1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 }; 28 29 /* 30 ** The actual function that does the work of creating a new module. 31 ** This function implements the sqlite3_create_module() and 32 ** sqlite3_create_module_v2() interfaces. 33 */ 34 static int createModule( 35 sqlite3 *db, /* Database in which module is registered */ 36 const char *zName, /* Name assigned to this module */ 37 const sqlite3_module *pModule, /* The definition of the module */ 38 void *pAux, /* Context pointer for xCreate/xConnect */ 39 void (*xDestroy)(void *) /* Module destructor function */ 40 ){ 41 int rc = SQLITE_OK; 42 int nName; 43 44 sqlite3_mutex_enter(db->mutex); 45 nName = sqlite3Strlen30(zName); 46 if( sqlite3HashFind(&db->aModule, zName) ){ 47 rc = SQLITE_MISUSE_BKPT; 48 }else{ 49 Module *pMod; 50 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 51 if( pMod ){ 52 Module *pDel; 53 char *zCopy = (char *)(&pMod[1]); 54 memcpy(zCopy, zName, nName+1); 55 pMod->zName = zCopy; 56 pMod->pModule = pModule; 57 pMod->pAux = pAux; 58 pMod->xDestroy = xDestroy; 59 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 60 assert( pDel==0 || pDel==pMod ); 61 if( pDel ){ 62 db->mallocFailed = 1; 63 sqlite3DbFree(db, pDel); 64 } 65 } 66 } 67 rc = sqlite3ApiExit(db, rc); 68 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 69 70 sqlite3_mutex_leave(db->mutex); 71 return rc; 72 } 73 74 75 /* 76 ** External API function used to create a new virtual-table module. 77 */ 78 int sqlite3_create_module( 79 sqlite3 *db, /* Database in which module is registered */ 80 const char *zName, /* Name assigned to this module */ 81 const sqlite3_module *pModule, /* The definition of the module */ 82 void *pAux /* Context pointer for xCreate/xConnect */ 83 ){ 84 return createModule(db, zName, pModule, pAux, 0); 85 } 86 87 /* 88 ** External API function used to create a new virtual-table module. 89 */ 90 int sqlite3_create_module_v2( 91 sqlite3 *db, /* Database in which module is registered */ 92 const char *zName, /* Name assigned to this module */ 93 const sqlite3_module *pModule, /* The definition of the module */ 94 void *pAux, /* Context pointer for xCreate/xConnect */ 95 void (*xDestroy)(void *) /* Module destructor function */ 96 ){ 97 return createModule(db, zName, pModule, pAux, xDestroy); 98 } 99 100 /* 101 ** Lock the virtual table so that it cannot be disconnected. 102 ** Locks nest. Every lock should have a corresponding unlock. 103 ** If an unlock is omitted, resources leaks will occur. 104 ** 105 ** If a disconnect is attempted while a virtual table is locked, 106 ** the disconnect is deferred until all locks have been removed. 107 */ 108 void sqlite3VtabLock(VTable *pVTab){ 109 pVTab->nRef++; 110 } 111 112 113 /* 114 ** pTab is a pointer to a Table structure representing a virtual-table. 115 ** Return a pointer to the VTable object used by connection db to access 116 ** this virtual-table, if one has been created, or NULL otherwise. 117 */ 118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 119 VTable *pVtab; 120 assert( IsVirtual(pTab) ); 121 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 122 return pVtab; 123 } 124 125 /* 126 ** Decrement the ref-count on a virtual table object. When the ref-count 127 ** reaches zero, call the xDisconnect() method to delete the object. 128 */ 129 void sqlite3VtabUnlock(VTable *pVTab){ 130 sqlite3 *db = pVTab->db; 131 132 assert( db ); 133 assert( pVTab->nRef>0 ); 134 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 135 136 pVTab->nRef--; 137 if( pVTab->nRef==0 ){ 138 sqlite3_vtab *p = pVTab->pVtab; 139 if( p ){ 140 p->pModule->xDisconnect(p); 141 } 142 sqlite3DbFree(db, pVTab); 143 } 144 } 145 146 /* 147 ** Table p is a virtual table. This function moves all elements in the 148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 149 ** database connections to be disconnected at the next opportunity. 150 ** Except, if argument db is not NULL, then the entry associated with 151 ** connection db is left in the p->pVTable list. 152 */ 153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 154 VTable *pRet = 0; 155 VTable *pVTable = p->pVTable; 156 p->pVTable = 0; 157 158 /* Assert that the mutex (if any) associated with the BtShared database 159 ** that contains table p is held by the caller. See header comments 160 ** above function sqlite3VtabUnlockList() for an explanation of why 161 ** this makes it safe to access the sqlite3.pDisconnect list of any 162 ** database connection that may have an entry in the p->pVTable list. 163 */ 164 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 165 166 while( pVTable ){ 167 sqlite3 *db2 = pVTable->db; 168 VTable *pNext = pVTable->pNext; 169 assert( db2 ); 170 if( db2==db ){ 171 pRet = pVTable; 172 p->pVTable = pRet; 173 pRet->pNext = 0; 174 }else{ 175 pVTable->pNext = db2->pDisconnect; 176 db2->pDisconnect = pVTable; 177 } 178 pVTable = pNext; 179 } 180 181 assert( !db || pRet ); 182 return pRet; 183 } 184 185 /* 186 ** Table *p is a virtual table. This function removes the VTable object 187 ** for table *p associated with database connection db from the linked 188 ** list in p->pVTab. It also decrements the VTable ref count. This is 189 ** used when closing database connection db to free all of its VTable 190 ** objects without disturbing the rest of the Schema object (which may 191 ** be being used by other shared-cache connections). 192 */ 193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 194 VTable **ppVTab; 195 196 assert( IsVirtual(p) ); 197 assert( sqlite3BtreeHoldsAllMutexes(db) ); 198 assert( sqlite3_mutex_held(db->mutex) ); 199 200 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 201 if( (*ppVTab)->db==db ){ 202 VTable *pVTab = *ppVTab; 203 *ppVTab = pVTab->pNext; 204 sqlite3VtabUnlock(pVTab); 205 break; 206 } 207 } 208 } 209 210 211 /* 212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 213 ** 214 ** This function may only be called when the mutexes associated with all 215 ** shared b-tree databases opened using connection db are held by the 216 ** caller. This is done to protect the sqlite3.pDisconnect list. The 217 ** sqlite3.pDisconnect list is accessed only as follows: 218 ** 219 ** 1) By this function. In this case, all BtShared mutexes and the mutex 220 ** associated with the database handle itself must be held. 221 ** 222 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 223 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 224 ** associated with the database the virtual table is stored in is held 225 ** or, if the virtual table is stored in a non-sharable database, then 226 ** the database handle mutex is held. 227 ** 228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 229 ** by multiple threads. It is thread-safe. 230 */ 231 void sqlite3VtabUnlockList(sqlite3 *db){ 232 VTable *p = db->pDisconnect; 233 db->pDisconnect = 0; 234 235 assert( sqlite3BtreeHoldsAllMutexes(db) ); 236 assert( sqlite3_mutex_held(db->mutex) ); 237 238 if( p ){ 239 sqlite3ExpirePreparedStatements(db); 240 do { 241 VTable *pNext = p->pNext; 242 sqlite3VtabUnlock(p); 243 p = pNext; 244 }while( p ); 245 } 246 } 247 248 /* 249 ** Clear any and all virtual-table information from the Table record. 250 ** This routine is called, for example, just before deleting the Table 251 ** record. 252 ** 253 ** Since it is a virtual-table, the Table structure contains a pointer 254 ** to the head of a linked list of VTable structures. Each VTable 255 ** structure is associated with a single sqlite3* user of the schema. 256 ** The reference count of the VTable structure associated with database 257 ** connection db is decremented immediately (which may lead to the 258 ** structure being xDisconnected and free). Any other VTable structures 259 ** in the list are moved to the sqlite3.pDisconnect list of the associated 260 ** database connection. 261 */ 262 void sqlite3VtabClear(sqlite3 *db, Table *p){ 263 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 264 if( p->azModuleArg ){ 265 int i; 266 for(i=0; i<p->nModuleArg; i++){ 267 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 268 } 269 sqlite3DbFree(db, p->azModuleArg); 270 } 271 } 272 273 /* 274 ** Add a new module argument to pTable->azModuleArg[]. 275 ** The string is not copied - the pointer is stored. The 276 ** string will be freed automatically when the table is 277 ** deleted. 278 */ 279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 280 int i = pTable->nModuleArg++; 281 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 282 char **azModuleArg; 283 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 284 if( azModuleArg==0 ){ 285 int j; 286 for(j=0; j<i; j++){ 287 sqlite3DbFree(db, pTable->azModuleArg[j]); 288 } 289 sqlite3DbFree(db, zArg); 290 sqlite3DbFree(db, pTable->azModuleArg); 291 pTable->nModuleArg = 0; 292 }else{ 293 azModuleArg[i] = zArg; 294 azModuleArg[i+1] = 0; 295 } 296 pTable->azModuleArg = azModuleArg; 297 } 298 299 /* 300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 301 ** statement. The module name has been parsed, but the optional list 302 ** of parameters that follow the module name are still pending. 303 */ 304 void sqlite3VtabBeginParse( 305 Parse *pParse, /* Parsing context */ 306 Token *pName1, /* Name of new table, or database name */ 307 Token *pName2, /* Name of new table or NULL */ 308 Token *pModuleName, /* Name of the module for the virtual table */ 309 int ifNotExists /* No error if the table already exists */ 310 ){ 311 int iDb; /* The database the table is being created in */ 312 Table *pTable; /* The new virtual table */ 313 sqlite3 *db; /* Database connection */ 314 315 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 316 pTable = pParse->pNewTable; 317 if( pTable==0 ) return; 318 assert( 0==pTable->pIndex ); 319 320 db = pParse->db; 321 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 322 assert( iDb>=0 ); 323 324 pTable->tabFlags |= TF_Virtual; 325 pTable->nModuleArg = 0; 326 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 327 addModuleArgument(db, pTable, 0); 328 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 329 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); 330 331 #ifndef SQLITE_OMIT_AUTHORIZATION 332 /* Creating a virtual table invokes the authorization callback twice. 333 ** The first invocation, to obtain permission to INSERT a row into the 334 ** sqlite_master table, has already been made by sqlite3StartTable(). 335 ** The second call, to obtain permission to create the table, is made now. 336 */ 337 if( pTable->azModuleArg ){ 338 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 339 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 340 } 341 #endif 342 } 343 344 /* 345 ** This routine takes the module argument that has been accumulating 346 ** in pParse->zArg[] and appends it to the list of arguments on the 347 ** virtual table currently under construction in pParse->pTable. 348 */ 349 static void addArgumentToVtab(Parse *pParse){ 350 if( pParse->sArg.z && pParse->pNewTable ){ 351 const char *z = (const char*)pParse->sArg.z; 352 int n = pParse->sArg.n; 353 sqlite3 *db = pParse->db; 354 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 355 } 356 } 357 358 /* 359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 360 ** has been completely parsed. 361 */ 362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 363 Table *pTab = pParse->pNewTable; /* The table being constructed */ 364 sqlite3 *db = pParse->db; /* The database connection */ 365 366 if( pTab==0 ) return; 367 addArgumentToVtab(pParse); 368 pParse->sArg.z = 0; 369 if( pTab->nModuleArg<1 ) return; 370 371 /* If the CREATE VIRTUAL TABLE statement is being entered for the 372 ** first time (in other words if the virtual table is actually being 373 ** created now instead of just being read out of sqlite_master) then 374 ** do additional initialization work and store the statement text 375 ** in the sqlite_master table. 376 */ 377 if( !db->init.busy ){ 378 char *zStmt; 379 char *zWhere; 380 int iDb; 381 Vdbe *v; 382 383 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 384 if( pEnd ){ 385 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 386 } 387 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 388 389 /* A slot for the record has already been allocated in the 390 ** SQLITE_MASTER table. We just need to update that slot with all 391 ** the information we've collected. 392 ** 393 ** The VM register number pParse->regRowid holds the rowid of an 394 ** entry in the sqlite_master table tht was created for this vtab 395 ** by sqlite3StartTable(). 396 */ 397 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 398 sqlite3NestedParse(pParse, 399 "UPDATE %Q.%s " 400 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 401 "WHERE rowid=#%d", 402 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 403 pTab->zName, 404 pTab->zName, 405 zStmt, 406 pParse->regRowid 407 ); 408 sqlite3DbFree(db, zStmt); 409 v = sqlite3GetVdbe(pParse); 410 sqlite3ChangeCookie(pParse, iDb); 411 412 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 413 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 414 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 415 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 416 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); 417 } 418 419 /* If we are rereading the sqlite_master table create the in-memory 420 ** record of the table. The xConnect() method is not called until 421 ** the first time the virtual table is used in an SQL statement. This 422 ** allows a schema that contains virtual tables to be loaded before 423 ** the required virtual table implementations are registered. */ 424 else { 425 Table *pOld; 426 Schema *pSchema = pTab->pSchema; 427 const char *zName = pTab->zName; 428 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 429 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 430 if( pOld ){ 431 db->mallocFailed = 1; 432 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 433 return; 434 } 435 pParse->pNewTable = 0; 436 } 437 } 438 439 /* 440 ** The parser calls this routine when it sees the first token 441 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 442 */ 443 void sqlite3VtabArgInit(Parse *pParse){ 444 addArgumentToVtab(pParse); 445 pParse->sArg.z = 0; 446 pParse->sArg.n = 0; 447 } 448 449 /* 450 ** The parser calls this routine for each token after the first token 451 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 452 */ 453 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 454 Token *pArg = &pParse->sArg; 455 if( pArg->z==0 ){ 456 pArg->z = p->z; 457 pArg->n = p->n; 458 }else{ 459 assert(pArg->z < p->z); 460 pArg->n = (int)(&p->z[p->n] - pArg->z); 461 } 462 } 463 464 /* 465 ** Invoke a virtual table constructor (either xCreate or xConnect). The 466 ** pointer to the function to invoke is passed as the fourth parameter 467 ** to this procedure. 468 */ 469 static int vtabCallConstructor( 470 sqlite3 *db, 471 Table *pTab, 472 Module *pMod, 473 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 474 char **pzErr 475 ){ 476 VtabCtx sCtx, *pPriorCtx; 477 VTable *pVTable; 478 int rc; 479 const char *const*azArg = (const char *const*)pTab->azModuleArg; 480 int nArg = pTab->nModuleArg; 481 char *zErr = 0; 482 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 483 int iDb; 484 485 if( !zModuleName ){ 486 return SQLITE_NOMEM; 487 } 488 489 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 490 if( !pVTable ){ 491 sqlite3DbFree(db, zModuleName); 492 return SQLITE_NOMEM; 493 } 494 pVTable->db = db; 495 pVTable->pMod = pMod; 496 497 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 498 pTab->azModuleArg[1] = db->aDb[iDb].zName; 499 500 /* Invoke the virtual table constructor */ 501 assert( &db->pVtabCtx ); 502 assert( xConstruct ); 503 sCtx.pTab = pTab; 504 sCtx.pVTable = pVTable; 505 pPriorCtx = db->pVtabCtx; 506 db->pVtabCtx = &sCtx; 507 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 508 db->pVtabCtx = pPriorCtx; 509 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 510 511 if( SQLITE_OK!=rc ){ 512 if( zErr==0 ){ 513 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 514 }else { 515 *pzErr = sqlite3MPrintf(db, "%s", zErr); 516 sqlite3_free(zErr); 517 } 518 sqlite3DbFree(db, pVTable); 519 }else if( ALWAYS(pVTable->pVtab) ){ 520 /* Justification of ALWAYS(): A correct vtab constructor must allocate 521 ** the sqlite3_vtab object if successful. */ 522 pVTable->pVtab->pModule = pMod->pModule; 523 pVTable->nRef = 1; 524 if( sCtx.pTab ){ 525 const char *zFormat = "vtable constructor did not declare schema: %s"; 526 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 527 sqlite3VtabUnlock(pVTable); 528 rc = SQLITE_ERROR; 529 }else{ 530 int iCol; 531 /* If everything went according to plan, link the new VTable structure 532 ** into the linked list headed by pTab->pVTable. Then loop through the 533 ** columns of the table to see if any of them contain the token "hidden". 534 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 535 ** the type string. */ 536 pVTable->pNext = pTab->pVTable; 537 pTab->pVTable = pVTable; 538 539 for(iCol=0; iCol<pTab->nCol; iCol++){ 540 char *zType = pTab->aCol[iCol].zType; 541 int nType; 542 int i = 0; 543 if( !zType ) continue; 544 nType = sqlite3Strlen30(zType); 545 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 546 for(i=0; i<nType; i++){ 547 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 548 && (zType[i+7]=='\0' || zType[i+7]==' ') 549 ){ 550 i++; 551 break; 552 } 553 } 554 } 555 if( i<nType ){ 556 int j; 557 int nDel = 6 + (zType[i+6] ? 1 : 0); 558 for(j=i; (j+nDel)<=nType; j++){ 559 zType[j] = zType[j+nDel]; 560 } 561 if( zType[i]=='\0' && i>0 ){ 562 assert(zType[i-1]==' '); 563 zType[i-1] = '\0'; 564 } 565 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 566 } 567 } 568 } 569 } 570 571 sqlite3DbFree(db, zModuleName); 572 return rc; 573 } 574 575 /* 576 ** This function is invoked by the parser to call the xConnect() method 577 ** of the virtual table pTab. If an error occurs, an error code is returned 578 ** and an error left in pParse. 579 ** 580 ** This call is a no-op if table pTab is not a virtual table. 581 */ 582 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 583 sqlite3 *db = pParse->db; 584 const char *zMod; 585 Module *pMod; 586 int rc; 587 588 assert( pTab ); 589 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 590 return SQLITE_OK; 591 } 592 593 /* Locate the required virtual table module */ 594 zMod = pTab->azModuleArg[0]; 595 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 596 597 if( !pMod ){ 598 const char *zModule = pTab->azModuleArg[0]; 599 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 600 rc = SQLITE_ERROR; 601 }else{ 602 char *zErr = 0; 603 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 604 if( rc!=SQLITE_OK ){ 605 sqlite3ErrorMsg(pParse, "%s", zErr); 606 } 607 sqlite3DbFree(db, zErr); 608 } 609 610 return rc; 611 } 612 /* 613 ** Grow the db->aVTrans[] array so that there is room for at least one 614 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 615 */ 616 static int growVTrans(sqlite3 *db){ 617 const int ARRAY_INCR = 5; 618 619 /* Grow the sqlite3.aVTrans array if required */ 620 if( (db->nVTrans%ARRAY_INCR)==0 ){ 621 VTable **aVTrans; 622 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 623 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 624 if( !aVTrans ){ 625 return SQLITE_NOMEM; 626 } 627 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 628 db->aVTrans = aVTrans; 629 } 630 631 return SQLITE_OK; 632 } 633 634 /* 635 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 636 ** have already been reserved using growVTrans(). 637 */ 638 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 639 /* Add pVtab to the end of sqlite3.aVTrans */ 640 db->aVTrans[db->nVTrans++] = pVTab; 641 sqlite3VtabLock(pVTab); 642 } 643 644 /* 645 ** This function is invoked by the vdbe to call the xCreate method 646 ** of the virtual table named zTab in database iDb. 647 ** 648 ** If an error occurs, *pzErr is set to point an an English language 649 ** description of the error and an SQLITE_XXX error code is returned. 650 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 651 */ 652 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 653 int rc = SQLITE_OK; 654 Table *pTab; 655 Module *pMod; 656 const char *zMod; 657 658 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 659 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 660 661 /* Locate the required virtual table module */ 662 zMod = pTab->azModuleArg[0]; 663 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 664 665 /* If the module has been registered and includes a Create method, 666 ** invoke it now. If the module has not been registered, return an 667 ** error. Otherwise, do nothing. 668 */ 669 if( !pMod ){ 670 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 671 rc = SQLITE_ERROR; 672 }else{ 673 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 674 } 675 676 /* Justification of ALWAYS(): The xConstructor method is required to 677 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 678 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 679 rc = growVTrans(db); 680 if( rc==SQLITE_OK ){ 681 addToVTrans(db, sqlite3GetVTable(db, pTab)); 682 } 683 } 684 685 return rc; 686 } 687 688 /* 689 ** This function is used to set the schema of a virtual table. It is only 690 ** valid to call this function from within the xCreate() or xConnect() of a 691 ** virtual table module. 692 */ 693 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 694 Parse *pParse; 695 696 int rc = SQLITE_OK; 697 Table *pTab; 698 char *zErr = 0; 699 700 sqlite3_mutex_enter(db->mutex); 701 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ 702 sqlite3Error(db, SQLITE_MISUSE); 703 sqlite3_mutex_leave(db->mutex); 704 return SQLITE_MISUSE_BKPT; 705 } 706 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 707 708 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 709 if( pParse==0 ){ 710 rc = SQLITE_NOMEM; 711 }else{ 712 pParse->declareVtab = 1; 713 pParse->db = db; 714 pParse->nQueryLoop = 1; 715 716 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 717 && pParse->pNewTable 718 && !db->mallocFailed 719 && !pParse->pNewTable->pSelect 720 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 721 ){ 722 if( !pTab->aCol ){ 723 pTab->aCol = pParse->pNewTable->aCol; 724 pTab->nCol = pParse->pNewTable->nCol; 725 pParse->pNewTable->nCol = 0; 726 pParse->pNewTable->aCol = 0; 727 } 728 db->pVtabCtx->pTab = 0; 729 }else{ 730 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 731 sqlite3DbFree(db, zErr); 732 rc = SQLITE_ERROR; 733 } 734 pParse->declareVtab = 0; 735 736 if( pParse->pVdbe ){ 737 sqlite3VdbeFinalize(pParse->pVdbe); 738 } 739 sqlite3DeleteTable(db, pParse->pNewTable); 740 sqlite3ParserReset(pParse); 741 sqlite3StackFree(db, pParse); 742 } 743 744 assert( (rc&0xff)==rc ); 745 rc = sqlite3ApiExit(db, rc); 746 sqlite3_mutex_leave(db->mutex); 747 return rc; 748 } 749 750 /* 751 ** This function is invoked by the vdbe to call the xDestroy method 752 ** of the virtual table named zTab in database iDb. This occurs 753 ** when a DROP TABLE is mentioned. 754 ** 755 ** This call is a no-op if zTab is not a virtual table. 756 */ 757 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 758 int rc = SQLITE_OK; 759 Table *pTab; 760 761 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 762 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 763 VTable *p = vtabDisconnectAll(db, pTab); 764 765 assert( rc==SQLITE_OK ); 766 rc = p->pMod->pModule->xDestroy(p->pVtab); 767 768 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 769 if( rc==SQLITE_OK ){ 770 assert( pTab->pVTable==p && p->pNext==0 ); 771 p->pVtab = 0; 772 pTab->pVTable = 0; 773 sqlite3VtabUnlock(p); 774 } 775 } 776 777 return rc; 778 } 779 780 /* 781 ** This function invokes either the xRollback or xCommit method 782 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 783 ** called is identified by the second argument, "offset", which is 784 ** the offset of the method to call in the sqlite3_module structure. 785 ** 786 ** The array is cleared after invoking the callbacks. 787 */ 788 static void callFinaliser(sqlite3 *db, int offset){ 789 int i; 790 if( db->aVTrans ){ 791 for(i=0; i<db->nVTrans; i++){ 792 VTable *pVTab = db->aVTrans[i]; 793 sqlite3_vtab *p = pVTab->pVtab; 794 if( p ){ 795 int (*x)(sqlite3_vtab *); 796 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 797 if( x ) x(p); 798 } 799 pVTab->iSavepoint = 0; 800 sqlite3VtabUnlock(pVTab); 801 } 802 sqlite3DbFree(db, db->aVTrans); 803 db->nVTrans = 0; 804 db->aVTrans = 0; 805 } 806 } 807 808 /* 809 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 810 ** array. Return the error code for the first error that occurs, or 811 ** SQLITE_OK if all xSync operations are successful. 812 ** 813 ** If an error message is available, leave it in p->zErrMsg. 814 */ 815 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 816 int i; 817 int rc = SQLITE_OK; 818 VTable **aVTrans = db->aVTrans; 819 820 db->aVTrans = 0; 821 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 822 int (*x)(sqlite3_vtab *); 823 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 824 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 825 rc = x(pVtab); 826 sqlite3VtabImportErrmsg(p, pVtab); 827 } 828 } 829 db->aVTrans = aVTrans; 830 return rc; 831 } 832 833 /* 834 ** Invoke the xRollback method of all virtual tables in the 835 ** sqlite3.aVTrans array. Then clear the array itself. 836 */ 837 int sqlite3VtabRollback(sqlite3 *db){ 838 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 839 return SQLITE_OK; 840 } 841 842 /* 843 ** Invoke the xCommit method of all virtual tables in the 844 ** sqlite3.aVTrans array. Then clear the array itself. 845 */ 846 int sqlite3VtabCommit(sqlite3 *db){ 847 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 848 return SQLITE_OK; 849 } 850 851 /* 852 ** If the virtual table pVtab supports the transaction interface 853 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 854 ** not currently open, invoke the xBegin method now. 855 ** 856 ** If the xBegin call is successful, place the sqlite3_vtab pointer 857 ** in the sqlite3.aVTrans array. 858 */ 859 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 860 int rc = SQLITE_OK; 861 const sqlite3_module *pModule; 862 863 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 864 ** than zero, then this function is being called from within a 865 ** virtual module xSync() callback. It is illegal to write to 866 ** virtual module tables in this case, so return SQLITE_LOCKED. 867 */ 868 if( sqlite3VtabInSync(db) ){ 869 return SQLITE_LOCKED; 870 } 871 if( !pVTab ){ 872 return SQLITE_OK; 873 } 874 pModule = pVTab->pVtab->pModule; 875 876 if( pModule->xBegin ){ 877 int i; 878 879 /* If pVtab is already in the aVTrans array, return early */ 880 for(i=0; i<db->nVTrans; i++){ 881 if( db->aVTrans[i]==pVTab ){ 882 return SQLITE_OK; 883 } 884 } 885 886 /* Invoke the xBegin method. If successful, add the vtab to the 887 ** sqlite3.aVTrans[] array. */ 888 rc = growVTrans(db); 889 if( rc==SQLITE_OK ){ 890 rc = pModule->xBegin(pVTab->pVtab); 891 if( rc==SQLITE_OK ){ 892 addToVTrans(db, pVTab); 893 } 894 } 895 } 896 return rc; 897 } 898 899 /* 900 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 901 ** virtual tables that currently have an open transaction. Pass iSavepoint 902 ** as the second argument to the virtual table method invoked. 903 ** 904 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 905 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 906 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 907 ** an open transaction is invoked. 908 ** 909 ** If any virtual table method returns an error code other than SQLITE_OK, 910 ** processing is abandoned and the error returned to the caller of this 911 ** function immediately. If all calls to virtual table methods are successful, 912 ** SQLITE_OK is returned. 913 */ 914 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 915 int rc = SQLITE_OK; 916 917 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 918 assert( iSavepoint>=0 ); 919 if( db->aVTrans ){ 920 int i; 921 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 922 VTable *pVTab = db->aVTrans[i]; 923 const sqlite3_module *pMod = pVTab->pMod->pModule; 924 if( pVTab->pVtab && pMod->iVersion>=2 ){ 925 int (*xMethod)(sqlite3_vtab *, int); 926 switch( op ){ 927 case SAVEPOINT_BEGIN: 928 xMethod = pMod->xSavepoint; 929 pVTab->iSavepoint = iSavepoint+1; 930 break; 931 case SAVEPOINT_ROLLBACK: 932 xMethod = pMod->xRollbackTo; 933 break; 934 default: 935 xMethod = pMod->xRelease; 936 break; 937 } 938 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 939 rc = xMethod(pVTab->pVtab, iSavepoint); 940 } 941 } 942 } 943 } 944 return rc; 945 } 946 947 /* 948 ** The first parameter (pDef) is a function implementation. The 949 ** second parameter (pExpr) is the first argument to this function. 950 ** If pExpr is a column in a virtual table, then let the virtual 951 ** table implementation have an opportunity to overload the function. 952 ** 953 ** This routine is used to allow virtual table implementations to 954 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 955 ** 956 ** Return either the pDef argument (indicating no change) or a 957 ** new FuncDef structure that is marked as ephemeral using the 958 ** SQLITE_FUNC_EPHEM flag. 959 */ 960 FuncDef *sqlite3VtabOverloadFunction( 961 sqlite3 *db, /* Database connection for reporting malloc problems */ 962 FuncDef *pDef, /* Function to possibly overload */ 963 int nArg, /* Number of arguments to the function */ 964 Expr *pExpr /* First argument to the function */ 965 ){ 966 Table *pTab; 967 sqlite3_vtab *pVtab; 968 sqlite3_module *pMod; 969 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 970 void *pArg = 0; 971 FuncDef *pNew; 972 int rc = 0; 973 char *zLowerName; 974 unsigned char *z; 975 976 977 /* Check to see the left operand is a column in a virtual table */ 978 if( NEVER(pExpr==0) ) return pDef; 979 if( pExpr->op!=TK_COLUMN ) return pDef; 980 pTab = pExpr->pTab; 981 if( NEVER(pTab==0) ) return pDef; 982 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 983 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 984 assert( pVtab!=0 ); 985 assert( pVtab->pModule!=0 ); 986 pMod = (sqlite3_module *)pVtab->pModule; 987 if( pMod->xFindFunction==0 ) return pDef; 988 989 /* Call the xFindFunction method on the virtual table implementation 990 ** to see if the implementation wants to overload this function 991 */ 992 zLowerName = sqlite3DbStrDup(db, pDef->zName); 993 if( zLowerName ){ 994 for(z=(unsigned char*)zLowerName; *z; z++){ 995 *z = sqlite3UpperToLower[*z]; 996 } 997 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 998 sqlite3DbFree(db, zLowerName); 999 } 1000 if( rc==0 ){ 1001 return pDef; 1002 } 1003 1004 /* Create a new ephemeral function definition for the overloaded 1005 ** function */ 1006 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1007 + sqlite3Strlen30(pDef->zName) + 1); 1008 if( pNew==0 ){ 1009 return pDef; 1010 } 1011 *pNew = *pDef; 1012 pNew->zName = (char *)&pNew[1]; 1013 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1014 pNew->xFunc = xFunc; 1015 pNew->pUserData = pArg; 1016 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1017 return pNew; 1018 } 1019 1020 /* 1021 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1022 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1023 ** array if it is missing. If pTab is already in the array, this routine 1024 ** is a no-op. 1025 */ 1026 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1027 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1028 int i, n; 1029 Table **apVtabLock; 1030 1031 assert( IsVirtual(pTab) ); 1032 for(i=0; i<pToplevel->nVtabLock; i++){ 1033 if( pTab==pToplevel->apVtabLock[i] ) return; 1034 } 1035 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1036 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); 1037 if( apVtabLock ){ 1038 pToplevel->apVtabLock = apVtabLock; 1039 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1040 }else{ 1041 pToplevel->db->mallocFailed = 1; 1042 } 1043 } 1044 1045 /* 1046 ** Return the ON CONFLICT resolution mode in effect for the virtual 1047 ** table update operation currently in progress. 1048 ** 1049 ** The results of this routine are undefined unless it is called from 1050 ** within an xUpdate method. 1051 */ 1052 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1053 static const unsigned char aMap[] = { 1054 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1055 }; 1056 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1057 assert( OE_Ignore==4 && OE_Replace==5 ); 1058 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1059 return (int)aMap[db->vtabOnConflict-1]; 1060 } 1061 1062 /* 1063 ** Call from within the xCreate() or xConnect() methods to provide 1064 ** the SQLite core with additional information about the behavior 1065 ** of the virtual table being implemented. 1066 */ 1067 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1068 va_list ap; 1069 int rc = SQLITE_OK; 1070 1071 sqlite3_mutex_enter(db->mutex); 1072 1073 va_start(ap, op); 1074 switch( op ){ 1075 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1076 VtabCtx *p = db->pVtabCtx; 1077 if( !p ){ 1078 rc = SQLITE_MISUSE_BKPT; 1079 }else{ 1080 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1081 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1082 } 1083 break; 1084 } 1085 default: 1086 rc = SQLITE_MISUSE_BKPT; 1087 break; 1088 } 1089 va_end(ap); 1090 1091 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1092 sqlite3_mutex_leave(db->mutex); 1093 return rc; 1094 } 1095 1096 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1097