xref: /sqlite-3.40.0/src/vtab.c (revision 754d3adf)
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
13 */
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
16 
17 /*
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
23 */
24 struct VtabCtx {
25   VTable *pVTable;    /* The virtual table being constructed */
26   Table *pTab;        /* The Table object to which the virtual table belongs */
27 };
28 
29 /*
30 ** The actual function that does the work of creating a new module.
31 ** This function implements the sqlite3_create_module() and
32 ** sqlite3_create_module_v2() interfaces.
33 */
34 static int createModule(
35   sqlite3 *db,                    /* Database in which module is registered */
36   const char *zName,              /* Name assigned to this module */
37   const sqlite3_module *pModule,  /* The definition of the module */
38   void *pAux,                     /* Context pointer for xCreate/xConnect */
39   void (*xDestroy)(void *)        /* Module destructor function */
40 ){
41   int rc = SQLITE_OK;
42   int nName;
43 
44   sqlite3_mutex_enter(db->mutex);
45   nName = sqlite3Strlen30(zName);
46   if( sqlite3HashFind(&db->aModule, zName, nName) ){
47     rc = SQLITE_MISUSE_BKPT;
48   }else{
49     Module *pMod;
50     pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
51     if( pMod ){
52       Module *pDel;
53       char *zCopy = (char *)(&pMod[1]);
54       memcpy(zCopy, zName, nName+1);
55       pMod->zName = zCopy;
56       pMod->pModule = pModule;
57       pMod->pAux = pAux;
58       pMod->xDestroy = xDestroy;
59       pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,nName,(void*)pMod);
60       assert( pDel==0 || pDel==pMod );
61       if( pDel ){
62         db->mallocFailed = 1;
63         sqlite3DbFree(db, pDel);
64       }
65     }
66   }
67   rc = sqlite3ApiExit(db, rc);
68   if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
69 
70   sqlite3_mutex_leave(db->mutex);
71   return rc;
72 }
73 
74 
75 /*
76 ** External API function used to create a new virtual-table module.
77 */
78 int sqlite3_create_module(
79   sqlite3 *db,                    /* Database in which module is registered */
80   const char *zName,              /* Name assigned to this module */
81   const sqlite3_module *pModule,  /* The definition of the module */
82   void *pAux                      /* Context pointer for xCreate/xConnect */
83 ){
84   return createModule(db, zName, pModule, pAux, 0);
85 }
86 
87 /*
88 ** External API function used to create a new virtual-table module.
89 */
90 int sqlite3_create_module_v2(
91   sqlite3 *db,                    /* Database in which module is registered */
92   const char *zName,              /* Name assigned to this module */
93   const sqlite3_module *pModule,  /* The definition of the module */
94   void *pAux,                     /* Context pointer for xCreate/xConnect */
95   void (*xDestroy)(void *)        /* Module destructor function */
96 ){
97   return createModule(db, zName, pModule, pAux, xDestroy);
98 }
99 
100 /*
101 ** Lock the virtual table so that it cannot be disconnected.
102 ** Locks nest.  Every lock should have a corresponding unlock.
103 ** If an unlock is omitted, resources leaks will occur.
104 **
105 ** If a disconnect is attempted while a virtual table is locked,
106 ** the disconnect is deferred until all locks have been removed.
107 */
108 void sqlite3VtabLock(VTable *pVTab){
109   pVTab->nRef++;
110 }
111 
112 
113 /*
114 ** pTab is a pointer to a Table structure representing a virtual-table.
115 ** Return a pointer to the VTable object used by connection db to access
116 ** this virtual-table, if one has been created, or NULL otherwise.
117 */
118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
119   VTable *pVtab;
120   assert( IsVirtual(pTab) );
121   for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
122   return pVtab;
123 }
124 
125 /*
126 ** Decrement the ref-count on a virtual table object. When the ref-count
127 ** reaches zero, call the xDisconnect() method to delete the object.
128 */
129 void sqlite3VtabUnlock(VTable *pVTab){
130   sqlite3 *db = pVTab->db;
131 
132   assert( db );
133   assert( pVTab->nRef>0 );
134   assert( sqlite3SafetyCheckOk(db) );
135 
136   pVTab->nRef--;
137   if( pVTab->nRef==0 ){
138     sqlite3_vtab *p = pVTab->pVtab;
139     if( p ){
140       p->pModule->xDisconnect(p);
141     }
142     sqlite3DbFree(db, pVTab);
143   }
144 }
145 
146 /*
147 ** Table p is a virtual table. This function moves all elements in the
148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
149 ** database connections to be disconnected at the next opportunity.
150 ** Except, if argument db is not NULL, then the entry associated with
151 ** connection db is left in the p->pVTable list.
152 */
153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
154   VTable *pRet = 0;
155   VTable *pVTable = p->pVTable;
156   p->pVTable = 0;
157 
158   /* Assert that the mutex (if any) associated with the BtShared database
159   ** that contains table p is held by the caller. See header comments
160   ** above function sqlite3VtabUnlockList() for an explanation of why
161   ** this makes it safe to access the sqlite3.pDisconnect list of any
162   ** database connection that may have an entry in the p->pVTable list.
163   */
164   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
165 
166   while( pVTable ){
167     sqlite3 *db2 = pVTable->db;
168     VTable *pNext = pVTable->pNext;
169     assert( db2 );
170     if( db2==db ){
171       pRet = pVTable;
172       p->pVTable = pRet;
173       pRet->pNext = 0;
174     }else{
175       pVTable->pNext = db2->pDisconnect;
176       db2->pDisconnect = pVTable;
177     }
178     pVTable = pNext;
179   }
180 
181   assert( !db || pRet );
182   return pRet;
183 }
184 
185 /*
186 ** Table *p is a virtual table. This function removes the VTable object
187 ** for table *p associated with database connection db from the linked
188 ** list in p->pVTab. It also decrements the VTable ref count. This is
189 ** used when closing database connection db to free all of its VTable
190 ** objects without disturbing the rest of the Schema object (which may
191 ** be being used by other shared-cache connections).
192 */
193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
194   VTable **ppVTab;
195 
196   assert( IsVirtual(p) );
197   assert( sqlite3BtreeHoldsAllMutexes(db) );
198   assert( sqlite3_mutex_held(db->mutex) );
199 
200   for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
201     if( (*ppVTab)->db==db  ){
202       VTable *pVTab = *ppVTab;
203       *ppVTab = pVTab->pNext;
204       sqlite3VtabUnlock(pVTab);
205       break;
206     }
207   }
208 }
209 
210 
211 /*
212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
213 **
214 ** This function may only be called when the mutexes associated with all
215 ** shared b-tree databases opened using connection db are held by the
216 ** caller. This is done to protect the sqlite3.pDisconnect list. The
217 ** sqlite3.pDisconnect list is accessed only as follows:
218 **
219 **   1) By this function. In this case, all BtShared mutexes and the mutex
220 **      associated with the database handle itself must be held.
221 **
222 **   2) By function vtabDisconnectAll(), when it adds a VTable entry to
223 **      the sqlite3.pDisconnect list. In this case either the BtShared mutex
224 **      associated with the database the virtual table is stored in is held
225 **      or, if the virtual table is stored in a non-sharable database, then
226 **      the database handle mutex is held.
227 **
228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
229 ** by multiple threads. It is thread-safe.
230 */
231 void sqlite3VtabUnlockList(sqlite3 *db){
232   VTable *p = db->pDisconnect;
233   db->pDisconnect = 0;
234 
235   assert( sqlite3BtreeHoldsAllMutexes(db) );
236   assert( sqlite3_mutex_held(db->mutex) );
237 
238   if( p ){
239     sqlite3ExpirePreparedStatements(db);
240     do {
241       VTable *pNext = p->pNext;
242       sqlite3VtabUnlock(p);
243       p = pNext;
244     }while( p );
245   }
246 }
247 
248 /*
249 ** Clear any and all virtual-table information from the Table record.
250 ** This routine is called, for example, just before deleting the Table
251 ** record.
252 **
253 ** Since it is a virtual-table, the Table structure contains a pointer
254 ** to the head of a linked list of VTable structures. Each VTable
255 ** structure is associated with a single sqlite3* user of the schema.
256 ** The reference count of the VTable structure associated with database
257 ** connection db is decremented immediately (which may lead to the
258 ** structure being xDisconnected and free). Any other VTable structures
259 ** in the list are moved to the sqlite3.pDisconnect list of the associated
260 ** database connection.
261 */
262 void sqlite3VtabClear(sqlite3 *db, Table *p){
263   if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
264   if( p->azModuleArg ){
265     int i;
266     for(i=0; i<p->nModuleArg; i++){
267       sqlite3DbFree(db, p->azModuleArg[i]);
268     }
269     sqlite3DbFree(db, p->azModuleArg);
270   }
271 }
272 
273 /*
274 ** Add a new module argument to pTable->azModuleArg[].
275 ** The string is not copied - the pointer is stored.  The
276 ** string will be freed automatically when the table is
277 ** deleted.
278 */
279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
280   int i = pTable->nModuleArg++;
281   int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
282   char **azModuleArg;
283   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
284   if( azModuleArg==0 ){
285     int j;
286     for(j=0; j<i; j++){
287       sqlite3DbFree(db, pTable->azModuleArg[j]);
288     }
289     sqlite3DbFree(db, zArg);
290     sqlite3DbFree(db, pTable->azModuleArg);
291     pTable->nModuleArg = 0;
292   }else{
293     azModuleArg[i] = zArg;
294     azModuleArg[i+1] = 0;
295   }
296   pTable->azModuleArg = azModuleArg;
297 }
298 
299 /*
300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
301 ** statement.  The module name has been parsed, but the optional list
302 ** of parameters that follow the module name are still pending.
303 */
304 void sqlite3VtabBeginParse(
305   Parse *pParse,        /* Parsing context */
306   Token *pName1,        /* Name of new table, or database name */
307   Token *pName2,        /* Name of new table or NULL */
308   Token *pModuleName,   /* Name of the module for the virtual table */
309   int ifNotExists       /* No error if the table already exists */
310 ){
311   int iDb;              /* The database the table is being created in */
312   Table *pTable;        /* The new virtual table */
313   sqlite3 *db;          /* Database connection */
314 
315   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
316   pTable = pParse->pNewTable;
317   if( pTable==0 ) return;
318   assert( 0==pTable->pIndex );
319 
320   db = pParse->db;
321   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
322   assert( iDb>=0 );
323 
324   pTable->tabFlags |= TF_Virtual;
325   pTable->nModuleArg = 0;
326   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
327   addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
328   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
329   pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
330 
331 #ifndef SQLITE_OMIT_AUTHORIZATION
332   /* Creating a virtual table invokes the authorization callback twice.
333   ** The first invocation, to obtain permission to INSERT a row into the
334   ** sqlite_master table, has already been made by sqlite3StartTable().
335   ** The second call, to obtain permission to create the table, is made now.
336   */
337   if( pTable->azModuleArg ){
338     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
339             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
340   }
341 #endif
342 }
343 
344 /*
345 ** This routine takes the module argument that has been accumulating
346 ** in pParse->zArg[] and appends it to the list of arguments on the
347 ** virtual table currently under construction in pParse->pTable.
348 */
349 static void addArgumentToVtab(Parse *pParse){
350   if( pParse->sArg.z && pParse->pNewTable ){
351     const char *z = (const char*)pParse->sArg.z;
352     int n = pParse->sArg.n;
353     sqlite3 *db = pParse->db;
354     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
355   }
356 }
357 
358 /*
359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
360 ** has been completely parsed.
361 */
362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
363   Table *pTab = pParse->pNewTable;  /* The table being constructed */
364   sqlite3 *db = pParse->db;         /* The database connection */
365 
366   if( pTab==0 ) return;
367   addArgumentToVtab(pParse);
368   pParse->sArg.z = 0;
369   if( pTab->nModuleArg<1 ) return;
370 
371   /* If the CREATE VIRTUAL TABLE statement is being entered for the
372   ** first time (in other words if the virtual table is actually being
373   ** created now instead of just being read out of sqlite_master) then
374   ** do additional initialization work and store the statement text
375   ** in the sqlite_master table.
376   */
377   if( !db->init.busy ){
378     char *zStmt;
379     char *zWhere;
380     int iDb;
381     Vdbe *v;
382 
383     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
384     if( pEnd ){
385       pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
386     }
387     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
388 
389     /* A slot for the record has already been allocated in the
390     ** SQLITE_MASTER table.  We just need to update that slot with all
391     ** the information we've collected.
392     **
393     ** The VM register number pParse->regRowid holds the rowid of an
394     ** entry in the sqlite_master table tht was created for this vtab
395     ** by sqlite3StartTable().
396     */
397     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
398     sqlite3NestedParse(pParse,
399       "UPDATE %Q.%s "
400          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
401        "WHERE rowid=#%d",
402       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
403       pTab->zName,
404       pTab->zName,
405       zStmt,
406       pParse->regRowid
407     );
408     sqlite3DbFree(db, zStmt);
409     v = sqlite3GetVdbe(pParse);
410     sqlite3ChangeCookie(pParse, iDb);
411 
412     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
413     zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
414     sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
415     sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
416                          pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
417   }
418 
419   /* If we are rereading the sqlite_master table create the in-memory
420   ** record of the table. The xConnect() method is not called until
421   ** the first time the virtual table is used in an SQL statement. This
422   ** allows a schema that contains virtual tables to be loaded before
423   ** the required virtual table implementations are registered.  */
424   else {
425     Table *pOld;
426     Schema *pSchema = pTab->pSchema;
427     const char *zName = pTab->zName;
428     int nName = sqlite3Strlen30(zName);
429     assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
430     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
431     if( pOld ){
432       db->mallocFailed = 1;
433       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
434       return;
435     }
436     pParse->pNewTable = 0;
437   }
438 }
439 
440 /*
441 ** The parser calls this routine when it sees the first token
442 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
443 */
444 void sqlite3VtabArgInit(Parse *pParse){
445   addArgumentToVtab(pParse);
446   pParse->sArg.z = 0;
447   pParse->sArg.n = 0;
448 }
449 
450 /*
451 ** The parser calls this routine for each token after the first token
452 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
453 */
454 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
455   Token *pArg = &pParse->sArg;
456   if( pArg->z==0 ){
457     pArg->z = p->z;
458     pArg->n = p->n;
459   }else{
460     assert(pArg->z < p->z);
461     pArg->n = (int)(&p->z[p->n] - pArg->z);
462   }
463 }
464 
465 /*
466 ** Invoke a virtual table constructor (either xCreate or xConnect). The
467 ** pointer to the function to invoke is passed as the fourth parameter
468 ** to this procedure.
469 */
470 static int vtabCallConstructor(
471   sqlite3 *db,
472   Table *pTab,
473   Module *pMod,
474   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
475   char **pzErr
476 ){
477   VtabCtx sCtx, *pPriorCtx;
478   VTable *pVTable;
479   int rc;
480   const char *const*azArg = (const char *const*)pTab->azModuleArg;
481   int nArg = pTab->nModuleArg;
482   char *zErr = 0;
483   char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
484 
485   if( !zModuleName ){
486     return SQLITE_NOMEM;
487   }
488 
489   pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
490   if( !pVTable ){
491     sqlite3DbFree(db, zModuleName);
492     return SQLITE_NOMEM;
493   }
494   pVTable->db = db;
495   pVTable->pMod = pMod;
496 
497   /* Invoke the virtual table constructor */
498   assert( &db->pVtabCtx );
499   assert( xConstruct );
500   sCtx.pTab = pTab;
501   sCtx.pVTable = pVTable;
502   pPriorCtx = db->pVtabCtx;
503   db->pVtabCtx = &sCtx;
504   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
505   db->pVtabCtx = pPriorCtx;
506   if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
507 
508   if( SQLITE_OK!=rc ){
509     if( zErr==0 ){
510       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
511     }else {
512       *pzErr = sqlite3MPrintf(db, "%s", zErr);
513       sqlite3_free(zErr);
514     }
515     sqlite3DbFree(db, pVTable);
516   }else if( ALWAYS(pVTable->pVtab) ){
517     /* Justification of ALWAYS():  A correct vtab constructor must allocate
518     ** the sqlite3_vtab object if successful.  */
519     pVTable->pVtab->pModule = pMod->pModule;
520     pVTable->nRef = 1;
521     if( sCtx.pTab ){
522       const char *zFormat = "vtable constructor did not declare schema: %s";
523       *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
524       sqlite3VtabUnlock(pVTable);
525       rc = SQLITE_ERROR;
526     }else{
527       int iCol;
528       /* If everything went according to plan, link the new VTable structure
529       ** into the linked list headed by pTab->pVTable. Then loop through the
530       ** columns of the table to see if any of them contain the token "hidden".
531       ** If so, set the Column.isHidden flag and remove the token from
532       ** the type string.  */
533       pVTable->pNext = pTab->pVTable;
534       pTab->pVTable = pVTable;
535 
536       for(iCol=0; iCol<pTab->nCol; iCol++){
537         char *zType = pTab->aCol[iCol].zType;
538         int nType;
539         int i = 0;
540         if( !zType ) continue;
541         nType = sqlite3Strlen30(zType);
542         if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
543           for(i=0; i<nType; i++){
544             if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
545              && (zType[i+7]=='\0' || zType[i+7]==' ')
546             ){
547               i++;
548               break;
549             }
550           }
551         }
552         if( i<nType ){
553           int j;
554           int nDel = 6 + (zType[i+6] ? 1 : 0);
555           for(j=i; (j+nDel)<=nType; j++){
556             zType[j] = zType[j+nDel];
557           }
558           if( zType[i]=='\0' && i>0 ){
559             assert(zType[i-1]==' ');
560             zType[i-1] = '\0';
561           }
562           pTab->aCol[iCol].isHidden = 1;
563         }
564       }
565     }
566   }
567 
568   sqlite3DbFree(db, zModuleName);
569   return rc;
570 }
571 
572 /*
573 ** This function is invoked by the parser to call the xConnect() method
574 ** of the virtual table pTab. If an error occurs, an error code is returned
575 ** and an error left in pParse.
576 **
577 ** This call is a no-op if table pTab is not a virtual table.
578 */
579 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
580   sqlite3 *db = pParse->db;
581   const char *zMod;
582   Module *pMod;
583   int rc;
584 
585   assert( pTab );
586   if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
587     return SQLITE_OK;
588   }
589 
590   /* Locate the required virtual table module */
591   zMod = pTab->azModuleArg[0];
592   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
593 
594   if( !pMod ){
595     const char *zModule = pTab->azModuleArg[0];
596     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
597     rc = SQLITE_ERROR;
598   }else{
599     char *zErr = 0;
600     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
601     if( rc!=SQLITE_OK ){
602       sqlite3ErrorMsg(pParse, "%s", zErr);
603     }
604     sqlite3DbFree(db, zErr);
605   }
606 
607   return rc;
608 }
609 /*
610 ** Grow the db->aVTrans[] array so that there is room for at least one
611 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
612 */
613 static int growVTrans(sqlite3 *db){
614   const int ARRAY_INCR = 5;
615 
616   /* Grow the sqlite3.aVTrans array if required */
617   if( (db->nVTrans%ARRAY_INCR)==0 ){
618     VTable **aVTrans;
619     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
620     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
621     if( !aVTrans ){
622       return SQLITE_NOMEM;
623     }
624     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
625     db->aVTrans = aVTrans;
626   }
627 
628   return SQLITE_OK;
629 }
630 
631 /*
632 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
633 ** have already been reserved using growVTrans().
634 */
635 static void addToVTrans(sqlite3 *db, VTable *pVTab){
636   /* Add pVtab to the end of sqlite3.aVTrans */
637   db->aVTrans[db->nVTrans++] = pVTab;
638   sqlite3VtabLock(pVTab);
639 }
640 
641 /*
642 ** This function is invoked by the vdbe to call the xCreate method
643 ** of the virtual table named zTab in database iDb.
644 **
645 ** If an error occurs, *pzErr is set to point an an English language
646 ** description of the error and an SQLITE_XXX error code is returned.
647 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
648 */
649 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
650   int rc = SQLITE_OK;
651   Table *pTab;
652   Module *pMod;
653   const char *zMod;
654 
655   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
656   assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
657 
658   /* Locate the required virtual table module */
659   zMod = pTab->azModuleArg[0];
660   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
661 
662   /* If the module has been registered and includes a Create method,
663   ** invoke it now. If the module has not been registered, return an
664   ** error. Otherwise, do nothing.
665   */
666   if( !pMod ){
667     *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
668     rc = SQLITE_ERROR;
669   }else{
670     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
671   }
672 
673   /* Justification of ALWAYS():  The xConstructor method is required to
674   ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
675   if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
676     rc = growVTrans(db);
677     if( rc==SQLITE_OK ){
678       addToVTrans(db, sqlite3GetVTable(db, pTab));
679     }
680   }
681 
682   return rc;
683 }
684 
685 /*
686 ** This function is used to set the schema of a virtual table.  It is only
687 ** valid to call this function from within the xCreate() or xConnect() of a
688 ** virtual table module.
689 */
690 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
691   Parse *pParse;
692 
693   int rc = SQLITE_OK;
694   Table *pTab;
695   char *zErr = 0;
696 
697   sqlite3_mutex_enter(db->mutex);
698   if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
699     sqlite3Error(db, SQLITE_MISUSE, 0);
700     sqlite3_mutex_leave(db->mutex);
701     return SQLITE_MISUSE_BKPT;
702   }
703   assert( (pTab->tabFlags & TF_Virtual)!=0 );
704 
705   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
706   if( pParse==0 ){
707     rc = SQLITE_NOMEM;
708   }else{
709     pParse->declareVtab = 1;
710     pParse->db = db;
711     pParse->nQueryLoop = 1;
712 
713     if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
714      && pParse->pNewTable
715      && !db->mallocFailed
716      && !pParse->pNewTable->pSelect
717      && (pParse->pNewTable->tabFlags & TF_Virtual)==0
718     ){
719       if( !pTab->aCol ){
720         pTab->aCol = pParse->pNewTable->aCol;
721         pTab->nCol = pParse->pNewTable->nCol;
722         pParse->pNewTable->nCol = 0;
723         pParse->pNewTable->aCol = 0;
724       }
725       db->pVtabCtx->pTab = 0;
726     }else{
727       sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
728       sqlite3DbFree(db, zErr);
729       rc = SQLITE_ERROR;
730     }
731     pParse->declareVtab = 0;
732 
733     if( pParse->pVdbe ){
734       sqlite3VdbeFinalize(pParse->pVdbe);
735     }
736     sqlite3DeleteTable(db, pParse->pNewTable);
737     sqlite3StackFree(db, pParse);
738   }
739 
740   assert( (rc&0xff)==rc );
741   rc = sqlite3ApiExit(db, rc);
742   sqlite3_mutex_leave(db->mutex);
743   return rc;
744 }
745 
746 /*
747 ** This function is invoked by the vdbe to call the xDestroy method
748 ** of the virtual table named zTab in database iDb. This occurs
749 ** when a DROP TABLE is mentioned.
750 **
751 ** This call is a no-op if zTab is not a virtual table.
752 */
753 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
754   int rc = SQLITE_OK;
755   Table *pTab;
756 
757   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
758   if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
759     VTable *p = vtabDisconnectAll(db, pTab);
760 
761     assert( rc==SQLITE_OK );
762     rc = p->pMod->pModule->xDestroy(p->pVtab);
763 
764     /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
765     if( rc==SQLITE_OK ){
766       assert( pTab->pVTable==p && p->pNext==0 );
767       p->pVtab = 0;
768       pTab->pVTable = 0;
769       sqlite3VtabUnlock(p);
770     }
771   }
772 
773   return rc;
774 }
775 
776 /*
777 ** This function invokes either the xRollback or xCommit method
778 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
779 ** called is identified by the second argument, "offset", which is
780 ** the offset of the method to call in the sqlite3_module structure.
781 **
782 ** The array is cleared after invoking the callbacks.
783 */
784 static void callFinaliser(sqlite3 *db, int offset){
785   int i;
786   if( db->aVTrans ){
787     for(i=0; i<db->nVTrans; i++){
788       VTable *pVTab = db->aVTrans[i];
789       sqlite3_vtab *p = pVTab->pVtab;
790       if( p ){
791         int (*x)(sqlite3_vtab *);
792         x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
793         if( x ) x(p);
794       }
795       pVTab->iSavepoint = 0;
796       sqlite3VtabUnlock(pVTab);
797     }
798     sqlite3DbFree(db, db->aVTrans);
799     db->nVTrans = 0;
800     db->aVTrans = 0;
801   }
802 }
803 
804 /*
805 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
806 ** array. Return the error code for the first error that occurs, or
807 ** SQLITE_OK if all xSync operations are successful.
808 **
809 ** Set *pzErrmsg to point to a buffer that should be released using
810 ** sqlite3DbFree() containing an error message, if one is available.
811 */
812 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
813   int i;
814   int rc = SQLITE_OK;
815   VTable **aVTrans = db->aVTrans;
816 
817   db->aVTrans = 0;
818   for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
819     int (*x)(sqlite3_vtab *);
820     sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
821     if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
822       rc = x(pVtab);
823       sqlite3DbFree(db, *pzErrmsg);
824       *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
825       sqlite3_free(pVtab->zErrMsg);
826     }
827   }
828   db->aVTrans = aVTrans;
829   return rc;
830 }
831 
832 /*
833 ** Invoke the xRollback method of all virtual tables in the
834 ** sqlite3.aVTrans array. Then clear the array itself.
835 */
836 int sqlite3VtabRollback(sqlite3 *db){
837   callFinaliser(db, offsetof(sqlite3_module,xRollback));
838   return SQLITE_OK;
839 }
840 
841 /*
842 ** Invoke the xCommit method of all virtual tables in the
843 ** sqlite3.aVTrans array. Then clear the array itself.
844 */
845 int sqlite3VtabCommit(sqlite3 *db){
846   callFinaliser(db, offsetof(sqlite3_module,xCommit));
847   return SQLITE_OK;
848 }
849 
850 /*
851 ** If the virtual table pVtab supports the transaction interface
852 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
853 ** not currently open, invoke the xBegin method now.
854 **
855 ** If the xBegin call is successful, place the sqlite3_vtab pointer
856 ** in the sqlite3.aVTrans array.
857 */
858 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
859   int rc = SQLITE_OK;
860   const sqlite3_module *pModule;
861 
862   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
863   ** than zero, then this function is being called from within a
864   ** virtual module xSync() callback. It is illegal to write to
865   ** virtual module tables in this case, so return SQLITE_LOCKED.
866   */
867   if( sqlite3VtabInSync(db) ){
868     return SQLITE_LOCKED;
869   }
870   if( !pVTab ){
871     return SQLITE_OK;
872   }
873   pModule = pVTab->pVtab->pModule;
874 
875   if( pModule->xBegin ){
876     int i;
877 
878     /* If pVtab is already in the aVTrans array, return early */
879     for(i=0; i<db->nVTrans; i++){
880       if( db->aVTrans[i]==pVTab ){
881         return SQLITE_OK;
882       }
883     }
884 
885     /* Invoke the xBegin method. If successful, add the vtab to the
886     ** sqlite3.aVTrans[] array. */
887     rc = growVTrans(db);
888     if( rc==SQLITE_OK ){
889       rc = pModule->xBegin(pVTab->pVtab);
890       if( rc==SQLITE_OK ){
891         addToVTrans(db, pVTab);
892       }
893     }
894   }
895   return rc;
896 }
897 
898 /*
899 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
900 ** virtual tables that currently have an open transaction. Pass iSavepoint
901 ** as the second argument to the virtual table method invoked.
902 **
903 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
904 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
905 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
906 ** an open transaction is invoked.
907 **
908 ** If any virtual table method returns an error code other than SQLITE_OK,
909 ** processing is abandoned and the error returned to the caller of this
910 ** function immediately. If all calls to virtual table methods are successful,
911 ** SQLITE_OK is returned.
912 */
913 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
914   int rc = SQLITE_OK;
915 
916   assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
917   assert( iSavepoint>=0 );
918   if( db->aVTrans ){
919     int i;
920     for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
921       VTable *pVTab = db->aVTrans[i];
922       const sqlite3_module *pMod = pVTab->pMod->pModule;
923       if( pVTab->pVtab && pMod->iVersion>=2 ){
924         int (*xMethod)(sqlite3_vtab *, int);
925         switch( op ){
926           case SAVEPOINT_BEGIN:
927             xMethod = pMod->xSavepoint;
928             pVTab->iSavepoint = iSavepoint+1;
929             break;
930           case SAVEPOINT_ROLLBACK:
931             xMethod = pMod->xRollbackTo;
932             break;
933           default:
934             xMethod = pMod->xRelease;
935             break;
936         }
937         if( xMethod && pVTab->iSavepoint>iSavepoint ){
938           rc = xMethod(pVTab->pVtab, iSavepoint);
939         }
940       }
941     }
942   }
943   return rc;
944 }
945 
946 /*
947 ** The first parameter (pDef) is a function implementation.  The
948 ** second parameter (pExpr) is the first argument to this function.
949 ** If pExpr is a column in a virtual table, then let the virtual
950 ** table implementation have an opportunity to overload the function.
951 **
952 ** This routine is used to allow virtual table implementations to
953 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
954 **
955 ** Return either the pDef argument (indicating no change) or a
956 ** new FuncDef structure that is marked as ephemeral using the
957 ** SQLITE_FUNC_EPHEM flag.
958 */
959 FuncDef *sqlite3VtabOverloadFunction(
960   sqlite3 *db,    /* Database connection for reporting malloc problems */
961   FuncDef *pDef,  /* Function to possibly overload */
962   int nArg,       /* Number of arguments to the function */
963   Expr *pExpr     /* First argument to the function */
964 ){
965   Table *pTab;
966   sqlite3_vtab *pVtab;
967   sqlite3_module *pMod;
968   void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
969   void *pArg = 0;
970   FuncDef *pNew;
971   int rc = 0;
972   char *zLowerName;
973   unsigned char *z;
974 
975 
976   /* Check to see the left operand is a column in a virtual table */
977   if( NEVER(pExpr==0) ) return pDef;
978   if( pExpr->op!=TK_COLUMN ) return pDef;
979   pTab = pExpr->pTab;
980   if( NEVER(pTab==0) ) return pDef;
981   if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
982   pVtab = sqlite3GetVTable(db, pTab)->pVtab;
983   assert( pVtab!=0 );
984   assert( pVtab->pModule!=0 );
985   pMod = (sqlite3_module *)pVtab->pModule;
986   if( pMod->xFindFunction==0 ) return pDef;
987 
988   /* Call the xFindFunction method on the virtual table implementation
989   ** to see if the implementation wants to overload this function
990   */
991   zLowerName = sqlite3DbStrDup(db, pDef->zName);
992   if( zLowerName ){
993     for(z=(unsigned char*)zLowerName; *z; z++){
994       *z = sqlite3UpperToLower[*z];
995     }
996     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
997     sqlite3DbFree(db, zLowerName);
998   }
999   if( rc==0 ){
1000     return pDef;
1001   }
1002 
1003   /* Create a new ephemeral function definition for the overloaded
1004   ** function */
1005   pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1006                              + sqlite3Strlen30(pDef->zName) + 1);
1007   if( pNew==0 ){
1008     return pDef;
1009   }
1010   *pNew = *pDef;
1011   pNew->zName = (char *)&pNew[1];
1012   memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1013   pNew->xFunc = xFunc;
1014   pNew->pUserData = pArg;
1015   pNew->flags |= SQLITE_FUNC_EPHEM;
1016   return pNew;
1017 }
1018 
1019 /*
1020 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1021 ** array so that an OP_VBegin will get generated for it.  Add pTab to the
1022 ** array if it is missing.  If pTab is already in the array, this routine
1023 ** is a no-op.
1024 */
1025 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1026   Parse *pToplevel = sqlite3ParseToplevel(pParse);
1027   int i, n;
1028   Table **apVtabLock;
1029 
1030   assert( IsVirtual(pTab) );
1031   for(i=0; i<pToplevel->nVtabLock; i++){
1032     if( pTab==pToplevel->apVtabLock[i] ) return;
1033   }
1034   n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1035   apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
1036   if( apVtabLock ){
1037     pToplevel->apVtabLock = apVtabLock;
1038     pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1039   }else{
1040     pToplevel->db->mallocFailed = 1;
1041   }
1042 }
1043 
1044 /*
1045 ** Return the ON CONFLICT resolution mode in effect for the virtual
1046 ** table update operation currently in progress.
1047 **
1048 ** The results of this routine are undefined unless it is called from
1049 ** within an xUpdate method.
1050 */
1051 int sqlite3_vtab_on_conflict(sqlite3 *db){
1052   static const unsigned char aMap[] = {
1053     SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1054   };
1055   assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1056   assert( OE_Ignore==4 && OE_Replace==5 );
1057   assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1058   return (int)aMap[db->vtabOnConflict-1];
1059 }
1060 
1061 /*
1062 ** Call from within the xCreate() or xConnect() methods to provide
1063 ** the SQLite core with additional information about the behavior
1064 ** of the virtual table being implemented.
1065 */
1066 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1067   va_list ap;
1068   int rc = SQLITE_OK;
1069 
1070   sqlite3_mutex_enter(db->mutex);
1071 
1072   va_start(ap, op);
1073   switch( op ){
1074     case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1075       VtabCtx *p = db->pVtabCtx;
1076       if( !p ){
1077         rc = SQLITE_MISUSE_BKPT;
1078       }else{
1079         assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1080         p->pVTable->bConstraint = (u8)va_arg(ap, int);
1081       }
1082       break;
1083     }
1084     default:
1085       rc = SQLITE_MISUSE_BKPT;
1086       break;
1087   }
1088   va_end(ap);
1089 
1090   if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0);
1091   sqlite3_mutex_leave(db->mutex);
1092   return rc;
1093 }
1094 
1095 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1096