1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 Table *pTab; 26 VTable *pVTable; 27 }; 28 29 /* 30 ** The actual function that does the work of creating a new module. 31 ** This function implements the sqlite3_create_module() and 32 ** sqlite3_create_module_v2() interfaces. 33 */ 34 static int createModule( 35 sqlite3 *db, /* Database in which module is registered */ 36 const char *zName, /* Name assigned to this module */ 37 const sqlite3_module *pModule, /* The definition of the module */ 38 void *pAux, /* Context pointer for xCreate/xConnect */ 39 void (*xDestroy)(void *) /* Module destructor function */ 40 ){ 41 int rc, nName; 42 Module *pMod; 43 44 sqlite3_mutex_enter(db->mutex); 45 nName = sqlite3Strlen30(zName); 46 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 47 if( pMod ){ 48 Module *pDel; 49 char *zCopy = (char *)(&pMod[1]); 50 memcpy(zCopy, zName, nName+1); 51 pMod->zName = zCopy; 52 pMod->pModule = pModule; 53 pMod->pAux = pAux; 54 pMod->xDestroy = xDestroy; 55 pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); 56 if( pDel && pDel->xDestroy ){ 57 sqlite3ResetInternalSchema(db, -1); 58 pDel->xDestroy(pDel->pAux); 59 } 60 sqlite3DbFree(db, pDel); 61 if( pDel==pMod ){ 62 db->mallocFailed = 1; 63 } 64 }else if( xDestroy ){ 65 xDestroy(pAux); 66 } 67 rc = sqlite3ApiExit(db, SQLITE_OK); 68 sqlite3_mutex_leave(db->mutex); 69 return rc; 70 } 71 72 73 /* 74 ** External API function used to create a new virtual-table module. 75 */ 76 int sqlite3_create_module( 77 sqlite3 *db, /* Database in which module is registered */ 78 const char *zName, /* Name assigned to this module */ 79 const sqlite3_module *pModule, /* The definition of the module */ 80 void *pAux /* Context pointer for xCreate/xConnect */ 81 ){ 82 return createModule(db, zName, pModule, pAux, 0); 83 } 84 85 /* 86 ** External API function used to create a new virtual-table module. 87 */ 88 int sqlite3_create_module_v2( 89 sqlite3 *db, /* Database in which module is registered */ 90 const char *zName, /* Name assigned to this module */ 91 const sqlite3_module *pModule, /* The definition of the module */ 92 void *pAux, /* Context pointer for xCreate/xConnect */ 93 void (*xDestroy)(void *) /* Module destructor function */ 94 ){ 95 return createModule(db, zName, pModule, pAux, xDestroy); 96 } 97 98 /* 99 ** Lock the virtual table so that it cannot be disconnected. 100 ** Locks nest. Every lock should have a corresponding unlock. 101 ** If an unlock is omitted, resources leaks will occur. 102 ** 103 ** If a disconnect is attempted while a virtual table is locked, 104 ** the disconnect is deferred until all locks have been removed. 105 */ 106 void sqlite3VtabLock(VTable *pVTab){ 107 pVTab->nRef++; 108 } 109 110 111 /* 112 ** pTab is a pointer to a Table structure representing a virtual-table. 113 ** Return a pointer to the VTable object used by connection db to access 114 ** this virtual-table, if one has been created, or NULL otherwise. 115 */ 116 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 117 VTable *pVtab; 118 assert( IsVirtual(pTab) ); 119 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 120 return pVtab; 121 } 122 123 /* 124 ** Decrement the ref-count on a virtual table object. When the ref-count 125 ** reaches zero, call the xDisconnect() method to delete the object. 126 */ 127 void sqlite3VtabUnlock(VTable *pVTab){ 128 sqlite3 *db = pVTab->db; 129 130 assert( db ); 131 assert( pVTab->nRef>0 ); 132 assert( sqlite3SafetyCheckOk(db) ); 133 134 pVTab->nRef--; 135 if( pVTab->nRef==0 ){ 136 sqlite3_vtab *p = pVTab->pVtab; 137 if( p ){ 138 p->pModule->xDisconnect(p); 139 } 140 sqlite3DbFree(db, pVTab); 141 } 142 } 143 144 /* 145 ** Table p is a virtual table. This function moves all elements in the 146 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 147 ** database connections to be disconnected at the next opportunity. 148 ** Except, if argument db is not NULL, then the entry associated with 149 ** connection db is left in the p->pVTable list. 150 */ 151 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 152 VTable *pRet = 0; 153 VTable *pVTable = p->pVTable; 154 p->pVTable = 0; 155 156 /* Assert that the mutex (if any) associated with the BtShared database 157 ** that contains table p is held by the caller. See header comments 158 ** above function sqlite3VtabUnlockList() for an explanation of why 159 ** this makes it safe to access the sqlite3.pDisconnect list of any 160 ** database connection that may have an entry in the p->pVTable list. 161 */ 162 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 163 164 while( pVTable ){ 165 sqlite3 *db2 = pVTable->db; 166 VTable *pNext = pVTable->pNext; 167 assert( db2 ); 168 if( db2==db ){ 169 pRet = pVTable; 170 p->pVTable = pRet; 171 pRet->pNext = 0; 172 }else{ 173 pVTable->pNext = db2->pDisconnect; 174 db2->pDisconnect = pVTable; 175 } 176 pVTable = pNext; 177 } 178 179 assert( !db || pRet ); 180 return pRet; 181 } 182 183 184 /* 185 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 186 ** 187 ** This function may only be called when the mutexes associated with all 188 ** shared b-tree databases opened using connection db are held by the 189 ** caller. This is done to protect the sqlite3.pDisconnect list. The 190 ** sqlite3.pDisconnect list is accessed only as follows: 191 ** 192 ** 1) By this function. In this case, all BtShared mutexes and the mutex 193 ** associated with the database handle itself must be held. 194 ** 195 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 196 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 197 ** associated with the database the virtual table is stored in is held 198 ** or, if the virtual table is stored in a non-sharable database, then 199 ** the database handle mutex is held. 200 ** 201 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 202 ** by multiple threads. It is thread-safe. 203 */ 204 void sqlite3VtabUnlockList(sqlite3 *db){ 205 VTable *p = db->pDisconnect; 206 db->pDisconnect = 0; 207 208 assert( sqlite3BtreeHoldsAllMutexes(db) ); 209 assert( sqlite3_mutex_held(db->mutex) ); 210 211 if( p ){ 212 sqlite3ExpirePreparedStatements(db); 213 do { 214 VTable *pNext = p->pNext; 215 sqlite3VtabUnlock(p); 216 p = pNext; 217 }while( p ); 218 } 219 } 220 221 /* 222 ** Clear any and all virtual-table information from the Table record. 223 ** This routine is called, for example, just before deleting the Table 224 ** record. 225 ** 226 ** Since it is a virtual-table, the Table structure contains a pointer 227 ** to the head of a linked list of VTable structures. Each VTable 228 ** structure is associated with a single sqlite3* user of the schema. 229 ** The reference count of the VTable structure associated with database 230 ** connection db is decremented immediately (which may lead to the 231 ** structure being xDisconnected and free). Any other VTable structures 232 ** in the list are moved to the sqlite3.pDisconnect list of the associated 233 ** database connection. 234 */ 235 void sqlite3VtabClear(sqlite3 *db, Table *p){ 236 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 237 if( p->azModuleArg ){ 238 int i; 239 for(i=0; i<p->nModuleArg; i++){ 240 sqlite3DbFree(db, p->azModuleArg[i]); 241 } 242 sqlite3DbFree(db, p->azModuleArg); 243 } 244 } 245 246 /* 247 ** Add a new module argument to pTable->azModuleArg[]. 248 ** The string is not copied - the pointer is stored. The 249 ** string will be freed automatically when the table is 250 ** deleted. 251 */ 252 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 253 int i = pTable->nModuleArg++; 254 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 255 char **azModuleArg; 256 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 257 if( azModuleArg==0 ){ 258 int j; 259 for(j=0; j<i; j++){ 260 sqlite3DbFree(db, pTable->azModuleArg[j]); 261 } 262 sqlite3DbFree(db, zArg); 263 sqlite3DbFree(db, pTable->azModuleArg); 264 pTable->nModuleArg = 0; 265 }else{ 266 azModuleArg[i] = zArg; 267 azModuleArg[i+1] = 0; 268 } 269 pTable->azModuleArg = azModuleArg; 270 } 271 272 /* 273 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 274 ** statement. The module name has been parsed, but the optional list 275 ** of parameters that follow the module name are still pending. 276 */ 277 void sqlite3VtabBeginParse( 278 Parse *pParse, /* Parsing context */ 279 Token *pName1, /* Name of new table, or database name */ 280 Token *pName2, /* Name of new table or NULL */ 281 Token *pModuleName /* Name of the module for the virtual table */ 282 ){ 283 int iDb; /* The database the table is being created in */ 284 Table *pTable; /* The new virtual table */ 285 sqlite3 *db; /* Database connection */ 286 287 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0); 288 pTable = pParse->pNewTable; 289 if( pTable==0 ) return; 290 assert( 0==pTable->pIndex ); 291 292 db = pParse->db; 293 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 294 assert( iDb>=0 ); 295 296 pTable->tabFlags |= TF_Virtual; 297 pTable->nModuleArg = 0; 298 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 299 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName)); 300 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 301 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); 302 303 #ifndef SQLITE_OMIT_AUTHORIZATION 304 /* Creating a virtual table invokes the authorization callback twice. 305 ** The first invocation, to obtain permission to INSERT a row into the 306 ** sqlite_master table, has already been made by sqlite3StartTable(). 307 ** The second call, to obtain permission to create the table, is made now. 308 */ 309 if( pTable->azModuleArg ){ 310 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 311 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 312 } 313 #endif 314 } 315 316 /* 317 ** This routine takes the module argument that has been accumulating 318 ** in pParse->zArg[] and appends it to the list of arguments on the 319 ** virtual table currently under construction in pParse->pTable. 320 */ 321 static void addArgumentToVtab(Parse *pParse){ 322 if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){ 323 const char *z = (const char*)pParse->sArg.z; 324 int n = pParse->sArg.n; 325 sqlite3 *db = pParse->db; 326 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 327 } 328 } 329 330 /* 331 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 332 ** has been completely parsed. 333 */ 334 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 335 Table *pTab = pParse->pNewTable; /* The table being constructed */ 336 sqlite3 *db = pParse->db; /* The database connection */ 337 338 if( pTab==0 ) return; 339 addArgumentToVtab(pParse); 340 pParse->sArg.z = 0; 341 if( pTab->nModuleArg<1 ) return; 342 343 /* If the CREATE VIRTUAL TABLE statement is being entered for the 344 ** first time (in other words if the virtual table is actually being 345 ** created now instead of just being read out of sqlite_master) then 346 ** do additional initialization work and store the statement text 347 ** in the sqlite_master table. 348 */ 349 if( !db->init.busy ){ 350 char *zStmt; 351 char *zWhere; 352 int iDb; 353 Vdbe *v; 354 355 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 356 if( pEnd ){ 357 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 358 } 359 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 360 361 /* A slot for the record has already been allocated in the 362 ** SQLITE_MASTER table. We just need to update that slot with all 363 ** the information we've collected. 364 ** 365 ** The VM register number pParse->regRowid holds the rowid of an 366 ** entry in the sqlite_master table tht was created for this vtab 367 ** by sqlite3StartTable(). 368 */ 369 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 370 sqlite3NestedParse(pParse, 371 "UPDATE %Q.%s " 372 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 373 "WHERE rowid=#%d", 374 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 375 pTab->zName, 376 pTab->zName, 377 zStmt, 378 pParse->regRowid 379 ); 380 sqlite3DbFree(db, zStmt); 381 v = sqlite3GetVdbe(pParse); 382 sqlite3ChangeCookie(pParse, iDb); 383 384 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 385 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 386 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 387 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 388 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); 389 } 390 391 /* If we are rereading the sqlite_master table create the in-memory 392 ** record of the table. The xConnect() method is not called until 393 ** the first time the virtual table is used in an SQL statement. This 394 ** allows a schema that contains virtual tables to be loaded before 395 ** the required virtual table implementations are registered. */ 396 else { 397 Table *pOld; 398 Schema *pSchema = pTab->pSchema; 399 const char *zName = pTab->zName; 400 int nName = sqlite3Strlen30(zName); 401 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 402 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); 403 if( pOld ){ 404 db->mallocFailed = 1; 405 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 406 return; 407 } 408 pParse->pNewTable = 0; 409 } 410 } 411 412 /* 413 ** The parser calls this routine when it sees the first token 414 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 415 */ 416 void sqlite3VtabArgInit(Parse *pParse){ 417 addArgumentToVtab(pParse); 418 pParse->sArg.z = 0; 419 pParse->sArg.n = 0; 420 } 421 422 /* 423 ** The parser calls this routine for each token after the first token 424 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 425 */ 426 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 427 Token *pArg = &pParse->sArg; 428 if( pArg->z==0 ){ 429 pArg->z = p->z; 430 pArg->n = p->n; 431 }else{ 432 assert(pArg->z < p->z); 433 pArg->n = (int)(&p->z[p->n] - pArg->z); 434 } 435 } 436 437 /* 438 ** Invoke a virtual table constructor (either xCreate or xConnect). The 439 ** pointer to the function to invoke is passed as the fourth parameter 440 ** to this procedure. 441 */ 442 static int vtabCallConstructor( 443 sqlite3 *db, 444 Table *pTab, 445 Module *pMod, 446 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 447 char **pzErr 448 ){ 449 VtabCtx sCtx; 450 VTable *pVTable; 451 int rc; 452 const char *const*azArg = (const char *const*)pTab->azModuleArg; 453 int nArg = pTab->nModuleArg; 454 char *zErr = 0; 455 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 456 457 if( !zModuleName ){ 458 return SQLITE_NOMEM; 459 } 460 461 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 462 if( !pVTable ){ 463 sqlite3DbFree(db, zModuleName); 464 return SQLITE_NOMEM; 465 } 466 pVTable->db = db; 467 pVTable->pMod = pMod; 468 469 /* Invoke the virtual table constructor */ 470 assert( &db->pVtabCtx ); 471 assert( xConstruct ); 472 sCtx.pTab = pTab; 473 sCtx.pVTable = pVTable; 474 db->pVtabCtx = &sCtx; 475 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 476 db->pVtabCtx = 0; 477 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 478 479 if( SQLITE_OK!=rc ){ 480 if( zErr==0 ){ 481 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 482 }else { 483 *pzErr = sqlite3MPrintf(db, "%s", zErr); 484 sqlite3_free(zErr); 485 } 486 sqlite3DbFree(db, pVTable); 487 }else if( ALWAYS(pVTable->pVtab) ){ 488 /* Justification of ALWAYS(): A correct vtab constructor must allocate 489 ** the sqlite3_vtab object if successful. */ 490 pVTable->pVtab->pModule = pMod->pModule; 491 pVTable->nRef = 1; 492 if( sCtx.pTab ){ 493 const char *zFormat = "vtable constructor did not declare schema: %s"; 494 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 495 sqlite3VtabUnlock(pVTable); 496 rc = SQLITE_ERROR; 497 }else{ 498 int iCol; 499 /* If everything went according to plan, link the new VTable structure 500 ** into the linked list headed by pTab->pVTable. Then loop through the 501 ** columns of the table to see if any of them contain the token "hidden". 502 ** If so, set the Column.isHidden flag and remove the token from 503 ** the type string. */ 504 pVTable->pNext = pTab->pVTable; 505 pTab->pVTable = pVTable; 506 507 for(iCol=0; iCol<pTab->nCol; iCol++){ 508 char *zType = pTab->aCol[iCol].zType; 509 int nType; 510 int i = 0; 511 if( !zType ) continue; 512 nType = sqlite3Strlen30(zType); 513 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 514 for(i=0; i<nType; i++){ 515 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 516 && (zType[i+7]=='\0' || zType[i+7]==' ') 517 ){ 518 i++; 519 break; 520 } 521 } 522 } 523 if( i<nType ){ 524 int j; 525 int nDel = 6 + (zType[i+6] ? 1 : 0); 526 for(j=i; (j+nDel)<=nType; j++){ 527 zType[j] = zType[j+nDel]; 528 } 529 if( zType[i]=='\0' && i>0 ){ 530 assert(zType[i-1]==' '); 531 zType[i-1] = '\0'; 532 } 533 pTab->aCol[iCol].isHidden = 1; 534 } 535 } 536 } 537 } 538 539 sqlite3DbFree(db, zModuleName); 540 return rc; 541 } 542 543 /* 544 ** This function is invoked by the parser to call the xConnect() method 545 ** of the virtual table pTab. If an error occurs, an error code is returned 546 ** and an error left in pParse. 547 ** 548 ** This call is a no-op if table pTab is not a virtual table. 549 */ 550 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 551 sqlite3 *db = pParse->db; 552 const char *zMod; 553 Module *pMod; 554 int rc; 555 556 assert( pTab ); 557 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 558 return SQLITE_OK; 559 } 560 561 /* Locate the required virtual table module */ 562 zMod = pTab->azModuleArg[0]; 563 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 564 565 if( !pMod ){ 566 const char *zModule = pTab->azModuleArg[0]; 567 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 568 rc = SQLITE_ERROR; 569 }else{ 570 char *zErr = 0; 571 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 572 if( rc!=SQLITE_OK ){ 573 sqlite3ErrorMsg(pParse, "%s", zErr); 574 } 575 sqlite3DbFree(db, zErr); 576 } 577 578 return rc; 579 } 580 /* 581 ** Grow the db->aVTrans[] array so that there is room for at least one 582 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 583 */ 584 static int growVTrans(sqlite3 *db){ 585 const int ARRAY_INCR = 5; 586 587 /* Grow the sqlite3.aVTrans array if required */ 588 if( (db->nVTrans%ARRAY_INCR)==0 ){ 589 VTable **aVTrans; 590 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 591 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 592 if( !aVTrans ){ 593 return SQLITE_NOMEM; 594 } 595 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 596 db->aVTrans = aVTrans; 597 } 598 599 return SQLITE_OK; 600 } 601 602 /* 603 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 604 ** have already been reserved using growVTrans(). 605 */ 606 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 607 /* Add pVtab to the end of sqlite3.aVTrans */ 608 db->aVTrans[db->nVTrans++] = pVTab; 609 sqlite3VtabLock(pVTab); 610 } 611 612 /* 613 ** This function is invoked by the vdbe to call the xCreate method 614 ** of the virtual table named zTab in database iDb. 615 ** 616 ** If an error occurs, *pzErr is set to point an an English language 617 ** description of the error and an SQLITE_XXX error code is returned. 618 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 619 */ 620 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 621 int rc = SQLITE_OK; 622 Table *pTab; 623 Module *pMod; 624 const char *zMod; 625 626 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 627 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 628 629 /* Locate the required virtual table module */ 630 zMod = pTab->azModuleArg[0]; 631 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 632 633 /* If the module has been registered and includes a Create method, 634 ** invoke it now. If the module has not been registered, return an 635 ** error. Otherwise, do nothing. 636 */ 637 if( !pMod ){ 638 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 639 rc = SQLITE_ERROR; 640 }else{ 641 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 642 } 643 644 /* Justification of ALWAYS(): The xConstructor method is required to 645 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 646 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 647 rc = growVTrans(db); 648 if( rc==SQLITE_OK ){ 649 addToVTrans(db, sqlite3GetVTable(db, pTab)); 650 } 651 } 652 653 return rc; 654 } 655 656 /* 657 ** This function is used to set the schema of a virtual table. It is only 658 ** valid to call this function from within the xCreate() or xConnect() of a 659 ** virtual table module. 660 */ 661 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 662 Parse *pParse; 663 664 int rc = SQLITE_OK; 665 Table *pTab; 666 char *zErr = 0; 667 668 sqlite3_mutex_enter(db->mutex); 669 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ 670 sqlite3Error(db, SQLITE_MISUSE, 0); 671 sqlite3_mutex_leave(db->mutex); 672 return SQLITE_MISUSE_BKPT; 673 } 674 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 675 676 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 677 if( pParse==0 ){ 678 rc = SQLITE_NOMEM; 679 }else{ 680 pParse->declareVtab = 1; 681 pParse->db = db; 682 pParse->nQueryLoop = 1; 683 684 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 685 && pParse->pNewTable 686 && !db->mallocFailed 687 && !pParse->pNewTable->pSelect 688 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 689 ){ 690 if( !pTab->aCol ){ 691 pTab->aCol = pParse->pNewTable->aCol; 692 pTab->nCol = pParse->pNewTable->nCol; 693 pParse->pNewTable->nCol = 0; 694 pParse->pNewTable->aCol = 0; 695 } 696 db->pVtabCtx->pTab = 0; 697 }else{ 698 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 699 sqlite3DbFree(db, zErr); 700 rc = SQLITE_ERROR; 701 } 702 pParse->declareVtab = 0; 703 704 if( pParse->pVdbe ){ 705 sqlite3VdbeFinalize(pParse->pVdbe); 706 } 707 sqlite3DeleteTable(db, pParse->pNewTable); 708 sqlite3StackFree(db, pParse); 709 } 710 711 assert( (rc&0xff)==rc ); 712 rc = sqlite3ApiExit(db, rc); 713 sqlite3_mutex_leave(db->mutex); 714 return rc; 715 } 716 717 /* 718 ** This function is invoked by the vdbe to call the xDestroy method 719 ** of the virtual table named zTab in database iDb. This occurs 720 ** when a DROP TABLE is mentioned. 721 ** 722 ** This call is a no-op if zTab is not a virtual table. 723 */ 724 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 725 int rc = SQLITE_OK; 726 Table *pTab; 727 728 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 729 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 730 VTable *p = vtabDisconnectAll(db, pTab); 731 732 assert( rc==SQLITE_OK ); 733 rc = p->pMod->pModule->xDestroy(p->pVtab); 734 735 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 736 if( rc==SQLITE_OK ){ 737 assert( pTab->pVTable==p && p->pNext==0 ); 738 p->pVtab = 0; 739 pTab->pVTable = 0; 740 sqlite3VtabUnlock(p); 741 } 742 } 743 744 return rc; 745 } 746 747 /* 748 ** This function invokes either the xRollback or xCommit method 749 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 750 ** called is identified by the second argument, "offset", which is 751 ** the offset of the method to call in the sqlite3_module structure. 752 ** 753 ** The array is cleared after invoking the callbacks. 754 */ 755 static void callFinaliser(sqlite3 *db, int offset){ 756 int i; 757 if( db->aVTrans ){ 758 for(i=0; i<db->nVTrans; i++){ 759 VTable *pVTab = db->aVTrans[i]; 760 sqlite3_vtab *p = pVTab->pVtab; 761 if( p ){ 762 int (*x)(sqlite3_vtab *); 763 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 764 if( x ) x(p); 765 } 766 pVTab->iSavepoint = 0; 767 sqlite3VtabUnlock(pVTab); 768 } 769 sqlite3DbFree(db, db->aVTrans); 770 db->nVTrans = 0; 771 db->aVTrans = 0; 772 } 773 } 774 775 /* 776 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 777 ** array. Return the error code for the first error that occurs, or 778 ** SQLITE_OK if all xSync operations are successful. 779 ** 780 ** Set *pzErrmsg to point to a buffer that should be released using 781 ** sqlite3DbFree() containing an error message, if one is available. 782 */ 783 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){ 784 int i; 785 int rc = SQLITE_OK; 786 VTable **aVTrans = db->aVTrans; 787 788 db->aVTrans = 0; 789 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 790 int (*x)(sqlite3_vtab *); 791 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 792 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 793 rc = x(pVtab); 794 sqlite3DbFree(db, *pzErrmsg); 795 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 796 sqlite3_free(pVtab->zErrMsg); 797 } 798 } 799 db->aVTrans = aVTrans; 800 return rc; 801 } 802 803 /* 804 ** Invoke the xRollback method of all virtual tables in the 805 ** sqlite3.aVTrans array. Then clear the array itself. 806 */ 807 int sqlite3VtabRollback(sqlite3 *db){ 808 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 809 return SQLITE_OK; 810 } 811 812 /* 813 ** Invoke the xCommit method of all virtual tables in the 814 ** sqlite3.aVTrans array. Then clear the array itself. 815 */ 816 int sqlite3VtabCommit(sqlite3 *db){ 817 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 818 return SQLITE_OK; 819 } 820 821 /* 822 ** If the virtual table pVtab supports the transaction interface 823 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 824 ** not currently open, invoke the xBegin method now. 825 ** 826 ** If the xBegin call is successful, place the sqlite3_vtab pointer 827 ** in the sqlite3.aVTrans array. 828 */ 829 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 830 int rc = SQLITE_OK; 831 const sqlite3_module *pModule; 832 833 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 834 ** than zero, then this function is being called from within a 835 ** virtual module xSync() callback. It is illegal to write to 836 ** virtual module tables in this case, so return SQLITE_LOCKED. 837 */ 838 if( sqlite3VtabInSync(db) ){ 839 return SQLITE_LOCKED; 840 } 841 if( !pVTab ){ 842 return SQLITE_OK; 843 } 844 pModule = pVTab->pVtab->pModule; 845 846 if( pModule->xBegin ){ 847 int i; 848 849 /* If pVtab is already in the aVTrans array, return early */ 850 for(i=0; i<db->nVTrans; i++){ 851 if( db->aVTrans[i]==pVTab ){ 852 return SQLITE_OK; 853 } 854 } 855 856 /* Invoke the xBegin method. If successful, add the vtab to the 857 ** sqlite3.aVTrans[] array. */ 858 rc = growVTrans(db); 859 if( rc==SQLITE_OK ){ 860 rc = pModule->xBegin(pVTab->pVtab); 861 if( rc==SQLITE_OK ){ 862 addToVTrans(db, pVTab); 863 } 864 } 865 } 866 return rc; 867 } 868 869 /* 870 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 871 ** virtual tables that currently have an open transaction. Pass iSavepoint 872 ** as the second argument to the virtual table method invoked. 873 ** 874 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 875 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 876 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 877 ** an open transaction is invoked. 878 ** 879 ** If any virtual table method returns an error code other than SQLITE_OK, 880 ** processing is abandoned and the error returned to the caller of this 881 ** function immediately. If all calls to virtual table methods are successful, 882 ** SQLITE_OK is returned. 883 */ 884 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 885 int rc = SQLITE_OK; 886 887 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 888 assert( iSavepoint>=0 ); 889 if( db->aVTrans ){ 890 int i; 891 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 892 VTable *pVTab = db->aVTrans[i]; 893 const sqlite3_module *pMod = pVTab->pMod->pModule; 894 if( pVTab->pVtab && pMod->iVersion>=2 ){ 895 int (*xMethod)(sqlite3_vtab *, int); 896 switch( op ){ 897 case SAVEPOINT_BEGIN: 898 xMethod = pMod->xSavepoint; 899 pVTab->iSavepoint = iSavepoint+1; 900 break; 901 case SAVEPOINT_ROLLBACK: 902 xMethod = pMod->xRollbackTo; 903 break; 904 default: 905 xMethod = pMod->xRelease; 906 break; 907 } 908 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 909 rc = xMethod(pVTab->pVtab, iSavepoint); 910 } 911 } 912 } 913 } 914 return rc; 915 } 916 917 /* 918 ** The first parameter (pDef) is a function implementation. The 919 ** second parameter (pExpr) is the first argument to this function. 920 ** If pExpr is a column in a virtual table, then let the virtual 921 ** table implementation have an opportunity to overload the function. 922 ** 923 ** This routine is used to allow virtual table implementations to 924 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 925 ** 926 ** Return either the pDef argument (indicating no change) or a 927 ** new FuncDef structure that is marked as ephemeral using the 928 ** SQLITE_FUNC_EPHEM flag. 929 */ 930 FuncDef *sqlite3VtabOverloadFunction( 931 sqlite3 *db, /* Database connection for reporting malloc problems */ 932 FuncDef *pDef, /* Function to possibly overload */ 933 int nArg, /* Number of arguments to the function */ 934 Expr *pExpr /* First argument to the function */ 935 ){ 936 Table *pTab; 937 sqlite3_vtab *pVtab; 938 sqlite3_module *pMod; 939 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 940 void *pArg = 0; 941 FuncDef *pNew; 942 int rc = 0; 943 char *zLowerName; 944 unsigned char *z; 945 946 947 /* Check to see the left operand is a column in a virtual table */ 948 if( NEVER(pExpr==0) ) return pDef; 949 if( pExpr->op!=TK_COLUMN ) return pDef; 950 pTab = pExpr->pTab; 951 if( NEVER(pTab==0) ) return pDef; 952 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 953 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 954 assert( pVtab!=0 ); 955 assert( pVtab->pModule!=0 ); 956 pMod = (sqlite3_module *)pVtab->pModule; 957 if( pMod->xFindFunction==0 ) return pDef; 958 959 /* Call the xFindFunction method on the virtual table implementation 960 ** to see if the implementation wants to overload this function 961 */ 962 zLowerName = sqlite3DbStrDup(db, pDef->zName); 963 if( zLowerName ){ 964 for(z=(unsigned char*)zLowerName; *z; z++){ 965 *z = sqlite3UpperToLower[*z]; 966 } 967 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 968 sqlite3DbFree(db, zLowerName); 969 } 970 if( rc==0 ){ 971 return pDef; 972 } 973 974 /* Create a new ephemeral function definition for the overloaded 975 ** function */ 976 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 977 + sqlite3Strlen30(pDef->zName) + 1); 978 if( pNew==0 ){ 979 return pDef; 980 } 981 *pNew = *pDef; 982 pNew->zName = (char *)&pNew[1]; 983 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 984 pNew->xFunc = xFunc; 985 pNew->pUserData = pArg; 986 pNew->flags |= SQLITE_FUNC_EPHEM; 987 return pNew; 988 } 989 990 /* 991 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 992 ** array so that an OP_VBegin will get generated for it. Add pTab to the 993 ** array if it is missing. If pTab is already in the array, this routine 994 ** is a no-op. 995 */ 996 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 997 Parse *pToplevel = sqlite3ParseToplevel(pParse); 998 int i, n; 999 Table **apVtabLock; 1000 1001 assert( IsVirtual(pTab) ); 1002 for(i=0; i<pToplevel->nVtabLock; i++){ 1003 if( pTab==pToplevel->apVtabLock[i] ) return; 1004 } 1005 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1006 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); 1007 if( apVtabLock ){ 1008 pToplevel->apVtabLock = apVtabLock; 1009 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1010 }else{ 1011 pToplevel->db->mallocFailed = 1; 1012 } 1013 } 1014 1015 /* 1016 ** Return the ON CONFLICT resolution mode in effect for the virtual 1017 ** table update operation currently in progress. 1018 ** 1019 ** The results of this routine are undefined unless it is called from 1020 ** within an xUpdate method. 1021 */ 1022 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1023 static const unsigned char aMap[] = { 1024 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1025 }; 1026 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1027 assert( OE_Ignore==4 && OE_Replace==5 ); 1028 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1029 return (int)aMap[db->vtabOnConflict-1]; 1030 } 1031 1032 /* 1033 ** Call from within the xCreate() or xConnect() methods to provide 1034 ** the SQLite core with additional information about the behavior 1035 ** of the virtual table being implemented. 1036 */ 1037 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1038 va_list ap; 1039 int rc = SQLITE_OK; 1040 1041 sqlite3_mutex_enter(db->mutex); 1042 1043 va_start(ap, op); 1044 switch( op ){ 1045 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1046 VtabCtx *p = db->pVtabCtx; 1047 if( !p ){ 1048 rc = SQLITE_MISUSE_BKPT; 1049 }else{ 1050 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1051 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1052 } 1053 break; 1054 } 1055 default: 1056 rc = SQLITE_MISUSE_BKPT; 1057 break; 1058 } 1059 va_end(ap); 1060 1061 if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0); 1062 sqlite3_mutex_leave(db->mutex); 1063 return rc; 1064 } 1065 1066 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1067