg; 507 int nArg = pTab->nModuleArg; 508 char *zErr = 0; 509 char *zModuleName; 510 int iDb; 511 VtabCtx *pCtx; 512 513 /* Check that the virtual-table is not already being initialized */ 514 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 515 if( pCtx->pTab==pTab ){ 516 *pzErr = sqlite3MPrintf(db, 517 "vtable constructor called recursively: %s", pTab->zName 518 ); 519 return SQLITE_LOCKED; 520 } 521 } 522 523 zModuleName = sqlite3DbStrDup(db, pTab->zName); 524 if( !zModuleName ){ 525 return SQLITE_NOMEM_BKPT; 526 } 527 528 pVTable = sqlite3MallocZero(sizeof(VTable)); 529 if( !pVTable ){ 530 sqlite3OomFault(db); 531 sqlite3DbFree(db, zModuleName); 532 return SQLITE_NOMEM_BKPT; 533 } 534 pVTable->db = db; 535 pVTable->pMod = pMod; 536 537 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 538 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 539 540 /* Invoke the virtual table constructor */ 541 assert( &db->pVtabCtx ); 542 assert( xConstruct ); 543 sCtx.pTab = pTab; 544 sCtx.pVTable = pVTable; 545 sCtx.pPrior = db->pVtabCtx; 546 sCtx.bDeclared = 0; 547 db->pVtabCtx = &sCtx; 548 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 549 db->pVtabCtx = sCtx.pPrior; 550 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 551 assert( sCtx.pTab==pTab ); 552 553 if( SQLITE_OK!=rc ){ 554 if( zErr==0 ){ 555 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 556 }else { 557 *pzErr = sqlite3MPrintf(db, "%s", zErr); 558 sqlite3_free(zErr); 559 } 560 sqlite3DbFree(db, pVTable); 561 }else if( ALWAYS(pVTable->pVtab) ){ 562 /* Justification of ALWAYS(): A correct vtab constructor must allocate 563 ** the sqlite3_vtab object if successful. */ 564 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 565 pVTable->pVtab->pModule = pMod->pModule; 566 pVTable->nRef = 1; 567 if( sCtx.bDeclared==0 ){ 568 const char *zFormat = "vtable constructor did not declare schema: %s"; 569 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 570 sqlite3VtabUnlock(pVTable); 571 rc = SQLITE_ERROR; 572 }else{ 573 int iCol; 574 u8 oooHidden = 0; 575 /* If everything went according to plan, link the new VTable structure 576 ** into the linked list headed by pTab->pVTable. Then loop through the 577 ** columns of the table to see if any of them contain the token "hidden". 578 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 579 ** the type string. */ 580 pVTable->pNext = pTab->pVTable; 581 pTab->pVTable = pVTable; 582 583 for(iCol=0; iCol<pTab->nCol; iCol++){ 584 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 585 int nType; 586 int i = 0; 587 nType = sqlite3Strlen30(zType); 588 for(i=0; i<nType; i++){ 589 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 590 && (i==0 || zType[i-1]==' ') 591 && (zType[i+6]=='\0' || zType[i+6]==' ') 592 ){ 593 break; 594 } 595 } 596 if( i<nType ){ 597 int j; 598 int nDel = 6 + (zType[i+6] ? 1 : 0); 599 for(j=i; (j+nDel)<=nType; j++){ 600 zType[j] = zType[j+nDel]; 601 } 602 if( zType[i]=='\0' && i>0 ){ 603 assert(zType[i-1]==' '); 604 zType[i-1] = '\0'; 605 } 606 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 607 oooHidden = TF_OOOHidden; 608 }else{ 609 pTab->tabFlags |= oooHidden; 610 } 611 } 612 } 613 } 614 615 sqlite3DbFree(db, zModuleName); 616 return rc; 617 } 618 619 /* 620 ** This function is invoked by the parser to call the xConnect() method 621 ** of the virtual table pTab. If an error occurs, an error code is returned 622 ** and an error left in pParse. 623 ** 624 ** This call is a no-op if table pTab is not a virtual table. 625 */ 626 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 627 sqlite3 *db = pParse->db; 628 const char *zMod; 629 Module *pMod; 630 int rc; 631 632 assert( pTab ); 633 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 634 return SQLITE_OK; 635 } 636 637 /* Locate the required virtual table module */ 638 zMod = pTab->azModuleArg[0]; 639 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 640 641 if( !pMod ){ 642 const char *zModule = pTab->azModuleArg[0]; 643 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 644 rc = SQLITE_ERROR; 645 }else{ 646 char *zErr = 0; 647 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 648 if( rc!=SQLITE_OK ){ 649 sqlite3ErrorMsg(pParse, "%s", zErr); 650 pParse->rc = rc; 651 } 652 sqlite3DbFree(db, zErr); 653 } 654 655 return rc; 656 } 657 /* 658 ** Grow the db->aVTrans[] array so that there is room for at least one 659 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 660 */ 661 static int growVTrans(sqlite3 *db){ 662 const int ARRAY_INCR = 5; 663 664 /* Grow the sqlite3.aVTrans array if required */ 665 if( (db->nVTrans%ARRAY_INCR)==0 ){ 666 VTable **aVTrans; 667 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 668 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 669 if( !aVTrans ){ 670 return SQLITE_NOMEM_BKPT; 671 } 672 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 673 db->aVTrans = aVTrans; 674 } 675 676 return SQLITE_OK; 677 } 678 679 /* 680 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 681 ** have already been reserved using growVTrans(). 682 */ 683 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 684 /* Add pVtab to the end of sqlite3.aVTrans */ 685 db->aVTrans[db->nVTrans++] = pVTab; 686 sqlite3VtabLock(pVTab); 687 } 688 689 /* 690 ** This function is invoked by the vdbe to call the xCreate method 691 ** of the virtual table named zTab in database iDb. 692 ** 693 ** If an error occurs, *pzErr is set to point to an English language 694 ** description of the error and an SQLITE_XXX error code is returned. 695 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 696 */ 697 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 698 int rc = SQLITE_OK; 699 Table *pTab; 700 Module *pMod; 701 const char *zMod; 702 703 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 704 assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); 705 706 /* Locate the required virtual table module */ 707 zMod = pTab->azModuleArg[0]; 708 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 709 710 /* If the module has been registered and includes a Create method, 711 ** invoke it now. If the module has not been registered, return an 712 ** error. Otherwise, do nothing. 713 */ 714 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 715 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 716 rc = SQLITE_ERROR; 717 }else{ 718 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 719 } 720 721 /* Justification of ALWAYS(): The xConstructor method is required to 722 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 723 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 724 rc = growVTrans(db); 725 if( rc==SQLITE_OK ){ 726 addToVTrans(db, sqlite3GetVTable(db, pTab)); 727 } 728 } 729 730 return rc; 731 } 732 733 /* 734 ** This function is used to set the schema of a virtual table. It is only 735 ** valid to call this function from within the xCreate() or xConnect() of a 736 ** virtual table module. 737 */ 738 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 739 VtabCtx *pCtx; 740 int rc = SQLITE_OK; 741 Table *pTab; 742 char *zErr = 0; 743 Parse sParse; 744 745 #ifdef SQLITE_ENABLE_API_ARMOR 746 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 747 return SQLITE_MISUSE_BKPT; 748 } 749 #endif 750 sqlite3_mutex_enter(db->mutex); 751 pCtx = db->pVtabCtx; 752 if( !pCtx || pCtx->bDeclared ){ 753 sqlite3Error(db, SQLITE_MISUSE); 754 sqlite3_mutex_leave(db->mutex); 755 return SQLITE_MISUSE_BKPT; 756 } 757 pTab = pCtx->pTab; 758 assert( IsVirtual(pTab) ); 759 760 memset(&sParse, 0, sizeof(sParse)); 761 sParse.declareVtab = 1; 762 sParse.db = db; 763 sParse.nQueryLoop = 1; 764 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 765 && sParse.pNewTable 766 && !db->mallocFailed 767 && !sParse.pNewTable->pSelect 768 && !IsVirtual(sParse.pNewTable) 769 ){ 770 if( !pTab->aCol ){ 771 Table *pNew = sParse.pNewTable; 772 Index *pIdx; 773 pTab->aCol = pNew->aCol; 774 pTab->nCol = pNew->nCol; 775 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 776 pNew->nCol = 0; 777 pNew->aCol = 0; 778 assert( pTab->pIndex==0 ); 779 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 780 if( !HasRowid(pNew) 781 && pCtx->pVTable->pMod->pModule->xUpdate!=0 782 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 783 ){ 784 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 785 ** or else must have a single-column PRIMARY KEY */ 786 rc = SQLITE_ERROR; 787 } 788 pIdx = pNew->pIndex; 789 if( pIdx ){ 790 assert( pIdx->pNext==0 ); 791 pTab->pIndex = pIdx; 792 pNew->pIndex = 0; 793 pIdx->pTable = pTab; 794 } 795 } 796 pCtx->bDeclared = 1; 797 }else{ 798 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 799 sqlite3DbFree(db, zErr); 800 rc = SQLITE_ERROR; 801 } 802 sParse.declareVtab = 0; 803 804 if( sParse.pVdbe ){ 805 sqlite3VdbeFinalize(sParse.pVdbe); 806 } 807 sqlite3DeleteTable(db, sParse.pNewTable); 808 sqlite3ParserReset(&sParse); 809 810 assert( (rc&0xff)==rc ); 811 rc = sqlite3ApiExit(db, rc); 812 sqlite3_mutex_leave(db->mutex); 813 return rc; 814 } 815 816 /* 817 ** This function is invoked by the vdbe to call the xDestroy method 818 ** of the virtual table named zTab in database iDb. This occurs 819 ** when a DROP TABLE is mentioned. 820 ** 821 ** This call is a no-op if zTab is not a virtual table. 822 */ 823 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 824 int rc = SQLITE_OK; 825 Table *pTab; 826 827 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 828 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 829 VTable *p; 830 int (*xDestroy)(sqlite3_vtab *); 831 for(p=pTab->pVTable; p; p=p->pNext){ 832 assert( p->pVtab ); 833 if( p->pVtab->nRef>0 ){ 834 return SQLITE_LOCKED; 835 } 836 } 837 p = vtabDisconnectAll(db, pTab); 838 xDestroy = p->pMod->pModule->xDestroy; 839 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 840 rc = xDestroy(p->pVtab); 841 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 842 if( rc==SQLITE_OK ){ 843 assert( pTab->pVTable==p && p->pNext==0 ); 844 p->pVtab = 0; 845 pTab->pVTable = 0; 846 sqlite3VtabUnlock(p); 847 } 848 } 849 850 return rc; 851 } 852 853 /* 854 ** This function invokes either the xRollback or xCommit method 855 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 856 ** called is identified by the second argument, "offset", which is 857 ** the offset of the method to call in the sqlite3_module structure. 858 ** 859 ** The array is cleared after invoking the callbacks. 860 */ 861 static void callFinaliser(sqlite3 *db, int offset){ 862 int i; 863 if( db->aVTrans ){ 864 VTable **aVTrans = db->aVTrans; 865 db->aVTrans = 0; 866 for(i=0; i<db->nVTrans; i++){ 867 VTable *pVTab = aVTrans[i]; 868 sqlite3_vtab *p = pVTab->pVtab; 869 if( p ){ 870 int (*x)(sqlite3_vtab *); 871 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 872 if( x ) x(p); 873 } 874 pVTab->iSavepoint = 0; 875 sqlite3VtabUnlock(pVTab); 876 } 877 sqlite3DbFree(db, aVTrans); 878 db->nVTrans = 0; 879 } 880 } 881 882 /* 883 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 884 ** array. Return the error code for the first error that occurs, or 885 ** SQLITE_OK if all xSync operations are successful. 886 ** 887 ** If an error message is available, leave it in p->zErrMsg. 888 */ 889 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 890 int i; 891 int rc = SQLITE_OK; 892 VTable **aVTrans = db->aVTrans; 893 894 db->aVTrans = 0; 895 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 896 int (*x)(sqlite3_vtab *); 897 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 898 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 899 rc = x(pVtab); 900 sqlite3VtabImportErrmsg(p, pVtab); 901 } 902 } 903 db->aVTrans = aVTrans; 904 return rc; 905 } 906 907 /* 908 ** Invoke the xRollback method of all virtual tables in the 909 ** sqlite3.aVTrans array. Then clear the array itself. 910 */ 911 int sqlite3VtabRollback(sqlite3 *db){ 912 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 913 return SQLITE_OK; 914 } 915 916 /* 917 ** Invoke the xCommit method of all virtual tables in the 918 ** sqlite3.aVTrans array. Then clear the array itself. 919 */ 920 int sqlite3VtabCommit(sqlite3 *db){ 921 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 922 return SQLITE_OK; 923 } 924 925 /* 926 ** If the virtual table pVtab supports the transaction interface 927 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 928 ** not currently open, invoke the xBegin method now. 929 ** 930 ** If the xBegin call is successful, place the sqlite3_vtab pointer 931 ** in the sqlite3.aVTrans array. 932 */ 933 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 934 int rc = SQLITE_OK; 935 const sqlite3_module *pModule; 936 937 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 938 ** than zero, then this function is being called from within a 939 ** virtual module xSync() callback. It is illegal to write to 940 ** virtual module tables in this case, so return SQLITE_LOCKED. 941 */ 942 if( sqlite3VtabInSync(db) ){ 943 return SQLITE_LOCKED; 944 } 945 if( !pVTab ){ 946 return SQLITE_OK; 947 } 948 pModule = pVTab->pVtab->pModule; 949 950 if( pModule->xBegin ){ 951 int i; 952 953 /* If pVtab is already in the aVTrans array, return early */ 954 for(i=0; i<db->nVTrans; i++){ 955 if( db->aVTrans[i]==pVTab ){ 956 return SQLITE_OK; 957 } 958 } 959 960 /* Invoke the xBegin method. If successful, add the vtab to the 961 ** sqlite3.aVTrans[] array. */ 962 rc = growVTrans(db); 963 if( rc==SQLITE_OK ){ 964 rc = pModule->xBegin(pVTab->pVtab); 965 if( rc==SQLITE_OK ){ 966 int iSvpt = db->nStatement + db->nSavepoint; 967 addToVTrans(db, pVTab); 968 if( iSvpt && pModule->xSavepoint ){ 969 pVTab->iSavepoint = iSvpt; 970 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 971 } 972 } 973 } 974 } 975 return rc; 976 } 977 978 /* 979 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 980 ** virtual tables that currently have an open transaction. Pass iSavepoint 981 ** as the second argument to the virtual table method invoked. 982 ** 983 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 984 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 985 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 986 ** an open transaction is invoked. 987 ** 988 ** If any virtual table method returns an error code other than SQLITE_OK, 989 ** processing is abandoned and the error returned to the caller of this 990 ** function immediately. If all calls to virtual table methods are successful, 991 ** SQLITE_OK is returned. 992 */ 993 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 994 int rc = SQLITE_OK; 995 996 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 997 assert( iSavepoint>=-1 ); 998 if( db->aVTrans ){ 999 int i; 1000 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 1001 VTable *pVTab = db->aVTrans[i]; 1002 const sqlite3_module *pMod = pVTab->pMod->pModule; 1003 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1004 int (*xMethod)(sqlite3_vtab *, int); 1005 switch( op ){ 1006 case SAVEPOINT_BEGIN: 1007 xMethod = pMod->xSavepoint; 1008 pVTab->iSavepoint = iSavepoint+1; 1009 break; 1010 case SAVEPOINT_ROLLBACK: 1011 xMethod = pMod->xRollbackTo; 1012 break; 1013 default: 1014 xMethod = pMod->xRelease; 1015 break; 1016 } 1017 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1018 rc = xMethod(pVTab->pVtab, iSavepoint); 1019 } 1020 } 1021 } 1022 } 1023 return rc; 1024 } 1025 1026 /* 1027 ** The first parameter (pDef) is a function implementation. The 1028 ** second parameter (pExpr) is the first argument to this function. 1029 ** If pExpr is a column in a virtual table, then let the virtual 1030 ** table implementation have an opportunity to overload the function. 1031 ** 1032 ** This routine is used to allow virtual table implementations to 1033 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1034 ** 1035 ** Return either the pDef argument (indicating no change) or a 1036 ** new FuncDef structure that is marked as ephemeral using the 1037 ** SQLITE_FUNC_EPHEM flag. 1038 */ 1039 FuncDef *sqlite3VtabOverloadFunction( 1040 sqlite3 *db, /* Database connection for reporting malloc problems */ 1041 FuncDef *pDef, /* Function to possibly overload */ 1042 int nArg, /* Number of arguments to the function */ 1043 Expr *pExpr /* First argument to the function */ 1044 ){ 1045 Table *pTab; 1046 sqlite3_vtab *pVtab; 1047 sqlite3_module *pMod; 1048 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1049 void *pArg = 0; 1050 FuncDef *pNew; 1051 int rc = 0; 1052 1053 /* Check to see the left operand is a column in a virtual table */ 1054 if( NEVER(pExpr==0) ) return pDef; 1055 if( pExpr->op!=TK_COLUMN ) return pDef; 1056 pTab = pExpr->pTab; 1057 if( pTab==0 ) return pDef; 1058 if( !IsVirtual(pTab) ) return pDef; 1059 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1060 assert( pVtab!=0 ); 1061 assert( pVtab->pModule!=0 ); 1062 pMod = (sqlite3_module *)pVtab->pModule; 1063 if( pMod->xFindFunction==0 ) return pDef; 1064 1065 /* Call the xFindFunction method on the virtual table implementation 1066 ** to see if the implementation wants to overload this function. 1067 ** 1068 ** Though undocumented, we have historically always invoked xFindFunction 1069 ** with an all lower-case function name. Continue in this tradition to 1070 ** avoid any chance of an incompatibility. 1071 */ 1072 #ifdef SQLITE_DEBUG 1073 { 1074 int i; 1075 for(i=0; pDef->zName[i]; i++){ 1076 unsigned char x = (unsigned char)pDef->zName[i]; 1077 assert( x==sqlite3UpperToLower[x] ); 1078 } 1079 } 1080 #endif 1081 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); 1082 if( rc==0 ){ 1083 return pDef; 1084 } 1085 1086 /* Create a new ephemeral function definition for the overloaded 1087 ** function */ 1088 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1089 + sqlite3Strlen30(pDef->zName) + 1); 1090 if( pNew==0 ){ 1091 return pDef; 1092 } 1093 *pNew = *pDef; 1094 pNew->zName = (const char*)&pNew[1]; 1095 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1096 pNew->xSFunc = xSFunc; 1097 pNew->pUserData = pArg; 1098 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1099 return pNew; 1100 } 1101 1102 /* 1103 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1104 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1105 ** array if it is missing. If pTab is already in the array, this routine 1106 ** is a no-op. 1107 */ 1108 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1109 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1110 int i, n; 1111 Table **apVtabLock; 1112 1113 assert( IsVirtual(pTab) ); 1114 for(i=0; i<pToplevel->nVtabLock; i++){ 1115 if( pTab==pToplevel->apVtabLock[i] ) return; 1116 } 1117 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1118 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1119 if( apVtabLock ){ 1120 pToplevel->apVtabLock = apVtabLock; 1121 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1122 }else{ 1123 sqlite3OomFault(pToplevel->db); 1124 } 1125 } 1126 1127 /* 1128 ** Check to see if virtual table module pMod can be have an eponymous 1129 ** virtual table instance. If it can, create one if one does not already 1130 ** exist. Return non-zero if the eponymous virtual table instance exists 1131 ** when this routine returns, and return zero if it does not exist. 1132 ** 1133 ** An eponymous virtual table instance is one that is named after its 1134 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1135 ** statement in order to come into existance. Eponymous virtual table 1136 ** instances always exist. They cannot be DROP-ed. 1137 ** 1138 ** Any virtual table module for which xConnect and xCreate are the same 1139 ** method can have an eponymous virtual table instance. 1140 */ 1141 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1142 const sqlite3_module *pModule = pMod->pModule; 1143 Table *pTab; 1144 char *zErr = 0; 1145 int rc; 1146 sqlite3 *db = pParse->db; 1147 if( pMod->pEpoTab ) return 1; 1148 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1149 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1150 if( pTab==0 ) return 0; 1151 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1152 if( pTab->zName==0 ){ 1153 sqlite3DbFree(db, pTab); 1154 return 0; 1155 } 1156 pMod->pEpoTab = pTab; 1157 pTab->nTabRef = 1; 1158 pTab->pSchema = db->aDb[0].pSchema; 1159 assert( pTab->nModuleArg==0 ); 1160 pTab->iPKey = -1; 1161 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1162 addModuleArgument(db, pTab, 0); 1163 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1164 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1165 if( rc ){ 1166 sqlite3ErrorMsg(pParse, "%s", zErr); 1167 sqlite3DbFree(db, zErr); 1168 sqlite3VtabEponymousTableClear(db, pMod); 1169 return 0; 1170 } 1171 return 1; 1172 } 1173 1174 /* 1175 ** Erase the eponymous virtual table instance associated with 1176 ** virtual table module pMod, if it exists. 1177 */ 1178 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1179 Table *pTab = pMod->pEpoTab; 1180 if( pTab!=0 ){ 1181 /* Mark the table as Ephemeral prior to deleting it, so that the 1182 ** sqlite3DeleteTable() routine will know that it is not stored in 1183 ** the schema. */ 1184 pTab->tabFlags |= TF_Ephemeral; 1185 sqlite3DeleteTable(db, pTab); 1186 pMod->pEpoTab = 0; 1187 } 1188 } 1189 1190 /* 1191 ** Return the ON CONFLICT resolution mode in effect for the virtual 1192 ** table update operation currently in progress. 1193 ** 1194 ** The results of this routine are undefined unless it is called from 1195 ** within an xUpdate method. 1196 */ 1197 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1198 static const unsigned char aMap[] = { 1199 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1200 }; 1201 #ifdef SQLITE_ENABLE_API_ARMOR 1202 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1203 #endif 1204 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1205 assert( OE_Ignore==4 && OE_Replace==5 ); 1206 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1207 return (int)aMap[db->vtabOnConflict-1]; 1208 } 1209 1210 /* 1211 ** Call from within the xCreate() or xConnect() methods to provide 1212 ** the SQLite core with additional information about the behavior 1213 ** of the virtual table being implemented. 1214 */ 1215 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1216 va_list ap; 1217 int rc = SQLITE_OK; 1218 1219 #ifdef SQLITE_ENABLE_API_ARMOR 1220 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1221 #endif 1222 sqlite3_mutex_enter(db->mutex); 1223 va_start(ap, op); 1224 switch( op ){ 1225 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1226 VtabCtx *p = db->pVtabCtx; 1227 if( !p ){ 1228 rc = SQLITE_MISUSE_BKPT; 1229 }else{ 1230 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1231 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1232 } 1233 break; 1234 } 1235 default: 1236 rc = SQLITE_MISUSE_BKPT; 1237 break; 1238 } 1239 va_end(ap); 1240 1241 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1242 sqlite3_mutex_leave(db->mutex); 1243 return rc; 1244 } 1245 1246 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1247