xref: /sqlite-3.40.0/src/vtab.c (revision d4530979)
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
13 */
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
16 
17 /*
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
23 */
24 struct VtabCtx {
25   VTable *pVTable;    /* The virtual table being constructed */
26   Table *pTab;        /* The Table object to which the virtual table belongs */
27 };
28 
29 /*
30 ** The actual function that does the work of creating a new module.
31 ** This function implements the sqlite3_create_module() and
32 ** sqlite3_create_module_v2() interfaces.
33 */
34 static int createModule(
35   sqlite3 *db,                    /* Database in which module is registered */
36   const char *zName,              /* Name assigned to this module */
37   const sqlite3_module *pModule,  /* The definition of the module */
38   void *pAux,                     /* Context pointer for xCreate/xConnect */
39   void (*xDestroy)(void *)        /* Module destructor function */
40 ){
41   int rc = SQLITE_OK;
42   int nName;
43 
44   sqlite3_mutex_enter(db->mutex);
45   nName = sqlite3Strlen30(zName);
46   if( sqlite3HashFind(&db->aModule, zName) ){
47     rc = SQLITE_MISUSE_BKPT;
48   }else{
49     Module *pMod;
50     pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
51     if( pMod ){
52       Module *pDel;
53       char *zCopy = (char *)(&pMod[1]);
54       memcpy(zCopy, zName, nName+1);
55       pMod->zName = zCopy;
56       pMod->pModule = pModule;
57       pMod->pAux = pAux;
58       pMod->xDestroy = xDestroy;
59       pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
60       assert( pDel==0 || pDel==pMod );
61       if( pDel ){
62         db->mallocFailed = 1;
63         sqlite3DbFree(db, pDel);
64       }
65     }
66   }
67   rc = sqlite3ApiExit(db, rc);
68   if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
69 
70   sqlite3_mutex_leave(db->mutex);
71   return rc;
72 }
73 
74 
75 /*
76 ** External API function used to create a new virtual-table module.
77 */
78 int sqlite3_create_module(
79   sqlite3 *db,                    /* Database in which module is registered */
80   const char *zName,              /* Name assigned to this module */
81   const sqlite3_module *pModule,  /* The definition of the module */
82   void *pAux                      /* Context pointer for xCreate/xConnect */
83 ){
84   return createModule(db, zName, pModule, pAux, 0);
85 }
86 
87 /*
88 ** External API function used to create a new virtual-table module.
89 */
90 int sqlite3_create_module_v2(
91   sqlite3 *db,                    /* Database in which module is registered */
92   const char *zName,              /* Name assigned to this module */
93   const sqlite3_module *pModule,  /* The definition of the module */
94   void *pAux,                     /* Context pointer for xCreate/xConnect */
95   void (*xDestroy)(void *)        /* Module destructor function */
96 ){
97   return createModule(db, zName, pModule, pAux, xDestroy);
98 }
99 
100 /*
101 ** Lock the virtual table so that it cannot be disconnected.
102 ** Locks nest.  Every lock should have a corresponding unlock.
103 ** If an unlock is omitted, resources leaks will occur.
104 **
105 ** If a disconnect is attempted while a virtual table is locked,
106 ** the disconnect is deferred until all locks have been removed.
107 */
108 void sqlite3VtabLock(VTable *pVTab){
109   pVTab->nRef++;
110 }
111 
112 
113 /*
114 ** pTab is a pointer to a Table structure representing a virtual-table.
115 ** Return a pointer to the VTable object used by connection db to access
116 ** this virtual-table, if one has been created, or NULL otherwise.
117 */
118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
119   VTable *pVtab;
120   assert( IsVirtual(pTab) );
121   for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
122   return pVtab;
123 }
124 
125 /*
126 ** Decrement the ref-count on a virtual table object. When the ref-count
127 ** reaches zero, call the xDisconnect() method to delete the object.
128 */
129 void sqlite3VtabUnlock(VTable *pVTab){
130   sqlite3 *db = pVTab->db;
131 
132   assert( db );
133   assert( pVTab->nRef>0 );
134   assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
135 
136   pVTab->nRef--;
137   if( pVTab->nRef==0 ){
138     sqlite3_vtab *p = pVTab->pVtab;
139     if( p ){
140       p->pModule->xDisconnect(p);
141     }
142     sqlite3DbFree(db, pVTab);
143   }
144 }
145 
146 /*
147 ** Table p is a virtual table. This function moves all elements in the
148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
149 ** database connections to be disconnected at the next opportunity.
150 ** Except, if argument db is not NULL, then the entry associated with
151 ** connection db is left in the p->pVTable list.
152 */
153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
154   VTable *pRet = 0;
155   VTable *pVTable = p->pVTable;
156   p->pVTable = 0;
157 
158   /* Assert that the mutex (if any) associated with the BtShared database
159   ** that contains table p is held by the caller. See header comments
160   ** above function sqlite3VtabUnlockList() for an explanation of why
161   ** this makes it safe to access the sqlite3.pDisconnect list of any
162   ** database connection that may have an entry in the p->pVTable list.
163   */
164   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
165 
166   while( pVTable ){
167     sqlite3 *db2 = pVTable->db;
168     VTable *pNext = pVTable->pNext;
169     assert( db2 );
170     if( db2==db ){
171       pRet = pVTable;
172       p->pVTable = pRet;
173       pRet->pNext = 0;
174     }else{
175       pVTable->pNext = db2->pDisconnect;
176       db2->pDisconnect = pVTable;
177     }
178     pVTable = pNext;
179   }
180 
181   assert( !db || pRet );
182   return pRet;
183 }
184 
185 /*
186 ** Table *p is a virtual table. This function removes the VTable object
187 ** for table *p associated with database connection db from the linked
188 ** list in p->pVTab. It also decrements the VTable ref count. This is
189 ** used when closing database connection db to free all of its VTable
190 ** objects without disturbing the rest of the Schema object (which may
191 ** be being used by other shared-cache connections).
192 */
193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
194   VTable **ppVTab;
195 
196   assert( IsVirtual(p) );
197   assert( sqlite3BtreeHoldsAllMutexes(db) );
198   assert( sqlite3_mutex_held(db->mutex) );
199 
200   for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
201     if( (*ppVTab)->db==db  ){
202       VTable *pVTab = *ppVTab;
203       *ppVTab = pVTab->pNext;
204       sqlite3VtabUnlock(pVTab);
205       break;
206     }
207   }
208 }
209 
210 
211 /*
212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
213 **
214 ** This function may only be called when the mutexes associated with all
215 ** shared b-tree databases opened using connection db are held by the
216 ** caller. This is done to protect the sqlite3.pDisconnect list. The
217 ** sqlite3.pDisconnect list is accessed only as follows:
218 **
219 **   1) By this function. In this case, all BtShared mutexes and the mutex
220 **      associated with the database handle itself must be held.
221 **
222 **   2) By function vtabDisconnectAll(), when it adds a VTable entry to
223 **      the sqlite3.pDisconnect list. In this case either the BtShared mutex
224 **      associated with the database the virtual table is stored in is held
225 **      or, if the virtual table is stored in a non-sharable database, then
226 **      the database handle mutex is held.
227 **
228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
229 ** by multiple threads. It is thread-safe.
230 */
231 void sqlite3VtabUnlockList(sqlite3 *db){
232   VTable *p = db->pDisconnect;
233   db->pDisconnect = 0;
234 
235   assert( sqlite3BtreeHoldsAllMutexes(db) );
236   assert( sqlite3_mutex_held(db->mutex) );
237 
238   if( p ){
239     sqlite3ExpirePreparedStatements(db);
240     do {
241       VTable *pNext = p->pNext;
242       sqlite3VtabUnlock(p);
243       p = pNext;
244     }while( p );
245   }
246 }
247 
248 /*
249 ** Clear any and all virtual-table information from the Table record.
250 ** This routine is called, for example, just before deleting the Table
251 ** record.
252 **
253 ** Since it is a virtual-table, the Table structure contains a pointer
254 ** to the head of a linked list of VTable structures. Each VTable
255 ** structure is associated with a single sqlite3* user of the schema.
256 ** The reference count of the VTable structure associated with database
257 ** connection db is decremented immediately (which may lead to the
258 ** structure being xDisconnected and free). Any other VTable structures
259 ** in the list are moved to the sqlite3.pDisconnect list of the associated
260 ** database connection.
261 */
262 void sqlite3VtabClear(sqlite3 *db, Table *p){
263   if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
264   if( p->azModuleArg ){
265     int i;
266     for(i=0; i<p->nModuleArg; i++){
267       if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
268     }
269     sqlite3DbFree(db, p->azModuleArg);
270   }
271 }
272 
273 /*
274 ** Add a new module argument to pTable->azModuleArg[].
275 ** The string is not copied - the pointer is stored.  The
276 ** string will be freed automatically when the table is
277 ** deleted.
278 */
279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
280   int i = pTable->nModuleArg++;
281   int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
282   char **azModuleArg;
283   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
284   if( azModuleArg==0 ){
285     int j;
286     for(j=0; j<i; j++){
287       sqlite3DbFree(db, pTable->azModuleArg[j]);
288     }
289     sqlite3DbFree(db, zArg);
290     sqlite3DbFree(db, pTable->azModuleArg);
291     pTable->nModuleArg = 0;
292   }else{
293     azModuleArg[i] = zArg;
294     azModuleArg[i+1] = 0;
295   }
296   pTable->azModuleArg = azModuleArg;
297 }
298 
299 /*
300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
301 ** statement.  The module name has been parsed, but the optional list
302 ** of parameters that follow the module name are still pending.
303 */
304 void sqlite3VtabBeginParse(
305   Parse *pParse,        /* Parsing context */
306   Token *pName1,        /* Name of new table, or database name */
307   Token *pName2,        /* Name of new table or NULL */
308   Token *pModuleName,   /* Name of the module for the virtual table */
309   int ifNotExists       /* No error if the table already exists */
310 ){
311   int iDb;              /* The database the table is being created in */
312   Table *pTable;        /* The new virtual table */
313   sqlite3 *db;          /* Database connection */
314 
315   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
316   pTable = pParse->pNewTable;
317   if( pTable==0 ) return;
318   assert( 0==pTable->pIndex );
319 
320   db = pParse->db;
321   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
322   assert( iDb>=0 );
323 
324   pTable->tabFlags |= TF_Virtual;
325   pTable->nModuleArg = 0;
326   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
327   addModuleArgument(db, pTable, 0);
328   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
329   pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
330 
331 #ifndef SQLITE_OMIT_AUTHORIZATION
332   /* Creating a virtual table invokes the authorization callback twice.
333   ** The first invocation, to obtain permission to INSERT a row into the
334   ** sqlite_master table, has already been made by sqlite3StartTable().
335   ** The second call, to obtain permission to create the table, is made now.
336   */
337   if( pTable->azModuleArg ){
338     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
339             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
340   }
341 #endif
342 }
343 
344 /*
345 ** This routine takes the module argument that has been accumulating
346 ** in pParse->zArg[] and appends it to the list of arguments on the
347 ** virtual table currently under construction in pParse->pTable.
348 */
349 static void addArgumentToVtab(Parse *pParse){
350   if( pParse->sArg.z && pParse->pNewTable ){
351     const char *z = (const char*)pParse->sArg.z;
352     int n = pParse->sArg.n;
353     sqlite3 *db = pParse->db;
354     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
355   }
356 }
357 
358 /*
359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
360 ** has been completely parsed.
361 */
362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
363   Table *pTab = pParse->pNewTable;  /* The table being constructed */
364   sqlite3 *db = pParse->db;         /* The database connection */
365 
366   if( pTab==0 ) return;
367   addArgumentToVtab(pParse);
368   pParse->sArg.z = 0;
369   if( pTab->nModuleArg<1 ) return;
370 
371   /* If the CREATE VIRTUAL TABLE statement is being entered for the
372   ** first time (in other words if the virtual table is actually being
373   ** created now instead of just being read out of sqlite_master) then
374   ** do additional initialization work and store the statement text
375   ** in the sqlite_master table.
376   */
377   if( !db->init.busy ){
378     char *zStmt;
379     char *zWhere;
380     int iDb;
381     Vdbe *v;
382 
383     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
384     if( pEnd ){
385       pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
386     }
387     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
388 
389     /* A slot for the record has already been allocated in the
390     ** SQLITE_MASTER table.  We just need to update that slot with all
391     ** the information we've collected.
392     **
393     ** The VM register number pParse->regRowid holds the rowid of an
394     ** entry in the sqlite_master table tht was created for this vtab
395     ** by sqlite3StartTable().
396     */
397     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
398     sqlite3NestedParse(pParse,
399       "UPDATE %Q.%s "
400          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
401        "WHERE rowid=#%d",
402       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
403       pTab->zName,
404       pTab->zName,
405       zStmt,
406       pParse->regRowid
407     );
408     sqlite3DbFree(db, zStmt);
409     v = sqlite3GetVdbe(pParse);
410     sqlite3ChangeCookie(pParse, iDb);
411 
412     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
413     zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
414     sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
415     sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
416                          pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
417   }
418 
419   /* If we are rereading the sqlite_master table create the in-memory
420   ** record of the table. The xConnect() method is not called until
421   ** the first time the virtual table is used in an SQL statement. This
422   ** allows a schema that contains virtual tables to be loaded before
423   ** the required virtual table implementations are registered.  */
424   else {
425     Table *pOld;
426     Schema *pSchema = pTab->pSchema;
427     const char *zName = pTab->zName;
428     assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
429     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
430     if( pOld ){
431       db->mallocFailed = 1;
432       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
433       return;
434     }
435     pParse->pNewTable = 0;
436   }
437 }
438 
439 /*
440 ** The parser calls this routine when it sees the first token
441 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
442 */
443 void sqlite3VtabArgInit(Parse *pParse){
444   addArgumentToVtab(pParse);
445   pParse->sArg.z = 0;
446   pParse->sArg.n = 0;
447 }
448 
449 /*
450 ** The parser calls this routine for each token after the first token
451 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
452 */
453 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
454   Token *pArg = &pParse->sArg;
455   if( pArg->z==0 ){
456     pArg->z = p->z;
457     pArg->n = p->n;
458   }else{
459     assert(pArg->z < p->z);
460     pArg->n = (int)(&p->z[p->n] - pArg->z);
461   }
462 }
463 
464 /*
465 ** Invoke a virtual table constructor (either xCreate or xConnect). The
466 ** pointer to the function to invoke is passed as the fourth parameter
467 ** to this procedure.
468 */
469 static int vtabCallConstructor(
470   sqlite3 *db,
471   Table *pTab,
472   Module *pMod,
473   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
474   char **pzErr
475 ){
476   VtabCtx sCtx, *pPriorCtx;
477   VTable *pVTable;
478   int rc;
479   const char *const*azArg = (const char *const*)pTab->azModuleArg;
480   int nArg = pTab->nModuleArg;
481   char *zErr = 0;
482   char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
483   int iDb;
484 
485   if( !zModuleName ){
486     return SQLITE_NOMEM;
487   }
488 
489   pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
490   if( !pVTable ){
491     sqlite3DbFree(db, zModuleName);
492     return SQLITE_NOMEM;
493   }
494   pVTable->db = db;
495   pVTable->pMod = pMod;
496 
497   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
498   pTab->azModuleArg[1] = db->aDb[iDb].zName;
499 
500   /* Invoke the virtual table constructor */
501   assert( &db->pVtabCtx );
502   assert( xConstruct );
503   sCtx.pTab = pTab;
504   sCtx.pVTable = pVTable;
505   pPriorCtx = db->pVtabCtx;
506   db->pVtabCtx = &sCtx;
507   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
508   db->pVtabCtx = pPriorCtx;
509   if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
510 
511   if( SQLITE_OK!=rc ){
512     if( zErr==0 ){
513       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
514     }else {
515       *pzErr = sqlite3MPrintf(db, "%s", zErr);
516       sqlite3_free(zErr);
517     }
518     sqlite3DbFree(db, pVTable);
519   }else if( ALWAYS(pVTable->pVtab) ){
520     /* Justification of ALWAYS():  A correct vtab constructor must allocate
521     ** the sqlite3_vtab object if successful.  */
522     pVTable->pVtab->pModule = pMod->pModule;
523     pVTable->nRef = 1;
524     if( sCtx.pTab ){
525       const char *zFormat = "vtable constructor did not declare schema: %s";
526       *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
527       sqlite3VtabUnlock(pVTable);
528       rc = SQLITE_ERROR;
529     }else{
530       int iCol;
531       /* If everything went according to plan, link the new VTable structure
532       ** into the linked list headed by pTab->pVTable. Then loop through the
533       ** columns of the table to see if any of them contain the token "hidden".
534       ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
535       ** the type string.  */
536       pVTable->pNext = pTab->pVTable;
537       pTab->pVTable = pVTable;
538 
539       for(iCol=0; iCol<pTab->nCol; iCol++){
540         char *zType = pTab->aCol[iCol].zType;
541         int nType;
542         int i = 0;
543         if( !zType ) continue;
544         nType = sqlite3Strlen30(zType);
545         if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
546           for(i=0; i<nType; i++){
547             if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
548              && (zType[i+7]=='\0' || zType[i+7]==' ')
549             ){
550               i++;
551               break;
552             }
553           }
554         }
555         if( i<nType ){
556           int j;
557           int nDel = 6 + (zType[i+6] ? 1 : 0);
558           for(j=i; (j+nDel)<=nType; j++){
559             zType[j] = zType[j+nDel];
560           }
561           if( zType[i]=='\0' && i>0 ){
562             assert(zType[i-1]==' ');
563             zType[i-1] = '\0';
564           }
565           pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
566         }
567       }
568     }
569   }
570 
571   sqlite3DbFree(db, zModuleName);
572   return rc;
573 }
574 
575 /*
576 ** This function is invoked by the parser to call the xConnect() method
577 ** of the virtual table pTab. If an error occurs, an error code is returned
578 ** and an error left in pParse.
579 **
580 ** This call is a no-op if table pTab is not a virtual table.
581 */
582 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
583   sqlite3 *db = pParse->db;
584   const char *zMod;
585   Module *pMod;
586   int rc;
587 
588   assert( pTab );
589   if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
590     return SQLITE_OK;
591   }
592 
593   /* Locate the required virtual table module */
594   zMod = pTab->azModuleArg[0];
595   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
596 
597   if( !pMod ){
598     const char *zModule = pTab->azModuleArg[0];
599     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
600     rc = SQLITE_ERROR;
601   }else{
602     char *zErr = 0;
603     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
604     if( rc!=SQLITE_OK ){
605       sqlite3ErrorMsg(pParse, "%s", zErr);
606     }
607     sqlite3DbFree(db, zErr);
608   }
609 
610   return rc;
611 }
612 /*
613 ** Grow the db->aVTrans[] array so that there is room for at least one
614 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
615 */
616 static int growVTrans(sqlite3 *db){
617   const int ARRAY_INCR = 5;
618 
619   /* Grow the sqlite3.aVTrans array if required */
620   if( (db->nVTrans%ARRAY_INCR)==0 ){
621     VTable **aVTrans;
622     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
623     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
624     if( !aVTrans ){
625       return SQLITE_NOMEM;
626     }
627     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
628     db->aVTrans = aVTrans;
629   }
630 
631   return SQLITE_OK;
632 }
633 
634 /*
635 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
636 ** have already been reserved using growVTrans().
637 */
638 static void addToVTrans(sqlite3 *db, VTable *pVTab){
639   /* Add pVtab to the end of sqlite3.aVTrans */
640   db->aVTrans[db->nVTrans++] = pVTab;
641   sqlite3VtabLock(pVTab);
642 }
643 
644 /*
645 ** This function is invoked by the vdbe to call the xCreate method
646 ** of the virtual table named zTab in database iDb.
647 **
648 ** If an error occurs, *pzErr is set to point an an English language
649 ** description of the error and an SQLITE_XXX error code is returned.
650 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
651 */
652 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
653   int rc = SQLITE_OK;
654   Table *pTab;
655   Module *pMod;
656   const char *zMod;
657 
658   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
659   assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
660 
661   /* Locate the required virtual table module */
662   zMod = pTab->azModuleArg[0];
663   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
664 
665   /* If the module has been registered and includes a Create method,
666   ** invoke it now. If the module has not been registered, return an
667   ** error. Otherwise, do nothing.
668   */
669   if( !pMod ){
670     *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
671     rc = SQLITE_ERROR;
672   }else{
673     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
674   }
675 
676   /* Justification of ALWAYS():  The xConstructor method is required to
677   ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
678   if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
679     rc = growVTrans(db);
680     if( rc==SQLITE_OK ){
681       addToVTrans(db, sqlite3GetVTable(db, pTab));
682     }
683   }
684 
685   return rc;
686 }
687 
688 /*
689 ** This function is used to set the schema of a virtual table.  It is only
690 ** valid to call this function from within the xCreate() or xConnect() of a
691 ** virtual table module.
692 */
693 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
694   Parse *pParse;
695 
696   int rc = SQLITE_OK;
697   Table *pTab;
698   char *zErr = 0;
699 
700   sqlite3_mutex_enter(db->mutex);
701   if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
702     sqlite3Error(db, SQLITE_MISUSE);
703     sqlite3_mutex_leave(db->mutex);
704     return SQLITE_MISUSE_BKPT;
705   }
706   assert( (pTab->tabFlags & TF_Virtual)!=0 );
707 
708   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
709   if( pParse==0 ){
710     rc = SQLITE_NOMEM;
711   }else{
712     pParse->declareVtab = 1;
713     pParse->db = db;
714     pParse->nQueryLoop = 1;
715 
716     if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
717      && pParse->pNewTable
718      && !db->mallocFailed
719      && !pParse->pNewTable->pSelect
720      && (pParse->pNewTable->tabFlags & TF_Virtual)==0
721     ){
722       if( !pTab->aCol ){
723         pTab->aCol = pParse->pNewTable->aCol;
724         pTab->nCol = pParse->pNewTable->nCol;
725         pParse->pNewTable->nCol = 0;
726         pParse->pNewTable->aCol = 0;
727       }
728       db->pVtabCtx->pTab = 0;
729     }else{
730       sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
731       sqlite3DbFree(db, zErr);
732       rc = SQLITE_ERROR;
733     }
734     pParse->declareVtab = 0;
735 
736     if( pParse->pVdbe ){
737       sqlite3VdbeFinalize(pParse->pVdbe);
738     }
739     sqlite3DeleteTable(db, pParse->pNewTable);
740     sqlite3ParserReset(pParse);
741     sqlite3StackFree(db, pParse);
742   }
743 
744   assert( (rc&0xff)==rc );
745   rc = sqlite3ApiExit(db, rc);
746   sqlite3_mutex_leave(db->mutex);
747   return rc;
748 }
749 
750 /*
751 ** This function is invoked by the vdbe to call the xDestroy method
752 ** of the virtual table named zTab in database iDb. This occurs
753 ** when a DROP TABLE is mentioned.
754 **
755 ** This call is a no-op if zTab is not a virtual table.
756 */
757 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
758   int rc = SQLITE_OK;
759   Table *pTab;
760 
761   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
762   if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
763     VTable *p = vtabDisconnectAll(db, pTab);
764 
765     assert( rc==SQLITE_OK );
766     rc = p->pMod->pModule->xDestroy(p->pVtab);
767 
768     /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
769     if( rc==SQLITE_OK ){
770       assert( pTab->pVTable==p && p->pNext==0 );
771       p->pVtab = 0;
772       pTab->pVTable = 0;
773       sqlite3VtabUnlock(p);
774     }
775   }
776 
777   return rc;
778 }
779 
780 /*
781 ** This function invokes either the xRollback or xCommit method
782 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
783 ** called is identified by the second argument, "offset", which is
784 ** the offset of the method to call in the sqlite3_module structure.
785 **
786 ** The array is cleared after invoking the callbacks.
787 */
788 static void callFinaliser(sqlite3 *db, int offset){
789   int i;
790   if( db->aVTrans ){
791     for(i=0; i<db->nVTrans; i++){
792       VTable *pVTab = db->aVTrans[i];
793       sqlite3_vtab *p = pVTab->pVtab;
794       if( p ){
795         int (*x)(sqlite3_vtab *);
796         x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
797         if( x ) x(p);
798       }
799       pVTab->iSavepoint = 0;
800       sqlite3VtabUnlock(pVTab);
801     }
802     sqlite3DbFree(db, db->aVTrans);
803     db->nVTrans = 0;
804     db->aVTrans = 0;
805   }
806 }
807 
808 /*
809 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
810 ** array. Return the error code for the first error that occurs, or
811 ** SQLITE_OK if all xSync operations are successful.
812 **
813 ** If an error message is available, leave it in p->zErrMsg.
814 */
815 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
816   int i;
817   int rc = SQLITE_OK;
818   VTable **aVTrans = db->aVTrans;
819 
820   db->aVTrans = 0;
821   for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
822     int (*x)(sqlite3_vtab *);
823     sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
824     if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
825       rc = x(pVtab);
826       sqlite3VtabImportErrmsg(p, pVtab);
827     }
828   }
829   db->aVTrans = aVTrans;
830   return rc;
831 }
832 
833 /*
834 ** Invoke the xRollback method of all virtual tables in the
835 ** sqlite3.aVTrans array. Then clear the array itself.
836 */
837 int sqlite3VtabRollback(sqlite3 *db){
838   callFinaliser(db, offsetof(sqlite3_module,xRollback));
839   return SQLITE_OK;
840 }
841 
842 /*
843 ** Invoke the xCommit method of all virtual tables in the
844 ** sqlite3.aVTrans array. Then clear the array itself.
845 */
846 int sqlite3VtabCommit(sqlite3 *db){
847   callFinaliser(db, offsetof(sqlite3_module,xCommit));
848   return SQLITE_OK;
849 }
850 
851 /*
852 ** If the virtual table pVtab supports the transaction interface
853 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
854 ** not currently open, invoke the xBegin method now.
855 **
856 ** If the xBegin call is successful, place the sqlite3_vtab pointer
857 ** in the sqlite3.aVTrans array.
858 */
859 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
860   int rc = SQLITE_OK;
861   const sqlite3_module *pModule;
862 
863   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
864   ** than zero, then this function is being called from within a
865   ** virtual module xSync() callback. It is illegal to write to
866   ** virtual module tables in this case, so return SQLITE_LOCKED.
867   */
868   if( sqlite3VtabInSync(db) ){
869     return SQLITE_LOCKED;
870   }
871   if( !pVTab ){
872     return SQLITE_OK;
873   }
874   pModule = pVTab->pVtab->pModule;
875 
876   if( pModule->xBegin ){
877     int i;
878 
879     /* If pVtab is already in the aVTrans array, return early */
880     for(i=0; i<db->nVTrans; i++){
881       if( db->aVTrans[i]==pVTab ){
882         return SQLITE_OK;
883       }
884     }
885 
886     /* Invoke the xBegin method. If successful, add the vtab to the
887     ** sqlite3.aVTrans[] array. */
888     rc = growVTrans(db);
889     if( rc==SQLITE_OK ){
890       rc = pModule->xBegin(pVTab->pVtab);
891       if( rc==SQLITE_OK ){
892         addToVTrans(db, pVTab);
893       }
894     }
895   }
896   return rc;
897 }
898 
899 /*
900 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
901 ** virtual tables that currently have an open transaction. Pass iSavepoint
902 ** as the second argument to the virtual table method invoked.
903 **
904 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
905 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
906 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
907 ** an open transaction is invoked.
908 **
909 ** If any virtual table method returns an error code other than SQLITE_OK,
910 ** processing is abandoned and the error returned to the caller of this
911 ** function immediately. If all calls to virtual table methods are successful,
912 ** SQLITE_OK is returned.
913 */
914 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
915   int rc = SQLITE_OK;
916 
917   assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
918   assert( iSavepoint>=0 );
919   if( db->aVTrans ){
920     int i;
921     for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
922       VTable *pVTab = db->aVTrans[i];
923       const sqlite3_module *pMod = pVTab->pMod->pModule;
924       if( pVTab->pVtab && pMod->iVersion>=2 ){
925         int (*xMethod)(sqlite3_vtab *, int);
926         switch( op ){
927           case SAVEPOINT_BEGIN:
928             xMethod = pMod->xSavepoint;
929             pVTab->iSavepoint = iSavepoint+1;
930             break;
931           case SAVEPOINT_ROLLBACK:
932             xMethod = pMod->xRollbackTo;
933             break;
934           default:
935             xMethod = pMod->xRelease;
936             break;
937         }
938         if( xMethod && pVTab->iSavepoint>iSavepoint ){
939           rc = xMethod(pVTab->pVtab, iSavepoint);
940         }
941       }
942     }
943   }
944   return rc;
945 }
946 
947 /*
948 ** The first parameter (pDef) is a function implementation.  The
949 ** second parameter (pExpr) is the first argument to this function.
950 ** If pExpr is a column in a virtual table, then let the virtual
951 ** table implementation have an opportunity to overload the function.
952 **
953 ** This routine is used to allow virtual table implementations to
954 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
955 **
956 ** Return either the pDef argument (indicating no change) or a
957 ** new FuncDef structure that is marked as ephemeral using the
958 ** SQLITE_FUNC_EPHEM flag.
959 */
960 FuncDef *sqlite3VtabOverloadFunction(
961   sqlite3 *db,    /* Database connection for reporting malloc problems */
962   FuncDef *pDef,  /* Function to possibly overload */
963   int nArg,       /* Number of arguments to the function */
964   Expr *pExpr     /* First argument to the function */
965 ){
966   Table *pTab;
967   sqlite3_vtab *pVtab;
968   sqlite3_module *pMod;
969   void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
970   void *pArg = 0;
971   FuncDef *pNew;
972   int rc = 0;
973   char *zLowerName;
974   unsigned char *z;
975 
976 
977   /* Check to see the left operand is a column in a virtual table */
978   if( NEVER(pExpr==0) ) return pDef;
979   if( pExpr->op!=TK_COLUMN ) return pDef;
980   pTab = pExpr->pTab;
981   if( NEVER(pTab==0) ) return pDef;
982   if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
983   pVtab = sqlite3GetVTable(db, pTab)->pVtab;
984   assert( pVtab!=0 );
985   assert( pVtab->pModule!=0 );
986   pMod = (sqlite3_module *)pVtab->pModule;
987   if( pMod->xFindFunction==0 ) return pDef;
988 
989   /* Call the xFindFunction method on the virtual table implementation
990   ** to see if the implementation wants to overload this function
991   */
992   zLowerName = sqlite3DbStrDup(db, pDef->zName);
993   if( zLowerName ){
994     for(z=(unsigned char*)zLowerName; *z; z++){
995       *z = sqlite3UpperToLower[*z];
996     }
997     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
998     sqlite3DbFree(db, zLowerName);
999   }
1000   if( rc==0 ){
1001     return pDef;
1002   }
1003 
1004   /* Create a new ephemeral function definition for the overloaded
1005   ** function */
1006   pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1007                              + sqlite3Strlen30(pDef->zName) + 1);
1008   if( pNew==0 ){
1009     return pDef;
1010   }
1011   *pNew = *pDef;
1012   pNew->zName = (char *)&pNew[1];
1013   memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1014   pNew->xFunc = xFunc;
1015   pNew->pUserData = pArg;
1016   pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1017   return pNew;
1018 }
1019 
1020 /*
1021 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1022 ** array so that an OP_VBegin will get generated for it.  Add pTab to the
1023 ** array if it is missing.  If pTab is already in the array, this routine
1024 ** is a no-op.
1025 */
1026 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1027   Parse *pToplevel = sqlite3ParseToplevel(pParse);
1028   int i, n;
1029   Table **apVtabLock;
1030 
1031   assert( IsVirtual(pTab) );
1032   for(i=0; i<pToplevel->nVtabLock; i++){
1033     if( pTab==pToplevel->apVtabLock[i] ) return;
1034   }
1035   n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1036   apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
1037   if( apVtabLock ){
1038     pToplevel->apVtabLock = apVtabLock;
1039     pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1040   }else{
1041     pToplevel->db->mallocFailed = 1;
1042   }
1043 }
1044 
1045 /*
1046 ** Return the ON CONFLICT resolution mode in effect for the virtual
1047 ** table update operation currently in progress.
1048 **
1049 ** The results of this routine are undefined unless it is called from
1050 ** within an xUpdate method.
1051 */
1052 int sqlite3_vtab_on_conflict(sqlite3 *db){
1053   static const unsigned char aMap[] = {
1054     SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1055   };
1056   assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1057   assert( OE_Ignore==4 && OE_Replace==5 );
1058   assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1059   return (int)aMap[db->vtabOnConflict-1];
1060 }
1061 
1062 /*
1063 ** Call from within the xCreate() or xConnect() methods to provide
1064 ** the SQLite core with additional information about the behavior
1065 ** of the virtual table being implemented.
1066 */
1067 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1068   va_list ap;
1069   int rc = SQLITE_OK;
1070 
1071   sqlite3_mutex_enter(db->mutex);
1072 
1073   va_start(ap, op);
1074   switch( op ){
1075     case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1076       VtabCtx *p = db->pVtabCtx;
1077       if( !p ){
1078         rc = SQLITE_MISUSE_BKPT;
1079       }else{
1080         assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1081         p->pVTable->bConstraint = (u8)va_arg(ap, int);
1082       }
1083       break;
1084     }
1085     default:
1086       rc = SQLITE_MISUSE_BKPT;
1087       break;
1088   }
1089   va_end(ap);
1090 
1091   if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1092   sqlite3_mutex_leave(db->mutex);
1093   return rc;
1094 }
1095 
1096 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1097