1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 ** 36 ** If there already exists a module with zName, replace it with the new one. 37 ** If pModule==0, then delete the module zName if it exists. 38 */ 39 Module *sqlite3VtabCreateModule( 40 sqlite3 *db, /* Database in which module is registered */ 41 const char *zName, /* Name assigned to this module */ 42 const sqlite3_module *pModule, /* The definition of the module */ 43 void *pAux, /* Context pointer for xCreate/xConnect */ 44 void (*xDestroy)(void *) /* Module destructor function */ 45 ){ 46 Module *pMod; 47 Module *pDel; 48 char *zCopy; 49 if( pModule==0 ){ 50 zCopy = (char*)zName; 51 pMod = 0; 52 }else{ 53 int nName = sqlite3Strlen30(zName); 54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); 55 if( pMod==0 ){ 56 sqlite3OomFault(db); 57 return 0; 58 } 59 zCopy = (char *)(&pMod[1]); 60 memcpy(zCopy, zName, nName+1); 61 pMod->zName = zCopy; 62 pMod->pModule = pModule; 63 pMod->pAux = pAux; 64 pMod->xDestroy = xDestroy; 65 pMod->pEpoTab = 0; 66 pMod->nRefModule = 1; 67 } 68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 69 if( pDel ){ 70 if( pDel==pMod ){ 71 sqlite3OomFault(db); 72 sqlite3DbFree(db, pDel); 73 pMod = 0; 74 }else{ 75 sqlite3VtabEponymousTableClear(db, pDel); 76 sqlite3VtabModuleUnref(db, pDel); 77 } 78 } 79 return pMod; 80 } 81 82 /* 83 ** The actual function that does the work of creating a new module. 84 ** This function implements the sqlite3_create_module() and 85 ** sqlite3_create_module_v2() interfaces. 86 */ 87 static int createModule( 88 sqlite3 *db, /* Database in which module is registered */ 89 const char *zName, /* Name assigned to this module */ 90 const sqlite3_module *pModule, /* The definition of the module */ 91 void *pAux, /* Context pointer for xCreate/xConnect */ 92 void (*xDestroy)(void *) /* Module destructor function */ 93 ){ 94 int rc = SQLITE_OK; 95 96 sqlite3_mutex_enter(db->mutex); 97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 98 rc = sqlite3ApiExit(db, rc); 99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 100 sqlite3_mutex_leave(db->mutex); 101 return rc; 102 } 103 104 105 /* 106 ** External API function used to create a new virtual-table module. 107 */ 108 int sqlite3_create_module( 109 sqlite3 *db, /* Database in which module is registered */ 110 const char *zName, /* Name assigned to this module */ 111 const sqlite3_module *pModule, /* The definition of the module */ 112 void *pAux /* Context pointer for xCreate/xConnect */ 113 ){ 114 #ifdef SQLITE_ENABLE_API_ARMOR 115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 116 #endif 117 return createModule(db, zName, pModule, pAux, 0); 118 } 119 120 /* 121 ** External API function used to create a new virtual-table module. 122 */ 123 int sqlite3_create_module_v2( 124 sqlite3 *db, /* Database in which module is registered */ 125 const char *zName, /* Name assigned to this module */ 126 const sqlite3_module *pModule, /* The definition of the module */ 127 void *pAux, /* Context pointer for xCreate/xConnect */ 128 void (*xDestroy)(void *) /* Module destructor function */ 129 ){ 130 #ifdef SQLITE_ENABLE_API_ARMOR 131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 132 #endif 133 return createModule(db, zName, pModule, pAux, xDestroy); 134 } 135 136 /* 137 ** External API to drop all virtual-table modules, except those named 138 ** on the azNames list. 139 */ 140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ 141 HashElem *pThis, *pNext; 142 #ifdef SQLITE_ENABLE_API_ARMOR 143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 144 #endif 145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ 146 Module *pMod = (Module*)sqliteHashData(pThis); 147 pNext = sqliteHashNext(pThis); 148 if( azNames ){ 149 int ii; 150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} 151 if( azNames[ii]!=0 ) continue; 152 } 153 createModule(db, pMod->zName, 0, 0, 0); 154 } 155 return SQLITE_OK; 156 } 157 158 /* 159 ** Decrement the reference count on a Module object. Destroy the 160 ** module when the reference count reaches zero. 161 */ 162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ 163 assert( pMod->nRefModule>0 ); 164 pMod->nRefModule--; 165 if( pMod->nRefModule==0 ){ 166 if( pMod->xDestroy ){ 167 pMod->xDestroy(pMod->pAux); 168 } 169 assert( pMod->pEpoTab==0 ); 170 sqlite3DbFree(db, pMod); 171 } 172 } 173 174 /* 175 ** Lock the virtual table so that it cannot be disconnected. 176 ** Locks nest. Every lock should have a corresponding unlock. 177 ** If an unlock is omitted, resources leaks will occur. 178 ** 179 ** If a disconnect is attempted while a virtual table is locked, 180 ** the disconnect is deferred until all locks have been removed. 181 */ 182 void sqlite3VtabLock(VTable *pVTab){ 183 pVTab->nRef++; 184 } 185 186 187 /* 188 ** pTab is a pointer to a Table structure representing a virtual-table. 189 ** Return a pointer to the VTable object used by connection db to access 190 ** this virtual-table, if one has been created, or NULL otherwise. 191 */ 192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 193 VTable *pVtab; 194 assert( IsVirtual(pTab) ); 195 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 196 return pVtab; 197 } 198 199 /* 200 ** Decrement the ref-count on a virtual table object. When the ref-count 201 ** reaches zero, call the xDisconnect() method to delete the object. 202 */ 203 void sqlite3VtabUnlock(VTable *pVTab){ 204 sqlite3 *db = pVTab->db; 205 206 assert( db ); 207 assert( pVTab->nRef>0 ); 208 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 209 210 pVTab->nRef--; 211 if( pVTab->nRef==0 ){ 212 sqlite3_vtab *p = pVTab->pVtab; 213 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); 214 if( p ){ 215 p->pModule->xDisconnect(p); 216 } 217 sqlite3DbFree(db, pVTab); 218 } 219 } 220 221 /* 222 ** Table p is a virtual table. This function moves all elements in the 223 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 224 ** database connections to be disconnected at the next opportunity. 225 ** Except, if argument db is not NULL, then the entry associated with 226 ** connection db is left in the p->pVTable list. 227 */ 228 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 229 VTable *pRet = 0; 230 VTable *pVTable = p->pVTable; 231 p->pVTable = 0; 232 233 /* Assert that the mutex (if any) associated with the BtShared database 234 ** that contains table p is held by the caller. See header comments 235 ** above function sqlite3VtabUnlockList() for an explanation of why 236 ** this makes it safe to access the sqlite3.pDisconnect list of any 237 ** database connection that may have an entry in the p->pVTable list. 238 */ 239 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 240 241 while( pVTable ){ 242 sqlite3 *db2 = pVTable->db; 243 VTable *pNext = pVTable->pNext; 244 assert( db2 ); 245 if( db2==db ){ 246 pRet = pVTable; 247 p->pVTable = pRet; 248 pRet->pNext = 0; 249 }else{ 250 pVTable->pNext = db2->pDisconnect; 251 db2->pDisconnect = pVTable; 252 } 253 pVTable = pNext; 254 } 255 256 assert( !db || pRet ); 257 return pRet; 258 } 259 260 /* 261 ** Table *p is a virtual table. This function removes the VTable object 262 ** for table *p associated with database connection db from the linked 263 ** list in p->pVTab. It also decrements the VTable ref count. This is 264 ** used when closing database connection db to free all of its VTable 265 ** objects without disturbing the rest of the Schema object (which may 266 ** be being used by other shared-cache connections). 267 */ 268 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 269 VTable **ppVTab; 270 271 assert( IsVirtual(p) ); 272 assert( sqlite3BtreeHoldsAllMutexes(db) ); 273 assert( sqlite3_mutex_held(db->mutex) ); 274 275 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 276 if( (*ppVTab)->db==db ){ 277 VTable *pVTab = *ppVTab; 278 *ppVTab = pVTab->pNext; 279 sqlite3VtabUnlock(pVTab); 280 break; 281 } 282 } 283 } 284 285 286 /* 287 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 288 ** 289 ** This function may only be called when the mutexes associated with all 290 ** shared b-tree databases opened using connection db are held by the 291 ** caller. This is done to protect the sqlite3.pDisconnect list. The 292 ** sqlite3.pDisconnect list is accessed only as follows: 293 ** 294 ** 1) By this function. In this case, all BtShared mutexes and the mutex 295 ** associated with the database handle itself must be held. 296 ** 297 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 298 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 299 ** associated with the database the virtual table is stored in is held 300 ** or, if the virtual table is stored in a non-sharable database, then 301 ** the database handle mutex is held. 302 ** 303 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 304 ** by multiple threads. It is thread-safe. 305 */ 306 void sqlite3VtabUnlockList(sqlite3 *db){ 307 VTable *p = db->pDisconnect; 308 309 assert( sqlite3BtreeHoldsAllMutexes(db) ); 310 assert( sqlite3_mutex_held(db->mutex) ); 311 312 if( p ){ 313 db->pDisconnect = 0; 314 sqlite3ExpirePreparedStatements(db, 0); 315 do { 316 VTable *pNext = p->pNext; 317 sqlite3VtabUnlock(p); 318 p = pNext; 319 }while( p ); 320 } 321 } 322 323 /* 324 ** Clear any and all virtual-table information from the Table record. 325 ** This routine is called, for example, just before deleting the Table 326 ** record. 327 ** 328 ** Since it is a virtual-table, the Table structure contains a pointer 329 ** to the head of a linked list of VTable structures. Each VTable 330 ** structure is associated with a single sqlite3* user of the schema. 331 ** The reference count of the VTable structure associated with database 332 ** connection db is decremented immediately (which may lead to the 333 ** structure being xDisconnected and free). Any other VTable structures 334 ** in the list are moved to the sqlite3.pDisconnect list of the associated 335 ** database connection. 336 */ 337 void sqlite3VtabClear(sqlite3 *db, Table *p){ 338 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 339 if( p->azModuleArg ){ 340 int i; 341 for(i=0; i<p->nModuleArg; i++){ 342 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 343 } 344 sqlite3DbFree(db, p->azModuleArg); 345 } 346 } 347 348 /* 349 ** Add a new module argument to pTable->azModuleArg[]. 350 ** The string is not copied - the pointer is stored. The 351 ** string will be freed automatically when the table is 352 ** deleted. 353 */ 354 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ 355 sqlite3_int64 nBytes = sizeof(char *)*(2+pTable->nModuleArg); 356 char **azModuleArg; 357 sqlite3 *db = pParse->db; 358 if( pTable->nModuleArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ 359 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); 360 } 361 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 362 if( azModuleArg==0 ){ 363 sqlite3DbFree(db, zArg); 364 }else{ 365 int i = pTable->nModuleArg++; 366 azModuleArg[i] = zArg; 367 azModuleArg[i+1] = 0; 368 pTable->azModuleArg = azModuleArg; 369 } 370 } 371 372 /* 373 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 374 ** statement. The module name has been parsed, but the optional list 375 ** of parameters that follow the module name are still pending. 376 */ 377 void sqlite3VtabBeginParse( 378 Parse *pParse, /* Parsing context */ 379 Token *pName1, /* Name of new table, or database name */ 380 Token *pName2, /* Name of new table or NULL */ 381 Token *pModuleName, /* Name of the module for the virtual table */ 382 int ifNotExists /* No error if the table already exists */ 383 ){ 384 Table *pTable; /* The new virtual table */ 385 sqlite3 *db; /* Database connection */ 386 387 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 388 pTable = pParse->pNewTable; 389 if( pTable==0 ) return; 390 assert( 0==pTable->pIndex ); 391 392 db = pParse->db; 393 394 assert( pTable->nModuleArg==0 ); 395 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); 396 addModuleArgument(pParse, pTable, 0); 397 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); 398 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 399 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 400 ); 401 pParse->sNameToken.n = (int)( 402 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 403 ); 404 405 #ifndef SQLITE_OMIT_AUTHORIZATION 406 /* Creating a virtual table invokes the authorization callback twice. 407 ** The first invocation, to obtain permission to INSERT a row into the 408 ** sqlite_master table, has already been made by sqlite3StartTable(). 409 ** The second call, to obtain permission to create the table, is made now. 410 */ 411 if( pTable->azModuleArg ){ 412 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 413 assert( iDb>=0 ); /* The database the table is being created in */ 414 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 415 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 416 } 417 #endif 418 } 419 420 /* 421 ** This routine takes the module argument that has been accumulating 422 ** in pParse->zArg[] and appends it to the list of arguments on the 423 ** virtual table currently under construction in pParse->pTable. 424 */ 425 static void addArgumentToVtab(Parse *pParse){ 426 if( pParse->sArg.z && pParse->pNewTable ){ 427 const char *z = (const char*)pParse->sArg.z; 428 int n = pParse->sArg.n; 429 sqlite3 *db = pParse->db; 430 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 431 } 432 } 433 434 /* 435 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 436 ** has been completely parsed. 437 */ 438 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 439 Table *pTab = pParse->pNewTable; /* The table being constructed */ 440 sqlite3 *db = pParse->db; /* The database connection */ 441 442 if( pTab==0 ) return; 443 addArgumentToVtab(pParse); 444 pParse->sArg.z = 0; 445 if( pTab->nModuleArg<1 ) return; 446 447 /* If the CREATE VIRTUAL TABLE statement is being entered for the 448 ** first time (in other words if the virtual table is actually being 449 ** created now instead of just being read out of sqlite_master) then 450 ** do additional initialization work and store the statement text 451 ** in the sqlite_master table. 452 */ 453 if( !db->init.busy ){ 454 char *zStmt; 455 char *zWhere; 456 int iDb; 457 int iReg; 458 Vdbe *v; 459 460 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 461 if( pEnd ){ 462 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 463 } 464 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 465 466 /* A slot for the record has already been allocated in the 467 ** SQLITE_MASTER table. We just need to update that slot with all 468 ** the information we've collected. 469 ** 470 ** The VM register number pParse->regRowid holds the rowid of an 471 ** entry in the sqlite_master table tht was created for this vtab 472 ** by sqlite3StartTable(). 473 */ 474 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 475 sqlite3NestedParse(pParse, 476 "UPDATE %Q.%s " 477 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 478 "WHERE rowid=#%d", 479 db->aDb[iDb].zDbSName, MASTER_NAME, 480 pTab->zName, 481 pTab->zName, 482 zStmt, 483 pParse->regRowid 484 ); 485 sqlite3DbFree(db, zStmt); 486 v = sqlite3GetVdbe(pParse); 487 sqlite3ChangeCookie(pParse, iDb); 488 489 sqlite3VdbeAddOp0(v, OP_Expire); 490 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 491 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 492 493 iReg = ++pParse->nMem; 494 sqlite3VdbeLoadString(v, iReg, pTab->zName); 495 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 496 } 497 498 /* If we are rereading the sqlite_master table create the in-memory 499 ** record of the table. The xConnect() method is not called until 500 ** the first time the virtual table is used in an SQL statement. This 501 ** allows a schema that contains virtual tables to be loaded before 502 ** the required virtual table implementations are registered. */ 503 else { 504 Table *pOld; 505 Schema *pSchema = pTab->pSchema; 506 const char *zName = pTab->zName; 507 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 508 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 509 if( pOld ){ 510 sqlite3OomFault(db); 511 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 512 return; 513 } 514 pParse->pNewTable = 0; 515 } 516 } 517 518 /* 519 ** The parser calls this routine when it sees the first token 520 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 521 */ 522 void sqlite3VtabArgInit(Parse *pParse){ 523 addArgumentToVtab(pParse); 524 pParse->sArg.z = 0; 525 pParse->sArg.n = 0; 526 } 527 528 /* 529 ** The parser calls this routine for each token after the first token 530 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 531 */ 532 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 533 Token *pArg = &pParse->sArg; 534 if( pArg->z==0 ){ 535 pArg->z = p->z; 536 pArg->n = p->n; 537 }else{ 538 assert(pArg->z <= p->z); 539 pArg->n = (int)(&p->z[p->n] - pArg->z); 540 } 541 } 542 543 /* 544 ** Invoke a virtual table constructor (either xCreate or xConnect). The 545 ** pointer to the function to invoke is passed as the fourth parameter 546 ** to this procedure. 547 */ 548 static int vtabCallConstructor( 549 sqlite3 *db, 550 Table *pTab, 551 Module *pMod, 552 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 553 char **pzErr 554 ){ 555 VtabCtx sCtx; 556 VTable *pVTable; 557 int rc; 558 const char *const*azArg = (const char *const*)pTab->azModuleArg; 559 int nArg = pTab->nModuleArg; 560 char *zErr = 0; 561 char *zModuleName; 562 int iDb; 563 VtabCtx *pCtx; 564 565 /* Check that the virtual-table is not already being initialized */ 566 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 567 if( pCtx->pTab==pTab ){ 568 *pzErr = sqlite3MPrintf(db, 569 "vtable constructor called recursively: %s", pTab->zName 570 ); 571 return SQLITE_LOCKED; 572 } 573 } 574 575 zModuleName = sqlite3DbStrDup(db, pTab->zName); 576 if( !zModuleName ){ 577 return SQLITE_NOMEM_BKPT; 578 } 579 580 pVTable = sqlite3MallocZero(sizeof(VTable)); 581 if( !pVTable ){ 582 sqlite3OomFault(db); 583 sqlite3DbFree(db, zModuleName); 584 return SQLITE_NOMEM_BKPT; 585 } 586 pVTable->db = db; 587 pVTable->pMod = pMod; 588 589 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 590 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 591 592 /* Invoke the virtual table constructor */ 593 assert( &db->pVtabCtx ); 594 assert( xConstruct ); 595 sCtx.pTab = pTab; 596 sCtx.pVTable = pVTable; 597 sCtx.pPrior = db->pVtabCtx; 598 sCtx.bDeclared = 0; 599 db->pVtabCtx = &sCtx; 600 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 601 db->pVtabCtx = sCtx.pPrior; 602 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 603 assert( sCtx.pTab==pTab ); 604 605 if( SQLITE_OK!=rc ){ 606 if( zErr==0 ){ 607 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 608 }else { 609 *pzErr = sqlite3MPrintf(db, "%s", zErr); 610 sqlite3_free(zErr); 611 } 612 sqlite3DbFree(db, pVTable); 613 }else if( ALWAYS(pVTable->pVtab) ){ 614 /* Justification of ALWAYS(): A correct vtab constructor must allocate 615 ** the sqlite3_vtab object if successful. */ 616 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 617 pVTable->pVtab->pModule = pMod->pModule; 618 pMod->nRefModule++; 619 pVTable->nRef = 1; 620 if( sCtx.bDeclared==0 ){ 621 const char *zFormat = "vtable constructor did not declare schema: %s"; 622 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 623 sqlite3VtabUnlock(pVTable); 624 rc = SQLITE_ERROR; 625 }else{ 626 int iCol; 627 u16 oooHidden = 0; 628 /* If everything went according to plan, link the new VTable structure 629 ** into the linked list headed by pTab->pVTable. Then loop through the 630 ** columns of the table to see if any of them contain the token "hidden". 631 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 632 ** the type string. */ 633 pVTable->pNext = pTab->pVTable; 634 pTab->pVTable = pVTable; 635 636 for(iCol=0; iCol<pTab->nCol; iCol++){ 637 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 638 int nType; 639 int i = 0; 640 nType = sqlite3Strlen30(zType); 641 for(i=0; i<nType; i++){ 642 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 643 && (i==0 || zType[i-1]==' ') 644 && (zType[i+6]=='\0' || zType[i+6]==' ') 645 ){ 646 break; 647 } 648 } 649 if( i<nType ){ 650 int j; 651 int nDel = 6 + (zType[i+6] ? 1 : 0); 652 for(j=i; (j+nDel)<=nType; j++){ 653 zType[j] = zType[j+nDel]; 654 } 655 if( zType[i]=='\0' && i>0 ){ 656 assert(zType[i-1]==' '); 657 zType[i-1] = '\0'; 658 } 659 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 660 oooHidden = TF_OOOHidden; 661 }else{ 662 pTab->tabFlags |= oooHidden; 663 } 664 } 665 } 666 } 667 668 sqlite3DbFree(db, zModuleName); 669 return rc; 670 } 671 672 /* 673 ** This function is invoked by the parser to call the xConnect() method 674 ** of the virtual table pTab. If an error occurs, an error code is returned 675 ** and an error left in pParse. 676 ** 677 ** This call is a no-op if table pTab is not a virtual table. 678 */ 679 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 680 sqlite3 *db = pParse->db; 681 const char *zMod; 682 Module *pMod; 683 int rc; 684 685 assert( pTab ); 686 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 687 return SQLITE_OK; 688 } 689 690 /* Locate the required virtual table module */ 691 zMod = pTab->azModuleArg[0]; 692 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 693 694 if( !pMod ){ 695 const char *zModule = pTab->azModuleArg[0]; 696 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 697 rc = SQLITE_ERROR; 698 }else{ 699 char *zErr = 0; 700 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 701 if( rc!=SQLITE_OK ){ 702 sqlite3ErrorMsg(pParse, "%s", zErr); 703 pParse->rc = rc; 704 } 705 sqlite3DbFree(db, zErr); 706 } 707 708 return rc; 709 } 710 /* 711 ** Grow the db->aVTrans[] array so that there is room for at least one 712 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 713 */ 714 static int growVTrans(sqlite3 *db){ 715 const int ARRAY_INCR = 5; 716 717 /* Grow the sqlite3.aVTrans array if required */ 718 if( (db->nVTrans%ARRAY_INCR)==0 ){ 719 VTable **aVTrans; 720 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* 721 ((sqlite3_int64)db->nVTrans + ARRAY_INCR); 722 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 723 if( !aVTrans ){ 724 return SQLITE_NOMEM_BKPT; 725 } 726 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 727 db->aVTrans = aVTrans; 728 } 729 730 return SQLITE_OK; 731 } 732 733 /* 734 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 735 ** have already been reserved using growVTrans(). 736 */ 737 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 738 /* Add pVtab to the end of sqlite3.aVTrans */ 739 db->aVTrans[db->nVTrans++] = pVTab; 740 sqlite3VtabLock(pVTab); 741 } 742 743 /* 744 ** This function is invoked by the vdbe to call the xCreate method 745 ** of the virtual table named zTab in database iDb. 746 ** 747 ** If an error occurs, *pzErr is set to point to an English language 748 ** description of the error and an SQLITE_XXX error code is returned. 749 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 750 */ 751 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 752 int rc = SQLITE_OK; 753 Table *pTab; 754 Module *pMod; 755 const char *zMod; 756 757 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 758 assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); 759 760 /* Locate the required virtual table module */ 761 zMod = pTab->azModuleArg[0]; 762 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 763 764 /* If the module has been registered and includes a Create method, 765 ** invoke it now. If the module has not been registered, return an 766 ** error. Otherwise, do nothing. 767 */ 768 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 769 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 770 rc = SQLITE_ERROR; 771 }else{ 772 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 773 } 774 775 /* Justification of ALWAYS(): The xConstructor method is required to 776 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 777 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 778 rc = growVTrans(db); 779 if( rc==SQLITE_OK ){ 780 addToVTrans(db, sqlite3GetVTable(db, pTab)); 781 } 782 } 783 784 return rc; 785 } 786 787 /* 788 ** This function is used to set the schema of a virtual table. It is only 789 ** valid to call this function from within the xCreate() or xConnect() of a 790 ** virtual table module. 791 */ 792 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 793 VtabCtx *pCtx; 794 int rc = SQLITE_OK; 795 Table *pTab; 796 char *zErr = 0; 797 Parse sParse; 798 799 #ifdef SQLITE_ENABLE_API_ARMOR 800 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 801 return SQLITE_MISUSE_BKPT; 802 } 803 #endif 804 sqlite3_mutex_enter(db->mutex); 805 pCtx = db->pVtabCtx; 806 if( !pCtx || pCtx->bDeclared ){ 807 sqlite3Error(db, SQLITE_MISUSE); 808 sqlite3_mutex_leave(db->mutex); 809 return SQLITE_MISUSE_BKPT; 810 } 811 pTab = pCtx->pTab; 812 assert( IsVirtual(pTab) ); 813 814 memset(&sParse, 0, sizeof(sParse)); 815 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; 816 sParse.db = db; 817 sParse.nQueryLoop = 1; 818 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 819 && sParse.pNewTable 820 && !db->mallocFailed 821 && !sParse.pNewTable->pSelect 822 && !IsVirtual(sParse.pNewTable) 823 ){ 824 if( !pTab->aCol ){ 825 Table *pNew = sParse.pNewTable; 826 Index *pIdx; 827 pTab->aCol = pNew->aCol; 828 pTab->nCol = pNew->nCol; 829 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 830 pNew->nCol = 0; 831 pNew->aCol = 0; 832 assert( pTab->pIndex==0 ); 833 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 834 if( !HasRowid(pNew) 835 && pCtx->pVTable->pMod->pModule->xUpdate!=0 836 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 837 ){ 838 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 839 ** or else must have a single-column PRIMARY KEY */ 840 rc = SQLITE_ERROR; 841 } 842 pIdx = pNew->pIndex; 843 if( pIdx ){ 844 assert( pIdx->pNext==0 ); 845 pTab->pIndex = pIdx; 846 pNew->pIndex = 0; 847 pIdx->pTable = pTab; 848 } 849 } 850 pCtx->bDeclared = 1; 851 }else{ 852 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 853 sqlite3DbFree(db, zErr); 854 rc = SQLITE_ERROR; 855 } 856 sParse.eParseMode = PARSE_MODE_NORMAL; 857 858 if( sParse.pVdbe ){ 859 sqlite3VdbeFinalize(sParse.pVdbe); 860 } 861 sqlite3DeleteTable(db, sParse.pNewTable); 862 sqlite3ParserReset(&sParse); 863 864 assert( (rc&0xff)==rc ); 865 rc = sqlite3ApiExit(db, rc); 866 sqlite3_mutex_leave(db->mutex); 867 return rc; 868 } 869 870 /* 871 ** This function is invoked by the vdbe to call the xDestroy method 872 ** of the virtual table named zTab in database iDb. This occurs 873 ** when a DROP TABLE is mentioned. 874 ** 875 ** This call is a no-op if zTab is not a virtual table. 876 */ 877 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 878 int rc = SQLITE_OK; 879 Table *pTab; 880 881 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 882 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 883 VTable *p; 884 int (*xDestroy)(sqlite3_vtab *); 885 for(p=pTab->pVTable; p; p=p->pNext){ 886 assert( p->pVtab ); 887 if( p->pVtab->nRef>0 ){ 888 return SQLITE_LOCKED; 889 } 890 } 891 p = vtabDisconnectAll(db, pTab); 892 xDestroy = p->pMod->pModule->xDestroy; 893 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 894 pTab->nTabRef++; 895 rc = xDestroy(p->pVtab); 896 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 897 if( rc==SQLITE_OK ){ 898 assert( pTab->pVTable==p && p->pNext==0 ); 899 p->pVtab = 0; 900 pTab->pVTable = 0; 901 sqlite3VtabUnlock(p); 902 } 903 sqlite3DeleteTable(db, pTab); 904 } 905 906 return rc; 907 } 908 909 /* 910 ** This function invokes either the xRollback or xCommit method 911 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 912 ** called is identified by the second argument, "offset", which is 913 ** the offset of the method to call in the sqlite3_module structure. 914 ** 915 ** The array is cleared after invoking the callbacks. 916 */ 917 static void callFinaliser(sqlite3 *db, int offset){ 918 int i; 919 if( db->aVTrans ){ 920 VTable **aVTrans = db->aVTrans; 921 db->aVTrans = 0; 922 for(i=0; i<db->nVTrans; i++){ 923 VTable *pVTab = aVTrans[i]; 924 sqlite3_vtab *p = pVTab->pVtab; 925 if( p ){ 926 int (*x)(sqlite3_vtab *); 927 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 928 if( x ) x(p); 929 } 930 pVTab->iSavepoint = 0; 931 sqlite3VtabUnlock(pVTab); 932 } 933 sqlite3DbFree(db, aVTrans); 934 db->nVTrans = 0; 935 } 936 } 937 938 /* 939 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 940 ** array. Return the error code for the first error that occurs, or 941 ** SQLITE_OK if all xSync operations are successful. 942 ** 943 ** If an error message is available, leave it in p->zErrMsg. 944 */ 945 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 946 int i; 947 int rc = SQLITE_OK; 948 VTable **aVTrans = db->aVTrans; 949 950 db->aVTrans = 0; 951 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 952 int (*x)(sqlite3_vtab *); 953 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 954 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 955 rc = x(pVtab); 956 sqlite3VtabImportErrmsg(p, pVtab); 957 } 958 } 959 db->aVTrans = aVTrans; 960 return rc; 961 } 962 963 /* 964 ** Invoke the xRollback method of all virtual tables in the 965 ** sqlite3.aVTrans array. Then clear the array itself. 966 */ 967 int sqlite3VtabRollback(sqlite3 *db){ 968 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 969 return SQLITE_OK; 970 } 971 972 /* 973 ** Invoke the xCommit method of all virtual tables in the 974 ** sqlite3.aVTrans array. Then clear the array itself. 975 */ 976 int sqlite3VtabCommit(sqlite3 *db){ 977 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 978 return SQLITE_OK; 979 } 980 981 /* 982 ** If the virtual table pVtab supports the transaction interface 983 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 984 ** not currently open, invoke the xBegin method now. 985 ** 986 ** If the xBegin call is successful, place the sqlite3_vtab pointer 987 ** in the sqlite3.aVTrans array. 988 */ 989 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 990 int rc = SQLITE_OK; 991 const sqlite3_module *pModule; 992 993 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 994 ** than zero, then this function is being called from within a 995 ** virtual module xSync() callback. It is illegal to write to 996 ** virtual module tables in this case, so return SQLITE_LOCKED. 997 */ 998 if( sqlite3VtabInSync(db) ){ 999 return SQLITE_LOCKED; 1000 } 1001 if( !pVTab ){ 1002 return SQLITE_OK; 1003 } 1004 pModule = pVTab->pVtab->pModule; 1005 1006 if( pModule->xBegin ){ 1007 int i; 1008 1009 /* If pVtab is already in the aVTrans array, return early */ 1010 for(i=0; i<db->nVTrans; i++){ 1011 if( db->aVTrans[i]==pVTab ){ 1012 return SQLITE_OK; 1013 } 1014 } 1015 1016 /* Invoke the xBegin method. If successful, add the vtab to the 1017 ** sqlite3.aVTrans[] array. */ 1018 rc = growVTrans(db); 1019 if( rc==SQLITE_OK ){ 1020 rc = pModule->xBegin(pVTab->pVtab); 1021 if( rc==SQLITE_OK ){ 1022 int iSvpt = db->nStatement + db->nSavepoint; 1023 addToVTrans(db, pVTab); 1024 if( iSvpt && pModule->xSavepoint ){ 1025 pVTab->iSavepoint = iSvpt; 1026 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 1027 } 1028 } 1029 } 1030 } 1031 return rc; 1032 } 1033 1034 /* 1035 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 1036 ** virtual tables that currently have an open transaction. Pass iSavepoint 1037 ** as the second argument to the virtual table method invoked. 1038 ** 1039 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 1040 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 1041 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 1042 ** an open transaction is invoked. 1043 ** 1044 ** If any virtual table method returns an error code other than SQLITE_OK, 1045 ** processing is abandoned and the error returned to the caller of this 1046 ** function immediately. If all calls to virtual table methods are successful, 1047 ** SQLITE_OK is returned. 1048 */ 1049 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 1050 int rc = SQLITE_OK; 1051 1052 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 1053 assert( iSavepoint>=-1 ); 1054 if( db->aVTrans ){ 1055 int i; 1056 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 1057 VTable *pVTab = db->aVTrans[i]; 1058 const sqlite3_module *pMod = pVTab->pMod->pModule; 1059 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1060 int (*xMethod)(sqlite3_vtab *, int); 1061 sqlite3VtabLock(pVTab); 1062 switch( op ){ 1063 case SAVEPOINT_BEGIN: 1064 xMethod = pMod->xSavepoint; 1065 pVTab->iSavepoint = iSavepoint+1; 1066 break; 1067 case SAVEPOINT_ROLLBACK: 1068 xMethod = pMod->xRollbackTo; 1069 break; 1070 default: 1071 xMethod = pMod->xRelease; 1072 break; 1073 } 1074 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1075 rc = xMethod(pVTab->pVtab, iSavepoint); 1076 } 1077 sqlite3VtabUnlock(pVTab); 1078 } 1079 } 1080 } 1081 return rc; 1082 } 1083 1084 /* 1085 ** The first parameter (pDef) is a function implementation. The 1086 ** second parameter (pExpr) is the first argument to this function. 1087 ** If pExpr is a column in a virtual table, then let the virtual 1088 ** table implementation have an opportunity to overload the function. 1089 ** 1090 ** This routine is used to allow virtual table implementations to 1091 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1092 ** 1093 ** Return either the pDef argument (indicating no change) or a 1094 ** new FuncDef structure that is marked as ephemeral using the 1095 ** SQLITE_FUNC_EPHEM flag. 1096 */ 1097 FuncDef *sqlite3VtabOverloadFunction( 1098 sqlite3 *db, /* Database connection for reporting malloc problems */ 1099 FuncDef *pDef, /* Function to possibly overload */ 1100 int nArg, /* Number of arguments to the function */ 1101 Expr *pExpr /* First argument to the function */ 1102 ){ 1103 Table *pTab; 1104 sqlite3_vtab *pVtab; 1105 sqlite3_module *pMod; 1106 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1107 void *pArg = 0; 1108 FuncDef *pNew; 1109 int rc = 0; 1110 1111 /* Check to see the left operand is a column in a virtual table */ 1112 if( NEVER(pExpr==0) ) return pDef; 1113 if( pExpr->op!=TK_COLUMN ) return pDef; 1114 pTab = pExpr->y.pTab; 1115 if( pTab==0 ) return pDef; 1116 if( !IsVirtual(pTab) ) return pDef; 1117 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1118 assert( pVtab!=0 ); 1119 assert( pVtab->pModule!=0 ); 1120 pMod = (sqlite3_module *)pVtab->pModule; 1121 if( pMod->xFindFunction==0 ) return pDef; 1122 1123 /* Call the xFindFunction method on the virtual table implementation 1124 ** to see if the implementation wants to overload this function. 1125 ** 1126 ** Though undocumented, we have historically always invoked xFindFunction 1127 ** with an all lower-case function name. Continue in this tradition to 1128 ** avoid any chance of an incompatibility. 1129 */ 1130 #ifdef SQLITE_DEBUG 1131 { 1132 int i; 1133 for(i=0; pDef->zName[i]; i++){ 1134 unsigned char x = (unsigned char)pDef->zName[i]; 1135 assert( x==sqlite3UpperToLower[x] ); 1136 } 1137 } 1138 #endif 1139 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); 1140 if( rc==0 ){ 1141 return pDef; 1142 } 1143 1144 /* Create a new ephemeral function definition for the overloaded 1145 ** function */ 1146 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1147 + sqlite3Strlen30(pDef->zName) + 1); 1148 if( pNew==0 ){ 1149 return pDef; 1150 } 1151 *pNew = *pDef; 1152 pNew->zName = (const char*)&pNew[1]; 1153 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1154 pNew->xSFunc = xSFunc; 1155 pNew->pUserData = pArg; 1156 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1157 return pNew; 1158 } 1159 1160 /* 1161 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1162 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1163 ** array if it is missing. If pTab is already in the array, this routine 1164 ** is a no-op. 1165 */ 1166 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1167 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1168 int i, n; 1169 Table **apVtabLock; 1170 1171 assert( IsVirtual(pTab) ); 1172 for(i=0; i<pToplevel->nVtabLock; i++){ 1173 if( pTab==pToplevel->apVtabLock[i] ) return; 1174 } 1175 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1176 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1177 if( apVtabLock ){ 1178 pToplevel->apVtabLock = apVtabLock; 1179 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1180 }else{ 1181 sqlite3OomFault(pToplevel->db); 1182 } 1183 } 1184 1185 /* 1186 ** Check to see if virtual table module pMod can be have an eponymous 1187 ** virtual table instance. If it can, create one if one does not already 1188 ** exist. Return non-zero if the eponymous virtual table instance exists 1189 ** when this routine returns, and return zero if it does not exist. 1190 ** 1191 ** An eponymous virtual table instance is one that is named after its 1192 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1193 ** statement in order to come into existance. Eponymous virtual table 1194 ** instances always exist. They cannot be DROP-ed. 1195 ** 1196 ** Any virtual table module for which xConnect and xCreate are the same 1197 ** method can have an eponymous virtual table instance. 1198 */ 1199 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1200 const sqlite3_module *pModule = pMod->pModule; 1201 Table *pTab; 1202 char *zErr = 0; 1203 int rc; 1204 sqlite3 *db = pParse->db; 1205 if( pMod->pEpoTab ) return 1; 1206 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1207 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1208 if( pTab==0 ) return 0; 1209 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1210 if( pTab->zName==0 ){ 1211 sqlite3DbFree(db, pTab); 1212 return 0; 1213 } 1214 pMod->pEpoTab = pTab; 1215 pTab->nTabRef = 1; 1216 pTab->pSchema = db->aDb[0].pSchema; 1217 assert( pTab->nModuleArg==0 ); 1218 pTab->iPKey = -1; 1219 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1220 addModuleArgument(pParse, pTab, 0); 1221 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1222 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1223 if( rc ){ 1224 sqlite3ErrorMsg(pParse, "%s", zErr); 1225 sqlite3DbFree(db, zErr); 1226 sqlite3VtabEponymousTableClear(db, pMod); 1227 return 0; 1228 } 1229 return 1; 1230 } 1231 1232 /* 1233 ** Erase the eponymous virtual table instance associated with 1234 ** virtual table module pMod, if it exists. 1235 */ 1236 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1237 Table *pTab = pMod->pEpoTab; 1238 if( pTab!=0 ){ 1239 /* Mark the table as Ephemeral prior to deleting it, so that the 1240 ** sqlite3DeleteTable() routine will know that it is not stored in 1241 ** the schema. */ 1242 pTab->tabFlags |= TF_Ephemeral; 1243 sqlite3DeleteTable(db, pTab); 1244 pMod->pEpoTab = 0; 1245 } 1246 } 1247 1248 /* 1249 ** Return the ON CONFLICT resolution mode in effect for the virtual 1250 ** table update operation currently in progress. 1251 ** 1252 ** The results of this routine are undefined unless it is called from 1253 ** within an xUpdate method. 1254 */ 1255 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1256 static const unsigned char aMap[] = { 1257 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1258 }; 1259 #ifdef SQLITE_ENABLE_API_ARMOR 1260 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1261 #endif 1262 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1263 assert( OE_Ignore==4 && OE_Replace==5 ); 1264 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1265 return (int)aMap[db->vtabOnConflict-1]; 1266 } 1267 1268 /* 1269 ** Call from within the xCreate() or xConnect() methods to provide 1270 ** the SQLite core with additional information about the behavior 1271 ** of the virtual table being implemented. 1272 */ 1273 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1274 va_list ap; 1275 int rc = SQLITE_OK; 1276 1277 #ifdef SQLITE_ENABLE_API_ARMOR 1278 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1279 #endif 1280 sqlite3_mutex_enter(db->mutex); 1281 va_start(ap, op); 1282 switch( op ){ 1283 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1284 VtabCtx *p = db->pVtabCtx; 1285 if( !p ){ 1286 rc = SQLITE_MISUSE_BKPT; 1287 }else{ 1288 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1289 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1290 } 1291 break; 1292 } 1293 default: 1294 rc = SQLITE_MISUSE_BKPT; 1295 break; 1296 } 1297 va_end(ap); 1298 1299 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1300 sqlite3_mutex_leave(db->mutex); 1301 return rc; 1302 } 1303 1304 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1305