1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 ** 36 ** If there already exists a module with zName, replace it with the new one. 37 ** If pModule==0, then delete the module zName if it exists. 38 */ 39 Module *sqlite3VtabCreateModule( 40 sqlite3 *db, /* Database in which module is registered */ 41 const char *zName, /* Name assigned to this module */ 42 const sqlite3_module *pModule, /* The definition of the module */ 43 void *pAux, /* Context pointer for xCreate/xConnect */ 44 void (*xDestroy)(void *) /* Module destructor function */ 45 ){ 46 Module *pMod; 47 Module *pDel; 48 char *zCopy; 49 if( pModule==0 ){ 50 zCopy = (char*)zName; 51 pMod = 0; 52 }else{ 53 int nName = sqlite3Strlen30(zName); 54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); 55 if( pMod==0 ){ 56 sqlite3OomFault(db); 57 return 0; 58 } 59 zCopy = (char *)(&pMod[1]); 60 memcpy(zCopy, zName, nName+1); 61 pMod->zName = zCopy; 62 pMod->pModule = pModule; 63 pMod->pAux = pAux; 64 pMod->xDestroy = xDestroy; 65 pMod->pEpoTab = 0; 66 pMod->nRefModule = 1; 67 } 68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 69 if( pDel ){ 70 if( pDel==pMod ){ 71 sqlite3OomFault(db); 72 sqlite3DbFree(db, pDel); 73 pMod = 0; 74 }else{ 75 sqlite3VtabEponymousTableClear(db, pDel); 76 sqlite3VtabModuleUnref(db, pDel); 77 } 78 } 79 return pMod; 80 } 81 82 /* 83 ** The actual function that does the work of creating a new module. 84 ** This function implements the sqlite3_create_module() and 85 ** sqlite3_create_module_v2() interfaces. 86 */ 87 static int createModule( 88 sqlite3 *db, /* Database in which module is registered */ 89 const char *zName, /* Name assigned to this module */ 90 const sqlite3_module *pModule, /* The definition of the module */ 91 void *pAux, /* Context pointer for xCreate/xConnect */ 92 void (*xDestroy)(void *) /* Module destructor function */ 93 ){ 94 int rc = SQLITE_OK; 95 96 sqlite3_mutex_enter(db->mutex); 97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 98 rc = sqlite3ApiExit(db, rc); 99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 100 sqlite3_mutex_leave(db->mutex); 101 return rc; 102 } 103 104 105 /* 106 ** External API function used to create a new virtual-table module. 107 */ 108 int sqlite3_create_module( 109 sqlite3 *db, /* Database in which module is registered */ 110 const char *zName, /* Name assigned to this module */ 111 const sqlite3_module *pModule, /* The definition of the module */ 112 void *pAux /* Context pointer for xCreate/xConnect */ 113 ){ 114 #ifdef SQLITE_ENABLE_API_ARMOR 115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 116 #endif 117 return createModule(db, zName, pModule, pAux, 0); 118 } 119 120 /* 121 ** External API function used to create a new virtual-table module. 122 */ 123 int sqlite3_create_module_v2( 124 sqlite3 *db, /* Database in which module is registered */ 125 const char *zName, /* Name assigned to this module */ 126 const sqlite3_module *pModule, /* The definition of the module */ 127 void *pAux, /* Context pointer for xCreate/xConnect */ 128 void (*xDestroy)(void *) /* Module destructor function */ 129 ){ 130 #ifdef SQLITE_ENABLE_API_ARMOR 131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 132 #endif 133 return createModule(db, zName, pModule, pAux, xDestroy); 134 } 135 136 /* 137 ** External API to drop all virtual-table modules, except those named 138 ** on the azNames list. 139 */ 140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ 141 HashElem *pThis, *pNext; 142 #ifdef SQLITE_ENABLE_API_ARMOR 143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 144 #endif 145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ 146 Module *pMod = (Module*)sqliteHashData(pThis); 147 pNext = sqliteHashNext(pThis); 148 if( azNames ){ 149 int ii; 150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} 151 if( azNames[ii]!=0 ) continue; 152 } 153 createModule(db, pMod->zName, 0, 0, 0); 154 } 155 return SQLITE_OK; 156 } 157 158 /* 159 ** Decrement the reference count on a Module object. Destroy the 160 ** module when the reference count reaches zero. 161 */ 162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ 163 assert( pMod->nRefModule>0 ); 164 pMod->nRefModule--; 165 if( pMod->nRefModule==0 ){ 166 if( pMod->xDestroy ){ 167 pMod->xDestroy(pMod->pAux); 168 } 169 assert( pMod->pEpoTab==0 ); 170 sqlite3DbFree(db, pMod); 171 } 172 } 173 174 /* 175 ** Lock the virtual table so that it cannot be disconnected. 176 ** Locks nest. Every lock should have a corresponding unlock. 177 ** If an unlock is omitted, resources leaks will occur. 178 ** 179 ** If a disconnect is attempted while a virtual table is locked, 180 ** the disconnect is deferred until all locks have been removed. 181 */ 182 void sqlite3VtabLock(VTable *pVTab){ 183 pVTab->nRef++; 184 } 185 186 187 /* 188 ** pTab is a pointer to a Table structure representing a virtual-table. 189 ** Return a pointer to the VTable object used by connection db to access 190 ** this virtual-table, if one has been created, or NULL otherwise. 191 */ 192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 193 VTable *pVtab; 194 assert( IsVirtual(pTab) ); 195 for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 196 return pVtab; 197 } 198 199 /* 200 ** Decrement the ref-count on a virtual table object. When the ref-count 201 ** reaches zero, call the xDisconnect() method to delete the object. 202 */ 203 void sqlite3VtabUnlock(VTable *pVTab){ 204 sqlite3 *db = pVTab->db; 205 206 assert( db ); 207 assert( pVTab->nRef>0 ); 208 assert( db->eOpenState==SQLITE_STATE_OPEN 209 || db->eOpenState==SQLITE_STATE_ZOMBIE ); 210 211 pVTab->nRef--; 212 if( pVTab->nRef==0 ){ 213 sqlite3_vtab *p = pVTab->pVtab; 214 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); 215 if( p ){ 216 p->pModule->xDisconnect(p); 217 } 218 sqlite3DbFree(db, pVTab); 219 } 220 } 221 222 /* 223 ** Table p is a virtual table. This function moves all elements in the 224 ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated 225 ** database connections to be disconnected at the next opportunity. 226 ** Except, if argument db is not NULL, then the entry associated with 227 ** connection db is left in the p->u.vtab.p list. 228 */ 229 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 230 VTable *pRet = 0; 231 VTable *pVTable; 232 233 assert( IsVirtual(p) ); 234 pVTable = p->u.vtab.p; 235 p->u.vtab.p = 0; 236 237 /* Assert that the mutex (if any) associated with the BtShared database 238 ** that contains table p is held by the caller. See header comments 239 ** above function sqlite3VtabUnlockList() for an explanation of why 240 ** this makes it safe to access the sqlite3.pDisconnect list of any 241 ** database connection that may have an entry in the p->u.vtab.p list. 242 */ 243 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 244 245 while( pVTable ){ 246 sqlite3 *db2 = pVTable->db; 247 VTable *pNext = pVTable->pNext; 248 assert( db2 ); 249 if( db2==db ){ 250 pRet = pVTable; 251 p->u.vtab.p = pRet; 252 pRet->pNext = 0; 253 }else{ 254 pVTable->pNext = db2->pDisconnect; 255 db2->pDisconnect = pVTable; 256 } 257 pVTable = pNext; 258 } 259 260 assert( !db || pRet ); 261 return pRet; 262 } 263 264 /* 265 ** Table *p is a virtual table. This function removes the VTable object 266 ** for table *p associated with database connection db from the linked 267 ** list in p->pVTab. It also decrements the VTable ref count. This is 268 ** used when closing database connection db to free all of its VTable 269 ** objects without disturbing the rest of the Schema object (which may 270 ** be being used by other shared-cache connections). 271 */ 272 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 273 VTable **ppVTab; 274 275 assert( IsVirtual(p) ); 276 assert( sqlite3BtreeHoldsAllMutexes(db) ); 277 assert( sqlite3_mutex_held(db->mutex) ); 278 279 for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 280 if( (*ppVTab)->db==db ){ 281 VTable *pVTab = *ppVTab; 282 *ppVTab = pVTab->pNext; 283 sqlite3VtabUnlock(pVTab); 284 break; 285 } 286 } 287 } 288 289 290 /* 291 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 292 ** 293 ** This function may only be called when the mutexes associated with all 294 ** shared b-tree databases opened using connection db are held by the 295 ** caller. This is done to protect the sqlite3.pDisconnect list. The 296 ** sqlite3.pDisconnect list is accessed only as follows: 297 ** 298 ** 1) By this function. In this case, all BtShared mutexes and the mutex 299 ** associated with the database handle itself must be held. 300 ** 301 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 302 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 303 ** associated with the database the virtual table is stored in is held 304 ** or, if the virtual table is stored in a non-sharable database, then 305 ** the database handle mutex is held. 306 ** 307 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 308 ** by multiple threads. It is thread-safe. 309 */ 310 void sqlite3VtabUnlockList(sqlite3 *db){ 311 VTable *p = db->pDisconnect; 312 313 assert( sqlite3BtreeHoldsAllMutexes(db) ); 314 assert( sqlite3_mutex_held(db->mutex) ); 315 316 if( p ){ 317 db->pDisconnect = 0; 318 sqlite3ExpirePreparedStatements(db, 0); 319 do { 320 VTable *pNext = p->pNext; 321 sqlite3VtabUnlock(p); 322 p = pNext; 323 }while( p ); 324 } 325 } 326 327 /* 328 ** Clear any and all virtual-table information from the Table record. 329 ** This routine is called, for example, just before deleting the Table 330 ** record. 331 ** 332 ** Since it is a virtual-table, the Table structure contains a pointer 333 ** to the head of a linked list of VTable structures. Each VTable 334 ** structure is associated with a single sqlite3* user of the schema. 335 ** The reference count of the VTable structure associated with database 336 ** connection db is decremented immediately (which may lead to the 337 ** structure being xDisconnected and free). Any other VTable structures 338 ** in the list are moved to the sqlite3.pDisconnect list of the associated 339 ** database connection. 340 */ 341 void sqlite3VtabClear(sqlite3 *db, Table *p){ 342 assert( IsVirtual(p) ); 343 assert( db!=0 ); 344 if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 345 if( p->u.vtab.azArg ){ 346 int i; 347 for(i=0; i<p->u.vtab.nArg; i++){ 348 if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); 349 } 350 sqlite3DbFree(db, p->u.vtab.azArg); 351 } 352 } 353 354 /* 355 ** Add a new module argument to pTable->u.vtab.azArg[]. 356 ** The string is not copied - the pointer is stored. The 357 ** string will be freed automatically when the table is 358 ** deleted. 359 */ 360 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ 361 sqlite3_int64 nBytes; 362 char **azModuleArg; 363 sqlite3 *db = pParse->db; 364 365 assert( IsVirtual(pTable) ); 366 nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg); 367 if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ 368 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); 369 } 370 azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes); 371 if( azModuleArg==0 ){ 372 sqlite3DbFree(db, zArg); 373 }else{ 374 int i = pTable->u.vtab.nArg++; 375 azModuleArg[i] = zArg; 376 azModuleArg[i+1] = 0; 377 pTable->u.vtab.azArg = azModuleArg; 378 } 379 } 380 381 /* 382 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 383 ** statement. The module name has been parsed, but the optional list 384 ** of parameters that follow the module name are still pending. 385 */ 386 void sqlite3VtabBeginParse( 387 Parse *pParse, /* Parsing context */ 388 Token *pName1, /* Name of new table, or database name */ 389 Token *pName2, /* Name of new table or NULL */ 390 Token *pModuleName, /* Name of the module for the virtual table */ 391 int ifNotExists /* No error if the table already exists */ 392 ){ 393 Table *pTable; /* The new virtual table */ 394 sqlite3 *db; /* Database connection */ 395 396 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 397 pTable = pParse->pNewTable; 398 if( pTable==0 ) return; 399 assert( 0==pTable->pIndex ); 400 pTable->eTabType = TABTYP_VTAB; 401 402 db = pParse->db; 403 404 assert( pTable->u.vtab.nArg==0 ); 405 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); 406 addModuleArgument(pParse, pTable, 0); 407 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); 408 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 409 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 410 ); 411 pParse->sNameToken.n = (int)( 412 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 413 ); 414 415 #ifndef SQLITE_OMIT_AUTHORIZATION 416 /* Creating a virtual table invokes the authorization callback twice. 417 ** The first invocation, to obtain permission to INSERT a row into the 418 ** sqlite_schema table, has already been made by sqlite3StartTable(). 419 ** The second call, to obtain permission to create the table, is made now. 420 */ 421 if( pTable->u.vtab.azArg ){ 422 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 423 assert( iDb>=0 ); /* The database the table is being created in */ 424 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 425 pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName); 426 } 427 #endif 428 } 429 430 /* 431 ** This routine takes the module argument that has been accumulating 432 ** in pParse->zArg[] and appends it to the list of arguments on the 433 ** virtual table currently under construction in pParse->pTable. 434 */ 435 static void addArgumentToVtab(Parse *pParse){ 436 if( pParse->sArg.z && pParse->pNewTable ){ 437 const char *z = (const char*)pParse->sArg.z; 438 int n = pParse->sArg.n; 439 sqlite3 *db = pParse->db; 440 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 441 } 442 } 443 444 /* 445 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 446 ** has been completely parsed. 447 */ 448 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 449 Table *pTab = pParse->pNewTable; /* The table being constructed */ 450 sqlite3 *db = pParse->db; /* The database connection */ 451 452 if( pTab==0 ) return; 453 assert( IsVirtual(pTab) ); 454 addArgumentToVtab(pParse); 455 pParse->sArg.z = 0; 456 if( pTab->u.vtab.nArg<1 ) return; 457 458 /* If the CREATE VIRTUAL TABLE statement is being entered for the 459 ** first time (in other words if the virtual table is actually being 460 ** created now instead of just being read out of sqlite_schema) then 461 ** do additional initialization work and store the statement text 462 ** in the sqlite_schema table. 463 */ 464 if( !db->init.busy ){ 465 char *zStmt; 466 char *zWhere; 467 int iDb; 468 int iReg; 469 Vdbe *v; 470 471 sqlite3MayAbort(pParse); 472 473 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 474 if( pEnd ){ 475 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 476 } 477 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 478 479 /* A slot for the record has already been allocated in the 480 ** schema table. We just need to update that slot with all 481 ** the information we've collected. 482 ** 483 ** The VM register number pParse->regRowid holds the rowid of an 484 ** entry in the sqlite_schema table tht was created for this vtab 485 ** by sqlite3StartTable(). 486 */ 487 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 488 sqlite3NestedParse(pParse, 489 "UPDATE %Q." LEGACY_SCHEMA_TABLE " " 490 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 491 "WHERE rowid=#%d", 492 db->aDb[iDb].zDbSName, 493 pTab->zName, 494 pTab->zName, 495 zStmt, 496 pParse->regRowid 497 ); 498 v = sqlite3GetVdbe(pParse); 499 sqlite3ChangeCookie(pParse, iDb); 500 501 sqlite3VdbeAddOp0(v, OP_Expire); 502 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt); 503 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0); 504 sqlite3DbFree(db, zStmt); 505 506 iReg = ++pParse->nMem; 507 sqlite3VdbeLoadString(v, iReg, pTab->zName); 508 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 509 }else{ 510 /* If we are rereading the sqlite_schema table create the in-memory 511 ** record of the table. */ 512 Table *pOld; 513 Schema *pSchema = pTab->pSchema; 514 const char *zName = pTab->zName; 515 assert( zName!=0 ); 516 sqlite3MarkAllShadowTablesOf(db, pTab); 517 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 518 if( pOld ){ 519 sqlite3OomFault(db); 520 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 521 return; 522 } 523 pParse->pNewTable = 0; 524 } 525 } 526 527 /* 528 ** The parser calls this routine when it sees the first token 529 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 530 */ 531 void sqlite3VtabArgInit(Parse *pParse){ 532 addArgumentToVtab(pParse); 533 pParse->sArg.z = 0; 534 pParse->sArg.n = 0; 535 } 536 537 /* 538 ** The parser calls this routine for each token after the first token 539 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 540 */ 541 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 542 Token *pArg = &pParse->sArg; 543 if( pArg->z==0 ){ 544 pArg->z = p->z; 545 pArg->n = p->n; 546 }else{ 547 assert(pArg->z <= p->z); 548 pArg->n = (int)(&p->z[p->n] - pArg->z); 549 } 550 } 551 552 /* 553 ** Invoke a virtual table constructor (either xCreate or xConnect). The 554 ** pointer to the function to invoke is passed as the fourth parameter 555 ** to this procedure. 556 */ 557 static int vtabCallConstructor( 558 sqlite3 *db, 559 Table *pTab, 560 Module *pMod, 561 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 562 char **pzErr 563 ){ 564 VtabCtx sCtx; 565 VTable *pVTable; 566 int rc; 567 const char *const*azArg; 568 int nArg = pTab->u.vtab.nArg; 569 char *zErr = 0; 570 char *zModuleName; 571 int iDb; 572 VtabCtx *pCtx; 573 574 assert( IsVirtual(pTab) ); 575 azArg = (const char *const*)pTab->u.vtab.azArg; 576 577 /* Check that the virtual-table is not already being initialized */ 578 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 579 if( pCtx->pTab==pTab ){ 580 *pzErr = sqlite3MPrintf(db, 581 "vtable constructor called recursively: %s", pTab->zName 582 ); 583 return SQLITE_LOCKED; 584 } 585 } 586 587 zModuleName = sqlite3DbStrDup(db, pTab->zName); 588 if( !zModuleName ){ 589 return SQLITE_NOMEM_BKPT; 590 } 591 592 pVTable = sqlite3MallocZero(sizeof(VTable)); 593 if( !pVTable ){ 594 sqlite3OomFault(db); 595 sqlite3DbFree(db, zModuleName); 596 return SQLITE_NOMEM_BKPT; 597 } 598 pVTable->db = db; 599 pVTable->pMod = pMod; 600 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal; 601 602 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 603 pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName; 604 605 /* Invoke the virtual table constructor */ 606 assert( &db->pVtabCtx ); 607 assert( xConstruct ); 608 sCtx.pTab = pTab; 609 sCtx.pVTable = pVTable; 610 sCtx.pPrior = db->pVtabCtx; 611 sCtx.bDeclared = 0; 612 db->pVtabCtx = &sCtx; 613 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 614 db->pVtabCtx = sCtx.pPrior; 615 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 616 assert( sCtx.pTab==pTab ); 617 618 if( SQLITE_OK!=rc ){ 619 if( zErr==0 ){ 620 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 621 }else { 622 *pzErr = sqlite3MPrintf(db, "%s", zErr); 623 sqlite3_free(zErr); 624 } 625 sqlite3DbFree(db, pVTable); 626 }else if( ALWAYS(pVTable->pVtab) ){ 627 /* Justification of ALWAYS(): A correct vtab constructor must allocate 628 ** the sqlite3_vtab object if successful. */ 629 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 630 pVTable->pVtab->pModule = pMod->pModule; 631 pMod->nRefModule++; 632 pVTable->nRef = 1; 633 if( sCtx.bDeclared==0 ){ 634 const char *zFormat = "vtable constructor did not declare schema: %s"; 635 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 636 sqlite3VtabUnlock(pVTable); 637 rc = SQLITE_ERROR; 638 }else{ 639 int iCol; 640 u16 oooHidden = 0; 641 /* If everything went according to plan, link the new VTable structure 642 ** into the linked list headed by pTab->u.vtab.p. Then loop through the 643 ** columns of the table to see if any of them contain the token "hidden". 644 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 645 ** the type string. */ 646 pVTable->pNext = pTab->u.vtab.p; 647 pTab->u.vtab.p = pVTable; 648 649 for(iCol=0; iCol<pTab->nCol; iCol++){ 650 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 651 int nType; 652 int i = 0; 653 nType = sqlite3Strlen30(zType); 654 for(i=0; i<nType; i++){ 655 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 656 && (i==0 || zType[i-1]==' ') 657 && (zType[i+6]=='\0' || zType[i+6]==' ') 658 ){ 659 break; 660 } 661 } 662 if( i<nType ){ 663 int j; 664 int nDel = 6 + (zType[i+6] ? 1 : 0); 665 for(j=i; (j+nDel)<=nType; j++){ 666 zType[j] = zType[j+nDel]; 667 } 668 if( zType[i]=='\0' && i>0 ){ 669 assert(zType[i-1]==' '); 670 zType[i-1] = '\0'; 671 } 672 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 673 pTab->tabFlags |= TF_HasHidden; 674 oooHidden = TF_OOOHidden; 675 }else{ 676 pTab->tabFlags |= oooHidden; 677 } 678 } 679 } 680 } 681 682 sqlite3DbFree(db, zModuleName); 683 return rc; 684 } 685 686 /* 687 ** This function is invoked by the parser to call the xConnect() method 688 ** of the virtual table pTab. If an error occurs, an error code is returned 689 ** and an error left in pParse. 690 ** 691 ** This call is a no-op if table pTab is not a virtual table. 692 */ 693 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 694 sqlite3 *db = pParse->db; 695 const char *zMod; 696 Module *pMod; 697 int rc; 698 699 assert( pTab ); 700 assert( IsVirtual(pTab) ); 701 if( sqlite3GetVTable(db, pTab) ){ 702 return SQLITE_OK; 703 } 704 705 /* Locate the required virtual table module */ 706 zMod = pTab->u.vtab.azArg[0]; 707 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 708 709 if( !pMod ){ 710 const char *zModule = pTab->u.vtab.azArg[0]; 711 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 712 rc = SQLITE_ERROR; 713 }else{ 714 char *zErr = 0; 715 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 716 if( rc!=SQLITE_OK ){ 717 sqlite3ErrorMsg(pParse, "%s", zErr); 718 pParse->rc = rc; 719 } 720 sqlite3DbFree(db, zErr); 721 } 722 723 return rc; 724 } 725 /* 726 ** Grow the db->aVTrans[] array so that there is room for at least one 727 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 728 */ 729 static int growVTrans(sqlite3 *db){ 730 const int ARRAY_INCR = 5; 731 732 /* Grow the sqlite3.aVTrans array if required */ 733 if( (db->nVTrans%ARRAY_INCR)==0 ){ 734 VTable **aVTrans; 735 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* 736 ((sqlite3_int64)db->nVTrans + ARRAY_INCR); 737 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 738 if( !aVTrans ){ 739 return SQLITE_NOMEM_BKPT; 740 } 741 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 742 db->aVTrans = aVTrans; 743 } 744 745 return SQLITE_OK; 746 } 747 748 /* 749 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 750 ** have already been reserved using growVTrans(). 751 */ 752 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 753 /* Add pVtab to the end of sqlite3.aVTrans */ 754 db->aVTrans[db->nVTrans++] = pVTab; 755 sqlite3VtabLock(pVTab); 756 } 757 758 /* 759 ** This function is invoked by the vdbe to call the xCreate method 760 ** of the virtual table named zTab in database iDb. 761 ** 762 ** If an error occurs, *pzErr is set to point to an English language 763 ** description of the error and an SQLITE_XXX error code is returned. 764 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 765 */ 766 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 767 int rc = SQLITE_OK; 768 Table *pTab; 769 Module *pMod; 770 const char *zMod; 771 772 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 773 assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p ); 774 775 /* Locate the required virtual table module */ 776 zMod = pTab->u.vtab.azArg[0]; 777 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 778 779 /* If the module has been registered and includes a Create method, 780 ** invoke it now. If the module has not been registered, return an 781 ** error. Otherwise, do nothing. 782 */ 783 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 784 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 785 rc = SQLITE_ERROR; 786 }else{ 787 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 788 } 789 790 /* Justification of ALWAYS(): The xConstructor method is required to 791 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 792 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 793 rc = growVTrans(db); 794 if( rc==SQLITE_OK ){ 795 addToVTrans(db, sqlite3GetVTable(db, pTab)); 796 } 797 } 798 799 return rc; 800 } 801 802 /* 803 ** This function is used to set the schema of a virtual table. It is only 804 ** valid to call this function from within the xCreate() or xConnect() of a 805 ** virtual table module. 806 */ 807 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 808 VtabCtx *pCtx; 809 int rc = SQLITE_OK; 810 Table *pTab; 811 Parse sParse; 812 int initBusy; 813 814 #ifdef SQLITE_ENABLE_API_ARMOR 815 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 816 return SQLITE_MISUSE_BKPT; 817 } 818 #endif 819 sqlite3_mutex_enter(db->mutex); 820 pCtx = db->pVtabCtx; 821 if( !pCtx || pCtx->bDeclared ){ 822 sqlite3Error(db, SQLITE_MISUSE); 823 sqlite3_mutex_leave(db->mutex); 824 return SQLITE_MISUSE_BKPT; 825 } 826 pTab = pCtx->pTab; 827 assert( IsVirtual(pTab) ); 828 829 sqlite3ParseObjectInit(&sParse, db); 830 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; 831 sParse.disableTriggers = 1; 832 /* We should never be able to reach this point while loading the 833 ** schema. Nevertheless, defend against that (turn off db->init.busy) 834 ** in case a bug arises. */ 835 assert( db->init.busy==0 ); 836 initBusy = db->init.busy; 837 db->init.busy = 0; 838 sParse.nQueryLoop = 1; 839 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable) 840 && ALWAYS(sParse.pNewTable!=0) 841 && ALWAYS(!db->mallocFailed) 842 && IsOrdinaryTable(sParse.pNewTable) 843 ){ 844 assert( sParse.zErrMsg==0 ); 845 if( !pTab->aCol ){ 846 Table *pNew = sParse.pNewTable; 847 Index *pIdx; 848 pTab->aCol = pNew->aCol; 849 sqlite3ExprListDelete(db, pNew->u.tab.pDfltList); 850 pTab->nNVCol = pTab->nCol = pNew->nCol; 851 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 852 pNew->nCol = 0; 853 pNew->aCol = 0; 854 assert( pTab->pIndex==0 ); 855 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); 856 if( !HasRowid(pNew) 857 && pCtx->pVTable->pMod->pModule->xUpdate!=0 858 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 859 ){ 860 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) 861 ** or else must have a single-column PRIMARY KEY */ 862 rc = SQLITE_ERROR; 863 } 864 pIdx = pNew->pIndex; 865 if( pIdx ){ 866 assert( pIdx->pNext==0 ); 867 pTab->pIndex = pIdx; 868 pNew->pIndex = 0; 869 pIdx->pTable = pTab; 870 } 871 } 872 pCtx->bDeclared = 1; 873 }else{ 874 sqlite3ErrorWithMsg(db, SQLITE_ERROR, 875 (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg); 876 sqlite3DbFree(db, sParse.zErrMsg); 877 rc = SQLITE_ERROR; 878 } 879 sParse.eParseMode = PARSE_MODE_NORMAL; 880 881 if( sParse.pVdbe ){ 882 sqlite3VdbeFinalize(sParse.pVdbe); 883 } 884 sqlite3DeleteTable(db, sParse.pNewTable); 885 sqlite3ParseObjectReset(&sParse); 886 db->init.busy = initBusy; 887 888 assert( (rc&0xff)==rc ); 889 rc = sqlite3ApiExit(db, rc); 890 sqlite3_mutex_leave(db->mutex); 891 return rc; 892 } 893 894 /* 895 ** This function is invoked by the vdbe to call the xDestroy method 896 ** of the virtual table named zTab in database iDb. This occurs 897 ** when a DROP TABLE is mentioned. 898 ** 899 ** This call is a no-op if zTab is not a virtual table. 900 */ 901 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 902 int rc = SQLITE_OK; 903 Table *pTab; 904 905 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 906 if( ALWAYS(pTab!=0) 907 && ALWAYS(IsVirtual(pTab)) 908 && ALWAYS(pTab->u.vtab.p!=0) 909 ){ 910 VTable *p; 911 int (*xDestroy)(sqlite3_vtab *); 912 for(p=pTab->u.vtab.p; p; p=p->pNext){ 913 assert( p->pVtab ); 914 if( p->pVtab->nRef>0 ){ 915 return SQLITE_LOCKED; 916 } 917 } 918 p = vtabDisconnectAll(db, pTab); 919 xDestroy = p->pMod->pModule->xDestroy; 920 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect; 921 assert( xDestroy!=0 ); 922 pTab->nTabRef++; 923 rc = xDestroy(p->pVtab); 924 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 925 if( rc==SQLITE_OK ){ 926 assert( pTab->u.vtab.p==p && p->pNext==0 ); 927 p->pVtab = 0; 928 pTab->u.vtab.p = 0; 929 sqlite3VtabUnlock(p); 930 } 931 sqlite3DeleteTable(db, pTab); 932 } 933 934 return rc; 935 } 936 937 /* 938 ** This function invokes either the xRollback or xCommit method 939 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 940 ** called is identified by the second argument, "offset", which is 941 ** the offset of the method to call in the sqlite3_module structure. 942 ** 943 ** The array is cleared after invoking the callbacks. 944 */ 945 static void callFinaliser(sqlite3 *db, int offset){ 946 int i; 947 if( db->aVTrans ){ 948 VTable **aVTrans = db->aVTrans; 949 db->aVTrans = 0; 950 for(i=0; i<db->nVTrans; i++){ 951 VTable *pVTab = aVTrans[i]; 952 sqlite3_vtab *p = pVTab->pVtab; 953 if( p ){ 954 int (*x)(sqlite3_vtab *); 955 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 956 if( x ) x(p); 957 } 958 pVTab->iSavepoint = 0; 959 sqlite3VtabUnlock(pVTab); 960 } 961 sqlite3DbFree(db, aVTrans); 962 db->nVTrans = 0; 963 } 964 } 965 966 /* 967 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 968 ** array. Return the error code for the first error that occurs, or 969 ** SQLITE_OK if all xSync operations are successful. 970 ** 971 ** If an error message is available, leave it in p->zErrMsg. 972 */ 973 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 974 int i; 975 int rc = SQLITE_OK; 976 VTable **aVTrans = db->aVTrans; 977 978 db->aVTrans = 0; 979 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 980 int (*x)(sqlite3_vtab *); 981 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 982 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 983 rc = x(pVtab); 984 sqlite3VtabImportErrmsg(p, pVtab); 985 } 986 } 987 db->aVTrans = aVTrans; 988 return rc; 989 } 990 991 /* 992 ** Invoke the xRollback method of all virtual tables in the 993 ** sqlite3.aVTrans array. Then clear the array itself. 994 */ 995 int sqlite3VtabRollback(sqlite3 *db){ 996 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 997 return SQLITE_OK; 998 } 999 1000 /* 1001 ** Invoke the xCommit method of all virtual tables in the 1002 ** sqlite3.aVTrans array. Then clear the array itself. 1003 */ 1004 int sqlite3VtabCommit(sqlite3 *db){ 1005 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 1006 return SQLITE_OK; 1007 } 1008 1009 /* 1010 ** If the virtual table pVtab supports the transaction interface 1011 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 1012 ** not currently open, invoke the xBegin method now. 1013 ** 1014 ** If the xBegin call is successful, place the sqlite3_vtab pointer 1015 ** in the sqlite3.aVTrans array. 1016 */ 1017 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 1018 int rc = SQLITE_OK; 1019 const sqlite3_module *pModule; 1020 1021 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 1022 ** than zero, then this function is being called from within a 1023 ** virtual module xSync() callback. It is illegal to write to 1024 ** virtual module tables in this case, so return SQLITE_LOCKED. 1025 */ 1026 if( sqlite3VtabInSync(db) ){ 1027 return SQLITE_LOCKED; 1028 } 1029 if( !pVTab ){ 1030 return SQLITE_OK; 1031 } 1032 pModule = pVTab->pVtab->pModule; 1033 1034 if( pModule->xBegin ){ 1035 int i; 1036 1037 /* If pVtab is already in the aVTrans array, return early */ 1038 for(i=0; i<db->nVTrans; i++){ 1039 if( db->aVTrans[i]==pVTab ){ 1040 return SQLITE_OK; 1041 } 1042 } 1043 1044 /* Invoke the xBegin method. If successful, add the vtab to the 1045 ** sqlite3.aVTrans[] array. */ 1046 rc = growVTrans(db); 1047 if( rc==SQLITE_OK ){ 1048 rc = pModule->xBegin(pVTab->pVtab); 1049 if( rc==SQLITE_OK ){ 1050 int iSvpt = db->nStatement + db->nSavepoint; 1051 addToVTrans(db, pVTab); 1052 if( iSvpt && pModule->xSavepoint ){ 1053 pVTab->iSavepoint = iSvpt; 1054 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 1055 } 1056 } 1057 } 1058 } 1059 return rc; 1060 } 1061 1062 /* 1063 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 1064 ** virtual tables that currently have an open transaction. Pass iSavepoint 1065 ** as the second argument to the virtual table method invoked. 1066 ** 1067 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 1068 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 1069 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 1070 ** an open transaction is invoked. 1071 ** 1072 ** If any virtual table method returns an error code other than SQLITE_OK, 1073 ** processing is abandoned and the error returned to the caller of this 1074 ** function immediately. If all calls to virtual table methods are successful, 1075 ** SQLITE_OK is returned. 1076 */ 1077 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 1078 int rc = SQLITE_OK; 1079 1080 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 1081 assert( iSavepoint>=-1 ); 1082 if( db->aVTrans ){ 1083 int i; 1084 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 1085 VTable *pVTab = db->aVTrans[i]; 1086 const sqlite3_module *pMod = pVTab->pMod->pModule; 1087 if( pVTab->pVtab && pMod->iVersion>=2 ){ 1088 int (*xMethod)(sqlite3_vtab *, int); 1089 sqlite3VtabLock(pVTab); 1090 switch( op ){ 1091 case SAVEPOINT_BEGIN: 1092 xMethod = pMod->xSavepoint; 1093 pVTab->iSavepoint = iSavepoint+1; 1094 break; 1095 case SAVEPOINT_ROLLBACK: 1096 xMethod = pMod->xRollbackTo; 1097 break; 1098 default: 1099 xMethod = pMod->xRelease; 1100 break; 1101 } 1102 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1103 rc = xMethod(pVTab->pVtab, iSavepoint); 1104 } 1105 sqlite3VtabUnlock(pVTab); 1106 } 1107 } 1108 } 1109 return rc; 1110 } 1111 1112 /* 1113 ** The first parameter (pDef) is a function implementation. The 1114 ** second parameter (pExpr) is the first argument to this function. 1115 ** If pExpr is a column in a virtual table, then let the virtual 1116 ** table implementation have an opportunity to overload the function. 1117 ** 1118 ** This routine is used to allow virtual table implementations to 1119 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1120 ** 1121 ** Return either the pDef argument (indicating no change) or a 1122 ** new FuncDef structure that is marked as ephemeral using the 1123 ** SQLITE_FUNC_EPHEM flag. 1124 */ 1125 FuncDef *sqlite3VtabOverloadFunction( 1126 sqlite3 *db, /* Database connection for reporting malloc problems */ 1127 FuncDef *pDef, /* Function to possibly overload */ 1128 int nArg, /* Number of arguments to the function */ 1129 Expr *pExpr /* First argument to the function */ 1130 ){ 1131 Table *pTab; 1132 sqlite3_vtab *pVtab; 1133 sqlite3_module *pMod; 1134 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1135 void *pArg = 0; 1136 FuncDef *pNew; 1137 int rc = 0; 1138 1139 /* Check to see the left operand is a column in a virtual table */ 1140 if( NEVER(pExpr==0) ) return pDef; 1141 if( pExpr->op!=TK_COLUMN ) return pDef; 1142 assert( ExprUseYTab(pExpr) ); 1143 pTab = pExpr->y.pTab; 1144 if( pTab==0 ) return pDef; 1145 if( !IsVirtual(pTab) ) return pDef; 1146 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1147 assert( pVtab!=0 ); 1148 assert( pVtab->pModule!=0 ); 1149 pMod = (sqlite3_module *)pVtab->pModule; 1150 if( pMod->xFindFunction==0 ) return pDef; 1151 1152 /* Call the xFindFunction method on the virtual table implementation 1153 ** to see if the implementation wants to overload this function. 1154 ** 1155 ** Though undocumented, we have historically always invoked xFindFunction 1156 ** with an all lower-case function name. Continue in this tradition to 1157 ** avoid any chance of an incompatibility. 1158 */ 1159 #ifdef SQLITE_DEBUG 1160 { 1161 int i; 1162 for(i=0; pDef->zName[i]; i++){ 1163 unsigned char x = (unsigned char)pDef->zName[i]; 1164 assert( x==sqlite3UpperToLower[x] ); 1165 } 1166 } 1167 #endif 1168 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); 1169 if( rc==0 ){ 1170 return pDef; 1171 } 1172 1173 /* Create a new ephemeral function definition for the overloaded 1174 ** function */ 1175 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1176 + sqlite3Strlen30(pDef->zName) + 1); 1177 if( pNew==0 ){ 1178 return pDef; 1179 } 1180 *pNew = *pDef; 1181 pNew->zName = (const char*)&pNew[1]; 1182 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1183 pNew->xSFunc = xSFunc; 1184 pNew->pUserData = pArg; 1185 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1186 return pNew; 1187 } 1188 1189 /* 1190 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1191 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1192 ** array if it is missing. If pTab is already in the array, this routine 1193 ** is a no-op. 1194 */ 1195 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1196 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1197 int i, n; 1198 Table **apVtabLock; 1199 1200 assert( IsVirtual(pTab) ); 1201 for(i=0; i<pToplevel->nVtabLock; i++){ 1202 if( pTab==pToplevel->apVtabLock[i] ) return; 1203 } 1204 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1205 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n); 1206 if( apVtabLock ){ 1207 pToplevel->apVtabLock = apVtabLock; 1208 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1209 }else{ 1210 sqlite3OomFault(pToplevel->db); 1211 } 1212 } 1213 1214 /* 1215 ** Check to see if virtual table module pMod can be have an eponymous 1216 ** virtual table instance. If it can, create one if one does not already 1217 ** exist. Return non-zero if either the eponymous virtual table instance 1218 ** exists when this routine returns or if an attempt to create it failed 1219 ** and an error message was left in pParse. 1220 ** 1221 ** An eponymous virtual table instance is one that is named after its 1222 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1223 ** statement in order to come into existance. Eponymous virtual table 1224 ** instances always exist. They cannot be DROP-ed. 1225 ** 1226 ** Any virtual table module for which xConnect and xCreate are the same 1227 ** method can have an eponymous virtual table instance. 1228 */ 1229 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1230 const sqlite3_module *pModule = pMod->pModule; 1231 Table *pTab; 1232 char *zErr = 0; 1233 int rc; 1234 sqlite3 *db = pParse->db; 1235 if( pMod->pEpoTab ) return 1; 1236 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1237 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1238 if( pTab==0 ) return 0; 1239 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1240 if( pTab->zName==0 ){ 1241 sqlite3DbFree(db, pTab); 1242 return 0; 1243 } 1244 pMod->pEpoTab = pTab; 1245 pTab->nTabRef = 1; 1246 pTab->eTabType = TABTYP_VTAB; 1247 pTab->pSchema = db->aDb[0].pSchema; 1248 assert( pTab->u.vtab.nArg==0 ); 1249 pTab->iPKey = -1; 1250 pTab->tabFlags |= TF_Eponymous; 1251 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1252 addModuleArgument(pParse, pTab, 0); 1253 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); 1254 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1255 if( rc ){ 1256 sqlite3ErrorMsg(pParse, "%s", zErr); 1257 sqlite3DbFree(db, zErr); 1258 sqlite3VtabEponymousTableClear(db, pMod); 1259 } 1260 return 1; 1261 } 1262 1263 /* 1264 ** Erase the eponymous virtual table instance associated with 1265 ** virtual table module pMod, if it exists. 1266 */ 1267 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1268 Table *pTab = pMod->pEpoTab; 1269 if( pTab!=0 ){ 1270 /* Mark the table as Ephemeral prior to deleting it, so that the 1271 ** sqlite3DeleteTable() routine will know that it is not stored in 1272 ** the schema. */ 1273 pTab->tabFlags |= TF_Ephemeral; 1274 sqlite3DeleteTable(db, pTab); 1275 pMod->pEpoTab = 0; 1276 } 1277 } 1278 1279 /* 1280 ** Return the ON CONFLICT resolution mode in effect for the virtual 1281 ** table update operation currently in progress. 1282 ** 1283 ** The results of this routine are undefined unless it is called from 1284 ** within an xUpdate method. 1285 */ 1286 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1287 static const unsigned char aMap[] = { 1288 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1289 }; 1290 #ifdef SQLITE_ENABLE_API_ARMOR 1291 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1292 #endif 1293 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1294 assert( OE_Ignore==4 && OE_Replace==5 ); 1295 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1296 return (int)aMap[db->vtabOnConflict-1]; 1297 } 1298 1299 /* 1300 ** Call from within the xCreate() or xConnect() methods to provide 1301 ** the SQLite core with additional information about the behavior 1302 ** of the virtual table being implemented. 1303 */ 1304 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1305 va_list ap; 1306 int rc = SQLITE_OK; 1307 VtabCtx *p; 1308 1309 #ifdef SQLITE_ENABLE_API_ARMOR 1310 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1311 #endif 1312 sqlite3_mutex_enter(db->mutex); 1313 p = db->pVtabCtx; 1314 if( !p ){ 1315 rc = SQLITE_MISUSE_BKPT; 1316 }else{ 1317 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1318 va_start(ap, op); 1319 switch( op ){ 1320 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1321 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1322 break; 1323 } 1324 case SQLITE_VTAB_INNOCUOUS: { 1325 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low; 1326 break; 1327 } 1328 case SQLITE_VTAB_DIRECTONLY: { 1329 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High; 1330 break; 1331 } 1332 default: { 1333 rc = SQLITE_MISUSE_BKPT; 1334 break; 1335 } 1336 } 1337 va_end(ap); 1338 } 1339 1340 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1341 sqlite3_mutex_leave(db->mutex); 1342 return rc; 1343 } 1344 1345 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1346