1 /* 2 ** 2006 June 10 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to help implement virtual tables. 13 */ 14 #ifndef SQLITE_OMIT_VIRTUALTABLE 15 #include "sqliteInt.h" 16 17 /* 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of 20 ** this struct allocated on the stack. It is used by the implementation of 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which 22 ** are invoked only from within xCreate and xConnect methods. 23 */ 24 struct VtabCtx { 25 VTable *pVTable; /* The virtual table being constructed */ 26 Table *pTab; /* The Table object to which the virtual table belongs */ 27 VtabCtx *pPrior; /* Parent context (if any) */ 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ 29 }; 30 31 /* 32 ** Construct and install a Module object for a virtual table. When this 33 ** routine is called, it is guaranteed that all appropriate locks are held 34 ** and the module is not already part of the connection. 35 */ 36 Module *sqlite3VtabCreateModule( 37 sqlite3 *db, /* Database in which module is registered */ 38 const char *zName, /* Name assigned to this module */ 39 const sqlite3_module *pModule, /* The definition of the module */ 40 void *pAux, /* Context pointer for xCreate/xConnect */ 41 void (*xDestroy)(void *) /* Module destructor function */ 42 ){ 43 Module *pMod; 44 int nName = sqlite3Strlen30(zName); 45 pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1); 46 if( pMod ){ 47 Module *pDel; 48 char *zCopy = (char *)(&pMod[1]); 49 memcpy(zCopy, zName, nName+1); 50 pMod->zName = zCopy; 51 pMod->pModule = pModule; 52 pMod->pAux = pAux; 53 pMod->xDestroy = xDestroy; 54 pMod->pEpoTab = 0; 55 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); 56 assert( pDel==0 || pDel==pMod ); 57 if( pDel ){ 58 sqlite3OomFault(db); 59 sqlite3DbFree(db, pDel); 60 pMod = 0; 61 } 62 } 63 return pMod; 64 } 65 66 /* 67 ** The actual function that does the work of creating a new module. 68 ** This function implements the sqlite3_create_module() and 69 ** sqlite3_create_module_v2() interfaces. 70 */ 71 static int createModule( 72 sqlite3 *db, /* Database in which module is registered */ 73 const char *zName, /* Name assigned to this module */ 74 const sqlite3_module *pModule, /* The definition of the module */ 75 void *pAux, /* Context pointer for xCreate/xConnect */ 76 void (*xDestroy)(void *) /* Module destructor function */ 77 ){ 78 int rc = SQLITE_OK; 79 80 sqlite3_mutex_enter(db->mutex); 81 if( sqlite3HashFind(&db->aModule, zName) ){ 82 rc = SQLITE_MISUSE_BKPT; 83 }else{ 84 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); 85 } 86 rc = sqlite3ApiExit(db, rc); 87 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); 88 sqlite3_mutex_leave(db->mutex); 89 return rc; 90 } 91 92 93 /* 94 ** External API function used to create a new virtual-table module. 95 */ 96 int sqlite3_create_module( 97 sqlite3 *db, /* Database in which module is registered */ 98 const char *zName, /* Name assigned to this module */ 99 const sqlite3_module *pModule, /* The definition of the module */ 100 void *pAux /* Context pointer for xCreate/xConnect */ 101 ){ 102 #ifdef SQLITE_ENABLE_API_ARMOR 103 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 104 #endif 105 return createModule(db, zName, pModule, pAux, 0); 106 } 107 108 /* 109 ** External API function used to create a new virtual-table module. 110 */ 111 int sqlite3_create_module_v2( 112 sqlite3 *db, /* Database in which module is registered */ 113 const char *zName, /* Name assigned to this module */ 114 const sqlite3_module *pModule, /* The definition of the module */ 115 void *pAux, /* Context pointer for xCreate/xConnect */ 116 void (*xDestroy)(void *) /* Module destructor function */ 117 ){ 118 #ifdef SQLITE_ENABLE_API_ARMOR 119 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 120 #endif 121 return createModule(db, zName, pModule, pAux, xDestroy); 122 } 123 124 /* 125 ** Lock the virtual table so that it cannot be disconnected. 126 ** Locks nest. Every lock should have a corresponding unlock. 127 ** If an unlock is omitted, resources leaks will occur. 128 ** 129 ** If a disconnect is attempted while a virtual table is locked, 130 ** the disconnect is deferred until all locks have been removed. 131 */ 132 void sqlite3VtabLock(VTable *pVTab){ 133 pVTab->nRef++; 134 } 135 136 137 /* 138 ** pTab is a pointer to a Table structure representing a virtual-table. 139 ** Return a pointer to the VTable object used by connection db to access 140 ** this virtual-table, if one has been created, or NULL otherwise. 141 */ 142 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ 143 VTable *pVtab; 144 assert( IsVirtual(pTab) ); 145 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); 146 return pVtab; 147 } 148 149 /* 150 ** Decrement the ref-count on a virtual table object. When the ref-count 151 ** reaches zero, call the xDisconnect() method to delete the object. 152 */ 153 void sqlite3VtabUnlock(VTable *pVTab){ 154 sqlite3 *db = pVTab->db; 155 156 assert( db ); 157 assert( pVTab->nRef>0 ); 158 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); 159 160 pVTab->nRef--; 161 if( pVTab->nRef==0 ){ 162 sqlite3_vtab *p = pVTab->pVtab; 163 if( p ){ 164 p->pModule->xDisconnect(p); 165 } 166 sqlite3DbFree(db, pVTab); 167 } 168 } 169 170 /* 171 ** Table p is a virtual table. This function moves all elements in the 172 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated 173 ** database connections to be disconnected at the next opportunity. 174 ** Except, if argument db is not NULL, then the entry associated with 175 ** connection db is left in the p->pVTable list. 176 */ 177 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ 178 VTable *pRet = 0; 179 VTable *pVTable = p->pVTable; 180 p->pVTable = 0; 181 182 /* Assert that the mutex (if any) associated with the BtShared database 183 ** that contains table p is held by the caller. See header comments 184 ** above function sqlite3VtabUnlockList() for an explanation of why 185 ** this makes it safe to access the sqlite3.pDisconnect list of any 186 ** database connection that may have an entry in the p->pVTable list. 187 */ 188 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 189 190 while( pVTable ){ 191 sqlite3 *db2 = pVTable->db; 192 VTable *pNext = pVTable->pNext; 193 assert( db2 ); 194 if( db2==db ){ 195 pRet = pVTable; 196 p->pVTable = pRet; 197 pRet->pNext = 0; 198 }else{ 199 pVTable->pNext = db2->pDisconnect; 200 db2->pDisconnect = pVTable; 201 } 202 pVTable = pNext; 203 } 204 205 assert( !db || pRet ); 206 return pRet; 207 } 208 209 /* 210 ** Table *p is a virtual table. This function removes the VTable object 211 ** for table *p associated with database connection db from the linked 212 ** list in p->pVTab. It also decrements the VTable ref count. This is 213 ** used when closing database connection db to free all of its VTable 214 ** objects without disturbing the rest of the Schema object (which may 215 ** be being used by other shared-cache connections). 216 */ 217 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ 218 VTable **ppVTab; 219 220 assert( IsVirtual(p) ); 221 assert( sqlite3BtreeHoldsAllMutexes(db) ); 222 assert( sqlite3_mutex_held(db->mutex) ); 223 224 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ 225 if( (*ppVTab)->db==db ){ 226 VTable *pVTab = *ppVTab; 227 *ppVTab = pVTab->pNext; 228 sqlite3VtabUnlock(pVTab); 229 break; 230 } 231 } 232 } 233 234 235 /* 236 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. 237 ** 238 ** This function may only be called when the mutexes associated with all 239 ** shared b-tree databases opened using connection db are held by the 240 ** caller. This is done to protect the sqlite3.pDisconnect list. The 241 ** sqlite3.pDisconnect list is accessed only as follows: 242 ** 243 ** 1) By this function. In this case, all BtShared mutexes and the mutex 244 ** associated with the database handle itself must be held. 245 ** 246 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to 247 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex 248 ** associated with the database the virtual table is stored in is held 249 ** or, if the virtual table is stored in a non-sharable database, then 250 ** the database handle mutex is held. 251 ** 252 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 253 ** by multiple threads. It is thread-safe. 254 */ 255 void sqlite3VtabUnlockList(sqlite3 *db){ 256 VTable *p = db->pDisconnect; 257 db->pDisconnect = 0; 258 259 assert( sqlite3BtreeHoldsAllMutexes(db) ); 260 assert( sqlite3_mutex_held(db->mutex) ); 261 262 if( p ){ 263 sqlite3ExpirePreparedStatements(db); 264 do { 265 VTable *pNext = p->pNext; 266 sqlite3VtabUnlock(p); 267 p = pNext; 268 }while( p ); 269 } 270 } 271 272 /* 273 ** Clear any and all virtual-table information from the Table record. 274 ** This routine is called, for example, just before deleting the Table 275 ** record. 276 ** 277 ** Since it is a virtual-table, the Table structure contains a pointer 278 ** to the head of a linked list of VTable structures. Each VTable 279 ** structure is associated with a single sqlite3* user of the schema. 280 ** The reference count of the VTable structure associated with database 281 ** connection db is decremented immediately (which may lead to the 282 ** structure being xDisconnected and free). Any other VTable structures 283 ** in the list are moved to the sqlite3.pDisconnect list of the associated 284 ** database connection. 285 */ 286 void sqlite3VtabClear(sqlite3 *db, Table *p){ 287 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); 288 if( p->azModuleArg ){ 289 int i; 290 for(i=0; i<p->nModuleArg; i++){ 291 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); 292 } 293 sqlite3DbFree(db, p->azModuleArg); 294 } 295 } 296 297 /* 298 ** Add a new module argument to pTable->azModuleArg[]. 299 ** The string is not copied - the pointer is stored. The 300 ** string will be freed automatically when the table is 301 ** deleted. 302 */ 303 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ 304 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); 305 char **azModuleArg; 306 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); 307 if( azModuleArg==0 ){ 308 sqlite3DbFree(db, zArg); 309 }else{ 310 int i = pTable->nModuleArg++; 311 azModuleArg[i] = zArg; 312 azModuleArg[i+1] = 0; 313 pTable->azModuleArg = azModuleArg; 314 } 315 } 316 317 /* 318 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE 319 ** statement. The module name has been parsed, but the optional list 320 ** of parameters that follow the module name are still pending. 321 */ 322 void sqlite3VtabBeginParse( 323 Parse *pParse, /* Parsing context */ 324 Token *pName1, /* Name of new table, or database name */ 325 Token *pName2, /* Name of new table or NULL */ 326 Token *pModuleName, /* Name of the module for the virtual table */ 327 int ifNotExists /* No error if the table already exists */ 328 ){ 329 int iDb; /* The database the table is being created in */ 330 Table *pTable; /* The new virtual table */ 331 sqlite3 *db; /* Database connection */ 332 333 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); 334 pTable = pParse->pNewTable; 335 if( pTable==0 ) return; 336 assert( 0==pTable->pIndex ); 337 338 db = pParse->db; 339 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); 340 assert( iDb>=0 ); 341 342 assert( pTable->nModuleArg==0 ); 343 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); 344 addModuleArgument(db, pTable, 0); 345 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); 346 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) 347 || (pParse->sNameToken.z==pName1->z && pName2->z==0) 348 ); 349 pParse->sNameToken.n = (int)( 350 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z 351 ); 352 353 #ifndef SQLITE_OMIT_AUTHORIZATION 354 /* Creating a virtual table invokes the authorization callback twice. 355 ** The first invocation, to obtain permission to INSERT a row into the 356 ** sqlite_master table, has already been made by sqlite3StartTable(). 357 ** The second call, to obtain permission to create the table, is made now. 358 */ 359 if( pTable->azModuleArg ){ 360 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 361 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); 362 } 363 #endif 364 } 365 366 /* 367 ** This routine takes the module argument that has been accumulating 368 ** in pParse->zArg[] and appends it to the list of arguments on the 369 ** virtual table currently under construction in pParse->pTable. 370 */ 371 static void addArgumentToVtab(Parse *pParse){ 372 if( pParse->sArg.z && pParse->pNewTable ){ 373 const char *z = (const char*)pParse->sArg.z; 374 int n = pParse->sArg.n; 375 sqlite3 *db = pParse->db; 376 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); 377 } 378 } 379 380 /* 381 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement 382 ** has been completely parsed. 383 */ 384 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ 385 Table *pTab = pParse->pNewTable; /* The table being constructed */ 386 sqlite3 *db = pParse->db; /* The database connection */ 387 388 if( pTab==0 ) return; 389 addArgumentToVtab(pParse); 390 pParse->sArg.z = 0; 391 if( pTab->nModuleArg<1 ) return; 392 393 /* If the CREATE VIRTUAL TABLE statement is being entered for the 394 ** first time (in other words if the virtual table is actually being 395 ** created now instead of just being read out of sqlite_master) then 396 ** do additional initialization work and store the statement text 397 ** in the sqlite_master table. 398 */ 399 if( !db->init.busy ){ 400 char *zStmt; 401 char *zWhere; 402 int iDb; 403 int iReg; 404 Vdbe *v; 405 406 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ 407 if( pEnd ){ 408 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; 409 } 410 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); 411 412 /* A slot for the record has already been allocated in the 413 ** SQLITE_MASTER table. We just need to update that slot with all 414 ** the information we've collected. 415 ** 416 ** The VM register number pParse->regRowid holds the rowid of an 417 ** entry in the sqlite_master table tht was created for this vtab 418 ** by sqlite3StartTable(). 419 */ 420 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 421 sqlite3NestedParse(pParse, 422 "UPDATE %Q.%s " 423 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " 424 "WHERE rowid=#%d", 425 db->aDb[iDb].zDbSName, MASTER_NAME, 426 pTab->zName, 427 pTab->zName, 428 zStmt, 429 pParse->regRowid 430 ); 431 sqlite3DbFree(db, zStmt); 432 v = sqlite3GetVdbe(pParse); 433 sqlite3ChangeCookie(pParse, iDb); 434 435 sqlite3VdbeAddOp0(v, OP_Expire); 436 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); 437 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); 438 439 iReg = ++pParse->nMem; 440 sqlite3VdbeLoadString(v, iReg, pTab->zName); 441 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); 442 } 443 444 /* If we are rereading the sqlite_master table create the in-memory 445 ** record of the table. The xConnect() method is not called until 446 ** the first time the virtual table is used in an SQL statement. This 447 ** allows a schema that contains virtual tables to be loaded before 448 ** the required virtual table implementations are registered. */ 449 else { 450 Table *pOld; 451 Schema *pSchema = pTab->pSchema; 452 const char *zName = pTab->zName; 453 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); 454 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); 455 if( pOld ){ 456 sqlite3OomFault(db); 457 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ 458 return; 459 } 460 pParse->pNewTable = 0; 461 } 462 } 463 464 /* 465 ** The parser calls this routine when it sees the first token 466 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. 467 */ 468 void sqlite3VtabArgInit(Parse *pParse){ 469 addArgumentToVtab(pParse); 470 pParse->sArg.z = 0; 471 pParse->sArg.n = 0; 472 } 473 474 /* 475 ** The parser calls this routine for each token after the first token 476 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. 477 */ 478 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ 479 Token *pArg = &pParse->sArg; 480 if( pArg->z==0 ){ 481 pArg->z = p->z; 482 pArg->n = p->n; 483 }else{ 484 assert(pArg->z <= p->z); 485 pArg->n = (int)(&p->z[p->n] - pArg->z); 486 } 487 } 488 489 /* 490 ** Invoke a virtual table constructor (either xCreate or xConnect). The 491 ** pointer to the function to invoke is passed as the fourth parameter 492 ** to this procedure. 493 */ 494 static int vtabCallConstructor( 495 sqlite3 *db, 496 Table *pTab, 497 Module *pMod, 498 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), 499 char **pzErr 500 ){ 501 VtabCtx sCtx; 502 VTable *pVTable; 503 int rc; 504 const char *const*azArg = (const char *const*)pTab->azModuleArg; 505 int nArg = pTab->nModuleArg; 506 char *zErr = 0; 507 char *zModuleName; 508 int iDb; 509 VtabCtx *pCtx; 510 511 /* Check that the virtual-table is not already being initialized */ 512 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ 513 if( pCtx->pTab==pTab ){ 514 *pzErr = sqlite3MPrintf(db, 515 "vtable constructor called recursively: %s", pTab->zName 516 ); 517 return SQLITE_LOCKED; 518 } 519 } 520 521 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); 522 if( !zModuleName ){ 523 return SQLITE_NOMEM_BKPT; 524 } 525 526 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); 527 if( !pVTable ){ 528 sqlite3DbFree(db, zModuleName); 529 return SQLITE_NOMEM_BKPT; 530 } 531 pVTable->db = db; 532 pVTable->pMod = pMod; 533 534 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 535 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; 536 537 /* Invoke the virtual table constructor */ 538 assert( &db->pVtabCtx ); 539 assert( xConstruct ); 540 sCtx.pTab = pTab; 541 sCtx.pVTable = pVTable; 542 sCtx.pPrior = db->pVtabCtx; 543 sCtx.bDeclared = 0; 544 db->pVtabCtx = &sCtx; 545 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); 546 db->pVtabCtx = sCtx.pPrior; 547 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 548 assert( sCtx.pTab==pTab ); 549 550 if( SQLITE_OK!=rc ){ 551 if( zErr==0 ){ 552 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); 553 }else { 554 *pzErr = sqlite3MPrintf(db, "%s", zErr); 555 sqlite3_free(zErr); 556 } 557 sqlite3DbFree(db, pVTable); 558 }else if( ALWAYS(pVTable->pVtab) ){ 559 /* Justification of ALWAYS(): A correct vtab constructor must allocate 560 ** the sqlite3_vtab object if successful. */ 561 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); 562 pVTable->pVtab->pModule = pMod->pModule; 563 pVTable->nRef = 1; 564 if( sCtx.bDeclared==0 ){ 565 const char *zFormat = "vtable constructor did not declare schema: %s"; 566 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); 567 sqlite3VtabUnlock(pVTable); 568 rc = SQLITE_ERROR; 569 }else{ 570 int iCol; 571 u8 oooHidden = 0; 572 /* If everything went according to plan, link the new VTable structure 573 ** into the linked list headed by pTab->pVTable. Then loop through the 574 ** columns of the table to see if any of them contain the token "hidden". 575 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from 576 ** the type string. */ 577 pVTable->pNext = pTab->pVTable; 578 pTab->pVTable = pVTable; 579 580 for(iCol=0; iCol<pTab->nCol; iCol++){ 581 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); 582 int nType; 583 int i = 0; 584 nType = sqlite3Strlen30(zType); 585 for(i=0; i<nType; i++){ 586 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) 587 && (i==0 || zType[i-1]==' ') 588 && (zType[i+6]=='\0' || zType[i+6]==' ') 589 ){ 590 break; 591 } 592 } 593 if( i<nType ){ 594 int j; 595 int nDel = 6 + (zType[i+6] ? 1 : 0); 596 for(j=i; (j+nDel)<=nType; j++){ 597 zType[j] = zType[j+nDel]; 598 } 599 if( zType[i]=='\0' && i>0 ){ 600 assert(zType[i-1]==' '); 601 zType[i-1] = '\0'; 602 } 603 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; 604 oooHidden = TF_OOOHidden; 605 }else{ 606 pTab->tabFlags |= oooHidden; 607 } 608 } 609 } 610 } 611 612 sqlite3DbFree(db, zModuleName); 613 return rc; 614 } 615 616 /* 617 ** This function is invoked by the parser to call the xConnect() method 618 ** of the virtual table pTab. If an error occurs, an error code is returned 619 ** and an error left in pParse. 620 ** 621 ** This call is a no-op if table pTab is not a virtual table. 622 */ 623 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ 624 sqlite3 *db = pParse->db; 625 const char *zMod; 626 Module *pMod; 627 int rc; 628 629 assert( pTab ); 630 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ 631 return SQLITE_OK; 632 } 633 634 /* Locate the required virtual table module */ 635 zMod = pTab->azModuleArg[0]; 636 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 637 638 if( !pMod ){ 639 const char *zModule = pTab->azModuleArg[0]; 640 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); 641 rc = SQLITE_ERROR; 642 }else{ 643 char *zErr = 0; 644 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); 645 if( rc!=SQLITE_OK ){ 646 sqlite3ErrorMsg(pParse, "%s", zErr); 647 } 648 sqlite3DbFree(db, zErr); 649 } 650 651 return rc; 652 } 653 /* 654 ** Grow the db->aVTrans[] array so that there is room for at least one 655 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. 656 */ 657 static int growVTrans(sqlite3 *db){ 658 const int ARRAY_INCR = 5; 659 660 /* Grow the sqlite3.aVTrans array if required */ 661 if( (db->nVTrans%ARRAY_INCR)==0 ){ 662 VTable **aVTrans; 663 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); 664 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); 665 if( !aVTrans ){ 666 return SQLITE_NOMEM_BKPT; 667 } 668 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); 669 db->aVTrans = aVTrans; 670 } 671 672 return SQLITE_OK; 673 } 674 675 /* 676 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should 677 ** have already been reserved using growVTrans(). 678 */ 679 static void addToVTrans(sqlite3 *db, VTable *pVTab){ 680 /* Add pVtab to the end of sqlite3.aVTrans */ 681 db->aVTrans[db->nVTrans++] = pVTab; 682 sqlite3VtabLock(pVTab); 683 } 684 685 /* 686 ** This function is invoked by the vdbe to call the xCreate method 687 ** of the virtual table named zTab in database iDb. 688 ** 689 ** If an error occurs, *pzErr is set to point to an English language 690 ** description of the error and an SQLITE_XXX error code is returned. 691 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. 692 */ 693 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ 694 int rc = SQLITE_OK; 695 Table *pTab; 696 Module *pMod; 697 const char *zMod; 698 699 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 700 assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); 701 702 /* Locate the required virtual table module */ 703 zMod = pTab->azModuleArg[0]; 704 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); 705 706 /* If the module has been registered and includes a Create method, 707 ** invoke it now. If the module has not been registered, return an 708 ** error. Otherwise, do nothing. 709 */ 710 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ 711 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); 712 rc = SQLITE_ERROR; 713 }else{ 714 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); 715 } 716 717 /* Justification of ALWAYS(): The xConstructor method is required to 718 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ 719 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ 720 rc = growVTrans(db); 721 if( rc==SQLITE_OK ){ 722 addToVTrans(db, sqlite3GetVTable(db, pTab)); 723 } 724 } 725 726 return rc; 727 } 728 729 /* 730 ** This function is used to set the schema of a virtual table. It is only 731 ** valid to call this function from within the xCreate() or xConnect() of a 732 ** virtual table module. 733 */ 734 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ 735 VtabCtx *pCtx; 736 int rc = SQLITE_OK; 737 Table *pTab; 738 char *zErr = 0; 739 Parse sParse; 740 741 #ifdef SQLITE_ENABLE_API_ARMOR 742 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ 743 return SQLITE_MISUSE_BKPT; 744 } 745 #endif 746 sqlite3_mutex_enter(db->mutex); 747 pCtx = db->pVtabCtx; 748 if( !pCtx || pCtx->bDeclared ){ 749 sqlite3Error(db, SQLITE_MISUSE); 750 sqlite3_mutex_leave(db->mutex); 751 return SQLITE_MISUSE_BKPT; 752 } 753 pTab = pCtx->pTab; 754 assert( IsVirtual(pTab) ); 755 756 memset(&sParse, 0, sizeof(sParse)); 757 sParse.declareVtab = 1; 758 sParse.db = db; 759 sParse.nQueryLoop = 1; 760 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) 761 && sParse.pNewTable 762 && !db->mallocFailed 763 && !sParse.pNewTable->pSelect 764 && !IsVirtual(sParse.pNewTable) 765 ){ 766 if( !pTab->aCol ){ 767 Table *pNew = sParse.pNewTable; 768 Index *pIdx; 769 pTab->aCol = pNew->aCol; 770 pTab->nCol = pNew->nCol; 771 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); 772 pNew->nCol = 0; 773 pNew->aCol = 0; 774 assert( pTab->pIndex==0 ); 775 if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 ){ 776 rc = SQLITE_ERROR; 777 } 778 pIdx = pNew->pIndex; 779 if( pIdx ){ 780 assert( pIdx->pNext==0 ); 781 pTab->pIndex = pIdx; 782 pNew->pIndex = 0; 783 pIdx->pTable = pTab; 784 } 785 } 786 pCtx->bDeclared = 1; 787 }else{ 788 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); 789 sqlite3DbFree(db, zErr); 790 rc = SQLITE_ERROR; 791 } 792 sParse.declareVtab = 0; 793 794 if( sParse.pVdbe ){ 795 sqlite3VdbeFinalize(sParse.pVdbe); 796 } 797 sqlite3DeleteTable(db, sParse.pNewTable); 798 sqlite3ParserReset(&sParse); 799 800 assert( (rc&0xff)==rc ); 801 rc = sqlite3ApiExit(db, rc); 802 sqlite3_mutex_leave(db->mutex); 803 return rc; 804 } 805 806 /* 807 ** This function is invoked by the vdbe to call the xDestroy method 808 ** of the virtual table named zTab in database iDb. This occurs 809 ** when a DROP TABLE is mentioned. 810 ** 811 ** This call is a no-op if zTab is not a virtual table. 812 */ 813 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ 814 int rc = SQLITE_OK; 815 Table *pTab; 816 817 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); 818 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ 819 VTable *p; 820 int (*xDestroy)(sqlite3_vtab *); 821 for(p=pTab->pVTable; p; p=p->pNext){ 822 assert( p->pVtab ); 823 if( p->pVtab->nRef>0 ){ 824 return SQLITE_LOCKED; 825 } 826 } 827 p = vtabDisconnectAll(db, pTab); 828 xDestroy = p->pMod->pModule->xDestroy; 829 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ 830 rc = xDestroy(p->pVtab); 831 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ 832 if( rc==SQLITE_OK ){ 833 assert( pTab->pVTable==p && p->pNext==0 ); 834 p->pVtab = 0; 835 pTab->pVTable = 0; 836 sqlite3VtabUnlock(p); 837 } 838 } 839 840 return rc; 841 } 842 843 /* 844 ** This function invokes either the xRollback or xCommit method 845 ** of each of the virtual tables in the sqlite3.aVTrans array. The method 846 ** called is identified by the second argument, "offset", which is 847 ** the offset of the method to call in the sqlite3_module structure. 848 ** 849 ** The array is cleared after invoking the callbacks. 850 */ 851 static void callFinaliser(sqlite3 *db, int offset){ 852 int i; 853 if( db->aVTrans ){ 854 VTable **aVTrans = db->aVTrans; 855 db->aVTrans = 0; 856 for(i=0; i<db->nVTrans; i++){ 857 VTable *pVTab = aVTrans[i]; 858 sqlite3_vtab *p = pVTab->pVtab; 859 if( p ){ 860 int (*x)(sqlite3_vtab *); 861 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); 862 if( x ) x(p); 863 } 864 pVTab->iSavepoint = 0; 865 sqlite3VtabUnlock(pVTab); 866 } 867 sqlite3DbFree(db, aVTrans); 868 db->nVTrans = 0; 869 } 870 } 871 872 /* 873 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans 874 ** array. Return the error code for the first error that occurs, or 875 ** SQLITE_OK if all xSync operations are successful. 876 ** 877 ** If an error message is available, leave it in p->zErrMsg. 878 */ 879 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ 880 int i; 881 int rc = SQLITE_OK; 882 VTable **aVTrans = db->aVTrans; 883 884 db->aVTrans = 0; 885 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 886 int (*x)(sqlite3_vtab *); 887 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; 888 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ 889 rc = x(pVtab); 890 sqlite3VtabImportErrmsg(p, pVtab); 891 } 892 } 893 db->aVTrans = aVTrans; 894 return rc; 895 } 896 897 /* 898 ** Invoke the xRollback method of all virtual tables in the 899 ** sqlite3.aVTrans array. Then clear the array itself. 900 */ 901 int sqlite3VtabRollback(sqlite3 *db){ 902 callFinaliser(db, offsetof(sqlite3_module,xRollback)); 903 return SQLITE_OK; 904 } 905 906 /* 907 ** Invoke the xCommit method of all virtual tables in the 908 ** sqlite3.aVTrans array. Then clear the array itself. 909 */ 910 int sqlite3VtabCommit(sqlite3 *db){ 911 callFinaliser(db, offsetof(sqlite3_module,xCommit)); 912 return SQLITE_OK; 913 } 914 915 /* 916 ** If the virtual table pVtab supports the transaction interface 917 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is 918 ** not currently open, invoke the xBegin method now. 919 ** 920 ** If the xBegin call is successful, place the sqlite3_vtab pointer 921 ** in the sqlite3.aVTrans array. 922 */ 923 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ 924 int rc = SQLITE_OK; 925 const sqlite3_module *pModule; 926 927 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater 928 ** than zero, then this function is being called from within a 929 ** virtual module xSync() callback. It is illegal to write to 930 ** virtual module tables in this case, so return SQLITE_LOCKED. 931 */ 932 if( sqlite3VtabInSync(db) ){ 933 return SQLITE_LOCKED; 934 } 935 if( !pVTab ){ 936 return SQLITE_OK; 937 } 938 pModule = pVTab->pVtab->pModule; 939 940 if( pModule->xBegin ){ 941 int i; 942 943 /* If pVtab is already in the aVTrans array, return early */ 944 for(i=0; i<db->nVTrans; i++){ 945 if( db->aVTrans[i]==pVTab ){ 946 return SQLITE_OK; 947 } 948 } 949 950 /* Invoke the xBegin method. If successful, add the vtab to the 951 ** sqlite3.aVTrans[] array. */ 952 rc = growVTrans(db); 953 if( rc==SQLITE_OK ){ 954 rc = pModule->xBegin(pVTab->pVtab); 955 if( rc==SQLITE_OK ){ 956 int iSvpt = db->nStatement + db->nSavepoint; 957 addToVTrans(db, pVTab); 958 if( iSvpt && pModule->xSavepoint ){ 959 pVTab->iSavepoint = iSvpt; 960 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); 961 } 962 } 963 } 964 } 965 return rc; 966 } 967 968 /* 969 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all 970 ** virtual tables that currently have an open transaction. Pass iSavepoint 971 ** as the second argument to the virtual table method invoked. 972 ** 973 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is 974 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is 975 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with 976 ** an open transaction is invoked. 977 ** 978 ** If any virtual table method returns an error code other than SQLITE_OK, 979 ** processing is abandoned and the error returned to the caller of this 980 ** function immediately. If all calls to virtual table methods are successful, 981 ** SQLITE_OK is returned. 982 */ 983 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ 984 int rc = SQLITE_OK; 985 986 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); 987 assert( iSavepoint>=-1 ); 988 if( db->aVTrans ){ 989 int i; 990 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ 991 VTable *pVTab = db->aVTrans[i]; 992 const sqlite3_module *pMod = pVTab->pMod->pModule; 993 if( pVTab->pVtab && pMod->iVersion>=2 ){ 994 int (*xMethod)(sqlite3_vtab *, int); 995 switch( op ){ 996 case SAVEPOINT_BEGIN: 997 xMethod = pMod->xSavepoint; 998 pVTab->iSavepoint = iSavepoint+1; 999 break; 1000 case SAVEPOINT_ROLLBACK: 1001 xMethod = pMod->xRollbackTo; 1002 break; 1003 default: 1004 xMethod = pMod->xRelease; 1005 break; 1006 } 1007 if( xMethod && pVTab->iSavepoint>iSavepoint ){ 1008 rc = xMethod(pVTab->pVtab, iSavepoint); 1009 } 1010 } 1011 } 1012 } 1013 return rc; 1014 } 1015 1016 /* 1017 ** The first parameter (pDef) is a function implementation. The 1018 ** second parameter (pExpr) is the first argument to this function. 1019 ** If pExpr is a column in a virtual table, then let the virtual 1020 ** table implementation have an opportunity to overload the function. 1021 ** 1022 ** This routine is used to allow virtual table implementations to 1023 ** overload MATCH, LIKE, GLOB, and REGEXP operators. 1024 ** 1025 ** Return either the pDef argument (indicating no change) or a 1026 ** new FuncDef structure that is marked as ephemeral using the 1027 ** SQLITE_FUNC_EPHEM flag. 1028 */ 1029 FuncDef *sqlite3VtabOverloadFunction( 1030 sqlite3 *db, /* Database connection for reporting malloc problems */ 1031 FuncDef *pDef, /* Function to possibly overload */ 1032 int nArg, /* Number of arguments to the function */ 1033 Expr *pExpr /* First argument to the function */ 1034 ){ 1035 Table *pTab; 1036 sqlite3_vtab *pVtab; 1037 sqlite3_module *pMod; 1038 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; 1039 void *pArg = 0; 1040 FuncDef *pNew; 1041 int rc = 0; 1042 char *zLowerName; 1043 unsigned char *z; 1044 1045 1046 /* Check to see the left operand is a column in a virtual table */ 1047 if( NEVER(pExpr==0) ) return pDef; 1048 if( pExpr->op!=TK_COLUMN ) return pDef; 1049 pTab = pExpr->pTab; 1050 if( pTab==0 ) return pDef; 1051 if( !IsVirtual(pTab) ) return pDef; 1052 pVtab = sqlite3GetVTable(db, pTab)->pVtab; 1053 assert( pVtab!=0 ); 1054 assert( pVtab->pModule!=0 ); 1055 pMod = (sqlite3_module *)pVtab->pModule; 1056 if( pMod->xFindFunction==0 ) return pDef; 1057 1058 /* Call the xFindFunction method on the virtual table implementation 1059 ** to see if the implementation wants to overload this function 1060 */ 1061 zLowerName = sqlite3DbStrDup(db, pDef->zName); 1062 if( zLowerName ){ 1063 for(z=(unsigned char*)zLowerName; *z; z++){ 1064 *z = sqlite3UpperToLower[*z]; 1065 } 1066 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg); 1067 sqlite3DbFree(db, zLowerName); 1068 } 1069 if( rc==0 ){ 1070 return pDef; 1071 } 1072 1073 /* Create a new ephemeral function definition for the overloaded 1074 ** function */ 1075 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) 1076 + sqlite3Strlen30(pDef->zName) + 1); 1077 if( pNew==0 ){ 1078 return pDef; 1079 } 1080 *pNew = *pDef; 1081 pNew->zName = (const char*)&pNew[1]; 1082 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); 1083 pNew->xSFunc = xSFunc; 1084 pNew->pUserData = pArg; 1085 pNew->funcFlags |= SQLITE_FUNC_EPHEM; 1086 return pNew; 1087 } 1088 1089 /* 1090 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] 1091 ** array so that an OP_VBegin will get generated for it. Add pTab to the 1092 ** array if it is missing. If pTab is already in the array, this routine 1093 ** is a no-op. 1094 */ 1095 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ 1096 Parse *pToplevel = sqlite3ParseToplevel(pParse); 1097 int i, n; 1098 Table **apVtabLock; 1099 1100 assert( IsVirtual(pTab) ); 1101 for(i=0; i<pToplevel->nVtabLock; i++){ 1102 if( pTab==pToplevel->apVtabLock[i] ) return; 1103 } 1104 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); 1105 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); 1106 if( apVtabLock ){ 1107 pToplevel->apVtabLock = apVtabLock; 1108 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; 1109 }else{ 1110 sqlite3OomFault(pToplevel->db); 1111 } 1112 } 1113 1114 /* 1115 ** Check to see if virtual table module pMod can be have an eponymous 1116 ** virtual table instance. If it can, create one if one does not already 1117 ** exist. Return non-zero if the eponymous virtual table instance exists 1118 ** when this routine returns, and return zero if it does not exist. 1119 ** 1120 ** An eponymous virtual table instance is one that is named after its 1121 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE 1122 ** statement in order to come into existance. Eponymous virtual table 1123 ** instances always exist. They cannot be DROP-ed. 1124 ** 1125 ** Any virtual table module for which xConnect and xCreate are the same 1126 ** method can have an eponymous virtual table instance. 1127 */ 1128 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ 1129 const sqlite3_module *pModule = pMod->pModule; 1130 Table *pTab; 1131 char *zErr = 0; 1132 int rc; 1133 sqlite3 *db = pParse->db; 1134 if( pMod->pEpoTab ) return 1; 1135 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; 1136 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 1137 if( pTab==0 ) return 0; 1138 pTab->zName = sqlite3DbStrDup(db, pMod->zName); 1139 if( pTab->zName==0 ){ 1140 sqlite3DbFree(db, pTab); 1141 return 0; 1142 } 1143 pMod->pEpoTab = pTab; 1144 pTab->nTabRef = 1; 1145 pTab->pSchema = db->aDb[0].pSchema; 1146 assert( pTab->nModuleArg==0 ); 1147 pTab->iPKey = -1; 1148 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1149 addModuleArgument(db, pTab, 0); 1150 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); 1151 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); 1152 if( rc ){ 1153 sqlite3ErrorMsg(pParse, "%s", zErr); 1154 sqlite3DbFree(db, zErr); 1155 sqlite3VtabEponymousTableClear(db, pMod); 1156 return 0; 1157 } 1158 return 1; 1159 } 1160 1161 /* 1162 ** Erase the eponymous virtual table instance associated with 1163 ** virtual table module pMod, if it exists. 1164 */ 1165 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ 1166 Table *pTab = pMod->pEpoTab; 1167 if( pTab!=0 ){ 1168 /* Mark the table as Ephemeral prior to deleting it, so that the 1169 ** sqlite3DeleteTable() routine will know that it is not stored in 1170 ** the schema. */ 1171 pTab->tabFlags |= TF_Ephemeral; 1172 sqlite3DeleteTable(db, pTab); 1173 pMod->pEpoTab = 0; 1174 } 1175 } 1176 1177 /* 1178 ** Return the ON CONFLICT resolution mode in effect for the virtual 1179 ** table update operation currently in progress. 1180 ** 1181 ** The results of this routine are undefined unless it is called from 1182 ** within an xUpdate method. 1183 */ 1184 int sqlite3_vtab_on_conflict(sqlite3 *db){ 1185 static const unsigned char aMap[] = { 1186 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 1187 }; 1188 #ifdef SQLITE_ENABLE_API_ARMOR 1189 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1190 #endif 1191 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); 1192 assert( OE_Ignore==4 && OE_Replace==5 ); 1193 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); 1194 return (int)aMap[db->vtabOnConflict-1]; 1195 } 1196 1197 /* 1198 ** Call from within the xCreate() or xConnect() methods to provide 1199 ** the SQLite core with additional information about the behavior 1200 ** of the virtual table being implemented. 1201 */ 1202 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ 1203 va_list ap; 1204 int rc = SQLITE_OK; 1205 1206 #ifdef SQLITE_ENABLE_API_ARMOR 1207 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1208 #endif 1209 sqlite3_mutex_enter(db->mutex); 1210 va_start(ap, op); 1211 switch( op ){ 1212 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { 1213 VtabCtx *p = db->pVtabCtx; 1214 if( !p ){ 1215 rc = SQLITE_MISUSE_BKPT; 1216 }else{ 1217 assert( p->pTab==0 || IsVirtual(p->pTab) ); 1218 p->pVTable->bConstraint = (u8)va_arg(ap, int); 1219 } 1220 break; 1221 } 1222 default: 1223 rc = SQLITE_MISUSE_BKPT; 1224 break; 1225 } 1226 va_end(ap); 1227 1228 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); 1229 sqlite3_mutex_leave(db->mutex); 1230 return rc; 1231 } 1232 1233 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1234