1 /* 2 ** 2011-07-09 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for the VdbeSorter object, used in concert with 13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements 14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied 15 ** using indexes and without LIMIT clauses. 16 ** 17 ** The VdbeSorter object implements a multi-threaded external merge sort 18 ** algorithm that is efficient even if the number of elements being sorted 19 ** exceeds the available memory. 20 ** 21 ** Here is the (internal, non-API) interface between this module and the 22 ** rest of the SQLite system: 23 ** 24 ** sqlite3VdbeSorterInit() Create a new VdbeSorter object. 25 ** 26 ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter 27 ** object. The row is a binary blob in the 28 ** OP_MakeRecord format that contains both 29 ** the ORDER BY key columns and result columns 30 ** in the case of a SELECT w/ ORDER BY, or 31 ** the complete record for an index entry 32 ** in the case of a CREATE INDEX. 33 ** 34 ** sqlite3VdbeSorterRewind() Sort all content previously added. 35 ** Position the read cursor on the 36 ** first sorted element. 37 ** 38 ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted 39 ** element. 40 ** 41 ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the 42 ** row currently under the read cursor. 43 ** 44 ** sqlite3VdbeSorterCompare() Compare the binary blob for the row 45 ** currently under the read cursor against 46 ** another binary blob X and report if 47 ** X is strictly less than the read cursor. 48 ** Used to enforce uniqueness in a 49 ** CREATE UNIQUE INDEX statement. 50 ** 51 ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim 52 ** all resources. 53 ** 54 ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This 55 ** is like Close() followed by Init() only 56 ** much faster. 57 ** 58 ** The interfaces above must be called in a particular order. Write() can 59 ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and 60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. 61 ** 62 ** Init() 63 ** for each record: Write() 64 ** Rewind() 65 ** Rowkey()/Compare() 66 ** Next() 67 ** Close() 68 ** 69 ** Algorithm: 70 ** 71 ** Records passed to the sorter via calls to Write() are initially held 72 ** unsorted in main memory. Assuming the amount of memory used never exceeds 73 ** a threshold, when Rewind() is called the set of records is sorted using 74 ** an in-memory merge sort. In this case, no temporary files are required 75 ** and subsequent calls to Rowkey(), Next() and Compare() read records 76 ** directly from main memory. 77 ** 78 ** If the amount of space used to store records in main memory exceeds the 79 ** threshold, then the set of records currently in memory are sorted and 80 ** written to a temporary file in "Packed Memory Array" (PMA) format. 81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels 82 ** of PMAs may be created by merging existing PMAs together - for example 83 ** merging two or more level-0 PMAs together creates a level-1 PMA. 84 ** 85 ** The threshold for the amount of main memory to use before flushing 86 ** records to a PMA is roughly the same as the limit configured for the 87 ** page-cache of the main database. Specifically, the threshold is set to 88 ** the value returned by "PRAGMA main.page_size" multipled by 89 ** that returned by "PRAGMA main.cache_size", in bytes. 90 ** 91 ** If the sorter is running in single-threaded mode, then all PMAs generated 92 ** are appended to a single temporary file. Or, if the sorter is running in 93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where 94 ** N is the configured number of worker threads. In this case, instead of 95 ** sorting the records and writing the PMA to a temporary file itself, the 96 ** calling thread usually launches a worker thread to do so. Except, if 97 ** there are already N worker threads running, the main thread does the work 98 ** itself. 99 ** 100 ** The sorter is running in multi-threaded mode if (a) the library was built 101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater 102 ** than zero, and (b) worker threads have been enabled at runtime by calling 103 ** "PRAGMA threads=N" with some value of N greater than 0. 104 ** 105 ** When Rewind() is called, any data remaining in memory is flushed to a 106 ** final PMA. So at this point the data is stored in some number of sorted 107 ** PMAs within temporary files on disk. 108 ** 109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the 110 ** sorter is running in single-threaded mode, then these PMAs are merged 111 ** incrementally as keys are retreived from the sorter by the VDBE. The 112 ** MergeEngine object, described in further detail below, performs this 113 ** merge. 114 ** 115 ** Or, if running in multi-threaded mode, then a background thread is 116 ** launched to merge the existing PMAs. Once the background thread has 117 ** merged T bytes of data into a single sorted PMA, the main thread 118 ** begins reading keys from that PMA while the background thread proceeds 119 ** with merging the next T bytes of data. And so on. 120 ** 121 ** Parameter T is set to half the value of the memory threshold used 122 ** by Write() above to determine when to create a new PMA. 123 ** 124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when 125 ** Rewind() is called, then a hierarchy of incremental-merges is used. 126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on 127 ** disk are merged together. Then T bytes of data from the second set, and 128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT 129 ** PMAs at a time. This done is to improve locality. 130 ** 131 ** If running in multi-threaded mode and there are more than 132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more 133 ** than one background thread may be created. Specifically, there may be 134 ** one background thread for each temporary file on disk, and one background 135 ** thread to merge the output of each of the others to a single PMA for 136 ** the main thread to read from. 137 */ 138 #include "sqliteInt.h" 139 #include "vdbeInt.h" 140 141 /* 142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various 143 ** messages to stderr that may be helpful in understanding the performance 144 ** characteristics of the sorter in multi-threaded mode. 145 */ 146 #if 0 147 # define SQLITE_DEBUG_SORTER_THREADS 1 148 #endif 149 150 /* 151 ** Hard-coded maximum amount of data to accumulate in memory before flushing 152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer 153 ** overflows. 512MiB. 154 */ 155 #define SQLITE_MAX_PMASZ (1<<29) 156 157 /* 158 ** Private objects used by the sorter 159 */ 160 typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ 161 typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ 162 typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ 163 typedef struct SorterRecord SorterRecord; /* A record being sorted */ 164 typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ 165 typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ 166 typedef struct SorterList SorterList; /* In-memory list of records */ 167 typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ 168 169 /* 170 ** A container for a temp file handle and the current amount of data 171 ** stored in the file. 172 */ 173 struct SorterFile { 174 sqlite3_file *pFd; /* File handle */ 175 i64 iEof; /* Bytes of data stored in pFd */ 176 }; 177 178 /* 179 ** An in-memory list of objects to be sorted. 180 ** 181 ** If aMemory==0 then each object is allocated separately and the objects 182 ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects 183 ** are stored in the aMemory[] bulk memory, one right after the other, and 184 ** are connected using SorterRecord.u.iNext. 185 */ 186 struct SorterList { 187 SorterRecord *pList; /* Linked list of records */ 188 u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ 189 int szPMA; /* Size of pList as PMA in bytes */ 190 }; 191 192 /* 193 ** The MergeEngine object is used to combine two or more smaller PMAs into 194 ** one big PMA using a merge operation. Separate PMAs all need to be 195 ** combined into one big PMA in order to be able to step through the sorted 196 ** records in order. 197 ** 198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being 199 ** merged. An aReadr[] object either points to a valid key or else is at EOF. 200 ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) 201 ** For the purposes of the paragraphs below, we assume that the array is 202 ** actually N elements in size, where N is the smallest power of 2 greater 203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements 204 ** are treated as if they are empty (always at EOF). 205 ** 206 ** The aTree[] array is also N elements in size. The value of N is stored in 207 ** the MergeEngine.nTree variable. 208 ** 209 ** The final (N/2) elements of aTree[] contain the results of comparing 210 ** pairs of PMA keys together. Element i contains the result of 211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the 212 ** aTree element is set to the index of it. 213 ** 214 ** For the purposes of this comparison, EOF is considered greater than any 215 ** other key value. If the keys are equal (only possible with two EOF 216 ** values), it doesn't matter which index is stored. 217 ** 218 ** The (N/4) elements of aTree[] that precede the final (N/2) described 219 ** above contains the index of the smallest of each block of 4 PmaReaders 220 ** And so on. So that aTree[1] contains the index of the PmaReader that 221 ** currently points to the smallest key value. aTree[0] is unused. 222 ** 223 ** Example: 224 ** 225 ** aReadr[0] -> Banana 226 ** aReadr[1] -> Feijoa 227 ** aReadr[2] -> Elderberry 228 ** aReadr[3] -> Currant 229 ** aReadr[4] -> Grapefruit 230 ** aReadr[5] -> Apple 231 ** aReadr[6] -> Durian 232 ** aReadr[7] -> EOF 233 ** 234 ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } 235 ** 236 ** The current element is "Apple" (the value of the key indicated by 237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will 238 ** be advanced to the next key in its segment. Say the next key is 239 ** "Eggplant": 240 ** 241 ** aReadr[5] -> Eggplant 242 ** 243 ** The contents of aTree[] are updated first by comparing the new PmaReader 244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader 245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. 246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader 247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), 248 ** so the value written into element 1 of the array is 0. As follows: 249 ** 250 ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } 251 ** 252 ** In other words, each time we advance to the next sorter element, log2(N) 253 ** key comparison operations are required, where N is the number of segments 254 ** being merged (rounded up to the next power of 2). 255 */ 256 struct MergeEngine { 257 int nTree; /* Used size of aTree/aReadr (power of 2) */ 258 SortSubtask *pTask; /* Used by this thread only */ 259 int *aTree; /* Current state of incremental merge */ 260 PmaReader *aReadr; /* Array of PmaReaders to merge data from */ 261 }; 262 263 /* 264 ** This object represents a single thread of control in a sort operation. 265 ** Exactly VdbeSorter.nTask instances of this object are allocated 266 ** as part of each VdbeSorter object. Instances are never allocated any 267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed 268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for 269 ** single-threaded operation, there is exactly one instance of this object 270 ** and for multi-threaded operation there are two or more instances. 271 ** 272 ** Essentially, this structure contains all those fields of the VdbeSorter 273 ** structure for which each thread requires a separate instance. For example, 274 ** each thread requries its own UnpackedRecord object to unpack records in 275 ** as part of comparison operations. 276 ** 277 ** Before a background thread is launched, variable bDone is set to 0. Then, 278 ** right before it exits, the thread itself sets bDone to 1. This is used for 279 ** two purposes: 280 ** 281 ** 1. When flushing the contents of memory to a level-0 PMA on disk, to 282 ** attempt to select a SortSubtask for which there is not already an 283 ** active background thread (since doing so causes the main thread 284 ** to block until it finishes). 285 ** 286 ** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call 287 ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to 288 ** block provoke debugging output. 289 ** 290 ** In both cases, the effects of the main thread seeing (bDone==0) even 291 ** after the thread has finished are not dire. So we don't worry about 292 ** memory barriers and such here. 293 */ 294 typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int); 295 struct SortSubtask { 296 SQLiteThread *pThread; /* Background thread, if any */ 297 int bDone; /* Set if thread is finished but not joined */ 298 VdbeSorter *pSorter; /* Sorter that owns this sub-task */ 299 UnpackedRecord *pUnpacked; /* Space to unpack a record */ 300 SorterList list; /* List for thread to write to a PMA */ 301 int nPMA; /* Number of PMAs currently in file */ 302 SorterCompare xCompare; /* Compare function to use */ 303 SorterFile file; /* Temp file for level-0 PMAs */ 304 SorterFile file2; /* Space for other PMAs */ 305 }; 306 307 308 /* 309 ** Main sorter structure. A single instance of this is allocated for each 310 ** sorter cursor created by the VDBE. 311 ** 312 ** mxKeysize: 313 ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), 314 ** this variable is updated so as to be set to the size on disk of the 315 ** largest record in the sorter. 316 */ 317 struct VdbeSorter { 318 int mnPmaSize; /* Minimum PMA size, in bytes */ 319 int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */ 320 int mxKeysize; /* Largest serialized key seen so far */ 321 int pgsz; /* Main database page size */ 322 PmaReader *pReader; /* Readr data from here after Rewind() */ 323 MergeEngine *pMerger; /* Or here, if bUseThreads==0 */ 324 sqlite3 *db; /* Database connection */ 325 KeyInfo *pKeyInfo; /* How to compare records */ 326 UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */ 327 SorterList list; /* List of in-memory records */ 328 int iMemory; /* Offset of free space in list.aMemory */ 329 int nMemory; /* Size of list.aMemory allocation in bytes */ 330 u8 bUsePMA; /* True if one or more PMAs created */ 331 u8 bUseThreads; /* True to use background threads */ 332 u8 iPrev; /* Previous thread used to flush PMA */ 333 u8 nTask; /* Size of aTask[] array */ 334 u8 typeMask; 335 SortSubtask aTask[1]; /* One or more subtasks */ 336 }; 337 338 #define SORTER_TYPE_INTEGER 0x01 339 #define SORTER_TYPE_TEXT 0x02 340 341 /* 342 ** An instance of the following object is used to read records out of a 343 ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. 344 ** aKey might point into aMap or into aBuffer. If neither of those locations 345 ** contain a contiguous representation of the key, then aAlloc is allocated 346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc. 347 ** 348 ** pFd==0 at EOF. 349 */ 350 struct PmaReader { 351 i64 iReadOff; /* Current read offset */ 352 i64 iEof; /* 1 byte past EOF for this PmaReader */ 353 int nAlloc; /* Bytes of space at aAlloc */ 354 int nKey; /* Number of bytes in key */ 355 sqlite3_file *pFd; /* File handle we are reading from */ 356 u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */ 357 u8 *aKey; /* Pointer to current key */ 358 u8 *aBuffer; /* Current read buffer */ 359 int nBuffer; /* Size of read buffer in bytes */ 360 u8 *aMap; /* Pointer to mapping of entire file */ 361 IncrMerger *pIncr; /* Incremental merger */ 362 }; 363 364 /* 365 ** Normally, a PmaReader object iterates through an existing PMA stored 366 ** within a temp file. However, if the PmaReader.pIncr variable points to 367 ** an object of the following type, it may be used to iterate/merge through 368 ** multiple PMAs simultaneously. 369 ** 370 ** There are two types of IncrMerger object - single (bUseThread==0) and 371 ** multi-threaded (bUseThread==1). 372 ** 373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0] 374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in 375 ** size. When the IncrMerger is initialized, it reads enough data from 376 ** pMerger to populate aFile[0]. It then sets variables within the 377 ** corresponding PmaReader object to read from that file and kicks off 378 ** a background thread to populate aFile[1] with the next mxSz bytes of 379 ** sorted record data from pMerger. 380 ** 381 ** When the PmaReader reaches the end of aFile[0], it blocks until the 382 ** background thread has finished populating aFile[1]. It then exchanges 383 ** the contents of the aFile[0] and aFile[1] variables within this structure, 384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off 385 ** another background thread to populate the new aFile[1]. And so on, until 386 ** the contents of pMerger are exhausted. 387 ** 388 ** A single-threaded IncrMerger does not open any temporary files of its 389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning 390 ** at offset iStartOff of file pTask->file2. And instead of using a 391 ** background thread to prepare data for the PmaReader, with a single 392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with 393 ** keys from pMerger by the calling thread whenever the PmaReader runs out 394 ** of data. 395 */ 396 struct IncrMerger { 397 SortSubtask *pTask; /* Task that owns this merger */ 398 MergeEngine *pMerger; /* Merge engine thread reads data from */ 399 i64 iStartOff; /* Offset to start writing file at */ 400 int mxSz; /* Maximum bytes of data to store */ 401 int bEof; /* Set to true when merge is finished */ 402 int bUseThread; /* True to use a bg thread for this object */ 403 SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ 404 }; 405 406 /* 407 ** An instance of this object is used for writing a PMA. 408 ** 409 ** The PMA is written one record at a time. Each record is of an arbitrary 410 ** size. But I/O is more efficient if it occurs in page-sized blocks where 411 ** each block is aligned on a page boundary. This object caches writes to 412 ** the PMA so that aligned, page-size blocks are written. 413 */ 414 struct PmaWriter { 415 int eFWErr; /* Non-zero if in an error state */ 416 u8 *aBuffer; /* Pointer to write buffer */ 417 int nBuffer; /* Size of write buffer in bytes */ 418 int iBufStart; /* First byte of buffer to write */ 419 int iBufEnd; /* Last byte of buffer to write */ 420 i64 iWriteOff; /* Offset of start of buffer in file */ 421 sqlite3_file *pFd; /* File handle to write to */ 422 }; 423 424 /* 425 ** This object is the header on a single record while that record is being 426 ** held in memory and prior to being written out as part of a PMA. 427 ** 428 ** How the linked list is connected depends on how memory is being managed 429 ** by this module. If using a separate allocation for each in-memory record 430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the 431 ** SorterRecord.u.pNext pointers. 432 ** 433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), 434 ** then while records are being accumulated the list is linked using the 435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may 436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM 437 ** has finished passing records to the sorter, or when the in-memory buffer 438 ** is full, the list is sorted. As part of the sorting process, it is 439 ** converted to use the SorterRecord.u.pNext pointers. See function 440 ** vdbeSorterSort() for details. 441 */ 442 struct SorterRecord { 443 int nVal; /* Size of the record in bytes */ 444 union { 445 SorterRecord *pNext; /* Pointer to next record in list */ 446 int iNext; /* Offset within aMemory of next record */ 447 } u; 448 /* The data for the record immediately follows this header */ 449 }; 450 451 /* Return a pointer to the buffer containing the record data for SorterRecord 452 ** object p. Should be used as if: 453 ** 454 ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } 455 */ 456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) 457 458 459 /* Maximum number of PMAs that a single MergeEngine can merge */ 460 #define SORTER_MAX_MERGE_COUNT 16 461 462 static int vdbeIncrSwap(IncrMerger*); 463 static void vdbeIncrFree(IncrMerger *); 464 465 /* 466 ** Free all memory belonging to the PmaReader object passed as the 467 ** argument. All structure fields are set to zero before returning. 468 */ 469 static void vdbePmaReaderClear(PmaReader *pReadr){ 470 sqlite3_free(pReadr->aAlloc); 471 sqlite3_free(pReadr->aBuffer); 472 if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 473 vdbeIncrFree(pReadr->pIncr); 474 memset(pReadr, 0, sizeof(PmaReader)); 475 } 476 477 /* 478 ** Read the next nByte bytes of data from the PMA p. 479 ** If successful, set *ppOut to point to a buffer containing the data 480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite 481 ** error code. 482 ** 483 ** The buffer returned in *ppOut is only valid until the 484 ** next call to this function. 485 */ 486 static int vdbePmaReadBlob( 487 PmaReader *p, /* PmaReader from which to take the blob */ 488 int nByte, /* Bytes of data to read */ 489 u8 **ppOut /* OUT: Pointer to buffer containing data */ 490 ){ 491 int iBuf; /* Offset within buffer to read from */ 492 int nAvail; /* Bytes of data available in buffer */ 493 494 if( p->aMap ){ 495 *ppOut = &p->aMap[p->iReadOff]; 496 p->iReadOff += nByte; 497 return SQLITE_OK; 498 } 499 500 assert( p->aBuffer ); 501 502 /* If there is no more data to be read from the buffer, read the next 503 ** p->nBuffer bytes of data from the file into it. Or, if there are less 504 ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ 505 iBuf = p->iReadOff % p->nBuffer; 506 if( iBuf==0 ){ 507 int nRead; /* Bytes to read from disk */ 508 int rc; /* sqlite3OsRead() return code */ 509 510 /* Determine how many bytes of data to read. */ 511 if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ 512 nRead = p->nBuffer; 513 }else{ 514 nRead = (int)(p->iEof - p->iReadOff); 515 } 516 assert( nRead>0 ); 517 518 /* Readr data from the file. Return early if an error occurs. */ 519 rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); 520 assert( rc!=SQLITE_IOERR_SHORT_READ ); 521 if( rc!=SQLITE_OK ) return rc; 522 } 523 nAvail = p->nBuffer - iBuf; 524 525 if( nByte<=nAvail ){ 526 /* The requested data is available in the in-memory buffer. In this 527 ** case there is no need to make a copy of the data, just return a 528 ** pointer into the buffer to the caller. */ 529 *ppOut = &p->aBuffer[iBuf]; 530 p->iReadOff += nByte; 531 }else{ 532 /* The requested data is not all available in the in-memory buffer. 533 ** In this case, allocate space at p->aAlloc[] to copy the requested 534 ** range into. Then return a copy of pointer p->aAlloc to the caller. */ 535 int nRem; /* Bytes remaining to copy */ 536 537 /* Extend the p->aAlloc[] allocation if required. */ 538 if( p->nAlloc<nByte ){ 539 u8 *aNew; 540 sqlite3_int64 nNew = MAX(128, 2*(sqlite3_int64)p->nAlloc); 541 while( nByte>nNew ) nNew = nNew*2; 542 aNew = sqlite3Realloc(p->aAlloc, nNew); 543 if( !aNew ) return SQLITE_NOMEM_BKPT; 544 p->nAlloc = nNew; 545 p->aAlloc = aNew; 546 } 547 548 /* Copy as much data as is available in the buffer into the start of 549 ** p->aAlloc[]. */ 550 memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); 551 p->iReadOff += nAvail; 552 nRem = nByte - nAvail; 553 554 /* The following loop copies up to p->nBuffer bytes per iteration into 555 ** the p->aAlloc[] buffer. */ 556 while( nRem>0 ){ 557 int rc; /* vdbePmaReadBlob() return code */ 558 int nCopy; /* Number of bytes to copy */ 559 u8 *aNext; /* Pointer to buffer to copy data from */ 560 561 nCopy = nRem; 562 if( nRem>p->nBuffer ) nCopy = p->nBuffer; 563 rc = vdbePmaReadBlob(p, nCopy, &aNext); 564 if( rc!=SQLITE_OK ) return rc; 565 assert( aNext!=p->aAlloc ); 566 memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); 567 nRem -= nCopy; 568 } 569 570 *ppOut = p->aAlloc; 571 } 572 573 return SQLITE_OK; 574 } 575 576 /* 577 ** Read a varint from the stream of data accessed by p. Set *pnOut to 578 ** the value read. 579 */ 580 static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ 581 int iBuf; 582 583 if( p->aMap ){ 584 p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); 585 }else{ 586 iBuf = p->iReadOff % p->nBuffer; 587 if( iBuf && (p->nBuffer-iBuf)>=9 ){ 588 p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); 589 }else{ 590 u8 aVarint[16], *a; 591 int i = 0, rc; 592 do{ 593 rc = vdbePmaReadBlob(p, 1, &a); 594 if( rc ) return rc; 595 aVarint[(i++)&0xf] = a[0]; 596 }while( (a[0]&0x80)!=0 ); 597 sqlite3GetVarint(aVarint, pnOut); 598 } 599 } 600 601 return SQLITE_OK; 602 } 603 604 /* 605 ** Attempt to memory map file pFile. If successful, set *pp to point to the 606 ** new mapping and return SQLITE_OK. If the mapping is not attempted 607 ** (because the file is too large or the VFS layer is configured not to use 608 ** mmap), return SQLITE_OK and set *pp to NULL. 609 ** 610 ** Or, if an error occurs, return an SQLite error code. The final value of 611 ** *pp is undefined in this case. 612 */ 613 static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ 614 int rc = SQLITE_OK; 615 if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ 616 sqlite3_file *pFd = pFile->pFd; 617 if( pFd->pMethods->iVersion>=3 ){ 618 rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); 619 testcase( rc!=SQLITE_OK ); 620 } 621 } 622 return rc; 623 } 624 625 /* 626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to 627 ** that file) and seek it to offset iOff within the file. Return SQLITE_OK 628 ** if successful, or an SQLite error code if an error occurs. 629 */ 630 static int vdbePmaReaderSeek( 631 SortSubtask *pTask, /* Task context */ 632 PmaReader *pReadr, /* Reader whose cursor is to be moved */ 633 SorterFile *pFile, /* Sorter file to read from */ 634 i64 iOff /* Offset in pFile */ 635 ){ 636 int rc = SQLITE_OK; 637 638 assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); 639 640 if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; 641 if( pReadr->aMap ){ 642 sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 643 pReadr->aMap = 0; 644 } 645 pReadr->iReadOff = iOff; 646 pReadr->iEof = pFile->iEof; 647 pReadr->pFd = pFile->pFd; 648 649 rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); 650 if( rc==SQLITE_OK && pReadr->aMap==0 ){ 651 int pgsz = pTask->pSorter->pgsz; 652 int iBuf = pReadr->iReadOff % pgsz; 653 if( pReadr->aBuffer==0 ){ 654 pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); 655 if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; 656 pReadr->nBuffer = pgsz; 657 } 658 if( rc==SQLITE_OK && iBuf ){ 659 int nRead = pgsz - iBuf; 660 if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ 661 nRead = (int)(pReadr->iEof - pReadr->iReadOff); 662 } 663 rc = sqlite3OsRead( 664 pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff 665 ); 666 testcase( rc!=SQLITE_OK ); 667 } 668 } 669 670 return rc; 671 } 672 673 /* 674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if 675 ** no error occurs, or an SQLite error code if one does. 676 */ 677 static int vdbePmaReaderNext(PmaReader *pReadr){ 678 int rc = SQLITE_OK; /* Return Code */ 679 u64 nRec = 0; /* Size of record in bytes */ 680 681 682 if( pReadr->iReadOff>=pReadr->iEof ){ 683 IncrMerger *pIncr = pReadr->pIncr; 684 int bEof = 1; 685 if( pIncr ){ 686 rc = vdbeIncrSwap(pIncr); 687 if( rc==SQLITE_OK && pIncr->bEof==0 ){ 688 rc = vdbePmaReaderSeek( 689 pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff 690 ); 691 bEof = 0; 692 } 693 } 694 695 if( bEof ){ 696 /* This is an EOF condition */ 697 vdbePmaReaderClear(pReadr); 698 testcase( rc!=SQLITE_OK ); 699 return rc; 700 } 701 } 702 703 if( rc==SQLITE_OK ){ 704 rc = vdbePmaReadVarint(pReadr, &nRec); 705 } 706 if( rc==SQLITE_OK ){ 707 pReadr->nKey = (int)nRec; 708 rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); 709 testcase( rc!=SQLITE_OK ); 710 } 711 712 return rc; 713 } 714 715 /* 716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile 717 ** starting at offset iStart and ending at offset iEof-1. This function 718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the 719 ** PMA is empty). 720 ** 721 ** If the pnByte parameter is NULL, then it is assumed that the file 722 ** contains a single PMA, and that that PMA omits the initial length varint. 723 */ 724 static int vdbePmaReaderInit( 725 SortSubtask *pTask, /* Task context */ 726 SorterFile *pFile, /* Sorter file to read from */ 727 i64 iStart, /* Start offset in pFile */ 728 PmaReader *pReadr, /* PmaReader to populate */ 729 i64 *pnByte /* IN/OUT: Increment this value by PMA size */ 730 ){ 731 int rc; 732 733 assert( pFile->iEof>iStart ); 734 assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); 735 assert( pReadr->aBuffer==0 ); 736 assert( pReadr->aMap==0 ); 737 738 rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); 739 if( rc==SQLITE_OK ){ 740 u64 nByte = 0; /* Size of PMA in bytes */ 741 rc = vdbePmaReadVarint(pReadr, &nByte); 742 pReadr->iEof = pReadr->iReadOff + nByte; 743 *pnByte += nByte; 744 } 745 746 if( rc==SQLITE_OK ){ 747 rc = vdbePmaReaderNext(pReadr); 748 } 749 return rc; 750 } 751 752 /* 753 ** A version of vdbeSorterCompare() that assumes that it has already been 754 ** determined that the first field of key1 is equal to the first field of 755 ** key2. 756 */ 757 static int vdbeSorterCompareTail( 758 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 759 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 760 const void *pKey1, int nKey1, /* Left side of comparison */ 761 const void *pKey2, int nKey2 /* Right side of comparison */ 762 ){ 763 UnpackedRecord *r2 = pTask->pUnpacked; 764 if( *pbKey2Cached==0 ){ 765 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 766 *pbKey2Cached = 1; 767 } 768 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); 769 } 770 771 /* 772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, 773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences 774 ** used by the comparison. Return the result of the comparison. 775 ** 776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called, 777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version 778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked 779 ** version of key2 and *pbKey2Cached set to true before returning. 780 ** 781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set 782 ** to SQLITE_NOMEM. 783 */ 784 static int vdbeSorterCompare( 785 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 786 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 787 const void *pKey1, int nKey1, /* Left side of comparison */ 788 const void *pKey2, int nKey2 /* Right side of comparison */ 789 ){ 790 UnpackedRecord *r2 = pTask->pUnpacked; 791 if( !*pbKey2Cached ){ 792 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 793 *pbKey2Cached = 1; 794 } 795 return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); 796 } 797 798 /* 799 ** A specially optimized version of vdbeSorterCompare() that assumes that 800 ** the first field of each key is a TEXT value and that the collation 801 ** sequence to compare them with is BINARY. 802 */ 803 static int vdbeSorterCompareText( 804 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 805 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 806 const void *pKey1, int nKey1, /* Left side of comparison */ 807 const void *pKey2, int nKey2 /* Right side of comparison */ 808 ){ 809 const u8 * const p1 = (const u8 * const)pKey1; 810 const u8 * const p2 = (const u8 * const)pKey2; 811 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 812 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 813 814 int n1; 815 int n2; 816 int res; 817 818 getVarint32NR(&p1[1], n1); 819 getVarint32NR(&p2[1], n2); 820 res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2); 821 if( res==0 ){ 822 res = n1 - n2; 823 } 824 825 if( res==0 ){ 826 if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ 827 res = vdbeSorterCompareTail( 828 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 829 ); 830 } 831 }else{ 832 assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); 833 if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ 834 res = res * -1; 835 } 836 } 837 838 return res; 839 } 840 841 /* 842 ** A specially optimized version of vdbeSorterCompare() that assumes that 843 ** the first field of each key is an INTEGER value. 844 */ 845 static int vdbeSorterCompareInt( 846 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 847 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 848 const void *pKey1, int nKey1, /* Left side of comparison */ 849 const void *pKey2, int nKey2 /* Right side of comparison */ 850 ){ 851 const u8 * const p1 = (const u8 * const)pKey1; 852 const u8 * const p2 = (const u8 * const)pKey2; 853 const int s1 = p1[1]; /* Left hand serial type */ 854 const int s2 = p2[1]; /* Right hand serial type */ 855 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 856 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 857 int res; /* Return value */ 858 859 assert( (s1>0 && s1<7) || s1==8 || s1==9 ); 860 assert( (s2>0 && s2<7) || s2==8 || s2==9 ); 861 862 if( s1==s2 ){ 863 /* The two values have the same sign. Compare using memcmp(). */ 864 static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 }; 865 const u8 n = aLen[s1]; 866 int i; 867 res = 0; 868 for(i=0; i<n; i++){ 869 if( (res = v1[i] - v2[i])!=0 ){ 870 if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){ 871 res = v1[0] & 0x80 ? -1 : +1; 872 } 873 break; 874 } 875 } 876 }else if( s1>7 && s2>7 ){ 877 res = s1 - s2; 878 }else{ 879 if( s2>7 ){ 880 res = +1; 881 }else if( s1>7 ){ 882 res = -1; 883 }else{ 884 res = s1 - s2; 885 } 886 assert( res!=0 ); 887 888 if( res>0 ){ 889 if( *v1 & 0x80 ) res = -1; 890 }else{ 891 if( *v2 & 0x80 ) res = +1; 892 } 893 } 894 895 if( res==0 ){ 896 if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ 897 res = vdbeSorterCompareTail( 898 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 899 ); 900 } 901 }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ 902 assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); 903 res = res * -1; 904 } 905 906 return res; 907 } 908 909 /* 910 ** Initialize the temporary index cursor just opened as a sorter cursor. 911 ** 912 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField) 913 ** to determine the number of fields that should be compared from the 914 ** records being sorted. However, if the value passed as argument nField 915 ** is non-zero and the sorter is able to guarantee a stable sort, nField 916 ** is used instead. This is used when sorting records for a CREATE INDEX 917 ** statement. In this case, keys are always delivered to the sorter in 918 ** order of the primary key, which happens to be make up the final part 919 ** of the records being sorted. So if the sort is stable, there is never 920 ** any reason to compare PK fields and they can be ignored for a small 921 ** performance boost. 922 ** 923 ** The sorter can guarantee a stable sort when running in single-threaded 924 ** mode, but not in multi-threaded mode. 925 ** 926 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 927 */ 928 int sqlite3VdbeSorterInit( 929 sqlite3 *db, /* Database connection (for malloc()) */ 930 int nField, /* Number of key fields in each record */ 931 VdbeCursor *pCsr /* Cursor that holds the new sorter */ 932 ){ 933 int pgsz; /* Page size of main database */ 934 int i; /* Used to iterate through aTask[] */ 935 VdbeSorter *pSorter; /* The new sorter */ 936 KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ 937 int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ 938 int sz; /* Size of pSorter in bytes */ 939 int rc = SQLITE_OK; 940 #if SQLITE_MAX_WORKER_THREADS==0 941 # define nWorker 0 942 #else 943 int nWorker; 944 #endif 945 946 /* Initialize the upper limit on the number of worker threads */ 947 #if SQLITE_MAX_WORKER_THREADS>0 948 if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ 949 nWorker = 0; 950 }else{ 951 nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; 952 } 953 #endif 954 955 /* Do not allow the total number of threads (main thread + all workers) 956 ** to exceed the maximum merge count */ 957 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT 958 if( nWorker>=SORTER_MAX_MERGE_COUNT ){ 959 nWorker = SORTER_MAX_MERGE_COUNT-1; 960 } 961 #endif 962 963 assert( pCsr->pKeyInfo && pCsr->pBtx==0 ); 964 assert( pCsr->eCurType==CURTYPE_SORTER ); 965 szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*); 966 sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); 967 968 pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); 969 pCsr->uc.pSorter = pSorter; 970 if( pSorter==0 ){ 971 rc = SQLITE_NOMEM_BKPT; 972 }else{ 973 Btree *pBt = db->aDb[0].pBt; 974 pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); 975 memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); 976 pKeyInfo->db = 0; 977 if( nField && nWorker==0 ){ 978 pKeyInfo->nKeyField = nField; 979 } 980 sqlite3BtreeEnter(pBt); 981 pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt); 982 sqlite3BtreeLeave(pBt); 983 pSorter->nTask = nWorker + 1; 984 pSorter->iPrev = (u8)(nWorker - 1); 985 pSorter->bUseThreads = (pSorter->nTask>1); 986 pSorter->db = db; 987 for(i=0; i<pSorter->nTask; i++){ 988 SortSubtask *pTask = &pSorter->aTask[i]; 989 pTask->pSorter = pSorter; 990 } 991 992 if( !sqlite3TempInMemory(db) ){ 993 i64 mxCache; /* Cache size in bytes*/ 994 u32 szPma = sqlite3GlobalConfig.szPma; 995 pSorter->mnPmaSize = szPma * pgsz; 996 997 mxCache = db->aDb[0].pSchema->cache_size; 998 if( mxCache<0 ){ 999 /* A negative cache-size value C indicates that the cache is abs(C) 1000 ** KiB in size. */ 1001 mxCache = mxCache * -1024; 1002 }else{ 1003 mxCache = mxCache * pgsz; 1004 } 1005 mxCache = MIN(mxCache, SQLITE_MAX_PMASZ); 1006 pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache); 1007 1008 /* Avoid large memory allocations if the application has requested 1009 ** SQLITE_CONFIG_SMALL_MALLOC. */ 1010 if( sqlite3GlobalConfig.bSmallMalloc==0 ){ 1011 assert( pSorter->iMemory==0 ); 1012 pSorter->nMemory = pgsz; 1013 pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); 1014 if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; 1015 } 1016 } 1017 1018 if( pKeyInfo->nAllField<13 1019 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) 1020 && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0 1021 ){ 1022 pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; 1023 } 1024 } 1025 1026 return rc; 1027 } 1028 #undef nWorker /* Defined at the top of this function */ 1029 1030 /* 1031 ** Free the list of sorted records starting at pRecord. 1032 */ 1033 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ 1034 SorterRecord *p; 1035 SorterRecord *pNext; 1036 for(p=pRecord; p; p=pNext){ 1037 pNext = p->u.pNext; 1038 sqlite3DbFree(db, p); 1039 } 1040 } 1041 1042 /* 1043 ** Free all resources owned by the object indicated by argument pTask. All 1044 ** fields of *pTask are zeroed before returning. 1045 */ 1046 static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ 1047 sqlite3DbFree(db, pTask->pUnpacked); 1048 #if SQLITE_MAX_WORKER_THREADS>0 1049 /* pTask->list.aMemory can only be non-zero if it was handed memory 1050 ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ 1051 if( pTask->list.aMemory ){ 1052 sqlite3_free(pTask->list.aMemory); 1053 }else 1054 #endif 1055 { 1056 assert( pTask->list.aMemory==0 ); 1057 vdbeSorterRecordFree(0, pTask->list.pList); 1058 } 1059 if( pTask->file.pFd ){ 1060 sqlite3OsCloseFree(pTask->file.pFd); 1061 } 1062 if( pTask->file2.pFd ){ 1063 sqlite3OsCloseFree(pTask->file2.pFd); 1064 } 1065 memset(pTask, 0, sizeof(SortSubtask)); 1066 } 1067 1068 #ifdef SQLITE_DEBUG_SORTER_THREADS 1069 static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ 1070 i64 t; 1071 int iTask = (pTask - pTask->pSorter->aTask); 1072 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1073 fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); 1074 } 1075 static void vdbeSorterRewindDebug(const char *zEvent){ 1076 i64 t; 1077 sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t); 1078 fprintf(stderr, "%lld:X %s\n", t, zEvent); 1079 } 1080 static void vdbeSorterPopulateDebug( 1081 SortSubtask *pTask, 1082 const char *zEvent 1083 ){ 1084 i64 t; 1085 int iTask = (pTask - pTask->pSorter->aTask); 1086 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1087 fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); 1088 } 1089 static void vdbeSorterBlockDebug( 1090 SortSubtask *pTask, 1091 int bBlocked, 1092 const char *zEvent 1093 ){ 1094 if( bBlocked ){ 1095 i64 t; 1096 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1097 fprintf(stderr, "%lld:main %s\n", t, zEvent); 1098 } 1099 } 1100 #else 1101 # define vdbeSorterWorkDebug(x,y) 1102 # define vdbeSorterRewindDebug(y) 1103 # define vdbeSorterPopulateDebug(x,y) 1104 # define vdbeSorterBlockDebug(x,y,z) 1105 #endif 1106 1107 #if SQLITE_MAX_WORKER_THREADS>0 1108 /* 1109 ** Join thread pTask->thread. 1110 */ 1111 static int vdbeSorterJoinThread(SortSubtask *pTask){ 1112 int rc = SQLITE_OK; 1113 if( pTask->pThread ){ 1114 #ifdef SQLITE_DEBUG_SORTER_THREADS 1115 int bDone = pTask->bDone; 1116 #endif 1117 void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); 1118 vdbeSorterBlockDebug(pTask, !bDone, "enter"); 1119 (void)sqlite3ThreadJoin(pTask->pThread, &pRet); 1120 vdbeSorterBlockDebug(pTask, !bDone, "exit"); 1121 rc = SQLITE_PTR_TO_INT(pRet); 1122 assert( pTask->bDone==1 ); 1123 pTask->bDone = 0; 1124 pTask->pThread = 0; 1125 } 1126 return rc; 1127 } 1128 1129 /* 1130 ** Launch a background thread to run xTask(pIn). 1131 */ 1132 static int vdbeSorterCreateThread( 1133 SortSubtask *pTask, /* Thread will use this task object */ 1134 void *(*xTask)(void*), /* Routine to run in a separate thread */ 1135 void *pIn /* Argument passed into xTask() */ 1136 ){ 1137 assert( pTask->pThread==0 && pTask->bDone==0 ); 1138 return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); 1139 } 1140 1141 /* 1142 ** Join all outstanding threads launched by SorterWrite() to create 1143 ** level-0 PMAs. 1144 */ 1145 static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ 1146 int rc = rcin; 1147 int i; 1148 1149 /* This function is always called by the main user thread. 1150 ** 1151 ** If this function is being called after SorterRewind() has been called, 1152 ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread 1153 ** is currently attempt to join one of the other threads. To avoid a race 1154 ** condition where this thread also attempts to join the same object, join 1155 ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ 1156 for(i=pSorter->nTask-1; i>=0; i--){ 1157 SortSubtask *pTask = &pSorter->aTask[i]; 1158 int rc2 = vdbeSorterJoinThread(pTask); 1159 if( rc==SQLITE_OK ) rc = rc2; 1160 } 1161 return rc; 1162 } 1163 #else 1164 # define vdbeSorterJoinAll(x,rcin) (rcin) 1165 # define vdbeSorterJoinThread(pTask) SQLITE_OK 1166 #endif 1167 1168 /* 1169 ** Allocate a new MergeEngine object capable of handling up to 1170 ** nReader PmaReader inputs. 1171 ** 1172 ** nReader is automatically rounded up to the next power of two. 1173 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. 1174 */ 1175 static MergeEngine *vdbeMergeEngineNew(int nReader){ 1176 int N = 2; /* Smallest power of two >= nReader */ 1177 int nByte; /* Total bytes of space to allocate */ 1178 MergeEngine *pNew; /* Pointer to allocated object to return */ 1179 1180 assert( nReader<=SORTER_MAX_MERGE_COUNT ); 1181 1182 while( N<nReader ) N += N; 1183 nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader)); 1184 1185 pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte); 1186 if( pNew ){ 1187 pNew->nTree = N; 1188 pNew->pTask = 0; 1189 pNew->aReadr = (PmaReader*)&pNew[1]; 1190 pNew->aTree = (int*)&pNew->aReadr[N]; 1191 } 1192 return pNew; 1193 } 1194 1195 /* 1196 ** Free the MergeEngine object passed as the only argument. 1197 */ 1198 static void vdbeMergeEngineFree(MergeEngine *pMerger){ 1199 int i; 1200 if( pMerger ){ 1201 for(i=0; i<pMerger->nTree; i++){ 1202 vdbePmaReaderClear(&pMerger->aReadr[i]); 1203 } 1204 } 1205 sqlite3_free(pMerger); 1206 } 1207 1208 /* 1209 ** Free all resources associated with the IncrMerger object indicated by 1210 ** the first argument. 1211 */ 1212 static void vdbeIncrFree(IncrMerger *pIncr){ 1213 if( pIncr ){ 1214 #if SQLITE_MAX_WORKER_THREADS>0 1215 if( pIncr->bUseThread ){ 1216 vdbeSorterJoinThread(pIncr->pTask); 1217 if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); 1218 if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); 1219 } 1220 #endif 1221 vdbeMergeEngineFree(pIncr->pMerger); 1222 sqlite3_free(pIncr); 1223 } 1224 } 1225 1226 /* 1227 ** Reset a sorting cursor back to its original empty state. 1228 */ 1229 void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ 1230 int i; 1231 (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); 1232 assert( pSorter->bUseThreads || pSorter->pReader==0 ); 1233 #if SQLITE_MAX_WORKER_THREADS>0 1234 if( pSorter->pReader ){ 1235 vdbePmaReaderClear(pSorter->pReader); 1236 sqlite3DbFree(db, pSorter->pReader); 1237 pSorter->pReader = 0; 1238 } 1239 #endif 1240 vdbeMergeEngineFree(pSorter->pMerger); 1241 pSorter->pMerger = 0; 1242 for(i=0; i<pSorter->nTask; i++){ 1243 SortSubtask *pTask = &pSorter->aTask[i]; 1244 vdbeSortSubtaskCleanup(db, pTask); 1245 pTask->pSorter = pSorter; 1246 } 1247 if( pSorter->list.aMemory==0 ){ 1248 vdbeSorterRecordFree(0, pSorter->list.pList); 1249 } 1250 pSorter->list.pList = 0; 1251 pSorter->list.szPMA = 0; 1252 pSorter->bUsePMA = 0; 1253 pSorter->iMemory = 0; 1254 pSorter->mxKeysize = 0; 1255 sqlite3DbFree(db, pSorter->pUnpacked); 1256 pSorter->pUnpacked = 0; 1257 } 1258 1259 /* 1260 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. 1261 */ 1262 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ 1263 VdbeSorter *pSorter; 1264 assert( pCsr->eCurType==CURTYPE_SORTER ); 1265 pSorter = pCsr->uc.pSorter; 1266 if( pSorter ){ 1267 sqlite3VdbeSorterReset(db, pSorter); 1268 sqlite3_free(pSorter->list.aMemory); 1269 sqlite3DbFree(db, pSorter); 1270 pCsr->uc.pSorter = 0; 1271 } 1272 } 1273 1274 #if SQLITE_MAX_MMAP_SIZE>0 1275 /* 1276 ** The first argument is a file-handle open on a temporary file. The file 1277 ** is guaranteed to be nByte bytes or smaller in size. This function 1278 ** attempts to extend the file to nByte bytes in size and to ensure that 1279 ** the VFS has memory mapped it. 1280 ** 1281 ** Whether or not the file does end up memory mapped of course depends on 1282 ** the specific VFS implementation. 1283 */ 1284 static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ 1285 if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ 1286 void *p = 0; 1287 int chunksize = 4*1024; 1288 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); 1289 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); 1290 sqlite3OsFetch(pFd, 0, (int)nByte, &p); 1291 sqlite3OsUnfetch(pFd, 0, p); 1292 } 1293 } 1294 #else 1295 # define vdbeSorterExtendFile(x,y,z) 1296 #endif 1297 1298 /* 1299 ** Allocate space for a file-handle and open a temporary file. If successful, 1300 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. 1301 ** Otherwise, set *ppFd to 0 and return an SQLite error code. 1302 */ 1303 static int vdbeSorterOpenTempFile( 1304 sqlite3 *db, /* Database handle doing sort */ 1305 i64 nExtend, /* Attempt to extend file to this size */ 1306 sqlite3_file **ppFd 1307 ){ 1308 int rc; 1309 if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; 1310 rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, 1311 SQLITE_OPEN_TEMP_JOURNAL | 1312 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 1313 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc 1314 ); 1315 if( rc==SQLITE_OK ){ 1316 i64 max = SQLITE_MAX_MMAP_SIZE; 1317 sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); 1318 if( nExtend>0 ){ 1319 vdbeSorterExtendFile(db, *ppFd, nExtend); 1320 } 1321 } 1322 return rc; 1323 } 1324 1325 /* 1326 ** If it has not already been allocated, allocate the UnpackedRecord 1327 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or 1328 ** if no allocation was required), or SQLITE_NOMEM otherwise. 1329 */ 1330 static int vdbeSortAllocUnpacked(SortSubtask *pTask){ 1331 if( pTask->pUnpacked==0 ){ 1332 pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo); 1333 if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT; 1334 pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField; 1335 pTask->pUnpacked->errCode = 0; 1336 } 1337 return SQLITE_OK; 1338 } 1339 1340 1341 /* 1342 ** Merge the two sorted lists p1 and p2 into a single list. 1343 */ 1344 static SorterRecord *vdbeSorterMerge( 1345 SortSubtask *pTask, /* Calling thread context */ 1346 SorterRecord *p1, /* First list to merge */ 1347 SorterRecord *p2 /* Second list to merge */ 1348 ){ 1349 SorterRecord *pFinal = 0; 1350 SorterRecord **pp = &pFinal; 1351 int bCached = 0; 1352 1353 assert( p1!=0 && p2!=0 ); 1354 for(;;){ 1355 int res; 1356 res = pTask->xCompare( 1357 pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal 1358 ); 1359 1360 if( res<=0 ){ 1361 *pp = p1; 1362 pp = &p1->u.pNext; 1363 p1 = p1->u.pNext; 1364 if( p1==0 ){ 1365 *pp = p2; 1366 break; 1367 } 1368 }else{ 1369 *pp = p2; 1370 pp = &p2->u.pNext; 1371 p2 = p2->u.pNext; 1372 bCached = 0; 1373 if( p2==0 ){ 1374 *pp = p1; 1375 break; 1376 } 1377 } 1378 } 1379 return pFinal; 1380 } 1381 1382 /* 1383 ** Return the SorterCompare function to compare values collected by the 1384 ** sorter object passed as the only argument. 1385 */ 1386 static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ 1387 if( p->typeMask==SORTER_TYPE_INTEGER ){ 1388 return vdbeSorterCompareInt; 1389 }else if( p->typeMask==SORTER_TYPE_TEXT ){ 1390 return vdbeSorterCompareText; 1391 } 1392 return vdbeSorterCompare; 1393 } 1394 1395 /* 1396 ** Sort the linked list of records headed at pTask->pList. Return 1397 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if 1398 ** an error occurs. 1399 */ 1400 static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ 1401 int i; 1402 SorterRecord *p; 1403 int rc; 1404 SorterRecord *aSlot[64]; 1405 1406 rc = vdbeSortAllocUnpacked(pTask); 1407 if( rc!=SQLITE_OK ) return rc; 1408 1409 p = pList->pList; 1410 pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); 1411 memset(aSlot, 0, sizeof(aSlot)); 1412 1413 while( p ){ 1414 SorterRecord *pNext; 1415 if( pList->aMemory ){ 1416 if( (u8*)p==pList->aMemory ){ 1417 pNext = 0; 1418 }else{ 1419 assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) ); 1420 pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; 1421 } 1422 }else{ 1423 pNext = p->u.pNext; 1424 } 1425 1426 p->u.pNext = 0; 1427 for(i=0; aSlot[i]; i++){ 1428 p = vdbeSorterMerge(pTask, p, aSlot[i]); 1429 aSlot[i] = 0; 1430 } 1431 aSlot[i] = p; 1432 p = pNext; 1433 } 1434 1435 p = 0; 1436 for(i=0; i<ArraySize(aSlot); i++){ 1437 if( aSlot[i]==0 ) continue; 1438 p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i]; 1439 } 1440 pList->pList = p; 1441 1442 assert( pTask->pUnpacked->errCode==SQLITE_OK 1443 || pTask->pUnpacked->errCode==SQLITE_NOMEM 1444 ); 1445 return pTask->pUnpacked->errCode; 1446 } 1447 1448 /* 1449 ** Initialize a PMA-writer object. 1450 */ 1451 static void vdbePmaWriterInit( 1452 sqlite3_file *pFd, /* File handle to write to */ 1453 PmaWriter *p, /* Object to populate */ 1454 int nBuf, /* Buffer size */ 1455 i64 iStart /* Offset of pFd to begin writing at */ 1456 ){ 1457 memset(p, 0, sizeof(PmaWriter)); 1458 p->aBuffer = (u8*)sqlite3Malloc(nBuf); 1459 if( !p->aBuffer ){ 1460 p->eFWErr = SQLITE_NOMEM_BKPT; 1461 }else{ 1462 p->iBufEnd = p->iBufStart = (iStart % nBuf); 1463 p->iWriteOff = iStart - p->iBufStart; 1464 p->nBuffer = nBuf; 1465 p->pFd = pFd; 1466 } 1467 } 1468 1469 /* 1470 ** Write nData bytes of data to the PMA. Return SQLITE_OK 1471 ** if successful, or an SQLite error code if an error occurs. 1472 */ 1473 static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ 1474 int nRem = nData; 1475 while( nRem>0 && p->eFWErr==0 ){ 1476 int nCopy = nRem; 1477 if( nCopy>(p->nBuffer - p->iBufEnd) ){ 1478 nCopy = p->nBuffer - p->iBufEnd; 1479 } 1480 1481 memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); 1482 p->iBufEnd += nCopy; 1483 if( p->iBufEnd==p->nBuffer ){ 1484 p->eFWErr = sqlite3OsWrite(p->pFd, 1485 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1486 p->iWriteOff + p->iBufStart 1487 ); 1488 p->iBufStart = p->iBufEnd = 0; 1489 p->iWriteOff += p->nBuffer; 1490 } 1491 assert( p->iBufEnd<p->nBuffer ); 1492 1493 nRem -= nCopy; 1494 } 1495 } 1496 1497 /* 1498 ** Flush any buffered data to disk and clean up the PMA-writer object. 1499 ** The results of using the PMA-writer after this call are undefined. 1500 ** Return SQLITE_OK if flushing the buffered data succeeds or is not 1501 ** required. Otherwise, return an SQLite error code. 1502 ** 1503 ** Before returning, set *piEof to the offset immediately following the 1504 ** last byte written to the file. 1505 */ 1506 static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ 1507 int rc; 1508 if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ 1509 p->eFWErr = sqlite3OsWrite(p->pFd, 1510 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1511 p->iWriteOff + p->iBufStart 1512 ); 1513 } 1514 *piEof = (p->iWriteOff + p->iBufEnd); 1515 sqlite3_free(p->aBuffer); 1516 rc = p->eFWErr; 1517 memset(p, 0, sizeof(PmaWriter)); 1518 return rc; 1519 } 1520 1521 /* 1522 ** Write value iVal encoded as a varint to the PMA. Return 1523 ** SQLITE_OK if successful, or an SQLite error code if an error occurs. 1524 */ 1525 static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ 1526 int nByte; 1527 u8 aByte[10]; 1528 nByte = sqlite3PutVarint(aByte, iVal); 1529 vdbePmaWriteBlob(p, aByte, nByte); 1530 } 1531 1532 /* 1533 ** Write the current contents of in-memory linked-list pList to a level-0 1534 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if 1535 ** successful, or an SQLite error code otherwise. 1536 ** 1537 ** The format of a PMA is: 1538 ** 1539 ** * A varint. This varint contains the total number of bytes of content 1540 ** in the PMA (not including the varint itself). 1541 ** 1542 ** * One or more records packed end-to-end in order of ascending keys. 1543 ** Each record consists of a varint followed by a blob of data (the 1544 ** key). The varint is the number of bytes in the blob of data. 1545 */ 1546 static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ 1547 sqlite3 *db = pTask->pSorter->db; 1548 int rc = SQLITE_OK; /* Return code */ 1549 PmaWriter writer; /* Object used to write to the file */ 1550 1551 #ifdef SQLITE_DEBUG 1552 /* Set iSz to the expected size of file pTask->file after writing the PMA. 1553 ** This is used by an assert() statement at the end of this function. */ 1554 i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; 1555 #endif 1556 1557 vdbeSorterWorkDebug(pTask, "enter"); 1558 memset(&writer, 0, sizeof(PmaWriter)); 1559 assert( pList->szPMA>0 ); 1560 1561 /* If the first temporary PMA file has not been opened, open it now. */ 1562 if( pTask->file.pFd==0 ){ 1563 rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); 1564 assert( rc!=SQLITE_OK || pTask->file.pFd ); 1565 assert( pTask->file.iEof==0 ); 1566 assert( pTask->nPMA==0 ); 1567 } 1568 1569 /* Try to get the file to memory map */ 1570 if( rc==SQLITE_OK ){ 1571 vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); 1572 } 1573 1574 /* Sort the list */ 1575 if( rc==SQLITE_OK ){ 1576 rc = vdbeSorterSort(pTask, pList); 1577 } 1578 1579 if( rc==SQLITE_OK ){ 1580 SorterRecord *p; 1581 SorterRecord *pNext = 0; 1582 1583 vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, 1584 pTask->file.iEof); 1585 pTask->nPMA++; 1586 vdbePmaWriteVarint(&writer, pList->szPMA); 1587 for(p=pList->pList; p; p=pNext){ 1588 pNext = p->u.pNext; 1589 vdbePmaWriteVarint(&writer, p->nVal); 1590 vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); 1591 if( pList->aMemory==0 ) sqlite3_free(p); 1592 } 1593 pList->pList = p; 1594 rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); 1595 } 1596 1597 vdbeSorterWorkDebug(pTask, "exit"); 1598 assert( rc!=SQLITE_OK || pList->pList==0 ); 1599 assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); 1600 return rc; 1601 } 1602 1603 /* 1604 ** Advance the MergeEngine to its next entry. 1605 ** Set *pbEof to true there is no next entry because 1606 ** the MergeEngine has reached the end of all its inputs. 1607 ** 1608 ** Return SQLITE_OK if successful or an error code if an error occurs. 1609 */ 1610 static int vdbeMergeEngineStep( 1611 MergeEngine *pMerger, /* The merge engine to advance to the next row */ 1612 int *pbEof /* Set TRUE at EOF. Set false for more content */ 1613 ){ 1614 int rc; 1615 int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ 1616 SortSubtask *pTask = pMerger->pTask; 1617 1618 /* Advance the current PmaReader */ 1619 rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); 1620 1621 /* Update contents of aTree[] */ 1622 if( rc==SQLITE_OK ){ 1623 int i; /* Index of aTree[] to recalculate */ 1624 PmaReader *pReadr1; /* First PmaReader to compare */ 1625 PmaReader *pReadr2; /* Second PmaReader to compare */ 1626 int bCached = 0; 1627 1628 /* Find the first two PmaReaders to compare. The one that was just 1629 ** advanced (iPrev) and the one next to it in the array. */ 1630 pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; 1631 pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; 1632 1633 for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ 1634 /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ 1635 int iRes; 1636 if( pReadr1->pFd==0 ){ 1637 iRes = +1; 1638 }else if( pReadr2->pFd==0 ){ 1639 iRes = -1; 1640 }else{ 1641 iRes = pTask->xCompare(pTask, &bCached, 1642 pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey 1643 ); 1644 } 1645 1646 /* If pReadr1 contained the smaller value, set aTree[i] to its index. 1647 ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this 1648 ** case there is no cache of pReadr2 in pTask->pUnpacked, so set 1649 ** pKey2 to point to the record belonging to pReadr2. 1650 ** 1651 ** Alternatively, if pReadr2 contains the smaller of the two values, 1652 ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() 1653 ** was actually called above, then pTask->pUnpacked now contains 1654 ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent 1655 ** vdbeSorterCompare() from decoding pReadr2 again. 1656 ** 1657 ** If the two values were equal, then the value from the oldest 1658 ** PMA should be considered smaller. The VdbeSorter.aReadr[] array 1659 ** is sorted from oldest to newest, so pReadr1 contains older values 1660 ** than pReadr2 iff (pReadr1<pReadr2). */ 1661 if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ 1662 pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); 1663 pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1664 bCached = 0; 1665 }else{ 1666 if( pReadr1->pFd ) bCached = 0; 1667 pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); 1668 pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1669 } 1670 } 1671 *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); 1672 } 1673 1674 return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); 1675 } 1676 1677 #if SQLITE_MAX_WORKER_THREADS>0 1678 /* 1679 ** The main routine for background threads that write level-0 PMAs. 1680 */ 1681 static void *vdbeSorterFlushThread(void *pCtx){ 1682 SortSubtask *pTask = (SortSubtask*)pCtx; 1683 int rc; /* Return code */ 1684 assert( pTask->bDone==0 ); 1685 rc = vdbeSorterListToPMA(pTask, &pTask->list); 1686 pTask->bDone = 1; 1687 return SQLITE_INT_TO_PTR(rc); 1688 } 1689 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 1690 1691 /* 1692 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly 1693 ** using a background thread. 1694 */ 1695 static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ 1696 #if SQLITE_MAX_WORKER_THREADS==0 1697 pSorter->bUsePMA = 1; 1698 return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); 1699 #else 1700 int rc = SQLITE_OK; 1701 int i; 1702 SortSubtask *pTask = 0; /* Thread context used to create new PMA */ 1703 int nWorker = (pSorter->nTask-1); 1704 1705 /* Set the flag to indicate that at least one PMA has been written. 1706 ** Or will be, anyhow. */ 1707 pSorter->bUsePMA = 1; 1708 1709 /* Select a sub-task to sort and flush the current list of in-memory 1710 ** records to disk. If the sorter is running in multi-threaded mode, 1711 ** round-robin between the first (pSorter->nTask-1) tasks. Except, if 1712 ** the background thread from a sub-tasks previous turn is still running, 1713 ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, 1714 ** fall back to using the final sub-task. The first (pSorter->nTask-1) 1715 ** sub-tasks are prefered as they use background threads - the final 1716 ** sub-task uses the main thread. */ 1717 for(i=0; i<nWorker; i++){ 1718 int iTest = (pSorter->iPrev + i + 1) % nWorker; 1719 pTask = &pSorter->aTask[iTest]; 1720 if( pTask->bDone ){ 1721 rc = vdbeSorterJoinThread(pTask); 1722 } 1723 if( rc!=SQLITE_OK || pTask->pThread==0 ) break; 1724 } 1725 1726 if( rc==SQLITE_OK ){ 1727 if( i==nWorker ){ 1728 /* Use the foreground thread for this operation */ 1729 rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); 1730 }else{ 1731 /* Launch a background thread for this operation */ 1732 u8 *aMem; 1733 void *pCtx; 1734 1735 assert( pTask!=0 ); 1736 assert( pTask->pThread==0 && pTask->bDone==0 ); 1737 assert( pTask->list.pList==0 ); 1738 assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); 1739 1740 aMem = pTask->list.aMemory; 1741 pCtx = (void*)pTask; 1742 pSorter->iPrev = (u8)(pTask - pSorter->aTask); 1743 pTask->list = pSorter->list; 1744 pSorter->list.pList = 0; 1745 pSorter->list.szPMA = 0; 1746 if( aMem ){ 1747 pSorter->list.aMemory = aMem; 1748 pSorter->nMemory = sqlite3MallocSize(aMem); 1749 }else if( pSorter->list.aMemory ){ 1750 pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); 1751 if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; 1752 } 1753 1754 rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); 1755 } 1756 } 1757 1758 return rc; 1759 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */ 1760 } 1761 1762 /* 1763 ** Add a record to the sorter. 1764 */ 1765 int sqlite3VdbeSorterWrite( 1766 const VdbeCursor *pCsr, /* Sorter cursor */ 1767 Mem *pVal /* Memory cell containing record */ 1768 ){ 1769 VdbeSorter *pSorter; 1770 int rc = SQLITE_OK; /* Return Code */ 1771 SorterRecord *pNew; /* New list element */ 1772 int bFlush; /* True to flush contents of memory to PMA */ 1773 int nReq; /* Bytes of memory required */ 1774 int nPMA; /* Bytes of PMA space required */ 1775 int t; /* serial type of first record field */ 1776 1777 assert( pCsr->eCurType==CURTYPE_SORTER ); 1778 pSorter = pCsr->uc.pSorter; 1779 getVarint32NR((const u8*)&pVal->z[1], t); 1780 if( t>0 && t<10 && t!=7 ){ 1781 pSorter->typeMask &= SORTER_TYPE_INTEGER; 1782 }else if( t>10 && (t & 0x01) ){ 1783 pSorter->typeMask &= SORTER_TYPE_TEXT; 1784 }else{ 1785 pSorter->typeMask = 0; 1786 } 1787 1788 assert( pSorter ); 1789 1790 /* Figure out whether or not the current contents of memory should be 1791 ** flushed to a PMA before continuing. If so, do so. 1792 ** 1793 ** If using the single large allocation mode (pSorter->aMemory!=0), then 1794 ** flush the contents of memory to a new PMA if (a) at least one value is 1795 ** already in memory and (b) the new value will not fit in memory. 1796 ** 1797 ** Or, if using separate allocations for each record, flush the contents 1798 ** of memory to a PMA if either of the following are true: 1799 ** 1800 ** * The total memory allocated for the in-memory list is greater 1801 ** than (page-size * cache-size), or 1802 ** 1803 ** * The total memory allocated for the in-memory list is greater 1804 ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. 1805 */ 1806 nReq = pVal->n + sizeof(SorterRecord); 1807 nPMA = pVal->n + sqlite3VarintLen(pVal->n); 1808 if( pSorter->mxPmaSize ){ 1809 if( pSorter->list.aMemory ){ 1810 bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; 1811 }else{ 1812 bFlush = ( 1813 (pSorter->list.szPMA > pSorter->mxPmaSize) 1814 || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) 1815 ); 1816 } 1817 if( bFlush ){ 1818 rc = vdbeSorterFlushPMA(pSorter); 1819 pSorter->list.szPMA = 0; 1820 pSorter->iMemory = 0; 1821 assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); 1822 } 1823 } 1824 1825 pSorter->list.szPMA += nPMA; 1826 if( nPMA>pSorter->mxKeysize ){ 1827 pSorter->mxKeysize = nPMA; 1828 } 1829 1830 if( pSorter->list.aMemory ){ 1831 int nMin = pSorter->iMemory + nReq; 1832 1833 if( nMin>pSorter->nMemory ){ 1834 u8 *aNew; 1835 sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory; 1836 int iListOff = -1; 1837 if( pSorter->list.pList ){ 1838 iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; 1839 } 1840 while( nNew < nMin ) nNew = nNew*2; 1841 if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; 1842 if( nNew < nMin ) nNew = nMin; 1843 aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); 1844 if( !aNew ) return SQLITE_NOMEM_BKPT; 1845 if( iListOff>=0 ){ 1846 pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; 1847 } 1848 pSorter->list.aMemory = aNew; 1849 pSorter->nMemory = nNew; 1850 } 1851 1852 pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; 1853 pSorter->iMemory += ROUND8(nReq); 1854 if( pSorter->list.pList ){ 1855 pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); 1856 } 1857 }else{ 1858 pNew = (SorterRecord *)sqlite3Malloc(nReq); 1859 if( pNew==0 ){ 1860 return SQLITE_NOMEM_BKPT; 1861 } 1862 pNew->u.pNext = pSorter->list.pList; 1863 } 1864 1865 memcpy(SRVAL(pNew), pVal->z, pVal->n); 1866 pNew->nVal = pVal->n; 1867 pSorter->list.pList = pNew; 1868 1869 return rc; 1870 } 1871 1872 /* 1873 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format 1874 ** of the data stored in aFile[1] is the same as that used by regular PMAs, 1875 ** except that the number-of-bytes varint is omitted from the start. 1876 */ 1877 static int vdbeIncrPopulate(IncrMerger *pIncr){ 1878 int rc = SQLITE_OK; 1879 int rc2; 1880 i64 iStart = pIncr->iStartOff; 1881 SorterFile *pOut = &pIncr->aFile[1]; 1882 SortSubtask *pTask = pIncr->pTask; 1883 MergeEngine *pMerger = pIncr->pMerger; 1884 PmaWriter writer; 1885 assert( pIncr->bEof==0 ); 1886 1887 vdbeSorterPopulateDebug(pTask, "enter"); 1888 1889 vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); 1890 while( rc==SQLITE_OK ){ 1891 int dummy; 1892 PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; 1893 int nKey = pReader->nKey; 1894 i64 iEof = writer.iWriteOff + writer.iBufEnd; 1895 1896 /* Check if the output file is full or if the input has been exhausted. 1897 ** In either case exit the loop. */ 1898 if( pReader->pFd==0 ) break; 1899 if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; 1900 1901 /* Write the next key to the output. */ 1902 vdbePmaWriteVarint(&writer, nKey); 1903 vdbePmaWriteBlob(&writer, pReader->aKey, nKey); 1904 assert( pIncr->pMerger->pTask==pTask ); 1905 rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); 1906 } 1907 1908 rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); 1909 if( rc==SQLITE_OK ) rc = rc2; 1910 vdbeSorterPopulateDebug(pTask, "exit"); 1911 return rc; 1912 } 1913 1914 #if SQLITE_MAX_WORKER_THREADS>0 1915 /* 1916 ** The main routine for background threads that populate aFile[1] of 1917 ** multi-threaded IncrMerger objects. 1918 */ 1919 static void *vdbeIncrPopulateThread(void *pCtx){ 1920 IncrMerger *pIncr = (IncrMerger*)pCtx; 1921 void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); 1922 pIncr->pTask->bDone = 1; 1923 return pRet; 1924 } 1925 1926 /* 1927 ** Launch a background thread to populate aFile[1] of pIncr. 1928 */ 1929 static int vdbeIncrBgPopulate(IncrMerger *pIncr){ 1930 void *p = (void*)pIncr; 1931 assert( pIncr->bUseThread ); 1932 return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); 1933 } 1934 #endif 1935 1936 /* 1937 ** This function is called when the PmaReader corresponding to pIncr has 1938 ** finished reading the contents of aFile[0]. Its purpose is to "refill" 1939 ** aFile[0] such that the PmaReader should start rereading it from the 1940 ** beginning. 1941 ** 1942 ** For single-threaded objects, this is accomplished by literally reading 1943 ** keys from pIncr->pMerger and repopulating aFile[0]. 1944 ** 1945 ** For multi-threaded objects, all that is required is to wait until the 1946 ** background thread is finished (if it is not already) and then swap 1947 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not 1948 ** been exhausted, this function also launches a new background thread 1949 ** to populate the new aFile[1]. 1950 ** 1951 ** SQLITE_OK is returned on success, or an SQLite error code otherwise. 1952 */ 1953 static int vdbeIncrSwap(IncrMerger *pIncr){ 1954 int rc = SQLITE_OK; 1955 1956 #if SQLITE_MAX_WORKER_THREADS>0 1957 if( pIncr->bUseThread ){ 1958 rc = vdbeSorterJoinThread(pIncr->pTask); 1959 1960 if( rc==SQLITE_OK ){ 1961 SorterFile f0 = pIncr->aFile[0]; 1962 pIncr->aFile[0] = pIncr->aFile[1]; 1963 pIncr->aFile[1] = f0; 1964 } 1965 1966 if( rc==SQLITE_OK ){ 1967 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1968 pIncr->bEof = 1; 1969 }else{ 1970 rc = vdbeIncrBgPopulate(pIncr); 1971 } 1972 } 1973 }else 1974 #endif 1975 { 1976 rc = vdbeIncrPopulate(pIncr); 1977 pIncr->aFile[0] = pIncr->aFile[1]; 1978 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1979 pIncr->bEof = 1; 1980 } 1981 } 1982 1983 return rc; 1984 } 1985 1986 /* 1987 ** Allocate and return a new IncrMerger object to read data from pMerger. 1988 ** 1989 ** If an OOM condition is encountered, return NULL. In this case free the 1990 ** pMerger argument before returning. 1991 */ 1992 static int vdbeIncrMergerNew( 1993 SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ 1994 MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ 1995 IncrMerger **ppOut /* Write the new IncrMerger here */ 1996 ){ 1997 int rc = SQLITE_OK; 1998 IncrMerger *pIncr = *ppOut = (IncrMerger*) 1999 (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); 2000 if( pIncr ){ 2001 pIncr->pMerger = pMerger; 2002 pIncr->pTask = pTask; 2003 pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); 2004 pTask->file2.iEof += pIncr->mxSz; 2005 }else{ 2006 vdbeMergeEngineFree(pMerger); 2007 rc = SQLITE_NOMEM_BKPT; 2008 } 2009 return rc; 2010 } 2011 2012 #if SQLITE_MAX_WORKER_THREADS>0 2013 /* 2014 ** Set the "use-threads" flag on object pIncr. 2015 */ 2016 static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ 2017 pIncr->bUseThread = 1; 2018 pIncr->pTask->file2.iEof -= pIncr->mxSz; 2019 } 2020 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 2021 2022 2023 2024 /* 2025 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the 2026 ** two PmaReaders that feed that entry. Neither of the PmaReaders 2027 ** are advanced. This routine merely does the comparison. 2028 */ 2029 static void vdbeMergeEngineCompare( 2030 MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ 2031 int iOut /* Store the result in pMerger->aTree[iOut] */ 2032 ){ 2033 int i1; 2034 int i2; 2035 int iRes; 2036 PmaReader *p1; 2037 PmaReader *p2; 2038 2039 assert( iOut<pMerger->nTree && iOut>0 ); 2040 2041 if( iOut>=(pMerger->nTree/2) ){ 2042 i1 = (iOut - pMerger->nTree/2) * 2; 2043 i2 = i1 + 1; 2044 }else{ 2045 i1 = pMerger->aTree[iOut*2]; 2046 i2 = pMerger->aTree[iOut*2+1]; 2047 } 2048 2049 p1 = &pMerger->aReadr[i1]; 2050 p2 = &pMerger->aReadr[i2]; 2051 2052 if( p1->pFd==0 ){ 2053 iRes = i2; 2054 }else if( p2->pFd==0 ){ 2055 iRes = i1; 2056 }else{ 2057 SortSubtask *pTask = pMerger->pTask; 2058 int bCached = 0; 2059 int res; 2060 assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ 2061 res = pTask->xCompare( 2062 pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey 2063 ); 2064 if( res<=0 ){ 2065 iRes = i1; 2066 }else{ 2067 iRes = i2; 2068 } 2069 } 2070 2071 pMerger->aTree[iOut] = iRes; 2072 } 2073 2074 /* 2075 ** Allowed values for the eMode parameter to vdbeMergeEngineInit() 2076 ** and vdbePmaReaderIncrMergeInit(). 2077 ** 2078 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when 2079 ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used 2080 ** when there exists one or more separate worker threads. 2081 */ 2082 #define INCRINIT_NORMAL 0 2083 #define INCRINIT_TASK 1 2084 #define INCRINIT_ROOT 2 2085 2086 /* 2087 ** Forward reference required as the vdbeIncrMergeInit() and 2088 ** vdbePmaReaderIncrInit() routines are called mutually recursively when 2089 ** building a merge tree. 2090 */ 2091 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); 2092 2093 /* 2094 ** Initialize the MergeEngine object passed as the second argument. Once this 2095 ** function returns, the first key of merged data may be read from the 2096 ** MergeEngine object in the usual fashion. 2097 ** 2098 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge 2099 ** objects attached to the PmaReader objects that the merger reads from have 2100 ** already been populated, but that they have not yet populated aFile[0] and 2101 ** set the PmaReader objects up to read from it. In this case all that is 2102 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at 2103 ** its first key. 2104 ** 2105 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use 2106 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data 2107 ** to pMerger. 2108 ** 2109 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2110 */ 2111 static int vdbeMergeEngineInit( 2112 SortSubtask *pTask, /* Thread that will run pMerger */ 2113 MergeEngine *pMerger, /* MergeEngine to initialize */ 2114 int eMode /* One of the INCRINIT_XXX constants */ 2115 ){ 2116 int rc = SQLITE_OK; /* Return code */ 2117 int i; /* For looping over PmaReader objects */ 2118 int nTree; /* Number of subtrees to merge */ 2119 2120 /* Failure to allocate the merge would have been detected prior to 2121 ** invoking this routine */ 2122 assert( pMerger!=0 ); 2123 2124 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2125 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2126 2127 /* Verify that the MergeEngine is assigned to a single thread */ 2128 assert( pMerger->pTask==0 ); 2129 pMerger->pTask = pTask; 2130 2131 nTree = pMerger->nTree; 2132 for(i=0; i<nTree; i++){ 2133 if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){ 2134 /* PmaReaders should be normally initialized in order, as if they are 2135 ** reading from the same temp file this makes for more linear file IO. 2136 ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is 2137 ** in use it will block the vdbePmaReaderNext() call while it uses 2138 ** the main thread to fill its buffer. So calling PmaReaderNext() 2139 ** on this PmaReader before any of the multi-threaded PmaReaders takes 2140 ** better advantage of multi-processor hardware. */ 2141 rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); 2142 }else{ 2143 rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); 2144 } 2145 if( rc!=SQLITE_OK ) return rc; 2146 } 2147 2148 for(i=pMerger->nTree-1; i>0; i--){ 2149 vdbeMergeEngineCompare(pMerger, i); 2150 } 2151 return pTask->pUnpacked->errCode; 2152 } 2153 2154 /* 2155 ** The PmaReader passed as the first argument is guaranteed to be an 2156 ** incremental-reader (pReadr->pIncr!=0). This function serves to open 2157 ** and/or initialize the temp file related fields of the IncrMerge 2158 ** object at (pReadr->pIncr). 2159 ** 2160 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders 2161 ** in the sub-tree headed by pReadr are also initialized. Data is then 2162 ** loaded into the buffers belonging to pReadr and it is set to point to 2163 ** the first key in its range. 2164 ** 2165 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed 2166 ** to be a multi-threaded PmaReader and this function is being called in a 2167 ** background thread. In this case all PmaReaders in the sub-tree are 2168 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to 2169 ** pReadr is populated. However, pReadr itself is not set up to point 2170 ** to its first key. A call to vdbePmaReaderNext() is still required to do 2171 ** that. 2172 ** 2173 ** The reason this function does not call vdbePmaReaderNext() immediately 2174 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has 2175 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since 2176 ** this entire function is being run by thread (pTask->thread), that will 2177 ** lead to the current background thread attempting to join itself. 2178 ** 2179 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed 2180 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all 2181 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK). 2182 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and 2183 ** the current PmaReader set to point to the first key in its range. 2184 ** 2185 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2186 */ 2187 static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ 2188 int rc = SQLITE_OK; 2189 IncrMerger *pIncr = pReadr->pIncr; 2190 SortSubtask *pTask = pIncr->pTask; 2191 sqlite3 *db = pTask->pSorter->db; 2192 2193 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2194 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2195 2196 rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); 2197 2198 /* Set up the required files for pIncr. A multi-theaded IncrMerge object 2199 ** requires two temp files to itself, whereas a single-threaded object 2200 ** only requires a region of pTask->file2. */ 2201 if( rc==SQLITE_OK ){ 2202 int mxSz = pIncr->mxSz; 2203 #if SQLITE_MAX_WORKER_THREADS>0 2204 if( pIncr->bUseThread ){ 2205 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); 2206 if( rc==SQLITE_OK ){ 2207 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); 2208 } 2209 }else 2210 #endif 2211 /*if( !pIncr->bUseThread )*/{ 2212 if( pTask->file2.pFd==0 ){ 2213 assert( pTask->file2.iEof>0 ); 2214 rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); 2215 pTask->file2.iEof = 0; 2216 } 2217 if( rc==SQLITE_OK ){ 2218 pIncr->aFile[1].pFd = pTask->file2.pFd; 2219 pIncr->iStartOff = pTask->file2.iEof; 2220 pTask->file2.iEof += mxSz; 2221 } 2222 } 2223 } 2224 2225 #if SQLITE_MAX_WORKER_THREADS>0 2226 if( rc==SQLITE_OK && pIncr->bUseThread ){ 2227 /* Use the current thread to populate aFile[1], even though this 2228 ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, 2229 ** then this function is already running in background thread 2230 ** pIncr->pTask->thread. 2231 ** 2232 ** If this is the INCRINIT_ROOT object, then it is running in the 2233 ** main VDBE thread. But that is Ok, as that thread cannot return 2234 ** control to the VDBE or proceed with anything useful until the 2235 ** first results are ready from this merger object anyway. 2236 */ 2237 assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); 2238 rc = vdbeIncrPopulate(pIncr); 2239 } 2240 #endif 2241 2242 if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ 2243 rc = vdbePmaReaderNext(pReadr); 2244 } 2245 2246 return rc; 2247 } 2248 2249 #if SQLITE_MAX_WORKER_THREADS>0 2250 /* 2251 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in 2252 ** background threads. 2253 */ 2254 static void *vdbePmaReaderBgIncrInit(void *pCtx){ 2255 PmaReader *pReader = (PmaReader*)pCtx; 2256 void *pRet = SQLITE_INT_TO_PTR( 2257 vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) 2258 ); 2259 pReader->pIncr->pTask->bDone = 1; 2260 return pRet; 2261 } 2262 #endif 2263 2264 /* 2265 ** If the PmaReader passed as the first argument is not an incremental-reader 2266 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes 2267 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to 2268 ** this routine to initialize the incremental merge. 2269 ** 2270 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), 2271 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). 2272 ** Or, if the IncrMerger is single threaded, the same function is called 2273 ** using the current thread. 2274 */ 2275 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ 2276 IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ 2277 int rc = SQLITE_OK; /* Return code */ 2278 if( pIncr ){ 2279 #if SQLITE_MAX_WORKER_THREADS>0 2280 assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); 2281 if( pIncr->bUseThread ){ 2282 void *pCtx = (void*)pReadr; 2283 rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); 2284 }else 2285 #endif 2286 { 2287 rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); 2288 } 2289 } 2290 return rc; 2291 } 2292 2293 /* 2294 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0 2295 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to 2296 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut 2297 ** to NULL and return an SQLite error code. 2298 ** 2299 ** When this function is called, *piOffset is set to the offset of the 2300 ** first PMA to read from pTask->file. Assuming no error occurs, it is 2301 ** set to the offset immediately following the last byte of the last 2302 ** PMA before returning. If an error does occur, then the final value of 2303 ** *piOffset is undefined. 2304 */ 2305 static int vdbeMergeEngineLevel0( 2306 SortSubtask *pTask, /* Sorter task to read from */ 2307 int nPMA, /* Number of PMAs to read */ 2308 i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ 2309 MergeEngine **ppOut /* OUT: New merge-engine */ 2310 ){ 2311 MergeEngine *pNew; /* Merge engine to return */ 2312 i64 iOff = *piOffset; 2313 int i; 2314 int rc = SQLITE_OK; 2315 2316 *ppOut = pNew = vdbeMergeEngineNew(nPMA); 2317 if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; 2318 2319 for(i=0; i<nPMA && rc==SQLITE_OK; i++){ 2320 i64 nDummy = 0; 2321 PmaReader *pReadr = &pNew->aReadr[i]; 2322 rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); 2323 iOff = pReadr->iEof; 2324 } 2325 2326 if( rc!=SQLITE_OK ){ 2327 vdbeMergeEngineFree(pNew); 2328 *ppOut = 0; 2329 } 2330 *piOffset = iOff; 2331 return rc; 2332 } 2333 2334 /* 2335 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of 2336 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. 2337 ** 2338 ** i.e. 2339 ** 2340 ** nPMA<=16 -> TreeDepth() == 0 2341 ** nPMA<=256 -> TreeDepth() == 1 2342 ** nPMA<=65536 -> TreeDepth() == 2 2343 */ 2344 static int vdbeSorterTreeDepth(int nPMA){ 2345 int nDepth = 0; 2346 i64 nDiv = SORTER_MAX_MERGE_COUNT; 2347 while( nDiv < (i64)nPMA ){ 2348 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2349 nDepth++; 2350 } 2351 return nDepth; 2352 } 2353 2354 /* 2355 ** pRoot is the root of an incremental merge-tree with depth nDepth (according 2356 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the 2357 ** tree, counting from zero. This function adds pLeaf to the tree. 2358 ** 2359 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error 2360 ** code is returned and pLeaf is freed. 2361 */ 2362 static int vdbeSorterAddToTree( 2363 SortSubtask *pTask, /* Task context */ 2364 int nDepth, /* Depth of tree according to TreeDepth() */ 2365 int iSeq, /* Sequence number of leaf within tree */ 2366 MergeEngine *pRoot, /* Root of tree */ 2367 MergeEngine *pLeaf /* Leaf to add to tree */ 2368 ){ 2369 int rc = SQLITE_OK; 2370 int nDiv = 1; 2371 int i; 2372 MergeEngine *p = pRoot; 2373 IncrMerger *pIncr; 2374 2375 rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); 2376 2377 for(i=1; i<nDepth; i++){ 2378 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2379 } 2380 2381 for(i=1; i<nDepth && rc==SQLITE_OK; i++){ 2382 int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT; 2383 PmaReader *pReadr = &p->aReadr[iIter]; 2384 2385 if( pReadr->pIncr==0 ){ 2386 MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2387 if( pNew==0 ){ 2388 rc = SQLITE_NOMEM_BKPT; 2389 }else{ 2390 rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); 2391 } 2392 } 2393 if( rc==SQLITE_OK ){ 2394 p = pReadr->pIncr->pMerger; 2395 nDiv = nDiv / SORTER_MAX_MERGE_COUNT; 2396 } 2397 } 2398 2399 if( rc==SQLITE_OK ){ 2400 p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; 2401 }else{ 2402 vdbeIncrFree(pIncr); 2403 } 2404 return rc; 2405 } 2406 2407 /* 2408 ** This function is called as part of a SorterRewind() operation on a sorter 2409 ** that has already written two or more level-0 PMAs to one or more temp 2410 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that 2411 ** can be used to incrementally merge all PMAs on disk. 2412 ** 2413 ** If successful, SQLITE_OK is returned and *ppOut set to point to the 2414 ** MergeEngine object at the root of the tree before returning. Or, if an 2415 ** error occurs, an SQLite error code is returned and the final value 2416 ** of *ppOut is undefined. 2417 */ 2418 static int vdbeSorterMergeTreeBuild( 2419 VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ 2420 MergeEngine **ppOut /* Write the MergeEngine here */ 2421 ){ 2422 MergeEngine *pMain = 0; 2423 int rc = SQLITE_OK; 2424 int iTask; 2425 2426 #if SQLITE_MAX_WORKER_THREADS>0 2427 /* If the sorter uses more than one task, then create the top-level 2428 ** MergeEngine here. This MergeEngine will read data from exactly 2429 ** one PmaReader per sub-task. */ 2430 assert( pSorter->bUseThreads || pSorter->nTask==1 ); 2431 if( pSorter->nTask>1 ){ 2432 pMain = vdbeMergeEngineNew(pSorter->nTask); 2433 if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; 2434 } 2435 #endif 2436 2437 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2438 SortSubtask *pTask = &pSorter->aTask[iTask]; 2439 assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); 2440 if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ 2441 MergeEngine *pRoot = 0; /* Root node of tree for this task */ 2442 int nDepth = vdbeSorterTreeDepth(pTask->nPMA); 2443 i64 iReadOff = 0; 2444 2445 if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ 2446 rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); 2447 }else{ 2448 int i; 2449 int iSeq = 0; 2450 pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2451 if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; 2452 for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ 2453 MergeEngine *pMerger = 0; /* New level-0 PMA merger */ 2454 int nReader; /* Number of level-0 PMAs to merge */ 2455 2456 nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); 2457 rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); 2458 if( rc==SQLITE_OK ){ 2459 rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); 2460 } 2461 } 2462 } 2463 2464 if( rc==SQLITE_OK ){ 2465 #if SQLITE_MAX_WORKER_THREADS>0 2466 if( pMain!=0 ){ 2467 rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); 2468 }else 2469 #endif 2470 { 2471 assert( pMain==0 ); 2472 pMain = pRoot; 2473 } 2474 }else{ 2475 vdbeMergeEngineFree(pRoot); 2476 } 2477 } 2478 } 2479 2480 if( rc!=SQLITE_OK ){ 2481 vdbeMergeEngineFree(pMain); 2482 pMain = 0; 2483 } 2484 *ppOut = pMain; 2485 return rc; 2486 } 2487 2488 /* 2489 ** This function is called as part of an sqlite3VdbeSorterRewind() operation 2490 ** on a sorter that has written two or more PMAs to temporary files. It sets 2491 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader 2492 ** (for multi-threaded sorters) so that it can be used to iterate through 2493 ** all records stored in the sorter. 2494 ** 2495 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2496 */ 2497 static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ 2498 int rc; /* Return code */ 2499 SortSubtask *pTask0 = &pSorter->aTask[0]; 2500 MergeEngine *pMain = 0; 2501 #if SQLITE_MAX_WORKER_THREADS 2502 sqlite3 *db = pTask0->pSorter->db; 2503 int i; 2504 SorterCompare xCompare = vdbeSorterGetCompare(pSorter); 2505 for(i=0; i<pSorter->nTask; i++){ 2506 pSorter->aTask[i].xCompare = xCompare; 2507 } 2508 #endif 2509 2510 rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); 2511 if( rc==SQLITE_OK ){ 2512 #if SQLITE_MAX_WORKER_THREADS 2513 assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); 2514 if( pSorter->bUseThreads ){ 2515 int iTask; 2516 PmaReader *pReadr = 0; 2517 SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; 2518 rc = vdbeSortAllocUnpacked(pLast); 2519 if( rc==SQLITE_OK ){ 2520 pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); 2521 pSorter->pReader = pReadr; 2522 if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; 2523 } 2524 if( rc==SQLITE_OK ){ 2525 rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); 2526 if( rc==SQLITE_OK ){ 2527 vdbeIncrMergerSetThreads(pReadr->pIncr); 2528 for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ 2529 IncrMerger *pIncr; 2530 if( (pIncr = pMain->aReadr[iTask].pIncr) ){ 2531 vdbeIncrMergerSetThreads(pIncr); 2532 assert( pIncr->pTask!=pLast ); 2533 } 2534 } 2535 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2536 /* Check that: 2537 ** 2538 ** a) The incremental merge object is configured to use the 2539 ** right task, and 2540 ** b) If it is using task (nTask-1), it is configured to run 2541 ** in single-threaded mode. This is important, as the 2542 ** root merge (INCRINIT_ROOT) will be using the same task 2543 ** object. 2544 */ 2545 PmaReader *p = &pMain->aReadr[iTask]; 2546 assert( p->pIncr==0 || ( 2547 (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ 2548 && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ 2549 )); 2550 rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); 2551 } 2552 } 2553 pMain = 0; 2554 } 2555 if( rc==SQLITE_OK ){ 2556 rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); 2557 } 2558 }else 2559 #endif 2560 { 2561 rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); 2562 pSorter->pMerger = pMain; 2563 pMain = 0; 2564 } 2565 } 2566 2567 if( rc!=SQLITE_OK ){ 2568 vdbeMergeEngineFree(pMain); 2569 } 2570 return rc; 2571 } 2572 2573 2574 /* 2575 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, 2576 ** this function is called to prepare for iterating through the records 2577 ** in sorted order. 2578 */ 2579 int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ 2580 VdbeSorter *pSorter; 2581 int rc = SQLITE_OK; /* Return code */ 2582 2583 assert( pCsr->eCurType==CURTYPE_SORTER ); 2584 pSorter = pCsr->uc.pSorter; 2585 assert( pSorter ); 2586 2587 /* If no data has been written to disk, then do not do so now. Instead, 2588 ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly 2589 ** from the in-memory list. */ 2590 if( pSorter->bUsePMA==0 ){ 2591 if( pSorter->list.pList ){ 2592 *pbEof = 0; 2593 rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); 2594 }else{ 2595 *pbEof = 1; 2596 } 2597 return rc; 2598 } 2599 2600 /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() 2601 ** function flushes the contents of memory to disk, it immediately always 2602 ** creates a new list consisting of a single key immediately afterwards. 2603 ** So the list is never empty at this point. */ 2604 assert( pSorter->list.pList ); 2605 rc = vdbeSorterFlushPMA(pSorter); 2606 2607 /* Join all threads */ 2608 rc = vdbeSorterJoinAll(pSorter, rc); 2609 2610 vdbeSorterRewindDebug("rewind"); 2611 2612 /* Assuming no errors have occurred, set up a merger structure to 2613 ** incrementally read and merge all remaining PMAs. */ 2614 assert( pSorter->pReader==0 ); 2615 if( rc==SQLITE_OK ){ 2616 rc = vdbeSorterSetupMerge(pSorter); 2617 *pbEof = 0; 2618 } 2619 2620 vdbeSorterRewindDebug("rewinddone"); 2621 return rc; 2622 } 2623 2624 /* 2625 ** Advance to the next element in the sorter. Return value: 2626 ** 2627 ** SQLITE_OK success 2628 ** SQLITE_DONE end of data 2629 ** otherwise some kind of error. 2630 */ 2631 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){ 2632 VdbeSorter *pSorter; 2633 int rc; /* Return code */ 2634 2635 assert( pCsr->eCurType==CURTYPE_SORTER ); 2636 pSorter = pCsr->uc.pSorter; 2637 assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); 2638 if( pSorter->bUsePMA ){ 2639 assert( pSorter->pReader==0 || pSorter->pMerger==0 ); 2640 assert( pSorter->bUseThreads==0 || pSorter->pReader ); 2641 assert( pSorter->bUseThreads==1 || pSorter->pMerger ); 2642 #if SQLITE_MAX_WORKER_THREADS>0 2643 if( pSorter->bUseThreads ){ 2644 rc = vdbePmaReaderNext(pSorter->pReader); 2645 if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE; 2646 }else 2647 #endif 2648 /*if( !pSorter->bUseThreads )*/ { 2649 int res = 0; 2650 assert( pSorter->pMerger!=0 ); 2651 assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); 2652 rc = vdbeMergeEngineStep(pSorter->pMerger, &res); 2653 if( rc==SQLITE_OK && res ) rc = SQLITE_DONE; 2654 } 2655 }else{ 2656 SorterRecord *pFree = pSorter->list.pList; 2657 pSorter->list.pList = pFree->u.pNext; 2658 pFree->u.pNext = 0; 2659 if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); 2660 rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE; 2661 } 2662 return rc; 2663 } 2664 2665 /* 2666 ** Return a pointer to a buffer owned by the sorter that contains the 2667 ** current key. 2668 */ 2669 static void *vdbeSorterRowkey( 2670 const VdbeSorter *pSorter, /* Sorter object */ 2671 int *pnKey /* OUT: Size of current key in bytes */ 2672 ){ 2673 void *pKey; 2674 if( pSorter->bUsePMA ){ 2675 PmaReader *pReader; 2676 #if SQLITE_MAX_WORKER_THREADS>0 2677 if( pSorter->bUseThreads ){ 2678 pReader = pSorter->pReader; 2679 }else 2680 #endif 2681 /*if( !pSorter->bUseThreads )*/{ 2682 pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; 2683 } 2684 *pnKey = pReader->nKey; 2685 pKey = pReader->aKey; 2686 }else{ 2687 *pnKey = pSorter->list.pList->nVal; 2688 pKey = SRVAL(pSorter->list.pList); 2689 } 2690 return pKey; 2691 } 2692 2693 /* 2694 ** Copy the current sorter key into the memory cell pOut. 2695 */ 2696 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ 2697 VdbeSorter *pSorter; 2698 void *pKey; int nKey; /* Sorter key to copy into pOut */ 2699 2700 assert( pCsr->eCurType==CURTYPE_SORTER ); 2701 pSorter = pCsr->uc.pSorter; 2702 pKey = vdbeSorterRowkey(pSorter, &nKey); 2703 if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ 2704 return SQLITE_NOMEM_BKPT; 2705 } 2706 pOut->n = nKey; 2707 MemSetTypeFlag(pOut, MEM_Blob); 2708 memcpy(pOut->z, pKey, nKey); 2709 2710 return SQLITE_OK; 2711 } 2712 2713 /* 2714 ** Compare the key in memory cell pVal with the key that the sorter cursor 2715 ** passed as the first argument currently points to. For the purposes of 2716 ** the comparison, ignore the rowid field at the end of each record. 2717 ** 2718 ** If the sorter cursor key contains any NULL values, consider it to be 2719 ** less than pVal. Even if pVal also contains NULL values. 2720 ** 2721 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). 2722 ** Otherwise, set *pRes to a negative, zero or positive value if the 2723 ** key in pVal is smaller than, equal to or larger than the current sorter 2724 ** key. 2725 ** 2726 ** This routine forms the core of the OP_SorterCompare opcode, which in 2727 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX. 2728 */ 2729 int sqlite3VdbeSorterCompare( 2730 const VdbeCursor *pCsr, /* Sorter cursor */ 2731 Mem *pVal, /* Value to compare to current sorter key */ 2732 int nKeyCol, /* Compare this many columns */ 2733 int *pRes /* OUT: Result of comparison */ 2734 ){ 2735 VdbeSorter *pSorter; 2736 UnpackedRecord *r2; 2737 KeyInfo *pKeyInfo; 2738 int i; 2739 void *pKey; int nKey; /* Sorter key to compare pVal with */ 2740 2741 assert( pCsr->eCurType==CURTYPE_SORTER ); 2742 pSorter = pCsr->uc.pSorter; 2743 r2 = pSorter->pUnpacked; 2744 pKeyInfo = pCsr->pKeyInfo; 2745 if( r2==0 ){ 2746 r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 2747 if( r2==0 ) return SQLITE_NOMEM_BKPT; 2748 r2->nField = nKeyCol; 2749 } 2750 assert( r2->nField==nKeyCol ); 2751 2752 pKey = vdbeSorterRowkey(pSorter, &nKey); 2753 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); 2754 for(i=0; i<nKeyCol; i++){ 2755 if( r2->aMem[i].flags & MEM_Null ){ 2756 *pRes = -1; 2757 return SQLITE_OK; 2758 } 2759 } 2760 2761 *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); 2762 return SQLITE_OK; 2763 } 2764