xref: /sqlite-3.40.0/src/vdbesort.c (revision dfe4e6bb)
1 /*
2 ** 2011-07-09
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code for the VdbeSorter object, used in concert with
13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied
15 ** using indexes and without LIMIT clauses.
16 **
17 ** The VdbeSorter object implements a multi-threaded external merge sort
18 ** algorithm that is efficient even if the number of elements being sorted
19 ** exceeds the available memory.
20 **
21 ** Here is the (internal, non-API) interface between this module and the
22 ** rest of the SQLite system:
23 **
24 **    sqlite3VdbeSorterInit()       Create a new VdbeSorter object.
25 **
26 **    sqlite3VdbeSorterWrite()      Add a single new row to the VdbeSorter
27 **                                  object.  The row is a binary blob in the
28 **                                  OP_MakeRecord format that contains both
29 **                                  the ORDER BY key columns and result columns
30 **                                  in the case of a SELECT w/ ORDER BY, or
31 **                                  the complete record for an index entry
32 **                                  in the case of a CREATE INDEX.
33 **
34 **    sqlite3VdbeSorterRewind()     Sort all content previously added.
35 **                                  Position the read cursor on the
36 **                                  first sorted element.
37 **
38 **    sqlite3VdbeSorterNext()       Advance the read cursor to the next sorted
39 **                                  element.
40 **
41 **    sqlite3VdbeSorterRowkey()     Return the complete binary blob for the
42 **                                  row currently under the read cursor.
43 **
44 **    sqlite3VdbeSorterCompare()    Compare the binary blob for the row
45 **                                  currently under the read cursor against
46 **                                  another binary blob X and report if
47 **                                  X is strictly less than the read cursor.
48 **                                  Used to enforce uniqueness in a
49 **                                  CREATE UNIQUE INDEX statement.
50 **
51 **    sqlite3VdbeSorterClose()      Close the VdbeSorter object and reclaim
52 **                                  all resources.
53 **
54 **    sqlite3VdbeSorterReset()      Refurbish the VdbeSorter for reuse.  This
55 **                                  is like Close() followed by Init() only
56 **                                  much faster.
57 **
58 ** The interfaces above must be called in a particular order.  Write() can
59 ** only occur in between Init()/Reset() and Rewind().  Next(), Rowkey(), and
60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
61 **
62 **   Init()
63 **   for each record: Write()
64 **   Rewind()
65 **     Rowkey()/Compare()
66 **   Next()
67 **   Close()
68 **
69 ** Algorithm:
70 **
71 ** Records passed to the sorter via calls to Write() are initially held
72 ** unsorted in main memory. Assuming the amount of memory used never exceeds
73 ** a threshold, when Rewind() is called the set of records is sorted using
74 ** an in-memory merge sort. In this case, no temporary files are required
75 ** and subsequent calls to Rowkey(), Next() and Compare() read records
76 ** directly from main memory.
77 **
78 ** If the amount of space used to store records in main memory exceeds the
79 ** threshold, then the set of records currently in memory are sorted and
80 ** written to a temporary file in "Packed Memory Array" (PMA) format.
81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels
82 ** of PMAs may be created by merging existing PMAs together - for example
83 ** merging two or more level-0 PMAs together creates a level-1 PMA.
84 **
85 ** The threshold for the amount of main memory to use before flushing
86 ** records to a PMA is roughly the same as the limit configured for the
87 ** page-cache of the main database. Specifically, the threshold is set to
88 ** the value returned by "PRAGMA main.page_size" multipled by
89 ** that returned by "PRAGMA main.cache_size", in bytes.
90 **
91 ** If the sorter is running in single-threaded mode, then all PMAs generated
92 ** are appended to a single temporary file. Or, if the sorter is running in
93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where
94 ** N is the configured number of worker threads. In this case, instead of
95 ** sorting the records and writing the PMA to a temporary file itself, the
96 ** calling thread usually launches a worker thread to do so. Except, if
97 ** there are already N worker threads running, the main thread does the work
98 ** itself.
99 **
100 ** The sorter is running in multi-threaded mode if (a) the library was built
101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
102 ** than zero, and (b) worker threads have been enabled at runtime by calling
103 ** "PRAGMA threads=N" with some value of N greater than 0.
104 **
105 ** When Rewind() is called, any data remaining in memory is flushed to a
106 ** final PMA. So at this point the data is stored in some number of sorted
107 ** PMAs within temporary files on disk.
108 **
109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
110 ** sorter is running in single-threaded mode, then these PMAs are merged
111 ** incrementally as keys are retreived from the sorter by the VDBE.  The
112 ** MergeEngine object, described in further detail below, performs this
113 ** merge.
114 **
115 ** Or, if running in multi-threaded mode, then a background thread is
116 ** launched to merge the existing PMAs. Once the background thread has
117 ** merged T bytes of data into a single sorted PMA, the main thread
118 ** begins reading keys from that PMA while the background thread proceeds
119 ** with merging the next T bytes of data. And so on.
120 **
121 ** Parameter T is set to half the value of the memory threshold used
122 ** by Write() above to determine when to create a new PMA.
123 **
124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
125 ** Rewind() is called, then a hierarchy of incremental-merges is used.
126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
127 ** disk are merged together. Then T bytes of data from the second set, and
128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
129 ** PMAs at a time. This done is to improve locality.
130 **
131 ** If running in multi-threaded mode and there are more than
132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
133 ** than one background thread may be created. Specifically, there may be
134 ** one background thread for each temporary file on disk, and one background
135 ** thread to merge the output of each of the others to a single PMA for
136 ** the main thread to read from.
137 */
138 #include "sqliteInt.h"
139 #include "vdbeInt.h"
140 
141 /*
142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
143 ** messages to stderr that may be helpful in understanding the performance
144 ** characteristics of the sorter in multi-threaded mode.
145 */
146 #if 0
147 # define SQLITE_DEBUG_SORTER_THREADS 1
148 #endif
149 
150 /*
151 ** Hard-coded maximum amount of data to accumulate in memory before flushing
152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer
153 ** overflows. 512MiB.
154 */
155 #define SQLITE_MAX_PMASZ    (1<<29)
156 
157 /*
158 ** Private objects used by the sorter
159 */
160 typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
161 typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
162 typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
163 typedef struct SorterRecord SorterRecord;   /* A record being sorted */
164 typedef struct SortSubtask SortSubtask;     /* A sub-task in the sort process */
165 typedef struct SorterFile SorterFile;       /* Temporary file object wrapper */
166 typedef struct SorterList SorterList;       /* In-memory list of records */
167 typedef struct IncrMerger IncrMerger;       /* Read & merge multiple PMAs */
168 
169 /*
170 ** A container for a temp file handle and the current amount of data
171 ** stored in the file.
172 */
173 struct SorterFile {
174   sqlite3_file *pFd;              /* File handle */
175   i64 iEof;                       /* Bytes of data stored in pFd */
176 };
177 
178 /*
179 ** An in-memory list of objects to be sorted.
180 **
181 ** If aMemory==0 then each object is allocated separately and the objects
182 ** are connected using SorterRecord.u.pNext.  If aMemory!=0 then all objects
183 ** are stored in the aMemory[] bulk memory, one right after the other, and
184 ** are connected using SorterRecord.u.iNext.
185 */
186 struct SorterList {
187   SorterRecord *pList;            /* Linked list of records */
188   u8 *aMemory;                    /* If non-NULL, bulk memory to hold pList */
189   int szPMA;                      /* Size of pList as PMA in bytes */
190 };
191 
192 /*
193 ** The MergeEngine object is used to combine two or more smaller PMAs into
194 ** one big PMA using a merge operation.  Separate PMAs all need to be
195 ** combined into one big PMA in order to be able to step through the sorted
196 ** records in order.
197 **
198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being
199 ** merged.  An aReadr[] object either points to a valid key or else is at EOF.
200 ** ("EOF" means "End Of File".  When aReadr[] is at EOF there is no more data.)
201 ** For the purposes of the paragraphs below, we assume that the array is
202 ** actually N elements in size, where N is the smallest power of 2 greater
203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements
204 ** are treated as if they are empty (always at EOF).
205 **
206 ** The aTree[] array is also N elements in size. The value of N is stored in
207 ** the MergeEngine.nTree variable.
208 **
209 ** The final (N/2) elements of aTree[] contain the results of comparing
210 ** pairs of PMA keys together. Element i contains the result of
211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
212 ** aTree element is set to the index of it.
213 **
214 ** For the purposes of this comparison, EOF is considered greater than any
215 ** other key value. If the keys are equal (only possible with two EOF
216 ** values), it doesn't matter which index is stored.
217 **
218 ** The (N/4) elements of aTree[] that precede the final (N/2) described
219 ** above contains the index of the smallest of each block of 4 PmaReaders
220 ** And so on. So that aTree[1] contains the index of the PmaReader that
221 ** currently points to the smallest key value. aTree[0] is unused.
222 **
223 ** Example:
224 **
225 **     aReadr[0] -> Banana
226 **     aReadr[1] -> Feijoa
227 **     aReadr[2] -> Elderberry
228 **     aReadr[3] -> Currant
229 **     aReadr[4] -> Grapefruit
230 **     aReadr[5] -> Apple
231 **     aReadr[6] -> Durian
232 **     aReadr[7] -> EOF
233 **
234 **     aTree[] = { X, 5   0, 5    0, 3, 5, 6 }
235 **
236 ** The current element is "Apple" (the value of the key indicated by
237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
238 ** be advanced to the next key in its segment. Say the next key is
239 ** "Eggplant":
240 **
241 **     aReadr[5] -> Eggplant
242 **
243 ** The contents of aTree[] are updated first by comparing the new PmaReader
244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
248 ** so the value written into element 1 of the array is 0. As follows:
249 **
250 **     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
251 **
252 ** In other words, each time we advance to the next sorter element, log2(N)
253 ** key comparison operations are required, where N is the number of segments
254 ** being merged (rounded up to the next power of 2).
255 */
256 struct MergeEngine {
257   int nTree;                 /* Used size of aTree/aReadr (power of 2) */
258   SortSubtask *pTask;        /* Used by this thread only */
259   int *aTree;                /* Current state of incremental merge */
260   PmaReader *aReadr;         /* Array of PmaReaders to merge data from */
261 };
262 
263 /*
264 ** This object represents a single thread of control in a sort operation.
265 ** Exactly VdbeSorter.nTask instances of this object are allocated
266 ** as part of each VdbeSorter object. Instances are never allocated any
267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed
268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread).  Thus for
269 ** single-threaded operation, there is exactly one instance of this object
270 ** and for multi-threaded operation there are two or more instances.
271 **
272 ** Essentially, this structure contains all those fields of the VdbeSorter
273 ** structure for which each thread requires a separate instance. For example,
274 ** each thread requries its own UnpackedRecord object to unpack records in
275 ** as part of comparison operations.
276 **
277 ** Before a background thread is launched, variable bDone is set to 0. Then,
278 ** right before it exits, the thread itself sets bDone to 1. This is used for
279 ** two purposes:
280 **
281 **   1. When flushing the contents of memory to a level-0 PMA on disk, to
282 **      attempt to select a SortSubtask for which there is not already an
283 **      active background thread (since doing so causes the main thread
284 **      to block until it finishes).
285 **
286 **   2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
287 **      to sqlite3ThreadJoin() is likely to block. Cases that are likely to
288 **      block provoke debugging output.
289 **
290 ** In both cases, the effects of the main thread seeing (bDone==0) even
291 ** after the thread has finished are not dire. So we don't worry about
292 ** memory barriers and such here.
293 */
294 typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int);
295 struct SortSubtask {
296   SQLiteThread *pThread;          /* Background thread, if any */
297   int bDone;                      /* Set if thread is finished but not joined */
298   VdbeSorter *pSorter;            /* Sorter that owns this sub-task */
299   UnpackedRecord *pUnpacked;      /* Space to unpack a record */
300   SorterList list;                /* List for thread to write to a PMA */
301   int nPMA;                       /* Number of PMAs currently in file */
302   SorterCompare xCompare;         /* Compare function to use */
303   SorterFile file;                /* Temp file for level-0 PMAs */
304   SorterFile file2;               /* Space for other PMAs */
305 };
306 
307 
308 /*
309 ** Main sorter structure. A single instance of this is allocated for each
310 ** sorter cursor created by the VDBE.
311 **
312 ** mxKeysize:
313 **   As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
314 **   this variable is updated so as to be set to the size on disk of the
315 **   largest record in the sorter.
316 */
317 struct VdbeSorter {
318   int mnPmaSize;                  /* Minimum PMA size, in bytes */
319   int mxPmaSize;                  /* Maximum PMA size, in bytes.  0==no limit */
320   int mxKeysize;                  /* Largest serialized key seen so far */
321   int pgsz;                       /* Main database page size */
322   PmaReader *pReader;             /* Readr data from here after Rewind() */
323   MergeEngine *pMerger;           /* Or here, if bUseThreads==0 */
324   sqlite3 *db;                    /* Database connection */
325   KeyInfo *pKeyInfo;              /* How to compare records */
326   UnpackedRecord *pUnpacked;      /* Used by VdbeSorterCompare() */
327   SorterList list;                /* List of in-memory records */
328   int iMemory;                    /* Offset of free space in list.aMemory */
329   int nMemory;                    /* Size of list.aMemory allocation in bytes */
330   u8 bUsePMA;                     /* True if one or more PMAs created */
331   u8 bUseThreads;                 /* True to use background threads */
332   u8 iPrev;                       /* Previous thread used to flush PMA */
333   u8 nTask;                       /* Size of aTask[] array */
334   u8 typeMask;
335   SortSubtask aTask[1];           /* One or more subtasks */
336 };
337 
338 #define SORTER_TYPE_INTEGER 0x01
339 #define SORTER_TYPE_TEXT    0x02
340 
341 /*
342 ** An instance of the following object is used to read records out of a
343 ** PMA, in sorted order.  The next key to be read is cached in nKey/aKey.
344 ** aKey might point into aMap or into aBuffer.  If neither of those locations
345 ** contain a contiguous representation of the key, then aAlloc is allocated
346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc.
347 **
348 ** pFd==0 at EOF.
349 */
350 struct PmaReader {
351   i64 iReadOff;               /* Current read offset */
352   i64 iEof;                   /* 1 byte past EOF for this PmaReader */
353   int nAlloc;                 /* Bytes of space at aAlloc */
354   int nKey;                   /* Number of bytes in key */
355   sqlite3_file *pFd;          /* File handle we are reading from */
356   u8 *aAlloc;                 /* Space for aKey if aBuffer and pMap wont work */
357   u8 *aKey;                   /* Pointer to current key */
358   u8 *aBuffer;                /* Current read buffer */
359   int nBuffer;                /* Size of read buffer in bytes */
360   u8 *aMap;                   /* Pointer to mapping of entire file */
361   IncrMerger *pIncr;          /* Incremental merger */
362 };
363 
364 /*
365 ** Normally, a PmaReader object iterates through an existing PMA stored
366 ** within a temp file. However, if the PmaReader.pIncr variable points to
367 ** an object of the following type, it may be used to iterate/merge through
368 ** multiple PMAs simultaneously.
369 **
370 ** There are two types of IncrMerger object - single (bUseThread==0) and
371 ** multi-threaded (bUseThread==1).
372 **
373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
375 ** size. When the IncrMerger is initialized, it reads enough data from
376 ** pMerger to populate aFile[0]. It then sets variables within the
377 ** corresponding PmaReader object to read from that file and kicks off
378 ** a background thread to populate aFile[1] with the next mxSz bytes of
379 ** sorted record data from pMerger.
380 **
381 ** When the PmaReader reaches the end of aFile[0], it blocks until the
382 ** background thread has finished populating aFile[1]. It then exchanges
383 ** the contents of the aFile[0] and aFile[1] variables within this structure,
384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off
385 ** another background thread to populate the new aFile[1]. And so on, until
386 ** the contents of pMerger are exhausted.
387 **
388 ** A single-threaded IncrMerger does not open any temporary files of its
389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning
390 ** at offset iStartOff of file pTask->file2. And instead of using a
391 ** background thread to prepare data for the PmaReader, with a single
392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
393 ** keys from pMerger by the calling thread whenever the PmaReader runs out
394 ** of data.
395 */
396 struct IncrMerger {
397   SortSubtask *pTask;             /* Task that owns this merger */
398   MergeEngine *pMerger;           /* Merge engine thread reads data from */
399   i64 iStartOff;                  /* Offset to start writing file at */
400   int mxSz;                       /* Maximum bytes of data to store */
401   int bEof;                       /* Set to true when merge is finished */
402   int bUseThread;                 /* True to use a bg thread for this object */
403   SorterFile aFile[2];            /* aFile[0] for reading, [1] for writing */
404 };
405 
406 /*
407 ** An instance of this object is used for writing a PMA.
408 **
409 ** The PMA is written one record at a time.  Each record is of an arbitrary
410 ** size.  But I/O is more efficient if it occurs in page-sized blocks where
411 ** each block is aligned on a page boundary.  This object caches writes to
412 ** the PMA so that aligned, page-size blocks are written.
413 */
414 struct PmaWriter {
415   int eFWErr;                     /* Non-zero if in an error state */
416   u8 *aBuffer;                    /* Pointer to write buffer */
417   int nBuffer;                    /* Size of write buffer in bytes */
418   int iBufStart;                  /* First byte of buffer to write */
419   int iBufEnd;                    /* Last byte of buffer to write */
420   i64 iWriteOff;                  /* Offset of start of buffer in file */
421   sqlite3_file *pFd;              /* File handle to write to */
422 };
423 
424 /*
425 ** This object is the header on a single record while that record is being
426 ** held in memory and prior to being written out as part of a PMA.
427 **
428 ** How the linked list is connected depends on how memory is being managed
429 ** by this module. If using a separate allocation for each in-memory record
430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the
431 ** SorterRecord.u.pNext pointers.
432 **
433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
434 ** then while records are being accumulated the list is linked using the
435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may
436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM
437 ** has finished passing records to the sorter, or when the in-memory buffer
438 ** is full, the list is sorted. As part of the sorting process, it is
439 ** converted to use the SorterRecord.u.pNext pointers. See function
440 ** vdbeSorterSort() for details.
441 */
442 struct SorterRecord {
443   int nVal;                       /* Size of the record in bytes */
444   union {
445     SorterRecord *pNext;          /* Pointer to next record in list */
446     int iNext;                    /* Offset within aMemory of next record */
447   } u;
448   /* The data for the record immediately follows this header */
449 };
450 
451 /* Return a pointer to the buffer containing the record data for SorterRecord
452 ** object p. Should be used as if:
453 **
454 **   void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
455 */
456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
457 
458 
459 /* Maximum number of PMAs that a single MergeEngine can merge */
460 #define SORTER_MAX_MERGE_COUNT 16
461 
462 static int vdbeIncrSwap(IncrMerger*);
463 static void vdbeIncrFree(IncrMerger *);
464 
465 /*
466 ** Free all memory belonging to the PmaReader object passed as the
467 ** argument. All structure fields are set to zero before returning.
468 */
469 static void vdbePmaReaderClear(PmaReader *pReadr){
470   sqlite3_free(pReadr->aAlloc);
471   sqlite3_free(pReadr->aBuffer);
472   if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
473   vdbeIncrFree(pReadr->pIncr);
474   memset(pReadr, 0, sizeof(PmaReader));
475 }
476 
477 /*
478 ** Read the next nByte bytes of data from the PMA p.
479 ** If successful, set *ppOut to point to a buffer containing the data
480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
481 ** error code.
482 **
483 ** The buffer returned in *ppOut is only valid until the
484 ** next call to this function.
485 */
486 static int vdbePmaReadBlob(
487   PmaReader *p,                   /* PmaReader from which to take the blob */
488   int nByte,                      /* Bytes of data to read */
489   u8 **ppOut                      /* OUT: Pointer to buffer containing data */
490 ){
491   int iBuf;                       /* Offset within buffer to read from */
492   int nAvail;                     /* Bytes of data available in buffer */
493 
494   if( p->aMap ){
495     *ppOut = &p->aMap[p->iReadOff];
496     p->iReadOff += nByte;
497     return SQLITE_OK;
498   }
499 
500   assert( p->aBuffer );
501 
502   /* If there is no more data to be read from the buffer, read the next
503   ** p->nBuffer bytes of data from the file into it. Or, if there are less
504   ** than p->nBuffer bytes remaining in the PMA, read all remaining data.  */
505   iBuf = p->iReadOff % p->nBuffer;
506   if( iBuf==0 ){
507     int nRead;                    /* Bytes to read from disk */
508     int rc;                       /* sqlite3OsRead() return code */
509 
510     /* Determine how many bytes of data to read. */
511     if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
512       nRead = p->nBuffer;
513     }else{
514       nRead = (int)(p->iEof - p->iReadOff);
515     }
516     assert( nRead>0 );
517 
518     /* Readr data from the file. Return early if an error occurs. */
519     rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff);
520     assert( rc!=SQLITE_IOERR_SHORT_READ );
521     if( rc!=SQLITE_OK ) return rc;
522   }
523   nAvail = p->nBuffer - iBuf;
524 
525   if( nByte<=nAvail ){
526     /* The requested data is available in the in-memory buffer. In this
527     ** case there is no need to make a copy of the data, just return a
528     ** pointer into the buffer to the caller.  */
529     *ppOut = &p->aBuffer[iBuf];
530     p->iReadOff += nByte;
531   }else{
532     /* The requested data is not all available in the in-memory buffer.
533     ** In this case, allocate space at p->aAlloc[] to copy the requested
534     ** range into. Then return a copy of pointer p->aAlloc to the caller.  */
535     int nRem;                     /* Bytes remaining to copy */
536 
537     /* Extend the p->aAlloc[] allocation if required. */
538     if( p->nAlloc<nByte ){
539       u8 *aNew;
540       int nNew = MAX(128, p->nAlloc*2);
541       while( nByte>nNew ) nNew = nNew*2;
542       aNew = sqlite3Realloc(p->aAlloc, nNew);
543       if( !aNew ) return SQLITE_NOMEM_BKPT;
544       p->nAlloc = nNew;
545       p->aAlloc = aNew;
546     }
547 
548     /* Copy as much data as is available in the buffer into the start of
549     ** p->aAlloc[].  */
550     memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
551     p->iReadOff += nAvail;
552     nRem = nByte - nAvail;
553 
554     /* The following loop copies up to p->nBuffer bytes per iteration into
555     ** the p->aAlloc[] buffer.  */
556     while( nRem>0 ){
557       int rc;                     /* vdbePmaReadBlob() return code */
558       int nCopy;                  /* Number of bytes to copy */
559       u8 *aNext;                  /* Pointer to buffer to copy data from */
560 
561       nCopy = nRem;
562       if( nRem>p->nBuffer ) nCopy = p->nBuffer;
563       rc = vdbePmaReadBlob(p, nCopy, &aNext);
564       if( rc!=SQLITE_OK ) return rc;
565       assert( aNext!=p->aAlloc );
566       memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
567       nRem -= nCopy;
568     }
569 
570     *ppOut = p->aAlloc;
571   }
572 
573   return SQLITE_OK;
574 }
575 
576 /*
577 ** Read a varint from the stream of data accessed by p. Set *pnOut to
578 ** the value read.
579 */
580 static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){
581   int iBuf;
582 
583   if( p->aMap ){
584     p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut);
585   }else{
586     iBuf = p->iReadOff % p->nBuffer;
587     if( iBuf && (p->nBuffer-iBuf)>=9 ){
588       p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
589     }else{
590       u8 aVarint[16], *a;
591       int i = 0, rc;
592       do{
593         rc = vdbePmaReadBlob(p, 1, &a);
594         if( rc ) return rc;
595         aVarint[(i++)&0xf] = a[0];
596       }while( (a[0]&0x80)!=0 );
597       sqlite3GetVarint(aVarint, pnOut);
598     }
599   }
600 
601   return SQLITE_OK;
602 }
603 
604 /*
605 ** Attempt to memory map file pFile. If successful, set *pp to point to the
606 ** new mapping and return SQLITE_OK. If the mapping is not attempted
607 ** (because the file is too large or the VFS layer is configured not to use
608 ** mmap), return SQLITE_OK and set *pp to NULL.
609 **
610 ** Or, if an error occurs, return an SQLite error code. The final value of
611 ** *pp is undefined in this case.
612 */
613 static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
614   int rc = SQLITE_OK;
615   if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
616     sqlite3_file *pFd = pFile->pFd;
617     if( pFd->pMethods->iVersion>=3 ){
618       rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
619       testcase( rc!=SQLITE_OK );
620     }
621   }
622   return rc;
623 }
624 
625 /*
626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to
627 ** that file) and seek it to offset iOff within the file.  Return SQLITE_OK
628 ** if successful, or an SQLite error code if an error occurs.
629 */
630 static int vdbePmaReaderSeek(
631   SortSubtask *pTask,             /* Task context */
632   PmaReader *pReadr,              /* Reader whose cursor is to be moved */
633   SorterFile *pFile,              /* Sorter file to read from */
634   i64 iOff                        /* Offset in pFile */
635 ){
636   int rc = SQLITE_OK;
637 
638   assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 );
639 
640   if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ;
641   if( pReadr->aMap ){
642     sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
643     pReadr->aMap = 0;
644   }
645   pReadr->iReadOff = iOff;
646   pReadr->iEof = pFile->iEof;
647   pReadr->pFd = pFile->pFd;
648 
649   rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap);
650   if( rc==SQLITE_OK && pReadr->aMap==0 ){
651     int pgsz = pTask->pSorter->pgsz;
652     int iBuf = pReadr->iReadOff % pgsz;
653     if( pReadr->aBuffer==0 ){
654       pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz);
655       if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT;
656       pReadr->nBuffer = pgsz;
657     }
658     if( rc==SQLITE_OK && iBuf ){
659       int nRead = pgsz - iBuf;
660       if( (pReadr->iReadOff + nRead) > pReadr->iEof ){
661         nRead = (int)(pReadr->iEof - pReadr->iReadOff);
662       }
663       rc = sqlite3OsRead(
664           pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff
665       );
666       testcase( rc!=SQLITE_OK );
667     }
668   }
669 
670   return rc;
671 }
672 
673 /*
674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
675 ** no error occurs, or an SQLite error code if one does.
676 */
677 static int vdbePmaReaderNext(PmaReader *pReadr){
678   int rc = SQLITE_OK;             /* Return Code */
679   u64 nRec = 0;                   /* Size of record in bytes */
680 
681 
682   if( pReadr->iReadOff>=pReadr->iEof ){
683     IncrMerger *pIncr = pReadr->pIncr;
684     int bEof = 1;
685     if( pIncr ){
686       rc = vdbeIncrSwap(pIncr);
687       if( rc==SQLITE_OK && pIncr->bEof==0 ){
688         rc = vdbePmaReaderSeek(
689             pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff
690         );
691         bEof = 0;
692       }
693     }
694 
695     if( bEof ){
696       /* This is an EOF condition */
697       vdbePmaReaderClear(pReadr);
698       testcase( rc!=SQLITE_OK );
699       return rc;
700     }
701   }
702 
703   if( rc==SQLITE_OK ){
704     rc = vdbePmaReadVarint(pReadr, &nRec);
705   }
706   if( rc==SQLITE_OK ){
707     pReadr->nKey = (int)nRec;
708     rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey);
709     testcase( rc!=SQLITE_OK );
710   }
711 
712   return rc;
713 }
714 
715 /*
716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
717 ** starting at offset iStart and ending at offset iEof-1. This function
718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
719 ** PMA is empty).
720 **
721 ** If the pnByte parameter is NULL, then it is assumed that the file
722 ** contains a single PMA, and that that PMA omits the initial length varint.
723 */
724 static int vdbePmaReaderInit(
725   SortSubtask *pTask,             /* Task context */
726   SorterFile *pFile,              /* Sorter file to read from */
727   i64 iStart,                     /* Start offset in pFile */
728   PmaReader *pReadr,              /* PmaReader to populate */
729   i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
730 ){
731   int rc;
732 
733   assert( pFile->iEof>iStart );
734   assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
735   assert( pReadr->aBuffer==0 );
736   assert( pReadr->aMap==0 );
737 
738   rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
739   if( rc==SQLITE_OK ){
740     u64 nByte = 0;                 /* Size of PMA in bytes */
741     rc = vdbePmaReadVarint(pReadr, &nByte);
742     pReadr->iEof = pReadr->iReadOff + nByte;
743     *pnByte += nByte;
744   }
745 
746   if( rc==SQLITE_OK ){
747     rc = vdbePmaReaderNext(pReadr);
748   }
749   return rc;
750 }
751 
752 /*
753 ** A version of vdbeSorterCompare() that assumes that it has already been
754 ** determined that the first field of key1 is equal to the first field of
755 ** key2.
756 */
757 static int vdbeSorterCompareTail(
758   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
759   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
760   const void *pKey1, int nKey1,   /* Left side of comparison */
761   const void *pKey2, int nKey2    /* Right side of comparison */
762 ){
763   UnpackedRecord *r2 = pTask->pUnpacked;
764   if( *pbKey2Cached==0 ){
765     sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
766     *pbKey2Cached = 1;
767   }
768   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1);
769 }
770 
771 /*
772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
774 ** used by the comparison. Return the result of the comparison.
775 **
776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called,
777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version
778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked
779 ** version of key2 and *pbKey2Cached set to true before returning.
780 **
781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
782 ** to SQLITE_NOMEM.
783 */
784 static int vdbeSorterCompare(
785   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
786   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
787   const void *pKey1, int nKey1,   /* Left side of comparison */
788   const void *pKey2, int nKey2    /* Right side of comparison */
789 ){
790   UnpackedRecord *r2 = pTask->pUnpacked;
791   if( !*pbKey2Cached ){
792     sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
793     *pbKey2Cached = 1;
794   }
795   return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
796 }
797 
798 /*
799 ** A specially optimized version of vdbeSorterCompare() that assumes that
800 ** the first field of each key is a TEXT value and that the collation
801 ** sequence to compare them with is BINARY.
802 */
803 static int vdbeSorterCompareText(
804   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
805   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
806   const void *pKey1, int nKey1,   /* Left side of comparison */
807   const void *pKey2, int nKey2    /* Right side of comparison */
808 ){
809   const u8 * const p1 = (const u8 * const)pKey1;
810   const u8 * const p2 = (const u8 * const)pKey2;
811   const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
812   const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
813 
814   int n1;
815   int n2;
816   int res;
817 
818   getVarint32(&p1[1], n1); n1 = (n1 - 13) / 2;
819   getVarint32(&p2[1], n2); n2 = (n2 - 13) / 2;
820   res = memcmp(v1, v2, MIN(n1, n2));
821   if( res==0 ){
822     res = n1 - n2;
823   }
824 
825   if( res==0 ){
826     if( pTask->pSorter->pKeyInfo->nField>1 ){
827       res = vdbeSorterCompareTail(
828           pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
829       );
830     }
831   }else{
832     if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){
833       res = res * -1;
834     }
835   }
836 
837   return res;
838 }
839 
840 /*
841 ** A specially optimized version of vdbeSorterCompare() that assumes that
842 ** the first field of each key is an INTEGER value.
843 */
844 static int vdbeSorterCompareInt(
845   SortSubtask *pTask,             /* Subtask context (for pKeyInfo) */
846   int *pbKey2Cached,              /* True if pTask->pUnpacked is pKey2 */
847   const void *pKey1, int nKey1,   /* Left side of comparison */
848   const void *pKey2, int nKey2    /* Right side of comparison */
849 ){
850   const u8 * const p1 = (const u8 * const)pKey1;
851   const u8 * const p2 = (const u8 * const)pKey2;
852   const int s1 = p1[1];                 /* Left hand serial type */
853   const int s2 = p2[1];                 /* Right hand serial type */
854   const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
855   const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
856   int res;                              /* Return value */
857 
858   assert( (s1>0 && s1<7) || s1==8 || s1==9 );
859   assert( (s2>0 && s2<7) || s2==8 || s2==9 );
860 
861   if( s1>7 && s2>7 ){
862     res = s1 - s2;
863   }else{
864     if( s1==s2 ){
865       if( (*v1 ^ *v2) & 0x80 ){
866         /* The two values have different signs */
867         res = (*v1 & 0x80) ? -1 : +1;
868       }else{
869         /* The two values have the same sign. Compare using memcmp(). */
870         static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8 };
871         int i;
872         res = 0;
873         for(i=0; i<aLen[s1]; i++){
874           if( (res = v1[i] - v2[i]) ) break;
875         }
876       }
877     }else{
878       if( s2>7 ){
879         res = +1;
880       }else if( s1>7 ){
881         res = -1;
882       }else{
883         res = s1 - s2;
884       }
885       assert( res!=0 );
886 
887       if( res>0 ){
888         if( *v1 & 0x80 ) res = -1;
889       }else{
890         if( *v2 & 0x80 ) res = +1;
891       }
892     }
893   }
894 
895   if( res==0 ){
896     if( pTask->pSorter->pKeyInfo->nField>1 ){
897       res = vdbeSorterCompareTail(
898           pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
899       );
900     }
901   }else if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){
902     res = res * -1;
903   }
904 
905   return res;
906 }
907 
908 /*
909 ** Initialize the temporary index cursor just opened as a sorter cursor.
910 **
911 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
912 ** to determine the number of fields that should be compared from the
913 ** records being sorted. However, if the value passed as argument nField
914 ** is non-zero and the sorter is able to guarantee a stable sort, nField
915 ** is used instead. This is used when sorting records for a CREATE INDEX
916 ** statement. In this case, keys are always delivered to the sorter in
917 ** order of the primary key, which happens to be make up the final part
918 ** of the records being sorted. So if the sort is stable, there is never
919 ** any reason to compare PK fields and they can be ignored for a small
920 ** performance boost.
921 **
922 ** The sorter can guarantee a stable sort when running in single-threaded
923 ** mode, but not in multi-threaded mode.
924 **
925 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
926 */
927 int sqlite3VdbeSorterInit(
928   sqlite3 *db,                    /* Database connection (for malloc()) */
929   int nField,                     /* Number of key fields in each record */
930   VdbeCursor *pCsr                /* Cursor that holds the new sorter */
931 ){
932   int pgsz;                       /* Page size of main database */
933   int i;                          /* Used to iterate through aTask[] */
934   VdbeSorter *pSorter;            /* The new sorter */
935   KeyInfo *pKeyInfo;              /* Copy of pCsr->pKeyInfo with db==0 */
936   int szKeyInfo;                  /* Size of pCsr->pKeyInfo in bytes */
937   int sz;                         /* Size of pSorter in bytes */
938   int rc = SQLITE_OK;
939 #if SQLITE_MAX_WORKER_THREADS==0
940 # define nWorker 0
941 #else
942   int nWorker;
943 #endif
944 
945   /* Initialize the upper limit on the number of worker threads */
946 #if SQLITE_MAX_WORKER_THREADS>0
947   if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){
948     nWorker = 0;
949   }else{
950     nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS];
951   }
952 #endif
953 
954   /* Do not allow the total number of threads (main thread + all workers)
955   ** to exceed the maximum merge count */
956 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
957   if( nWorker>=SORTER_MAX_MERGE_COUNT ){
958     nWorker = SORTER_MAX_MERGE_COUNT-1;
959   }
960 #endif
961 
962   assert( pCsr->pKeyInfo && pCsr->pBt==0 );
963   assert( pCsr->eCurType==CURTYPE_SORTER );
964   szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*);
965   sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);
966 
967   pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
968   pCsr->uc.pSorter = pSorter;
969   if( pSorter==0 ){
970     rc = SQLITE_NOMEM_BKPT;
971   }else{
972     pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
973     memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
974     pKeyInfo->db = 0;
975     if( nField && nWorker==0 ){
976       pKeyInfo->nXField += (pKeyInfo->nField - nField);
977       pKeyInfo->nField = nField;
978     }
979     pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
980     pSorter->nTask = nWorker + 1;
981     pSorter->iPrev = (u8)(nWorker - 1);
982     pSorter->bUseThreads = (pSorter->nTask>1);
983     pSorter->db = db;
984     for(i=0; i<pSorter->nTask; i++){
985       SortSubtask *pTask = &pSorter->aTask[i];
986       pTask->pSorter = pSorter;
987     }
988 
989     if( !sqlite3TempInMemory(db) ){
990       i64 mxCache;                /* Cache size in bytes*/
991       u32 szPma = sqlite3GlobalConfig.szPma;
992       pSorter->mnPmaSize = szPma * pgsz;
993 
994       mxCache = db->aDb[0].pSchema->cache_size;
995       if( mxCache<0 ){
996         /* A negative cache-size value C indicates that the cache is abs(C)
997         ** KiB in size.  */
998         mxCache = mxCache * -1024;
999       }else{
1000         mxCache = mxCache * pgsz;
1001       }
1002       mxCache = MIN(mxCache, SQLITE_MAX_PMASZ);
1003       pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache);
1004 
1005       /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of
1006       ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary
1007       ** large heap allocations.
1008       */
1009       if( sqlite3GlobalConfig.pScratch==0 ){
1010         assert( pSorter->iMemory==0 );
1011         pSorter->nMemory = pgsz;
1012         pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
1013         if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT;
1014       }
1015     }
1016 
1017     if( (pKeyInfo->nField+pKeyInfo->nXField)<13
1018      && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl)
1019     ){
1020       pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT;
1021     }
1022   }
1023 
1024   return rc;
1025 }
1026 #undef nWorker   /* Defined at the top of this function */
1027 
1028 /*
1029 ** Free the list of sorted records starting at pRecord.
1030 */
1031 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
1032   SorterRecord *p;
1033   SorterRecord *pNext;
1034   for(p=pRecord; p; p=pNext){
1035     pNext = p->u.pNext;
1036     sqlite3DbFree(db, p);
1037   }
1038 }
1039 
1040 /*
1041 ** Free all resources owned by the object indicated by argument pTask. All
1042 ** fields of *pTask are zeroed before returning.
1043 */
1044 static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){
1045   sqlite3DbFree(db, pTask->pUnpacked);
1046 #if SQLITE_MAX_WORKER_THREADS>0
1047   /* pTask->list.aMemory can only be non-zero if it was handed memory
1048   ** from the main thread.  That only occurs SQLITE_MAX_WORKER_THREADS>0 */
1049   if( pTask->list.aMemory ){
1050     sqlite3_free(pTask->list.aMemory);
1051   }else
1052 #endif
1053   {
1054     assert( pTask->list.aMemory==0 );
1055     vdbeSorterRecordFree(0, pTask->list.pList);
1056   }
1057   if( pTask->file.pFd ){
1058     sqlite3OsCloseFree(pTask->file.pFd);
1059   }
1060   if( pTask->file2.pFd ){
1061     sqlite3OsCloseFree(pTask->file2.pFd);
1062   }
1063   memset(pTask, 0, sizeof(SortSubtask));
1064 }
1065 
1066 #ifdef SQLITE_DEBUG_SORTER_THREADS
1067 static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){
1068   i64 t;
1069   int iTask = (pTask - pTask->pSorter->aTask);
1070   sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1071   fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent);
1072 }
1073 static void vdbeSorterRewindDebug(const char *zEvent){
1074   i64 t;
1075   sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t);
1076   fprintf(stderr, "%lld:X %s\n", t, zEvent);
1077 }
1078 static void vdbeSorterPopulateDebug(
1079   SortSubtask *pTask,
1080   const char *zEvent
1081 ){
1082   i64 t;
1083   int iTask = (pTask - pTask->pSorter->aTask);
1084   sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1085   fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent);
1086 }
1087 static void vdbeSorterBlockDebug(
1088   SortSubtask *pTask,
1089   int bBlocked,
1090   const char *zEvent
1091 ){
1092   if( bBlocked ){
1093     i64 t;
1094     sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
1095     fprintf(stderr, "%lld:main %s\n", t, zEvent);
1096   }
1097 }
1098 #else
1099 # define vdbeSorterWorkDebug(x,y)
1100 # define vdbeSorterRewindDebug(y)
1101 # define vdbeSorterPopulateDebug(x,y)
1102 # define vdbeSorterBlockDebug(x,y,z)
1103 #endif
1104 
1105 #if SQLITE_MAX_WORKER_THREADS>0
1106 /*
1107 ** Join thread pTask->thread.
1108 */
1109 static int vdbeSorterJoinThread(SortSubtask *pTask){
1110   int rc = SQLITE_OK;
1111   if( pTask->pThread ){
1112 #ifdef SQLITE_DEBUG_SORTER_THREADS
1113     int bDone = pTask->bDone;
1114 #endif
1115     void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR);
1116     vdbeSorterBlockDebug(pTask, !bDone, "enter");
1117     (void)sqlite3ThreadJoin(pTask->pThread, &pRet);
1118     vdbeSorterBlockDebug(pTask, !bDone, "exit");
1119     rc = SQLITE_PTR_TO_INT(pRet);
1120     assert( pTask->bDone==1 );
1121     pTask->bDone = 0;
1122     pTask->pThread = 0;
1123   }
1124   return rc;
1125 }
1126 
1127 /*
1128 ** Launch a background thread to run xTask(pIn).
1129 */
1130 static int vdbeSorterCreateThread(
1131   SortSubtask *pTask,             /* Thread will use this task object */
1132   void *(*xTask)(void*),          /* Routine to run in a separate thread */
1133   void *pIn                       /* Argument passed into xTask() */
1134 ){
1135   assert( pTask->pThread==0 && pTask->bDone==0 );
1136   return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn);
1137 }
1138 
1139 /*
1140 ** Join all outstanding threads launched by SorterWrite() to create
1141 ** level-0 PMAs.
1142 */
1143 static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){
1144   int rc = rcin;
1145   int i;
1146 
1147   /* This function is always called by the main user thread.
1148   **
1149   ** If this function is being called after SorterRewind() has been called,
1150   ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
1151   ** is currently attempt to join one of the other threads. To avoid a race
1152   ** condition where this thread also attempts to join the same object, join
1153   ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
1154   for(i=pSorter->nTask-1; i>=0; i--){
1155     SortSubtask *pTask = &pSorter->aTask[i];
1156     int rc2 = vdbeSorterJoinThread(pTask);
1157     if( rc==SQLITE_OK ) rc = rc2;
1158   }
1159   return rc;
1160 }
1161 #else
1162 # define vdbeSorterJoinAll(x,rcin) (rcin)
1163 # define vdbeSorterJoinThread(pTask) SQLITE_OK
1164 #endif
1165 
1166 /*
1167 ** Allocate a new MergeEngine object capable of handling up to
1168 ** nReader PmaReader inputs.
1169 **
1170 ** nReader is automatically rounded up to the next power of two.
1171 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
1172 */
1173 static MergeEngine *vdbeMergeEngineNew(int nReader){
1174   int N = 2;                      /* Smallest power of two >= nReader */
1175   int nByte;                      /* Total bytes of space to allocate */
1176   MergeEngine *pNew;              /* Pointer to allocated object to return */
1177 
1178   assert( nReader<=SORTER_MAX_MERGE_COUNT );
1179 
1180   while( N<nReader ) N += N;
1181   nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader));
1182 
1183   pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte);
1184   if( pNew ){
1185     pNew->nTree = N;
1186     pNew->pTask = 0;
1187     pNew->aReadr = (PmaReader*)&pNew[1];
1188     pNew->aTree = (int*)&pNew->aReadr[N];
1189   }
1190   return pNew;
1191 }
1192 
1193 /*
1194 ** Free the MergeEngine object passed as the only argument.
1195 */
1196 static void vdbeMergeEngineFree(MergeEngine *pMerger){
1197   int i;
1198   if( pMerger ){
1199     for(i=0; i<pMerger->nTree; i++){
1200       vdbePmaReaderClear(&pMerger->aReadr[i]);
1201     }
1202   }
1203   sqlite3_free(pMerger);
1204 }
1205 
1206 /*
1207 ** Free all resources associated with the IncrMerger object indicated by
1208 ** the first argument.
1209 */
1210 static void vdbeIncrFree(IncrMerger *pIncr){
1211   if( pIncr ){
1212 #if SQLITE_MAX_WORKER_THREADS>0
1213     if( pIncr->bUseThread ){
1214       vdbeSorterJoinThread(pIncr->pTask);
1215       if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd);
1216       if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd);
1217     }
1218 #endif
1219     vdbeMergeEngineFree(pIncr->pMerger);
1220     sqlite3_free(pIncr);
1221   }
1222 }
1223 
1224 /*
1225 ** Reset a sorting cursor back to its original empty state.
1226 */
1227 void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
1228   int i;
1229   (void)vdbeSorterJoinAll(pSorter, SQLITE_OK);
1230   assert( pSorter->bUseThreads || pSorter->pReader==0 );
1231 #if SQLITE_MAX_WORKER_THREADS>0
1232   if( pSorter->pReader ){
1233     vdbePmaReaderClear(pSorter->pReader);
1234     sqlite3DbFree(db, pSorter->pReader);
1235     pSorter->pReader = 0;
1236   }
1237 #endif
1238   vdbeMergeEngineFree(pSorter->pMerger);
1239   pSorter->pMerger = 0;
1240   for(i=0; i<pSorter->nTask; i++){
1241     SortSubtask *pTask = &pSorter->aTask[i];
1242     vdbeSortSubtaskCleanup(db, pTask);
1243     pTask->pSorter = pSorter;
1244   }
1245   if( pSorter->list.aMemory==0 ){
1246     vdbeSorterRecordFree(0, pSorter->list.pList);
1247   }
1248   pSorter->list.pList = 0;
1249   pSorter->list.szPMA = 0;
1250   pSorter->bUsePMA = 0;
1251   pSorter->iMemory = 0;
1252   pSorter->mxKeysize = 0;
1253   sqlite3DbFree(db, pSorter->pUnpacked);
1254   pSorter->pUnpacked = 0;
1255 }
1256 
1257 /*
1258 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
1259 */
1260 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
1261   VdbeSorter *pSorter;
1262   assert( pCsr->eCurType==CURTYPE_SORTER );
1263   pSorter = pCsr->uc.pSorter;
1264   if( pSorter ){
1265     sqlite3VdbeSorterReset(db, pSorter);
1266     sqlite3_free(pSorter->list.aMemory);
1267     sqlite3DbFree(db, pSorter);
1268     pCsr->uc.pSorter = 0;
1269   }
1270 }
1271 
1272 #if SQLITE_MAX_MMAP_SIZE>0
1273 /*
1274 ** The first argument is a file-handle open on a temporary file. The file
1275 ** is guaranteed to be nByte bytes or smaller in size. This function
1276 ** attempts to extend the file to nByte bytes in size and to ensure that
1277 ** the VFS has memory mapped it.
1278 **
1279 ** Whether or not the file does end up memory mapped of course depends on
1280 ** the specific VFS implementation.
1281 */
1282 static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
1283   if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
1284     void *p = 0;
1285     int chunksize = 4*1024;
1286     sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize);
1287     sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte);
1288     sqlite3OsFetch(pFd, 0, (int)nByte, &p);
1289     sqlite3OsUnfetch(pFd, 0, p);
1290   }
1291 }
1292 #else
1293 # define vdbeSorterExtendFile(x,y,z)
1294 #endif
1295 
1296 /*
1297 ** Allocate space for a file-handle and open a temporary file. If successful,
1298 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
1299 ** Otherwise, set *ppFd to 0 and return an SQLite error code.
1300 */
1301 static int vdbeSorterOpenTempFile(
1302   sqlite3 *db,                    /* Database handle doing sort */
1303   i64 nExtend,                    /* Attempt to extend file to this size */
1304   sqlite3_file **ppFd
1305 ){
1306   int rc;
1307   if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS;
1308   rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
1309       SQLITE_OPEN_TEMP_JOURNAL |
1310       SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
1311       SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &rc
1312   );
1313   if( rc==SQLITE_OK ){
1314     i64 max = SQLITE_MAX_MMAP_SIZE;
1315     sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max);
1316     if( nExtend>0 ){
1317       vdbeSorterExtendFile(db, *ppFd, nExtend);
1318     }
1319   }
1320   return rc;
1321 }
1322 
1323 /*
1324 ** If it has not already been allocated, allocate the UnpackedRecord
1325 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
1326 ** if no allocation was required), or SQLITE_NOMEM otherwise.
1327 */
1328 static int vdbeSortAllocUnpacked(SortSubtask *pTask){
1329   if( pTask->pUnpacked==0 ){
1330     char *pFree;
1331     pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(
1332         pTask->pSorter->pKeyInfo, 0, 0, &pFree
1333     );
1334     assert( pTask->pUnpacked==(UnpackedRecord*)pFree );
1335     if( pFree==0 ) return SQLITE_NOMEM_BKPT;
1336     pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nField;
1337     pTask->pUnpacked->errCode = 0;
1338   }
1339   return SQLITE_OK;
1340 }
1341 
1342 
1343 /*
1344 ** Merge the two sorted lists p1 and p2 into a single list.
1345 */
1346 static SorterRecord *vdbeSorterMerge(
1347   SortSubtask *pTask,             /* Calling thread context */
1348   SorterRecord *p1,               /* First list to merge */
1349   SorterRecord *p2                /* Second list to merge */
1350 ){
1351   SorterRecord *pFinal = 0;
1352   SorterRecord **pp = &pFinal;
1353   int bCached = 0;
1354 
1355   assert( p1!=0 && p2!=0 );
1356   for(;;){
1357     int res;
1358     res = pTask->xCompare(
1359         pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal
1360     );
1361 
1362     if( res<=0 ){
1363       *pp = p1;
1364       pp = &p1->u.pNext;
1365       p1 = p1->u.pNext;
1366       if( p1==0 ){
1367         *pp = p2;
1368         break;
1369       }
1370     }else{
1371       *pp = p2;
1372       pp = &p2->u.pNext;
1373       p2 = p2->u.pNext;
1374       bCached = 0;
1375       if( p2==0 ){
1376         *pp = p1;
1377         break;
1378       }
1379     }
1380   }
1381   return pFinal;
1382 }
1383 
1384 /*
1385 ** Return the SorterCompare function to compare values collected by the
1386 ** sorter object passed as the only argument.
1387 */
1388 static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){
1389   if( p->typeMask==SORTER_TYPE_INTEGER ){
1390     return vdbeSorterCompareInt;
1391   }else if( p->typeMask==SORTER_TYPE_TEXT ){
1392     return vdbeSorterCompareText;
1393   }
1394   return vdbeSorterCompare;
1395 }
1396 
1397 /*
1398 ** Sort the linked list of records headed at pTask->pList. Return
1399 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
1400 ** an error occurs.
1401 */
1402 static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){
1403   int i;
1404   SorterRecord **aSlot;
1405   SorterRecord *p;
1406   int rc;
1407 
1408   rc = vdbeSortAllocUnpacked(pTask);
1409   if( rc!=SQLITE_OK ) return rc;
1410 
1411   p = pList->pList;
1412   pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter);
1413 
1414   aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
1415   if( !aSlot ){
1416     return SQLITE_NOMEM_BKPT;
1417   }
1418 
1419   while( p ){
1420     SorterRecord *pNext;
1421     if( pList->aMemory ){
1422       if( (u8*)p==pList->aMemory ){
1423         pNext = 0;
1424       }else{
1425         assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) );
1426         pNext = (SorterRecord*)&pList->aMemory[p->u.iNext];
1427       }
1428     }else{
1429       pNext = p->u.pNext;
1430     }
1431 
1432     p->u.pNext = 0;
1433     for(i=0; aSlot[i]; i++){
1434       p = vdbeSorterMerge(pTask, p, aSlot[i]);
1435       aSlot[i] = 0;
1436     }
1437     aSlot[i] = p;
1438     p = pNext;
1439   }
1440 
1441   p = 0;
1442   for(i=0; i<64; i++){
1443     if( aSlot[i]==0 ) continue;
1444     p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i];
1445   }
1446   pList->pList = p;
1447 
1448   sqlite3_free(aSlot);
1449   assert( pTask->pUnpacked->errCode==SQLITE_OK
1450        || pTask->pUnpacked->errCode==SQLITE_NOMEM
1451   );
1452   return pTask->pUnpacked->errCode;
1453 }
1454 
1455 /*
1456 ** Initialize a PMA-writer object.
1457 */
1458 static void vdbePmaWriterInit(
1459   sqlite3_file *pFd,              /* File handle to write to */
1460   PmaWriter *p,                   /* Object to populate */
1461   int nBuf,                       /* Buffer size */
1462   i64 iStart                      /* Offset of pFd to begin writing at */
1463 ){
1464   memset(p, 0, sizeof(PmaWriter));
1465   p->aBuffer = (u8*)sqlite3Malloc(nBuf);
1466   if( !p->aBuffer ){
1467     p->eFWErr = SQLITE_NOMEM_BKPT;
1468   }else{
1469     p->iBufEnd = p->iBufStart = (iStart % nBuf);
1470     p->iWriteOff = iStart - p->iBufStart;
1471     p->nBuffer = nBuf;
1472     p->pFd = pFd;
1473   }
1474 }
1475 
1476 /*
1477 ** Write nData bytes of data to the PMA. Return SQLITE_OK
1478 ** if successful, or an SQLite error code if an error occurs.
1479 */
1480 static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){
1481   int nRem = nData;
1482   while( nRem>0 && p->eFWErr==0 ){
1483     int nCopy = nRem;
1484     if( nCopy>(p->nBuffer - p->iBufEnd) ){
1485       nCopy = p->nBuffer - p->iBufEnd;
1486     }
1487 
1488     memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
1489     p->iBufEnd += nCopy;
1490     if( p->iBufEnd==p->nBuffer ){
1491       p->eFWErr = sqlite3OsWrite(p->pFd,
1492           &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
1493           p->iWriteOff + p->iBufStart
1494       );
1495       p->iBufStart = p->iBufEnd = 0;
1496       p->iWriteOff += p->nBuffer;
1497     }
1498     assert( p->iBufEnd<p->nBuffer );
1499 
1500     nRem -= nCopy;
1501   }
1502 }
1503 
1504 /*
1505 ** Flush any buffered data to disk and clean up the PMA-writer object.
1506 ** The results of using the PMA-writer after this call are undefined.
1507 ** Return SQLITE_OK if flushing the buffered data succeeds or is not
1508 ** required. Otherwise, return an SQLite error code.
1509 **
1510 ** Before returning, set *piEof to the offset immediately following the
1511 ** last byte written to the file.
1512 */
1513 static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){
1514   int rc;
1515   if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
1516     p->eFWErr = sqlite3OsWrite(p->pFd,
1517         &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
1518         p->iWriteOff + p->iBufStart
1519     );
1520   }
1521   *piEof = (p->iWriteOff + p->iBufEnd);
1522   sqlite3_free(p->aBuffer);
1523   rc = p->eFWErr;
1524   memset(p, 0, sizeof(PmaWriter));
1525   return rc;
1526 }
1527 
1528 /*
1529 ** Write value iVal encoded as a varint to the PMA. Return
1530 ** SQLITE_OK if successful, or an SQLite error code if an error occurs.
1531 */
1532 static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){
1533   int nByte;
1534   u8 aByte[10];
1535   nByte = sqlite3PutVarint(aByte, iVal);
1536   vdbePmaWriteBlob(p, aByte, nByte);
1537 }
1538 
1539 /*
1540 ** Write the current contents of in-memory linked-list pList to a level-0
1541 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
1542 ** successful, or an SQLite error code otherwise.
1543 **
1544 ** The format of a PMA is:
1545 **
1546 **     * A varint. This varint contains the total number of bytes of content
1547 **       in the PMA (not including the varint itself).
1548 **
1549 **     * One or more records packed end-to-end in order of ascending keys.
1550 **       Each record consists of a varint followed by a blob of data (the
1551 **       key). The varint is the number of bytes in the blob of data.
1552 */
1553 static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){
1554   sqlite3 *db = pTask->pSorter->db;
1555   int rc = SQLITE_OK;             /* Return code */
1556   PmaWriter writer;               /* Object used to write to the file */
1557 
1558 #ifdef SQLITE_DEBUG
1559   /* Set iSz to the expected size of file pTask->file after writing the PMA.
1560   ** This is used by an assert() statement at the end of this function.  */
1561   i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof;
1562 #endif
1563 
1564   vdbeSorterWorkDebug(pTask, "enter");
1565   memset(&writer, 0, sizeof(PmaWriter));
1566   assert( pList->szPMA>0 );
1567 
1568   /* If the first temporary PMA file has not been opened, open it now. */
1569   if( pTask->file.pFd==0 ){
1570     rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd);
1571     assert( rc!=SQLITE_OK || pTask->file.pFd );
1572     assert( pTask->file.iEof==0 );
1573     assert( pTask->nPMA==0 );
1574   }
1575 
1576   /* Try to get the file to memory map */
1577   if( rc==SQLITE_OK ){
1578     vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9);
1579   }
1580 
1581   /* Sort the list */
1582   if( rc==SQLITE_OK ){
1583     rc = vdbeSorterSort(pTask, pList);
1584   }
1585 
1586   if( rc==SQLITE_OK ){
1587     SorterRecord *p;
1588     SorterRecord *pNext = 0;
1589 
1590     vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz,
1591                       pTask->file.iEof);
1592     pTask->nPMA++;
1593     vdbePmaWriteVarint(&writer, pList->szPMA);
1594     for(p=pList->pList; p; p=pNext){
1595       pNext = p->u.pNext;
1596       vdbePmaWriteVarint(&writer, p->nVal);
1597       vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal);
1598       if( pList->aMemory==0 ) sqlite3_free(p);
1599     }
1600     pList->pList = p;
1601     rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof);
1602   }
1603 
1604   vdbeSorterWorkDebug(pTask, "exit");
1605   assert( rc!=SQLITE_OK || pList->pList==0 );
1606   assert( rc!=SQLITE_OK || pTask->file.iEof==iSz );
1607   return rc;
1608 }
1609 
1610 /*
1611 ** Advance the MergeEngine to its next entry.
1612 ** Set *pbEof to true there is no next entry because
1613 ** the MergeEngine has reached the end of all its inputs.
1614 **
1615 ** Return SQLITE_OK if successful or an error code if an error occurs.
1616 */
1617 static int vdbeMergeEngineStep(
1618   MergeEngine *pMerger,      /* The merge engine to advance to the next row */
1619   int *pbEof                 /* Set TRUE at EOF.  Set false for more content */
1620 ){
1621   int rc;
1622   int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */
1623   SortSubtask *pTask = pMerger->pTask;
1624 
1625   /* Advance the current PmaReader */
1626   rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]);
1627 
1628   /* Update contents of aTree[] */
1629   if( rc==SQLITE_OK ){
1630     int i;                      /* Index of aTree[] to recalculate */
1631     PmaReader *pReadr1;         /* First PmaReader to compare */
1632     PmaReader *pReadr2;         /* Second PmaReader to compare */
1633     int bCached = 0;
1634 
1635     /* Find the first two PmaReaders to compare. The one that was just
1636     ** advanced (iPrev) and the one next to it in the array.  */
1637     pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)];
1638     pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)];
1639 
1640     for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){
1641       /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
1642       int iRes;
1643       if( pReadr1->pFd==0 ){
1644         iRes = +1;
1645       }else if( pReadr2->pFd==0 ){
1646         iRes = -1;
1647       }else{
1648         iRes = pTask->xCompare(pTask, &bCached,
1649             pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey
1650         );
1651       }
1652 
1653       /* If pReadr1 contained the smaller value, set aTree[i] to its index.
1654       ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
1655       ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
1656       ** pKey2 to point to the record belonging to pReadr2.
1657       **
1658       ** Alternatively, if pReadr2 contains the smaller of the two values,
1659       ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
1660       ** was actually called above, then pTask->pUnpacked now contains
1661       ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
1662       ** vdbeSorterCompare() from decoding pReadr2 again.
1663       **
1664       ** If the two values were equal, then the value from the oldest
1665       ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
1666       ** is sorted from oldest to newest, so pReadr1 contains older values
1667       ** than pReadr2 iff (pReadr1<pReadr2).  */
1668       if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){
1669         pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr);
1670         pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
1671         bCached = 0;
1672       }else{
1673         if( pReadr1->pFd ) bCached = 0;
1674         pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr);
1675         pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
1676       }
1677     }
1678     *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0);
1679   }
1680 
1681   return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc);
1682 }
1683 
1684 #if SQLITE_MAX_WORKER_THREADS>0
1685 /*
1686 ** The main routine for background threads that write level-0 PMAs.
1687 */
1688 static void *vdbeSorterFlushThread(void *pCtx){
1689   SortSubtask *pTask = (SortSubtask*)pCtx;
1690   int rc;                         /* Return code */
1691   assert( pTask->bDone==0 );
1692   rc = vdbeSorterListToPMA(pTask, &pTask->list);
1693   pTask->bDone = 1;
1694   return SQLITE_INT_TO_PTR(rc);
1695 }
1696 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
1697 
1698 /*
1699 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly
1700 ** using a background thread.
1701 */
1702 static int vdbeSorterFlushPMA(VdbeSorter *pSorter){
1703 #if SQLITE_MAX_WORKER_THREADS==0
1704   pSorter->bUsePMA = 1;
1705   return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list);
1706 #else
1707   int rc = SQLITE_OK;
1708   int i;
1709   SortSubtask *pTask = 0;    /* Thread context used to create new PMA */
1710   int nWorker = (pSorter->nTask-1);
1711 
1712   /* Set the flag to indicate that at least one PMA has been written.
1713   ** Or will be, anyhow.  */
1714   pSorter->bUsePMA = 1;
1715 
1716   /* Select a sub-task to sort and flush the current list of in-memory
1717   ** records to disk. If the sorter is running in multi-threaded mode,
1718   ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
1719   ** the background thread from a sub-tasks previous turn is still running,
1720   ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
1721   ** fall back to using the final sub-task. The first (pSorter->nTask-1)
1722   ** sub-tasks are prefered as they use background threads - the final
1723   ** sub-task uses the main thread. */
1724   for(i=0; i<nWorker; i++){
1725     int iTest = (pSorter->iPrev + i + 1) % nWorker;
1726     pTask = &pSorter->aTask[iTest];
1727     if( pTask->bDone ){
1728       rc = vdbeSorterJoinThread(pTask);
1729     }
1730     if( rc!=SQLITE_OK || pTask->pThread==0 ) break;
1731   }
1732 
1733   if( rc==SQLITE_OK ){
1734     if( i==nWorker ){
1735       /* Use the foreground thread for this operation */
1736       rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list);
1737     }else{
1738       /* Launch a background thread for this operation */
1739       u8 *aMem = pTask->list.aMemory;
1740       void *pCtx = (void*)pTask;
1741 
1742       assert( pTask->pThread==0 && pTask->bDone==0 );
1743       assert( pTask->list.pList==0 );
1744       assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 );
1745 
1746       pSorter->iPrev = (u8)(pTask - pSorter->aTask);
1747       pTask->list = pSorter->list;
1748       pSorter->list.pList = 0;
1749       pSorter->list.szPMA = 0;
1750       if( aMem ){
1751         pSorter->list.aMemory = aMem;
1752         pSorter->nMemory = sqlite3MallocSize(aMem);
1753       }else if( pSorter->list.aMemory ){
1754         pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory);
1755         if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT;
1756       }
1757 
1758       rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx);
1759     }
1760   }
1761 
1762   return rc;
1763 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */
1764 }
1765 
1766 /*
1767 ** Add a record to the sorter.
1768 */
1769 int sqlite3VdbeSorterWrite(
1770   const VdbeCursor *pCsr,         /* Sorter cursor */
1771   Mem *pVal                       /* Memory cell containing record */
1772 ){
1773   VdbeSorter *pSorter;
1774   int rc = SQLITE_OK;             /* Return Code */
1775   SorterRecord *pNew;             /* New list element */
1776   int bFlush;                     /* True to flush contents of memory to PMA */
1777   int nReq;                       /* Bytes of memory required */
1778   int nPMA;                       /* Bytes of PMA space required */
1779   int t;                          /* serial type of first record field */
1780 
1781   assert( pCsr->eCurType==CURTYPE_SORTER );
1782   pSorter = pCsr->uc.pSorter;
1783   getVarint32((const u8*)&pVal->z[1], t);
1784   if( t>0 && t<10 && t!=7 ){
1785     pSorter->typeMask &= SORTER_TYPE_INTEGER;
1786   }else if( t>10 && (t & 0x01) ){
1787     pSorter->typeMask &= SORTER_TYPE_TEXT;
1788   }else{
1789     pSorter->typeMask = 0;
1790   }
1791 
1792   assert( pSorter );
1793 
1794   /* Figure out whether or not the current contents of memory should be
1795   ** flushed to a PMA before continuing. If so, do so.
1796   **
1797   ** If using the single large allocation mode (pSorter->aMemory!=0), then
1798   ** flush the contents of memory to a new PMA if (a) at least one value is
1799   ** already in memory and (b) the new value will not fit in memory.
1800   **
1801   ** Or, if using separate allocations for each record, flush the contents
1802   ** of memory to a PMA if either of the following are true:
1803   **
1804   **   * The total memory allocated for the in-memory list is greater
1805   **     than (page-size * cache-size), or
1806   **
1807   **   * The total memory allocated for the in-memory list is greater
1808   **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
1809   */
1810   nReq = pVal->n + sizeof(SorterRecord);
1811   nPMA = pVal->n + sqlite3VarintLen(pVal->n);
1812   if( pSorter->mxPmaSize ){
1813     if( pSorter->list.aMemory ){
1814       bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize;
1815     }else{
1816       bFlush = (
1817           (pSorter->list.szPMA > pSorter->mxPmaSize)
1818        || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull())
1819       );
1820     }
1821     if( bFlush ){
1822       rc = vdbeSorterFlushPMA(pSorter);
1823       pSorter->list.szPMA = 0;
1824       pSorter->iMemory = 0;
1825       assert( rc!=SQLITE_OK || pSorter->list.pList==0 );
1826     }
1827   }
1828 
1829   pSorter->list.szPMA += nPMA;
1830   if( nPMA>pSorter->mxKeysize ){
1831     pSorter->mxKeysize = nPMA;
1832   }
1833 
1834   if( pSorter->list.aMemory ){
1835     int nMin = pSorter->iMemory + nReq;
1836 
1837     if( nMin>pSorter->nMemory ){
1838       u8 *aNew;
1839       int iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory;
1840       int nNew = pSorter->nMemory * 2;
1841       while( nNew < nMin ) nNew = nNew*2;
1842       if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
1843       if( nNew < nMin ) nNew = nMin;
1844 
1845       aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
1846       if( !aNew ) return SQLITE_NOMEM_BKPT;
1847       pSorter->list.pList = (SorterRecord*)&aNew[iListOff];
1848       pSorter->list.aMemory = aNew;
1849       pSorter->nMemory = nNew;
1850     }
1851 
1852     pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
1853     pSorter->iMemory += ROUND8(nReq);
1854     if( pSorter->list.pList ){
1855       pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
1856     }
1857   }else{
1858     pNew = (SorterRecord *)sqlite3Malloc(nReq);
1859     if( pNew==0 ){
1860       return SQLITE_NOMEM_BKPT;
1861     }
1862     pNew->u.pNext = pSorter->list.pList;
1863   }
1864 
1865   memcpy(SRVAL(pNew), pVal->z, pVal->n);
1866   pNew->nVal = pVal->n;
1867   pSorter->list.pList = pNew;
1868 
1869   return rc;
1870 }
1871 
1872 /*
1873 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
1874 ** of the data stored in aFile[1] is the same as that used by regular PMAs,
1875 ** except that the number-of-bytes varint is omitted from the start.
1876 */
1877 static int vdbeIncrPopulate(IncrMerger *pIncr){
1878   int rc = SQLITE_OK;
1879   int rc2;
1880   i64 iStart = pIncr->iStartOff;
1881   SorterFile *pOut = &pIncr->aFile[1];
1882   SortSubtask *pTask = pIncr->pTask;
1883   MergeEngine *pMerger = pIncr->pMerger;
1884   PmaWriter writer;
1885   assert( pIncr->bEof==0 );
1886 
1887   vdbeSorterPopulateDebug(pTask, "enter");
1888 
1889   vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart);
1890   while( rc==SQLITE_OK ){
1891     int dummy;
1892     PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ];
1893     int nKey = pReader->nKey;
1894     i64 iEof = writer.iWriteOff + writer.iBufEnd;
1895 
1896     /* Check if the output file is full or if the input has been exhausted.
1897     ** In either case exit the loop. */
1898     if( pReader->pFd==0 ) break;
1899     if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break;
1900 
1901     /* Write the next key to the output. */
1902     vdbePmaWriteVarint(&writer, nKey);
1903     vdbePmaWriteBlob(&writer, pReader->aKey, nKey);
1904     assert( pIncr->pMerger->pTask==pTask );
1905     rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy);
1906   }
1907 
1908   rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof);
1909   if( rc==SQLITE_OK ) rc = rc2;
1910   vdbeSorterPopulateDebug(pTask, "exit");
1911   return rc;
1912 }
1913 
1914 #if SQLITE_MAX_WORKER_THREADS>0
1915 /*
1916 ** The main routine for background threads that populate aFile[1] of
1917 ** multi-threaded IncrMerger objects.
1918 */
1919 static void *vdbeIncrPopulateThread(void *pCtx){
1920   IncrMerger *pIncr = (IncrMerger*)pCtx;
1921   void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) );
1922   pIncr->pTask->bDone = 1;
1923   return pRet;
1924 }
1925 
1926 /*
1927 ** Launch a background thread to populate aFile[1] of pIncr.
1928 */
1929 static int vdbeIncrBgPopulate(IncrMerger *pIncr){
1930   void *p = (void*)pIncr;
1931   assert( pIncr->bUseThread );
1932   return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p);
1933 }
1934 #endif
1935 
1936 /*
1937 ** This function is called when the PmaReader corresponding to pIncr has
1938 ** finished reading the contents of aFile[0]. Its purpose is to "refill"
1939 ** aFile[0] such that the PmaReader should start rereading it from the
1940 ** beginning.
1941 **
1942 ** For single-threaded objects, this is accomplished by literally reading
1943 ** keys from pIncr->pMerger and repopulating aFile[0].
1944 **
1945 ** For multi-threaded objects, all that is required is to wait until the
1946 ** background thread is finished (if it is not already) and then swap
1947 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not
1948 ** been exhausted, this function also launches a new background thread
1949 ** to populate the new aFile[1].
1950 **
1951 ** SQLITE_OK is returned on success, or an SQLite error code otherwise.
1952 */
1953 static int vdbeIncrSwap(IncrMerger *pIncr){
1954   int rc = SQLITE_OK;
1955 
1956 #if SQLITE_MAX_WORKER_THREADS>0
1957   if( pIncr->bUseThread ){
1958     rc = vdbeSorterJoinThread(pIncr->pTask);
1959 
1960     if( rc==SQLITE_OK ){
1961       SorterFile f0 = pIncr->aFile[0];
1962       pIncr->aFile[0] = pIncr->aFile[1];
1963       pIncr->aFile[1] = f0;
1964     }
1965 
1966     if( rc==SQLITE_OK ){
1967       if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
1968         pIncr->bEof = 1;
1969       }else{
1970         rc = vdbeIncrBgPopulate(pIncr);
1971       }
1972     }
1973   }else
1974 #endif
1975   {
1976     rc = vdbeIncrPopulate(pIncr);
1977     pIncr->aFile[0] = pIncr->aFile[1];
1978     if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
1979       pIncr->bEof = 1;
1980     }
1981   }
1982 
1983   return rc;
1984 }
1985 
1986 /*
1987 ** Allocate and return a new IncrMerger object to read data from pMerger.
1988 **
1989 ** If an OOM condition is encountered, return NULL. In this case free the
1990 ** pMerger argument before returning.
1991 */
1992 static int vdbeIncrMergerNew(
1993   SortSubtask *pTask,     /* The thread that will be using the new IncrMerger */
1994   MergeEngine *pMerger,   /* The MergeEngine that the IncrMerger will control */
1995   IncrMerger **ppOut      /* Write the new IncrMerger here */
1996 ){
1997   int rc = SQLITE_OK;
1998   IncrMerger *pIncr = *ppOut = (IncrMerger*)
1999        (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr)));
2000   if( pIncr ){
2001     pIncr->pMerger = pMerger;
2002     pIncr->pTask = pTask;
2003     pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2);
2004     pTask->file2.iEof += pIncr->mxSz;
2005   }else{
2006     vdbeMergeEngineFree(pMerger);
2007     rc = SQLITE_NOMEM_BKPT;
2008   }
2009   return rc;
2010 }
2011 
2012 #if SQLITE_MAX_WORKER_THREADS>0
2013 /*
2014 ** Set the "use-threads" flag on object pIncr.
2015 */
2016 static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){
2017   pIncr->bUseThread = 1;
2018   pIncr->pTask->file2.iEof -= pIncr->mxSz;
2019 }
2020 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
2021 
2022 
2023 
2024 /*
2025 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the
2026 ** two PmaReaders that feed that entry.  Neither of the PmaReaders
2027 ** are advanced.  This routine merely does the comparison.
2028 */
2029 static void vdbeMergeEngineCompare(
2030   MergeEngine *pMerger,  /* Merge engine containing PmaReaders to compare */
2031   int iOut               /* Store the result in pMerger->aTree[iOut] */
2032 ){
2033   int i1;
2034   int i2;
2035   int iRes;
2036   PmaReader *p1;
2037   PmaReader *p2;
2038 
2039   assert( iOut<pMerger->nTree && iOut>0 );
2040 
2041   if( iOut>=(pMerger->nTree/2) ){
2042     i1 = (iOut - pMerger->nTree/2) * 2;
2043     i2 = i1 + 1;
2044   }else{
2045     i1 = pMerger->aTree[iOut*2];
2046     i2 = pMerger->aTree[iOut*2+1];
2047   }
2048 
2049   p1 = &pMerger->aReadr[i1];
2050   p2 = &pMerger->aReadr[i2];
2051 
2052   if( p1->pFd==0 ){
2053     iRes = i2;
2054   }else if( p2->pFd==0 ){
2055     iRes = i1;
2056   }else{
2057     SortSubtask *pTask = pMerger->pTask;
2058     int bCached = 0;
2059     int res;
2060     assert( pTask->pUnpacked!=0 );  /* from vdbeSortSubtaskMain() */
2061     res = pTask->xCompare(
2062         pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey
2063     );
2064     if( res<=0 ){
2065       iRes = i1;
2066     }else{
2067       iRes = i2;
2068     }
2069   }
2070 
2071   pMerger->aTree[iOut] = iRes;
2072 }
2073 
2074 /*
2075 ** Allowed values for the eMode parameter to vdbeMergeEngineInit()
2076 ** and vdbePmaReaderIncrMergeInit().
2077 **
2078 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when
2079 ** SQLITE_MAX_WORKER_THREADS==0).  The other values are only used
2080 ** when there exists one or more separate worker threads.
2081 */
2082 #define INCRINIT_NORMAL 0
2083 #define INCRINIT_TASK   1
2084 #define INCRINIT_ROOT   2
2085 
2086 /*
2087 ** Forward reference required as the vdbeIncrMergeInit() and
2088 ** vdbePmaReaderIncrInit() routines are called mutually recursively when
2089 ** building a merge tree.
2090 */
2091 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode);
2092 
2093 /*
2094 ** Initialize the MergeEngine object passed as the second argument. Once this
2095 ** function returns, the first key of merged data may be read from the
2096 ** MergeEngine object in the usual fashion.
2097 **
2098 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
2099 ** objects attached to the PmaReader objects that the merger reads from have
2100 ** already been populated, but that they have not yet populated aFile[0] and
2101 ** set the PmaReader objects up to read from it. In this case all that is
2102 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at
2103 ** its first key.
2104 **
2105 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
2106 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
2107 ** to pMerger.
2108 **
2109 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2110 */
2111 static int vdbeMergeEngineInit(
2112   SortSubtask *pTask,             /* Thread that will run pMerger */
2113   MergeEngine *pMerger,           /* MergeEngine to initialize */
2114   int eMode                       /* One of the INCRINIT_XXX constants */
2115 ){
2116   int rc = SQLITE_OK;             /* Return code */
2117   int i;                          /* For looping over PmaReader objects */
2118   int nTree = pMerger->nTree;
2119 
2120   /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2121   assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
2122 
2123   /* Verify that the MergeEngine is assigned to a single thread */
2124   assert( pMerger->pTask==0 );
2125   pMerger->pTask = pTask;
2126 
2127   for(i=0; i<nTree; i++){
2128     if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){
2129       /* PmaReaders should be normally initialized in order, as if they are
2130       ** reading from the same temp file this makes for more linear file IO.
2131       ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
2132       ** in use it will block the vdbePmaReaderNext() call while it uses
2133       ** the main thread to fill its buffer. So calling PmaReaderNext()
2134       ** on this PmaReader before any of the multi-threaded PmaReaders takes
2135       ** better advantage of multi-processor hardware. */
2136       rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]);
2137     }else{
2138       rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL);
2139     }
2140     if( rc!=SQLITE_OK ) return rc;
2141   }
2142 
2143   for(i=pMerger->nTree-1; i>0; i--){
2144     vdbeMergeEngineCompare(pMerger, i);
2145   }
2146   return pTask->pUnpacked->errCode;
2147 }
2148 
2149 /*
2150 ** The PmaReader passed as the first argument is guaranteed to be an
2151 ** incremental-reader (pReadr->pIncr!=0). This function serves to open
2152 ** and/or initialize the temp file related fields of the IncrMerge
2153 ** object at (pReadr->pIncr).
2154 **
2155 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
2156 ** in the sub-tree headed by pReadr are also initialized. Data is then
2157 ** loaded into the buffers belonging to pReadr and it is set to point to
2158 ** the first key in its range.
2159 **
2160 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
2161 ** to be a multi-threaded PmaReader and this function is being called in a
2162 ** background thread. In this case all PmaReaders in the sub-tree are
2163 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
2164 ** pReadr is populated. However, pReadr itself is not set up to point
2165 ** to its first key. A call to vdbePmaReaderNext() is still required to do
2166 ** that.
2167 **
2168 ** The reason this function does not call vdbePmaReaderNext() immediately
2169 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
2170 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since
2171 ** this entire function is being run by thread (pTask->thread), that will
2172 ** lead to the current background thread attempting to join itself.
2173 **
2174 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
2175 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
2176 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
2177 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and
2178 ** the current PmaReader set to point to the first key in its range.
2179 **
2180 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2181 */
2182 static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){
2183   int rc = SQLITE_OK;
2184   IncrMerger *pIncr = pReadr->pIncr;
2185   SortSubtask *pTask = pIncr->pTask;
2186   sqlite3 *db = pTask->pSorter->db;
2187 
2188   /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2189   assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
2190 
2191   rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode);
2192 
2193   /* Set up the required files for pIncr. A multi-theaded IncrMerge object
2194   ** requires two temp files to itself, whereas a single-threaded object
2195   ** only requires a region of pTask->file2. */
2196   if( rc==SQLITE_OK ){
2197     int mxSz = pIncr->mxSz;
2198 #if SQLITE_MAX_WORKER_THREADS>0
2199     if( pIncr->bUseThread ){
2200       rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd);
2201       if( rc==SQLITE_OK ){
2202         rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd);
2203       }
2204     }else
2205 #endif
2206     /*if( !pIncr->bUseThread )*/{
2207       if( pTask->file2.pFd==0 ){
2208         assert( pTask->file2.iEof>0 );
2209         rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd);
2210         pTask->file2.iEof = 0;
2211       }
2212       if( rc==SQLITE_OK ){
2213         pIncr->aFile[1].pFd = pTask->file2.pFd;
2214         pIncr->iStartOff = pTask->file2.iEof;
2215         pTask->file2.iEof += mxSz;
2216       }
2217     }
2218   }
2219 
2220 #if SQLITE_MAX_WORKER_THREADS>0
2221   if( rc==SQLITE_OK && pIncr->bUseThread ){
2222     /* Use the current thread to populate aFile[1], even though this
2223     ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object,
2224     ** then this function is already running in background thread
2225     ** pIncr->pTask->thread.
2226     **
2227     ** If this is the INCRINIT_ROOT object, then it is running in the
2228     ** main VDBE thread. But that is Ok, as that thread cannot return
2229     ** control to the VDBE or proceed with anything useful until the
2230     ** first results are ready from this merger object anyway.
2231     */
2232     assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK );
2233     rc = vdbeIncrPopulate(pIncr);
2234   }
2235 #endif
2236 
2237   if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){
2238     rc = vdbePmaReaderNext(pReadr);
2239   }
2240 
2241   return rc;
2242 }
2243 
2244 #if SQLITE_MAX_WORKER_THREADS>0
2245 /*
2246 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in
2247 ** background threads.
2248 */
2249 static void *vdbePmaReaderBgIncrInit(void *pCtx){
2250   PmaReader *pReader = (PmaReader*)pCtx;
2251   void *pRet = SQLITE_INT_TO_PTR(
2252                   vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK)
2253                );
2254   pReader->pIncr->pTask->bDone = 1;
2255   return pRet;
2256 }
2257 #endif
2258 
2259 /*
2260 ** If the PmaReader passed as the first argument is not an incremental-reader
2261 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes
2262 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to
2263 ** this routine to initialize the incremental merge.
2264 **
2265 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1),
2266 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit().
2267 ** Or, if the IncrMerger is single threaded, the same function is called
2268 ** using the current thread.
2269 */
2270 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){
2271   IncrMerger *pIncr = pReadr->pIncr;   /* Incremental merger */
2272   int rc = SQLITE_OK;                  /* Return code */
2273   if( pIncr ){
2274 #if SQLITE_MAX_WORKER_THREADS>0
2275     assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK );
2276     if( pIncr->bUseThread ){
2277       void *pCtx = (void*)pReadr;
2278       rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx);
2279     }else
2280 #endif
2281     {
2282       rc = vdbePmaReaderIncrMergeInit(pReadr, eMode);
2283     }
2284   }
2285   return rc;
2286 }
2287 
2288 /*
2289 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0
2290 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to
2291 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
2292 ** to NULL and return an SQLite error code.
2293 **
2294 ** When this function is called, *piOffset is set to the offset of the
2295 ** first PMA to read from pTask->file. Assuming no error occurs, it is
2296 ** set to the offset immediately following the last byte of the last
2297 ** PMA before returning. If an error does occur, then the final value of
2298 ** *piOffset is undefined.
2299 */
2300 static int vdbeMergeEngineLevel0(
2301   SortSubtask *pTask,             /* Sorter task to read from */
2302   int nPMA,                       /* Number of PMAs to read */
2303   i64 *piOffset,                  /* IN/OUT: Readr offset in pTask->file */
2304   MergeEngine **ppOut             /* OUT: New merge-engine */
2305 ){
2306   MergeEngine *pNew;              /* Merge engine to return */
2307   i64 iOff = *piOffset;
2308   int i;
2309   int rc = SQLITE_OK;
2310 
2311   *ppOut = pNew = vdbeMergeEngineNew(nPMA);
2312   if( pNew==0 ) rc = SQLITE_NOMEM_BKPT;
2313 
2314   for(i=0; i<nPMA && rc==SQLITE_OK; i++){
2315     i64 nDummy = 0;
2316     PmaReader *pReadr = &pNew->aReadr[i];
2317     rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy);
2318     iOff = pReadr->iEof;
2319   }
2320 
2321   if( rc!=SQLITE_OK ){
2322     vdbeMergeEngineFree(pNew);
2323     *ppOut = 0;
2324   }
2325   *piOffset = iOff;
2326   return rc;
2327 }
2328 
2329 /*
2330 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
2331 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
2332 **
2333 ** i.e.
2334 **
2335 **   nPMA<=16    -> TreeDepth() == 0
2336 **   nPMA<=256   -> TreeDepth() == 1
2337 **   nPMA<=65536 -> TreeDepth() == 2
2338 */
2339 static int vdbeSorterTreeDepth(int nPMA){
2340   int nDepth = 0;
2341   i64 nDiv = SORTER_MAX_MERGE_COUNT;
2342   while( nDiv < (i64)nPMA ){
2343     nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
2344     nDepth++;
2345   }
2346   return nDepth;
2347 }
2348 
2349 /*
2350 ** pRoot is the root of an incremental merge-tree with depth nDepth (according
2351 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
2352 ** tree, counting from zero. This function adds pLeaf to the tree.
2353 **
2354 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
2355 ** code is returned and pLeaf is freed.
2356 */
2357 static int vdbeSorterAddToTree(
2358   SortSubtask *pTask,             /* Task context */
2359   int nDepth,                     /* Depth of tree according to TreeDepth() */
2360   int iSeq,                       /* Sequence number of leaf within tree */
2361   MergeEngine *pRoot,             /* Root of tree */
2362   MergeEngine *pLeaf              /* Leaf to add to tree */
2363 ){
2364   int rc = SQLITE_OK;
2365   int nDiv = 1;
2366   int i;
2367   MergeEngine *p = pRoot;
2368   IncrMerger *pIncr;
2369 
2370   rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr);
2371 
2372   for(i=1; i<nDepth; i++){
2373     nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
2374   }
2375 
2376   for(i=1; i<nDepth && rc==SQLITE_OK; i++){
2377     int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT;
2378     PmaReader *pReadr = &p->aReadr[iIter];
2379 
2380     if( pReadr->pIncr==0 ){
2381       MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
2382       if( pNew==0 ){
2383         rc = SQLITE_NOMEM_BKPT;
2384       }else{
2385         rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr);
2386       }
2387     }
2388     if( rc==SQLITE_OK ){
2389       p = pReadr->pIncr->pMerger;
2390       nDiv = nDiv / SORTER_MAX_MERGE_COUNT;
2391     }
2392   }
2393 
2394   if( rc==SQLITE_OK ){
2395     p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr;
2396   }else{
2397     vdbeIncrFree(pIncr);
2398   }
2399   return rc;
2400 }
2401 
2402 /*
2403 ** This function is called as part of a SorterRewind() operation on a sorter
2404 ** that has already written two or more level-0 PMAs to one or more temp
2405 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
2406 ** can be used to incrementally merge all PMAs on disk.
2407 **
2408 ** If successful, SQLITE_OK is returned and *ppOut set to point to the
2409 ** MergeEngine object at the root of the tree before returning. Or, if an
2410 ** error occurs, an SQLite error code is returned and the final value
2411 ** of *ppOut is undefined.
2412 */
2413 static int vdbeSorterMergeTreeBuild(
2414   VdbeSorter *pSorter,       /* The VDBE cursor that implements the sort */
2415   MergeEngine **ppOut        /* Write the MergeEngine here */
2416 ){
2417   MergeEngine *pMain = 0;
2418   int rc = SQLITE_OK;
2419   int iTask;
2420 
2421 #if SQLITE_MAX_WORKER_THREADS>0
2422   /* If the sorter uses more than one task, then create the top-level
2423   ** MergeEngine here. This MergeEngine will read data from exactly
2424   ** one PmaReader per sub-task.  */
2425   assert( pSorter->bUseThreads || pSorter->nTask==1 );
2426   if( pSorter->nTask>1 ){
2427     pMain = vdbeMergeEngineNew(pSorter->nTask);
2428     if( pMain==0 ) rc = SQLITE_NOMEM_BKPT;
2429   }
2430 #endif
2431 
2432   for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
2433     SortSubtask *pTask = &pSorter->aTask[iTask];
2434     assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 );
2435     if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){
2436       MergeEngine *pRoot = 0;     /* Root node of tree for this task */
2437       int nDepth = vdbeSorterTreeDepth(pTask->nPMA);
2438       i64 iReadOff = 0;
2439 
2440       if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){
2441         rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot);
2442       }else{
2443         int i;
2444         int iSeq = 0;
2445         pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
2446         if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT;
2447         for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){
2448           MergeEngine *pMerger = 0; /* New level-0 PMA merger */
2449           int nReader;              /* Number of level-0 PMAs to merge */
2450 
2451           nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT);
2452           rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger);
2453           if( rc==SQLITE_OK ){
2454             rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger);
2455           }
2456         }
2457       }
2458 
2459       if( rc==SQLITE_OK ){
2460 #if SQLITE_MAX_WORKER_THREADS>0
2461         if( pMain!=0 ){
2462           rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr);
2463         }else
2464 #endif
2465         {
2466           assert( pMain==0 );
2467           pMain = pRoot;
2468         }
2469       }else{
2470         vdbeMergeEngineFree(pRoot);
2471       }
2472     }
2473   }
2474 
2475   if( rc!=SQLITE_OK ){
2476     vdbeMergeEngineFree(pMain);
2477     pMain = 0;
2478   }
2479   *ppOut = pMain;
2480   return rc;
2481 }
2482 
2483 /*
2484 ** This function is called as part of an sqlite3VdbeSorterRewind() operation
2485 ** on a sorter that has written two or more PMAs to temporary files. It sets
2486 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
2487 ** (for multi-threaded sorters) so that it can be used to iterate through
2488 ** all records stored in the sorter.
2489 **
2490 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2491 */
2492 static int vdbeSorterSetupMerge(VdbeSorter *pSorter){
2493   int rc;                         /* Return code */
2494   SortSubtask *pTask0 = &pSorter->aTask[0];
2495   MergeEngine *pMain = 0;
2496 #if SQLITE_MAX_WORKER_THREADS
2497   sqlite3 *db = pTask0->pSorter->db;
2498   int i;
2499   SorterCompare xCompare = vdbeSorterGetCompare(pSorter);
2500   for(i=0; i<pSorter->nTask; i++){
2501     pSorter->aTask[i].xCompare = xCompare;
2502   }
2503 #endif
2504 
2505   rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
2506   if( rc==SQLITE_OK ){
2507 #if SQLITE_MAX_WORKER_THREADS
2508     assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
2509     if( pSorter->bUseThreads ){
2510       int iTask;
2511       PmaReader *pReadr = 0;
2512       SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
2513       rc = vdbeSortAllocUnpacked(pLast);
2514       if( rc==SQLITE_OK ){
2515         pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
2516         pSorter->pReader = pReadr;
2517         if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT;
2518       }
2519       if( rc==SQLITE_OK ){
2520         rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr);
2521         if( rc==SQLITE_OK ){
2522           vdbeIncrMergerSetThreads(pReadr->pIncr);
2523           for(iTask=0; iTask<(pSorter->nTask-1); iTask++){
2524             IncrMerger *pIncr;
2525             if( (pIncr = pMain->aReadr[iTask].pIncr) ){
2526               vdbeIncrMergerSetThreads(pIncr);
2527               assert( pIncr->pTask!=pLast );
2528             }
2529           }
2530           for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
2531             /* Check that:
2532             **
2533             **   a) The incremental merge object is configured to use the
2534             **      right task, and
2535             **   b) If it is using task (nTask-1), it is configured to run
2536             **      in single-threaded mode. This is important, as the
2537             **      root merge (INCRINIT_ROOT) will be using the same task
2538             **      object.
2539             */
2540             PmaReader *p = &pMain->aReadr[iTask];
2541             assert( p->pIncr==0 || (
2542                 (p->pIncr->pTask==&pSorter->aTask[iTask])             /* a */
2543              && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0)  /* b */
2544             ));
2545             rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK);
2546           }
2547         }
2548         pMain = 0;
2549       }
2550       if( rc==SQLITE_OK ){
2551         rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT);
2552       }
2553     }else
2554 #endif
2555     {
2556       rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL);
2557       pSorter->pMerger = pMain;
2558       pMain = 0;
2559     }
2560   }
2561 
2562   if( rc!=SQLITE_OK ){
2563     vdbeMergeEngineFree(pMain);
2564   }
2565   return rc;
2566 }
2567 
2568 
2569 /*
2570 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
2571 ** this function is called to prepare for iterating through the records
2572 ** in sorted order.
2573 */
2574 int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
2575   VdbeSorter *pSorter;
2576   int rc = SQLITE_OK;             /* Return code */
2577 
2578   assert( pCsr->eCurType==CURTYPE_SORTER );
2579   pSorter = pCsr->uc.pSorter;
2580   assert( pSorter );
2581 
2582   /* If no data has been written to disk, then do not do so now. Instead,
2583   ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
2584   ** from the in-memory list.  */
2585   if( pSorter->bUsePMA==0 ){
2586     if( pSorter->list.pList ){
2587       *pbEof = 0;
2588       rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list);
2589     }else{
2590       *pbEof = 1;
2591     }
2592     return rc;
2593   }
2594 
2595   /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
2596   ** function flushes the contents of memory to disk, it immediately always
2597   ** creates a new list consisting of a single key immediately afterwards.
2598   ** So the list is never empty at this point.  */
2599   assert( pSorter->list.pList );
2600   rc = vdbeSorterFlushPMA(pSorter);
2601 
2602   /* Join all threads */
2603   rc = vdbeSorterJoinAll(pSorter, rc);
2604 
2605   vdbeSorterRewindDebug("rewind");
2606 
2607   /* Assuming no errors have occurred, set up a merger structure to
2608   ** incrementally read and merge all remaining PMAs.  */
2609   assert( pSorter->pReader==0 );
2610   if( rc==SQLITE_OK ){
2611     rc = vdbeSorterSetupMerge(pSorter);
2612     *pbEof = 0;
2613   }
2614 
2615   vdbeSorterRewindDebug("rewinddone");
2616   return rc;
2617 }
2618 
2619 /*
2620 ** Advance to the next element in the sorter.
2621 */
2622 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
2623   VdbeSorter *pSorter;
2624   int rc;                         /* Return code */
2625 
2626   assert( pCsr->eCurType==CURTYPE_SORTER );
2627   pSorter = pCsr->uc.pSorter;
2628   assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
2629   if( pSorter->bUsePMA ){
2630     assert( pSorter->pReader==0 || pSorter->pMerger==0 );
2631     assert( pSorter->bUseThreads==0 || pSorter->pReader );
2632     assert( pSorter->bUseThreads==1 || pSorter->pMerger );
2633 #if SQLITE_MAX_WORKER_THREADS>0
2634     if( pSorter->bUseThreads ){
2635       rc = vdbePmaReaderNext(pSorter->pReader);
2636       *pbEof = (pSorter->pReader->pFd==0);
2637     }else
2638 #endif
2639     /*if( !pSorter->bUseThreads )*/ {
2640       assert( pSorter->pMerger!=0 );
2641       assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) );
2642       rc = vdbeMergeEngineStep(pSorter->pMerger, pbEof);
2643     }
2644   }else{
2645     SorterRecord *pFree = pSorter->list.pList;
2646     pSorter->list.pList = pFree->u.pNext;
2647     pFree->u.pNext = 0;
2648     if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree);
2649     *pbEof = !pSorter->list.pList;
2650     rc = SQLITE_OK;
2651   }
2652   return rc;
2653 }
2654 
2655 /*
2656 ** Return a pointer to a buffer owned by the sorter that contains the
2657 ** current key.
2658 */
2659 static void *vdbeSorterRowkey(
2660   const VdbeSorter *pSorter,      /* Sorter object */
2661   int *pnKey                      /* OUT: Size of current key in bytes */
2662 ){
2663   void *pKey;
2664   if( pSorter->bUsePMA ){
2665     PmaReader *pReader;
2666 #if SQLITE_MAX_WORKER_THREADS>0
2667     if( pSorter->bUseThreads ){
2668       pReader = pSorter->pReader;
2669     }else
2670 #endif
2671     /*if( !pSorter->bUseThreads )*/{
2672       pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]];
2673     }
2674     *pnKey = pReader->nKey;
2675     pKey = pReader->aKey;
2676   }else{
2677     *pnKey = pSorter->list.pList->nVal;
2678     pKey = SRVAL(pSorter->list.pList);
2679   }
2680   return pKey;
2681 }
2682 
2683 /*
2684 ** Copy the current sorter key into the memory cell pOut.
2685 */
2686 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
2687   VdbeSorter *pSorter;
2688   void *pKey; int nKey;           /* Sorter key to copy into pOut */
2689 
2690   assert( pCsr->eCurType==CURTYPE_SORTER );
2691   pSorter = pCsr->uc.pSorter;
2692   pKey = vdbeSorterRowkey(pSorter, &nKey);
2693   if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
2694     return SQLITE_NOMEM_BKPT;
2695   }
2696   pOut->n = nKey;
2697   MemSetTypeFlag(pOut, MEM_Blob);
2698   memcpy(pOut->z, pKey, nKey);
2699 
2700   return SQLITE_OK;
2701 }
2702 
2703 /*
2704 ** Compare the key in memory cell pVal with the key that the sorter cursor
2705 ** passed as the first argument currently points to. For the purposes of
2706 ** the comparison, ignore the rowid field at the end of each record.
2707 **
2708 ** If the sorter cursor key contains any NULL values, consider it to be
2709 ** less than pVal. Even if pVal also contains NULL values.
2710 **
2711 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
2712 ** Otherwise, set *pRes to a negative, zero or positive value if the
2713 ** key in pVal is smaller than, equal to or larger than the current sorter
2714 ** key.
2715 **
2716 ** This routine forms the core of the OP_SorterCompare opcode, which in
2717 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
2718 */
2719 int sqlite3VdbeSorterCompare(
2720   const VdbeCursor *pCsr,         /* Sorter cursor */
2721   Mem *pVal,                      /* Value to compare to current sorter key */
2722   int nKeyCol,                    /* Compare this many columns */
2723   int *pRes                       /* OUT: Result of comparison */
2724 ){
2725   VdbeSorter *pSorter;
2726   UnpackedRecord *r2;
2727   KeyInfo *pKeyInfo;
2728   int i;
2729   void *pKey; int nKey;           /* Sorter key to compare pVal with */
2730 
2731   assert( pCsr->eCurType==CURTYPE_SORTER );
2732   pSorter = pCsr->uc.pSorter;
2733   r2 = pSorter->pUnpacked;
2734   pKeyInfo = pCsr->pKeyInfo;
2735   if( r2==0 ){
2736     char *p;
2737     r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo,0,0,&p);
2738     assert( pSorter->pUnpacked==(UnpackedRecord*)p );
2739     if( r2==0 ) return SQLITE_NOMEM_BKPT;
2740     r2->nField = nKeyCol;
2741   }
2742   assert( r2->nField==nKeyCol );
2743 
2744   pKey = vdbeSorterRowkey(pSorter, &nKey);
2745   sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2);
2746   for(i=0; i<nKeyCol; i++){
2747     if( r2->aMem[i].flags & MEM_Null ){
2748       *pRes = -1;
2749       return SQLITE_OK;
2750     }
2751   }
2752 
2753   *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
2754   return SQLITE_OK;
2755 }
2756