1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 }; 28 29 /* 30 ** The actual function that does the work of creating a new module. 31 ** This function implements the sqlite3_create_module() and 32 ** sqlite3_create_module_v2() interfaces. 33 */ 34 static int createModule( 35 sqlite3 *db, /* Database in which module is registered */ 36 const char *zName, /* Name assigned to this module */ 37 const sqlite3_module *pModule, /* The definition of the module */ 38 void *pAux, /* Context pointer for xCreate/xConnect */ 39 void (*xDestroy)(void *) /* Module destructor function */ 40 ){ 41 int rc = SQLITE_OK; 42 int nName; 43 44 sqlite3_mutex_enter(db->mutex); 45 nName = sqlite3Strlen30(zName); 46 if( sqlite3HashFind(&db->aModule, zName, nName) ){ 47 rc = SQLITE_MISUSE_BKPT; 48 }else{ 49 Module *pMod; 50 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 51 if( pMod ){ 52 Module *pDel; 53 char *zCopy = (char *)(&pMod[1]); 54 memcpy(zCopy, zName, nName+1); 55 pMod->zName = zCopy; 56 pMod->pModule = pModule; 57 pMod->pAux = pAux; 58 pMod->xDestroy = xDestroy; 59 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,nName,(void*)pMod); 60 assert( pDel==0 || pDel==pMod ); 61 if( pDel ){ 62 db->mallocFailed = 1; 63 sqlite3DbFree(db, pDel); 64 } 65 } 66 } 67 rc = sqlite3ApiExit(db, rc); 68 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 69 70 sqlite3_mutex_leave(db->mutex); 71 return rc; 72 } 73 74 75 /* 76 ** External API function used to create a new virtual-table module. 77 */ 78 int sqlite3_create_module( 79 sqlite3 *db, /* Database in which module is registered */ 80 const char *zName, /* Name assigned to this module */ 81 const sqlite3_module *pModule, /* The definition of the module */ 82 void *pAux /* Context pointer for xCreate/xConnect */ 83 ){ 84 return createModule(db, zName, pModule, pAux, 0); 85 } 86 87 /* 88 ** External API function used to create a new virtual-table module. 89 */ 90 int sqlite3_create_module_v2( 91 sqlite3 *db, /* Database in which module is registered */ 92 const char *zName, /* Name assigned to this module */ 93 const sqlite3_module *pModule, /* The definition of the module */ 94 void *pAux, /* Context pointer for xCreate/xConnect */ 95 void (*xDestroy)(void *) /* Module destructor function */ 96 ){ 97 return createModule(db, zName, pModule, pAux, xDestroy); 98 } 99 100 /* 101 ** Lock the virtual table so that it cannot be disconnected. 102 ** Locks nest. Every lock should have a corresponding unlock. 103 ** If an unlock is omitted, resources leaks will occur. 104 ** 105 ** If a disconnect is attempted while a virtual table is locked, 106 ** the disconnect is deferred until all locks have been removed. 107 */ 108 void sqlite3VtabLock(VTable *pVTab){ 109 pVTab->nRef++; 110 } 111 112 113 /* 114 ** pTab is a pointer to a Table structure representing a virtual-table. 115 ** Return a pointer to the VTable object used by connection db to access 116 ** this virtual-table, if one has been created, or NULL otherwise. 117 */ 118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 119 VTable *pVtab; 120 assert( IsVirtual(pTab) ); 121 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 122 return pVtab; 123 } 124 125 /* 126 ** Decrement the ref-count on a virtual table object. When the ref-count 127 ** reaches zero, call the xDisconnect() method to delete the object. 128 */ 129 void sqlite3VtabUnlock(VTable *pVTab){ 130 sqlite3 *db = pVTab->db; 131 132 assert( db ); 133 assert( pVTab->nRef>0 ); 134 assert( sqlite3SafetyCheckOk(db) ); 135 136 pVTab->nRef--; 137 if( pVTab->nRef==0 ){ 138 sqlite3_vtab *p = pVTab->pVtab; 139 if( p ){ 140 p->pModule->xDisconnect(p); 141 } 142 sqlite3DbFree(db, pVTab); 143 } 144 } 145 146 /* 147 ** Table p is a virtual table. This function moves all elements in the 148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 149 ** database connections to be disconnected at the next opportunity. 150 ** Except, if argument db is not NULL, then the entry associated with 151 ** connection db is left in the p->pVTable list. 152 */ 153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 154 VTable *pRet = 0; 155 VTable *pVTable = p->pVTable; 156 p->pVTable = 0; 157 158 /* Assert that the mutex (if any) associated with the BtShared database 159 ** that contains table p is held by the caller. See header comments 160 ** above function sqlite3VtabUnlockList() for an explanation of why 161 ** this makes it safe to access the sqlite3.pDisconnect list of any 162 ** database connection that may have an entry in the p->pVTable list. 163 */ 164 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 165 166 while( pVTable ){ 167 sqlite3 *db2 = pVTable->db; 168 VTable *pNext = pVTable->pNext; 169 assert( db2 ); 170 if( db2==db ){ 171 pRet = pVTable; 172 p->pVTable = pRet; 173 pRet->pNext = 0; 174 }else{ 175 pVTable->pNext = db2->pDisconnect; 176 db2->pDisconnect = pVTable; 177 } 178 pVTable = pNext; 179 } 180 181 assert( !db || pRet ); 182 return pRet; 183 } 184 185 /* 186 ** Table *p is a virtual table. This function removes the VTable object 187 ** for table *p associated with database connection db from the linked 188 ** list in p->pVTab. It also decrements the VTable ref count. This is 189 ** used when closing database connection db to free all of its VTable 190 ** objects without disturbing the rest of the Schema object (which may 191 ** be being used by other shared-cache connections). 192 */ 193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 194 VTable **ppVTab; 195 196 assert( IsVirtual(p) ); 197 assert( sqlite3BtreeHoldsAllMutexes(db) ); 198 assert( sqlite3_mutex_held(db->mutex) ); 199 200 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 201 if( (*ppVTab)->db==db ){ 202 VTable *pVTab = *ppVTab; 203 *ppVTab = pVTab->pNext; 204 sqlite3VtabUnlock(pVTab); 205 break; 206 } 207 } 208 } 209 210 211 /* 212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 213 ** 214 ** This function may only be called when the mutexes associated with all 215 ** shared b-tree databases opened using connection db are held by the 216 ** caller. This is done to protect the sqlite3.pDisconnect list. The 217 ** sqlite3.pDisconnect list is accessed only as follows: 218 ** 219 ** 1) By this function. In this case, all BtShared mutexes and the mutex 220 ** associated with the database handle itself must be held. 221 ** 222 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 223 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 224 ** associated with the database the virtual table is stored in is held 225 ** or, if the virtual table is stored in a non-sharable database, then 226 ** the database handle mutex is held. 227 ** 228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 229 ** by multiple threads. It is thread-safe. 230 */ 231 void sqlite3VtabUnlockList(sqlite3 *db){ 232 VTable *p = db->pDisconnect; 233 db->pDisconnect = 0; 234 235 assert( sqlite3BtreeHoldsAllMutexes(db) ); 236 assert( sqlite3_mutex_held(db->mutex) ); 237 238 if( p ){ 239 sqlite3ExpirePreparedStatements(db); 240 do { 241 VTable *pNext = p->pNext; 242 sqlite3VtabUnlock(p); 243 p = pNext; 244 }while( p ); 245 } 246 } 247 248 /* 249 ** Clear any and all virtual-table information from the Table record. 250 ** This routine is called, for example, just before deleting the Table 251 ** record. 252 ** 253 ** Since it is a virtual-table, the Table structure contains a pointer 254 ** to the head of a linked list of VTable structures. Each VTable 255 ** structure is associated with a single sqlite3* user of the schema. 256 ** The reference count of the VTable structure associated with database 257 ** connection db is decremented immediately (which may lead to the 258 ** structure being xDisconnected and free). Any other VTable structures 259 ** in the list are moved to the sqlite3.pDisconnect list of the associated 260 ** database connection. 261 */ 262 void sqlite3VtabClear(sqlite3 *db, Table *p){ 263 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 264 if( p->azModuleArg ){ 265 int i; 266 for(i=0; i<p->nModuleArg; i++){ 267 sqlite3DbFree(db, p->azModuleArg[i]); 268 } 269 sqlite3DbFree(db, p->azModuleArg); 270 } 271 } 272 273 /* 274 ** Add a new module argument to pTable->azModuleArg[]. 275 ** The string is not copied - the pointer is stored. The 276 ** string will be freed automatically when the table is 277 ** deleted. 278 */ 279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 280 int i = pTable->nModuleArg++; 281 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 282 char **azModuleArg; 283 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 284 if( azModuleArg==0 ){ 285 int j; 286 for(j=0; j<i; j++){ 287 sqlite3DbFree(db, pTable->azModuleArg[j]); 288 } 289 sqlite3DbFree(db, zArg); 290 sqlite3DbFree(db, pTable->azModuleArg); 291 pTable->nModuleArg = 0; 292 }else{ 293 azModuleArg[i] = zArg; 294 azModuleArg[i+1] = 0; 295 } 296 pTable->azModuleArg = azModuleArg; 297 } 298 299 /* 300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 301 ** statement. The module name has been parsed, but the optional list 302 ** of parameters that follow the module name are still pending. 303 */ 304 void sqlite3VtabBeginParse( 305 Parse *pParse, /* Parsing context */ 306 Token *pName1, /* Name of new table, or database name */ 307 Token *pName2, /* Name of new table or NULL */ 308 Token *pModuleName, /* Name of the module for the virtual table */ 309 int ifNotExists /* No error if the table already exists */ 310 ){ 311 int iDb; /* The database the table is being created in */ 312 Table *pTable; /* The new virtual table */ 313 sqlite3 *db; /* Database connection */ 314 315 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 316 pTable = pParse->pNewTable; 317 if( pTable==0 ) return; 318 assert( 0==pTable->pIndex ); 319 320 db = pParse->db; 321 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 322 assert( iDb>=0 ); 323 324 pTable->tabFlags |= TF_Virtual; 325 pTable->nModuleArg = 0; 326 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 327 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName)); 328 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 329 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); 330 331 #ifndef SQLITE_OMIT_AUTHORIZATION 332 /* Creating a virtual table invokes the authorization callback twice. 333 ** The first invocation, to obtain permission to INSERT a row into the 334 ** sqlite_master table, has already been made by sqlite3StartTable(). 335 ** The second call, to obtain permission to create the table, is made now. 336 */ 337 if( pTable->azModuleArg ){ 338 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 339 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 340 } 341 #endif 342 } 343 344 /* 345 ** This routine takes the module argument that has been accumulating 346 ** in pParse->zArg[] and appends it to the list of arguments on the 347 ** virtual table currently under construction in pParse->pTable. 348 */ 349 static void addArgumentToVtab(Parse *pParse){ 350 if( pParse->sArg.z && pParse->pNewTable ){ 351 const char *z = (const char*)pParse->sArg.z; 352 int n = pParse->sArg.n; 353 sqlite3 *db = pParse->db; 354 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 355 } 356 } 357 358 /* 359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 360 ** has been completely parsed. 361 */ 362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 363 Table *pTab = pParse->pNewTable; /* The table being constructed */ 364 sqlite3 *db = pParse->db; /* The database connection */ 365 366 if( pTab==0 ) return; 367 addArgumentToVtab(pParse); 368 pParse->sArg.z = 0; 369 if( pTab->nModuleArg<1 ) return; 370 371 /* If the CREATE VIRTUAL TABLE statement is being entered for the 372 ** first time (in other words if the virtual table is actually being 373 ** created now instead of just being read out of sqlite_master) then 374 ** do additional initialization work and store the statement text 375 ** in the sqlite_master table. 376 */ 377 if( !db->init.busy ){ 378 char *zStmt; 379 char *zWhere; 380 int iDb; 381 Vdbe *v; 382 383 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 384 if( pEnd ){ 385 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 386 } 387 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 388 389 /* A slot for the record has already been allocated in the 390 ** SQLITE_MASTER table. We just need to update that slot with all 391 ** the information we've collected. 392 ** 393 ** The VM register number pParse->regRowid holds the rowid of an 394 ** entry in the sqlite_master table tht was created for this vtab 395 ** by sqlite3StartTable(). 396 */ 397 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 398 sqlite3NestedParse(pParse, 399 "UPDATE %Q.%s " 400 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 401 "WHERE rowid=#%d", 402 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 403 pTab->zName, 404 pTab->zName, 405 zStmt, 406 pParse->regRowid 407 ); 408 sqlite3DbFree(db, zStmt); 409 v = sqlite3GetVdbe(pParse); 410 sqlite3ChangeCookie(pParse, iDb); 411 412 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 413 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 414 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 415 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 416 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); 417 } 418 419 /* If we are rereading the sqlite_master table create the in-memory 420 ** record of the table. The xConnect() method is not called until 421 ** the first time the virtual table is used in an SQL statement. This 422 ** allows a schema that contains virtual tables to be loaded before 423 ** the required virtual table implementations are registered. */ 424 else { 425 Table *pOld; 426 Schema *pSchema = pTab->pSchema; 427 const char *zName = pTab->zName; 428 int nName = sqlite3Strlen30(zName); 429 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 430 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); 431 if( pOld ){ 432 db->mallocFailed = 1; 433 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 434 return; 435 } 436 pParse->pNewTable = 0; 437 } 438 } 439 440 /* 441 ** The parser calls this routine when it sees the first token 442 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 443 */ 444 void sqlite3VtabArgInit(Parse *pParse){ 445 addArgumentToVtab(pParse); 446 pParse->sArg.z = 0; 447 pParse->sArg.n = 0; 448 } 449 450 /* 451 ** The parser calls this routine for each token after the first token 452 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 453 */ 454 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 455 Token *pArg = &pParse->sArg; 456 if( pArg->z==0 ){ 457 pArg->z = p->z; 458 pArg->n = p->n; 459 }else{ 460 assert(pArg->z < p->z); 461 pArg->n = (int)(&p->z[p->n] - pArg->z); 462 } 463 } 464 465 /* 466 ** Invoke a virtual table constructor (either xCreate or xConnect). The 467 ** pointer to the function to invoke is passed as the fourth parameter 468 ** to this procedure. 469 */ 470 static int vtabCallConstructor( 471 sqlite3 *db, 472 Table *pTab, 473 Module *pMod, 474 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 475 char **pzErr 476 ){ 477 VtabCtx sCtx, *pPriorCtx; 478 VTable *pVTable; 479 int rc; 480 const char *const*azArg = (const char *const*)pTab->azModuleArg; 481 int nArg = pTab->nModuleArg; 482 char *zErr = 0; 483 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 484 485 if( !zModuleName ){ 486 return SQLITE_NOMEM; 487 } 488 489 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 490 if( !pVTable ){ 491 sqlite3DbFree(db, zModuleName); 492 return SQLITE_NOMEM; 493 } 494 pVTable->db = db; 495 pVTable->pMod = pMod; 496 497 /* Invoke the virtual table constructor */ 498 assert( &db->pVtabCtx ); 499 assert( xConstruct ); 500 sCtx.pTab = pTab; 501 sCtx.pVTable = pVTable; 502 pPriorCtx = db->pVtabCtx; 503 db->pVtabCtx = &sCtx; 504 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 505 db->pVtabCtx = pPriorCtx; 506 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 507 508 if( SQLITE_OK!=rc ){ 509 if( zErr==0 ){ 510 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 511 }else { 512 *pzErr = sqlite3MPrintf(db, "%s", zErr); 513 sqlite3_free(zErr); 514 } 515 sqlite3DbFree(db, pVTable); 516 }else if( ALWAYS(pVTable->pVtab) ){ 517 /* Justification of ALWAYS(): A correct vtab constructor must allocate 518 ** the sqlite3_vtab object if successful. */ 519 pVTable->pVtab->pModule = pMod->pModule; 520 pVTable->nRef = 1; 521 if( sCtx.pTab ){ 522 const char *zFormat = "vtable constructor did not declare schema: %s"; 523 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 524 sqlite3VtabUnlock(pVTable); 525 rc = SQLITE_ERROR; 526 }else{ 527 int iCol; 528 /* If everything went according to plan, link the new VTable structure 529 ** into the linked list headed by pTab->pVTable. Then loop through the 530 ** columns of the table to see if any of them contain the token "hidden". 531 ** If so, set the Column.isHidden flag and remove the token from 532 ** the type string. */ 533 pVTable->pNext = pTab->pVTable; 534 pTab->pVTable = pVTable; 535 536 for(iCol=0; iCol<pTab->nCol; iCol++){ 537 char *zType = pTab->aCol[iCol].zType; 538 int nType; 539 int i = 0; 540 if( !zType ) continue; 541 nType = sqlite3Strlen30(zType); 542 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 543 for(i=0; i<nType; i++){ 544 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 545 && (zType[i+7]=='\0' || zType[i+7]==' ') 546 ){ 547 i++; 548 break; 549 } 550 } 551 } 552 if( i<nType ){ 553 int j; 554 int nDel = 6 + (zType[i+6] ? 1 : 0); 555 for(j=i; (j+nDel)<=nType; j++){ 556 zType[j] = zType[j+nDel]; 557 } 558 if( zType[i]=='\0' && i>0 ){ 559 assert(zType[i-1]==' '); 560 zType[i-1] = '\0'; 561 } 562 pTab->aCol[iCol].isHidden = 1; 563 } 564 } 565 } 566 } 567 568 sqlite3DbFree(db, zModuleName); 569 return rc; 570 } 571 572 /* 573 ** This function is invoked by the parser to call the xConnect() method 574 ** of the virtual table pTab. If an error occurs, an error code is returned 575 ** and an error left in pParse. 576 ** 577 ** This call is a no-op if table pTab is not a virtual table. 578 */ 579 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 580 sqlite3 *db = pParse->db; 581 const char *zMod; 582 Module *pMod; 583 int rc; 584 585 assert( pTab ); 586 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 587 return SQLITE_OK; 588 } 589 590 /* Locate the required virtual table module */ 591 zMod = pTab->azModuleArg[0]; 592 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 593 594 if( !pMod ){ 595 const char *zModule = pTab->azModuleArg[0]; 596 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 597 rc = SQLITE_ERROR; 598 }else{ 599 char *zErr = 0; 600 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 601 if( rc!=SQLITE_OK ){ 602 sqlite3ErrorMsg(pParse, "%s", zErr); 603 } 604 sqlite3DbFree(db, zErr); 605 } 606 607 return rc; 608 } 609 /* 610 ** Grow the db->aVTrans[] array so that there is room for at least one 611 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 612 */ 613 static int growVTrans(sqlite3 *db){ 614 const int ARRAY_INCR = 5; 615 616 /* Grow the sqlite3.aVTrans array if required */ 617 if( (db->nVTrans%ARRAY_INCR)==0 ){ 618 VTable **aVTrans; 619 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 620 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 621 if( !aVTrans ){ 622 return SQLITE_NOMEM; 623 } 624 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 625 db->aVTrans = aVTrans; 626 } 627 628 return SQLITE_OK; 629 } 630 631 /* 632 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 633 ** have already been reserved using growVTrans(). 634 */ 635 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 636 /* Add pVtab to the end of sqlite3.aVTrans */ 637 db->aVTrans[db->nVTrans++] = pVTab; 638 sqlite3VtabLock(pVTab); 639 } 640 641 /* 642 ** This function is invoked by the vdbe to call the xCreate method 643 ** of the virtual table named zTab in database iDb. 644 ** 645 ** If an error occurs, *pzErr is set to point an an English language 646 ** description of the error and an SQLITE_XXX error code is returned. 647 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 648 */ 649 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 650 int rc = SQLITE_OK; 651 Table *pTab; 652 Module *pMod; 653 const char *zMod; 654 655 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 656 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 657 658 /* Locate the required virtual table module */ 659 zMod = pTab->azModuleArg[0]; 660 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 661 662 /* If the module has been registered and includes a Create method, 663 ** invoke it now. If the module has not been registered, return an 664 ** error. Otherwise, do nothing. 665 */ 666 if( !pMod ){ 667 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 668 rc = SQLITE_ERROR; 669 }else{ 670 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 671 } 672 673 /* Justification of ALWAYS(): The xConstructor method is required to 674 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 675 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 676 rc = growVTrans(db); 677 if( rc==SQLITE_OK ){ 678 addToVTrans(db, sqlite3GetVTable(db, pTab)); 679 } 680 } 681 682 return rc; 683 } 684 685 /* 686 ** This function is used to set the schema of a virtual table. It is only 687 ** valid to call this function from within the xCreate() or xConnect() of a 688 ** virtual table module. 689 */ 690 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 691 Parse *pParse; 692 693 int rc = SQLITE_OK; 694 Table *pTab; 695 char *zErr = 0; 696 697 sqlite3_mutex_enter(db->mutex); 698 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ 699 sqlite3Error(db, SQLITE_MISUSE, 0); 700 sqlite3_mutex_leave(db->mutex); 701 return SQLITE_MISUSE_BKPT; 702 } 703 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 704 705 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 706 if( pParse==0 ){ 707 rc = SQLITE_NOMEM; 708 }else{ 709 pParse->declareVtab = 1; 710 pParse->db = db; 711 pParse->nQueryLoop = 1; 712 713 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 714 && pParse->pNewTable 715 && !db->mallocFailed 716 && !pParse->pNewTable->pSelect 717 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 718 ){ 719 if( !pTab->aCol ){ 720 pTab->aCol = pParse->pNewTable->aCol; 721 pTab->nCol = pParse->pNewTable->nCol; 722 pParse->pNewTable->nCol = 0; 723 pParse->pNewTable->aCol = 0; 724 } 725 db->pVtabCtx->pTab = 0; 726 }else{ 727 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 728 sqlite3DbFree(db, zErr); 729 rc = SQLITE_ERROR; 730 } 731 pParse->declareVtab = 0; 732 733 if( pParse->pVdbe ){ 734 sqlite3VdbeFinalize(pParse->pVdbe); 735 } 736 sqlite3DeleteTable(db, pParse->pNewTable); 737 sqlite3StackFree(db, pParse); 738 } 739 740 assert( (rc&0xff)==rc ); 741 rc = sqlite3ApiExit(db, rc); 742 sqlite3_mutex_leave(db->mutex); 743 return rc; 744 } 745 746 /* 747 ** This function is invoked by the vdbe to call the xDestroy method 748 ** of the virtual table named zTab in database iDb. This occurs 749 ** when a DROP TABLE is mentioned. 750 ** 751 ** This call is a no-op if zTab is not a virtual table. 752 */ 753 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 754 int rc = SQLITE_OK; 755 Table *pTab; 756 757 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 758 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 759 VTable *p = vtabDisconnectAll(db, pTab); 760 761 assert( rc==SQLITE_OK ); 762 rc = p->pMod->pModule->xDestroy(p->pVtab); 763 764 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 765 if( rc==SQLITE_OK ){ 766 assert( pTab->pVTable==p && p->pNext==0 ); 767 p->pVtab = 0; 768 pTab->pVTable = 0; 769 sqlite3VtabUnlock(p); 770 } 771 } 772 773 return rc; 774 } 775 776 /* 777 ** This function invokes either the xRollback or xCommit method 778 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 779 ** called is identified by the second argument, "offset", which is 780 ** the offset of the method to call in the sqlite3_module structure. 781 ** 782 ** The array is cleared after invoking the callbacks. 783 */ 784 static void callFinaliser(sqlite3 *db, int offset){ 785 int i; 786 if( db->aVTrans ){ 787 for(i=0; i<db->nVTrans; i++){ 788 VTable *pVTab = db->aVTrans[i]; 789 sqlite3_vtab *p = pVTab->pVtab; 790 if( p ){ 791 int (*x)(sqlite3_vtab *); 792 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 793 if( x ) x(p); 794 } 795 pVTab->iSavepoint = 0; 796 sqlite3VtabUnlock(pVTab); 797 } 798 sqlite3DbFree(db, db->aVTrans); 799 db->nVTrans = 0; 800 db->aVTrans = 0; 801 } 802 } 803 804 /* 805 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 806 ** array. Return the error code for the first error that occurs, or 807 ** SQLITE_OK if all xSync operations are successful. 808 ** 809 ** Set *pzErrmsg to point to a buffer that should be released using 810 ** sqlite3DbFree() containing an error message, if one is available. 811 */ 812 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){ 813 int i; 814 int rc = SQLITE_OK; 815 VTable **aVTrans = db->aVTrans; 816 817 db->aVTrans = 0; 818 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 819 int (*x)(sqlite3_vtab *); 820 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 821 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 822 rc = x(pVtab); 823 sqlite3DbFree(db, *pzErrmsg); 824 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 825 sqlite3_free(pVtab->zErrMsg); 826 } 827 } 828 db->aVTrans = aVTrans; 829 return rc; 830 } 831 832 /* 833 ** Invoke the xRollback method of all virtual tables in the 834 ** sqlite3.aVTrans array. Then clear the array itself. 835 */ 836 int sqlite3VtabRollback(sqlite3 *db){ 837 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 838 return SQLITE_OK; 839 } 840 841 /* 842 ** Invoke the xCommit method of all virtual tables in the 843 ** sqlite3.aVTrans array. Then clear the array itself. 844 */ 845 int sqlite3VtabCommit(sqlite3 *db){ 846 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 847 return SQLITE_OK; 848 } 849 850 /* 851 ** If the virtual table pVtab supports the transaction interface 852 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 853 ** not currently open, invoke the xBegin method now. 854 ** 855 ** If the xBegin call is successful, place the sqlite3_vtab pointer 856 ** in the sqlite3.aVTrans array. 857 */ 858 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 859 int rc = SQLITE_OK; 860 const sqlite3_module *pModule; 861 862 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 863 ** than zero, then this function is being called from within a 864 ** virtual module xSync() callback. It is illegal to write to 865 ** virtual module tables in this case, so return SQLITE_LOCKED. 866 */ 867 if( sqlite3VtabInSync(db) ){ 868 return SQLITE_LOCKED; 869 } 870 if( !pVTab ){ 871 return SQLITE_OK; 872 } 873 pModule = pVTab->pVtab->pModule; 874 875 if( pModule->xBegin ){ 876 int i; 877 878 /* If pVtab is already in the aVTrans array, return early */ 879 for(i=0; i<db->nVTrans; i++){ 880 if( db->aVTrans[i]==pVTab ){ 881 return SQLITE_OK; 882 } 883 } 884 885 /* Invoke the xBegin method. If successful, add the vtab to the 886 ** sqlite3.aVTrans[] array. */ 887 rc = growVTrans(db); 888 if( rc==SQLITE_OK ){ 889 rc = pModule->xBegin(pVTab->pVtab); 890 if( rc==SQLITE_OK ){ 891 addToVTrans(db, pVTab); 892 } 893 } 894 } 895 return rc; 896 } 897 898 /* 899 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 900 ** virtual tables that currently have an open transaction. Pass iSavepoint 901 ** as the second argument to the virtual table method invoked. 902 ** 903 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 904 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 905 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 906 ** an open transaction is invoked. 907 ** 908 ** If any virtual table method returns an error code other than SQLITE_OK, 909 ** processing is abandoned and the error returned to the caller of this 910 ** function immediately. If all calls to virtual table methods are successful, 911 ** SQLITE_OK is returned. 912 */ 913 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 914 int rc = SQLITE_OK; 915 916 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 917 assert( iSavepoint>=0 ); 918 if( db->aVTrans ){ 919 int i; 920 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 921 VTable *pVTab = db->aVTrans[i]; 922 const sqlite3_module *pMod = pVTab->pMod->pModule; 923 if( pVTab->pVtab && pMod->iVersion>=2 ){ 924 int (*xMethod)(sqlite3_vtab *, int); 925 switch( op ){ 926 case SAVEPOINT_BEGIN: 927 xMethod = pMod->xSavepoint; 928 pVTab->iSavepoint = iSavepoint+1; 929 break; 930 case SAVEPOINT_ROLLBACK: 931 xMethod = pMod->xRollbackTo; 932 break; 933 default: 934 xMethod = pMod->xRelease; 935 break; 936 } 937 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 938 rc = xMethod(pVTab->pVtab, iSavepoint); 939 } 940 } 941 } 942 } 943 return rc; 944 } 945 946 /* 947 ** The first parameter (pDef) is a function implementation. The 948 ** second parameter (pExpr) is the first argument to this function. 949 ** If pExpr is a column in a virtual table, then let the virtual 950 ** table implementation have an opportunity to overload the function. 951 ** 952 ** This routine is used to allow virtual table implementations to 953 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 954 ** 955 ** Return either the pDef argument (indicating no change) or a 956 ** new FuncDef structure that is marked as ephemeral using the 957 ** SQLITE_FUNC_EPHEM flag. 958 */ 959 FuncDef *sqlite3VtabOverloadFunction( 960 sqlite3 *db, /* Database connection for reporting malloc problems */ 961 FuncDef *pDef, /* Function to possibly overload */ 962 int nArg, /* Number of arguments to the function */ 963 Expr *pExpr /* First argument to the function */ 964 ){ 965 Table *pTab; 966 sqlite3_vtab *pVtab; 967 sqlite3_module *pMod; 968 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 969 void *pArg = 0; 970 FuncDef *pNew; 971 int rc = 0; 972 char *zLowerName; 973 unsigned char *z; 974 975 976 /* Check to see the left operand is a column in a virtual table */ 977 if( NEVER(pExpr==0) ) return pDef; 978 if( pExpr->op!=TK_COLUMN ) return pDef; 979 pTab = pExpr->pTab; 980 if( NEVER(pTab==0) ) return pDef; 981 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 982 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 983 assert( pVtab!=0 ); 984 assert( pVtab->pModule!=0 ); 985 pMod = (sqlite3_module *)pVtab->pModule; 986 if( pMod->xFindFunction==0 ) return pDef; 987 988 /* Call the xFindFunction method on the virtual table implementation 989 ** to see if the implementation wants to overload this function 990 */ 991 zLowerName = sqlite3DbStrDup(db, pDef->zName); 992 if( zLowerName ){ 993 for(z=(unsigned char*)zLowerName; *z; z++){ 994 *z = sqlite3UpperToLower[*z]; 995 } 996 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 997 sqlite3DbFree(db, zLowerName); 998 } 999 if( rc==0 ){ 1000 return pDef; 1001 } 1002 1003 /* Create a new ephemeral function definition for the overloaded 1004 ** function */ 1005 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1006 + sqlite3Strlen30(pDef->zName) + 1); 1007 if( pNew==0 ){ 1008 return pDef; 1009 } 1010 *pNew = *pDef; 1011 pNew->zName = (char *)&pNew[1]; 1012 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1013 pNew->xFunc = xFunc; 1014 pNew->pUserData = pArg; 1015 pNew->flags |= SQLITE_FUNC_EPHEM; 1016 return pNew; 1017 } 1018 1019 /* 1020 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1021 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1022 ** array if it is missing. If pTab is already in the array, this routine 1023 ** is a no-op. 1024 */ 1025 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1026 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1027 int i, n; 1028 Table **apVtabLock; 1029 1030 assert( IsVirtual(pTab) ); 1031 for(i=0; i<pToplevel->nVtabLock; i++){ 1032 if( pTab==pToplevel->apVtabLock[i] ) return; 1033 } 1034 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1035 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); 1036 if( apVtabLock ){ 1037 pToplevel->apVtabLock = apVtabLock; 1038 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1039 }else{ 1040 pToplevel->db->mallocFailed = 1; 1041 } 1042 } 1043 1044 /* 1045 ** Return the ON CONFLICT resolution mode in effect for the virtual 1046 ** table update operation currently in progress. 1047 ** 1048 ** The results of this routine are undefined unless it is called from 1049 ** within an xUpdate method. 1050 */ 1051 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1052 static const unsigned char aMap[] = { 1053 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1054 }; 1055 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1056 assert( OE_Ignore==4 && OE_Replace==5 ); 1057 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1058 return (int)aMap[db->vtabOnConflict-1]; 1059 } 1060 1061 /* 1062 ** Call from within the xCreate() or xConnect() methods to provide 1063 ** the SQLite core with additional information about the behavior 1064 ** of the virtual table being implemented. 1065 */ 1066 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1067 va_list ap; 1068 int rc = SQLITE_OK; 1069 1070 sqlite3_mutex_enter(db->mutex); 1071 1072 va_start(ap, op); 1073 switch( op ){ 1074 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1075 VtabCtx *p = db->pVtabCtx; 1076 if( !p ){ 1077 rc = SQLITE_MISUSE_BKPT; 1078 }else{ 1079 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1080 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1081 } 1082 break; 1083 } 1084 default: 1085 rc = SQLITE_MISUSE_BKPT; 1086 break; 1087 } 1088 va_end(ap); 1089 1090 if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0); 1091 sqlite3_mutex_leave(db->mutex); 1092 return rc; 1093 } 1094 1095 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1096