1 /* 2 ** 2011-07-09 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for the VdbeSorter object, used in concert with 13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements 14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied 15 ** using indexes and without LIMIT clauses. 16 ** 17 ** The VdbeSorter object implements a multi-threaded external merge sort 18 ** algorithm that is efficient even if the number of elements being sorted 19 ** exceeds the available memory. 20 ** 21 ** Here is the (internal, non-API) interface between this module and the 22 ** rest of the SQLite system: 23 ** 24 ** sqlite3VdbeSorterInit() Create a new VdbeSorter object. 25 ** 26 ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter 27 ** object. The row is a binary blob in the 28 ** OP_MakeRecord format that contains both 29 ** the ORDER BY key columns and result columns 30 ** in the case of a SELECT w/ ORDER BY, or 31 ** the complete record for an index entry 32 ** in the case of a CREATE INDEX. 33 ** 34 ** sqlite3VdbeSorterRewind() Sort all content previously added. 35 ** Position the read cursor on the 36 ** first sorted element. 37 ** 38 ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted 39 ** element. 40 ** 41 ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the 42 ** row currently under the read cursor. 43 ** 44 ** sqlite3VdbeSorterCompare() Compare the binary blob for the row 45 ** currently under the read cursor against 46 ** another binary blob X and report if 47 ** X is strictly less than the read cursor. 48 ** Used to enforce uniqueness in a 49 ** CREATE UNIQUE INDEX statement. 50 ** 51 ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim 52 ** all resources. 53 ** 54 ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This 55 ** is like Close() followed by Init() only 56 ** much faster. 57 ** 58 ** The interfaces above must be called in a particular order. Write() can 59 ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and 60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. 61 ** 62 ** Init() 63 ** for each record: Write() 64 ** Rewind() 65 ** Rowkey()/Compare() 66 ** Next() 67 ** Close() 68 ** 69 ** Algorithm: 70 ** 71 ** Records passed to the sorter via calls to Write() are initially held 72 ** unsorted in main memory. Assuming the amount of memory used never exceeds 73 ** a threshold, when Rewind() is called the set of records is sorted using 74 ** an in-memory merge sort. In this case, no temporary files are required 75 ** and subsequent calls to Rowkey(), Next() and Compare() read records 76 ** directly from main memory. 77 ** 78 ** If the amount of space used to store records in main memory exceeds the 79 ** threshold, then the set of records currently in memory are sorted and 80 ** written to a temporary file in "Packed Memory Array" (PMA) format. 81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels 82 ** of PMAs may be created by merging existing PMAs together - for example 83 ** merging two or more level-0 PMAs together creates a level-1 PMA. 84 ** 85 ** The threshold for the amount of main memory to use before flushing 86 ** records to a PMA is roughly the same as the limit configured for the 87 ** page-cache of the main database. Specifically, the threshold is set to 88 ** the value returned by "PRAGMA main.page_size" multipled by 89 ** that returned by "PRAGMA main.cache_size", in bytes. 90 ** 91 ** If the sorter is running in single-threaded mode, then all PMAs generated 92 ** are appended to a single temporary file. Or, if the sorter is running in 93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where 94 ** N is the configured number of worker threads. In this case, instead of 95 ** sorting the records and writing the PMA to a temporary file itself, the 96 ** calling thread usually launches a worker thread to do so. Except, if 97 ** there are already N worker threads running, the main thread does the work 98 ** itself. 99 ** 100 ** The sorter is running in multi-threaded mode if (a) the library was built 101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater 102 ** than zero, and (b) worker threads have been enabled at runtime by calling 103 ** "PRAGMA threads=N" with some value of N greater than 0. 104 ** 105 ** When Rewind() is called, any data remaining in memory is flushed to a 106 ** final PMA. So at this point the data is stored in some number of sorted 107 ** PMAs within temporary files on disk. 108 ** 109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the 110 ** sorter is running in single-threaded mode, then these PMAs are merged 111 ** incrementally as keys are retreived from the sorter by the VDBE. The 112 ** MergeEngine object, described in further detail below, performs this 113 ** merge. 114 ** 115 ** Or, if running in multi-threaded mode, then a background thread is 116 ** launched to merge the existing PMAs. Once the background thread has 117 ** merged T bytes of data into a single sorted PMA, the main thread 118 ** begins reading keys from that PMA while the background thread proceeds 119 ** with merging the next T bytes of data. And so on. 120 ** 121 ** Parameter T is set to half the value of the memory threshold used 122 ** by Write() above to determine when to create a new PMA. 123 ** 124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when 125 ** Rewind() is called, then a hierarchy of incremental-merges is used. 126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on 127 ** disk are merged together. Then T bytes of data from the second set, and 128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT 129 ** PMAs at a time. This done is to improve locality. 130 ** 131 ** If running in multi-threaded mode and there are more than 132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more 133 ** than one background thread may be created. Specifically, there may be 134 ** one background thread for each temporary file on disk, and one background 135 ** thread to merge the output of each of the others to a single PMA for 136 ** the main thread to read from. 137 */ 138 #include "sqliteInt.h" 139 #include "vdbeInt.h" 140 141 /* 142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various 143 ** messages to stderr that may be helpful in understanding the performance 144 ** characteristics of the sorter in multi-threaded mode. 145 */ 146 #if 0 147 # define SQLITE_DEBUG_SORTER_THREADS 1 148 #endif 149 150 /* 151 ** Hard-coded maximum amount of data to accumulate in memory before flushing 152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer 153 ** overflows. 512MiB. 154 */ 155 #define SQLITE_MAX_PMASZ (1<<29) 156 157 /* 158 ** Private objects used by the sorter 159 */ 160 typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ 161 typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ 162 typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ 163 typedef struct SorterRecord SorterRecord; /* A record being sorted */ 164 typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ 165 typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ 166 typedef struct SorterList SorterList; /* In-memory list of records */ 167 typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ 168 169 /* 170 ** A container for a temp file handle and the current amount of data 171 ** stored in the file. 172 */ 173 struct SorterFile { 174 sqlite3_file *pFd; /* File handle */ 175 i64 iEof; /* Bytes of data stored in pFd */ 176 }; 177 178 /* 179 ** An in-memory list of objects to be sorted. 180 ** 181 ** If aMemory==0 then each object is allocated separately and the objects 182 ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects 183 ** are stored in the aMemory[] bulk memory, one right after the other, and 184 ** are connected using SorterRecord.u.iNext. 185 */ 186 struct SorterList { 187 SorterRecord *pList; /* Linked list of records */ 188 u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ 189 int szPMA; /* Size of pList as PMA in bytes */ 190 }; 191 192 /* 193 ** The MergeEngine object is used to combine two or more smaller PMAs into 194 ** one big PMA using a merge operation. Separate PMAs all need to be 195 ** combined into one big PMA in order to be able to step through the sorted 196 ** records in order. 197 ** 198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being 199 ** merged. An aReadr[] object either points to a valid key or else is at EOF. 200 ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) 201 ** For the purposes of the paragraphs below, we assume that the array is 202 ** actually N elements in size, where N is the smallest power of 2 greater 203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements 204 ** are treated as if they are empty (always at EOF). 205 ** 206 ** The aTree[] array is also N elements in size. The value of N is stored in 207 ** the MergeEngine.nTree variable. 208 ** 209 ** The final (N/2) elements of aTree[] contain the results of comparing 210 ** pairs of PMA keys together. Element i contains the result of 211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the 212 ** aTree element is set to the index of it. 213 ** 214 ** For the purposes of this comparison, EOF is considered greater than any 215 ** other key value. If the keys are equal (only possible with two EOF 216 ** values), it doesn't matter which index is stored. 217 ** 218 ** The (N/4) elements of aTree[] that precede the final (N/2) described 219 ** above contains the index of the smallest of each block of 4 PmaReaders 220 ** And so on. So that aTree[1] contains the index of the PmaReader that 221 ** currently points to the smallest key value. aTree[0] is unused. 222 ** 223 ** Example: 224 ** 225 ** aReadr[0] -> Banana 226 ** aReadr[1] -> Feijoa 227 ** aReadr[2] -> Elderberry 228 ** aReadr[3] -> Currant 229 ** aReadr[4] -> Grapefruit 230 ** aReadr[5] -> Apple 231 ** aReadr[6] -> Durian 232 ** aReadr[7] -> EOF 233 ** 234 ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } 235 ** 236 ** The current element is "Apple" (the value of the key indicated by 237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will 238 ** be advanced to the next key in its segment. Say the next key is 239 ** "Eggplant": 240 ** 241 ** aReadr[5] -> Eggplant 242 ** 243 ** The contents of aTree[] are updated first by comparing the new PmaReader 244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader 245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. 246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader 247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), 248 ** so the value written into element 1 of the array is 0. As follows: 249 ** 250 ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } 251 ** 252 ** In other words, each time we advance to the next sorter element, log2(N) 253 ** key comparison operations are required, where N is the number of segments 254 ** being merged (rounded up to the next power of 2). 255 */ 256 struct MergeEngine { 257 int nTree; /* Used size of aTree/aReadr (power of 2) */ 258 SortSubtask *pTask; /* Used by this thread only */ 259 int *aTree; /* Current state of incremental merge */ 260 PmaReader *aReadr; /* Array of PmaReaders to merge data from */ 261 }; 262 263 /* 264 ** This object represents a single thread of control in a sort operation. 265 ** Exactly VdbeSorter.nTask instances of this object are allocated 266 ** as part of each VdbeSorter object. Instances are never allocated any 267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed 268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for 269 ** single-threaded operation, there is exactly one instance of this object 270 ** and for multi-threaded operation there are two or more instances. 271 ** 272 ** Essentially, this structure contains all those fields of the VdbeSorter 273 ** structure for which each thread requires a separate instance. For example, 274 ** each thread requries its own UnpackedRecord object to unpack records in 275 ** as part of comparison operations. 276 ** 277 ** Before a background thread is launched, variable bDone is set to 0. Then, 278 ** right before it exits, the thread itself sets bDone to 1. This is used for 279 ** two purposes: 280 ** 281 ** 1. When flushing the contents of memory to a level-0 PMA on disk, to 282 ** attempt to select a SortSubtask for which there is not already an 283 ** active background thread (since doing so causes the main thread 284 ** to block until it finishes). 285 ** 286 ** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call 287 ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to 288 ** block provoke debugging output. 289 ** 290 ** In both cases, the effects of the main thread seeing (bDone==0) even 291 ** after the thread has finished are not dire. So we don't worry about 292 ** memory barriers and such here. 293 */ 294 typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int); 295 struct SortSubtask { 296 SQLiteThread *pThread; /* Background thread, if any */ 297 int bDone; /* Set if thread is finished but not joined */ 298 VdbeSorter *pSorter; /* Sorter that owns this sub-task */ 299 UnpackedRecord *pUnpacked; /* Space to unpack a record */ 300 SorterList list; /* List for thread to write to a PMA */ 301 int nPMA; /* Number of PMAs currently in file */ 302 SorterCompare xCompare; /* Compare function to use */ 303 SorterFile file; /* Temp file for level-0 PMAs */ 304 SorterFile file2; /* Space for other PMAs */ 305 }; 306 307 308 /* 309 ** Main sorter structure. A single instance of this is allocated for each 310 ** sorter cursor created by the VDBE. 311 ** 312 ** mxKeysize: 313 ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), 314 ** this variable is updated so as to be set to the size on disk of the 315 ** largest record in the sorter. 316 */ 317 struct VdbeSorter { 318 int mnPmaSize; /* Minimum PMA size, in bytes */ 319 int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */ 320 int mxKeysize; /* Largest serialized key seen so far */ 321 int pgsz; /* Main database page size */ 322 PmaReader *pReader; /* Readr data from here after Rewind() */ 323 MergeEngine *pMerger; /* Or here, if bUseThreads==0 */ 324 sqlite3 *db; /* Database connection */ 325 KeyInfo *pKeyInfo; /* How to compare records */ 326 UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */ 327 SorterList list; /* List of in-memory records */ 328 int iMemory; /* Offset of free space in list.aMemory */ 329 int nMemory; /* Size of list.aMemory allocation in bytes */ 330 u8 bUsePMA; /* True if one or more PMAs created */ 331 u8 bUseThreads; /* True to use background threads */ 332 u8 iPrev; /* Previous thread used to flush PMA */ 333 u8 nTask; /* Size of aTask[] array */ 334 u8 typeMask; 335 SortSubtask aTask[1]; /* One or more subtasks */ 336 }; 337 338 #define SORTER_TYPE_INTEGER 0x01 339 #define SORTER_TYPE_TEXT 0x02 340 341 /* 342 ** An instance of the following object is used to read records out of a 343 ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. 344 ** aKey might point into aMap or into aBuffer. If neither of those locations 345 ** contain a contiguous representation of the key, then aAlloc is allocated 346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc. 347 ** 348 ** pFd==0 at EOF. 349 */ 350 struct PmaReader { 351 i64 iReadOff; /* Current read offset */ 352 i64 iEof; /* 1 byte past EOF for this PmaReader */ 353 int nAlloc; /* Bytes of space at aAlloc */ 354 int nKey; /* Number of bytes in key */ 355 sqlite3_file *pFd; /* File handle we are reading from */ 356 u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */ 357 u8 *aKey; /* Pointer to current key */ 358 u8 *aBuffer; /* Current read buffer */ 359 int nBuffer; /* Size of read buffer in bytes */ 360 u8 *aMap; /* Pointer to mapping of entire file */ 361 IncrMerger *pIncr; /* Incremental merger */ 362 }; 363 364 /* 365 ** Normally, a PmaReader object iterates through an existing PMA stored 366 ** within a temp file. However, if the PmaReader.pIncr variable points to 367 ** an object of the following type, it may be used to iterate/merge through 368 ** multiple PMAs simultaneously. 369 ** 370 ** There are two types of IncrMerger object - single (bUseThread==0) and 371 ** multi-threaded (bUseThread==1). 372 ** 373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0] 374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in 375 ** size. When the IncrMerger is initialized, it reads enough data from 376 ** pMerger to populate aFile[0]. It then sets variables within the 377 ** corresponding PmaReader object to read from that file and kicks off 378 ** a background thread to populate aFile[1] with the next mxSz bytes of 379 ** sorted record data from pMerger. 380 ** 381 ** When the PmaReader reaches the end of aFile[0], it blocks until the 382 ** background thread has finished populating aFile[1]. It then exchanges 383 ** the contents of the aFile[0] and aFile[1] variables within this structure, 384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off 385 ** another background thread to populate the new aFile[1]. And so on, until 386 ** the contents of pMerger are exhausted. 387 ** 388 ** A single-threaded IncrMerger does not open any temporary files of its 389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning 390 ** at offset iStartOff of file pTask->file2. And instead of using a 391 ** background thread to prepare data for the PmaReader, with a single 392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with 393 ** keys from pMerger by the calling thread whenever the PmaReader runs out 394 ** of data. 395 */ 396 struct IncrMerger { 397 SortSubtask *pTask; /* Task that owns this merger */ 398 MergeEngine *pMerger; /* Merge engine thread reads data from */ 399 i64 iStartOff; /* Offset to start writing file at */ 400 int mxSz; /* Maximum bytes of data to store */ 401 int bEof; /* Set to true when merge is finished */ 402 int bUseThread; /* True to use a bg thread for this object */ 403 SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ 404 }; 405 406 /* 407 ** An instance of this object is used for writing a PMA. 408 ** 409 ** The PMA is written one record at a time. Each record is of an arbitrary 410 ** size. But I/O is more efficient if it occurs in page-sized blocks where 411 ** each block is aligned on a page boundary. This object caches writes to 412 ** the PMA so that aligned, page-size blocks are written. 413 */ 414 struct PmaWriter { 415 int eFWErr; /* Non-zero if in an error state */ 416 u8 *aBuffer; /* Pointer to write buffer */ 417 int nBuffer; /* Size of write buffer in bytes */ 418 int iBufStart; /* First byte of buffer to write */ 419 int iBufEnd; /* Last byte of buffer to write */ 420 i64 iWriteOff; /* Offset of start of buffer in file */ 421 sqlite3_file *pFd; /* File handle to write to */ 422 }; 423 424 /* 425 ** This object is the header on a single record while that record is being 426 ** held in memory and prior to being written out as part of a PMA. 427 ** 428 ** How the linked list is connected depends on how memory is being managed 429 ** by this module. If using a separate allocation for each in-memory record 430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the 431 ** SorterRecord.u.pNext pointers. 432 ** 433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), 434 ** then while records are being accumulated the list is linked using the 435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may 436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM 437 ** has finished passing records to the sorter, or when the in-memory buffer 438 ** is full, the list is sorted. As part of the sorting process, it is 439 ** converted to use the SorterRecord.u.pNext pointers. See function 440 ** vdbeSorterSort() for details. 441 */ 442 struct SorterRecord { 443 int nVal; /* Size of the record in bytes */ 444 union { 445 SorterRecord *pNext; /* Pointer to next record in list */ 446 int iNext; /* Offset within aMemory of next record */ 447 } u; 448 /* The data for the record immediately follows this header */ 449 }; 450 451 /* Return a pointer to the buffer containing the record data for SorterRecord 452 ** object p. Should be used as if: 453 ** 454 ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } 455 */ 456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) 457 458 459 /* Maximum number of PMAs that a single MergeEngine can merge */ 460 #define SORTER_MAX_MERGE_COUNT 16 461 462 static int vdbeIncrSwap(IncrMerger*); 463 static void vdbeIncrFree(IncrMerger *); 464 465 /* 466 ** Free all memory belonging to the PmaReader object passed as the 467 ** argument. All structure fields are set to zero before returning. 468 */ 469 static void vdbePmaReaderClear(PmaReader *pReadr){ 470 sqlite3_free(pReadr->aAlloc); 471 sqlite3_free(pReadr->aBuffer); 472 if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 473 vdbeIncrFree(pReadr->pIncr); 474 memset(pReadr, 0, sizeof(PmaReader)); 475 } 476 477 /* 478 ** Read the next nByte bytes of data from the PMA p. 479 ** If successful, set *ppOut to point to a buffer containing the data 480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite 481 ** error code. 482 ** 483 ** The buffer returned in *ppOut is only valid until the 484 ** next call to this function. 485 */ 486 static int vdbePmaReadBlob( 487 PmaReader *p, /* PmaReader from which to take the blob */ 488 int nByte, /* Bytes of data to read */ 489 u8 **ppOut /* OUT: Pointer to buffer containing data */ 490 ){ 491 int iBuf; /* Offset within buffer to read from */ 492 int nAvail; /* Bytes of data available in buffer */ 493 494 if( p->aMap ){ 495 *ppOut = &p->aMap[p->iReadOff]; 496 p->iReadOff += nByte; 497 return SQLITE_OK; 498 } 499 500 assert( p->aBuffer ); 501 502 /* If there is no more data to be read from the buffer, read the next 503 ** p->nBuffer bytes of data from the file into it. Or, if there are less 504 ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ 505 iBuf = p->iReadOff % p->nBuffer; 506 if( iBuf==0 ){ 507 int nRead; /* Bytes to read from disk */ 508 int rc; /* sqlite3OsRead() return code */ 509 510 /* Determine how many bytes of data to read. */ 511 if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ 512 nRead = p->nBuffer; 513 }else{ 514 nRead = (int)(p->iEof - p->iReadOff); 515 } 516 assert( nRead>0 ); 517 518 /* Readr data from the file. Return early if an error occurs. */ 519 rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); 520 assert( rc!=SQLITE_IOERR_SHORT_READ ); 521 if( rc!=SQLITE_OK ) return rc; 522 } 523 nAvail = p->nBuffer - iBuf; 524 525 if( nByte<=nAvail ){ 526 /* The requested data is available in the in-memory buffer. In this 527 ** case there is no need to make a copy of the data, just return a 528 ** pointer into the buffer to the caller. */ 529 *ppOut = &p->aBuffer[iBuf]; 530 p->iReadOff += nByte; 531 }else{ 532 /* The requested data is not all available in the in-memory buffer. 533 ** In this case, allocate space at p->aAlloc[] to copy the requested 534 ** range into. Then return a copy of pointer p->aAlloc to the caller. */ 535 int nRem; /* Bytes remaining to copy */ 536 537 /* Extend the p->aAlloc[] allocation if required. */ 538 if( p->nAlloc<nByte ){ 539 u8 *aNew; 540 int nNew = MAX(128, p->nAlloc*2); 541 while( nByte>nNew ) nNew = nNew*2; 542 aNew = sqlite3Realloc(p->aAlloc, nNew); 543 if( !aNew ) return SQLITE_NOMEM_BKPT; 544 p->nAlloc = nNew; 545 p->aAlloc = aNew; 546 } 547 548 /* Copy as much data as is available in the buffer into the start of 549 ** p->aAlloc[]. */ 550 memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); 551 p->iReadOff += nAvail; 552 nRem = nByte - nAvail; 553 554 /* The following loop copies up to p->nBuffer bytes per iteration into 555 ** the p->aAlloc[] buffer. */ 556 while( nRem>0 ){ 557 int rc; /* vdbePmaReadBlob() return code */ 558 int nCopy; /* Number of bytes to copy */ 559 u8 *aNext; /* Pointer to buffer to copy data from */ 560 561 nCopy = nRem; 562 if( nRem>p->nBuffer ) nCopy = p->nBuffer; 563 rc = vdbePmaReadBlob(p, nCopy, &aNext); 564 if( rc!=SQLITE_OK ) return rc; 565 assert( aNext!=p->aAlloc ); 566 memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); 567 nRem -= nCopy; 568 } 569 570 *ppOut = p->aAlloc; 571 } 572 573 return SQLITE_OK; 574 } 575 576 /* 577 ** Read a varint from the stream of data accessed by p. Set *pnOut to 578 ** the value read. 579 */ 580 static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ 581 int iBuf; 582 583 if( p->aMap ){ 584 p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); 585 }else{ 586 iBuf = p->iReadOff % p->nBuffer; 587 if( iBuf && (p->nBuffer-iBuf)>=9 ){ 588 p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); 589 }else{ 590 u8 aVarint[16], *a; 591 int i = 0, rc; 592 do{ 593 rc = vdbePmaReadBlob(p, 1, &a); 594 if( rc ) return rc; 595 aVarint[(i++)&0xf] = a[0]; 596 }while( (a[0]&0x80)!=0 ); 597 sqlite3GetVarint(aVarint, pnOut); 598 } 599 } 600 601 return SQLITE_OK; 602 } 603 604 /* 605 ** Attempt to memory map file pFile. If successful, set *pp to point to the 606 ** new mapping and return SQLITE_OK. If the mapping is not attempted 607 ** (because the file is too large or the VFS layer is configured not to use 608 ** mmap), return SQLITE_OK and set *pp to NULL. 609 ** 610 ** Or, if an error occurs, return an SQLite error code. The final value of 611 ** *pp is undefined in this case. 612 */ 613 static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ 614 int rc = SQLITE_OK; 615 if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ 616 sqlite3_file *pFd = pFile->pFd; 617 if( pFd->pMethods->iVersion>=3 ){ 618 rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); 619 testcase( rc!=SQLITE_OK ); 620 } 621 } 622 return rc; 623 } 624 625 /* 626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to 627 ** that file) and seek it to offset iOff within the file. Return SQLITE_OK 628 ** if successful, or an SQLite error code if an error occurs. 629 */ 630 static int vdbePmaReaderSeek( 631 SortSubtask *pTask, /* Task context */ 632 PmaReader *pReadr, /* Reader whose cursor is to be moved */ 633 SorterFile *pFile, /* Sorter file to read from */ 634 i64 iOff /* Offset in pFile */ 635 ){ 636 int rc = SQLITE_OK; 637 638 assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); 639 640 if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; 641 if( pReadr->aMap ){ 642 sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 643 pReadr->aMap = 0; 644 } 645 pReadr->iReadOff = iOff; 646 pReadr->iEof = pFile->iEof; 647 pReadr->pFd = pFile->pFd; 648 649 rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); 650 if( rc==SQLITE_OK && pReadr->aMap==0 ){ 651 int pgsz = pTask->pSorter->pgsz; 652 int iBuf = pReadr->iReadOff % pgsz; 653 if( pReadr->aBuffer==0 ){ 654 pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); 655 if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; 656 pReadr->nBuffer = pgsz; 657 } 658 if( rc==SQLITE_OK && iBuf ){ 659 int nRead = pgsz - iBuf; 660 if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ 661 nRead = (int)(pReadr->iEof - pReadr->iReadOff); 662 } 663 rc = sqlite3OsRead( 664 pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff 665 ); 666 testcase( rc!=SQLITE_OK ); 667 } 668 } 669 670 return rc; 671 } 672 673 /* 674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if 675 ** no error occurs, or an SQLite error code if one does. 676 */ 677 static int vdbePmaReaderNext(PmaReader *pReadr){ 678 int rc = SQLITE_OK; /* Return Code */ 679 u64 nRec = 0; /* Size of record in bytes */ 680 681 682 if( pReadr->iReadOff>=pReadr->iEof ){ 683 IncrMerger *pIncr = pReadr->pIncr; 684 int bEof = 1; 685 if( pIncr ){ 686 rc = vdbeIncrSwap(pIncr); 687 if( rc==SQLITE_OK && pIncr->bEof==0 ){ 688 rc = vdbePmaReaderSeek( 689 pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff 690 ); 691 bEof = 0; 692 } 693 } 694 695 if( bEof ){ 696 /* This is an EOF condition */ 697 vdbePmaReaderClear(pReadr); 698 testcase( rc!=SQLITE_OK ); 699 return rc; 700 } 701 } 702 703 if( rc==SQLITE_OK ){ 704 rc = vdbePmaReadVarint(pReadr, &nRec); 705 } 706 if( rc==SQLITE_OK ){ 707 pReadr->nKey = (int)nRec; 708 rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); 709 testcase( rc!=SQLITE_OK ); 710 } 711 712 return rc; 713 } 714 715 /* 716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile 717 ** starting at offset iStart and ending at offset iEof-1. This function 718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the 719 ** PMA is empty). 720 ** 721 ** If the pnByte parameter is NULL, then it is assumed that the file 722 ** contains a single PMA, and that that PMA omits the initial length varint. 723 */ 724 static int vdbePmaReaderInit( 725 SortSubtask *pTask, /* Task context */ 726 SorterFile *pFile, /* Sorter file to read from */ 727 i64 iStart, /* Start offset in pFile */ 728 PmaReader *pReadr, /* PmaReader to populate */ 729 i64 *pnByte /* IN/OUT: Increment this value by PMA size */ 730 ){ 731 int rc; 732 733 assert( pFile->iEof>iStart ); 734 assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); 735 assert( pReadr->aBuffer==0 ); 736 assert( pReadr->aMap==0 ); 737 738 rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); 739 if( rc==SQLITE_OK ){ 740 u64 nByte = 0; /* Size of PMA in bytes */ 741 rc = vdbePmaReadVarint(pReadr, &nByte); 742 pReadr->iEof = pReadr->iReadOff + nByte; 743 *pnByte += nByte; 744 } 745 746 if( rc==SQLITE_OK ){ 747 rc = vdbePmaReaderNext(pReadr); 748 } 749 return rc; 750 } 751 752 /* 753 ** A version of vdbeSorterCompare() that assumes that it has already been 754 ** determined that the first field of key1 is equal to the first field of 755 ** key2. 756 */ 757 static int vdbeSorterCompareTail( 758 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 759 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 760 const void *pKey1, int nKey1, /* Left side of comparison */ 761 const void *pKey2, int nKey2 /* Right side of comparison */ 762 ){ 763 UnpackedRecord *r2 = pTask->pUnpacked; 764 if( *pbKey2Cached==0 ){ 765 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 766 *pbKey2Cached = 1; 767 } 768 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); 769 } 770 771 /* 772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, 773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences 774 ** used by the comparison. Return the result of the comparison. 775 ** 776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called, 777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version 778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked 779 ** version of key2 and *pbKey2Cached set to true before returning. 780 ** 781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set 782 ** to SQLITE_NOMEM. 783 */ 784 static int vdbeSorterCompare( 785 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 786 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 787 const void *pKey1, int nKey1, /* Left side of comparison */ 788 const void *pKey2, int nKey2 /* Right side of comparison */ 789 ){ 790 UnpackedRecord *r2 = pTask->pUnpacked; 791 if( !*pbKey2Cached ){ 792 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 793 *pbKey2Cached = 1; 794 } 795 return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); 796 } 797 798 /* 799 ** A specially optimized version of vdbeSorterCompare() that assumes that 800 ** the first field of each key is a TEXT value and that the collation 801 ** sequence to compare them with is BINARY. 802 */ 803 static int vdbeSorterCompareText( 804 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 805 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 806 const void *pKey1, int nKey1, /* Left side of comparison */ 807 const void *pKey2, int nKey2 /* Right side of comparison */ 808 ){ 809 const u8 * const p1 = (const u8 * const)pKey1; 810 const u8 * const p2 = (const u8 * const)pKey2; 811 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 812 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 813 814 int n1; 815 int n2; 816 int res; 817 818 getVarint32(&p1[1], n1); n1 = (n1 - 13) / 2; 819 getVarint32(&p2[1], n2); n2 = (n2 - 13) / 2; 820 res = memcmp(v1, v2, MIN(n1, n2)); 821 if( res==0 ){ 822 res = n1 - n2; 823 } 824 825 if( res==0 ){ 826 if( pTask->pSorter->pKeyInfo->nField>1 ){ 827 res = vdbeSorterCompareTail( 828 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 829 ); 830 } 831 }else{ 832 if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ 833 res = res * -1; 834 } 835 } 836 837 return res; 838 } 839 840 /* 841 ** A specially optimized version of vdbeSorterCompare() that assumes that 842 ** the first field of each key is an INTEGER value. 843 */ 844 static int vdbeSorterCompareInt( 845 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 846 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 847 const void *pKey1, int nKey1, /* Left side of comparison */ 848 const void *pKey2, int nKey2 /* Right side of comparison */ 849 ){ 850 const u8 * const p1 = (const u8 * const)pKey1; 851 const u8 * const p2 = (const u8 * const)pKey2; 852 const int s1 = p1[1]; /* Left hand serial type */ 853 const int s2 = p2[1]; /* Right hand serial type */ 854 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 855 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 856 int res; /* Return value */ 857 858 assert( (s1>0 && s1<7) || s1==8 || s1==9 ); 859 assert( (s2>0 && s2<7) || s2==8 || s2==9 ); 860 861 if( s1>7 && s2>7 ){ 862 res = s1 - s2; 863 }else{ 864 if( s1==s2 ){ 865 if( (*v1 ^ *v2) & 0x80 ){ 866 /* The two values have different signs */ 867 res = (*v1 & 0x80) ? -1 : +1; 868 }else{ 869 /* The two values have the same sign. Compare using memcmp(). */ 870 static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8 }; 871 int i; 872 res = 0; 873 for(i=0; i<aLen[s1]; i++){ 874 if( (res = v1[i] - v2[i]) ) break; 875 } 876 } 877 }else{ 878 if( s2>7 ){ 879 res = +1; 880 }else if( s1>7 ){ 881 res = -1; 882 }else{ 883 res = s1 - s2; 884 } 885 assert( res!=0 ); 886 887 if( res>0 ){ 888 if( *v1 & 0x80 ) res = -1; 889 }else{ 890 if( *v2 & 0x80 ) res = +1; 891 } 892 } 893 } 894 895 if( res==0 ){ 896 if( pTask->pSorter->pKeyInfo->nField>1 ){ 897 res = vdbeSorterCompareTail( 898 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 899 ); 900 } 901 }else if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ 902 res = res * -1; 903 } 904 905 return res; 906 } 907 908 /* 909 ** Initialize the temporary index cursor just opened as a sorter cursor. 910 ** 911 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField) 912 ** to determine the number of fields that should be compared from the 913 ** records being sorted. However, if the value passed as argument nField 914 ** is non-zero and the sorter is able to guarantee a stable sort, nField 915 ** is used instead. This is used when sorting records for a CREATE INDEX 916 ** statement. In this case, keys are always delivered to the sorter in 917 ** order of the primary key, which happens to be make up the final part 918 ** of the records being sorted. So if the sort is stable, there is never 919 ** any reason to compare PK fields and they can be ignored for a small 920 ** performance boost. 921 ** 922 ** The sorter can guarantee a stable sort when running in single-threaded 923 ** mode, but not in multi-threaded mode. 924 ** 925 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 926 */ 927 int sqlite3VdbeSorterInit( 928 sqlite3 *db, /* Database connection (for malloc()) */ 929 int nField, /* Number of key fields in each record */ 930 VdbeCursor *pCsr /* Cursor that holds the new sorter */ 931 ){ 932 int pgsz; /* Page size of main database */ 933 int i; /* Used to iterate through aTask[] */ 934 VdbeSorter *pSorter; /* The new sorter */ 935 KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ 936 int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ 937 int sz; /* Size of pSorter in bytes */ 938 int rc = SQLITE_OK; 939 #if SQLITE_MAX_WORKER_THREADS==0 940 # define nWorker 0 941 #else 942 int nWorker; 943 #endif 944 945 /* Initialize the upper limit on the number of worker threads */ 946 #if SQLITE_MAX_WORKER_THREADS>0 947 if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ 948 nWorker = 0; 949 }else{ 950 nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; 951 } 952 #endif 953 954 /* Do not allow the total number of threads (main thread + all workers) 955 ** to exceed the maximum merge count */ 956 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT 957 if( nWorker>=SORTER_MAX_MERGE_COUNT ){ 958 nWorker = SORTER_MAX_MERGE_COUNT-1; 959 } 960 #endif 961 962 assert( pCsr->pKeyInfo && pCsr->pBtx==0 ); 963 assert( pCsr->eCurType==CURTYPE_SORTER ); 964 szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*); 965 sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); 966 967 pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); 968 pCsr->uc.pSorter = pSorter; 969 if( pSorter==0 ){ 970 rc = SQLITE_NOMEM_BKPT; 971 }else{ 972 pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); 973 memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); 974 pKeyInfo->db = 0; 975 if( nField && nWorker==0 ){ 976 pKeyInfo->nXField += (pKeyInfo->nField - nField); 977 pKeyInfo->nField = nField; 978 } 979 pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt); 980 pSorter->nTask = nWorker + 1; 981 pSorter->iPrev = (u8)(nWorker - 1); 982 pSorter->bUseThreads = (pSorter->nTask>1); 983 pSorter->db = db; 984 for(i=0; i<pSorter->nTask; i++){ 985 SortSubtask *pTask = &pSorter->aTask[i]; 986 pTask->pSorter = pSorter; 987 } 988 989 if( !sqlite3TempInMemory(db) ){ 990 i64 mxCache; /* Cache size in bytes*/ 991 u32 szPma = sqlite3GlobalConfig.szPma; 992 pSorter->mnPmaSize = szPma * pgsz; 993 994 mxCache = db->aDb[0].pSchema->cache_size; 995 if( mxCache<0 ){ 996 /* A negative cache-size value C indicates that the cache is abs(C) 997 ** KiB in size. */ 998 mxCache = mxCache * -1024; 999 }else{ 1000 mxCache = mxCache * pgsz; 1001 } 1002 mxCache = MIN(mxCache, SQLITE_MAX_PMASZ); 1003 pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache); 1004 1005 /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of 1006 ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary 1007 ** large heap allocations. 1008 */ 1009 if( sqlite3GlobalConfig.pScratch==0 ){ 1010 assert( pSorter->iMemory==0 ); 1011 pSorter->nMemory = pgsz; 1012 pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); 1013 if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; 1014 } 1015 } 1016 1017 if( (pKeyInfo->nField+pKeyInfo->nXField)<13 1018 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) 1019 ){ 1020 pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; 1021 } 1022 } 1023 1024 return rc; 1025 } 1026 #undef nWorker /* Defined at the top of this function */ 1027 1028 /* 1029 ** Free the list of sorted records starting at pRecord. 1030 */ 1031 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ 1032 SorterRecord *p; 1033 SorterRecord *pNext; 1034 for(p=pRecord; p; p=pNext){ 1035 pNext = p->u.pNext; 1036 sqlite3DbFree(db, p); 1037 } 1038 } 1039 1040 /* 1041 ** Free all resources owned by the object indicated by argument pTask. All 1042 ** fields of *pTask are zeroed before returning. 1043 */ 1044 static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ 1045 sqlite3DbFree(db, pTask->pUnpacked); 1046 #if SQLITE_MAX_WORKER_THREADS>0 1047 /* pTask->list.aMemory can only be non-zero if it was handed memory 1048 ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ 1049 if( pTask->list.aMemory ){ 1050 sqlite3_free(pTask->list.aMemory); 1051 }else 1052 #endif 1053 { 1054 assert( pTask->list.aMemory==0 ); 1055 vdbeSorterRecordFree(0, pTask->list.pList); 1056 } 1057 if( pTask->file.pFd ){ 1058 sqlite3OsCloseFree(pTask->file.pFd); 1059 } 1060 if( pTask->file2.pFd ){ 1061 sqlite3OsCloseFree(pTask->file2.pFd); 1062 } 1063 memset(pTask, 0, sizeof(SortSubtask)); 1064 } 1065 1066 #ifdef SQLITE_DEBUG_SORTER_THREADS 1067 static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ 1068 i64 t; 1069 int iTask = (pTask - pTask->pSorter->aTask); 1070 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1071 fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); 1072 } 1073 static void vdbeSorterRewindDebug(const char *zEvent){ 1074 i64 t; 1075 sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t); 1076 fprintf(stderr, "%lld:X %s\n", t, zEvent); 1077 } 1078 static void vdbeSorterPopulateDebug( 1079 SortSubtask *pTask, 1080 const char *zEvent 1081 ){ 1082 i64 t; 1083 int iTask = (pTask - pTask->pSorter->aTask); 1084 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1085 fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); 1086 } 1087 static void vdbeSorterBlockDebug( 1088 SortSubtask *pTask, 1089 int bBlocked, 1090 const char *zEvent 1091 ){ 1092 if( bBlocked ){ 1093 i64 t; 1094 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1095 fprintf(stderr, "%lld:main %s\n", t, zEvent); 1096 } 1097 } 1098 #else 1099 # define vdbeSorterWorkDebug(x,y) 1100 # define vdbeSorterRewindDebug(y) 1101 # define vdbeSorterPopulateDebug(x,y) 1102 # define vdbeSorterBlockDebug(x,y,z) 1103 #endif 1104 1105 #if SQLITE_MAX_WORKER_THREADS>0 1106 /* 1107 ** Join thread pTask->thread. 1108 */ 1109 static int vdbeSorterJoinThread(SortSubtask *pTask){ 1110 int rc = SQLITE_OK; 1111 if( pTask->pThread ){ 1112 #ifdef SQLITE_DEBUG_SORTER_THREADS 1113 int bDone = pTask->bDone; 1114 #endif 1115 void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); 1116 vdbeSorterBlockDebug(pTask, !bDone, "enter"); 1117 (void)sqlite3ThreadJoin(pTask->pThread, &pRet); 1118 vdbeSorterBlockDebug(pTask, !bDone, "exit"); 1119 rc = SQLITE_PTR_TO_INT(pRet); 1120 assert( pTask->bDone==1 ); 1121 pTask->bDone = 0; 1122 pTask->pThread = 0; 1123 } 1124 return rc; 1125 } 1126 1127 /* 1128 ** Launch a background thread to run xTask(pIn). 1129 */ 1130 static int vdbeSorterCreateThread( 1131 SortSubtask *pTask, /* Thread will use this task object */ 1132 void *(*xTask)(void*), /* Routine to run in a separate thread */ 1133 void *pIn /* Argument passed into xTask() */ 1134 ){ 1135 assert( pTask->pThread==0 && pTask->bDone==0 ); 1136 return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); 1137 } 1138 1139 /* 1140 ** Join all outstanding threads launched by SorterWrite() to create 1141 ** level-0 PMAs. 1142 */ 1143 static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ 1144 int rc = rcin; 1145 int i; 1146 1147 /* This function is always called by the main user thread. 1148 ** 1149 ** If this function is being called after SorterRewind() has been called, 1150 ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread 1151 ** is currently attempt to join one of the other threads. To avoid a race 1152 ** condition where this thread also attempts to join the same object, join 1153 ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ 1154 for(i=pSorter->nTask-1; i>=0; i--){ 1155 SortSubtask *pTask = &pSorter->aTask[i]; 1156 int rc2 = vdbeSorterJoinThread(pTask); 1157 if( rc==SQLITE_OK ) rc = rc2; 1158 } 1159 return rc; 1160 } 1161 #else 1162 # define vdbeSorterJoinAll(x,rcin) (rcin) 1163 # define vdbeSorterJoinThread(pTask) SQLITE_OK 1164 #endif 1165 1166 /* 1167 ** Allocate a new MergeEngine object capable of handling up to 1168 ** nReader PmaReader inputs. 1169 ** 1170 ** nReader is automatically rounded up to the next power of two. 1171 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. 1172 */ 1173 static MergeEngine *vdbeMergeEngineNew(int nReader){ 1174 int N = 2; /* Smallest power of two >= nReader */ 1175 int nByte; /* Total bytes of space to allocate */ 1176 MergeEngine *pNew; /* Pointer to allocated object to return */ 1177 1178 assert( nReader<=SORTER_MAX_MERGE_COUNT ); 1179 1180 while( N<nReader ) N += N; 1181 nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader)); 1182 1183 pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte); 1184 if( pNew ){ 1185 pNew->nTree = N; 1186 pNew->pTask = 0; 1187 pNew->aReadr = (PmaReader*)&pNew[1]; 1188 pNew->aTree = (int*)&pNew->aReadr[N]; 1189 } 1190 return pNew; 1191 } 1192 1193 /* 1194 ** Free the MergeEngine object passed as the only argument. 1195 */ 1196 static void vdbeMergeEngineFree(MergeEngine *pMerger){ 1197 int i; 1198 if( pMerger ){ 1199 for(i=0; i<pMerger->nTree; i++){ 1200 vdbePmaReaderClear(&pMerger->aReadr[i]); 1201 } 1202 } 1203 sqlite3_free(pMerger); 1204 } 1205 1206 /* 1207 ** Free all resources associated with the IncrMerger object indicated by 1208 ** the first argument. 1209 */ 1210 static void vdbeIncrFree(IncrMerger *pIncr){ 1211 if( pIncr ){ 1212 #if SQLITE_MAX_WORKER_THREADS>0 1213 if( pIncr->bUseThread ){ 1214 vdbeSorterJoinThread(pIncr->pTask); 1215 if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); 1216 if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); 1217 } 1218 #endif 1219 vdbeMergeEngineFree(pIncr->pMerger); 1220 sqlite3_free(pIncr); 1221 } 1222 } 1223 1224 /* 1225 ** Reset a sorting cursor back to its original empty state. 1226 */ 1227 void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ 1228 int i; 1229 (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); 1230 assert( pSorter->bUseThreads || pSorter->pReader==0 ); 1231 #if SQLITE_MAX_WORKER_THREADS>0 1232 if( pSorter->pReader ){ 1233 vdbePmaReaderClear(pSorter->pReader); 1234 sqlite3DbFree(db, pSorter->pReader); 1235 pSorter->pReader = 0; 1236 } 1237 #endif 1238 vdbeMergeEngineFree(pSorter->pMerger); 1239 pSorter->pMerger = 0; 1240 for(i=0; i<pSorter->nTask; i++){ 1241 SortSubtask *pTask = &pSorter->aTask[i]; 1242 vdbeSortSubtaskCleanup(db, pTask); 1243 pTask->pSorter = pSorter; 1244 } 1245 if( pSorter->list.aMemory==0 ){ 1246 vdbeSorterRecordFree(0, pSorter->list.pList); 1247 } 1248 pSorter->list.pList = 0; 1249 pSorter->list.szPMA = 0; 1250 pSorter->bUsePMA = 0; 1251 pSorter->iMemory = 0; 1252 pSorter->mxKeysize = 0; 1253 sqlite3DbFree(db, pSorter->pUnpacked); 1254 pSorter->pUnpacked = 0; 1255 } 1256 1257 /* 1258 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. 1259 */ 1260 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ 1261 VdbeSorter *pSorter; 1262 assert( pCsr->eCurType==CURTYPE_SORTER ); 1263 pSorter = pCsr->uc.pSorter; 1264 if( pSorter ){ 1265 sqlite3VdbeSorterReset(db, pSorter); 1266 sqlite3_free(pSorter->list.aMemory); 1267 sqlite3DbFree(db, pSorter); 1268 pCsr->uc.pSorter = 0; 1269 } 1270 } 1271 1272 #if SQLITE_MAX_MMAP_SIZE>0 1273 /* 1274 ** The first argument is a file-handle open on a temporary file. The file 1275 ** is guaranteed to be nByte bytes or smaller in size. This function 1276 ** attempts to extend the file to nByte bytes in size and to ensure that 1277 ** the VFS has memory mapped it. 1278 ** 1279 ** Whether or not the file does end up memory mapped of course depends on 1280 ** the specific VFS implementation. 1281 */ 1282 static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ 1283 if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ 1284 void *p = 0; 1285 int chunksize = 4*1024; 1286 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); 1287 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); 1288 sqlite3OsFetch(pFd, 0, (int)nByte, &p); 1289 sqlite3OsUnfetch(pFd, 0, p); 1290 } 1291 } 1292 #else 1293 # define vdbeSorterExtendFile(x,y,z) 1294 #endif 1295 1296 /* 1297 ** Allocate space for a file-handle and open a temporary file. If successful, 1298 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. 1299 ** Otherwise, set *ppFd to 0 and return an SQLite error code. 1300 */ 1301 static int vdbeSorterOpenTempFile( 1302 sqlite3 *db, /* Database handle doing sort */ 1303 i64 nExtend, /* Attempt to extend file to this size */ 1304 sqlite3_file **ppFd 1305 ){ 1306 int rc; 1307 if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; 1308 rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, 1309 SQLITE_OPEN_TEMP_JOURNAL | 1310 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 1311 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc 1312 ); 1313 if( rc==SQLITE_OK ){ 1314 i64 max = SQLITE_MAX_MMAP_SIZE; 1315 sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); 1316 if( nExtend>0 ){ 1317 vdbeSorterExtendFile(db, *ppFd, nExtend); 1318 } 1319 } 1320 return rc; 1321 } 1322 1323 /* 1324 ** If it has not already been allocated, allocate the UnpackedRecord 1325 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or 1326 ** if no allocation was required), or SQLITE_NOMEM otherwise. 1327 */ 1328 static int vdbeSortAllocUnpacked(SortSubtask *pTask){ 1329 if( pTask->pUnpacked==0 ){ 1330 pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo); 1331 if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT; 1332 pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nField; 1333 pTask->pUnpacked->errCode = 0; 1334 } 1335 return SQLITE_OK; 1336 } 1337 1338 1339 /* 1340 ** Merge the two sorted lists p1 and p2 into a single list. 1341 */ 1342 static SorterRecord *vdbeSorterMerge( 1343 SortSubtask *pTask, /* Calling thread context */ 1344 SorterRecord *p1, /* First list to merge */ 1345 SorterRecord *p2 /* Second list to merge */ 1346 ){ 1347 SorterRecord *pFinal = 0; 1348 SorterRecord **pp = &pFinal; 1349 int bCached = 0; 1350 1351 assert( p1!=0 && p2!=0 ); 1352 for(;;){ 1353 int res; 1354 res = pTask->xCompare( 1355 pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal 1356 ); 1357 1358 if( res<=0 ){ 1359 *pp = p1; 1360 pp = &p1->u.pNext; 1361 p1 = p1->u.pNext; 1362 if( p1==0 ){ 1363 *pp = p2; 1364 break; 1365 } 1366 }else{ 1367 *pp = p2; 1368 pp = &p2->u.pNext; 1369 p2 = p2->u.pNext; 1370 bCached = 0; 1371 if( p2==0 ){ 1372 *pp = p1; 1373 break; 1374 } 1375 } 1376 } 1377 return pFinal; 1378 } 1379 1380 /* 1381 ** Return the SorterCompare function to compare values collected by the 1382 ** sorter object passed as the only argument. 1383 */ 1384 static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ 1385 if( p->typeMask==SORTER_TYPE_INTEGER ){ 1386 return vdbeSorterCompareInt; 1387 }else if( p->typeMask==SORTER_TYPE_TEXT ){ 1388 return vdbeSorterCompareText; 1389 } 1390 return vdbeSorterCompare; 1391 } 1392 1393 /* 1394 ** Sort the linked list of records headed at pTask->pList. Return 1395 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if 1396 ** an error occurs. 1397 */ 1398 static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ 1399 int i; 1400 SorterRecord **aSlot; 1401 SorterRecord *p; 1402 int rc; 1403 1404 rc = vdbeSortAllocUnpacked(pTask); 1405 if( rc!=SQLITE_OK ) return rc; 1406 1407 p = pList->pList; 1408 pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); 1409 1410 aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); 1411 if( !aSlot ){ 1412 return SQLITE_NOMEM_BKPT; 1413 } 1414 1415 while( p ){ 1416 SorterRecord *pNext; 1417 if( pList->aMemory ){ 1418 if( (u8*)p==pList->aMemory ){ 1419 pNext = 0; 1420 }else{ 1421 assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) ); 1422 pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; 1423 } 1424 }else{ 1425 pNext = p->u.pNext; 1426 } 1427 1428 p->u.pNext = 0; 1429 for(i=0; aSlot[i]; i++){ 1430 p = vdbeSorterMerge(pTask, p, aSlot[i]); 1431 aSlot[i] = 0; 1432 } 1433 aSlot[i] = p; 1434 p = pNext; 1435 } 1436 1437 p = 0; 1438 for(i=0; i<64; i++){ 1439 if( aSlot[i]==0 ) continue; 1440 p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i]; 1441 } 1442 pList->pList = p; 1443 1444 sqlite3_free(aSlot); 1445 assert( pTask->pUnpacked->errCode==SQLITE_OK 1446 || pTask->pUnpacked->errCode==SQLITE_NOMEM 1447 ); 1448 return pTask->pUnpacked->errCode; 1449 } 1450 1451 /* 1452 ** Initialize a PMA-writer object. 1453 */ 1454 static void vdbePmaWriterInit( 1455 sqlite3_file *pFd, /* File handle to write to */ 1456 PmaWriter *p, /* Object to populate */ 1457 int nBuf, /* Buffer size */ 1458 i64 iStart /* Offset of pFd to begin writing at */ 1459 ){ 1460 memset(p, 0, sizeof(PmaWriter)); 1461 p->aBuffer = (u8*)sqlite3Malloc(nBuf); 1462 if( !p->aBuffer ){ 1463 p->eFWErr = SQLITE_NOMEM_BKPT; 1464 }else{ 1465 p->iBufEnd = p->iBufStart = (iStart % nBuf); 1466 p->iWriteOff = iStart - p->iBufStart; 1467 p->nBuffer = nBuf; 1468 p->pFd = pFd; 1469 } 1470 } 1471 1472 /* 1473 ** Write nData bytes of data to the PMA. Return SQLITE_OK 1474 ** if successful, or an SQLite error code if an error occurs. 1475 */ 1476 static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ 1477 int nRem = nData; 1478 while( nRem>0 && p->eFWErr==0 ){ 1479 int nCopy = nRem; 1480 if( nCopy>(p->nBuffer - p->iBufEnd) ){ 1481 nCopy = p->nBuffer - p->iBufEnd; 1482 } 1483 1484 memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); 1485 p->iBufEnd += nCopy; 1486 if( p->iBufEnd==p->nBuffer ){ 1487 p->eFWErr = sqlite3OsWrite(p->pFd, 1488 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1489 p->iWriteOff + p->iBufStart 1490 ); 1491 p->iBufStart = p->iBufEnd = 0; 1492 p->iWriteOff += p->nBuffer; 1493 } 1494 assert( p->iBufEnd<p->nBuffer ); 1495 1496 nRem -= nCopy; 1497 } 1498 } 1499 1500 /* 1501 ** Flush any buffered data to disk and clean up the PMA-writer object. 1502 ** The results of using the PMA-writer after this call are undefined. 1503 ** Return SQLITE_OK if flushing the buffered data succeeds or is not 1504 ** required. Otherwise, return an SQLite error code. 1505 ** 1506 ** Before returning, set *piEof to the offset immediately following the 1507 ** last byte written to the file. 1508 */ 1509 static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ 1510 int rc; 1511 if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ 1512 p->eFWErr = sqlite3OsWrite(p->pFd, 1513 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1514 p->iWriteOff + p->iBufStart 1515 ); 1516 } 1517 *piEof = (p->iWriteOff + p->iBufEnd); 1518 sqlite3_free(p->aBuffer); 1519 rc = p->eFWErr; 1520 memset(p, 0, sizeof(PmaWriter)); 1521 return rc; 1522 } 1523 1524 /* 1525 ** Write value iVal encoded as a varint to the PMA. Return 1526 ** SQLITE_OK if successful, or an SQLite error code if an error occurs. 1527 */ 1528 static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ 1529 int nByte; 1530 u8 aByte[10]; 1531 nByte = sqlite3PutVarint(aByte, iVal); 1532 vdbePmaWriteBlob(p, aByte, nByte); 1533 } 1534 1535 /* 1536 ** Write the current contents of in-memory linked-list pList to a level-0 1537 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if 1538 ** successful, or an SQLite error code otherwise. 1539 ** 1540 ** The format of a PMA is: 1541 ** 1542 ** * A varint. This varint contains the total number of bytes of content 1543 ** in the PMA (not including the varint itself). 1544 ** 1545 ** * One or more records packed end-to-end in order of ascending keys. 1546 ** Each record consists of a varint followed by a blob of data (the 1547 ** key). The varint is the number of bytes in the blob of data. 1548 */ 1549 static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ 1550 sqlite3 *db = pTask->pSorter->db; 1551 int rc = SQLITE_OK; /* Return code */ 1552 PmaWriter writer; /* Object used to write to the file */ 1553 1554 #ifdef SQLITE_DEBUG 1555 /* Set iSz to the expected size of file pTask->file after writing the PMA. 1556 ** This is used by an assert() statement at the end of this function. */ 1557 i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; 1558 #endif 1559 1560 vdbeSorterWorkDebug(pTask, "enter"); 1561 memset(&writer, 0, sizeof(PmaWriter)); 1562 assert( pList->szPMA>0 ); 1563 1564 /* If the first temporary PMA file has not been opened, open it now. */ 1565 if( pTask->file.pFd==0 ){ 1566 rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); 1567 assert( rc!=SQLITE_OK || pTask->file.pFd ); 1568 assert( pTask->file.iEof==0 ); 1569 assert( pTask->nPMA==0 ); 1570 } 1571 1572 /* Try to get the file to memory map */ 1573 if( rc==SQLITE_OK ){ 1574 vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); 1575 } 1576 1577 /* Sort the list */ 1578 if( rc==SQLITE_OK ){ 1579 rc = vdbeSorterSort(pTask, pList); 1580 } 1581 1582 if( rc==SQLITE_OK ){ 1583 SorterRecord *p; 1584 SorterRecord *pNext = 0; 1585 1586 vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, 1587 pTask->file.iEof); 1588 pTask->nPMA++; 1589 vdbePmaWriteVarint(&writer, pList->szPMA); 1590 for(p=pList->pList; p; p=pNext){ 1591 pNext = p->u.pNext; 1592 vdbePmaWriteVarint(&writer, p->nVal); 1593 vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); 1594 if( pList->aMemory==0 ) sqlite3_free(p); 1595 } 1596 pList->pList = p; 1597 rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); 1598 } 1599 1600 vdbeSorterWorkDebug(pTask, "exit"); 1601 assert( rc!=SQLITE_OK || pList->pList==0 ); 1602 assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); 1603 return rc; 1604 } 1605 1606 /* 1607 ** Advance the MergeEngine to its next entry. 1608 ** Set *pbEof to true there is no next entry because 1609 ** the MergeEngine has reached the end of all its inputs. 1610 ** 1611 ** Return SQLITE_OK if successful or an error code if an error occurs. 1612 */ 1613 static int vdbeMergeEngineStep( 1614 MergeEngine *pMerger, /* The merge engine to advance to the next row */ 1615 int *pbEof /* Set TRUE at EOF. Set false for more content */ 1616 ){ 1617 int rc; 1618 int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ 1619 SortSubtask *pTask = pMerger->pTask; 1620 1621 /* Advance the current PmaReader */ 1622 rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); 1623 1624 /* Update contents of aTree[] */ 1625 if( rc==SQLITE_OK ){ 1626 int i; /* Index of aTree[] to recalculate */ 1627 PmaReader *pReadr1; /* First PmaReader to compare */ 1628 PmaReader *pReadr2; /* Second PmaReader to compare */ 1629 int bCached = 0; 1630 1631 /* Find the first two PmaReaders to compare. The one that was just 1632 ** advanced (iPrev) and the one next to it in the array. */ 1633 pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; 1634 pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; 1635 1636 for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ 1637 /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ 1638 int iRes; 1639 if( pReadr1->pFd==0 ){ 1640 iRes = +1; 1641 }else if( pReadr2->pFd==0 ){ 1642 iRes = -1; 1643 }else{ 1644 iRes = pTask->xCompare(pTask, &bCached, 1645 pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey 1646 ); 1647 } 1648 1649 /* If pReadr1 contained the smaller value, set aTree[i] to its index. 1650 ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this 1651 ** case there is no cache of pReadr2 in pTask->pUnpacked, so set 1652 ** pKey2 to point to the record belonging to pReadr2. 1653 ** 1654 ** Alternatively, if pReadr2 contains the smaller of the two values, 1655 ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() 1656 ** was actually called above, then pTask->pUnpacked now contains 1657 ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent 1658 ** vdbeSorterCompare() from decoding pReadr2 again. 1659 ** 1660 ** If the two values were equal, then the value from the oldest 1661 ** PMA should be considered smaller. The VdbeSorter.aReadr[] array 1662 ** is sorted from oldest to newest, so pReadr1 contains older values 1663 ** than pReadr2 iff (pReadr1<pReadr2). */ 1664 if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ 1665 pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); 1666 pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1667 bCached = 0; 1668 }else{ 1669 if( pReadr1->pFd ) bCached = 0; 1670 pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); 1671 pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1672 } 1673 } 1674 *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); 1675 } 1676 1677 return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); 1678 } 1679 1680 #if SQLITE_MAX_WORKER_THREADS>0 1681 /* 1682 ** The main routine for background threads that write level-0 PMAs. 1683 */ 1684 static void *vdbeSorterFlushThread(void *pCtx){ 1685 SortSubtask *pTask = (SortSubtask*)pCtx; 1686 int rc; /* Return code */ 1687 assert( pTask->bDone==0 ); 1688 rc = vdbeSorterListToPMA(pTask, &pTask->list); 1689 pTask->bDone = 1; 1690 return SQLITE_INT_TO_PTR(rc); 1691 } 1692 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 1693 1694 /* 1695 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly 1696 ** using a background thread. 1697 */ 1698 static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ 1699 #if SQLITE_MAX_WORKER_THREADS==0 1700 pSorter->bUsePMA = 1; 1701 return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); 1702 #else 1703 int rc = SQLITE_OK; 1704 int i; 1705 SortSubtask *pTask = 0; /* Thread context used to create new PMA */ 1706 int nWorker = (pSorter->nTask-1); 1707 1708 /* Set the flag to indicate that at least one PMA has been written. 1709 ** Or will be, anyhow. */ 1710 pSorter->bUsePMA = 1; 1711 1712 /* Select a sub-task to sort and flush the current list of in-memory 1713 ** records to disk. If the sorter is running in multi-threaded mode, 1714 ** round-robin between the first (pSorter->nTask-1) tasks. Except, if 1715 ** the background thread from a sub-tasks previous turn is still running, 1716 ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, 1717 ** fall back to using the final sub-task. The first (pSorter->nTask-1) 1718 ** sub-tasks are prefered as they use background threads - the final 1719 ** sub-task uses the main thread. */ 1720 for(i=0; i<nWorker; i++){ 1721 int iTest = (pSorter->iPrev + i + 1) % nWorker; 1722 pTask = &pSorter->aTask[iTest]; 1723 if( pTask->bDone ){ 1724 rc = vdbeSorterJoinThread(pTask); 1725 } 1726 if( rc!=SQLITE_OK || pTask->pThread==0 ) break; 1727 } 1728 1729 if( rc==SQLITE_OK ){ 1730 if( i==nWorker ){ 1731 /* Use the foreground thread for this operation */ 1732 rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); 1733 }else{ 1734 /* Launch a background thread for this operation */ 1735 u8 *aMem = pTask->list.aMemory; 1736 void *pCtx = (void*)pTask; 1737 1738 assert( pTask->pThread==0 && pTask->bDone==0 ); 1739 assert( pTask->list.pList==0 ); 1740 assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); 1741 1742 pSorter->iPrev = (u8)(pTask - pSorter->aTask); 1743 pTask->list = pSorter->list; 1744 pSorter->list.pList = 0; 1745 pSorter->list.szPMA = 0; 1746 if( aMem ){ 1747 pSorter->list.aMemory = aMem; 1748 pSorter->nMemory = sqlite3MallocSize(aMem); 1749 }else if( pSorter->list.aMemory ){ 1750 pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); 1751 if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; 1752 } 1753 1754 rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); 1755 } 1756 } 1757 1758 return rc; 1759 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */ 1760 } 1761 1762 /* 1763 ** Add a record to the sorter. 1764 */ 1765 int sqlite3VdbeSorterWrite( 1766 const VdbeCursor *pCsr, /* Sorter cursor */ 1767 Mem *pVal /* Memory cell containing record */ 1768 ){ 1769 VdbeSorter *pSorter; 1770 int rc = SQLITE_OK; /* Return Code */ 1771 SorterRecord *pNew; /* New list element */ 1772 int bFlush; /* True to flush contents of memory to PMA */ 1773 int nReq; /* Bytes of memory required */ 1774 int nPMA; /* Bytes of PMA space required */ 1775 int t; /* serial type of first record field */ 1776 1777 assert( pCsr->eCurType==CURTYPE_SORTER ); 1778 pSorter = pCsr->uc.pSorter; 1779 getVarint32((const u8*)&pVal->z[1], t); 1780 if( t>0 && t<10 && t!=7 ){ 1781 pSorter->typeMask &= SORTER_TYPE_INTEGER; 1782 }else if( t>10 && (t & 0x01) ){ 1783 pSorter->typeMask &= SORTER_TYPE_TEXT; 1784 }else{ 1785 pSorter->typeMask = 0; 1786 } 1787 1788 assert( pSorter ); 1789 1790 /* Figure out whether or not the current contents of memory should be 1791 ** flushed to a PMA before continuing. If so, do so. 1792 ** 1793 ** If using the single large allocation mode (pSorter->aMemory!=0), then 1794 ** flush the contents of memory to a new PMA if (a) at least one value is 1795 ** already in memory and (b) the new value will not fit in memory. 1796 ** 1797 ** Or, if using separate allocations for each record, flush the contents 1798 ** of memory to a PMA if either of the following are true: 1799 ** 1800 ** * The total memory allocated for the in-memory list is greater 1801 ** than (page-size * cache-size), or 1802 ** 1803 ** * The total memory allocated for the in-memory list is greater 1804 ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. 1805 */ 1806 nReq = pVal->n + sizeof(SorterRecord); 1807 nPMA = pVal->n + sqlite3VarintLen(pVal->n); 1808 if( pSorter->mxPmaSize ){ 1809 if( pSorter->list.aMemory ){ 1810 bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; 1811 }else{ 1812 bFlush = ( 1813 (pSorter->list.szPMA > pSorter->mxPmaSize) 1814 || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) 1815 ); 1816 } 1817 if( bFlush ){ 1818 rc = vdbeSorterFlushPMA(pSorter); 1819 pSorter->list.szPMA = 0; 1820 pSorter->iMemory = 0; 1821 assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); 1822 } 1823 } 1824 1825 pSorter->list.szPMA += nPMA; 1826 if( nPMA>pSorter->mxKeysize ){ 1827 pSorter->mxKeysize = nPMA; 1828 } 1829 1830 if( pSorter->list.aMemory ){ 1831 int nMin = pSorter->iMemory + nReq; 1832 1833 if( nMin>pSorter->nMemory ){ 1834 u8 *aNew; 1835 int iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; 1836 int nNew = pSorter->nMemory * 2; 1837 while( nNew < nMin ) nNew = nNew*2; 1838 if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; 1839 if( nNew < nMin ) nNew = nMin; 1840 1841 aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); 1842 if( !aNew ) return SQLITE_NOMEM_BKPT; 1843 pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; 1844 pSorter->list.aMemory = aNew; 1845 pSorter->nMemory = nNew; 1846 } 1847 1848 pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; 1849 pSorter->iMemory += ROUND8(nReq); 1850 if( pSorter->list.pList ){ 1851 pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); 1852 } 1853 }else{ 1854 pNew = (SorterRecord *)sqlite3Malloc(nReq); 1855 if( pNew==0 ){ 1856 return SQLITE_NOMEM_BKPT; 1857 } 1858 pNew->u.pNext = pSorter->list.pList; 1859 } 1860 1861 memcpy(SRVAL(pNew), pVal->z, pVal->n); 1862 pNew->nVal = pVal->n; 1863 pSorter->list.pList = pNew; 1864 1865 return rc; 1866 } 1867 1868 /* 1869 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format 1870 ** of the data stored in aFile[1] is the same as that used by regular PMAs, 1871 ** except that the number-of-bytes varint is omitted from the start. 1872 */ 1873 static int vdbeIncrPopulate(IncrMerger *pIncr){ 1874 int rc = SQLITE_OK; 1875 int rc2; 1876 i64 iStart = pIncr->iStartOff; 1877 SorterFile *pOut = &pIncr->aFile[1]; 1878 SortSubtask *pTask = pIncr->pTask; 1879 MergeEngine *pMerger = pIncr->pMerger; 1880 PmaWriter writer; 1881 assert( pIncr->bEof==0 ); 1882 1883 vdbeSorterPopulateDebug(pTask, "enter"); 1884 1885 vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); 1886 while( rc==SQLITE_OK ){ 1887 int dummy; 1888 PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; 1889 int nKey = pReader->nKey; 1890 i64 iEof = writer.iWriteOff + writer.iBufEnd; 1891 1892 /* Check if the output file is full or if the input has been exhausted. 1893 ** In either case exit the loop. */ 1894 if( pReader->pFd==0 ) break; 1895 if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; 1896 1897 /* Write the next key to the output. */ 1898 vdbePmaWriteVarint(&writer, nKey); 1899 vdbePmaWriteBlob(&writer, pReader->aKey, nKey); 1900 assert( pIncr->pMerger->pTask==pTask ); 1901 rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); 1902 } 1903 1904 rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); 1905 if( rc==SQLITE_OK ) rc = rc2; 1906 vdbeSorterPopulateDebug(pTask, "exit"); 1907 return rc; 1908 } 1909 1910 #if SQLITE_MAX_WORKER_THREADS>0 1911 /* 1912 ** The main routine for background threads that populate aFile[1] of 1913 ** multi-threaded IncrMerger objects. 1914 */ 1915 static void *vdbeIncrPopulateThread(void *pCtx){ 1916 IncrMerger *pIncr = (IncrMerger*)pCtx; 1917 void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); 1918 pIncr->pTask->bDone = 1; 1919 return pRet; 1920 } 1921 1922 /* 1923 ** Launch a background thread to populate aFile[1] of pIncr. 1924 */ 1925 static int vdbeIncrBgPopulate(IncrMerger *pIncr){ 1926 void *p = (void*)pIncr; 1927 assert( pIncr->bUseThread ); 1928 return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); 1929 } 1930 #endif 1931 1932 /* 1933 ** This function is called when the PmaReader corresponding to pIncr has 1934 ** finished reading the contents of aFile[0]. Its purpose is to "refill" 1935 ** aFile[0] such that the PmaReader should start rereading it from the 1936 ** beginning. 1937 ** 1938 ** For single-threaded objects, this is accomplished by literally reading 1939 ** keys from pIncr->pMerger and repopulating aFile[0]. 1940 ** 1941 ** For multi-threaded objects, all that is required is to wait until the 1942 ** background thread is finished (if it is not already) and then swap 1943 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not 1944 ** been exhausted, this function also launches a new background thread 1945 ** to populate the new aFile[1]. 1946 ** 1947 ** SQLITE_OK is returned on success, or an SQLite error code otherwise. 1948 */ 1949 static int vdbeIncrSwap(IncrMerger *pIncr){ 1950 int rc = SQLITE_OK; 1951 1952 #if SQLITE_MAX_WORKER_THREADS>0 1953 if( pIncr->bUseThread ){ 1954 rc = vdbeSorterJoinThread(pIncr->pTask); 1955 1956 if( rc==SQLITE_OK ){ 1957 SorterFile f0 = pIncr->aFile[0]; 1958 pIncr->aFile[0] = pIncr->aFile[1]; 1959 pIncr->aFile[1] = f0; 1960 } 1961 1962 if( rc==SQLITE_OK ){ 1963 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1964 pIncr->bEof = 1; 1965 }else{ 1966 rc = vdbeIncrBgPopulate(pIncr); 1967 } 1968 } 1969 }else 1970 #endif 1971 { 1972 rc = vdbeIncrPopulate(pIncr); 1973 pIncr->aFile[0] = pIncr->aFile[1]; 1974 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1975 pIncr->bEof = 1; 1976 } 1977 } 1978 1979 return rc; 1980 } 1981 1982 /* 1983 ** Allocate and return a new IncrMerger object to read data from pMerger. 1984 ** 1985 ** If an OOM condition is encountered, return NULL. In this case free the 1986 ** pMerger argument before returning. 1987 */ 1988 static int vdbeIncrMergerNew( 1989 SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ 1990 MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ 1991 IncrMerger **ppOut /* Write the new IncrMerger here */ 1992 ){ 1993 int rc = SQLITE_OK; 1994 IncrMerger *pIncr = *ppOut = (IncrMerger*) 1995 (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); 1996 if( pIncr ){ 1997 pIncr->pMerger = pMerger; 1998 pIncr->pTask = pTask; 1999 pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); 2000 pTask->file2.iEof += pIncr->mxSz; 2001 }else{ 2002 vdbeMergeEngineFree(pMerger); 2003 rc = SQLITE_NOMEM_BKPT; 2004 } 2005 return rc; 2006 } 2007 2008 #if SQLITE_MAX_WORKER_THREADS>0 2009 /* 2010 ** Set the "use-threads" flag on object pIncr. 2011 */ 2012 static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ 2013 pIncr->bUseThread = 1; 2014 pIncr->pTask->file2.iEof -= pIncr->mxSz; 2015 } 2016 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 2017 2018 2019 2020 /* 2021 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the 2022 ** two PmaReaders that feed that entry. Neither of the PmaReaders 2023 ** are advanced. This routine merely does the comparison. 2024 */ 2025 static void vdbeMergeEngineCompare( 2026 MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ 2027 int iOut /* Store the result in pMerger->aTree[iOut] */ 2028 ){ 2029 int i1; 2030 int i2; 2031 int iRes; 2032 PmaReader *p1; 2033 PmaReader *p2; 2034 2035 assert( iOut<pMerger->nTree && iOut>0 ); 2036 2037 if( iOut>=(pMerger->nTree/2) ){ 2038 i1 = (iOut - pMerger->nTree/2) * 2; 2039 i2 = i1 + 1; 2040 }else{ 2041 i1 = pMerger->aTree[iOut*2]; 2042 i2 = pMerger->aTree[iOut*2+1]; 2043 } 2044 2045 p1 = &pMerger->aReadr[i1]; 2046 p2 = &pMerger->aReadr[i2]; 2047 2048 if( p1->pFd==0 ){ 2049 iRes = i2; 2050 }else if( p2->pFd==0 ){ 2051 iRes = i1; 2052 }else{ 2053 SortSubtask *pTask = pMerger->pTask; 2054 int bCached = 0; 2055 int res; 2056 assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ 2057 res = pTask->xCompare( 2058 pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey 2059 ); 2060 if( res<=0 ){ 2061 iRes = i1; 2062 }else{ 2063 iRes = i2; 2064 } 2065 } 2066 2067 pMerger->aTree[iOut] = iRes; 2068 } 2069 2070 /* 2071 ** Allowed values for the eMode parameter to vdbeMergeEngineInit() 2072 ** and vdbePmaReaderIncrMergeInit(). 2073 ** 2074 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when 2075 ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used 2076 ** when there exists one or more separate worker threads. 2077 */ 2078 #define INCRINIT_NORMAL 0 2079 #define INCRINIT_TASK 1 2080 #define INCRINIT_ROOT 2 2081 2082 /* 2083 ** Forward reference required as the vdbeIncrMergeInit() and 2084 ** vdbePmaReaderIncrInit() routines are called mutually recursively when 2085 ** building a merge tree. 2086 */ 2087 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); 2088 2089 /* 2090 ** Initialize the MergeEngine object passed as the second argument. Once this 2091 ** function returns, the first key of merged data may be read from the 2092 ** MergeEngine object in the usual fashion. 2093 ** 2094 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge 2095 ** objects attached to the PmaReader objects that the merger reads from have 2096 ** already been populated, but that they have not yet populated aFile[0] and 2097 ** set the PmaReader objects up to read from it. In this case all that is 2098 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at 2099 ** its first key. 2100 ** 2101 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use 2102 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data 2103 ** to pMerger. 2104 ** 2105 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2106 */ 2107 static int vdbeMergeEngineInit( 2108 SortSubtask *pTask, /* Thread that will run pMerger */ 2109 MergeEngine *pMerger, /* MergeEngine to initialize */ 2110 int eMode /* One of the INCRINIT_XXX constants */ 2111 ){ 2112 int rc = SQLITE_OK; /* Return code */ 2113 int i; /* For looping over PmaReader objects */ 2114 int nTree = pMerger->nTree; 2115 2116 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2117 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2118 2119 /* Verify that the MergeEngine is assigned to a single thread */ 2120 assert( pMerger->pTask==0 ); 2121 pMerger->pTask = pTask; 2122 2123 for(i=0; i<nTree; i++){ 2124 if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){ 2125 /* PmaReaders should be normally initialized in order, as if they are 2126 ** reading from the same temp file this makes for more linear file IO. 2127 ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is 2128 ** in use it will block the vdbePmaReaderNext() call while it uses 2129 ** the main thread to fill its buffer. So calling PmaReaderNext() 2130 ** on this PmaReader before any of the multi-threaded PmaReaders takes 2131 ** better advantage of multi-processor hardware. */ 2132 rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); 2133 }else{ 2134 rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); 2135 } 2136 if( rc!=SQLITE_OK ) return rc; 2137 } 2138 2139 for(i=pMerger->nTree-1; i>0; i--){ 2140 vdbeMergeEngineCompare(pMerger, i); 2141 } 2142 return pTask->pUnpacked->errCode; 2143 } 2144 2145 /* 2146 ** The PmaReader passed as the first argument is guaranteed to be an 2147 ** incremental-reader (pReadr->pIncr!=0). This function serves to open 2148 ** and/or initialize the temp file related fields of the IncrMerge 2149 ** object at (pReadr->pIncr). 2150 ** 2151 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders 2152 ** in the sub-tree headed by pReadr are also initialized. Data is then 2153 ** loaded into the buffers belonging to pReadr and it is set to point to 2154 ** the first key in its range. 2155 ** 2156 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed 2157 ** to be a multi-threaded PmaReader and this function is being called in a 2158 ** background thread. In this case all PmaReaders in the sub-tree are 2159 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to 2160 ** pReadr is populated. However, pReadr itself is not set up to point 2161 ** to its first key. A call to vdbePmaReaderNext() is still required to do 2162 ** that. 2163 ** 2164 ** The reason this function does not call vdbePmaReaderNext() immediately 2165 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has 2166 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since 2167 ** this entire function is being run by thread (pTask->thread), that will 2168 ** lead to the current background thread attempting to join itself. 2169 ** 2170 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed 2171 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all 2172 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK). 2173 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and 2174 ** the current PmaReader set to point to the first key in its range. 2175 ** 2176 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2177 */ 2178 static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ 2179 int rc = SQLITE_OK; 2180 IncrMerger *pIncr = pReadr->pIncr; 2181 SortSubtask *pTask = pIncr->pTask; 2182 sqlite3 *db = pTask->pSorter->db; 2183 2184 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2185 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2186 2187 rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); 2188 2189 /* Set up the required files for pIncr. A multi-theaded IncrMerge object 2190 ** requires two temp files to itself, whereas a single-threaded object 2191 ** only requires a region of pTask->file2. */ 2192 if( rc==SQLITE_OK ){ 2193 int mxSz = pIncr->mxSz; 2194 #if SQLITE_MAX_WORKER_THREADS>0 2195 if( pIncr->bUseThread ){ 2196 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); 2197 if( rc==SQLITE_OK ){ 2198 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); 2199 } 2200 }else 2201 #endif 2202 /*if( !pIncr->bUseThread )*/{ 2203 if( pTask->file2.pFd==0 ){ 2204 assert( pTask->file2.iEof>0 ); 2205 rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); 2206 pTask->file2.iEof = 0; 2207 } 2208 if( rc==SQLITE_OK ){ 2209 pIncr->aFile[1].pFd = pTask->file2.pFd; 2210 pIncr->iStartOff = pTask->file2.iEof; 2211 pTask->file2.iEof += mxSz; 2212 } 2213 } 2214 } 2215 2216 #if SQLITE_MAX_WORKER_THREADS>0 2217 if( rc==SQLITE_OK && pIncr->bUseThread ){ 2218 /* Use the current thread to populate aFile[1], even though this 2219 ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, 2220 ** then this function is already running in background thread 2221 ** pIncr->pTask->thread. 2222 ** 2223 ** If this is the INCRINIT_ROOT object, then it is running in the 2224 ** main VDBE thread. But that is Ok, as that thread cannot return 2225 ** control to the VDBE or proceed with anything useful until the 2226 ** first results are ready from this merger object anyway. 2227 */ 2228 assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); 2229 rc = vdbeIncrPopulate(pIncr); 2230 } 2231 #endif 2232 2233 if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ 2234 rc = vdbePmaReaderNext(pReadr); 2235 } 2236 2237 return rc; 2238 } 2239 2240 #if SQLITE_MAX_WORKER_THREADS>0 2241 /* 2242 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in 2243 ** background threads. 2244 */ 2245 static void *vdbePmaReaderBgIncrInit(void *pCtx){ 2246 PmaReader *pReader = (PmaReader*)pCtx; 2247 void *pRet = SQLITE_INT_TO_PTR( 2248 vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) 2249 ); 2250 pReader->pIncr->pTask->bDone = 1; 2251 return pRet; 2252 } 2253 #endif 2254 2255 /* 2256 ** If the PmaReader passed as the first argument is not an incremental-reader 2257 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes 2258 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to 2259 ** this routine to initialize the incremental merge. 2260 ** 2261 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), 2262 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). 2263 ** Or, if the IncrMerger is single threaded, the same function is called 2264 ** using the current thread. 2265 */ 2266 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ 2267 IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ 2268 int rc = SQLITE_OK; /* Return code */ 2269 if( pIncr ){ 2270 #if SQLITE_MAX_WORKER_THREADS>0 2271 assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); 2272 if( pIncr->bUseThread ){ 2273 void *pCtx = (void*)pReadr; 2274 rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); 2275 }else 2276 #endif 2277 { 2278 rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); 2279 } 2280 } 2281 return rc; 2282 } 2283 2284 /* 2285 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0 2286 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to 2287 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut 2288 ** to NULL and return an SQLite error code. 2289 ** 2290 ** When this function is called, *piOffset is set to the offset of the 2291 ** first PMA to read from pTask->file. Assuming no error occurs, it is 2292 ** set to the offset immediately following the last byte of the last 2293 ** PMA before returning. If an error does occur, then the final value of 2294 ** *piOffset is undefined. 2295 */ 2296 static int vdbeMergeEngineLevel0( 2297 SortSubtask *pTask, /* Sorter task to read from */ 2298 int nPMA, /* Number of PMAs to read */ 2299 i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ 2300 MergeEngine **ppOut /* OUT: New merge-engine */ 2301 ){ 2302 MergeEngine *pNew; /* Merge engine to return */ 2303 i64 iOff = *piOffset; 2304 int i; 2305 int rc = SQLITE_OK; 2306 2307 *ppOut = pNew = vdbeMergeEngineNew(nPMA); 2308 if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; 2309 2310 for(i=0; i<nPMA && rc==SQLITE_OK; i++){ 2311 i64 nDummy = 0; 2312 PmaReader *pReadr = &pNew->aReadr[i]; 2313 rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); 2314 iOff = pReadr->iEof; 2315 } 2316 2317 if( rc!=SQLITE_OK ){ 2318 vdbeMergeEngineFree(pNew); 2319 *ppOut = 0; 2320 } 2321 *piOffset = iOff; 2322 return rc; 2323 } 2324 2325 /* 2326 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of 2327 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. 2328 ** 2329 ** i.e. 2330 ** 2331 ** nPMA<=16 -> TreeDepth() == 0 2332 ** nPMA<=256 -> TreeDepth() == 1 2333 ** nPMA<=65536 -> TreeDepth() == 2 2334 */ 2335 static int vdbeSorterTreeDepth(int nPMA){ 2336 int nDepth = 0; 2337 i64 nDiv = SORTER_MAX_MERGE_COUNT; 2338 while( nDiv < (i64)nPMA ){ 2339 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2340 nDepth++; 2341 } 2342 return nDepth; 2343 } 2344 2345 /* 2346 ** pRoot is the root of an incremental merge-tree with depth nDepth (according 2347 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the 2348 ** tree, counting from zero. This function adds pLeaf to the tree. 2349 ** 2350 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error 2351 ** code is returned and pLeaf is freed. 2352 */ 2353 static int vdbeSorterAddToTree( 2354 SortSubtask *pTask, /* Task context */ 2355 int nDepth, /* Depth of tree according to TreeDepth() */ 2356 int iSeq, /* Sequence number of leaf within tree */ 2357 MergeEngine *pRoot, /* Root of tree */ 2358 MergeEngine *pLeaf /* Leaf to add to tree */ 2359 ){ 2360 int rc = SQLITE_OK; 2361 int nDiv = 1; 2362 int i; 2363 MergeEngine *p = pRoot; 2364 IncrMerger *pIncr; 2365 2366 rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); 2367 2368 for(i=1; i<nDepth; i++){ 2369 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2370 } 2371 2372 for(i=1; i<nDepth && rc==SQLITE_OK; i++){ 2373 int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT; 2374 PmaReader *pReadr = &p->aReadr[iIter]; 2375 2376 if( pReadr->pIncr==0 ){ 2377 MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2378 if( pNew==0 ){ 2379 rc = SQLITE_NOMEM_BKPT; 2380 }else{ 2381 rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); 2382 } 2383 } 2384 if( rc==SQLITE_OK ){ 2385 p = pReadr->pIncr->pMerger; 2386 nDiv = nDiv / SORTER_MAX_MERGE_COUNT; 2387 } 2388 } 2389 2390 if( rc==SQLITE_OK ){ 2391 p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; 2392 }else{ 2393 vdbeIncrFree(pIncr); 2394 } 2395 return rc; 2396 } 2397 2398 /* 2399 ** This function is called as part of a SorterRewind() operation on a sorter 2400 ** that has already written two or more level-0 PMAs to one or more temp 2401 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that 2402 ** can be used to incrementally merge all PMAs on disk. 2403 ** 2404 ** If successful, SQLITE_OK is returned and *ppOut set to point to the 2405 ** MergeEngine object at the root of the tree before returning. Or, if an 2406 ** error occurs, an SQLite error code is returned and the final value 2407 ** of *ppOut is undefined. 2408 */ 2409 static int vdbeSorterMergeTreeBuild( 2410 VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ 2411 MergeEngine **ppOut /* Write the MergeEngine here */ 2412 ){ 2413 MergeEngine *pMain = 0; 2414 int rc = SQLITE_OK; 2415 int iTask; 2416 2417 #if SQLITE_MAX_WORKER_THREADS>0 2418 /* If the sorter uses more than one task, then create the top-level 2419 ** MergeEngine here. This MergeEngine will read data from exactly 2420 ** one PmaReader per sub-task. */ 2421 assert( pSorter->bUseThreads || pSorter->nTask==1 ); 2422 if( pSorter->nTask>1 ){ 2423 pMain = vdbeMergeEngineNew(pSorter->nTask); 2424 if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; 2425 } 2426 #endif 2427 2428 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2429 SortSubtask *pTask = &pSorter->aTask[iTask]; 2430 assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); 2431 if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ 2432 MergeEngine *pRoot = 0; /* Root node of tree for this task */ 2433 int nDepth = vdbeSorterTreeDepth(pTask->nPMA); 2434 i64 iReadOff = 0; 2435 2436 if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ 2437 rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); 2438 }else{ 2439 int i; 2440 int iSeq = 0; 2441 pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2442 if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; 2443 for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ 2444 MergeEngine *pMerger = 0; /* New level-0 PMA merger */ 2445 int nReader; /* Number of level-0 PMAs to merge */ 2446 2447 nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); 2448 rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); 2449 if( rc==SQLITE_OK ){ 2450 rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); 2451 } 2452 } 2453 } 2454 2455 if( rc==SQLITE_OK ){ 2456 #if SQLITE_MAX_WORKER_THREADS>0 2457 if( pMain!=0 ){ 2458 rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); 2459 }else 2460 #endif 2461 { 2462 assert( pMain==0 ); 2463 pMain = pRoot; 2464 } 2465 }else{ 2466 vdbeMergeEngineFree(pRoot); 2467 } 2468 } 2469 } 2470 2471 if( rc!=SQLITE_OK ){ 2472 vdbeMergeEngineFree(pMain); 2473 pMain = 0; 2474 } 2475 *ppOut = pMain; 2476 return rc; 2477 } 2478 2479 /* 2480 ** This function is called as part of an sqlite3VdbeSorterRewind() operation 2481 ** on a sorter that has written two or more PMAs to temporary files. It sets 2482 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader 2483 ** (for multi-threaded sorters) so that it can be used to iterate through 2484 ** all records stored in the sorter. 2485 ** 2486 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2487 */ 2488 static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ 2489 int rc; /* Return code */ 2490 SortSubtask *pTask0 = &pSorter->aTask[0]; 2491 MergeEngine *pMain = 0; 2492 #if SQLITE_MAX_WORKER_THREADS 2493 sqlite3 *db = pTask0->pSorter->db; 2494 int i; 2495 SorterCompare xCompare = vdbeSorterGetCompare(pSorter); 2496 for(i=0; i<pSorter->nTask; i++){ 2497 pSorter->aTask[i].xCompare = xCompare; 2498 } 2499 #endif 2500 2501 rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); 2502 if( rc==SQLITE_OK ){ 2503 #if SQLITE_MAX_WORKER_THREADS 2504 assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); 2505 if( pSorter->bUseThreads ){ 2506 int iTask; 2507 PmaReader *pReadr = 0; 2508 SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; 2509 rc = vdbeSortAllocUnpacked(pLast); 2510 if( rc==SQLITE_OK ){ 2511 pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); 2512 pSorter->pReader = pReadr; 2513 if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; 2514 } 2515 if( rc==SQLITE_OK ){ 2516 rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); 2517 if( rc==SQLITE_OK ){ 2518 vdbeIncrMergerSetThreads(pReadr->pIncr); 2519 for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ 2520 IncrMerger *pIncr; 2521 if( (pIncr = pMain->aReadr[iTask].pIncr) ){ 2522 vdbeIncrMergerSetThreads(pIncr); 2523 assert( pIncr->pTask!=pLast ); 2524 } 2525 } 2526 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2527 /* Check that: 2528 ** 2529 ** a) The incremental merge object is configured to use the 2530 ** right task, and 2531 ** b) If it is using task (nTask-1), it is configured to run 2532 ** in single-threaded mode. This is important, as the 2533 ** root merge (INCRINIT_ROOT) will be using the same task 2534 ** object. 2535 */ 2536 PmaReader *p = &pMain->aReadr[iTask]; 2537 assert( p->pIncr==0 || ( 2538 (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ 2539 && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ 2540 )); 2541 rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); 2542 } 2543 } 2544 pMain = 0; 2545 } 2546 if( rc==SQLITE_OK ){ 2547 rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); 2548 } 2549 }else 2550 #endif 2551 { 2552 rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); 2553 pSorter->pMerger = pMain; 2554 pMain = 0; 2555 } 2556 } 2557 2558 if( rc!=SQLITE_OK ){ 2559 vdbeMergeEngineFree(pMain); 2560 } 2561 return rc; 2562 } 2563 2564 2565 /* 2566 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, 2567 ** this function is called to prepare for iterating through the records 2568 ** in sorted order. 2569 */ 2570 int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ 2571 VdbeSorter *pSorter; 2572 int rc = SQLITE_OK; /* Return code */ 2573 2574 assert( pCsr->eCurType==CURTYPE_SORTER ); 2575 pSorter = pCsr->uc.pSorter; 2576 assert( pSorter ); 2577 2578 /* If no data has been written to disk, then do not do so now. Instead, 2579 ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly 2580 ** from the in-memory list. */ 2581 if( pSorter->bUsePMA==0 ){ 2582 if( pSorter->list.pList ){ 2583 *pbEof = 0; 2584 rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); 2585 }else{ 2586 *pbEof = 1; 2587 } 2588 return rc; 2589 } 2590 2591 /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() 2592 ** function flushes the contents of memory to disk, it immediately always 2593 ** creates a new list consisting of a single key immediately afterwards. 2594 ** So the list is never empty at this point. */ 2595 assert( pSorter->list.pList ); 2596 rc = vdbeSorterFlushPMA(pSorter); 2597 2598 /* Join all threads */ 2599 rc = vdbeSorterJoinAll(pSorter, rc); 2600 2601 vdbeSorterRewindDebug("rewind"); 2602 2603 /* Assuming no errors have occurred, set up a merger structure to 2604 ** incrementally read and merge all remaining PMAs. */ 2605 assert( pSorter->pReader==0 ); 2606 if( rc==SQLITE_OK ){ 2607 rc = vdbeSorterSetupMerge(pSorter); 2608 *pbEof = 0; 2609 } 2610 2611 vdbeSorterRewindDebug("rewinddone"); 2612 return rc; 2613 } 2614 2615 /* 2616 ** Advance to the next element in the sorter. 2617 */ 2618 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ 2619 VdbeSorter *pSorter; 2620 int rc; /* Return code */ 2621 2622 assert( pCsr->eCurType==CURTYPE_SORTER ); 2623 pSorter = pCsr->uc.pSorter; 2624 assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); 2625 if( pSorter->bUsePMA ){ 2626 assert( pSorter->pReader==0 || pSorter->pMerger==0 ); 2627 assert( pSorter->bUseThreads==0 || pSorter->pReader ); 2628 assert( pSorter->bUseThreads==1 || pSorter->pMerger ); 2629 #if SQLITE_MAX_WORKER_THREADS>0 2630 if( pSorter->bUseThreads ){ 2631 rc = vdbePmaReaderNext(pSorter->pReader); 2632 *pbEof = (pSorter->pReader->pFd==0); 2633 }else 2634 #endif 2635 /*if( !pSorter->bUseThreads )*/ { 2636 assert( pSorter->pMerger!=0 ); 2637 assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); 2638 rc = vdbeMergeEngineStep(pSorter->pMerger, pbEof); 2639 } 2640 }else{ 2641 SorterRecord *pFree = pSorter->list.pList; 2642 pSorter->list.pList = pFree->u.pNext; 2643 pFree->u.pNext = 0; 2644 if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); 2645 *pbEof = !pSorter->list.pList; 2646 rc = SQLITE_OK; 2647 } 2648 return rc; 2649 } 2650 2651 /* 2652 ** Return a pointer to a buffer owned by the sorter that contains the 2653 ** current key. 2654 */ 2655 static void *vdbeSorterRowkey( 2656 const VdbeSorter *pSorter, /* Sorter object */ 2657 int *pnKey /* OUT: Size of current key in bytes */ 2658 ){ 2659 void *pKey; 2660 if( pSorter->bUsePMA ){ 2661 PmaReader *pReader; 2662 #if SQLITE_MAX_WORKER_THREADS>0 2663 if( pSorter->bUseThreads ){ 2664 pReader = pSorter->pReader; 2665 }else 2666 #endif 2667 /*if( !pSorter->bUseThreads )*/{ 2668 pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; 2669 } 2670 *pnKey = pReader->nKey; 2671 pKey = pReader->aKey; 2672 }else{ 2673 *pnKey = pSorter->list.pList->nVal; 2674 pKey = SRVAL(pSorter->list.pList); 2675 } 2676 return pKey; 2677 } 2678 2679 /* 2680 ** Copy the current sorter key into the memory cell pOut. 2681 */ 2682 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ 2683 VdbeSorter *pSorter; 2684 void *pKey; int nKey; /* Sorter key to copy into pOut */ 2685 2686 assert( pCsr->eCurType==CURTYPE_SORTER ); 2687 pSorter = pCsr->uc.pSorter; 2688 pKey = vdbeSorterRowkey(pSorter, &nKey); 2689 if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ 2690 return SQLITE_NOMEM_BKPT; 2691 } 2692 pOut->n = nKey; 2693 MemSetTypeFlag(pOut, MEM_Blob); 2694 memcpy(pOut->z, pKey, nKey); 2695 2696 return SQLITE_OK; 2697 } 2698 2699 /* 2700 ** Compare the key in memory cell pVal with the key that the sorter cursor 2701 ** passed as the first argument currently points to. For the purposes of 2702 ** the comparison, ignore the rowid field at the end of each record. 2703 ** 2704 ** If the sorter cursor key contains any NULL values, consider it to be 2705 ** less than pVal. Even if pVal also contains NULL values. 2706 ** 2707 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). 2708 ** Otherwise, set *pRes to a negative, zero or positive value if the 2709 ** key in pVal is smaller than, equal to or larger than the current sorter 2710 ** key. 2711 ** 2712 ** This routine forms the core of the OP_SorterCompare opcode, which in 2713 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX. 2714 */ 2715 int sqlite3VdbeSorterCompare( 2716 const VdbeCursor *pCsr, /* Sorter cursor */ 2717 Mem *pVal, /* Value to compare to current sorter key */ 2718 int nKeyCol, /* Compare this many columns */ 2719 int *pRes /* OUT: Result of comparison */ 2720 ){ 2721 VdbeSorter *pSorter; 2722 UnpackedRecord *r2; 2723 KeyInfo *pKeyInfo; 2724 int i; 2725 void *pKey; int nKey; /* Sorter key to compare pVal with */ 2726 2727 assert( pCsr->eCurType==CURTYPE_SORTER ); 2728 pSorter = pCsr->uc.pSorter; 2729 r2 = pSorter->pUnpacked; 2730 pKeyInfo = pCsr->pKeyInfo; 2731 if( r2==0 ){ 2732 r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 2733 if( r2==0 ) return SQLITE_NOMEM_BKPT; 2734 r2->nField = nKeyCol; 2735 } 2736 assert( r2->nField==nKeyCol ); 2737 2738 pKey = vdbeSorterRowkey(pSorter, &nKey); 2739 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); 2740 for(i=0; i<nKeyCol; i++){ 2741 if( r2->aMem[i].flags & MEM_Null ){ 2742 *pRes = -1; 2743 return SQLITE_OK; 2744 } 2745 } 2746 2747 *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); 2748 return SQLITE_OK; 2749 } 2750