1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 */ 36 Module *sqlite3VtabCreateModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 Module *pMod; 44 int nName = sqlite3Strlen30(zName); 45 pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1); 46 if( pMod ){ 47 Module *pDel; 48 char *zCopy = (char *)(&pMod[1]); 49 memcpy(zCopy, zName, nName+1); 50 pMod->zName = zCopy; 51 pMod->pModule = pModule; 52 pMod->pAux = pAux; 53 pMod->xDestroy = xDestroy; 54 pMod->pEpoTab = 0; 55 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 56 assert( pDel==0 || pDel==pMod ); 57 if( pDel ){ 58 sqlite3OomFault(db); 59 sqlite3DbFree(db, pDel); 60 pMod = 0; 61 } 62 } 63 return pMod; 64 } 65 66 /* 67 ** The actual function that does the work of creating a new module. 68 ** This function implements the sqlite3_create_module() and 69 ** sqlite3_create_module_v2() interfaces. 70 */ 71 static int createModule( 72 sqlite3 *db, /* Database in which module is registered */ 73 const char *zName, /* Name assigned to this module */ 74 const sqlite3_module *pModule, /* The definition of the module */ 75 void *pAux, /* Context pointer for xCreate/xConnect */ 76 void (*xDestroy)(void *) /* Module destructor function */ 77 ){ 78 int rc = SQLITE_OK; 79 80 sqlite3_mutex_enter(db->mutex); 81 if( sqlite3HashFind(&db->aModule, zName) ){ 82 rc = SQLITE_MISUSE_BKPT; 83 }else{ 84 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 85 } 86 rc = sqlite3ApiExit(db, rc); 87 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 88 sqlite3_mutex_leave(db->mutex); 89 return rc; 90 } 91 92 93 /* 94 ** External API function used to create a new virtual-table module. 95 */ 96 int sqlite3_create_module( 97 sqlite3 *db, /* Database in which module is registered */ 98 const char *zName, /* Name assigned to this module */ 99 const sqlite3_module *pModule, /* The definition of the module */ 100 void *pAux /* Context pointer for xCreate/xConnect */ 101 ){ 102 #ifdef SQLITE_ENABLE_API_ARMOR 103 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 104 #endif 105 return createModule(db, zName, pModule, pAux, 0); 106 } 107 108 /* 109 ** External API function used to create a new virtual-table module. 110 */ 111 int sqlite3_create_module_v2( 112 sqlite3 *db, /* Database in which module is registered */ 113 const char *zName, /* Name assigned to this module */ 114 const sqlite3_module *pModule, /* The definition of the module */ 115 void *pAux, /* Context pointer for xCreate/xConnect */ 116 void (*xDestroy)(void *) /* Module destructor function */ 117 ){ 118 #ifdef SQLITE_ENABLE_API_ARMOR 119 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 120 #endif 121 return createModule(db, zName, pModule, pAux, xDestroy); 122 } 123 124 /* 125 ** Lock the virtual table so that it cannot be disconnected. 126 ** Locks nest. Every lock should have a corresponding unlock. 127 ** If an unlock is omitted, resources leaks will occur. 128 ** 129 ** If a disconnect is attempted while a virtual table is locked, 130 ** the disconnect is deferred until all locks have been removed. 131 */ 132 void sqlite3VtabLock(VTable *pVTab){ 133 pVTab->nRef++; 134 } 135 136 137 /* 138 ** pTab is a pointer to a Table structure representing a virtual-table. 139 ** Return a pointer to the VTable object used by connection db to access 140 ** this virtual-table, if one has been created, or NULL otherwise. 141 */ 142 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 143 VTable *pVtab; 144 assert( IsVirtual(pTab) ); 145 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 146 return pVtab; 147 } 148 149 /* 150 ** Decrement the ref-count on a virtual table object. When the ref-count 151 ** reaches zero, call the xDisconnect() method to delete the object. 152 */ 153 void sqlite3VtabUnlock(VTable *pVTab){ 154 sqlite3 *db = pVTab->db; 155 156 assert( db ); 157 assert( pVTab->nRef>0 ); 158 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 159 160 pVTab->nRef--; 161 if( pVTab->nRef==0 ){ 162 sqlite3_vtab *p = pVTab->pVtab; 163 if( p ){ 164 p->pModule->xDisconnect(p); 165 } 166 sqlite3DbFree(db, pVTab); 167 } 168 } 169 170 /* 171 ** Table p is a virtual table. This function moves all elements in the 172 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 173 ** database connections to be disconnected at the next opportunity. 174 ** Except, if argument db is not NULL, then the entry associated with 175 ** connection db is left in the p->pVTable list. 176 */ 177 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 178 VTable *pRet = 0; 179 VTable *pVTable = p->pVTable; 180 p->pVTable = 0; 181 182 /* Assert that the mutex (if any) associated with the BtShared database 183 ** that contains table p is held by the caller. See header comments 184 ** above function sqlite3VtabUnlockList() for an explanation of why 185 ** this makes it safe to access the sqlite3.pDisconnect list of any 186 ** database connection that may have an entry in the p->pVTable list. 187 */ 188 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 189 190 while( pVTable ){ 191 sqlite3 *db2 = pVTable->db; 192 VTable *pNext = pVTable->pNext; 193 assert( db2 ); 194 if( db2==db ){ 195 pRet = pVTable; 196 p->pVTable = pRet; 197 pRet->pNext = 0; 198 }else{ 199 pVTable->pNext = db2->pDisconnect; 200 db2->pDisconnect = pVTable; 201 } 202 pVTable = pNext; 203 } 204 205 assert( !db || pRet ); 206 return pRet; 207 } 208 209 /* 210 ** Table *p is a virtual table. This function removes the VTable object 211 ** for table *p associated with database connection db from the linked 212 ** list in p->pVTab. It also decrements the VTable ref count. This is 213 ** used when closing database connection db to free all of its VTable 214 ** objects without disturbing the rest of the Schema object (which may 215 ** be being used by other shared-cache connections). 216 */ 217 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 218 VTable **ppVTab; 219 220 assert( IsVirtual(p) ); 221 assert( sqlite3BtreeHoldsAllMutexes(db) ); 222 assert( sqlite3_mutex_held(db->mutex) ); 223 224 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 225 if( (*ppVTab)->db==db ){ 226 VTable *pVTab = *ppVTab; 227 *ppVTab = pVTab->pNext; 228 sqlite3VtabUnlock(pVTab); 229 break; 230 } 231 } 232 } 233 234 235 /* 236 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 237 ** 238 ** This function may only be called when the mutexes associated with all 239 ** shared b-tree databases opened using connection db are held by the 240 ** caller. This is done to protect the sqlite3.pDisconnect list. The 241 ** sqlite3.pDisconnect list is accessed only as follows: 242 ** 243 ** 1) By this function. In this case, all BtShared mutexes and the mutex 244 ** associated with the database handle itself must be held. 245 ** 246 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 247 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 248 ** associated with the database the virtual table is stored in is held 249 ** or, if the virtual table is stored in a non-sharable database, then 250 ** the database handle mutex is held. 251 ** 252 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 253 ** by multiple threads. It is thread-safe. 254 */ 255 void sqlite3VtabUnlockList(sqlite3 *db){ 256 VTable *p = db->pDisconnect; 257 db->pDisconnect = 0; 258 259 assert( sqlite3BtreeHoldsAllMutexes(db) ); 260 assert( sqlite3_mutex_held(db->mutex) ); 261 262 if( p ){ 263 sqlite3ExpirePreparedStatements(db); 264 do { 265 VTable *pNext = p->pNext; 266 sqlite3VtabUnlock(p); 267 p = pNext; 268 }while( p ); 269 } 270 } 271 272 /* 273 ** Clear any and all virtual-table information from the Table record. 274 ** This routine is called, for example, just before deleting the Table 275 ** record. 276 ** 277 ** Since it is a virtual-table, the Table structure contains a pointer 278 ** to the head of a linked list of VTable structures. Each VTable 279 ** structure is associated with a single sqlite3* user of the schema. 280 ** The reference count of the VTable structure associated with database 281 ** connection db is decremented immediately (which may lead to the 282 ** structure being xDisconnected and free). Any other VTable structures 283 ** in the list are moved to the sqlite3.pDisconnect list of the associated 284 ** database connection. 285 */ 286 void sqlite3VtabClear(sqlite3 *db, Table *p){ 287 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 288 if( p->azModuleArg ){ 289 int i; 290 for(i=0; i<p->nModuleArg; i++){ 291 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 292 } 293 sqlite3DbFree(db, p->azModuleArg); 294 } 295 } 296 297 /* 298 ** Add a new module argument to pTable->azModuleArg[]. 299 ** The string is not copied - the pointer is stored. The 300 ** string will be freed automatically when the table is 301 ** deleted. 302 */ 303 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 304 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); 305 char **azModuleArg; 306 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 307 if( azModuleArg==0 ){ 308 sqlite3DbFree(db, zArg); 309 }else{ 310 int i = pTable->nModuleArg++; 311 azModuleArg[i] = zArg; 312 azModuleArg[i+1] = 0; 313 pTable->azModuleArg = azModuleArg; 314 } 315 } 316 317 /* 318 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 319 ** statement. The module name has been parsed, but the optional list 320 ** of parameters that follow the module name are still pending. 321 */ 322 void sqlite3VtabBeginParse( 323 Parse *pParse, /* Parsing context */ 324 Token *pName1, /* Name of new table, or database name */ 325 Token *pName2, /* Name of new table or NULL */ 326 Token *pModuleName, /* Name of the module for the virtual table */ 327 int ifNotExists /* No error if the table already exists */ 328 ){ 329 int iDb; /* The database the table is being created in */ 330 Table *pTable; /* The new virtual table */ 331 sqlite3 *db; /* Database connection */ 332 333 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 334 pTable = pParse->pNewTable; 335 if( pTable==0 ) return; 336 assert( 0==pTable->pIndex ); 337 338 db = pParse->db; 339 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 340 assert( iDb>=0 ); 341 342 assert( pTable->nModuleArg==0 ); 343 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 344 addModuleArgument(db, pTable, 0); 345 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 346 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 347 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 348 ); 349 pParse->sNameToken.n = (int)( 350 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 351 ); 352 353 #ifndef SQLITE_OMIT_AUTHORIZATION 354 /* Creating a virtual table invokes the authorization callback twice. 355 ** The first invocation, to obtain permission to INSERT a row into the 356 ** sqlite_master table, has already been made by sqlite3StartTable(). 357 ** The second call, to obtain permission to create the table, is made now. 358 */ 359 if( pTable->azModuleArg ){ 360 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 361 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 362 } 363 #endif 364 } 365 366 /* 367 ** This routine takes the module argument that has been accumulating 368 ** in pParse->zArg[] and appends it to the list of arguments on the 369 ** virtual table currently under construction in pParse->pTable. 370 */ 371 static void addArgumentToVtab(Parse *pParse){ 372 if( pParse->sArg.z && pParse->pNewTable ){ 373 const char *z = (const char*)pParse->sArg.z; 374 int n = pParse->sArg.n; 375 sqlite3 *db = pParse->db; 376 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 377 } 378 } 379 380 /* 381 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 382 ** has been completely parsed. 383 */ 384 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 385 Table *pTab = pParse->pNewTable; /* The table being constructed */ 386 sqlite3 *db = pParse->db; /* The database connection */ 387 388 if( pTab==0 ) return; 389 addArgumentToVtab(pParse); 390 pParse->sArg.z = 0; 391 if( pTab->nModuleArg<1 ) return; 392 393 /* If the CREATE VIRTUAL TABLE statement is being entered for the 394 ** first time (in other words if the virtual table is actually being 395 ** created now instead of just being read out of sqlite_master) then 396 ** do additional initialization work and store the statement text 397 ** in the sqlite_master table. 398 */ 399 if( !db->init.busy ){ 400 char *zStmt; 401 char *zWhere; 402 int iDb; 403 int iReg; 404 Vdbe *v; 405 406 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 407 if( pEnd ){ 408 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 409 } 410 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 411 412 /* A slot for the record has already been allocated in the 413 ** SQLITE_MASTER table. We just need to update that slot with all 414 ** the information we've collected. 415 ** 416 ** The VM register number pParse->regRowid holds the rowid of an 417 ** entry in the sqlite_master table tht was created for this vtab 418 ** by sqlite3StartTable(). 419 */ 420 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 421 sqlite3NestedParse(pParse, 422 "UPDATE %Q.%s " 423 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 424 "WHERE rowid=#%d", 425 db->aDb[iDb].zDbSName, MASTER_NAME, 426 pTab->zName, 427 pTab->zName, 428 zStmt, 429 pParse->regRowid 430 ); 431 sqlite3DbFree(db, zStmt); 432 v = sqlite3GetVdbe(pParse); 433 sqlite3ChangeCookie(pParse, iDb); 434 435 sqlite3VdbeAddOp0(v, OP_Expire); 436 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 437 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 438 439 iReg = ++pParse->nMem; 440 sqlite3VdbeLoadString(v, iReg, pTab->zName); 441 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 442 } 443 444 /* If we are rereading the sqlite_master table create the in-memory 445 ** record of the table. The xConnect() method is not called until 446 ** the first time the virtual table is used in an SQL statement. This 447 ** allows a schema that contains virtual tables to be loaded before 448 ** the required virtual table implementations are registered. */ 449 else { 450 Table *pOld; 451 Schema *pSchema = pTab->pSchema; 452 const char *zName = pTab->zName; 453 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 454 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 455 if( pOld ){ 456 sqlite3OomFault(db); 457 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 458 return; 459 } 460 pParse->pNewTable = 0; 461 } 462 } 463 464 /* 465 ** The parser calls this routine when it sees the first token 466 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 467 */ 468 void sqlite3VtabArgInit(Parse *pParse){ 469 addArgumentToVtab(pParse); 470 pParse->sArg.z = 0; 471 pParse->sArg.n = 0; 472 } 473 474 /* 475 ** The parser calls this routine for each token after the first token 476 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 477 */ 478 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 479 Token *pArg = &pParse->sArg; 480 if( pArg->z==0 ){ 481 pArg->z = p->z; 482 pArg->n = p->n; 483 }else{ 484 assert(pArg->z <= p->z); 485 pArg->n = (int)(&p->z[p->n] - pArg->z); 486 } 487 } 488 489 /* 490 ** Invoke a virtual table constructor (either xCreate or xConnect). The 491 ** pointer to the function to invoke is passed as the fourth parameter 492 ** to this procedure. 493 */ 494 static int vtabCallConstructor( 495 sqlite3 *db, 496 Table *pTab, 497 Module *pMod, 498 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 499 char **pzErr 500 ){ 501 VtabCtx sCtx; 502 VTable *pVTable; 503 int rc; 504 const char *const*azArg = (const char *const*)pTab->azModuleArg; 505 int nArg = pTab->nModuleArg; 506 char *zErr = 0; 507 char *zModuleName; 508 int iDb; 509 VtabCtx *pCtx; 510 511 /* Check that the virtual-table is not already being initialized */ 512 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 513 if( pCtx->pTab==pTab ){ 514 *pzErr = sqlite3MPrintf(db, 515 "vtable constructor called recursively: %s", pTab->zName 516 ); 517 return SQLITE_LOCKED; 518 } 519 } 520 521 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 522 if( !zModuleName ){ 523 return SQLITE_NOMEM_BKPT; 524 } 525 526 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 527 if( !pVTable ){ 528 sqlite3DbFree(db, zModuleName); 529 return SQLITE_NOMEM_BKPT; 530 } 531 pVTable->db = db; 532 pVTable->pMod = pMod; 533 534 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 535 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 536 537 /* Invoke the virtual table constructor */ 538 assert( &db->pVtabCtx ); 539 assert( xConstruct ); 540 sCtx.pTab = pTab; 541 sCtx.pVTable = pVTable; 542 sCtx.pPrior = db->pVtabCtx; 543 sCtx.bDeclared = 0; 544 db->pVtabCtx = &sCtx; 545 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 546 db->pVtabCtx = sCtx.pPrior; 547 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 548 assert( sCtx.pTab==pTab ); 549 550 if( SQLITE_OK!=rc ){ 551 if( zErr==0 ){ 552 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 553 }else { 554 *pzErr = sqlite3MPrintf(db, "%s", zErr); 555 sqlite3_free(zErr); 556 } 557 sqlite3DbFree(db, pVTable); 558 }else if( ALWAYS(pVTable->pVtab) ){ 559 /* Justification of ALWAYS(): A correct vtab constructor must allocate 560 ** the sqlite3_vtab object if successful. */ 561 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 562 pVTable->pVtab->pModule = pMod->pModule; 563 pVTable->nRef = 1; 564 if( sCtx.bDeclared==0 ){ 565 const char *zFormat = "vtable constructor did not declare schema: %s"; 566 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 567 sqlite3VtabUnlock(pVTable); 568 rc = SQLITE_ERROR; 569 }else{ 570 int iCol; 571 u8 oooHidden = 0; 572 /* If everything went according to plan, link the new VTable structure 573 ** into the linked list headed by pTab->pVTable. Then loop through the 574 ** columns of the table to see if any of them contain the token "hidden". 575 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 576 ** the type string. */ 577 pVTable->pNext = pTab->pVTable; 578 pTab->pVTable = pVTable; 579 580 for(iCol=0; iCol<pTab->nCol; iCol++){ 581 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 582 int nType; 583 int i = 0; 584 nType = sqlite3Strlen30(zType); 585 for(i=0; i<nType; i++){ 586 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 587 && (i==0 || zType[i-1]==' ') 588 && (zType[i+6]=='\0' || zType[i+6]==' ') 589 ){ 590 break; 591 } 592 } 593 if( i<nType ){ 594 int j; 595 int nDel = 6 + (zType[i+6] ? 1 : 0); 596 for(j=i; (j+nDel)<=nType; j++){ 597 zType[j] = zType[j+nDel]; 598 } 599 if( zType[i]=='\0' && i>0 ){ 600 assert(zType[i-1]==' '); 601 zType[i-1] = '\0'; 602 } 603 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 604 oooHidden = TF_OOOHidden; 605 }else{ 606 pTab->tabFlags |= oooHidden; 607 } 608 } 609 } 610 } 611 612 sqlite3DbFree(db, zModuleName); 613 return rc; 614 } 615 616 /* 617 ** This function is invoked by the parser to call the xConnect() method 618 ** of the virtual table pTab. If an error occurs, an error code is returned 619 ** and an error left in pParse. 620 ** 621 ** This call is a no-op if table pTab is not a virtual table. 622 */ 623 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 624 sqlite3 *db = pParse->db; 625 const char *zMod; 626 Module *pMod; 627 int rc; 628 629 assert( pTab ); 630 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 631 return SQLITE_OK; 632 } 633 634 /* Locate the required virtual table module */ 635 zMod = pTab->azModuleArg[0]; 636 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 637 638 if( !pMod ){ 639 const char *zModule = pTab->azModuleArg[0]; 640 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 641 rc = SQLITE_ERROR; 642 }else{ 643 char *zErr = 0; 644 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 645 if( rc!=SQLITE_OK ){ 646 sqlite3ErrorMsg(pParse, "%s", zErr); 647 pParse->rc = rc; 648 } 649 sqlite3DbFree(db, zErr); 650 } 651 652 return rc; 653 } 654 /* 655 ** Grow the db->aVTrans[] array so that there is room for at least one 656 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 657 */ 658 static int growVTrans(sqlite3 *db){ 659 const int ARRAY_INCR = 5; 660 661 /* Grow the sqlite3.aVTrans array if required */ 662 if( (db->nVTrans%ARRAY_INCR)==0 ){ 663 VTable **aVTrans; 664 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 665 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 666 if( !aVTrans ){ 667 return SQLITE_NOMEM_BKPT; 668 } 669 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 670 db->aVTrans = aVTrans; 671 } 672 673 return SQLITE_OK; 674 } 675 676 /* 677 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 678 ** have already been reserved using growVTrans(). 679 */ 680 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 681 /* Add pVtab to the end of sqlite3.aVTrans */ 682 db->aVTrans[db->nVTrans++] = pVTab; 683 sqlite3VtabLock(pVTab); 684 } 685 686 /* 687 ** This function is invoked by the vdbe to call the xCreate method 688 ** of the virtual table named zTab in database iDb. 689 ** 690 ** If an error occurs, *pzErr is set to point to an English language 691 ** description of the error and an SQLITE_XXX error code is returned. 692 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 693 */ 694 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 695 int rc = SQLITE_OK; 696 Table *pTab; 697 Module *pMod; 698 const char *zMod; 699 700 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 701 assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); 702 703 /* Locate the required virtual table module */ 704 zMod = pTab->azModuleArg[0]; 705 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 706 707 /* If the module has been registered and includes a Create method, 708 ** invoke it now. If the module has not been registered, return an 709 ** error. Otherwise, do nothing. 710 */ 711 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 712 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 713 rc = SQLITE_ERROR; 714 }else{ 715 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 716 } 717 718 /* Justification of ALWAYS(): The xConstructor method is required to 719 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 720 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 721 rc = growVTrans(db); 722 if( rc==SQLITE_OK ){ 723 addToVTrans(db, sqlite3GetVTable(db, pTab)); 724 } 725 } 726 727 return rc; 728 } 729 730 /* 731 ** This function is used to set the schema of a virtual table. It is only 732 ** valid to call this function from within the xCreate() or xConnect() of a 733 ** virtual table module. 734 */ 735 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 736 VtabCtx *pCtx; 737 int rc = SQLITE_OK; 738 Table *pTab; 739 char *zErr = 0; 740 Parse sParse; 741 742 #ifdef SQLITE_ENABLE_API_ARMOR 743 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 744 return SQLITE_MISUSE_BKPT; 745 } 746 #endif 747 sqlite3_mutex_enter(db->mutex); 748 pCtx = db->pVtabCtx; 749 if( !pCtx || pCtx->bDeclared ){ 750 sqlite3Error(db, SQLITE_MISUSE); 751 sqlite3_mutex_leave(db->mutex); 752 return SQLITE_MISUSE_BKPT; 753 } 754 pTab = pCtx->pTab; 755 assert( IsVirtual(pTab) ); 756 757 memset(&sParse, 0, sizeof(sParse)); 758 sParse.declareVtab = 1; 759 sParse.db = db; 760 sParse.nQueryLoop = 1; 761 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 762 && sParse.pNewTable 763 && !db->mallocFailed 764 && !sParse.pNewTable->pSelect 765 && !IsVirtual(sParse.pNewTable) 766 ){ 767 if( !pTab->aCol ){ 768 Table *pNew = sParse.pNewTable; 769 Index *pIdx; 770 pTab->aCol = pNew->aCol; 771 pTab->nCol = pNew->nCol; 772 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 773 pNew->nCol = 0; 774 pNew->aCol = 0; 775 assert( pTab->pIndex==0 ); 776 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 777 if( !HasRowid(pNew) 778 && pCtx->pVTable->pMod->pModule->xUpdate!=0 779 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 780 ){ 781 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 782 ** or else must have a single-column PRIMARY KEY */ 783 rc = SQLITE_ERROR; 784 } 785 pIdx = pNew->pIndex; 786 if( pIdx ){ 787 assert( pIdx->pNext==0 ); 788 pTab->pIndex = pIdx; 789 pNew->pIndex = 0; 790 pIdx->pTable = pTab; 791 } 792 } 793 pCtx->bDeclared = 1; 794 }else{ 795 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 796 sqlite3DbFree(db, zErr); 797 rc = SQLITE_ERROR; 798 } 799 sParse.declareVtab = 0; 800 801 if( sParse.pVdbe ){ 802 sqlite3VdbeFinalize(sParse.pVdbe); 803 } 804 sqlite3DeleteTable(db, sParse.pNewTable); 805 sqlite3ParserReset(&sParse); 806 807 assert( (rc&0xff)==rc ); 808 rc = sqlite3ApiExit(db, rc); 809 sqlite3_mutex_leave(db->mutex); 810 return rc; 811 } 812 813 /* 814 ** This function is invoked by the vdbe to call the xDestroy method 815 ** of the virtual table named zTab in database iDb. This occurs 816 ** when a DROP TABLE is mentioned. 817 ** 818 ** This call is a no-op if zTab is not a virtual table. 819 */ 820 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 821 int rc = SQLITE_OK; 822 Table *pTab; 823 824 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 825 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 826 VTable *p; 827 int (*xDestroy)(sqlite3_vtab *); 828 for(p=pTab->pVTable; p; p=p->pNext){ 829 assert( p->pVtab ); 830 if( p->pVtab->nRef>0 ){ 831 return SQLITE_LOCKED; 832 } 833 } 834 p = vtabDisconnectAll(db, pTab); 835 xDestroy = p->pMod->pModule->xDestroy; 836 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 837 rc = xDestroy(p->pVtab); 838 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 839 if( rc==SQLITE_OK ){ 840 assert( pTab->pVTable==p && p->pNext==0 ); 841 p->pVtab = 0; 842 pTab->pVTable = 0; 843 sqlite3VtabUnlock(p); 844 } 845 } 846 847 return rc; 848 } 849 850 /* 851 ** This function invokes either the xRollback or xCommit method 852 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 853 ** called is identified by the second argument, "offset", which is 854 ** the offset of the method to call in the sqlite3_module structure. 855 ** 856 ** The array is cleared after invoking the callbacks. 857 */ 858 static void callFinaliser(sqlite3 *db, int offset){ 859 int i; 860 if( db->aVTrans ){ 861 VTable **aVTrans = db->aVTrans; 862 db->aVTrans = 0; 863 for(i=0; i<db->nVTrans; i++){ 864 VTable *pVTab = aVTrans[i]; 865 sqlite3_vtab *p = pVTab->pVtab; 866 if( p ){ 867 int (*x)(sqlite3_vtab *); 868 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 869 if( x ) x(p); 870 } 871 pVTab->iSavepoint = 0; 872 sqlite3VtabUnlock(pVTab); 873 } 874 sqlite3DbFree(db, aVTrans); 875 db->nVTrans = 0; 876 } 877 } 878 879 /* 880 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 881 ** array. Return the error code for the first error that occurs, or 882 ** SQLITE_OK if all xSync operations are successful. 883 ** 884 ** If an error message is available, leave it in p->zErrMsg. 885 */ 886 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 887 int i; 888 int rc = SQLITE_OK; 889 VTable **aVTrans = db->aVTrans; 890 891 db->aVTrans = 0; 892 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 893 int (*x)(sqlite3_vtab *); 894 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 895 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 896 rc = x(pVtab); 897 sqlite3VtabImportErrmsg(p, pVtab); 898 } 899 } 900 db->aVTrans = aVTrans; 901 return rc; 902 } 903 904 /* 905 ** Invoke the xRollback method of all virtual tables in the 906 ** sqlite3.aVTrans array. Then clear the array itself. 907 */ 908 int sqlite3VtabRollback(sqlite3 *db){ 909 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 910 return SQLITE_OK; 911 } 912 913 /* 914 ** Invoke the xCommit method of all virtual tables in the 915 ** sqlite3.aVTrans array. Then clear the array itself. 916 */ 917 int sqlite3VtabCommit(sqlite3 *db){ 918 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 919 return SQLITE_OK; 920 } 921 922 /* 923 ** If the virtual table pVtab supports the transaction interface 924 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 925 ** not currently open, invoke the xBegin method now. 926 ** 927 ** If the xBegin call is successful, place the sqlite3_vtab pointer 928 ** in the sqlite3.aVTrans array. 929 */ 930 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 931 int rc = SQLITE_OK; 932 const sqlite3_module *pModule; 933 934 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 935 ** than zero, then this function is being called from within a 936 ** virtual module xSync() callback. It is illegal to write to 937 ** virtual module tables in this case, so return SQLITE_LOCKED. 938 */ 939 if( sqlite3VtabInSync(db) ){ 940 return SQLITE_LOCKED; 941 } 942 if( !pVTab ){ 943 return SQLITE_OK; 944 } 945 pModule = pVTab->pVtab->pModule; 946 947 if( pModule->xBegin ){ 948 int i; 949 950 /* If pVtab is already in the aVTrans array, return early */ 951 for(i=0; i<db->nVTrans; i++){ 952 if( db->aVTrans[i]==pVTab ){ 953 return SQLITE_OK; 954 } 955 } 956 957 /* Invoke the xBegin method. If successful, add the vtab to the 958 ** sqlite3.aVTrans[] array. */ 959 rc = growVTrans(db); 960 if( rc==SQLITE_OK ){ 961 rc = pModule->xBegin(pVTab->pVtab); 962 if( rc==SQLITE_OK ){ 963 int iSvpt = db->nStatement + db->nSavepoint; 964 addToVTrans(db, pVTab); 965 if( iSvpt && pModule->xSavepoint ){ 966 pVTab->iSavepoint = iSvpt; 967 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 968 } 969 } 970 } 971 } 972 return rc; 973 } 974 975 /* 976 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 977 ** virtual tables that currently have an open transaction. Pass iSavepoint 978 ** as the second argument to the virtual table method invoked. 979 ** 980 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 981 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 982 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 983 ** an open transaction is invoked. 984 ** 985 ** If any virtual table method returns an error code other than SQLITE_OK, 986 ** processing is abandoned and the error returned to the caller of this 987 ** function immediately. If all calls to virtual table methods are successful, 988 ** SQLITE_OK is returned. 989 */ 990 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 991 int rc = SQLITE_OK; 992 993 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 994 assert( iSavepoint>=-1 ); 995 if( db->aVTrans ){ 996 int i; 997 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 998 VTable *pVTab = db->aVTrans[i]; 999 const sqlite3_module *pMod = pVTab->pMod->pModule; 1000 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1001 int (*xMethod)(sqlite3_vtab *, int); 1002 switch( op ){ 1003 case SAVEPOINT_BEGIN: 1004 xMethod = pMod->xSavepoint; 1005 pVTab->iSavepoint = iSavepoint+1; 1006 break; 1007 case SAVEPOINT_ROLLBACK: 1008 xMethod = pMod->xRollbackTo; 1009 break; 1010 default: 1011 xMethod = pMod->xRelease; 1012 break; 1013 } 1014 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1015 rc = xMethod(pVTab->pVtab, iSavepoint); 1016 } 1017 } 1018 } 1019 } 1020 return rc; 1021 } 1022 1023 /* 1024 ** The first parameter (pDef) is a function implementation. The 1025 ** second parameter (pExpr) is the first argument to this function. 1026 ** If pExpr is a column in a virtual table, then let the virtual 1027 ** table implementation have an opportunity to overload the function. 1028 ** 1029 ** This routine is used to allow virtual table implementations to 1030 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1031 ** 1032 ** Return either the pDef argument (indicating no change) or a 1033 ** new FuncDef structure that is marked as ephemeral using the 1034 ** SQLITE_FUNC_EPHEM flag. 1035 */ 1036 FuncDef *sqlite3VtabOverloadFunction( 1037 sqlite3 *db, /* Database connection for reporting malloc problems */ 1038 FuncDef *pDef, /* Function to possibly overload */ 1039 int nArg, /* Number of arguments to the function */ 1040 Expr *pExpr /* First argument to the function */ 1041 ){ 1042 Table *pTab; 1043 sqlite3_vtab *pVtab; 1044 sqlite3_module *pMod; 1045 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1046 void *pArg = 0; 1047 FuncDef *pNew; 1048 int rc = 0; 1049 char *zLowerName; 1050 unsigned char *z; 1051 1052 1053 /* Check to see the left operand is a column in a virtual table */ 1054 if( NEVER(pExpr==0) ) return pDef; 1055 if( pExpr->op!=TK_COLUMN ) return pDef; 1056 pTab = pExpr->pTab; 1057 if( pTab==0 ) return pDef; 1058 if( !IsVirtual(pTab) ) return pDef; 1059 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1060 assert( pVtab!=0 ); 1061 assert( pVtab->pModule!=0 ); 1062 pMod = (sqlite3_module *)pVtab->pModule; 1063 if( pMod->xFindFunction==0 ) return pDef; 1064 1065 /* Call the xFindFunction method on the virtual table implementation 1066 ** to see if the implementation wants to overload this function 1067 */ 1068 zLowerName = sqlite3DbStrDup(db, pDef->zName); 1069 if( zLowerName ){ 1070 for(z=(unsigned char*)zLowerName; *z; z++){ 1071 *z = sqlite3UpperToLower[*z]; 1072 } 1073 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg); 1074 sqlite3DbFree(db, zLowerName); 1075 } 1076 if( rc==0 ){ 1077 return pDef; 1078 } 1079 1080 /* Create a new ephemeral function definition for the overloaded 1081 ** function */ 1082 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1083 + sqlite3Strlen30(pDef->zName) + 1); 1084 if( pNew==0 ){ 1085 return pDef; 1086 } 1087 *pNew = *pDef; 1088 pNew->zName = (const char*)&pNew[1]; 1089 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1090 pNew->xSFunc = xSFunc; 1091 pNew->pUserData = pArg; 1092 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1093 return pNew; 1094 } 1095 1096 /* 1097 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1098 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1099 ** array if it is missing. If pTab is already in the array, this routine 1100 ** is a no-op. 1101 */ 1102 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1103 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1104 int i, n; 1105 Table **apVtabLock; 1106 1107 assert( IsVirtual(pTab) ); 1108 for(i=0; i<pToplevel->nVtabLock; i++){ 1109 if( pTab==pToplevel->apVtabLock[i] ) return; 1110 } 1111 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1112 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1113 if( apVtabLock ){ 1114 pToplevel->apVtabLock = apVtabLock; 1115 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1116 }else{ 1117 sqlite3OomFault(pToplevel->db); 1118 } 1119 } 1120 1121 /* 1122 ** Check to see if virtual table module pMod can be have an eponymous 1123 ** virtual table instance. If it can, create one if one does not already 1124 ** exist. Return non-zero if the eponymous virtual table instance exists 1125 ** when this routine returns, and return zero if it does not exist. 1126 ** 1127 ** An eponymous virtual table instance is one that is named after its 1128 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1129 ** statement in order to come into existance. Eponymous virtual table 1130 ** instances always exist. They cannot be DROP-ed. 1131 ** 1132 ** Any virtual table module for which xConnect and xCreate are the same 1133 ** method can have an eponymous virtual table instance. 1134 */ 1135 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1136 const sqlite3_module *pModule = pMod->pModule; 1137 Table *pTab; 1138 char *zErr = 0; 1139 int rc; 1140 sqlite3 *db = pParse->db; 1141 if( pMod->pEpoTab ) return 1; 1142 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1143 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1144 if( pTab==0 ) return 0; 1145 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1146 if( pTab->zName==0 ){ 1147 sqlite3DbFree(db, pTab); 1148 return 0; 1149 } 1150 pMod->pEpoTab = pTab; 1151 pTab->nTabRef = 1; 1152 pTab->pSchema = db->aDb[0].pSchema; 1153 assert( pTab->nModuleArg==0 ); 1154 pTab->iPKey = -1; 1155 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1156 addModuleArgument(db, pTab, 0); 1157 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1158 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1159 if( rc ){ 1160 sqlite3ErrorMsg(pParse, "%s", zErr); 1161 sqlite3DbFree(db, zErr); 1162 sqlite3VtabEponymousTableClear(db, pMod); 1163 return 0; 1164 } 1165 return 1; 1166 } 1167 1168 /* 1169 ** Erase the eponymous virtual table instance associated with 1170 ** virtual table module pMod, if it exists. 1171 */ 1172 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1173 Table *pTab = pMod->pEpoTab; 1174 if( pTab!=0 ){ 1175 /* Mark the table as Ephemeral prior to deleting it, so that the 1176 ** sqlite3DeleteTable() routine will know that it is not stored in 1177 ** the schema. */ 1178 pTab->tabFlags |= TF_Ephemeral; 1179 sqlite3DeleteTable(db, pTab); 1180 pMod->pEpoTab = 0; 1181 } 1182 } 1183 1184 /* 1185 ** Return the ON CONFLICT resolution mode in effect for the virtual 1186 ** table update operation currently in progress. 1187 ** 1188 ** The results of this routine are undefined unless it is called from 1189 ** within an xUpdate method. 1190 */ 1191 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1192 static const unsigned char aMap[] = { 1193 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1194 }; 1195 #ifdef SQLITE_ENABLE_API_ARMOR 1196 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1197 #endif 1198 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1199 assert( OE_Ignore==4 && OE_Replace==5 ); 1200 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1201 return (int)aMap[db->vtabOnConflict-1]; 1202 } 1203 1204 /* 1205 ** Call from within the xCreate() or xConnect() methods to provide 1206 ** the SQLite core with additional information about the behavior 1207 ** of the virtual table being implemented. 1208 */ 1209 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1210 va_list ap; 1211 int rc = SQLITE_OK; 1212 1213 #ifdef SQLITE_ENABLE_API_ARMOR 1214 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1215 #endif 1216 sqlite3_mutex_enter(db->mutex); 1217 va_start(ap, op); 1218 switch( op ){ 1219 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1220 VtabCtx *p = db->pVtabCtx; 1221 if( !p ){ 1222 rc = SQLITE_MISUSE_BKPT; 1223 }else{ 1224 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1225 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1226 } 1227 break; 1228 } 1229 default: 1230 rc = SQLITE_MISUSE_BKPT; 1231 break; 1232 } 1233 va_end(ap); 1234 1235 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1236 sqlite3_mutex_leave(db->mutex); 1237 return rc; 1238 } 1239 1240 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1241