1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** The actual function that does the work of creating a new module. 33 ** This function implements the sqlite3_create_module() and 34 ** sqlite3_create_module_v2() interfaces. 35 */ 36 static int createModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 int rc = SQLITE_OK; 44 int nName; 45 46 sqlite3_mutex_enter(db->mutex); 47 nName = sqlite3Strlen30(zName); 48 if( sqlite3HashFind(&db->aModule, zName) ){ 49 rc = SQLITE_MISUSE_BKPT; 50 }else{ 51 Module *pMod; 52 pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1); 53 if( pMod ){ 54 Module *pDel; 55 char *zCopy = (char *)(&pMod[1]); 56 memcpy(zCopy, zName, nName+1); 57 pMod->zName = zCopy; 58 pMod->pModule = pModule; 59 pMod->pAux = pAux; 60 pMod->xDestroy = xDestroy; 61 pMod->pEpoTab = 0; 62 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 63 assert( pDel==0 || pDel==pMod ); 64 if( pDel ){ 65 sqlite3OomFault(db); 66 sqlite3DbFree(db, pDel); 67 } 68 } 69 } 70 rc = sqlite3ApiExit(db, rc); 71 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 72 73 sqlite3_mutex_leave(db->mutex); 74 return rc; 75 } 76 77 78 /* 79 ** External API function used to create a new virtual-table module. 80 */ 81 int sqlite3_create_module( 82 sqlite3 *db, /* Database in which module is registered */ 83 const char *zName, /* Name assigned to this module */ 84 const sqlite3_module *pModule, /* The definition of the module */ 85 void *pAux /* Context pointer for xCreate/xConnect */ 86 ){ 87 #ifdef SQLITE_ENABLE_API_ARMOR 88 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 89 #endif 90 return createModule(db, zName, pModule, pAux, 0); 91 } 92 93 /* 94 ** External API function used to create a new virtual-table module. 95 */ 96 int sqlite3_create_module_v2( 97 sqlite3 *db, /* Database in which module is registered */ 98 const char *zName, /* Name assigned to this module */ 99 const sqlite3_module *pModule, /* The definition of the module */ 100 void *pAux, /* Context pointer for xCreate/xConnect */ 101 void (*xDestroy)(void *) /* Module destructor function */ 102 ){ 103 #ifdef SQLITE_ENABLE_API_ARMOR 104 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 105 #endif 106 return createModule(db, zName, pModule, pAux, xDestroy); 107 } 108 109 /* 110 ** Lock the virtual table so that it cannot be disconnected. 111 ** Locks nest. Every lock should have a corresponding unlock. 112 ** If an unlock is omitted, resources leaks will occur. 113 ** 114 ** If a disconnect is attempted while a virtual table is locked, 115 ** the disconnect is deferred until all locks have been removed. 116 */ 117 void sqlite3VtabLock(VTable *pVTab){ 118 pVTab->nRef++; 119 } 120 121 122 /* 123 ** pTab is a pointer to a Table structure representing a virtual-table. 124 ** Return a pointer to the VTable object used by connection db to access 125 ** this virtual-table, if one has been created, or NULL otherwise. 126 */ 127 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 128 VTable *pVtab; 129 assert( IsVirtual(pTab) ); 130 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 131 return pVtab; 132 } 133 134 /* 135 ** Decrement the ref-count on a virtual table object. When the ref-count 136 ** reaches zero, call the xDisconnect() method to delete the object. 137 */ 138 void sqlite3VtabUnlock(VTable *pVTab){ 139 sqlite3 *db = pVTab->db; 140 141 assert( db ); 142 assert( pVTab->nRef>0 ); 143 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 144 145 pVTab->nRef--; 146 if( pVTab->nRef==0 ){ 147 sqlite3_vtab *p = pVTab->pVtab; 148 if( p ){ 149 p->pModule->xDisconnect(p); 150 } 151 sqlite3DbFree(db, pVTab); 152 } 153 } 154 155 /* 156 ** Table p is a virtual table. This function moves all elements in the 157 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 158 ** database connections to be disconnected at the next opportunity. 159 ** Except, if argument db is not NULL, then the entry associated with 160 ** connection db is left in the p->pVTable list. 161 */ 162 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 163 VTable *pRet = 0; 164 VTable *pVTable = p->pVTable; 165 p->pVTable = 0; 166 167 /* Assert that the mutex (if any) associated with the BtShared database 168 ** that contains table p is held by the caller. See header comments 169 ** above function sqlite3VtabUnlockList() for an explanation of why 170 ** this makes it safe to access the sqlite3.pDisconnect list of any 171 ** database connection that may have an entry in the p->pVTable list. 172 */ 173 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 174 175 while( pVTable ){ 176 sqlite3 *db2 = pVTable->db; 177 VTable *pNext = pVTable->pNext; 178 assert( db2 ); 179 if( db2==db ){ 180 pRet = pVTable; 181 p->pVTable = pRet; 182 pRet->pNext = 0; 183 }else{ 184 pVTable->pNext = db2->pDisconnect; 185 db2->pDisconnect = pVTable; 186 } 187 pVTable = pNext; 188 } 189 190 assert( !db || pRet ); 191 return pRet; 192 } 193 194 /* 195 ** Table *p is a virtual table. This function removes the VTable object 196 ** for table *p associated with database connection db from the linked 197 ** list in p->pVTab. It also decrements the VTable ref count. This is 198 ** used when closing database connection db to free all of its VTable 199 ** objects without disturbing the rest of the Schema object (which may 200 ** be being used by other shared-cache connections). 201 */ 202 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 203 VTable **ppVTab; 204 205 assert( IsVirtual(p) ); 206 assert( sqlite3BtreeHoldsAllMutexes(db) ); 207 assert( sqlite3_mutex_held(db->mutex) ); 208 209 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 210 if( (*ppVTab)->db==db ){ 211 VTable *pVTab = *ppVTab; 212 *ppVTab = pVTab->pNext; 213 sqlite3VtabUnlock(pVTab); 214 break; 215 } 216 } 217 } 218 219 220 /* 221 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 222 ** 223 ** This function may only be called when the mutexes associated with all 224 ** shared b-tree databases opened using connection db are held by the 225 ** caller. This is done to protect the sqlite3.pDisconnect list. The 226 ** sqlite3.pDisconnect list is accessed only as follows: 227 ** 228 ** 1) By this function. In this case, all BtShared mutexes and the mutex 229 ** associated with the database handle itself must be held. 230 ** 231 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 232 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 233 ** associated with the database the virtual table is stored in is held 234 ** or, if the virtual table is stored in a non-sharable database, then 235 ** the database handle mutex is held. 236 ** 237 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 238 ** by multiple threads. It is thread-safe. 239 */ 240 void sqlite3VtabUnlockList(sqlite3 *db){ 241 VTable *p = db->pDisconnect; 242 db->pDisconnect = 0; 243 244 assert( sqlite3BtreeHoldsAllMutexes(db) ); 245 assert( sqlite3_mutex_held(db->mutex) ); 246 247 if( p ){ 248 sqlite3ExpirePreparedStatements(db); 249 do { 250 VTable *pNext = p->pNext; 251 sqlite3VtabUnlock(p); 252 p = pNext; 253 }while( p ); 254 } 255 } 256 257 /* 258 ** Clear any and all virtual-table information from the Table record. 259 ** This routine is called, for example, just before deleting the Table 260 ** record. 261 ** 262 ** Since it is a virtual-table, the Table structure contains a pointer 263 ** to the head of a linked list of VTable structures. Each VTable 264 ** structure is associated with a single sqlite3* user of the schema. 265 ** The reference count of the VTable structure associated with database 266 ** connection db is decremented immediately (which may lead to the 267 ** structure being xDisconnected and free). Any other VTable structures 268 ** in the list are moved to the sqlite3.pDisconnect list of the associated 269 ** database connection. 270 */ 271 void sqlite3VtabClear(sqlite3 *db, Table *p){ 272 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 273 if( p->azModuleArg ){ 274 int i; 275 for(i=0; i<p->nModuleArg; i++){ 276 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 277 } 278 sqlite3DbFree(db, p->azModuleArg); 279 } 280 } 281 282 /* 283 ** Add a new module argument to pTable->azModuleArg[]. 284 ** The string is not copied - the pointer is stored. The 285 ** string will be freed automatically when the table is 286 ** deleted. 287 */ 288 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 289 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); 290 char **azModuleArg; 291 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 292 if( azModuleArg==0 ){ 293 sqlite3DbFree(db, zArg); 294 }else{ 295 int i = pTable->nModuleArg++; 296 azModuleArg[i] = zArg; 297 azModuleArg[i+1] = 0; 298 pTable->azModuleArg = azModuleArg; 299 } 300 } 301 302 /* 303 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 304 ** statement. The module name has been parsed, but the optional list 305 ** of parameters that follow the module name are still pending. 306 */ 307 void sqlite3VtabBeginParse( 308 Parse *pParse, /* Parsing context */ 309 Token *pName1, /* Name of new table, or database name */ 310 Token *pName2, /* Name of new table or NULL */ 311 Token *pModuleName, /* Name of the module for the virtual table */ 312 int ifNotExists /* No error if the table already exists */ 313 ){ 314 int iDb; /* The database the table is being created in */ 315 Table *pTable; /* The new virtual table */ 316 sqlite3 *db; /* Database connection */ 317 318 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 319 pTable = pParse->pNewTable; 320 if( pTable==0 ) return; 321 assert( 0==pTable->pIndex ); 322 323 db = pParse->db; 324 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 325 assert( iDb>=0 ); 326 327 pTable->tabFlags |= TF_Virtual; 328 pTable->nModuleArg = 0; 329 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 330 addModuleArgument(db, pTable, 0); 331 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 332 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 333 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 334 ); 335 pParse->sNameToken.n = (int)( 336 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 337 ); 338 339 #ifndef SQLITE_OMIT_AUTHORIZATION 340 /* Creating a virtual table invokes the authorization callback twice. 341 ** The first invocation, to obtain permission to INSERT a row into the 342 ** sqlite_master table, has already been made by sqlite3StartTable(). 343 ** The second call, to obtain permission to create the table, is made now. 344 */ 345 if( pTable->azModuleArg ){ 346 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 347 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 348 } 349 #endif 350 } 351 352 /* 353 ** This routine takes the module argument that has been accumulating 354 ** in pParse->zArg[] and appends it to the list of arguments on the 355 ** virtual table currently under construction in pParse->pTable. 356 */ 357 static void addArgumentToVtab(Parse *pParse){ 358 if( pParse->sArg.z && pParse->pNewTable ){ 359 const char *z = (const char*)pParse->sArg.z; 360 int n = pParse->sArg.n; 361 sqlite3 *db = pParse->db; 362 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 363 } 364 } 365 366 /* 367 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 368 ** has been completely parsed. 369 */ 370 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 371 Table *pTab = pParse->pNewTable; /* The table being constructed */ 372 sqlite3 *db = pParse->db; /* The database connection */ 373 374 if( pTab==0 ) return; 375 addArgumentToVtab(pParse); 376 pParse->sArg.z = 0; 377 if( pTab->nModuleArg<1 ) return; 378 379 /* If the CREATE VIRTUAL TABLE statement is being entered for the 380 ** first time (in other words if the virtual table is actually being 381 ** created now instead of just being read out of sqlite_master) then 382 ** do additional initialization work and store the statement text 383 ** in the sqlite_master table. 384 */ 385 if( !db->init.busy ){ 386 char *zStmt; 387 char *zWhere; 388 int iDb; 389 int iReg; 390 Vdbe *v; 391 392 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 393 if( pEnd ){ 394 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 395 } 396 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 397 398 /* A slot for the record has already been allocated in the 399 ** SQLITE_MASTER table. We just need to update that slot with all 400 ** the information we've collected. 401 ** 402 ** The VM register number pParse->regRowid holds the rowid of an 403 ** entry in the sqlite_master table tht was created for this vtab 404 ** by sqlite3StartTable(). 405 */ 406 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 407 sqlite3NestedParse(pParse, 408 "UPDATE %Q.%s " 409 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 410 "WHERE rowid=#%d", 411 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), 412 pTab->zName, 413 pTab->zName, 414 zStmt, 415 pParse->regRowid 416 ); 417 sqlite3DbFree(db, zStmt); 418 v = sqlite3GetVdbe(pParse); 419 sqlite3ChangeCookie(pParse, iDb); 420 421 sqlite3VdbeAddOp0(v, OP_Expire); 422 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 423 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 424 425 iReg = ++pParse->nMem; 426 sqlite3VdbeLoadString(v, iReg, pTab->zName); 427 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 428 } 429 430 /* If we are rereading the sqlite_master table create the in-memory 431 ** record of the table. The xConnect() method is not called until 432 ** the first time the virtual table is used in an SQL statement. This 433 ** allows a schema that contains virtual tables to be loaded before 434 ** the required virtual table implementations are registered. */ 435 else { 436 Table *pOld; 437 Schema *pSchema = pTab->pSchema; 438 const char *zName = pTab->zName; 439 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 440 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 441 if( pOld ){ 442 sqlite3OomFault(db); 443 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 444 return; 445 } 446 pParse->pNewTable = 0; 447 } 448 } 449 450 /* 451 ** The parser calls this routine when it sees the first token 452 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 453 */ 454 void sqlite3VtabArgInit(Parse *pParse){ 455 addArgumentToVtab(pParse); 456 pParse->sArg.z = 0; 457 pParse->sArg.n = 0; 458 } 459 460 /* 461 ** The parser calls this routine for each token after the first token 462 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 463 */ 464 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 465 Token *pArg = &pParse->sArg; 466 if( pArg->z==0 ){ 467 pArg->z = p->z; 468 pArg->n = p->n; 469 }else{ 470 assert(pArg->z <= p->z); 471 pArg->n = (int)(&p->z[p->n] - pArg->z); 472 } 473 } 474 475 /* 476 ** Invoke a virtual table constructor (either xCreate or xConnect). The 477 ** pointer to the function to invoke is passed as the fourth parameter 478 ** to this procedure. 479 */ 480 static int vtabCallConstructor( 481 sqlite3 *db, 482 Table *pTab, 483 Module *pMod, 484 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 485 char **pzErr 486 ){ 487 VtabCtx sCtx; 488 VTable *pVTable; 489 int rc; 490 const char *const*azArg = (const char *const*)pTab->azModuleArg; 491 int nArg = pTab->nModuleArg; 492 char *zErr = 0; 493 char *zModuleName; 494 int iDb; 495 VtabCtx *pCtx; 496 497 /* Check that the virtual-table is not already being initialized */ 498 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 499 if( pCtx->pTab==pTab ){ 500 *pzErr = sqlite3MPrintf(db, 501 "vtable constructor called recursively: %s", pTab->zName 502 ); 503 return SQLITE_LOCKED; 504 } 505 } 506 507 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 508 if( !zModuleName ){ 509 return SQLITE_NOMEM_BKPT; 510 } 511 512 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 513 if( !pVTable ){ 514 sqlite3DbFree(db, zModuleName); 515 return SQLITE_NOMEM_BKPT; 516 } 517 pVTable->db = db; 518 pVTable->pMod = pMod; 519 520 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 521 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 522 523 /* Invoke the virtual table constructor */ 524 assert( &db->pVtabCtx ); 525 assert( xConstruct ); 526 sCtx.pTab = pTab; 527 sCtx.pVTable = pVTable; 528 sCtx.pPrior = db->pVtabCtx; 529 sCtx.bDeclared = 0; 530 db->pVtabCtx = &sCtx; 531 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 532 db->pVtabCtx = sCtx.pPrior; 533 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 534 assert( sCtx.pTab==pTab ); 535 536 if( SQLITE_OK!=rc ){ 537 if( zErr==0 ){ 538 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 539 }else { 540 *pzErr = sqlite3MPrintf(db, "%s", zErr); 541 sqlite3_free(zErr); 542 } 543 sqlite3DbFree(db, pVTable); 544 }else if( ALWAYS(pVTable->pVtab) ){ 545 /* Justification of ALWAYS(): A correct vtab constructor must allocate 546 ** the sqlite3_vtab object if successful. */ 547 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 548 pVTable->pVtab->pModule = pMod->pModule; 549 pVTable->nRef = 1; 550 if( sCtx.bDeclared==0 ){ 551 const char *zFormat = "vtable constructor did not declare schema: %s"; 552 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 553 sqlite3VtabUnlock(pVTable); 554 rc = SQLITE_ERROR; 555 }else{ 556 int iCol; 557 u8 oooHidden = 0; 558 /* If everything went according to plan, link the new VTable structure 559 ** into the linked list headed by pTab->pVTable. Then loop through the 560 ** columns of the table to see if any of them contain the token "hidden". 561 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 562 ** the type string. */ 563 pVTable->pNext = pTab->pVTable; 564 pTab->pVTable = pVTable; 565 566 for(iCol=0; iCol<pTab->nCol; iCol++){ 567 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 568 int nType; 569 int i = 0; 570 nType = sqlite3Strlen30(zType); 571 for(i=0; i<nType; i++){ 572 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 573 && (i==0 || zType[i-1]==' ') 574 && (zType[i+6]=='\0' || zType[i+6]==' ') 575 ){ 576 break; 577 } 578 } 579 if( i<nType ){ 580 int j; 581 int nDel = 6 + (zType[i+6] ? 1 : 0); 582 for(j=i; (j+nDel)<=nType; j++){ 583 zType[j] = zType[j+nDel]; 584 } 585 if( zType[i]=='\0' && i>0 ){ 586 assert(zType[i-1]==' '); 587 zType[i-1] = '\0'; 588 } 589 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 590 oooHidden = TF_OOOHidden; 591 }else{ 592 pTab->tabFlags |= oooHidden; 593 } 594 } 595 } 596 } 597 598 sqlite3DbFree(db, zModuleName); 599 return rc; 600 } 601 602 /* 603 ** This function is invoked by the parser to call the xConnect() method 604 ** of the virtual table pTab. If an error occurs, an error code is returned 605 ** and an error left in pParse. 606 ** 607 ** This call is a no-op if table pTab is not a virtual table. 608 */ 609 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 610 sqlite3 *db = pParse->db; 611 const char *zMod; 612 Module *pMod; 613 int rc; 614 615 assert( pTab ); 616 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 617 return SQLITE_OK; 618 } 619 620 /* Locate the required virtual table module */ 621 zMod = pTab->azModuleArg[0]; 622 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 623 624 if( !pMod ){ 625 const char *zModule = pTab->azModuleArg[0]; 626 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 627 rc = SQLITE_ERROR; 628 }else{ 629 char *zErr = 0; 630 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 631 if( rc!=SQLITE_OK ){ 632 sqlite3ErrorMsg(pParse, "%s", zErr); 633 } 634 sqlite3DbFree(db, zErr); 635 } 636 637 return rc; 638 } 639 /* 640 ** Grow the db->aVTrans[] array so that there is room for at least one 641 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 642 */ 643 static int growVTrans(sqlite3 *db){ 644 const int ARRAY_INCR = 5; 645 646 /* Grow the sqlite3.aVTrans array if required */ 647 if( (db->nVTrans%ARRAY_INCR)==0 ){ 648 VTable **aVTrans; 649 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 650 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 651 if( !aVTrans ){ 652 return SQLITE_NOMEM_BKPT; 653 } 654 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 655 db->aVTrans = aVTrans; 656 } 657 658 return SQLITE_OK; 659 } 660 661 /* 662 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 663 ** have already been reserved using growVTrans(). 664 */ 665 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 666 /* Add pVtab to the end of sqlite3.aVTrans */ 667 db->aVTrans[db->nVTrans++] = pVTab; 668 sqlite3VtabLock(pVTab); 669 } 670 671 /* 672 ** This function is invoked by the vdbe to call the xCreate method 673 ** of the virtual table named zTab in database iDb. 674 ** 675 ** If an error occurs, *pzErr is set to point to an English language 676 ** description of the error and an SQLITE_XXX error code is returned. 677 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 678 */ 679 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 680 int rc = SQLITE_OK; 681 Table *pTab; 682 Module *pMod; 683 const char *zMod; 684 685 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 686 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 687 688 /* Locate the required virtual table module */ 689 zMod = pTab->azModuleArg[0]; 690 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 691 692 /* If the module has been registered and includes a Create method, 693 ** invoke it now. If the module has not been registered, return an 694 ** error. Otherwise, do nothing. 695 */ 696 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 697 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 698 rc = SQLITE_ERROR; 699 }else{ 700 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 701 } 702 703 /* Justification of ALWAYS(): The xConstructor method is required to 704 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 705 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 706 rc = growVTrans(db); 707 if( rc==SQLITE_OK ){ 708 addToVTrans(db, sqlite3GetVTable(db, pTab)); 709 } 710 } 711 712 return rc; 713 } 714 715 /* 716 ** This function is used to set the schema of a virtual table. It is only 717 ** valid to call this function from within the xCreate() or xConnect() of a 718 ** virtual table module. 719 */ 720 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 721 VtabCtx *pCtx; 722 Parse *pParse; 723 int rc = SQLITE_OK; 724 Table *pTab; 725 char *zErr = 0; 726 727 #ifdef SQLITE_ENABLE_API_ARMOR 728 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 729 return SQLITE_MISUSE_BKPT; 730 } 731 #endif 732 sqlite3_mutex_enter(db->mutex); 733 pCtx = db->pVtabCtx; 734 if( !pCtx || pCtx->bDeclared ){ 735 sqlite3Error(db, SQLITE_MISUSE); 736 sqlite3_mutex_leave(db->mutex); 737 return SQLITE_MISUSE_BKPT; 738 } 739 pTab = pCtx->pTab; 740 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 741 742 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 743 if( pParse==0 ){ 744 rc = SQLITE_NOMEM_BKPT; 745 }else{ 746 pParse->declareVtab = 1; 747 pParse->db = db; 748 pParse->nQueryLoop = 1; 749 750 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 751 && pParse->pNewTable 752 && !db->mallocFailed 753 && !pParse->pNewTable->pSelect 754 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 755 ){ 756 if( !pTab->aCol ){ 757 Table *pNew = pParse->pNewTable; 758 Index *pIdx; 759 pTab->aCol = pNew->aCol; 760 pTab->nCol = pNew->nCol; 761 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 762 pNew->nCol = 0; 763 pNew->aCol = 0; 764 assert( pTab->pIndex==0 ); 765 if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 ){ 766 rc = SQLITE_ERROR; 767 } 768 pIdx = pNew->pIndex; 769 if( pIdx ){ 770 assert( pIdx->pNext==0 ); 771 pTab->pIndex = pIdx; 772 pNew->pIndex = 0; 773 pIdx->pTable = pTab; 774 } 775 } 776 pCtx->bDeclared = 1; 777 }else{ 778 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 779 sqlite3DbFree(db, zErr); 780 rc = SQLITE_ERROR; 781 } 782 pParse->declareVtab = 0; 783 784 if( pParse->pVdbe ){ 785 sqlite3VdbeFinalize(pParse->pVdbe); 786 } 787 sqlite3DeleteTable(db, pParse->pNewTable); 788 sqlite3ParserReset(pParse); 789 sqlite3StackFree(db, pParse); 790 } 791 792 assert( (rc&0xff)==rc ); 793 rc = sqlite3ApiExit(db, rc); 794 sqlite3_mutex_leave(db->mutex); 795 return rc; 796 } 797 798 /* 799 ** This function is invoked by the vdbe to call the xDestroy method 800 ** of the virtual table named zTab in database iDb. This occurs 801 ** when a DROP TABLE is mentioned. 802 ** 803 ** This call is a no-op if zTab is not a virtual table. 804 */ 805 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 806 int rc = SQLITE_OK; 807 Table *pTab; 808 809 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 810 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 811 VTable *p; 812 int (*xDestroy)(sqlite3_vtab *); 813 for(p=pTab->pVTable; p; p=p->pNext){ 814 assert( p->pVtab ); 815 if( p->pVtab->nRef>0 ){ 816 return SQLITE_LOCKED; 817 } 818 } 819 p = vtabDisconnectAll(db, pTab); 820 xDestroy = p->pMod->pModule->xDestroy; 821 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 822 rc = xDestroy(p->pVtab); 823 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 824 if( rc==SQLITE_OK ){ 825 assert( pTab->pVTable==p && p->pNext==0 ); 826 p->pVtab = 0; 827 pTab->pVTable = 0; 828 sqlite3VtabUnlock(p); 829 } 830 } 831 832 return rc; 833 } 834 835 /* 836 ** This function invokes either the xRollback or xCommit method 837 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 838 ** called is identified by the second argument, "offset", which is 839 ** the offset of the method to call in the sqlite3_module structure. 840 ** 841 ** The array is cleared after invoking the callbacks. 842 */ 843 static void callFinaliser(sqlite3 *db, int offset){ 844 int i; 845 if( db->aVTrans ){ 846 VTable **aVTrans = db->aVTrans; 847 db->aVTrans = 0; 848 for(i=0; i<db->nVTrans; i++){ 849 VTable *pVTab = aVTrans[i]; 850 sqlite3_vtab *p = pVTab->pVtab; 851 if( p ){ 852 int (*x)(sqlite3_vtab *); 853 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 854 if( x ) x(p); 855 } 856 pVTab->iSavepoint = 0; 857 sqlite3VtabUnlock(pVTab); 858 } 859 sqlite3DbFree(db, aVTrans); 860 db->nVTrans = 0; 861 } 862 } 863 864 /* 865 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 866 ** array. Return the error code for the first error that occurs, or 867 ** SQLITE_OK if all xSync operations are successful. 868 ** 869 ** If an error message is available, leave it in p->zErrMsg. 870 */ 871 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 872 int i; 873 int rc = SQLITE_OK; 874 VTable **aVTrans = db->aVTrans; 875 876 db->aVTrans = 0; 877 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 878 int (*x)(sqlite3_vtab *); 879 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 880 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 881 rc = x(pVtab); 882 sqlite3VtabImportErrmsg(p, pVtab); 883 } 884 } 885 db->aVTrans = aVTrans; 886 return rc; 887 } 888 889 /* 890 ** Invoke the xRollback method of all virtual tables in the 891 ** sqlite3.aVTrans array. Then clear the array itself. 892 */ 893 int sqlite3VtabRollback(sqlite3 *db){ 894 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 895 return SQLITE_OK; 896 } 897 898 /* 899 ** Invoke the xCommit method of all virtual tables in the 900 ** sqlite3.aVTrans array. Then clear the array itself. 901 */ 902 int sqlite3VtabCommit(sqlite3 *db){ 903 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 904 return SQLITE_OK; 905 } 906 907 /* 908 ** If the virtual table pVtab supports the transaction interface 909 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 910 ** not currently open, invoke the xBegin method now. 911 ** 912 ** If the xBegin call is successful, place the sqlite3_vtab pointer 913 ** in the sqlite3.aVTrans array. 914 */ 915 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 916 int rc = SQLITE_OK; 917 const sqlite3_module *pModule; 918 919 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 920 ** than zero, then this function is being called from within a 921 ** virtual module xSync() callback. It is illegal to write to 922 ** virtual module tables in this case, so return SQLITE_LOCKED. 923 */ 924 if( sqlite3VtabInSync(db) ){ 925 return SQLITE_LOCKED; 926 } 927 if( !pVTab ){ 928 return SQLITE_OK; 929 } 930 pModule = pVTab->pVtab->pModule; 931 932 if( pModule->xBegin ){ 933 int i; 934 935 /* If pVtab is already in the aVTrans array, return early */ 936 for(i=0; i<db->nVTrans; i++){ 937 if( db->aVTrans[i]==pVTab ){ 938 return SQLITE_OK; 939 } 940 } 941 942 /* Invoke the xBegin method. If successful, add the vtab to the 943 ** sqlite3.aVTrans[] array. */ 944 rc = growVTrans(db); 945 if( rc==SQLITE_OK ){ 946 rc = pModule->xBegin(pVTab->pVtab); 947 if( rc==SQLITE_OK ){ 948 int iSvpt = db->nStatement + db->nSavepoint; 949 addToVTrans(db, pVTab); 950 if( iSvpt && pModule->xSavepoint ){ 951 pVTab->iSavepoint = iSvpt; 952 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 953 } 954 } 955 } 956 } 957 return rc; 958 } 959 960 /* 961 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 962 ** virtual tables that currently have an open transaction. Pass iSavepoint 963 ** as the second argument to the virtual table method invoked. 964 ** 965 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 966 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 967 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 968 ** an open transaction is invoked. 969 ** 970 ** If any virtual table method returns an error code other than SQLITE_OK, 971 ** processing is abandoned and the error returned to the caller of this 972 ** function immediately. If all calls to virtual table methods are successful, 973 ** SQLITE_OK is returned. 974 */ 975 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 976 int rc = SQLITE_OK; 977 978 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 979 assert( iSavepoint>=-1 ); 980 if( db->aVTrans ){ 981 int i; 982 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 983 VTable *pVTab = db->aVTrans[i]; 984 const sqlite3_module *pMod = pVTab->pMod->pModule; 985 if( pVTab->pVtab && pMod->iVersion>=2 ){ 986 int (*xMethod)(sqlite3_vtab *, int); 987 switch( op ){ 988 case SAVEPOINT_BEGIN: 989 xMethod = pMod->xSavepoint; 990 pVTab->iSavepoint = iSavepoint+1; 991 break; 992 case SAVEPOINT_ROLLBACK: 993 xMethod = pMod->xRollbackTo; 994 break; 995 default: 996 xMethod = pMod->xRelease; 997 break; 998 } 999 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1000 rc = xMethod(pVTab->pVtab, iSavepoint); 1001 } 1002 } 1003 } 1004 } 1005 return rc; 1006 } 1007 1008 /* 1009 ** The first parameter (pDef) is a function implementation. The 1010 ** second parameter (pExpr) is the first argument to this function. 1011 ** If pExpr is a column in a virtual table, then let the virtual 1012 ** table implementation have an opportunity to overload the function. 1013 ** 1014 ** This routine is used to allow virtual table implementations to 1015 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1016 ** 1017 ** Return either the pDef argument (indicating no change) or a 1018 ** new FuncDef structure that is marked as ephemeral using the 1019 ** SQLITE_FUNC_EPHEM flag. 1020 */ 1021 FuncDef *sqlite3VtabOverloadFunction( 1022 sqlite3 *db, /* Database connection for reporting malloc problems */ 1023 FuncDef *pDef, /* Function to possibly overload */ 1024 int nArg, /* Number of arguments to the function */ 1025 Expr *pExpr /* First argument to the function */ 1026 ){ 1027 Table *pTab; 1028 sqlite3_vtab *pVtab; 1029 sqlite3_module *pMod; 1030 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1031 void *pArg = 0; 1032 FuncDef *pNew; 1033 int rc = 0; 1034 char *zLowerName; 1035 unsigned char *z; 1036 1037 1038 /* Check to see the left operand is a column in a virtual table */ 1039 if( NEVER(pExpr==0) ) return pDef; 1040 if( pExpr->op!=TK_COLUMN ) return pDef; 1041 pTab = pExpr->pTab; 1042 if( NEVER(pTab==0) ) return pDef; 1043 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 1044 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1045 assert( pVtab!=0 ); 1046 assert( pVtab->pModule!=0 ); 1047 pMod = (sqlite3_module *)pVtab->pModule; 1048 if( pMod->xFindFunction==0 ) return pDef; 1049 1050 /* Call the xFindFunction method on the virtual table implementation 1051 ** to see if the implementation wants to overload this function 1052 */ 1053 zLowerName = sqlite3DbStrDup(db, pDef->zName); 1054 if( zLowerName ){ 1055 for(z=(unsigned char*)zLowerName; *z; z++){ 1056 *z = sqlite3UpperToLower[*z]; 1057 } 1058 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg); 1059 sqlite3DbFree(db, zLowerName); 1060 } 1061 if( rc==0 ){ 1062 return pDef; 1063 } 1064 1065 /* Create a new ephemeral function definition for the overloaded 1066 ** function */ 1067 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1068 + sqlite3Strlen30(pDef->zName) + 1); 1069 if( pNew==0 ){ 1070 return pDef; 1071 } 1072 *pNew = *pDef; 1073 pNew->zName = (const char*)&pNew[1]; 1074 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1075 pNew->xSFunc = xSFunc; 1076 pNew->pUserData = pArg; 1077 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1078 return pNew; 1079 } 1080 1081 /* 1082 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1083 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1084 ** array if it is missing. If pTab is already in the array, this routine 1085 ** is a no-op. 1086 */ 1087 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1088 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1089 int i, n; 1090 Table **apVtabLock; 1091 1092 assert( IsVirtual(pTab) ); 1093 for(i=0; i<pToplevel->nVtabLock; i++){ 1094 if( pTab==pToplevel->apVtabLock[i] ) return; 1095 } 1096 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1097 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1098 if( apVtabLock ){ 1099 pToplevel->apVtabLock = apVtabLock; 1100 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1101 }else{ 1102 sqlite3OomFault(pToplevel->db); 1103 } 1104 } 1105 1106 /* 1107 ** Check to see if virtual table module pMod can be have an eponymous 1108 ** virtual table instance. If it can, create one if one does not already 1109 ** exist. Return non-zero if the eponymous virtual table instance exists 1110 ** when this routine returns, and return zero if it does not exist. 1111 ** 1112 ** An eponymous virtual table instance is one that is named after its 1113 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1114 ** statement in order to come into existance. Eponymous virtual table 1115 ** instances always exist. They cannot be DROP-ed. 1116 ** 1117 ** Any virtual table module for which xConnect and xCreate are the same 1118 ** method can have an eponymous virtual table instance. 1119 */ 1120 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1121 const sqlite3_module *pModule = pMod->pModule; 1122 Table *pTab; 1123 char *zErr = 0; 1124 int rc; 1125 sqlite3 *db = pParse->db; 1126 if( pMod->pEpoTab ) return 1; 1127 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1128 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1129 if( pTab==0 ) return 0; 1130 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1131 if( pTab->zName==0 ){ 1132 sqlite3DbFree(db, pTab); 1133 return 0; 1134 } 1135 pMod->pEpoTab = pTab; 1136 pTab->nRef = 1; 1137 pTab->pSchema = db->aDb[0].pSchema; 1138 pTab->tabFlags |= TF_Virtual; 1139 pTab->nModuleArg = 0; 1140 pTab->iPKey = -1; 1141 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1142 addModuleArgument(db, pTab, 0); 1143 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1144 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1145 if( rc ){ 1146 sqlite3ErrorMsg(pParse, "%s", zErr); 1147 sqlite3DbFree(db, zErr); 1148 sqlite3VtabEponymousTableClear(db, pMod); 1149 return 0; 1150 } 1151 return 1; 1152 } 1153 1154 /* 1155 ** Erase the eponymous virtual table instance associated with 1156 ** virtual table module pMod, if it exists. 1157 */ 1158 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1159 Table *pTab = pMod->pEpoTab; 1160 if( pTab!=0 ){ 1161 /* Mark the table as Ephemeral prior to deleting it, so that the 1162 ** sqlite3DeleteTable() routine will know that it is not stored in 1163 ** the schema. */ 1164 pTab->tabFlags |= TF_Ephemeral; 1165 sqlite3DeleteTable(db, pTab); 1166 pMod->pEpoTab = 0; 1167 } 1168 } 1169 1170 /* 1171 ** Return the ON CONFLICT resolution mode in effect for the virtual 1172 ** table update operation currently in progress. 1173 ** 1174 ** The results of this routine are undefined unless it is called from 1175 ** within an xUpdate method. 1176 */ 1177 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1178 static const unsigned char aMap[] = { 1179 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1180 }; 1181 #ifdef SQLITE_ENABLE_API_ARMOR 1182 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1183 #endif 1184 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1185 assert( OE_Ignore==4 && OE_Replace==5 ); 1186 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1187 return (int)aMap[db->vtabOnConflict-1]; 1188 } 1189 1190 /* 1191 ** Call from within the xCreate() or xConnect() methods to provide 1192 ** the SQLite core with additional information about the behavior 1193 ** of the virtual table being implemented. 1194 */ 1195 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1196 va_list ap; 1197 int rc = SQLITE_OK; 1198 1199 #ifdef SQLITE_ENABLE_API_ARMOR 1200 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1201 #endif 1202 sqlite3_mutex_enter(db->mutex); 1203 va_start(ap, op); 1204 switch( op ){ 1205 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1206 VtabCtx *p = db->pVtabCtx; 1207 if( !p ){ 1208 rc = SQLITE_MISUSE_BKPT; 1209 }else{ 1210 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1211 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1212 } 1213 break; 1214 } 1215 default: 1216 rc = SQLITE_MISUSE_BKPT; 1217 break; 1218 } 1219 va_end(ap); 1220 1221 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1222 sqlite3_mutex_leave(db->mutex); 1223 return rc; 1224 } 1225 1226 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1227