1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 }; 28 29 /* 30 ** The actual function that does the work of creating a new module. 31 ** This function implements the sqlite3_create_module() and 32 ** sqlite3_create_module_v2() interfaces. 33 */ 34 static int createModule( 35 sqlite3 *db, /* Database in which module is registered */ 36 const char *zName, /* Name assigned to this module */ 37 const sqlite3_module *pModule, /* The definition of the module */ 38 void *pAux, /* Context pointer for xCreate/xConnect */ 39 void (*xDestroy)(void *) /* Module destructor function */ 40 ){ 41 int rc = SQLITE_OK; 42 int nName; 43 44 sqlite3_mutex_enter(db->mutex); 45 nName = sqlite3Strlen30(zName); 46 if( sqlite3HashFind(&db->aModule, zName) ){ 47 rc = SQLITE_MISUSE_BKPT; 48 }else{ 49 Module *pMod; 50 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 51 if( pMod ){ 52 Module *pDel; 53 char *zCopy = (char *)(&pMod[1]); 54 memcpy(zCopy, zName, nName+1); 55 pMod->zName = zCopy; 56 pMod->pModule = pModule; 57 pMod->pAux = pAux; 58 pMod->xDestroy = xDestroy; 59 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 60 assert( pDel==0 || pDel==pMod ); 61 if( pDel ){ 62 db->mallocFailed = 1; 63 sqlite3DbFree(db, pDel); 64 } 65 } 66 } 67 rc = sqlite3ApiExit(db, rc); 68 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 69 70 sqlite3_mutex_leave(db->mutex); 71 return rc; 72 } 73 74 75 /* 76 ** External API function used to create a new virtual-table module. 77 */ 78 int sqlite3_create_module( 79 sqlite3 *db, /* Database in which module is registered */ 80 const char *zName, /* Name assigned to this module */ 81 const sqlite3_module *pModule, /* The definition of the module */ 82 void *pAux /* Context pointer for xCreate/xConnect */ 83 ){ 84 #ifdef SQLITE_ENABLE_API_ARMOR 85 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 86 #endif 87 return createModule(db, zName, pModule, pAux, 0); 88 } 89 90 /* 91 ** External API function used to create a new virtual-table module. 92 */ 93 int sqlite3_create_module_v2( 94 sqlite3 *db, /* Database in which module is registered */ 95 const char *zName, /* Name assigned to this module */ 96 const sqlite3_module *pModule, /* The definition of the module */ 97 void *pAux, /* Context pointer for xCreate/xConnect */ 98 void (*xDestroy)(void *) /* Module destructor function */ 99 ){ 100 #ifdef SQLITE_ENABLE_API_ARMOR 101 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 102 #endif 103 return createModule(db, zName, pModule, pAux, xDestroy); 104 } 105 106 /* 107 ** Lock the virtual table so that it cannot be disconnected. 108 ** Locks nest. Every lock should have a corresponding unlock. 109 ** If an unlock is omitted, resources leaks will occur. 110 ** 111 ** If a disconnect is attempted while a virtual table is locked, 112 ** the disconnect is deferred until all locks have been removed. 113 */ 114 void sqlite3VtabLock(VTable *pVTab){ 115 pVTab->nRef++; 116 } 117 118 119 /* 120 ** pTab is a pointer to a Table structure representing a virtual-table. 121 ** Return a pointer to the VTable object used by connection db to access 122 ** this virtual-table, if one has been created, or NULL otherwise. 123 */ 124 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 125 VTable *pVtab; 126 assert( IsVirtual(pTab) ); 127 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 128 return pVtab; 129 } 130 131 /* 132 ** Decrement the ref-count on a virtual table object. When the ref-count 133 ** reaches zero, call the xDisconnect() method to delete the object. 134 */ 135 void sqlite3VtabUnlock(VTable *pVTab){ 136 sqlite3 *db = pVTab->db; 137 138 assert( db ); 139 assert( pVTab->nRef>0 ); 140 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 141 142 pVTab->nRef--; 143 if( pVTab->nRef==0 ){ 144 sqlite3_vtab *p = pVTab->pVtab; 145 if( p ){ 146 p->pModule->xDisconnect(p); 147 } 148 sqlite3DbFree(db, pVTab); 149 } 150 } 151 152 /* 153 ** Table p is a virtual table. This function moves all elements in the 154 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 155 ** database connections to be disconnected at the next opportunity. 156 ** Except, if argument db is not NULL, then the entry associated with 157 ** connection db is left in the p->pVTable list. 158 */ 159 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 160 VTable *pRet = 0; 161 VTable *pVTable = p->pVTable; 162 p->pVTable = 0; 163 164 /* Assert that the mutex (if any) associated with the BtShared database 165 ** that contains table p is held by the caller. See header comments 166 ** above function sqlite3VtabUnlockList() for an explanation of why 167 ** this makes it safe to access the sqlite3.pDisconnect list of any 168 ** database connection that may have an entry in the p->pVTable list. 169 */ 170 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 171 172 while( pVTable ){ 173 sqlite3 *db2 = pVTable->db; 174 VTable *pNext = pVTable->pNext; 175 assert( db2 ); 176 if( db2==db ){ 177 pRet = pVTable; 178 p->pVTable = pRet; 179 pRet->pNext = 0; 180 }else{ 181 pVTable->pNext = db2->pDisconnect; 182 db2->pDisconnect = pVTable; 183 } 184 pVTable = pNext; 185 } 186 187 assert( !db || pRet ); 188 return pRet; 189 } 190 191 /* 192 ** Table *p is a virtual table. This function removes the VTable object 193 ** for table *p associated with database connection db from the linked 194 ** list in p->pVTab. It also decrements the VTable ref count. This is 195 ** used when closing database connection db to free all of its VTable 196 ** objects without disturbing the rest of the Schema object (which may 197 ** be being used by other shared-cache connections). 198 */ 199 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 200 VTable **ppVTab; 201 202 assert( IsVirtual(p) ); 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3_mutex_held(db->mutex) ); 205 206 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 207 if( (*ppVTab)->db==db ){ 208 VTable *pVTab = *ppVTab; 209 *ppVTab = pVTab->pNext; 210 sqlite3VtabUnlock(pVTab); 211 break; 212 } 213 } 214 } 215 216 217 /* 218 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 219 ** 220 ** This function may only be called when the mutexes associated with all 221 ** shared b-tree databases opened using connection db are held by the 222 ** caller. This is done to protect the sqlite3.pDisconnect list. The 223 ** sqlite3.pDisconnect list is accessed only as follows: 224 ** 225 ** 1) By this function. In this case, all BtShared mutexes and the mutex 226 ** associated with the database handle itself must be held. 227 ** 228 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 229 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 230 ** associated with the database the virtual table is stored in is held 231 ** or, if the virtual table is stored in a non-sharable database, then 232 ** the database handle mutex is held. 233 ** 234 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 235 ** by multiple threads. It is thread-safe. 236 */ 237 void sqlite3VtabUnlockList(sqlite3 *db){ 238 VTable *p = db->pDisconnect; 239 db->pDisconnect = 0; 240 241 assert( sqlite3BtreeHoldsAllMutexes(db) ); 242 assert( sqlite3_mutex_held(db->mutex) ); 243 244 if( p ){ 245 sqlite3ExpirePreparedStatements(db); 246 do { 247 VTable *pNext = p->pNext; 248 sqlite3VtabUnlock(p); 249 p = pNext; 250 }while( p ); 251 } 252 } 253 254 /* 255 ** Clear any and all virtual-table information from the Table record. 256 ** This routine is called, for example, just before deleting the Table 257 ** record. 258 ** 259 ** Since it is a virtual-table, the Table structure contains a pointer 260 ** to the head of a linked list of VTable structures. Each VTable 261 ** structure is associated with a single sqlite3* user of the schema. 262 ** The reference count of the VTable structure associated with database 263 ** connection db is decremented immediately (which may lead to the 264 ** structure being xDisconnected and free). Any other VTable structures 265 ** in the list are moved to the sqlite3.pDisconnect list of the associated 266 ** database connection. 267 */ 268 void sqlite3VtabClear(sqlite3 *db, Table *p){ 269 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 270 if( p->azModuleArg ){ 271 int i; 272 for(i=0; i<p->nModuleArg; i++){ 273 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 274 } 275 sqlite3DbFree(db, p->azModuleArg); 276 } 277 } 278 279 /* 280 ** Add a new module argument to pTable->azModuleArg[]. 281 ** The string is not copied - the pointer is stored. The 282 ** string will be freed automatically when the table is 283 ** deleted. 284 */ 285 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 286 int i = pTable->nModuleArg++; 287 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 288 char **azModuleArg; 289 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 290 if( azModuleArg==0 ){ 291 int j; 292 for(j=0; j<i; j++){ 293 sqlite3DbFree(db, pTable->azModuleArg[j]); 294 } 295 sqlite3DbFree(db, zArg); 296 sqlite3DbFree(db, pTable->azModuleArg); 297 pTable->nModuleArg = 0; 298 }else{ 299 azModuleArg[i] = zArg; 300 azModuleArg[i+1] = 0; 301 } 302 pTable->azModuleArg = azModuleArg; 303 } 304 305 /* 306 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 307 ** statement. The module name has been parsed, but the optional list 308 ** of parameters that follow the module name are still pending. 309 */ 310 void sqlite3VtabBeginParse( 311 Parse *pParse, /* Parsing context */ 312 Token *pName1, /* Name of new table, or database name */ 313 Token *pName2, /* Name of new table or NULL */ 314 Token *pModuleName, /* Name of the module for the virtual table */ 315 int ifNotExists /* No error if the table already exists */ 316 ){ 317 int iDb; /* The database the table is being created in */ 318 Table *pTable; /* The new virtual table */ 319 sqlite3 *db; /* Database connection */ 320 321 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 322 pTable = pParse->pNewTable; 323 if( pTable==0 ) return; 324 assert( 0==pTable->pIndex ); 325 326 db = pParse->db; 327 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 328 assert( iDb>=0 ); 329 330 pTable->tabFlags |= TF_Virtual; 331 pTable->nModuleArg = 0; 332 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 333 addModuleArgument(db, pTable, 0); 334 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 335 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 336 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 337 ); 338 pParse->sNameToken.n = (int)( 339 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 340 ); 341 342 #ifndef SQLITE_OMIT_AUTHORIZATION 343 /* Creating a virtual table invokes the authorization callback twice. 344 ** The first invocation, to obtain permission to INSERT a row into the 345 ** sqlite_master table, has already been made by sqlite3StartTable(). 346 ** The second call, to obtain permission to create the table, is made now. 347 */ 348 if( pTable->azModuleArg ){ 349 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 350 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 351 } 352 #endif 353 } 354 355 /* 356 ** This routine takes the module argument that has been accumulating 357 ** in pParse->zArg[] and appends it to the list of arguments on the 358 ** virtual table currently under construction in pParse->pTable. 359 */ 360 static void addArgumentToVtab(Parse *pParse){ 361 if( pParse->sArg.z && pParse->pNewTable ){ 362 const char *z = (const char*)pParse->sArg.z; 363 int n = pParse->sArg.n; 364 sqlite3 *db = pParse->db; 365 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 366 } 367 } 368 369 /* 370 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 371 ** has been completely parsed. 372 */ 373 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 374 Table *pTab = pParse->pNewTable; /* The table being constructed */ 375 sqlite3 *db = pParse->db; /* The database connection */ 376 377 if( pTab==0 ) return; 378 addArgumentToVtab(pParse); 379 pParse->sArg.z = 0; 380 if( pTab->nModuleArg<1 ) return; 381 382 /* If the CREATE VIRTUAL TABLE statement is being entered for the 383 ** first time (in other words if the virtual table is actually being 384 ** created now instead of just being read out of sqlite_master) then 385 ** do additional initialization work and store the statement text 386 ** in the sqlite_master table. 387 */ 388 if( !db->init.busy ){ 389 char *zStmt; 390 char *zWhere; 391 int iDb; 392 Vdbe *v; 393 394 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 395 if( pEnd ){ 396 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 397 } 398 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 399 400 /* A slot for the record has already been allocated in the 401 ** SQLITE_MASTER table. We just need to update that slot with all 402 ** the information we've collected. 403 ** 404 ** The VM register number pParse->regRowid holds the rowid of an 405 ** entry in the sqlite_master table tht was created for this vtab 406 ** by sqlite3StartTable(). 407 */ 408 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 409 sqlite3NestedParse(pParse, 410 "UPDATE %Q.%s " 411 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 412 "WHERE rowid=#%d", 413 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 414 pTab->zName, 415 pTab->zName, 416 zStmt, 417 pParse->regRowid 418 ); 419 sqlite3DbFree(db, zStmt); 420 v = sqlite3GetVdbe(pParse); 421 sqlite3ChangeCookie(pParse, iDb); 422 423 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 424 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 425 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 426 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 427 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); 428 } 429 430 /* If we are rereading the sqlite_master table create the in-memory 431 ** record of the table. The xConnect() method is not called until 432 ** the first time the virtual table is used in an SQL statement. This 433 ** allows a schema that contains virtual tables to be loaded before 434 ** the required virtual table implementations are registered. */ 435 else { 436 Table *pOld; 437 Schema *pSchema = pTab->pSchema; 438 const char *zName = pTab->zName; 439 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 440 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 441 if( pOld ){ 442 db->mallocFailed = 1; 443 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 444 return; 445 } 446 pParse->pNewTable = 0; 447 } 448 } 449 450 /* 451 ** The parser calls this routine when it sees the first token 452 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 453 */ 454 void sqlite3VtabArgInit(Parse *pParse){ 455 addArgumentToVtab(pParse); 456 pParse->sArg.z = 0; 457 pParse->sArg.n = 0; 458 } 459 460 /* 461 ** The parser calls this routine for each token after the first token 462 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 463 */ 464 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 465 Token *pArg = &pParse->sArg; 466 if( pArg->z==0 ){ 467 pArg->z = p->z; 468 pArg->n = p->n; 469 }else{ 470 assert(pArg->z < p->z); 471 pArg->n = (int)(&p->z[p->n] - pArg->z); 472 } 473 } 474 475 /* 476 ** Invoke a virtual table constructor (either xCreate or xConnect). The 477 ** pointer to the function to invoke is passed as the fourth parameter 478 ** to this procedure. 479 */ 480 static int vtabCallConstructor( 481 sqlite3 *db, 482 Table *pTab, 483 Module *pMod, 484 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 485 char **pzErr 486 ){ 487 VtabCtx sCtx, *pPriorCtx; 488 VTable *pVTable; 489 int rc; 490 const char *const*azArg = (const char *const*)pTab->azModuleArg; 491 int nArg = pTab->nModuleArg; 492 char *zErr = 0; 493 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 494 int iDb; 495 496 if( !zModuleName ){ 497 return SQLITE_NOMEM; 498 } 499 500 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 501 if( !pVTable ){ 502 sqlite3DbFree(db, zModuleName); 503 return SQLITE_NOMEM; 504 } 505 pVTable->db = db; 506 pVTable->pMod = pMod; 507 508 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 509 pTab->azModuleArg[1] = db->aDb[iDb].zName; 510 511 /* Invoke the virtual table constructor */ 512 assert( &db->pVtabCtx ); 513 assert( xConstruct ); 514 sCtx.pTab = pTab; 515 sCtx.pVTable = pVTable; 516 pPriorCtx = db->pVtabCtx; 517 db->pVtabCtx = &sCtx; 518 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 519 db->pVtabCtx = pPriorCtx; 520 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 521 522 if( SQLITE_OK!=rc ){ 523 if( zErr==0 ){ 524 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 525 }else { 526 *pzErr = sqlite3MPrintf(db, "%s", zErr); 527 sqlite3_free(zErr); 528 } 529 sqlite3DbFree(db, pVTable); 530 }else if( ALWAYS(pVTable->pVtab) ){ 531 /* Justification of ALWAYS(): A correct vtab constructor must allocate 532 ** the sqlite3_vtab object if successful. */ 533 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 534 pVTable->pVtab->pModule = pMod->pModule; 535 pVTable->nRef = 1; 536 if( sCtx.pTab ){ 537 const char *zFormat = "vtable constructor did not declare schema: %s"; 538 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 539 sqlite3VtabUnlock(pVTable); 540 rc = SQLITE_ERROR; 541 }else{ 542 int iCol; 543 /* If everything went according to plan, link the new VTable structure 544 ** into the linked list headed by pTab->pVTable. Then loop through the 545 ** columns of the table to see if any of them contain the token "hidden". 546 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 547 ** the type string. */ 548 pVTable->pNext = pTab->pVTable; 549 pTab->pVTable = pVTable; 550 551 for(iCol=0; iCol<pTab->nCol; iCol++){ 552 char *zType = pTab->aCol[iCol].zType; 553 int nType; 554 int i = 0; 555 if( !zType ) continue; 556 nType = sqlite3Strlen30(zType); 557 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 558 for(i=0; i<nType; i++){ 559 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 560 && (zType[i+7]=='\0' || zType[i+7]==' ') 561 ){ 562 i++; 563 break; 564 } 565 } 566 } 567 if( i<nType ){ 568 int j; 569 int nDel = 6 + (zType[i+6] ? 1 : 0); 570 for(j=i; (j+nDel)<=nType; j++){ 571 zType[j] = zType[j+nDel]; 572 } 573 if( zType[i]=='\0' && i>0 ){ 574 assert(zType[i-1]==' '); 575 zType[i-1] = '\0'; 576 } 577 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 578 } 579 } 580 } 581 } 582 583 sqlite3DbFree(db, zModuleName); 584 return rc; 585 } 586 587 /* 588 ** This function is invoked by the parser to call the xConnect() method 589 ** of the virtual table pTab. If an error occurs, an error code is returned 590 ** and an error left in pParse. 591 ** 592 ** This call is a no-op if table pTab is not a virtual table. 593 */ 594 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 595 sqlite3 *db = pParse->db; 596 const char *zMod; 597 Module *pMod; 598 int rc; 599 600 assert( pTab ); 601 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 602 return SQLITE_OK; 603 } 604 605 /* Locate the required virtual table module */ 606 zMod = pTab->azModuleArg[0]; 607 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 608 609 if( !pMod ){ 610 const char *zModule = pTab->azModuleArg[0]; 611 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 612 rc = SQLITE_ERROR; 613 }else{ 614 char *zErr = 0; 615 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 616 if( rc!=SQLITE_OK ){ 617 sqlite3ErrorMsg(pParse, "%s", zErr); 618 } 619 sqlite3DbFree(db, zErr); 620 } 621 622 return rc; 623 } 624 /* 625 ** Grow the db->aVTrans[] array so that there is room for at least one 626 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 627 */ 628 static int growVTrans(sqlite3 *db){ 629 const int ARRAY_INCR = 5; 630 631 /* Grow the sqlite3.aVTrans array if required */ 632 if( (db->nVTrans%ARRAY_INCR)==0 ){ 633 VTable **aVTrans; 634 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 635 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 636 if( !aVTrans ){ 637 return SQLITE_NOMEM; 638 } 639 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 640 db->aVTrans = aVTrans; 641 } 642 643 return SQLITE_OK; 644 } 645 646 /* 647 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 648 ** have already been reserved using growVTrans(). 649 */ 650 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 651 /* Add pVtab to the end of sqlite3.aVTrans */ 652 db->aVTrans[db->nVTrans++] = pVTab; 653 sqlite3VtabLock(pVTab); 654 } 655 656 /* 657 ** This function is invoked by the vdbe to call the xCreate method 658 ** of the virtual table named zTab in database iDb. 659 ** 660 ** If an error occurs, *pzErr is set to point an an English language 661 ** description of the error and an SQLITE_XXX error code is returned. 662 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 663 */ 664 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 665 int rc = SQLITE_OK; 666 Table *pTab; 667 Module *pMod; 668 const char *zMod; 669 670 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 671 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 672 673 /* Locate the required virtual table module */ 674 zMod = pTab->azModuleArg[0]; 675 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 676 677 /* If the module has been registered and includes a Create method, 678 ** invoke it now. If the module has not been registered, return an 679 ** error. Otherwise, do nothing. 680 */ 681 if( !pMod ){ 682 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 683 rc = SQLITE_ERROR; 684 }else{ 685 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 686 } 687 688 /* Justification of ALWAYS(): The xConstructor method is required to 689 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 690 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 691 rc = growVTrans(db); 692 if( rc==SQLITE_OK ){ 693 addToVTrans(db, sqlite3GetVTable(db, pTab)); 694 } 695 } 696 697 return rc; 698 } 699 700 /* 701 ** This function is used to set the schema of a virtual table. It is only 702 ** valid to call this function from within the xCreate() or xConnect() of a 703 ** virtual table module. 704 */ 705 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 706 Parse *pParse; 707 708 int rc = SQLITE_OK; 709 Table *pTab; 710 char *zErr = 0; 711 712 #ifdef SQLITE_ENABLE_API_ARMOR 713 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 714 return SQLITE_MISUSE_BKPT; 715 } 716 #endif 717 sqlite3_mutex_enter(db->mutex); 718 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ 719 sqlite3Error(db, SQLITE_MISUSE); 720 sqlite3_mutex_leave(db->mutex); 721 return SQLITE_MISUSE_BKPT; 722 } 723 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 724 725 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 726 if( pParse==0 ){ 727 rc = SQLITE_NOMEM; 728 }else{ 729 pParse->declareVtab = 1; 730 pParse->db = db; 731 pParse->nQueryLoop = 1; 732 733 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 734 && pParse->pNewTable 735 && !db->mallocFailed 736 && !pParse->pNewTable->pSelect 737 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 738 ){ 739 if( !pTab->aCol ){ 740 pTab->aCol = pParse->pNewTable->aCol; 741 pTab->nCol = pParse->pNewTable->nCol; 742 pParse->pNewTable->nCol = 0; 743 pParse->pNewTable->aCol = 0; 744 } 745 db->pVtabCtx->pTab = 0; 746 }else{ 747 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 748 sqlite3DbFree(db, zErr); 749 rc = SQLITE_ERROR; 750 } 751 pParse->declareVtab = 0; 752 753 if( pParse->pVdbe ){ 754 sqlite3VdbeFinalize(pParse->pVdbe); 755 } 756 sqlite3DeleteTable(db, pParse->pNewTable); 757 sqlite3ParserReset(pParse); 758 sqlite3StackFree(db, pParse); 759 } 760 761 assert( (rc&0xff)==rc ); 762 rc = sqlite3ApiExit(db, rc); 763 sqlite3_mutex_leave(db->mutex); 764 return rc; 765 } 766 767 /* 768 ** This function is invoked by the vdbe to call the xDestroy method 769 ** of the virtual table named zTab in database iDb. This occurs 770 ** when a DROP TABLE is mentioned. 771 ** 772 ** This call is a no-op if zTab is not a virtual table. 773 */ 774 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 775 int rc = SQLITE_OK; 776 Table *pTab; 777 778 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 779 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 780 VTable *p = vtabDisconnectAll(db, pTab); 781 782 assert( rc==SQLITE_OK ); 783 rc = p->pMod->pModule->xDestroy(p->pVtab); 784 785 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 786 if( rc==SQLITE_OK ){ 787 assert( pTab->pVTable==p && p->pNext==0 ); 788 p->pVtab = 0; 789 pTab->pVTable = 0; 790 sqlite3VtabUnlock(p); 791 } 792 } 793 794 return rc; 795 } 796 797 /* 798 ** This function invokes either the xRollback or xCommit method 799 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 800 ** called is identified by the second argument, "offset", which is 801 ** the offset of the method to call in the sqlite3_module structure. 802 ** 803 ** The array is cleared after invoking the callbacks. 804 */ 805 static void callFinaliser(sqlite3 *db, int offset){ 806 int i; 807 if( db->aVTrans ){ 808 for(i=0; i<db->nVTrans; i++){ 809 VTable *pVTab = db->aVTrans[i]; 810 sqlite3_vtab *p = pVTab->pVtab; 811 if( p ){ 812 int (*x)(sqlite3_vtab *); 813 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 814 if( x ) x(p); 815 } 816 pVTab->iSavepoint = 0; 817 sqlite3VtabUnlock(pVTab); 818 } 819 sqlite3DbFree(db, db->aVTrans); 820 db->nVTrans = 0; 821 db->aVTrans = 0; 822 } 823 } 824 825 /* 826 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 827 ** array. Return the error code for the first error that occurs, or 828 ** SQLITE_OK if all xSync operations are successful. 829 ** 830 ** If an error message is available, leave it in p->zErrMsg. 831 */ 832 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 833 int i; 834 int rc = SQLITE_OK; 835 VTable **aVTrans = db->aVTrans; 836 837 db->aVTrans = 0; 838 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 839 int (*x)(sqlite3_vtab *); 840 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 841 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 842 rc = x(pVtab); 843 sqlite3VtabImportErrmsg(p, pVtab); 844 } 845 } 846 db->aVTrans = aVTrans; 847 return rc; 848 } 849 850 /* 851 ** Invoke the xRollback method of all virtual tables in the 852 ** sqlite3.aVTrans array. Then clear the array itself. 853 */ 854 int sqlite3VtabRollback(sqlite3 *db){ 855 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 856 return SQLITE_OK; 857 } 858 859 /* 860 ** Invoke the xCommit method of all virtual tables in the 861 ** sqlite3.aVTrans array. Then clear the array itself. 862 */ 863 int sqlite3VtabCommit(sqlite3 *db){ 864 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 865 return SQLITE_OK; 866 } 867 868 /* 869 ** If the virtual table pVtab supports the transaction interface 870 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 871 ** not currently open, invoke the xBegin method now. 872 ** 873 ** If the xBegin call is successful, place the sqlite3_vtab pointer 874 ** in the sqlite3.aVTrans array. 875 */ 876 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 877 int rc = SQLITE_OK; 878 const sqlite3_module *pModule; 879 880 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 881 ** than zero, then this function is being called from within a 882 ** virtual module xSync() callback. It is illegal to write to 883 ** virtual module tables in this case, so return SQLITE_LOCKED. 884 */ 885 if( sqlite3VtabInSync(db) ){ 886 return SQLITE_LOCKED; 887 } 888 if( !pVTab ){ 889 return SQLITE_OK; 890 } 891 pModule = pVTab->pVtab->pModule; 892 893 if( pModule->xBegin ){ 894 int i; 895 896 /* If pVtab is already in the aVTrans array, return early */ 897 for(i=0; i<db->nVTrans; i++){ 898 if( db->aVTrans[i]==pVTab ){ 899 return SQLITE_OK; 900 } 901 } 902 903 /* Invoke the xBegin method. If successful, add the vtab to the 904 ** sqlite3.aVTrans[] array. */ 905 rc = growVTrans(db); 906 if( rc==SQLITE_OK ){ 907 rc = pModule->xBegin(pVTab->pVtab); 908 if( rc==SQLITE_OK ){ 909 addToVTrans(db, pVTab); 910 } 911 } 912 } 913 return rc; 914 } 915 916 /* 917 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 918 ** virtual tables that currently have an open transaction. Pass iSavepoint 919 ** as the second argument to the virtual table method invoked. 920 ** 921 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 922 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 923 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 924 ** an open transaction is invoked. 925 ** 926 ** If any virtual table method returns an error code other than SQLITE_OK, 927 ** processing is abandoned and the error returned to the caller of this 928 ** function immediately. If all calls to virtual table methods are successful, 929 ** SQLITE_OK is returned. 930 */ 931 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 932 int rc = SQLITE_OK; 933 934 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 935 assert( iSavepoint>=0 ); 936 if( db->aVTrans ){ 937 int i; 938 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 939 VTable *pVTab = db->aVTrans[i]; 940 const sqlite3_module *pMod = pVTab->pMod->pModule; 941 if( pVTab->pVtab && pMod->iVersion>=2 ){ 942 int (*xMethod)(sqlite3_vtab *, int); 943 switch( op ){ 944 case SAVEPOINT_BEGIN: 945 xMethod = pMod->xSavepoint; 946 pVTab->iSavepoint = iSavepoint+1; 947 break; 948 case SAVEPOINT_ROLLBACK: 949 xMethod = pMod->xRollbackTo; 950 break; 951 default: 952 xMethod = pMod->xRelease; 953 break; 954 } 955 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 956 rc = xMethod(pVTab->pVtab, iSavepoint); 957 } 958 } 959 } 960 } 961 return rc; 962 } 963 964 /* 965 ** The first parameter (pDef) is a function implementation. The 966 ** second parameter (pExpr) is the first argument to this function. 967 ** If pExpr is a column in a virtual table, then let the virtual 968 ** table implementation have an opportunity to overload the function. 969 ** 970 ** This routine is used to allow virtual table implementations to 971 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 972 ** 973 ** Return either the pDef argument (indicating no change) or a 974 ** new FuncDef structure that is marked as ephemeral using the 975 ** SQLITE_FUNC_EPHEM flag. 976 */ 977 FuncDef *sqlite3VtabOverloadFunction( 978 sqlite3 *db, /* Database connection for reporting malloc problems */ 979 FuncDef *pDef, /* Function to possibly overload */ 980 int nArg, /* Number of arguments to the function */ 981 Expr *pExpr /* First argument to the function */ 982 ){ 983 Table *pTab; 984 sqlite3_vtab *pVtab; 985 sqlite3_module *pMod; 986 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 987 void *pArg = 0; 988 FuncDef *pNew; 989 int rc = 0; 990 char *zLowerName; 991 unsigned char *z; 992 993 994 /* Check to see the left operand is a column in a virtual table */ 995 if( NEVER(pExpr==0) ) return pDef; 996 if( pExpr->op!=TK_COLUMN ) return pDef; 997 pTab = pExpr->pTab; 998 if( NEVER(pTab==0) ) return pDef; 999 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 1000 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1001 assert( pVtab!=0 ); 1002 assert( pVtab->pModule!=0 ); 1003 pMod = (sqlite3_module *)pVtab->pModule; 1004 if( pMod->xFindFunction==0 ) return pDef; 1005 1006 /* Call the xFindFunction method on the virtual table implementation 1007 ** to see if the implementation wants to overload this function 1008 */ 1009 zLowerName = sqlite3DbStrDup(db, pDef->zName); 1010 if( zLowerName ){ 1011 for(z=(unsigned char*)zLowerName; *z; z++){ 1012 *z = sqlite3UpperToLower[*z]; 1013 } 1014 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 1015 sqlite3DbFree(db, zLowerName); 1016 } 1017 if( rc==0 ){ 1018 return pDef; 1019 } 1020 1021 /* Create a new ephemeral function definition for the overloaded 1022 ** function */ 1023 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1024 + sqlite3Strlen30(pDef->zName) + 1); 1025 if( pNew==0 ){ 1026 return pDef; 1027 } 1028 *pNew = *pDef; 1029 pNew->zName = (char *)&pNew[1]; 1030 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1031 pNew->xFunc = xFunc; 1032 pNew->pUserData = pArg; 1033 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1034 return pNew; 1035 } 1036 1037 /* 1038 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1039 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1040 ** array if it is missing. If pTab is already in the array, this routine 1041 ** is a no-op. 1042 */ 1043 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1044 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1045 int i, n; 1046 Table **apVtabLock; 1047 1048 assert( IsVirtual(pTab) ); 1049 for(i=0; i<pToplevel->nVtabLock; i++){ 1050 if( pTab==pToplevel->apVtabLock[i] ) return; 1051 } 1052 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1053 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); 1054 if( apVtabLock ){ 1055 pToplevel->apVtabLock = apVtabLock; 1056 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1057 }else{ 1058 pToplevel->db->mallocFailed = 1; 1059 } 1060 } 1061 1062 /* 1063 ** Return the ON CONFLICT resolution mode in effect for the virtual 1064 ** table update operation currently in progress. 1065 ** 1066 ** The results of this routine are undefined unless it is called from 1067 ** within an xUpdate method. 1068 */ 1069 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1070 static const unsigned char aMap[] = { 1071 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1072 }; 1073 #ifdef SQLITE_ENABLE_API_ARMOR 1074 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1075 #endif 1076 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1077 assert( OE_Ignore==4 && OE_Replace==5 ); 1078 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1079 return (int)aMap[db->vtabOnConflict-1]; 1080 } 1081 1082 /* 1083 ** Call from within the xCreate() or xConnect() methods to provide 1084 ** the SQLite core with additional information about the behavior 1085 ** of the virtual table being implemented. 1086 */ 1087 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1088 va_list ap; 1089 int rc = SQLITE_OK; 1090 1091 #ifdef SQLITE_ENABLE_API_ARMOR 1092 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1093 #endif 1094 sqlite3_mutex_enter(db->mutex); 1095 va_start(ap, op); 1096 switch( op ){ 1097 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1098 VtabCtx *p = db->pVtabCtx; 1099 if( !p ){ 1100 rc = SQLITE_MISUSE_BKPT; 1101 }else{ 1102 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1103 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1104 } 1105 break; 1106 } 1107 default: 1108 rc = SQLITE_MISUSE_BKPT; 1109 break; 1110 } 1111 va_end(ap); 1112 1113 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1114 sqlite3_mutex_leave(db->mutex); 1115 return rc; 1116 } 1117 1118 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1119