1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 Table *pTab; 26 VTable *pVTable; 27 }; 28 29 /* 30 ** The actual function that does the work of creating a new module. 31 ** This function implements the sqlite3_create_module() and 32 ** sqlite3_create_module_v2() interfaces. 33 */ 34 static int createModule( 35 sqlite3 *db, /* Database in which module is registered */ 36 const char *zName, /* Name assigned to this module */ 37 const sqlite3_module *pModule, /* The definition of the module */ 38 void *pAux, /* Context pointer for xCreate/xConnect */ 39 void (*xDestroy)(void *) /* Module destructor function */ 40 ){ 41 int rc, nName; 42 Module *pMod; 43 44 sqlite3_mutex_enter(db->mutex); 45 nName = sqlite3Strlen30(zName); 46 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); 47 if( pMod ){ 48 Module *pDel; 49 char *zCopy = (char *)(&pMod[1]); 50 memcpy(zCopy, zName, nName+1); 51 pMod->zName = zCopy; 52 pMod->pModule = pModule; 53 pMod->pAux = pAux; 54 pMod->xDestroy = xDestroy; 55 pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); 56 if( pDel && pDel->xDestroy ){ 57 sqlite3ResetInternalSchema(db, -1); 58 pDel->xDestroy(pDel->pAux); 59 } 60 sqlite3DbFree(db, pDel); 61 if( pDel==pMod ){ 62 db->mallocFailed = 1; 63 } 64 }else if( xDestroy ){ 65 xDestroy(pAux); 66 } 67 rc = sqlite3ApiExit(db, SQLITE_OK); 68 sqlite3_mutex_leave(db->mutex); 69 return rc; 70 } 71 72 73 /* 74 ** External API function used to create a new virtual-table module. 75 */ 76 int sqlite3_create_module( 77 sqlite3 *db, /* Database in which module is registered */ 78 const char *zName, /* Name assigned to this module */ 79 const sqlite3_module *pModule, /* The definition of the module */ 80 void *pAux /* Context pointer for xCreate/xConnect */ 81 ){ 82 return createModule(db, zName, pModule, pAux, 0); 83 } 84 85 /* 86 ** External API function used to create a new virtual-table module. 87 */ 88 int sqlite3_create_module_v2( 89 sqlite3 *db, /* Database in which module is registered */ 90 const char *zName, /* Name assigned to this module */ 91 const sqlite3_module *pModule, /* The definition of the module */ 92 void *pAux, /* Context pointer for xCreate/xConnect */ 93 void (*xDestroy)(void *) /* Module destructor function */ 94 ){ 95 return createModule(db, zName, pModule, pAux, xDestroy); 96 } 97 98 /* 99 ** Lock the virtual table so that it cannot be disconnected. 100 ** Locks nest. Every lock should have a corresponding unlock. 101 ** If an unlock is omitted, resources leaks will occur. 102 ** 103 ** If a disconnect is attempted while a virtual table is locked, 104 ** the disconnect is deferred until all locks have been removed. 105 */ 106 void sqlite3VtabLock(VTable *pVTab){ 107 pVTab->nRef++; 108 } 109 110 111 /* 112 ** pTab is a pointer to a Table structure representing a virtual-table. 113 ** Return a pointer to the VTable object used by connection db to access 114 ** this virtual-table, if one has been created, or NULL otherwise. 115 */ 116 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 117 VTable *pVtab; 118 assert( IsVirtual(pTab) ); 119 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 120 return pVtab; 121 } 122 123 /* 124 ** Decrement the ref-count on a virtual table object. When the ref-count 125 ** reaches zero, call the xDisconnect() method to delete the object. 126 */ 127 void sqlite3VtabUnlock(VTable *pVTab){ 128 sqlite3 *db = pVTab->db; 129 130 assert( db ); 131 assert( pVTab->nRef>0 ); 132 assert( sqlite3SafetyCheckOk(db) ); 133 134 pVTab->nRef--; 135 if( pVTab->nRef==0 ){ 136 sqlite3_vtab *p = pVTab->pVtab; 137 if( p ){ 138 p->pModule->xDisconnect(p); 139 } 140 sqlite3DbFree(db, pVTab); 141 } 142 } 143 144 /* 145 ** Table p is a virtual table. This function moves all elements in the 146 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 147 ** database connections to be disconnected at the next opportunity. 148 ** Except, if argument db is not NULL, then the entry associated with 149 ** connection db is left in the p->pVTable list. 150 */ 151 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 152 VTable *pRet = 0; 153 VTable *pVTable = p->pVTable; 154 p->pVTable = 0; 155 156 /* Assert that the mutex (if any) associated with the BtShared database 157 ** that contains table p is held by the caller. See header comments 158 ** above function sqlite3VtabUnlockList() for an explanation of why 159 ** this makes it safe to access the sqlite3.pDisconnect list of any 160 ** database connection that may have an entry in the p->pVTable list. 161 */ 162 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 163 164 while( pVTable ){ 165 sqlite3 *db2 = pVTable->db; 166 VTable *pNext = pVTable->pNext; 167 assert( db2 ); 168 if( db2==db ){ 169 pRet = pVTable; 170 p->pVTable = pRet; 171 pRet->pNext = 0; 172 }else{ 173 pVTable->pNext = db2->pDisconnect; 174 db2->pDisconnect = pVTable; 175 } 176 pVTable = pNext; 177 } 178 179 assert( !db || pRet ); 180 return pRet; 181 } 182 183 184 /* 185 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 186 ** 187 ** This function may only be called when the mutexes associated with all 188 ** shared b-tree databases opened using connection db are held by the 189 ** caller. This is done to protect the sqlite3.pDisconnect list. The 190 ** sqlite3.pDisconnect list is accessed only as follows: 191 ** 192 ** 1) By this function. In this case, all BtShared mutexes and the mutex 193 ** associated with the database handle itself must be held. 194 ** 195 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 196 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 197 ** associated with the database the virtual table is stored in is held 198 ** or, if the virtual table is stored in a non-sharable database, then 199 ** the database handle mutex is held. 200 ** 201 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 202 ** by multiple threads. It is thread-safe. 203 */ 204 void sqlite3VtabUnlockList(sqlite3 *db){ 205 VTable *p = db->pDisconnect; 206 db->pDisconnect = 0; 207 208 assert( sqlite3BtreeHoldsAllMutexes(db) ); 209 assert( sqlite3_mutex_held(db->mutex) ); 210 211 if( p ){ 212 sqlite3ExpirePreparedStatements(db); 213 do { 214 VTable *pNext = p->pNext; 215 sqlite3VtabUnlock(p); 216 p = pNext; 217 }while( p ); 218 } 219 } 220 221 /* 222 ** Clear any and all virtual-table information from the Table record. 223 ** This routine is called, for example, just before deleting the Table 224 ** record. 225 ** 226 ** Since it is a virtual-table, the Table structure contains a pointer 227 ** to the head of a linked list of VTable structures. Each VTable 228 ** structure is associated with a single sqlite3* user of the schema. 229 ** The reference count of the VTable structure associated with database 230 ** connection db is decremented immediately (which may lead to the 231 ** structure being xDisconnected and free). Any other VTable structures 232 ** in the list are moved to the sqlite3.pDisconnect list of the associated 233 ** database connection. 234 */ 235 void sqlite3VtabClear(sqlite3 *db, Table *p){ 236 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 237 if( p->azModuleArg ){ 238 int i; 239 for(i=0; i<p->nModuleArg; i++){ 240 sqlite3DbFree(db, p->azModuleArg[i]); 241 } 242 sqlite3DbFree(db, p->azModuleArg); 243 } 244 } 245 246 /* 247 ** Add a new module argument to pTable->azModuleArg[]. 248 ** The string is not copied - the pointer is stored. The 249 ** string will be freed automatically when the table is 250 ** deleted. 251 */ 252 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 253 int i = pTable->nModuleArg++; 254 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); 255 char **azModuleArg; 256 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 257 if( azModuleArg==0 ){ 258 int j; 259 for(j=0; j<i; j++){ 260 sqlite3DbFree(db, pTable->azModuleArg[j]); 261 } 262 sqlite3DbFree(db, zArg); 263 sqlite3DbFree(db, pTable->azModuleArg); 264 pTable->nModuleArg = 0; 265 }else{ 266 azModuleArg[i] = zArg; 267 azModuleArg[i+1] = 0; 268 } 269 pTable->azModuleArg = azModuleArg; 270 } 271 272 /* 273 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 274 ** statement. The module name has been parsed, but the optional list 275 ** of parameters that follow the module name are still pending. 276 */ 277 void sqlite3VtabBeginParse( 278 Parse *pParse, /* Parsing context */ 279 Token *pName1, /* Name of new table, or database name */ 280 Token *pName2, /* Name of new table or NULL */ 281 Token *pModuleName, /* Name of the module for the virtual table */ 282 int ifNotExists /* No error if the table already exists */ 283 ){ 284 int iDb; /* The database the table is being created in */ 285 Table *pTable; /* The new virtual table */ 286 sqlite3 *db; /* Database connection */ 287 288 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 289 pTable = pParse->pNewTable; 290 if( pTable==0 ) return; 291 assert( 0==pTable->pIndex ); 292 293 db = pParse->db; 294 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 295 assert( iDb>=0 ); 296 297 pTable->tabFlags |= TF_Virtual; 298 pTable->nModuleArg = 0; 299 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 300 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName)); 301 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 302 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); 303 304 #ifndef SQLITE_OMIT_AUTHORIZATION 305 /* Creating a virtual table invokes the authorization callback twice. 306 ** The first invocation, to obtain permission to INSERT a row into the 307 ** sqlite_master table, has already been made by sqlite3StartTable(). 308 ** The second call, to obtain permission to create the table, is made now. 309 */ 310 if( pTable->azModuleArg ){ 311 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 312 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); 313 } 314 #endif 315 } 316 317 /* 318 ** This routine takes the module argument that has been accumulating 319 ** in pParse->zArg[] and appends it to the list of arguments on the 320 ** virtual table currently under construction in pParse->pTable. 321 */ 322 static void addArgumentToVtab(Parse *pParse){ 323 if( pParse->sArg.z && pParse->pNewTable ){ 324 const char *z = (const char*)pParse->sArg.z; 325 int n = pParse->sArg.n; 326 sqlite3 *db = pParse->db; 327 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 328 } 329 } 330 331 /* 332 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 333 ** has been completely parsed. 334 */ 335 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 336 Table *pTab = pParse->pNewTable; /* The table being constructed */ 337 sqlite3 *db = pParse->db; /* The database connection */ 338 339 if( pTab==0 ) return; 340 addArgumentToVtab(pParse); 341 pParse->sArg.z = 0; 342 if( pTab->nModuleArg<1 ) return; 343 344 /* If the CREATE VIRTUAL TABLE statement is being entered for the 345 ** first time (in other words if the virtual table is actually being 346 ** created now instead of just being read out of sqlite_master) then 347 ** do additional initialization work and store the statement text 348 ** in the sqlite_master table. 349 */ 350 if( !db->init.busy ){ 351 char *zStmt; 352 char *zWhere; 353 int iDb; 354 Vdbe *v; 355 356 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 357 if( pEnd ){ 358 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 359 } 360 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 361 362 /* A slot for the record has already been allocated in the 363 ** SQLITE_MASTER table. We just need to update that slot with all 364 ** the information we've collected. 365 ** 366 ** The VM register number pParse->regRowid holds the rowid of an 367 ** entry in the sqlite_master table tht was created for this vtab 368 ** by sqlite3StartTable(). 369 */ 370 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 371 sqlite3NestedParse(pParse, 372 "UPDATE %Q.%s " 373 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 374 "WHERE rowid=#%d", 375 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 376 pTab->zName, 377 pTab->zName, 378 zStmt, 379 pParse->regRowid 380 ); 381 sqlite3DbFree(db, zStmt); 382 v = sqlite3GetVdbe(pParse); 383 sqlite3ChangeCookie(pParse, iDb); 384 385 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); 386 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 387 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 388 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 389 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); 390 } 391 392 /* If we are rereading the sqlite_master table create the in-memory 393 ** record of the table. The xConnect() method is not called until 394 ** the first time the virtual table is used in an SQL statement. This 395 ** allows a schema that contains virtual tables to be loaded before 396 ** the required virtual table implementations are registered. */ 397 else { 398 Table *pOld; 399 Schema *pSchema = pTab->pSchema; 400 const char *zName = pTab->zName; 401 int nName = sqlite3Strlen30(zName); 402 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 403 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); 404 if( pOld ){ 405 db->mallocFailed = 1; 406 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 407 return; 408 } 409 pParse->pNewTable = 0; 410 } 411 } 412 413 /* 414 ** The parser calls this routine when it sees the first token 415 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 416 */ 417 void sqlite3VtabArgInit(Parse *pParse){ 418 addArgumentToVtab(pParse); 419 pParse->sArg.z = 0; 420 pParse->sArg.n = 0; 421 } 422 423 /* 424 ** The parser calls this routine for each token after the first token 425 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 426 */ 427 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 428 Token *pArg = &pParse->sArg; 429 if( pArg->z==0 ){ 430 pArg->z = p->z; 431 pArg->n = p->n; 432 }else{ 433 assert(pArg->z < p->z); 434 pArg->n = (int)(&p->z[p->n] - pArg->z); 435 } 436 } 437 438 /* 439 ** Invoke a virtual table constructor (either xCreate or xConnect). The 440 ** pointer to the function to invoke is passed as the fourth parameter 441 ** to this procedure. 442 */ 443 static int vtabCallConstructor( 444 sqlite3 *db, 445 Table *pTab, 446 Module *pMod, 447 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 448 char **pzErr 449 ){ 450 VtabCtx sCtx, *pPriorCtx; 451 VTable *pVTable; 452 int rc; 453 const char *const*azArg = (const char *const*)pTab->azModuleArg; 454 int nArg = pTab->nModuleArg; 455 char *zErr = 0; 456 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 457 458 if( !zModuleName ){ 459 return SQLITE_NOMEM; 460 } 461 462 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 463 if( !pVTable ){ 464 sqlite3DbFree(db, zModuleName); 465 return SQLITE_NOMEM; 466 } 467 pVTable->db = db; 468 pVTable->pMod = pMod; 469 470 /* Invoke the virtual table constructor */ 471 assert( &db->pVtabCtx ); 472 assert( xConstruct ); 473 sCtx.pTab = pTab; 474 sCtx.pVTable = pVTable; 475 pPriorCtx = db->pVtabCtx; 476 db->pVtabCtx = &sCtx; 477 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 478 db->pVtabCtx = pPriorCtx; 479 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 480 481 if( SQLITE_OK!=rc ){ 482 if( zErr==0 ){ 483 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 484 }else { 485 *pzErr = sqlite3MPrintf(db, "%s", zErr); 486 sqlite3_free(zErr); 487 } 488 sqlite3DbFree(db, pVTable); 489 }else if( ALWAYS(pVTable->pVtab) ){ 490 /* Justification of ALWAYS(): A correct vtab constructor must allocate 491 ** the sqlite3_vtab object if successful. */ 492 pVTable->pVtab->pModule = pMod->pModule; 493 pVTable->nRef = 1; 494 if( sCtx.pTab ){ 495 const char *zFormat = "vtable constructor did not declare schema: %s"; 496 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 497 sqlite3VtabUnlock(pVTable); 498 rc = SQLITE_ERROR; 499 }else{ 500 int iCol; 501 /* If everything went according to plan, link the new VTable structure 502 ** into the linked list headed by pTab->pVTable. Then loop through the 503 ** columns of the table to see if any of them contain the token "hidden". 504 ** If so, set the Column.isHidden flag and remove the token from 505 ** the type string. */ 506 pVTable->pNext = pTab->pVTable; 507 pTab->pVTable = pVTable; 508 509 for(iCol=0; iCol<pTab->nCol; iCol++){ 510 char *zType = pTab->aCol[iCol].zType; 511 int nType; 512 int i = 0; 513 if( !zType ) continue; 514 nType = sqlite3Strlen30(zType); 515 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ 516 for(i=0; i<nType; i++){ 517 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) 518 && (zType[i+7]=='\0' || zType[i+7]==' ') 519 ){ 520 i++; 521 break; 522 } 523 } 524 } 525 if( i<nType ){ 526 int j; 527 int nDel = 6 + (zType[i+6] ? 1 : 0); 528 for(j=i; (j+nDel)<=nType; j++){ 529 zType[j] = zType[j+nDel]; 530 } 531 if( zType[i]=='\0' && i>0 ){ 532 assert(zType[i-1]==' '); 533 zType[i-1] = '\0'; 534 } 535 pTab->aCol[iCol].isHidden = 1; 536 } 537 } 538 } 539 } 540 541 sqlite3DbFree(db, zModuleName); 542 return rc; 543 } 544 545 /* 546 ** This function is invoked by the parser to call the xConnect() method 547 ** of the virtual table pTab. If an error occurs, an error code is returned 548 ** and an error left in pParse. 549 ** 550 ** This call is a no-op if table pTab is not a virtual table. 551 */ 552 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 553 sqlite3 *db = pParse->db; 554 const char *zMod; 555 Module *pMod; 556 int rc; 557 558 assert( pTab ); 559 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ 560 return SQLITE_OK; 561 } 562 563 /* Locate the required virtual table module */ 564 zMod = pTab->azModuleArg[0]; 565 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 566 567 if( !pMod ){ 568 const char *zModule = pTab->azModuleArg[0]; 569 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 570 rc = SQLITE_ERROR; 571 }else{ 572 char *zErr = 0; 573 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 574 if( rc!=SQLITE_OK ){ 575 sqlite3ErrorMsg(pParse, "%s", zErr); 576 } 577 sqlite3DbFree(db, zErr); 578 } 579 580 return rc; 581 } 582 /* 583 ** Grow the db->aVTrans[] array so that there is room for at least one 584 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 585 */ 586 static int growVTrans(sqlite3 *db){ 587 const int ARRAY_INCR = 5; 588 589 /* Grow the sqlite3.aVTrans array if required */ 590 if( (db->nVTrans%ARRAY_INCR)==0 ){ 591 VTable **aVTrans; 592 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 593 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 594 if( !aVTrans ){ 595 return SQLITE_NOMEM; 596 } 597 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 598 db->aVTrans = aVTrans; 599 } 600 601 return SQLITE_OK; 602 } 603 604 /* 605 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 606 ** have already been reserved using growVTrans(). 607 */ 608 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 609 /* Add pVtab to the end of sqlite3.aVTrans */ 610 db->aVTrans[db->nVTrans++] = pVTab; 611 sqlite3VtabLock(pVTab); 612 } 613 614 /* 615 ** This function is invoked by the vdbe to call the xCreate method 616 ** of the virtual table named zTab in database iDb. 617 ** 618 ** If an error occurs, *pzErr is set to point an an English language 619 ** description of the error and an SQLITE_XXX error code is returned. 620 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 621 */ 622 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 623 int rc = SQLITE_OK; 624 Table *pTab; 625 Module *pMod; 626 const char *zMod; 627 628 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 629 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); 630 631 /* Locate the required virtual table module */ 632 zMod = pTab->azModuleArg[0]; 633 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod)); 634 635 /* If the module has been registered and includes a Create method, 636 ** invoke it now. If the module has not been registered, return an 637 ** error. Otherwise, do nothing. 638 */ 639 if( !pMod ){ 640 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 641 rc = SQLITE_ERROR; 642 }else{ 643 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 644 } 645 646 /* Justification of ALWAYS(): The xConstructor method is required to 647 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 648 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 649 rc = growVTrans(db); 650 if( rc==SQLITE_OK ){ 651 addToVTrans(db, sqlite3GetVTable(db, pTab)); 652 } 653 } 654 655 return rc; 656 } 657 658 /* 659 ** This function is used to set the schema of a virtual table. It is only 660 ** valid to call this function from within the xCreate() or xConnect() of a 661 ** virtual table module. 662 */ 663 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 664 Parse *pParse; 665 666 int rc = SQLITE_OK; 667 Table *pTab; 668 char *zErr = 0; 669 670 sqlite3_mutex_enter(db->mutex); 671 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ 672 sqlite3Error(db, SQLITE_MISUSE, 0); 673 sqlite3_mutex_leave(db->mutex); 674 return SQLITE_MISUSE_BKPT; 675 } 676 assert( (pTab->tabFlags & TF_Virtual)!=0 ); 677 678 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); 679 if( pParse==0 ){ 680 rc = SQLITE_NOMEM; 681 }else{ 682 pParse->declareVtab = 1; 683 pParse->db = db; 684 pParse->nQueryLoop = 1; 685 686 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 687 && pParse->pNewTable 688 && !db->mallocFailed 689 && !pParse->pNewTable->pSelect 690 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 691 ){ 692 if( !pTab->aCol ){ 693 pTab->aCol = pParse->pNewTable->aCol; 694 pTab->nCol = pParse->pNewTable->nCol; 695 pParse->pNewTable->nCol = 0; 696 pParse->pNewTable->aCol = 0; 697 } 698 db->pVtabCtx->pTab = 0; 699 }else{ 700 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 701 sqlite3DbFree(db, zErr); 702 rc = SQLITE_ERROR; 703 } 704 pParse->declareVtab = 0; 705 706 if( pParse->pVdbe ){ 707 sqlite3VdbeFinalize(pParse->pVdbe); 708 } 709 sqlite3DeleteTable(db, pParse->pNewTable); 710 sqlite3StackFree(db, pParse); 711 } 712 713 assert( (rc&0xff)==rc ); 714 rc = sqlite3ApiExit(db, rc); 715 sqlite3_mutex_leave(db->mutex); 716 return rc; 717 } 718 719 /* 720 ** This function is invoked by the vdbe to call the xDestroy method 721 ** of the virtual table named zTab in database iDb. This occurs 722 ** when a DROP TABLE is mentioned. 723 ** 724 ** This call is a no-op if zTab is not a virtual table. 725 */ 726 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 727 int rc = SQLITE_OK; 728 Table *pTab; 729 730 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); 731 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ 732 VTable *p = vtabDisconnectAll(db, pTab); 733 734 assert( rc==SQLITE_OK ); 735 rc = p->pMod->pModule->xDestroy(p->pVtab); 736 737 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 738 if( rc==SQLITE_OK ){ 739 assert( pTab->pVTable==p && p->pNext==0 ); 740 p->pVtab = 0; 741 pTab->pVTable = 0; 742 sqlite3VtabUnlock(p); 743 } 744 } 745 746 return rc; 747 } 748 749 /* 750 ** This function invokes either the xRollback or xCommit method 751 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 752 ** called is identified by the second argument, "offset", which is 753 ** the offset of the method to call in the sqlite3_module structure. 754 ** 755 ** The array is cleared after invoking the callbacks. 756 */ 757 static void callFinaliser(sqlite3 *db, int offset){ 758 int i; 759 if( db->aVTrans ){ 760 for(i=0; i<db->nVTrans; i++){ 761 VTable *pVTab = db->aVTrans[i]; 762 sqlite3_vtab *p = pVTab->pVtab; 763 if( p ){ 764 int (*x)(sqlite3_vtab *); 765 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 766 if( x ) x(p); 767 } 768 pVTab->iSavepoint = 0; 769 sqlite3VtabUnlock(pVTab); 770 } 771 sqlite3DbFree(db, db->aVTrans); 772 db->nVTrans = 0; 773 db->aVTrans = 0; 774 } 775 } 776 777 /* 778 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 779 ** array. Return the error code for the first error that occurs, or 780 ** SQLITE_OK if all xSync operations are successful. 781 ** 782 ** Set *pzErrmsg to point to a buffer that should be released using 783 ** sqlite3DbFree() containing an error message, if one is available. 784 */ 785 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){ 786 int i; 787 int rc = SQLITE_OK; 788 VTable **aVTrans = db->aVTrans; 789 790 db->aVTrans = 0; 791 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 792 int (*x)(sqlite3_vtab *); 793 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 794 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 795 rc = x(pVtab); 796 sqlite3DbFree(db, *pzErrmsg); 797 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 798 sqlite3_free(pVtab->zErrMsg); 799 } 800 } 801 db->aVTrans = aVTrans; 802 return rc; 803 } 804 805 /* 806 ** Invoke the xRollback method of all virtual tables in the 807 ** sqlite3.aVTrans array. Then clear the array itself. 808 */ 809 int sqlite3VtabRollback(sqlite3 *db){ 810 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 811 return SQLITE_OK; 812 } 813 814 /* 815 ** Invoke the xCommit method of all virtual tables in the 816 ** sqlite3.aVTrans array. Then clear the array itself. 817 */ 818 int sqlite3VtabCommit(sqlite3 *db){ 819 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 820 return SQLITE_OK; 821 } 822 823 /* 824 ** If the virtual table pVtab supports the transaction interface 825 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 826 ** not currently open, invoke the xBegin method now. 827 ** 828 ** If the xBegin call is successful, place the sqlite3_vtab pointer 829 ** in the sqlite3.aVTrans array. 830 */ 831 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 832 int rc = SQLITE_OK; 833 const sqlite3_module *pModule; 834 835 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 836 ** than zero, then this function is being called from within a 837 ** virtual module xSync() callback. It is illegal to write to 838 ** virtual module tables in this case, so return SQLITE_LOCKED. 839 */ 840 if( sqlite3VtabInSync(db) ){ 841 return SQLITE_LOCKED; 842 } 843 if( !pVTab ){ 844 return SQLITE_OK; 845 } 846 pModule = pVTab->pVtab->pModule; 847 848 if( pModule->xBegin ){ 849 int i; 850 851 /* If pVtab is already in the aVTrans array, return early */ 852 for(i=0; i<db->nVTrans; i++){ 853 if( db->aVTrans[i]==pVTab ){ 854 return SQLITE_OK; 855 } 856 } 857 858 /* Invoke the xBegin method. If successful, add the vtab to the 859 ** sqlite3.aVTrans[] array. */ 860 rc = growVTrans(db); 861 if( rc==SQLITE_OK ){ 862 rc = pModule->xBegin(pVTab->pVtab); 863 if( rc==SQLITE_OK ){ 864 addToVTrans(db, pVTab); 865 } 866 } 867 } 868 return rc; 869 } 870 871 /* 872 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 873 ** virtual tables that currently have an open transaction. Pass iSavepoint 874 ** as the second argument to the virtual table method invoked. 875 ** 876 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 877 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 878 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 879 ** an open transaction is invoked. 880 ** 881 ** If any virtual table method returns an error code other than SQLITE_OK, 882 ** processing is abandoned and the error returned to the caller of this 883 ** function immediately. If all calls to virtual table methods are successful, 884 ** SQLITE_OK is returned. 885 */ 886 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 887 int rc = SQLITE_OK; 888 889 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 890 assert( iSavepoint>=0 ); 891 if( db->aVTrans ){ 892 int i; 893 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 894 VTable *pVTab = db->aVTrans[i]; 895 const sqlite3_module *pMod = pVTab->pMod->pModule; 896 if( pVTab->pVtab && pMod->iVersion>=2 ){ 897 int (*xMethod)(sqlite3_vtab *, int); 898 switch( op ){ 899 case SAVEPOINT_BEGIN: 900 xMethod = pMod->xSavepoint; 901 pVTab->iSavepoint = iSavepoint+1; 902 break; 903 case SAVEPOINT_ROLLBACK: 904 xMethod = pMod->xRollbackTo; 905 break; 906 default: 907 xMethod = pMod->xRelease; 908 break; 909 } 910 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 911 rc = xMethod(pVTab->pVtab, iSavepoint); 912 } 913 } 914 } 915 } 916 return rc; 917 } 918 919 /* 920 ** The first parameter (pDef) is a function implementation. The 921 ** second parameter (pExpr) is the first argument to this function. 922 ** If pExpr is a column in a virtual table, then let the virtual 923 ** table implementation have an opportunity to overload the function. 924 ** 925 ** This routine is used to allow virtual table implementations to 926 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 927 ** 928 ** Return either the pDef argument (indicating no change) or a 929 ** new FuncDef structure that is marked as ephemeral using the 930 ** SQLITE_FUNC_EPHEM flag. 931 */ 932 FuncDef *sqlite3VtabOverloadFunction( 933 sqlite3 *db, /* Database connection for reporting malloc problems */ 934 FuncDef *pDef, /* Function to possibly overload */ 935 int nArg, /* Number of arguments to the function */ 936 Expr *pExpr /* First argument to the function */ 937 ){ 938 Table *pTab; 939 sqlite3_vtab *pVtab; 940 sqlite3_module *pMod; 941 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 942 void *pArg = 0; 943 FuncDef *pNew; 944 int rc = 0; 945 char *zLowerName; 946 unsigned char *z; 947 948 949 /* Check to see the left operand is a column in a virtual table */ 950 if( NEVER(pExpr==0) ) return pDef; 951 if( pExpr->op!=TK_COLUMN ) return pDef; 952 pTab = pExpr->pTab; 953 if( NEVER(pTab==0) ) return pDef; 954 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; 955 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 956 assert( pVtab!=0 ); 957 assert( pVtab->pModule!=0 ); 958 pMod = (sqlite3_module *)pVtab->pModule; 959 if( pMod->xFindFunction==0 ) return pDef; 960 961 /* Call the xFindFunction method on the virtual table implementation 962 ** to see if the implementation wants to overload this function 963 */ 964 zLowerName = sqlite3DbStrDup(db, pDef->zName); 965 if( zLowerName ){ 966 for(z=(unsigned char*)zLowerName; *z; z++){ 967 *z = sqlite3UpperToLower[*z]; 968 } 969 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); 970 sqlite3DbFree(db, zLowerName); 971 } 972 if( rc==0 ){ 973 return pDef; 974 } 975 976 /* Create a new ephemeral function definition for the overloaded 977 ** function */ 978 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 979 + sqlite3Strlen30(pDef->zName) + 1); 980 if( pNew==0 ){ 981 return pDef; 982 } 983 *pNew = *pDef; 984 pNew->zName = (char *)&pNew[1]; 985 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); 986 pNew->xFunc = xFunc; 987 pNew->pUserData = pArg; 988 pNew->flags |= SQLITE_FUNC_EPHEM; 989 return pNew; 990 } 991 992 /* 993 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 994 ** array so that an OP_VBegin will get generated for it. Add pTab to the 995 ** array if it is missing. If pTab is already in the array, this routine 996 ** is a no-op. 997 */ 998 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 999 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1000 int i, n; 1001 Table **apVtabLock; 1002 1003 assert( IsVirtual(pTab) ); 1004 for(i=0; i<pToplevel->nVtabLock; i++){ 1005 if( pTab==pToplevel->apVtabLock[i] ) return; 1006 } 1007 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1008 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); 1009 if( apVtabLock ){ 1010 pToplevel->apVtabLock = apVtabLock; 1011 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1012 }else{ 1013 pToplevel->db->mallocFailed = 1; 1014 } 1015 } 1016 1017 /* 1018 ** Return the ON CONFLICT resolution mode in effect for the virtual 1019 ** table update operation currently in progress. 1020 ** 1021 ** The results of this routine are undefined unless it is called from 1022 ** within an xUpdate method. 1023 */ 1024 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1025 static const unsigned char aMap[] = { 1026 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1027 }; 1028 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1029 assert( OE_Ignore==4 && OE_Replace==5 ); 1030 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1031 return (int)aMap[db->vtabOnConflict-1]; 1032 } 1033 1034 /* 1035 ** Call from within the xCreate() or xConnect() methods to provide 1036 ** the SQLite core with additional information about the behavior 1037 ** of the virtual table being implemented. 1038 */ 1039 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1040 va_list ap; 1041 int rc = SQLITE_OK; 1042 1043 sqlite3_mutex_enter(db->mutex); 1044 1045 va_start(ap, op); 1046 switch( op ){ 1047 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1048 VtabCtx *p = db->pVtabCtx; 1049 if( !p ){ 1050 rc = SQLITE_MISUSE_BKPT; 1051 }else{ 1052 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); 1053 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1054 } 1055 break; 1056 } 1057 default: 1058 rc = SQLITE_MISUSE_BKPT; 1059 break; 1060 } 1061 va_end(ap); 1062 1063 if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0); 1064 sqlite3_mutex_leave(db->mutex); 1065 return rc; 1066 } 1067 1068 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1069