xref: /sqlite-3.40.0/src/vtab.c (revision 45f31be8)
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
13 */
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
16 
17 /*
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
23 */
24 struct VtabCtx {
25   VTable *pVTable;    /* The virtual table being constructed */
26   Table *pTab;        /* The Table object to which the virtual table belongs */
27   VtabCtx *pPrior;    /* Parent context (if any) */
28   int bDeclared;      /* True after sqlite3_declare_vtab() is called */
29 };
30 
31 /*
32 ** The actual function that does the work of creating a new module.
33 ** This function implements the sqlite3_create_module() and
34 ** sqlite3_create_module_v2() interfaces.
35 */
36 static int createModule(
37   sqlite3 *db,                    /* Database in which module is registered */
38   const char *zName,              /* Name assigned to this module */
39   const sqlite3_module *pModule,  /* The definition of the module */
40   void *pAux,                     /* Context pointer for xCreate/xConnect */
41   void (*xDestroy)(void *)        /* Module destructor function */
42 ){
43   int rc = SQLITE_OK;
44   int nName;
45 
46   sqlite3_mutex_enter(db->mutex);
47   nName = sqlite3Strlen30(zName);
48   if( sqlite3HashFind(&db->aModule, zName) ){
49     rc = SQLITE_MISUSE_BKPT;
50   }else{
51     Module *pMod;
52     pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1);
53     if( pMod ){
54       Module *pDel;
55       char *zCopy = (char *)(&pMod[1]);
56       memcpy(zCopy, zName, nName+1);
57       pMod->zName = zCopy;
58       pMod->pModule = pModule;
59       pMod->pAux = pAux;
60       pMod->xDestroy = xDestroy;
61       pMod->pEpoTab = 0;
62       pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
63       assert( pDel==0 || pDel==pMod );
64       if( pDel ){
65         sqlite3OomFault(db);
66         sqlite3DbFree(db, pDel);
67       }
68     }
69   }
70   rc = sqlite3ApiExit(db, rc);
71   if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
72 
73   sqlite3_mutex_leave(db->mutex);
74   return rc;
75 }
76 
77 
78 /*
79 ** External API function used to create a new virtual-table module.
80 */
81 int sqlite3_create_module(
82   sqlite3 *db,                    /* Database in which module is registered */
83   const char *zName,              /* Name assigned to this module */
84   const sqlite3_module *pModule,  /* The definition of the module */
85   void *pAux                      /* Context pointer for xCreate/xConnect */
86 ){
87 #ifdef SQLITE_ENABLE_API_ARMOR
88   if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
89 #endif
90   return createModule(db, zName, pModule, pAux, 0);
91 }
92 
93 /*
94 ** External API function used to create a new virtual-table module.
95 */
96 int sqlite3_create_module_v2(
97   sqlite3 *db,                    /* Database in which module is registered */
98   const char *zName,              /* Name assigned to this module */
99   const sqlite3_module *pModule,  /* The definition of the module */
100   void *pAux,                     /* Context pointer for xCreate/xConnect */
101   void (*xDestroy)(void *)        /* Module destructor function */
102 ){
103 #ifdef SQLITE_ENABLE_API_ARMOR
104   if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
105 #endif
106   return createModule(db, zName, pModule, pAux, xDestroy);
107 }
108 
109 /*
110 ** Lock the virtual table so that it cannot be disconnected.
111 ** Locks nest.  Every lock should have a corresponding unlock.
112 ** If an unlock is omitted, resources leaks will occur.
113 **
114 ** If a disconnect is attempted while a virtual table is locked,
115 ** the disconnect is deferred until all locks have been removed.
116 */
117 void sqlite3VtabLock(VTable *pVTab){
118   pVTab->nRef++;
119 }
120 
121 
122 /*
123 ** pTab is a pointer to a Table structure representing a virtual-table.
124 ** Return a pointer to the VTable object used by connection db to access
125 ** this virtual-table, if one has been created, or NULL otherwise.
126 */
127 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
128   VTable *pVtab;
129   assert( IsVirtual(pTab) );
130   for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
131   return pVtab;
132 }
133 
134 /*
135 ** Decrement the ref-count on a virtual table object. When the ref-count
136 ** reaches zero, call the xDisconnect() method to delete the object.
137 */
138 void sqlite3VtabUnlock(VTable *pVTab){
139   sqlite3 *db = pVTab->db;
140 
141   assert( db );
142   assert( pVTab->nRef>0 );
143   assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
144 
145   pVTab->nRef--;
146   if( pVTab->nRef==0 ){
147     sqlite3_vtab *p = pVTab->pVtab;
148     if( p ){
149       p->pModule->xDisconnect(p);
150     }
151     sqlite3DbFree(db, pVTab);
152   }
153 }
154 
155 /*
156 ** Table p is a virtual table. This function moves all elements in the
157 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
158 ** database connections to be disconnected at the next opportunity.
159 ** Except, if argument db is not NULL, then the entry associated with
160 ** connection db is left in the p->pVTable list.
161 */
162 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
163   VTable *pRet = 0;
164   VTable *pVTable = p->pVTable;
165   p->pVTable = 0;
166 
167   /* Assert that the mutex (if any) associated with the BtShared database
168   ** that contains table p is held by the caller. See header comments
169   ** above function sqlite3VtabUnlockList() for an explanation of why
170   ** this makes it safe to access the sqlite3.pDisconnect list of any
171   ** database connection that may have an entry in the p->pVTable list.
172   */
173   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
174 
175   while( pVTable ){
176     sqlite3 *db2 = pVTable->db;
177     VTable *pNext = pVTable->pNext;
178     assert( db2 );
179     if( db2==db ){
180       pRet = pVTable;
181       p->pVTable = pRet;
182       pRet->pNext = 0;
183     }else{
184       pVTable->pNext = db2->pDisconnect;
185       db2->pDisconnect = pVTable;
186     }
187     pVTable = pNext;
188   }
189 
190   assert( !db || pRet );
191   return pRet;
192 }
193 
194 /*
195 ** Table *p is a virtual table. This function removes the VTable object
196 ** for table *p associated with database connection db from the linked
197 ** list in p->pVTab. It also decrements the VTable ref count. This is
198 ** used when closing database connection db to free all of its VTable
199 ** objects without disturbing the rest of the Schema object (which may
200 ** be being used by other shared-cache connections).
201 */
202 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
203   VTable **ppVTab;
204 
205   assert( IsVirtual(p) );
206   assert( sqlite3BtreeHoldsAllMutexes(db) );
207   assert( sqlite3_mutex_held(db->mutex) );
208 
209   for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
210     if( (*ppVTab)->db==db  ){
211       VTable *pVTab = *ppVTab;
212       *ppVTab = pVTab->pNext;
213       sqlite3VtabUnlock(pVTab);
214       break;
215     }
216   }
217 }
218 
219 
220 /*
221 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
222 **
223 ** This function may only be called when the mutexes associated with all
224 ** shared b-tree databases opened using connection db are held by the
225 ** caller. This is done to protect the sqlite3.pDisconnect list. The
226 ** sqlite3.pDisconnect list is accessed only as follows:
227 **
228 **   1) By this function. In this case, all BtShared mutexes and the mutex
229 **      associated with the database handle itself must be held.
230 **
231 **   2) By function vtabDisconnectAll(), when it adds a VTable entry to
232 **      the sqlite3.pDisconnect list. In this case either the BtShared mutex
233 **      associated with the database the virtual table is stored in is held
234 **      or, if the virtual table is stored in a non-sharable database, then
235 **      the database handle mutex is held.
236 **
237 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
238 ** by multiple threads. It is thread-safe.
239 */
240 void sqlite3VtabUnlockList(sqlite3 *db){
241   VTable *p = db->pDisconnect;
242   db->pDisconnect = 0;
243 
244   assert( sqlite3BtreeHoldsAllMutexes(db) );
245   assert( sqlite3_mutex_held(db->mutex) );
246 
247   if( p ){
248     sqlite3ExpirePreparedStatements(db);
249     do {
250       VTable *pNext = p->pNext;
251       sqlite3VtabUnlock(p);
252       p = pNext;
253     }while( p );
254   }
255 }
256 
257 /*
258 ** Clear any and all virtual-table information from the Table record.
259 ** This routine is called, for example, just before deleting the Table
260 ** record.
261 **
262 ** Since it is a virtual-table, the Table structure contains a pointer
263 ** to the head of a linked list of VTable structures. Each VTable
264 ** structure is associated with a single sqlite3* user of the schema.
265 ** The reference count of the VTable structure associated with database
266 ** connection db is decremented immediately (which may lead to the
267 ** structure being xDisconnected and free). Any other VTable structures
268 ** in the list are moved to the sqlite3.pDisconnect list of the associated
269 ** database connection.
270 */
271 void sqlite3VtabClear(sqlite3 *db, Table *p){
272   if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
273   if( p->azModuleArg ){
274     int i;
275     for(i=0; i<p->nModuleArg; i++){
276       if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
277     }
278     sqlite3DbFree(db, p->azModuleArg);
279   }
280 }
281 
282 /*
283 ** Add a new module argument to pTable->azModuleArg[].
284 ** The string is not copied - the pointer is stored.  The
285 ** string will be freed automatically when the table is
286 ** deleted.
287 */
288 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
289   int nBytes = sizeof(char *)*(2+pTable->nModuleArg);
290   char **azModuleArg;
291   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
292   if( azModuleArg==0 ){
293     sqlite3DbFree(db, zArg);
294   }else{
295     int i = pTable->nModuleArg++;
296     azModuleArg[i] = zArg;
297     azModuleArg[i+1] = 0;
298     pTable->azModuleArg = azModuleArg;
299   }
300 }
301 
302 /*
303 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
304 ** statement.  The module name has been parsed, but the optional list
305 ** of parameters that follow the module name are still pending.
306 */
307 void sqlite3VtabBeginParse(
308   Parse *pParse,        /* Parsing context */
309   Token *pName1,        /* Name of new table, or database name */
310   Token *pName2,        /* Name of new table or NULL */
311   Token *pModuleName,   /* Name of the module for the virtual table */
312   int ifNotExists       /* No error if the table already exists */
313 ){
314   int iDb;              /* The database the table is being created in */
315   Table *pTable;        /* The new virtual table */
316   sqlite3 *db;          /* Database connection */
317 
318   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
319   pTable = pParse->pNewTable;
320   if( pTable==0 ) return;
321   assert( 0==pTable->pIndex );
322 
323   db = pParse->db;
324   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
325   assert( iDb>=0 );
326 
327   pTable->tabFlags |= TF_Virtual;
328   pTable->nModuleArg = 0;
329   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
330   addModuleArgument(db, pTable, 0);
331   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
332   assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
333        || (pParse->sNameToken.z==pName1->z && pName2->z==0)
334   );
335   pParse->sNameToken.n = (int)(
336       &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
337   );
338 
339 #ifndef SQLITE_OMIT_AUTHORIZATION
340   /* Creating a virtual table invokes the authorization callback twice.
341   ** The first invocation, to obtain permission to INSERT a row into the
342   ** sqlite_master table, has already been made by sqlite3StartTable().
343   ** The second call, to obtain permission to create the table, is made now.
344   */
345   if( pTable->azModuleArg ){
346     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
347             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
348   }
349 #endif
350 }
351 
352 /*
353 ** This routine takes the module argument that has been accumulating
354 ** in pParse->zArg[] and appends it to the list of arguments on the
355 ** virtual table currently under construction in pParse->pTable.
356 */
357 static void addArgumentToVtab(Parse *pParse){
358   if( pParse->sArg.z && pParse->pNewTable ){
359     const char *z = (const char*)pParse->sArg.z;
360     int n = pParse->sArg.n;
361     sqlite3 *db = pParse->db;
362     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
363   }
364 }
365 
366 /*
367 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
368 ** has been completely parsed.
369 */
370 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
371   Table *pTab = pParse->pNewTable;  /* The table being constructed */
372   sqlite3 *db = pParse->db;         /* The database connection */
373 
374   if( pTab==0 ) return;
375   addArgumentToVtab(pParse);
376   pParse->sArg.z = 0;
377   if( pTab->nModuleArg<1 ) return;
378 
379   /* If the CREATE VIRTUAL TABLE statement is being entered for the
380   ** first time (in other words if the virtual table is actually being
381   ** created now instead of just being read out of sqlite_master) then
382   ** do additional initialization work and store the statement text
383   ** in the sqlite_master table.
384   */
385   if( !db->init.busy ){
386     char *zStmt;
387     char *zWhere;
388     int iDb;
389     int iReg;
390     Vdbe *v;
391 
392     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
393     if( pEnd ){
394       pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
395     }
396     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
397 
398     /* A slot for the record has already been allocated in the
399     ** SQLITE_MASTER table.  We just need to update that slot with all
400     ** the information we've collected.
401     **
402     ** The VM register number pParse->regRowid holds the rowid of an
403     ** entry in the sqlite_master table tht was created for this vtab
404     ** by sqlite3StartTable().
405     */
406     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
407     sqlite3NestedParse(pParse,
408       "UPDATE %Q.%s "
409          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
410        "WHERE rowid=#%d",
411       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
412       pTab->zName,
413       pTab->zName,
414       zStmt,
415       pParse->regRowid
416     );
417     sqlite3DbFree(db, zStmt);
418     v = sqlite3GetVdbe(pParse);
419     sqlite3ChangeCookie(pParse, iDb);
420 
421     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
422     zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
423     sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
424 
425     iReg = ++pParse->nMem;
426     sqlite3VdbeLoadString(v, iReg, pTab->zName);
427     sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
428   }
429 
430   /* If we are rereading the sqlite_master table create the in-memory
431   ** record of the table. The xConnect() method is not called until
432   ** the first time the virtual table is used in an SQL statement. This
433   ** allows a schema that contains virtual tables to be loaded before
434   ** the required virtual table implementations are registered.  */
435   else {
436     Table *pOld;
437     Schema *pSchema = pTab->pSchema;
438     const char *zName = pTab->zName;
439     assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
440     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
441     if( pOld ){
442       sqlite3OomFault(db);
443       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
444       return;
445     }
446     pParse->pNewTable = 0;
447   }
448 }
449 
450 /*
451 ** The parser calls this routine when it sees the first token
452 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
453 */
454 void sqlite3VtabArgInit(Parse *pParse){
455   addArgumentToVtab(pParse);
456   pParse->sArg.z = 0;
457   pParse->sArg.n = 0;
458 }
459 
460 /*
461 ** The parser calls this routine for each token after the first token
462 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
463 */
464 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
465   Token *pArg = &pParse->sArg;
466   if( pArg->z==0 ){
467     pArg->z = p->z;
468     pArg->n = p->n;
469   }else{
470     assert(pArg->z <= p->z);
471     pArg->n = (int)(&p->z[p->n] - pArg->z);
472   }
473 }
474 
475 /*
476 ** Invoke a virtual table constructor (either xCreate or xConnect). The
477 ** pointer to the function to invoke is passed as the fourth parameter
478 ** to this procedure.
479 */
480 static int vtabCallConstructor(
481   sqlite3 *db,
482   Table *pTab,
483   Module *pMod,
484   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
485   char **pzErr
486 ){
487   VtabCtx sCtx;
488   VTable *pVTable;
489   int rc;
490   const char *const*azArg = (const char *const*)pTab->azModuleArg;
491   int nArg = pTab->nModuleArg;
492   char *zErr = 0;
493   char *zModuleName;
494   int iDb;
495   VtabCtx *pCtx;
496 
497   /* Check that the virtual-table is not already being initialized */
498   for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
499     if( pCtx->pTab==pTab ){
500       *pzErr = sqlite3MPrintf(db,
501           "vtable constructor called recursively: %s", pTab->zName
502       );
503       return SQLITE_LOCKED;
504     }
505   }
506 
507   zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
508   if( !zModuleName ){
509     return SQLITE_NOMEM_BKPT;
510   }
511 
512   pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
513   if( !pVTable ){
514     sqlite3DbFree(db, zModuleName);
515     return SQLITE_NOMEM_BKPT;
516   }
517   pVTable->db = db;
518   pVTable->pMod = pMod;
519 
520   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
521   pTab->azModuleArg[1] = db->aDb[iDb].zName;
522 
523   /* Invoke the virtual table constructor */
524   assert( &db->pVtabCtx );
525   assert( xConstruct );
526   sCtx.pTab = pTab;
527   sCtx.pVTable = pVTable;
528   sCtx.pPrior = db->pVtabCtx;
529   sCtx.bDeclared = 0;
530   db->pVtabCtx = &sCtx;
531   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
532   db->pVtabCtx = sCtx.pPrior;
533   if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
534   assert( sCtx.pTab==pTab );
535 
536   if( SQLITE_OK!=rc ){
537     if( zErr==0 ){
538       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
539     }else {
540       *pzErr = sqlite3MPrintf(db, "%s", zErr);
541       sqlite3_free(zErr);
542     }
543     sqlite3DbFree(db, pVTable);
544   }else if( ALWAYS(pVTable->pVtab) ){
545     /* Justification of ALWAYS():  A correct vtab constructor must allocate
546     ** the sqlite3_vtab object if successful.  */
547     memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
548     pVTable->pVtab->pModule = pMod->pModule;
549     pVTable->nRef = 1;
550     if( sCtx.bDeclared==0 ){
551       const char *zFormat = "vtable constructor did not declare schema: %s";
552       *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
553       sqlite3VtabUnlock(pVTable);
554       rc = SQLITE_ERROR;
555     }else{
556       int iCol;
557       u8 oooHidden = 0;
558       /* If everything went according to plan, link the new VTable structure
559       ** into the linked list headed by pTab->pVTable. Then loop through the
560       ** columns of the table to see if any of them contain the token "hidden".
561       ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
562       ** the type string.  */
563       pVTable->pNext = pTab->pVTable;
564       pTab->pVTable = pVTable;
565 
566       for(iCol=0; iCol<pTab->nCol; iCol++){
567         char *zType = pTab->aCol[iCol].zType;
568         int nType;
569         int i = 0;
570         if( !zType ){
571           pTab->tabFlags |= oooHidden;
572           continue;
573         }
574         nType = sqlite3Strlen30(zType);
575         if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
576           for(i=0; i<nType; i++){
577             if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
578              && (zType[i+7]=='\0' || zType[i+7]==' ')
579             ){
580               i++;
581               break;
582             }
583           }
584         }
585         if( i<nType ){
586           int j;
587           int nDel = 6 + (zType[i+6] ? 1 : 0);
588           for(j=i; (j+nDel)<=nType; j++){
589             zType[j] = zType[j+nDel];
590           }
591           if( zType[i]=='\0' && i>0 ){
592             assert(zType[i-1]==' ');
593             zType[i-1] = '\0';
594           }
595           pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
596           oooHidden = TF_OOOHidden;
597         }else{
598           pTab->tabFlags |= oooHidden;
599         }
600       }
601     }
602   }
603 
604   sqlite3DbFree(db, zModuleName);
605   return rc;
606 }
607 
608 /*
609 ** This function is invoked by the parser to call the xConnect() method
610 ** of the virtual table pTab. If an error occurs, an error code is returned
611 ** and an error left in pParse.
612 **
613 ** This call is a no-op if table pTab is not a virtual table.
614 */
615 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
616   sqlite3 *db = pParse->db;
617   const char *zMod;
618   Module *pMod;
619   int rc;
620 
621   assert( pTab );
622   if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
623     return SQLITE_OK;
624   }
625 
626   /* Locate the required virtual table module */
627   zMod = pTab->azModuleArg[0];
628   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
629 
630   if( !pMod ){
631     const char *zModule = pTab->azModuleArg[0];
632     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
633     rc = SQLITE_ERROR;
634   }else{
635     char *zErr = 0;
636     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
637     if( rc!=SQLITE_OK ){
638       sqlite3ErrorMsg(pParse, "%s", zErr);
639     }
640     sqlite3DbFree(db, zErr);
641   }
642 
643   return rc;
644 }
645 /*
646 ** Grow the db->aVTrans[] array so that there is room for at least one
647 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
648 */
649 static int growVTrans(sqlite3 *db){
650   const int ARRAY_INCR = 5;
651 
652   /* Grow the sqlite3.aVTrans array if required */
653   if( (db->nVTrans%ARRAY_INCR)==0 ){
654     VTable **aVTrans;
655     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
656     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
657     if( !aVTrans ){
658       return SQLITE_NOMEM_BKPT;
659     }
660     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
661     db->aVTrans = aVTrans;
662   }
663 
664   return SQLITE_OK;
665 }
666 
667 /*
668 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
669 ** have already been reserved using growVTrans().
670 */
671 static void addToVTrans(sqlite3 *db, VTable *pVTab){
672   /* Add pVtab to the end of sqlite3.aVTrans */
673   db->aVTrans[db->nVTrans++] = pVTab;
674   sqlite3VtabLock(pVTab);
675 }
676 
677 /*
678 ** This function is invoked by the vdbe to call the xCreate method
679 ** of the virtual table named zTab in database iDb.
680 **
681 ** If an error occurs, *pzErr is set to point an an English language
682 ** description of the error and an SQLITE_XXX error code is returned.
683 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
684 */
685 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
686   int rc = SQLITE_OK;
687   Table *pTab;
688   Module *pMod;
689   const char *zMod;
690 
691   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
692   assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
693 
694   /* Locate the required virtual table module */
695   zMod = pTab->azModuleArg[0];
696   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
697 
698   /* If the module has been registered and includes a Create method,
699   ** invoke it now. If the module has not been registered, return an
700   ** error. Otherwise, do nothing.
701   */
702   if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
703     *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
704     rc = SQLITE_ERROR;
705   }else{
706     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
707   }
708 
709   /* Justification of ALWAYS():  The xConstructor method is required to
710   ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
711   if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
712     rc = growVTrans(db);
713     if( rc==SQLITE_OK ){
714       addToVTrans(db, sqlite3GetVTable(db, pTab));
715     }
716   }
717 
718   return rc;
719 }
720 
721 /*
722 ** This function is used to set the schema of a virtual table.  It is only
723 ** valid to call this function from within the xCreate() or xConnect() of a
724 ** virtual table module.
725 */
726 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
727   VtabCtx *pCtx;
728   Parse *pParse;
729   int rc = SQLITE_OK;
730   Table *pTab;
731   char *zErr = 0;
732 
733 #ifdef SQLITE_ENABLE_API_ARMOR
734   if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
735     return SQLITE_MISUSE_BKPT;
736   }
737 #endif
738   sqlite3_mutex_enter(db->mutex);
739   pCtx = db->pVtabCtx;
740   if( !pCtx || pCtx->bDeclared ){
741     sqlite3Error(db, SQLITE_MISUSE);
742     sqlite3_mutex_leave(db->mutex);
743     return SQLITE_MISUSE_BKPT;
744   }
745   pTab = pCtx->pTab;
746   assert( (pTab->tabFlags & TF_Virtual)!=0 );
747 
748   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
749   if( pParse==0 ){
750     rc = SQLITE_NOMEM_BKPT;
751   }else{
752     pParse->declareVtab = 1;
753     pParse->db = db;
754     pParse->nQueryLoop = 1;
755 
756     if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
757      && pParse->pNewTable
758      && !db->mallocFailed
759      && !pParse->pNewTable->pSelect
760      && (pParse->pNewTable->tabFlags & TF_Virtual)==0
761     ){
762       if( !pTab->aCol ){
763         pTab->aCol = pParse->pNewTable->aCol;
764         pTab->nCol = pParse->pNewTable->nCol;
765         pParse->pNewTable->nCol = 0;
766         pParse->pNewTable->aCol = 0;
767       }
768       pCtx->bDeclared = 1;
769     }else{
770       sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
771       sqlite3DbFree(db, zErr);
772       rc = SQLITE_ERROR;
773     }
774     pParse->declareVtab = 0;
775 
776     if( pParse->pVdbe ){
777       sqlite3VdbeFinalize(pParse->pVdbe);
778     }
779     sqlite3DeleteTable(db, pParse->pNewTable);
780     sqlite3ParserReset(pParse);
781     sqlite3StackFree(db, pParse);
782   }
783 
784   assert( (rc&0xff)==rc );
785   rc = sqlite3ApiExit(db, rc);
786   sqlite3_mutex_leave(db->mutex);
787   return rc;
788 }
789 
790 /*
791 ** This function is invoked by the vdbe to call the xDestroy method
792 ** of the virtual table named zTab in database iDb. This occurs
793 ** when a DROP TABLE is mentioned.
794 **
795 ** This call is a no-op if zTab is not a virtual table.
796 */
797 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
798   int rc = SQLITE_OK;
799   Table *pTab;
800 
801   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
802   if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
803     VTable *p;
804     int (*xDestroy)(sqlite3_vtab *);
805     for(p=pTab->pVTable; p; p=p->pNext){
806       assert( p->pVtab );
807       if( p->pVtab->nRef>0 ){
808         return SQLITE_LOCKED;
809       }
810     }
811     p = vtabDisconnectAll(db, pTab);
812     xDestroy = p->pMod->pModule->xDestroy;
813     assert( xDestroy!=0 );  /* Checked before the virtual table is created */
814     rc = xDestroy(p->pVtab);
815     /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
816     if( rc==SQLITE_OK ){
817       assert( pTab->pVTable==p && p->pNext==0 );
818       p->pVtab = 0;
819       pTab->pVTable = 0;
820       sqlite3VtabUnlock(p);
821     }
822   }
823 
824   return rc;
825 }
826 
827 /*
828 ** This function invokes either the xRollback or xCommit method
829 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
830 ** called is identified by the second argument, "offset", which is
831 ** the offset of the method to call in the sqlite3_module structure.
832 **
833 ** The array is cleared after invoking the callbacks.
834 */
835 static void callFinaliser(sqlite3 *db, int offset){
836   int i;
837   if( db->aVTrans ){
838     VTable **aVTrans = db->aVTrans;
839     db->aVTrans = 0;
840     for(i=0; i<db->nVTrans; i++){
841       VTable *pVTab = aVTrans[i];
842       sqlite3_vtab *p = pVTab->pVtab;
843       if( p ){
844         int (*x)(sqlite3_vtab *);
845         x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
846         if( x ) x(p);
847       }
848       pVTab->iSavepoint = 0;
849       sqlite3VtabUnlock(pVTab);
850     }
851     sqlite3DbFree(db, aVTrans);
852     db->nVTrans = 0;
853   }
854 }
855 
856 /*
857 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
858 ** array. Return the error code for the first error that occurs, or
859 ** SQLITE_OK if all xSync operations are successful.
860 **
861 ** If an error message is available, leave it in p->zErrMsg.
862 */
863 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
864   int i;
865   int rc = SQLITE_OK;
866   VTable **aVTrans = db->aVTrans;
867 
868   db->aVTrans = 0;
869   for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
870     int (*x)(sqlite3_vtab *);
871     sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
872     if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
873       rc = x(pVtab);
874       sqlite3VtabImportErrmsg(p, pVtab);
875     }
876   }
877   db->aVTrans = aVTrans;
878   return rc;
879 }
880 
881 /*
882 ** Invoke the xRollback method of all virtual tables in the
883 ** sqlite3.aVTrans array. Then clear the array itself.
884 */
885 int sqlite3VtabRollback(sqlite3 *db){
886   callFinaliser(db, offsetof(sqlite3_module,xRollback));
887   return SQLITE_OK;
888 }
889 
890 /*
891 ** Invoke the xCommit method of all virtual tables in the
892 ** sqlite3.aVTrans array. Then clear the array itself.
893 */
894 int sqlite3VtabCommit(sqlite3 *db){
895   callFinaliser(db, offsetof(sqlite3_module,xCommit));
896   return SQLITE_OK;
897 }
898 
899 /*
900 ** If the virtual table pVtab supports the transaction interface
901 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
902 ** not currently open, invoke the xBegin method now.
903 **
904 ** If the xBegin call is successful, place the sqlite3_vtab pointer
905 ** in the sqlite3.aVTrans array.
906 */
907 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
908   int rc = SQLITE_OK;
909   const sqlite3_module *pModule;
910 
911   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
912   ** than zero, then this function is being called from within a
913   ** virtual module xSync() callback. It is illegal to write to
914   ** virtual module tables in this case, so return SQLITE_LOCKED.
915   */
916   if( sqlite3VtabInSync(db) ){
917     return SQLITE_LOCKED;
918   }
919   if( !pVTab ){
920     return SQLITE_OK;
921   }
922   pModule = pVTab->pVtab->pModule;
923 
924   if( pModule->xBegin ){
925     int i;
926 
927     /* If pVtab is already in the aVTrans array, return early */
928     for(i=0; i<db->nVTrans; i++){
929       if( db->aVTrans[i]==pVTab ){
930         return SQLITE_OK;
931       }
932     }
933 
934     /* Invoke the xBegin method. If successful, add the vtab to the
935     ** sqlite3.aVTrans[] array. */
936     rc = growVTrans(db);
937     if( rc==SQLITE_OK ){
938       rc = pModule->xBegin(pVTab->pVtab);
939       if( rc==SQLITE_OK ){
940         int iSvpt = db->nStatement + db->nSavepoint;
941         addToVTrans(db, pVTab);
942         if( iSvpt ) rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, iSvpt-1);
943       }
944     }
945   }
946   return rc;
947 }
948 
949 /*
950 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
951 ** virtual tables that currently have an open transaction. Pass iSavepoint
952 ** as the second argument to the virtual table method invoked.
953 **
954 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
955 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
956 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
957 ** an open transaction is invoked.
958 **
959 ** If any virtual table method returns an error code other than SQLITE_OK,
960 ** processing is abandoned and the error returned to the caller of this
961 ** function immediately. If all calls to virtual table methods are successful,
962 ** SQLITE_OK is returned.
963 */
964 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
965   int rc = SQLITE_OK;
966 
967   assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
968   assert( iSavepoint>=-1 );
969   if( db->aVTrans ){
970     int i;
971     for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
972       VTable *pVTab = db->aVTrans[i];
973       const sqlite3_module *pMod = pVTab->pMod->pModule;
974       if( pVTab->pVtab && pMod->iVersion>=2 ){
975         int (*xMethod)(sqlite3_vtab *, int);
976         switch( op ){
977           case SAVEPOINT_BEGIN:
978             xMethod = pMod->xSavepoint;
979             pVTab->iSavepoint = iSavepoint+1;
980             break;
981           case SAVEPOINT_ROLLBACK:
982             xMethod = pMod->xRollbackTo;
983             break;
984           default:
985             xMethod = pMod->xRelease;
986             break;
987         }
988         if( xMethod && pVTab->iSavepoint>iSavepoint ){
989           rc = xMethod(pVTab->pVtab, iSavepoint);
990         }
991       }
992     }
993   }
994   return rc;
995 }
996 
997 /*
998 ** The first parameter (pDef) is a function implementation.  The
999 ** second parameter (pExpr) is the first argument to this function.
1000 ** If pExpr is a column in a virtual table, then let the virtual
1001 ** table implementation have an opportunity to overload the function.
1002 **
1003 ** This routine is used to allow virtual table implementations to
1004 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1005 **
1006 ** Return either the pDef argument (indicating no change) or a
1007 ** new FuncDef structure that is marked as ephemeral using the
1008 ** SQLITE_FUNC_EPHEM flag.
1009 */
1010 FuncDef *sqlite3VtabOverloadFunction(
1011   sqlite3 *db,    /* Database connection for reporting malloc problems */
1012   FuncDef *pDef,  /* Function to possibly overload */
1013   int nArg,       /* Number of arguments to the function */
1014   Expr *pExpr     /* First argument to the function */
1015 ){
1016   Table *pTab;
1017   sqlite3_vtab *pVtab;
1018   sqlite3_module *pMod;
1019   void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1020   void *pArg = 0;
1021   FuncDef *pNew;
1022   int rc = 0;
1023   char *zLowerName;
1024   unsigned char *z;
1025 
1026 
1027   /* Check to see the left operand is a column in a virtual table */
1028   if( NEVER(pExpr==0) ) return pDef;
1029   if( pExpr->op!=TK_COLUMN ) return pDef;
1030   pTab = pExpr->pTab;
1031   if( NEVER(pTab==0) ) return pDef;
1032   if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
1033   pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1034   assert( pVtab!=0 );
1035   assert( pVtab->pModule!=0 );
1036   pMod = (sqlite3_module *)pVtab->pModule;
1037   if( pMod->xFindFunction==0 ) return pDef;
1038 
1039   /* Call the xFindFunction method on the virtual table implementation
1040   ** to see if the implementation wants to overload this function
1041   */
1042   zLowerName = sqlite3DbStrDup(db, pDef->zName);
1043   if( zLowerName ){
1044     for(z=(unsigned char*)zLowerName; *z; z++){
1045       *z = sqlite3UpperToLower[*z];
1046     }
1047     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg);
1048     sqlite3DbFree(db, zLowerName);
1049   }
1050   if( rc==0 ){
1051     return pDef;
1052   }
1053 
1054   /* Create a new ephemeral function definition for the overloaded
1055   ** function */
1056   pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1057                              + sqlite3Strlen30(pDef->zName) + 1);
1058   if( pNew==0 ){
1059     return pDef;
1060   }
1061   *pNew = *pDef;
1062   pNew->zName = (char *)&pNew[1];
1063   memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1064   pNew->xSFunc = xSFunc;
1065   pNew->pUserData = pArg;
1066   pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1067   return pNew;
1068 }
1069 
1070 /*
1071 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1072 ** array so that an OP_VBegin will get generated for it.  Add pTab to the
1073 ** array if it is missing.  If pTab is already in the array, this routine
1074 ** is a no-op.
1075 */
1076 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1077   Parse *pToplevel = sqlite3ParseToplevel(pParse);
1078   int i, n;
1079   Table **apVtabLock;
1080 
1081   assert( IsVirtual(pTab) );
1082   for(i=0; i<pToplevel->nVtabLock; i++){
1083     if( pTab==pToplevel->apVtabLock[i] ) return;
1084   }
1085   n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1086   apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n);
1087   if( apVtabLock ){
1088     pToplevel->apVtabLock = apVtabLock;
1089     pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1090   }else{
1091     sqlite3OomFault(pToplevel->db);
1092   }
1093 }
1094 
1095 /*
1096 ** Check to see if virtual tale module pMod can be have an eponymous
1097 ** virtual table instance.  If it can, create one if one does not already
1098 ** exist. Return non-zero if the eponymous virtual table instance exists
1099 ** when this routine returns, and return zero if it does not exist.
1100 **
1101 ** An eponymous virtual table instance is one that is named after its
1102 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1103 ** statement in order to come into existance.  Eponymous virtual table
1104 ** instances always exist.  They cannot be DROP-ed.
1105 **
1106 ** Any virtual table module for which xConnect and xCreate are the same
1107 ** method can have an eponymous virtual table instance.
1108 */
1109 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1110   const sqlite3_module *pModule = pMod->pModule;
1111   Table *pTab;
1112   char *zErr = 0;
1113   int nName;
1114   int rc;
1115   sqlite3 *db = pParse->db;
1116   if( pMod->pEpoTab ) return 1;
1117   if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1118   nName = sqlite3Strlen30(pMod->zName) + 1;
1119   pTab = sqlite3DbMallocZero(db, sizeof(Table) + nName);
1120   if( pTab==0 ) return 0;
1121   pMod->pEpoTab = pTab;
1122   pTab->zName = (char*)&pTab[1];
1123   memcpy(pTab->zName, pMod->zName, nName);
1124   pTab->nRef = 1;
1125   pTab->pSchema = db->aDb[0].pSchema;
1126   pTab->tabFlags |= TF_Virtual;
1127   pTab->nModuleArg = 0;
1128   pTab->iPKey = -1;
1129   addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
1130   addModuleArgument(db, pTab, 0);
1131   addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
1132   rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1133   if( rc ){
1134     sqlite3ErrorMsg(pParse, "%s", zErr);
1135     sqlite3DbFree(db, zErr);
1136     sqlite3VtabEponymousTableClear(db, pMod);
1137     return 0;
1138   }
1139   return 1;
1140 }
1141 
1142 /*
1143 ** Erase the eponymous virtual table instance associated with
1144 ** virtual table module pMod, if it exists.
1145 */
1146 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1147   Table *pTab = pMod->pEpoTab;
1148   if( pTab!=0 ){
1149     sqlite3DeleteColumnNames(db, pTab);
1150     sqlite3VtabClear(db, pTab);
1151     sqlite3DbFree(db, pTab);
1152     pMod->pEpoTab = 0;
1153   }
1154 }
1155 
1156 /*
1157 ** Return the ON CONFLICT resolution mode in effect for the virtual
1158 ** table update operation currently in progress.
1159 **
1160 ** The results of this routine are undefined unless it is called from
1161 ** within an xUpdate method.
1162 */
1163 int sqlite3_vtab_on_conflict(sqlite3 *db){
1164   static const unsigned char aMap[] = {
1165     SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1166   };
1167 #ifdef SQLITE_ENABLE_API_ARMOR
1168   if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1169 #endif
1170   assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1171   assert( OE_Ignore==4 && OE_Replace==5 );
1172   assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1173   return (int)aMap[db->vtabOnConflict-1];
1174 }
1175 
1176 /*
1177 ** Call from within the xCreate() or xConnect() methods to provide
1178 ** the SQLite core with additional information about the behavior
1179 ** of the virtual table being implemented.
1180 */
1181 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1182   va_list ap;
1183   int rc = SQLITE_OK;
1184 
1185 #ifdef SQLITE_ENABLE_API_ARMOR
1186   if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1187 #endif
1188   sqlite3_mutex_enter(db->mutex);
1189   va_start(ap, op);
1190   switch( op ){
1191     case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1192       VtabCtx *p = db->pVtabCtx;
1193       if( !p ){
1194         rc = SQLITE_MISUSE_BKPT;
1195       }else{
1196         assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1197         p->pVTable->bConstraint = (u8)va_arg(ap, int);
1198       }
1199       break;
1200     }
1201     default:
1202       rc = SQLITE_MISUSE_BKPT;
1203       break;
1204   }
1205   va_end(ap);
1206 
1207   if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1208   sqlite3_mutex_leave(db->mutex);
1209   return rc;
1210 }
1211 
1212 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1213