1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** The actual function that does the work of creating a new module. 33 ** This function implements the sqlite3_create_module() and 34 ** sqlite3_create_module_v2() interfaces. 35 */ 36 static int createModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 int rc = SQLITE_OK; 44 int nName; 45 46 sqlite3_mutex_enter(db->mutex); 47 nName = sqlite3Strlen30(zName); 48 if( sqlite3HashFind(&db->aModule, zName) ){ 49 rc = SQLITE_MISUSE_BKPT; 50 }else{ 51 Module *pMod; 52 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 53 if( pMod ){ 54 Module *pDel; 55 char *zCopy = (char *)(&pMod[1]); 56 memcpy(zCopy, zName, nName+1); 57 pMod->zName = zCopy; 58 pMod->pModule = pModule; 59 pMod->pAux = pAux; 60 pMod->xDestroy = xDestroy; 61 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 62 assert( pDel==0 || pDel==pMod ); 63 if( pDel ){ 64 db->mallocFailed = 1; 65 sqlite3DbFree(db, pDel); 66 } 67 } 68 } 69 rc = sqlite3ApiExit(db, rc); 70 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 71 72 sqlite3_mutex_leave(db->mutex); 73 return rc; 74 } 75 76 77 /* 78 ** External API function used to create a new virtual-table module. 79 */ 80 int sqlite3_create_module( 81 sqlite3 *db, /* Database in which module is registered */ 82 const char *zName, /* Name assigned to this module */ 83 const sqlite3_module *pModule, /* The definition of the module */ 84 void *pAux /* Context pointer for xCreate/xConnect */ 85 ){ 86 #ifdef SQLITE_ENABLE_API_ARMOR 87 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 88 #endif 89 return createModule(db, zName, pModule, pAux, 0); 90 } 91 92 /* 93 ** External API function used to create a new virtual-table module. 94 */ 95 int sqlite3_create_module_v2( 96 sqlite3 *db, /* Database in which module is registered */ 97 const char *zName, /* Name assigned to this module */ 98 const sqlite3_module *pModule, /* The definition of the module */ 99 void *pAux, /* Context pointer for xCreate/xConnect */ 100 void (*xDestroy)(void *) /* Module destructor function */ 101 ){ 102 #ifdef SQLITE_ENABLE_API_ARMOR 103 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 104 #endif 105 return createModule(db, zName, pModule, pAux, xDestroy); 106 } 107 108 /* 109 ** Lock the virtual table so that it cannot be disconnected. 110 ** Locks nest. Every lock should have a corresponding unlock. 111 ** If an unlock is omitted, resources leaks will occur. 112 ** 113 ** If a disconnect is attempted while a virtual table is locked, 114 ** the disconnect is deferred until all locks have been removed. 115 */ 116 void sqlite3VtabLock(VTable *pVTab){ 117 pVTab->nRef++; 118 } 119 120 121 /* 122 ** pTab is a pointer to a Table structure representing a virtual-table. 123 ** Return a pointer to the VTable object used by connection db to access 124 ** this virtual-table, if one has been created, or NULL otherwise. 125 */ 126 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 127 VTable *pVtab; 128 assert( IsVirtual(pTab) ); 129 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 130 return pVtab; 131 } 132 133 /* 134 ** Decrement the ref-count on a virtual table object. When the ref-count 135 ** reaches zero, call the xDisconnect() method to delete the object. 136 */ 137 void sqlite3VtabUnlock(VTable *pVTab){ 138 sqlite3 *db = pVTab->db; 139 140 assert( db ); 141 assert( pVTab->nRef>0 ); 142 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 143 144 pVTab->nRef--; 145 if( pVTab->nRef==0 ){ 146 sqlite3_vtab *p = pVTab->pVtab; 147 if( p ){ 148 p->pModule->xDisconnect(p); 149 } 150 sqlite3DbFree(db, pVTab); 151 } 152 } 153 154 /* 155 ** Table p is a virtual table. This function moves all elements in the 156 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 157 ** database connections to be disconnected at the next opportunity. 158 ** Except, if argument db is not NULL, then the entry associated with 159 ** connection db is left in the p->pVTable list. 160 */ 161 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 162 VTable *pRet = 0; 163 VTable *pVTable = p->pVTable; 164 p->pVTable = 0; 165 166 /* Assert that the mutex (if any) associated with the BtShared database 167 ** that contains table p is held by the caller. See header comments 168 ** above function sqlite3VtabUnlockList() for an explanation of why 169 ** this makes it safe to access the sqlite3.pDisconnect list of any 170 ** database connection that may have an entry in the p->pVTable list. 171 */ 172 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 173 174 while( pVTable ){ 175 sqlite3 *db2 = pVTable->db; 176 VTable *pNext = pVTable->pNext; 177 assert( db2 ); 178 if( db2==db ){ 179 pRet = pVTable; 180 p->pVTable = pRet; 181 pRet->pNext = 0; 182 }else{ 183 pVTable->pNext = db2->pDisconnect; 184 db2->pDisconnect = pVTable; 185 } 186 pVTable = pNext; 187 } 188 189 assert( !db || pRet ); 190 return pRet; 191 } 192 193 /* 194 ** Table *p is a virtual table. This function removes the VTable object 195 ** for table *p associated with database connection db from the linked 196 ** list in p->pVTab. It also decrements the VTable ref count. This is 197 ** used when closing database connection db to free all of its VTable 198 ** objects without disturbing the rest of the Schema object (which may 199 ** be being used by other shared-cache connections). 200 */ 201 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 202 VTable **ppVTab; 203 204 assert( IsVirtual(p) ); 205 assert( sqlite3BtreeHoldsAllMutexes(db) ); 206 assert( sqlite3_mutex_held(db->mutex) ); 207 208 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 209 if( (*ppVTab)->db==db ){ 210 VTable *pVTab = *ppVTab; 211 *ppVTab = pVTab->pNext; 212 sqlite3VtabUnlock(pVTab); 213 break; 214 } 215 } 216 } 217 218 219 /* 220 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 221 ** 222 ** This function may only be called when the mutexes associated with all 223 ** shared b-tree databases opened using connection db are held by the 224 ** caller. This is done to protect the sqlite3.pDisconnect list. The 225 ** sqlite3.pDisconnect list is accessed only as follows: 226 ** 227 ** 1) By this function. In this case, all BtShared mutexes and the mutex 228 ** associated with the database handle itself must be held. 229 ** 230 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 231 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 232 ** associated with the database the virtual table is stored in is held 233 ** or, if the virtual table is stored in a non-sharable database, then 234 ** the database handle mutex is held. 235 ** 236 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 237 ** by multiple threads. It is thread-safe. 238 */ 239 void sqlite3VtabUnlockList(sqlite3 *db){ 240 VTable *p = db->pDisconnect; 241 db->pDisconnect = 0; 242 243 assert( sqlite3BtreeHoldsAllMutexes(db) ); 244 assert( sqlite3_mutex_held(db->mutex) ); 245 246 if( p ){ 247 sqlite3ExpirePreparedStatements(db); 248 do { 249 VTable *pNext = p->pNext; 250 sqlite3VtabUnlock(p); 251 p = pNext; 252 }while( p ); 253 } 254 } 255 256 /* 257 ** Clear any and all virtual-table information from the Table record. 258 ** This routine is called, for example, just before deleting the Table 259 ** record. 260 ** 261 ** Since it is a virtual-table, the Table structure contains a pointer 262 ** to the head of a linked list of VTable structures. Each VTable 263 ** structure is associated with a single sqlite3* user of the schema. 264 ** The reference count of the VTable structure associated with database 265 ** connection db is decremented immediately (which may lead to the 266 ** structure being xDisconnected and free). Any other VTable structures 267 ** in the list are moved to the sqlite3.pDisconnect list of the associated 268 ** database connection. 269 */ 270 void sqlite3VtabClear(sqlite3 *db, Table *p){ 271 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 272 if( p->azModuleArg ){ 273 int i; 274 for(i=0; i<p->nModuleArg; i++){ 275 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 276 } 277 sqlite3DbFree(db, p->azModuleArg); 278 } 279 } 280 281 /* 282 ** Add a new module argument to pTable->azModuleArg[]. 283 ** The string is not copied - the pointer is stored. The 284 ** string will be freed automatically when the table is 285 ** deleted. 286 */ 287 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 288 int i = pTable->nModuleArg++; 289 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 290 char **azModuleArg; 291 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 292 if( azModuleArg==0 ){ 293 int j; 294 for(j=0; j<i; j++){ 295 sqlite3DbFree(db, pTable->azModuleArg[j]); 296 } 297 sqlite3DbFree(db, zArg); 298 sqlite3DbFree(db, pTable->azModuleArg); 299 pTable->nModuleArg = 0; 300 }else{ 301 azModuleArg[i] = zArg; 302 azModuleArg[i+1] = 0; 303 } 304 pTable->azModuleArg = azModuleArg; 305 } 306 307 /* 308 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 309 ** statement. The module name has been parsed, but the optional list 310 ** of parameters that follow the module name are still pending. 311 */ 312 void sqlite3VtabBeginParse( 313 Parse *pParse, /* Parsing context */ 314 Token *pName1, /* Name of new table, or database name */ 315 Token *pName2, /* Name of new table or NULL */ 316 Token *pModuleName, /* Name of the module for the virtual table */ 317 int ifNotExists /* No error if the table already exists */ 318 ){ 319 int iDb; /* The database the table is being created in */ 320 Table *pTable; /* The new virtual table */ 321 sqlite3 *db; /* Database connection */ 322 323 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 324 pTable = pParse->pNewTable; 325 if( pTable==0 ) return; 326 assert( 0==pTable->pIndex ); 327 328 db = pParse->db; 329 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 330 assert( iDb>=0 ); 331 332 pTable->tabFlags |= TF_Virtual; 333 pTable->nModuleArg = 0; 334 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 335 addModuleArgument(db, pTable, 0); 336 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 337 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 338 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 339 ); 340 pParse->sNameToken.n = (int)( 341 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 342 ); 343 344 #ifndef SQLITE_OMIT_AUTHORIZATION 345 /* Creating a virtual table invokes the authorization callback twice. 346 ** The first invocation, to obtain permission to INSERT a row into the 347 ** sqlite_master table, has already been made by sqlite3StartTable(). 348 ** The second call, to obtain permission to create the table, is made now. 349 */ 350 if( pTable->azModuleArg ){ 351 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 352 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 353 } 354 #endif 355 } 356 357 /* 358 ** This routine takes the module argument that has been accumulating 359 ** in pParse->zArg[] and appends it to the list of arguments on the 360 ** virtual table currently under construction in pParse->pTable. 361 */ 362 static void addArgumentToVtab(Parse *pParse){ 363 if( pParse->sArg.z && pParse->pNewTable ){ 364 const char *z = (const char*)pParse->sArg.z; 365 int n = pParse->sArg.n; 366 sqlite3 *db = pParse->db; 367 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 368 } 369 } 370 371 /* 372 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 373 ** has been completely parsed. 374 */ 375 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 376 Table *pTab = pParse->pNewTable; /* The table being constructed */ 377 sqlite3 *db = pParse->db; /* The database connection */ 378 379 if( pTab==0 ) return; 380 addArgumentToVtab(pParse); 381 pParse->sArg.z = 0; 382 if( pTab->nModuleArg<1 ) return; 383 384 /* If the CREATE VIRTUAL TABLE statement is being entered for the 385 ** first time (in other words if the virtual table is actually being 386 ** created now instead of just being read out of sqlite_master) then 387 ** do additional initialization work and store the statement text 388 ** in the sqlite_master table. 389 */ 390 if( !db->init.busy ){ 391 char *zStmt; 392 char *zWhere; 393 int iDb; 394 int iReg; 395 Vdbe *v; 396 397 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 398 if( pEnd ){ 399 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 400 } 401 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 402 403 /* A slot for the record has already been allocated in the 404 ** SQLITE_MASTER table. We just need to update that slot with all 405 ** the information we've collected. 406 ** 407 ** The VM register number pParse->regRowid holds the rowid of an 408 ** entry in the sqlite_master table tht was created for this vtab 409 ** by sqlite3StartTable(). 410 */ 411 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 412 sqlite3NestedParse(pParse, 413 "UPDATE %Q.%s " 414 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 415 "WHERE rowid=#%d", 416 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 417 pTab->zName, 418 pTab->zName, 419 zStmt, 420 pParse->regRowid 421 ); 422 sqlite3DbFree(db, zStmt); 423 v = sqlite3GetVdbe(pParse); 424 sqlite3ChangeCookie(pParse, iDb); 425 426 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 427 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 428 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 429 430 iReg = ++pParse->nMem; 431 sqlite3VdbeAddOp4(v, OP_String8, 0, iReg, 0, pTab->zName, 0); 432 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 433 } 434 435 /* If we are rereading the sqlite_master table create the in-memory 436 ** record of the table. The xConnect() method is not called until 437 ** the first time the virtual table is used in an SQL statement. This 438 ** allows a schema that contains virtual tables to be loaded before 439 ** the required virtual table implementations are registered. */ 440 else { 441 Table *pOld; 442 Schema *pSchema = pTab->pSchema; 443 const char *zName = pTab->zName; 444 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 445 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 446 if( pOld ){ 447 db->mallocFailed = 1; 448 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 449 return; 450 } 451 pParse->pNewTable = 0; 452 } 453 } 454 455 /* 456 ** The parser calls this routine when it sees the first token 457 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 458 */ 459 void sqlite3VtabArgInit(Parse *pParse){ 460 addArgumentToVtab(pParse); 461 pParse->sArg.z = 0; 462 pParse->sArg.n = 0; 463 } 464 465 /* 466 ** The parser calls this routine for each token after the first token 467 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 468 */ 469 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 470 Token *pArg = &pParse->sArg; 471 if( pArg->z==0 ){ 472 pArg->z = p->z; 473 pArg->n = p->n; 474 }else{ 475 assert(pArg->z <= p->z); 476 pArg->n = (int)(&p->z[p->n] - pArg->z); 477 } 478 } 479 480 /* 481 ** Invoke a virtual table constructor (either xCreate or xConnect). The 482 ** pointer to the function to invoke is passed as the fourth parameter 483 ** to this procedure. 484 */ 485 static int vtabCallConstructor( 486 sqlite3 *db, 487 Table *pTab, 488 Module *pMod, 489 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 490 char **pzErr 491 ){ 492 VtabCtx sCtx; 493 VTable *pVTable; 494 int rc; 495 const char *const*azArg = (const char *const*)pTab->azModuleArg; 496 int nArg = pTab->nModuleArg; 497 char *zErr = 0; 498 char *zModuleName; 499 int iDb; 500 VtabCtx *pCtx; 501 502 /* Check that the virtual-table is not already being initialized */ 503 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 504 if( pCtx->pTab==pTab ){ 505 *pzErr = sqlite3MPrintf(db, 506 "vtable constructor called recursively: %s", pTab->zName 507 ); 508 return SQLITE_LOCKED; 509 } 510 } 511 512 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 513 if( !zModuleName ){ 514 return SQLITE_NOMEM; 515 } 516 517 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 518 if( !pVTable ){ 519 sqlite3DbFree(db, zModuleName); 520 return SQLITE_NOMEM; 521 } 522 pVTable->db = db; 523 pVTable->pMod = pMod; 524 525 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 526 pTab->azModuleArg[1] = db->aDb[iDb].zName; 527 528 /* Invoke the virtual table constructor */ 529 assert( &db->pVtabCtx ); 530 assert( xConstruct ); 531 sCtx.pTab = pTab; 532 sCtx.pVTable = pVTable; 533 sCtx.pPrior = db->pVtabCtx; 534 sCtx.bDeclared = 0; 535 db->pVtabCtx = &sCtx; 536 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 537 db->pVtabCtx = sCtx.pPrior; 538 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 539 assert( sCtx.pTab==pTab ); 540 541 if( SQLITE_OK!=rc ){ 542 if( zErr==0 ){ 543 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 544 }else { 545 *pzErr = sqlite3MPrintf(db, "%s", zErr); 546 sqlite3_free(zErr); 547 } 548 sqlite3DbFree(db, pVTable); 549 }else if( ALWAYS(pVTable->pVtab) ){ 550 /* Justification of ALWAYS(): A correct vtab constructor must allocate 551 ** the sqlite3_vtab object if successful. */ 552 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 553 pVTable->pVtab->pModule = pMod->pModule; 554 pVTable->nRef = 1; 555 if( sCtx.bDeclared==0 ){ 556 const char *zFormat = "vtable constructor did not declare schema: %s"; 557 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 558 sqlite3VtabUnlock(pVTable); 559 rc = SQLITE_ERROR; 560 }else{ 561 int iCol; 562 u8 oooHidden = 0; 563 /* If everything went according to plan, link the new VTable structure 564 ** into the linked list headed by pTab->pVTable. Then loop through the 565 ** columns of the table to see if any of them contain the token "hidden". 566 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 567 ** the type string. */ 568 pVTable->pNext = pTab->pVTable; 569 pTab->pVTable = pVTable; 570 571 for(iCol=0; iCol<pTab->nCol; iCol++){ 572 char *zType = pTab->aCol[iCol].zType; 573 int nType; 574 int i = 0; 575 if( !zType ){ 576 pTab->tabFlags |= oooHidden; 577 continue; 578 } 579 nType = sqlite3Strlen30(zType); 580 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 581 for(i=0; i<nType; i++){ 582 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 583 && (zType[i+7]=='\0' || zType[i+7]==' ') 584 ){ 585 i++; 586 break; 587 } 588 } 589 } 590 if( i<nType ){ 591 int j; 592 int nDel = 6 + (zType[i+6] ? 1 : 0); 593 for(j=i; (j+nDel)<=nType; j++){ 594 zType[j] = zType[j+nDel]; 595 } 596 if( zType[i]=='\0' && i>0 ){ 597 assert(zType[i-1]==' '); 598 zType[i-1] = '\0'; 599 } 600 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 601 oooHidden = TF_OOOHidden; 602 }else{ 603 pTab->tabFlags |= oooHidden; 604 } 605 } 606 } 607 } 608 609 sqlite3DbFree(db, zModuleName); 610 return rc; 611 } 612 613 /* 614 ** This function is invoked by the parser to call the xConnect() method 615 ** of the virtual table pTab. If an error occurs, an error code is returned 616 ** and an error left in pParse. 617 ** 618 ** This call is a no-op if table pTab is not a virtual table. 619 */ 620 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 621 sqlite3 *db = pParse->db; 622 const char *zMod; 623 Module *pMod; 624 int rc; 625 626 assert( pTab ); 627 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 628 return SQLITE_OK; 629 } 630 631 /* Locate the required virtual table module */ 632 zMod = pTab->azModuleArg[0]; 633 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 634 635 if( !pMod ){ 636 const char *zModule = pTab->azModuleArg[0]; 637 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 638 rc = SQLITE_ERROR; 639 }else{ 640 char *zErr = 0; 641 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 642 if( rc!=SQLITE_OK ){ 643 sqlite3ErrorMsg(pParse, "%s", zErr); 644 } 645 sqlite3DbFree(db, zErr); 646 } 647 648 return rc; 649 } 650 /* 651 ** Grow the db->aVTrans[] array so that there is room for at least one 652 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 653 */ 654 static int growVTrans(sqlite3 *db){ 655 const int ARRAY_INCR = 5; 656 657 /* Grow the sqlite3.aVTrans array if required */ 658 if( (db->nVTrans%ARRAY_INCR)==0 ){ 659 VTable **aVTrans; 660 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 661 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 662 if( !aVTrans ){ 663 return SQLITE_NOMEM; 664 } 665 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 666 db->aVTrans = aVTrans; 667 } 668 669 return SQLITE_OK; 670 } 671 672 /* 673 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 674 ** have already been reserved using growVTrans(). 675 */ 676 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 677 /* Add pVtab to the end of sqlite3.aVTrans */ 678 db->aVTrans[db->nVTrans++] = pVTab; 679 sqlite3VtabLock(pVTab); 680 } 681 682 /* 683 ** This function is invoked by the vdbe to call the xCreate method 684 ** of the virtual table named zTab in database iDb. 685 ** 686 ** If an error occurs, *pzErr is set to point an an English language 687 ** description of the error and an SQLITE_XXX error code is returned. 688 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 689 */ 690 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 691 int rc = SQLITE_OK; 692 Table *pTab; 693 Module *pMod; 694 const char *zMod; 695 696 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 697 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 698 699 /* Locate the required virtual table module */ 700 zMod = pTab->azModuleArg[0]; 701 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 702 703 /* If the module has been registered and includes a Create method, 704 ** invoke it now. If the module has not been registered, return an 705 ** error. Otherwise, do nothing. 706 */ 707 if( !pMod ){ 708 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 709 rc = SQLITE_ERROR; 710 }else{ 711 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 712 } 713 714 /* Justification of ALWAYS(): The xConstructor method is required to 715 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 716 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 717 rc = growVTrans(db); 718 if( rc==SQLITE_OK ){ 719 addToVTrans(db, sqlite3GetVTable(db, pTab)); 720 } 721 } 722 723 return rc; 724 } 725 726 /* 727 ** This function is used to set the schema of a virtual table. It is only 728 ** valid to call this function from within the xCreate() or xConnect() of a 729 ** virtual table module. 730 */ 731 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 732 VtabCtx *pCtx; 733 Parse *pParse; 734 int rc = SQLITE_OK; 735 Table *pTab; 736 char *zErr = 0; 737 738 #ifdef SQLITE_ENABLE_API_ARMOR 739 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 740 return SQLITE_MISUSE_BKPT; 741 } 742 #endif 743 sqlite3_mutex_enter(db->mutex); 744 pCtx = db->pVtabCtx; 745 if( !pCtx || pCtx->bDeclared ){ 746 sqlite3Error(db, SQLITE_MISUSE); 747 sqlite3_mutex_leave(db->mutex); 748 return SQLITE_MISUSE_BKPT; 749 } 750 pTab = pCtx->pTab; 751 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 752 753 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 754 if( pParse==0 ){ 755 rc = SQLITE_NOMEM; 756 }else{ 757 pParse->declareVtab = 1; 758 pParse->db = db; 759 pParse->nQueryLoop = 1; 760 761 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 762 && pParse->pNewTable 763 && !db->mallocFailed 764 && !pParse->pNewTable->pSelect 765 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 766 ){ 767 if( !pTab->aCol ){ 768 pTab->aCol = pParse->pNewTable->aCol; 769 pTab->nCol = pParse->pNewTable->nCol; 770 pParse->pNewTable->nCol = 0; 771 pParse->pNewTable->aCol = 0; 772 } 773 pCtx->bDeclared = 1; 774 }else{ 775 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 776 sqlite3DbFree(db, zErr); 777 rc = SQLITE_ERROR; 778 } 779 pParse->declareVtab = 0; 780 781 if( pParse->pVdbe ){ 782 sqlite3VdbeFinalize(pParse->pVdbe); 783 } 784 sqlite3DeleteTable(db, pParse->pNewTable); 785 sqlite3ParserReset(pParse); 786 sqlite3StackFree(db, pParse); 787 } 788 789 assert( (rc&0xff)==rc ); 790 rc = sqlite3ApiExit(db, rc); 791 sqlite3_mutex_leave(db->mutex); 792 return rc; 793 } 794 795 /* 796 ** This function is invoked by the vdbe to call the xDestroy method 797 ** of the virtual table named zTab in database iDb. This occurs 798 ** when a DROP TABLE is mentioned. 799 ** 800 ** This call is a no-op if zTab is not a virtual table. 801 */ 802 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 803 int rc = SQLITE_OK; 804 Table *pTab; 805 806 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 807 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 808 VTable *p; 809 for(p=pTab->pVTable; p; p=p->pNext){ 810 assert( p->pVtab ); 811 if( p->pVtab->nRef>0 ){ 812 return SQLITE_LOCKED; 813 } 814 } 815 p = vtabDisconnectAll(db, pTab); 816 rc = p->pMod->pModule->xDestroy(p->pVtab); 817 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 818 if( rc==SQLITE_OK ){ 819 assert( pTab->pVTable==p && p->pNext==0 ); 820 p->pVtab = 0; 821 pTab->pVTable = 0; 822 sqlite3VtabUnlock(p); 823 } 824 } 825 826 return rc; 827 } 828 829 /* 830 ** This function invokes either the xRollback or xCommit method 831 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 832 ** called is identified by the second argument, "offset", which is 833 ** the offset of the method to call in the sqlite3_module structure. 834 ** 835 ** The array is cleared after invoking the callbacks. 836 */ 837 static void callFinaliser(sqlite3 *db, int offset){ 838 int i; 839 if( db->aVTrans ){ 840 VTable **aVTrans = db->aVTrans; 841 db->aVTrans = 0; 842 for(i=0; i<db->nVTrans; i++){ 843 VTable *pVTab = aVTrans[i]; 844 sqlite3_vtab *p = pVTab->pVtab; 845 if( p ){ 846 int (*x)(sqlite3_vtab *); 847 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 848 if( x ) x(p); 849 } 850 pVTab->iSavepoint = 0; 851 sqlite3VtabUnlock(pVTab); 852 } 853 sqlite3DbFree(db, aVTrans); 854 db->nVTrans = 0; 855 } 856 } 857 858 /* 859 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 860 ** array. Return the error code for the first error that occurs, or 861 ** SQLITE_OK if all xSync operations are successful. 862 ** 863 ** If an error message is available, leave it in p->zErrMsg. 864 */ 865 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 866 int i; 867 int rc = SQLITE_OK; 868 VTable **aVTrans = db->aVTrans; 869 870 db->aVTrans = 0; 871 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 872 int (*x)(sqlite3_vtab *); 873 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 874 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 875 rc = x(pVtab); 876 sqlite3VtabImportErrmsg(p, pVtab); 877 } 878 } 879 db->aVTrans = aVTrans; 880 return rc; 881 } 882 883 /* 884 ** Invoke the xRollback method of all virtual tables in the 885 ** sqlite3.aVTrans array. Then clear the array itself. 886 */ 887 int sqlite3VtabRollback(sqlite3 *db){ 888 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 889 return SQLITE_OK; 890 } 891 892 /* 893 ** Invoke the xCommit method of all virtual tables in the 894 ** sqlite3.aVTrans array. Then clear the array itself. 895 */ 896 int sqlite3VtabCommit(sqlite3 *db){ 897 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 898 return SQLITE_OK; 899 } 900 901 /* 902 ** If the virtual table pVtab supports the transaction interface 903 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 904 ** not currently open, invoke the xBegin method now. 905 ** 906 ** If the xBegin call is successful, place the sqlite3_vtab pointer 907 ** in the sqlite3.aVTrans array. 908 */ 909 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 910 int rc = SQLITE_OK; 911 const sqlite3_module *pModule; 912 913 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 914 ** than zero, then this function is being called from within a 915 ** virtual module xSync() callback. It is illegal to write to 916 ** virtual module tables in this case, so return SQLITE_LOCKED. 917 */ 918 if( sqlite3VtabInSync(db) ){ 919 return SQLITE_LOCKED; 920 } 921 if( !pVTab ){ 922 return SQLITE_OK; 923 } 924 pModule = pVTab->pVtab->pModule; 925 926 if( pModule->xBegin ){ 927 int i; 928 929 /* If pVtab is already in the aVTrans array, return early */ 930 for(i=0; i<db->nVTrans; i++){ 931 if( db->aVTrans[i]==pVTab ){ 932 return SQLITE_OK; 933 } 934 } 935 936 /* Invoke the xBegin method. If successful, add the vtab to the 937 ** sqlite3.aVTrans[] array. */ 938 rc = growVTrans(db); 939 if( rc==SQLITE_OK ){ 940 rc = pModule->xBegin(pVTab->pVtab); 941 if( rc==SQLITE_OK ){ 942 addToVTrans(db, pVTab); 943 } 944 } 945 } 946 return rc; 947 } 948 949 /* 950 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 951 ** virtual tables that currently have an open transaction. Pass iSavepoint 952 ** as the second argument to the virtual table method invoked. 953 ** 954 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 955 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 956 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 957 ** an open transaction is invoked. 958 ** 959 ** If any virtual table method returns an error code other than SQLITE_OK, 960 ** processing is abandoned and the error returned to the caller of this 961 ** function immediately. If all calls to virtual table methods are successful, 962 ** SQLITE_OK is returned. 963 */ 964 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 965 int rc = SQLITE_OK; 966 967 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 968 assert( iSavepoint>=-1 ); 969 if( db->aVTrans ){ 970 int i; 971 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 972 VTable *pVTab = db->aVTrans[i]; 973 const sqlite3_module *pMod = pVTab->pMod->pModule; 974 if( pVTab->pVtab && pMod->iVersion>=2 ){ 975 int (*xMethod)(sqlite3_vtab *, int); 976 switch( op ){ 977 case SAVEPOINT_BEGIN: 978 xMethod = pMod->xSavepoint; 979 pVTab->iSavepoint = iSavepoint+1; 980 break; 981 case SAVEPOINT_ROLLBACK: 982 xMethod = pMod->xRollbackTo; 983 break; 984 default: 985 xMethod = pMod->xRelease; 986 break; 987 } 988 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 989 rc = xMethod(pVTab->pVtab, iSavepoint); 990 } 991 } 992 } 993 } 994 return rc; 995 } 996 997 /* 998 ** The first parameter (pDef) is a function implementation. The 999 ** second parameter (pExpr) is the first argument to this function. 1000 ** If pExpr is a column in a virtual table, then let the virtual 1001 ** table implementation have an opportunity to overload the function. 1002 ** 1003 ** This routine is used to allow virtual table implementations to 1004 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1005 ** 1006 ** Return either the pDef argument (indicating no change) or a 1007 ** new FuncDef structure that is marked as ephemeral using the 1008 ** SQLITE_FUNC_EPHEM flag. 1009 */ 1010 FuncDef *sqlite3VtabOverloadFunction( 1011 sqlite3 *db, /* Database connection for reporting malloc problems */ 1012 FuncDef *pDef, /* Function to possibly overload */ 1013 int nArg, /* Number of arguments to the function */ 1014 Expr *pExpr /* First argument to the function */ 1015 ){ 1016 Table *pTab; 1017 sqlite3_vtab *pVtab; 1018 sqlite3_module *pMod; 1019 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1020 void *pArg = 0; 1021 FuncDef *pNew; 1022 int rc = 0; 1023 char *zLowerName; 1024 unsigned char *z; 1025 1026 1027 /* Check to see the left operand is a column in a virtual table */ 1028 if( NEVER(pExpr==0) ) return pDef; 1029 if( pExpr->op!=TK_COLUMN ) return pDef; 1030 pTab = pExpr->pTab; 1031 if( NEVER(pTab==0) ) return pDef; 1032 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 1033 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1034 assert( pVtab!=0 ); 1035 assert( pVtab->pModule!=0 ); 1036 pMod = (sqlite3_module *)pVtab->pModule; 1037 if( pMod->xFindFunction==0 ) return pDef; 1038 1039 /* Call the xFindFunction method on the virtual table implementation 1040 ** to see if the implementation wants to overload this function 1041 */ 1042 zLowerName = sqlite3DbStrDup(db, pDef->zName); 1043 if( zLowerName ){ 1044 for(z=(unsigned char*)zLowerName; *z; z++){ 1045 *z = sqlite3UpperToLower[*z]; 1046 } 1047 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 1048 sqlite3DbFree(db, zLowerName); 1049 } 1050 if( rc==0 ){ 1051 return pDef; 1052 } 1053 1054 /* Create a new ephemeral function definition for the overloaded 1055 ** function */ 1056 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1057 + sqlite3Strlen30(pDef->zName) + 1); 1058 if( pNew==0 ){ 1059 return pDef; 1060 } 1061 *pNew = *pDef; 1062 pNew->zName = (char *)&pNew[1]; 1063 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1064 pNew->xFunc = xFunc; 1065 pNew->pUserData = pArg; 1066 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1067 return pNew; 1068 } 1069 1070 /* 1071 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1072 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1073 ** array if it is missing. If pTab is already in the array, this routine 1074 ** is a no-op. 1075 */ 1076 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1077 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1078 int i, n; 1079 Table **apVtabLock; 1080 1081 assert( IsVirtual(pTab) ); 1082 for(i=0; i<pToplevel->nVtabLock; i++){ 1083 if( pTab==pToplevel->apVtabLock[i] ) return; 1084 } 1085 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1086 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1087 if( apVtabLock ){ 1088 pToplevel->apVtabLock = apVtabLock; 1089 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1090 }else{ 1091 pToplevel->db->mallocFailed = 1; 1092 } 1093 } 1094 1095 /* 1096 ** Return the ON CONFLICT resolution mode in effect for the virtual 1097 ** table update operation currently in progress. 1098 ** 1099 ** The results of this routine are undefined unless it is called from 1100 ** within an xUpdate method. 1101 */ 1102 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1103 static const unsigned char aMap[] = { 1104 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1105 }; 1106 #ifdef SQLITE_ENABLE_API_ARMOR 1107 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1108 #endif 1109 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1110 assert( OE_Ignore==4 && OE_Replace==5 ); 1111 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1112 return (int)aMap[db->vtabOnConflict-1]; 1113 } 1114 1115 /* 1116 ** Call from within the xCreate() or xConnect() methods to provide 1117 ** the SQLite core with additional information about the behavior 1118 ** of the virtual table being implemented. 1119 */ 1120 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1121 va_list ap; 1122 int rc = SQLITE_OK; 1123 1124 #ifdef SQLITE_ENABLE_API_ARMOR 1125 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1126 #endif 1127 sqlite3_mutex_enter(db->mutex); 1128 va_start(ap, op); 1129 switch( op ){ 1130 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1131 VtabCtx *p = db->pVtabCtx; 1132 if( !p ){ 1133 rc = SQLITE_MISUSE_BKPT; 1134 }else{ 1135 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1136 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1137 } 1138 break; 1139 } 1140 default: 1141 rc = SQLITE_MISUSE_BKPT; 1142 break; 1143 } 1144 va_end(ap); 1145 1146 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1147 sqlite3_mutex_leave(db->mutex); 1148 return rc; 1149 } 1150 1151 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1152