1 /* 2 ** 2011-07-09 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for the VdbeSorter object, used in concert with 13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements 14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied 15 ** using indexes and without LIMIT clauses. 16 ** 17 ** The VdbeSorter object implements a multi-threaded external merge sort 18 ** algorithm that is efficient even if the number of elements being sorted 19 ** exceeds the available memory. 20 ** 21 ** Here is the (internal, non-API) interface between this module and the 22 ** rest of the SQLite system: 23 ** 24 ** sqlite3VdbeSorterInit() Create a new VdbeSorter object. 25 ** 26 ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter 27 ** object. The row is a binary blob in the 28 ** OP_MakeRecord format that contains both 29 ** the ORDER BY key columns and result columns 30 ** in the case of a SELECT w/ ORDER BY, or 31 ** the complete record for an index entry 32 ** in the case of a CREATE INDEX. 33 ** 34 ** sqlite3VdbeSorterRewind() Sort all content previously added. 35 ** Position the read cursor on the 36 ** first sorted element. 37 ** 38 ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted 39 ** element. 40 ** 41 ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the 42 ** row currently under the read cursor. 43 ** 44 ** sqlite3VdbeSorterCompare() Compare the binary blob for the row 45 ** currently under the read cursor against 46 ** another binary blob X and report if 47 ** X is strictly less than the read cursor. 48 ** Used to enforce uniqueness in a 49 ** CREATE UNIQUE INDEX statement. 50 ** 51 ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim 52 ** all resources. 53 ** 54 ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This 55 ** is like Close() followed by Init() only 56 ** much faster. 57 ** 58 ** The interfaces above must be called in a particular order. Write() can 59 ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and 60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. 61 ** 62 ** Init() 63 ** for each record: Write() 64 ** Rewind() 65 ** Rowkey()/Compare() 66 ** Next() 67 ** Close() 68 ** 69 ** Algorithm: 70 ** 71 ** Records passed to the sorter via calls to Write() are initially held 72 ** unsorted in main memory. Assuming the amount of memory used never exceeds 73 ** a threshold, when Rewind() is called the set of records is sorted using 74 ** an in-memory merge sort. In this case, no temporary files are required 75 ** and subsequent calls to Rowkey(), Next() and Compare() read records 76 ** directly from main memory. 77 ** 78 ** If the amount of space used to store records in main memory exceeds the 79 ** threshold, then the set of records currently in memory are sorted and 80 ** written to a temporary file in "Packed Memory Array" (PMA) format. 81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels 82 ** of PMAs may be created by merging existing PMAs together - for example 83 ** merging two or more level-0 PMAs together creates a level-1 PMA. 84 ** 85 ** The threshold for the amount of main memory to use before flushing 86 ** records to a PMA is roughly the same as the limit configured for the 87 ** page-cache of the main database. Specifically, the threshold is set to 88 ** the value returned by "PRAGMA main.page_size" multipled by 89 ** that returned by "PRAGMA main.cache_size", in bytes. 90 ** 91 ** If the sorter is running in single-threaded mode, then all PMAs generated 92 ** are appended to a single temporary file. Or, if the sorter is running in 93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where 94 ** N is the configured number of worker threads. In this case, instead of 95 ** sorting the records and writing the PMA to a temporary file itself, the 96 ** calling thread usually launches a worker thread to do so. Except, if 97 ** there are already N worker threads running, the main thread does the work 98 ** itself. 99 ** 100 ** The sorter is running in multi-threaded mode if (a) the library was built 101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater 102 ** than zero, and (b) worker threads have been enabled at runtime by calling 103 ** "PRAGMA threads=N" with some value of N greater than 0. 104 ** 105 ** When Rewind() is called, any data remaining in memory is flushed to a 106 ** final PMA. So at this point the data is stored in some number of sorted 107 ** PMAs within temporary files on disk. 108 ** 109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the 110 ** sorter is running in single-threaded mode, then these PMAs are merged 111 ** incrementally as keys are retreived from the sorter by the VDBE. The 112 ** MergeEngine object, described in further detail below, performs this 113 ** merge. 114 ** 115 ** Or, if running in multi-threaded mode, then a background thread is 116 ** launched to merge the existing PMAs. Once the background thread has 117 ** merged T bytes of data into a single sorted PMA, the main thread 118 ** begins reading keys from that PMA while the background thread proceeds 119 ** with merging the next T bytes of data. And so on. 120 ** 121 ** Parameter T is set to half the value of the memory threshold used 122 ** by Write() above to determine when to create a new PMA. 123 ** 124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when 125 ** Rewind() is called, then a hierarchy of incremental-merges is used. 126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on 127 ** disk are merged together. Then T bytes of data from the second set, and 128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT 129 ** PMAs at a time. This done is to improve locality. 130 ** 131 ** If running in multi-threaded mode and there are more than 132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more 133 ** than one background thread may be created. Specifically, there may be 134 ** one background thread for each temporary file on disk, and one background 135 ** thread to merge the output of each of the others to a single PMA for 136 ** the main thread to read from. 137 */ 138 #include "sqliteInt.h" 139 #include "vdbeInt.h" 140 141 /* 142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various 143 ** messages to stderr that may be helpful in understanding the performance 144 ** characteristics of the sorter in multi-threaded mode. 145 */ 146 #if 0 147 # define SQLITE_DEBUG_SORTER_THREADS 1 148 #endif 149 150 /* 151 ** Hard-coded maximum amount of data to accumulate in memory before flushing 152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer 153 ** overflows. 512MiB. 154 */ 155 #define SQLITE_MAX_PMASZ (1<<29) 156 157 /* 158 ** Private objects used by the sorter 159 */ 160 typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ 161 typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ 162 typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ 163 typedef struct SorterRecord SorterRecord; /* A record being sorted */ 164 typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ 165 typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ 166 typedef struct SorterList SorterList; /* In-memory list of records */ 167 typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ 168 169 /* 170 ** A container for a temp file handle and the current amount of data 171 ** stored in the file. 172 */ 173 struct SorterFile { 174 sqlite3_file *pFd; /* File handle */ 175 i64 iEof; /* Bytes of data stored in pFd */ 176 }; 177 178 /* 179 ** An in-memory list of objects to be sorted. 180 ** 181 ** If aMemory==0 then each object is allocated separately and the objects 182 ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects 183 ** are stored in the aMemory[] bulk memory, one right after the other, and 184 ** are connected using SorterRecord.u.iNext. 185 */ 186 struct SorterList { 187 SorterRecord *pList; /* Linked list of records */ 188 u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ 189 int szPMA; /* Size of pList as PMA in bytes */ 190 }; 191 192 /* 193 ** The MergeEngine object is used to combine two or more smaller PMAs into 194 ** one big PMA using a merge operation. Separate PMAs all need to be 195 ** combined into one big PMA in order to be able to step through the sorted 196 ** records in order. 197 ** 198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being 199 ** merged. An aReadr[] object either points to a valid key or else is at EOF. 200 ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) 201 ** For the purposes of the paragraphs below, we assume that the array is 202 ** actually N elements in size, where N is the smallest power of 2 greater 203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements 204 ** are treated as if they are empty (always at EOF). 205 ** 206 ** The aTree[] array is also N elements in size. The value of N is stored in 207 ** the MergeEngine.nTree variable. 208 ** 209 ** The final (N/2) elements of aTree[] contain the results of comparing 210 ** pairs of PMA keys together. Element i contains the result of 211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the 212 ** aTree element is set to the index of it. 213 ** 214 ** For the purposes of this comparison, EOF is considered greater than any 215 ** other key value. If the keys are equal (only possible with two EOF 216 ** values), it doesn't matter which index is stored. 217 ** 218 ** The (N/4) elements of aTree[] that precede the final (N/2) described 219 ** above contains the index of the smallest of each block of 4 PmaReaders 220 ** And so on. So that aTree[1] contains the index of the PmaReader that 221 ** currently points to the smallest key value. aTree[0] is unused. 222 ** 223 ** Example: 224 ** 225 ** aReadr[0] -> Banana 226 ** aReadr[1] -> Feijoa 227 ** aReadr[2] -> Elderberry 228 ** aReadr[3] -> Currant 229 ** aReadr[4] -> Grapefruit 230 ** aReadr[5] -> Apple 231 ** aReadr[6] -> Durian 232 ** aReadr[7] -> EOF 233 ** 234 ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } 235 ** 236 ** The current element is "Apple" (the value of the key indicated by 237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will 238 ** be advanced to the next key in its segment. Say the next key is 239 ** "Eggplant": 240 ** 241 ** aReadr[5] -> Eggplant 242 ** 243 ** The contents of aTree[] are updated first by comparing the new PmaReader 244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader 245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. 246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader 247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), 248 ** so the value written into element 1 of the array is 0. As follows: 249 ** 250 ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } 251 ** 252 ** In other words, each time we advance to the next sorter element, log2(N) 253 ** key comparison operations are required, where N is the number of segments 254 ** being merged (rounded up to the next power of 2). 255 */ 256 struct MergeEngine { 257 int nTree; /* Used size of aTree/aReadr (power of 2) */ 258 SortSubtask *pTask; /* Used by this thread only */ 259 int *aTree; /* Current state of incremental merge */ 260 PmaReader *aReadr; /* Array of PmaReaders to merge data from */ 261 }; 262 263 /* 264 ** This object represents a single thread of control in a sort operation. 265 ** Exactly VdbeSorter.nTask instances of this object are allocated 266 ** as part of each VdbeSorter object. Instances are never allocated any 267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed 268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for 269 ** single-threaded operation, there is exactly one instance of this object 270 ** and for multi-threaded operation there are two or more instances. 271 ** 272 ** Essentially, this structure contains all those fields of the VdbeSorter 273 ** structure for which each thread requires a separate instance. For example, 274 ** each thread requries its own UnpackedRecord object to unpack records in 275 ** as part of comparison operations. 276 ** 277 ** Before a background thread is launched, variable bDone is set to 0. Then, 278 ** right before it exits, the thread itself sets bDone to 1. This is used for 279 ** two purposes: 280 ** 281 ** 1. When flushing the contents of memory to a level-0 PMA on disk, to 282 ** attempt to select a SortSubtask for which there is not already an 283 ** active background thread (since doing so causes the main thread 284 ** to block until it finishes). 285 ** 286 ** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call 287 ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to 288 ** block provoke debugging output. 289 ** 290 ** In both cases, the effects of the main thread seeing (bDone==0) even 291 ** after the thread has finished are not dire. So we don't worry about 292 ** memory barriers and such here. 293 */ 294 typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int); 295 struct SortSubtask { 296 SQLiteThread *pThread; /* Background thread, if any */ 297 int bDone; /* Set if thread is finished but not joined */ 298 VdbeSorter *pSorter; /* Sorter that owns this sub-task */ 299 UnpackedRecord *pUnpacked; /* Space to unpack a record */ 300 SorterList list; /* List for thread to write to a PMA */ 301 int nPMA; /* Number of PMAs currently in file */ 302 SorterCompare xCompare; /* Compare function to use */ 303 SorterFile file; /* Temp file for level-0 PMAs */ 304 SorterFile file2; /* Space for other PMAs */ 305 }; 306 307 308 /* 309 ** Main sorter structure. A single instance of this is allocated for each 310 ** sorter cursor created by the VDBE. 311 ** 312 ** mxKeysize: 313 ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), 314 ** this variable is updated so as to be set to the size on disk of the 315 ** largest record in the sorter. 316 */ 317 struct VdbeSorter { 318 int mnPmaSize; /* Minimum PMA size, in bytes */ 319 int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */ 320 int mxKeysize; /* Largest serialized key seen so far */ 321 int pgsz; /* Main database page size */ 322 PmaReader *pReader; /* Readr data from here after Rewind() */ 323 MergeEngine *pMerger; /* Or here, if bUseThreads==0 */ 324 sqlite3 *db; /* Database connection */ 325 KeyInfo *pKeyInfo; /* How to compare records */ 326 UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */ 327 SorterList list; /* List of in-memory records */ 328 int iMemory; /* Offset of free space in list.aMemory */ 329 int nMemory; /* Size of list.aMemory allocation in bytes */ 330 u8 bUsePMA; /* True if one or more PMAs created */ 331 u8 bUseThreads; /* True to use background threads */ 332 u8 iPrev; /* Previous thread used to flush PMA */ 333 u8 nTask; /* Size of aTask[] array */ 334 u8 typeMask; 335 SortSubtask aTask[1]; /* One or more subtasks */ 336 }; 337 338 #define SORTER_TYPE_INTEGER 0x01 339 #define SORTER_TYPE_TEXT 0x02 340 341 /* 342 ** An instance of the following object is used to read records out of a 343 ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. 344 ** aKey might point into aMap or into aBuffer. If neither of those locations 345 ** contain a contiguous representation of the key, then aAlloc is allocated 346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc. 347 ** 348 ** pFd==0 at EOF. 349 */ 350 struct PmaReader { 351 i64 iReadOff; /* Current read offset */ 352 i64 iEof; /* 1 byte past EOF for this PmaReader */ 353 int nAlloc; /* Bytes of space at aAlloc */ 354 int nKey; /* Number of bytes in key */ 355 sqlite3_file *pFd; /* File handle we are reading from */ 356 u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */ 357 u8 *aKey; /* Pointer to current key */ 358 u8 *aBuffer; /* Current read buffer */ 359 int nBuffer; /* Size of read buffer in bytes */ 360 u8 *aMap; /* Pointer to mapping of entire file */ 361 IncrMerger *pIncr; /* Incremental merger */ 362 }; 363 364 /* 365 ** Normally, a PmaReader object iterates through an existing PMA stored 366 ** within a temp file. However, if the PmaReader.pIncr variable points to 367 ** an object of the following type, it may be used to iterate/merge through 368 ** multiple PMAs simultaneously. 369 ** 370 ** There are two types of IncrMerger object - single (bUseThread==0) and 371 ** multi-threaded (bUseThread==1). 372 ** 373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0] 374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in 375 ** size. When the IncrMerger is initialized, it reads enough data from 376 ** pMerger to populate aFile[0]. It then sets variables within the 377 ** corresponding PmaReader object to read from that file and kicks off 378 ** a background thread to populate aFile[1] with the next mxSz bytes of 379 ** sorted record data from pMerger. 380 ** 381 ** When the PmaReader reaches the end of aFile[0], it blocks until the 382 ** background thread has finished populating aFile[1]. It then exchanges 383 ** the contents of the aFile[0] and aFile[1] variables within this structure, 384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off 385 ** another background thread to populate the new aFile[1]. And so on, until 386 ** the contents of pMerger are exhausted. 387 ** 388 ** A single-threaded IncrMerger does not open any temporary files of its 389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning 390 ** at offset iStartOff of file pTask->file2. And instead of using a 391 ** background thread to prepare data for the PmaReader, with a single 392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with 393 ** keys from pMerger by the calling thread whenever the PmaReader runs out 394 ** of data. 395 */ 396 struct IncrMerger { 397 SortSubtask *pTask; /* Task that owns this merger */ 398 MergeEngine *pMerger; /* Merge engine thread reads data from */ 399 i64 iStartOff; /* Offset to start writing file at */ 400 int mxSz; /* Maximum bytes of data to store */ 401 int bEof; /* Set to true when merge is finished */ 402 int bUseThread; /* True to use a bg thread for this object */ 403 SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ 404 }; 405 406 /* 407 ** An instance of this object is used for writing a PMA. 408 ** 409 ** The PMA is written one record at a time. Each record is of an arbitrary 410 ** size. But I/O is more efficient if it occurs in page-sized blocks where 411 ** each block is aligned on a page boundary. This object caches writes to 412 ** the PMA so that aligned, page-size blocks are written. 413 */ 414 struct PmaWriter { 415 int eFWErr; /* Non-zero if in an error state */ 416 u8 *aBuffer; /* Pointer to write buffer */ 417 int nBuffer; /* Size of write buffer in bytes */ 418 int iBufStart; /* First byte of buffer to write */ 419 int iBufEnd; /* Last byte of buffer to write */ 420 i64 iWriteOff; /* Offset of start of buffer in file */ 421 sqlite3_file *pFd; /* File handle to write to */ 422 }; 423 424 /* 425 ** This object is the header on a single record while that record is being 426 ** held in memory and prior to being written out as part of a PMA. 427 ** 428 ** How the linked list is connected depends on how memory is being managed 429 ** by this module. If using a separate allocation for each in-memory record 430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the 431 ** SorterRecord.u.pNext pointers. 432 ** 433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), 434 ** then while records are being accumulated the list is linked using the 435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may 436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM 437 ** has finished passing records to the sorter, or when the in-memory buffer 438 ** is full, the list is sorted. As part of the sorting process, it is 439 ** converted to use the SorterRecord.u.pNext pointers. See function 440 ** vdbeSorterSort() for details. 441 */ 442 struct SorterRecord { 443 int nVal; /* Size of the record in bytes */ 444 union { 445 SorterRecord *pNext; /* Pointer to next record in list */ 446 int iNext; /* Offset within aMemory of next record */ 447 } u; 448 /* The data for the record immediately follows this header */ 449 }; 450 451 /* Return a pointer to the buffer containing the record data for SorterRecord 452 ** object p. Should be used as if: 453 ** 454 ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } 455 */ 456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) 457 458 459 /* Maximum number of PMAs that a single MergeEngine can merge */ 460 #define SORTER_MAX_MERGE_COUNT 16 461 462 static int vdbeIncrSwap(IncrMerger*); 463 static void vdbeIncrFree(IncrMerger *); 464 465 /* 466 ** Free all memory belonging to the PmaReader object passed as the 467 ** argument. All structure fields are set to zero before returning. 468 */ 469 static void vdbePmaReaderClear(PmaReader *pReadr){ 470 sqlite3_free(pReadr->aAlloc); 471 sqlite3_free(pReadr->aBuffer); 472 if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 473 vdbeIncrFree(pReadr->pIncr); 474 memset(pReadr, 0, sizeof(PmaReader)); 475 } 476 477 /* 478 ** Read the next nByte bytes of data from the PMA p. 479 ** If successful, set *ppOut to point to a buffer containing the data 480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite 481 ** error code. 482 ** 483 ** The buffer returned in *ppOut is only valid until the 484 ** next call to this function. 485 */ 486 static int vdbePmaReadBlob( 487 PmaReader *p, /* PmaReader from which to take the blob */ 488 int nByte, /* Bytes of data to read */ 489 u8 **ppOut /* OUT: Pointer to buffer containing data */ 490 ){ 491 int iBuf; /* Offset within buffer to read from */ 492 int nAvail; /* Bytes of data available in buffer */ 493 494 if( p->aMap ){ 495 *ppOut = &p->aMap[p->iReadOff]; 496 p->iReadOff += nByte; 497 return SQLITE_OK; 498 } 499 500 assert( p->aBuffer ); 501 502 /* If there is no more data to be read from the buffer, read the next 503 ** p->nBuffer bytes of data from the file into it. Or, if there are less 504 ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ 505 iBuf = p->iReadOff % p->nBuffer; 506 if( iBuf==0 ){ 507 int nRead; /* Bytes to read from disk */ 508 int rc; /* sqlite3OsRead() return code */ 509 510 /* Determine how many bytes of data to read. */ 511 if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ 512 nRead = p->nBuffer; 513 }else{ 514 nRead = (int)(p->iEof - p->iReadOff); 515 } 516 assert( nRead>0 ); 517 518 /* Readr data from the file. Return early if an error occurs. */ 519 rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); 520 assert( rc!=SQLITE_IOERR_SHORT_READ ); 521 if( rc!=SQLITE_OK ) return rc; 522 } 523 nAvail = p->nBuffer - iBuf; 524 525 if( nByte<=nAvail ){ 526 /* The requested data is available in the in-memory buffer. In this 527 ** case there is no need to make a copy of the data, just return a 528 ** pointer into the buffer to the caller. */ 529 *ppOut = &p->aBuffer[iBuf]; 530 p->iReadOff += nByte; 531 }else{ 532 /* The requested data is not all available in the in-memory buffer. 533 ** In this case, allocate space at p->aAlloc[] to copy the requested 534 ** range into. Then return a copy of pointer p->aAlloc to the caller. */ 535 int nRem; /* Bytes remaining to copy */ 536 537 /* Extend the p->aAlloc[] allocation if required. */ 538 if( p->nAlloc<nByte ){ 539 u8 *aNew; 540 int nNew = MAX(128, p->nAlloc*2); 541 while( nByte>nNew ) nNew = nNew*2; 542 aNew = sqlite3Realloc(p->aAlloc, nNew); 543 if( !aNew ) return SQLITE_NOMEM_BKPT; 544 p->nAlloc = nNew; 545 p->aAlloc = aNew; 546 } 547 548 /* Copy as much data as is available in the buffer into the start of 549 ** p->aAlloc[]. */ 550 memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); 551 p->iReadOff += nAvail; 552 nRem = nByte - nAvail; 553 554 /* The following loop copies up to p->nBuffer bytes per iteration into 555 ** the p->aAlloc[] buffer. */ 556 while( nRem>0 ){ 557 int rc; /* vdbePmaReadBlob() return code */ 558 int nCopy; /* Number of bytes to copy */ 559 u8 *aNext; /* Pointer to buffer to copy data from */ 560 561 nCopy = nRem; 562 if( nRem>p->nBuffer ) nCopy = p->nBuffer; 563 rc = vdbePmaReadBlob(p, nCopy, &aNext); 564 if( rc!=SQLITE_OK ) return rc; 565 assert( aNext!=p->aAlloc ); 566 memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); 567 nRem -= nCopy; 568 } 569 570 *ppOut = p->aAlloc; 571 } 572 573 return SQLITE_OK; 574 } 575 576 /* 577 ** Read a varint from the stream of data accessed by p. Set *pnOut to 578 ** the value read. 579 */ 580 static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ 581 int iBuf; 582 583 if( p->aMap ){ 584 p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); 585 }else{ 586 iBuf = p->iReadOff % p->nBuffer; 587 if( iBuf && (p->nBuffer-iBuf)>=9 ){ 588 p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); 589 }else{ 590 u8 aVarint[16], *a; 591 int i = 0, rc; 592 do{ 593 rc = vdbePmaReadBlob(p, 1, &a); 594 if( rc ) return rc; 595 aVarint[(i++)&0xf] = a[0]; 596 }while( (a[0]&0x80)!=0 ); 597 sqlite3GetVarint(aVarint, pnOut); 598 } 599 } 600 601 return SQLITE_OK; 602 } 603 604 /* 605 ** Attempt to memory map file pFile. If successful, set *pp to point to the 606 ** new mapping and return SQLITE_OK. If the mapping is not attempted 607 ** (because the file is too large or the VFS layer is configured not to use 608 ** mmap), return SQLITE_OK and set *pp to NULL. 609 ** 610 ** Or, if an error occurs, return an SQLite error code. The final value of 611 ** *pp is undefined in this case. 612 */ 613 static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ 614 int rc = SQLITE_OK; 615 if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ 616 sqlite3_file *pFd = pFile->pFd; 617 if( pFd->pMethods->iVersion>=3 ){ 618 rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); 619 testcase( rc!=SQLITE_OK ); 620 } 621 } 622 return rc; 623 } 624 625 /* 626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to 627 ** that file) and seek it to offset iOff within the file. Return SQLITE_OK 628 ** if successful, or an SQLite error code if an error occurs. 629 */ 630 static int vdbePmaReaderSeek( 631 SortSubtask *pTask, /* Task context */ 632 PmaReader *pReadr, /* Reader whose cursor is to be moved */ 633 SorterFile *pFile, /* Sorter file to read from */ 634 i64 iOff /* Offset in pFile */ 635 ){ 636 int rc = SQLITE_OK; 637 638 assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); 639 640 if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; 641 if( pReadr->aMap ){ 642 sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); 643 pReadr->aMap = 0; 644 } 645 pReadr->iReadOff = iOff; 646 pReadr->iEof = pFile->iEof; 647 pReadr->pFd = pFile->pFd; 648 649 rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); 650 if( rc==SQLITE_OK && pReadr->aMap==0 ){ 651 int pgsz = pTask->pSorter->pgsz; 652 int iBuf = pReadr->iReadOff % pgsz; 653 if( pReadr->aBuffer==0 ){ 654 pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); 655 if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; 656 pReadr->nBuffer = pgsz; 657 } 658 if( rc==SQLITE_OK && iBuf ){ 659 int nRead = pgsz - iBuf; 660 if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ 661 nRead = (int)(pReadr->iEof - pReadr->iReadOff); 662 } 663 rc = sqlite3OsRead( 664 pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff 665 ); 666 testcase( rc!=SQLITE_OK ); 667 } 668 } 669 670 return rc; 671 } 672 673 /* 674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if 675 ** no error occurs, or an SQLite error code if one does. 676 */ 677 static int vdbePmaReaderNext(PmaReader *pReadr){ 678 int rc = SQLITE_OK; /* Return Code */ 679 u64 nRec = 0; /* Size of record in bytes */ 680 681 682 if( pReadr->iReadOff>=pReadr->iEof ){ 683 IncrMerger *pIncr = pReadr->pIncr; 684 int bEof = 1; 685 if( pIncr ){ 686 rc = vdbeIncrSwap(pIncr); 687 if( rc==SQLITE_OK && pIncr->bEof==0 ){ 688 rc = vdbePmaReaderSeek( 689 pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff 690 ); 691 bEof = 0; 692 } 693 } 694 695 if( bEof ){ 696 /* This is an EOF condition */ 697 vdbePmaReaderClear(pReadr); 698 testcase( rc!=SQLITE_OK ); 699 return rc; 700 } 701 } 702 703 if( rc==SQLITE_OK ){ 704 rc = vdbePmaReadVarint(pReadr, &nRec); 705 } 706 if( rc==SQLITE_OK ){ 707 pReadr->nKey = (int)nRec; 708 rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); 709 testcase( rc!=SQLITE_OK ); 710 } 711 712 return rc; 713 } 714 715 /* 716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile 717 ** starting at offset iStart and ending at offset iEof-1. This function 718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the 719 ** PMA is empty). 720 ** 721 ** If the pnByte parameter is NULL, then it is assumed that the file 722 ** contains a single PMA, and that that PMA omits the initial length varint. 723 */ 724 static int vdbePmaReaderInit( 725 SortSubtask *pTask, /* Task context */ 726 SorterFile *pFile, /* Sorter file to read from */ 727 i64 iStart, /* Start offset in pFile */ 728 PmaReader *pReadr, /* PmaReader to populate */ 729 i64 *pnByte /* IN/OUT: Increment this value by PMA size */ 730 ){ 731 int rc; 732 733 assert( pFile->iEof>iStart ); 734 assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); 735 assert( pReadr->aBuffer==0 ); 736 assert( pReadr->aMap==0 ); 737 738 rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); 739 if( rc==SQLITE_OK ){ 740 u64 nByte = 0; /* Size of PMA in bytes */ 741 rc = vdbePmaReadVarint(pReadr, &nByte); 742 pReadr->iEof = pReadr->iReadOff + nByte; 743 *pnByte += nByte; 744 } 745 746 if( rc==SQLITE_OK ){ 747 rc = vdbePmaReaderNext(pReadr); 748 } 749 return rc; 750 } 751 752 /* 753 ** A version of vdbeSorterCompare() that assumes that it has already been 754 ** determined that the first field of key1 is equal to the first field of 755 ** key2. 756 */ 757 static int vdbeSorterCompareTail( 758 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 759 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 760 const void *pKey1, int nKey1, /* Left side of comparison */ 761 const void *pKey2, int nKey2 /* Right side of comparison */ 762 ){ 763 UnpackedRecord *r2 = pTask->pUnpacked; 764 if( *pbKey2Cached==0 ){ 765 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 766 *pbKey2Cached = 1; 767 } 768 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); 769 } 770 771 /* 772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, 773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences 774 ** used by the comparison. Return the result of the comparison. 775 ** 776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called, 777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version 778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked 779 ** version of key2 and *pbKey2Cached set to true before returning. 780 ** 781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set 782 ** to SQLITE_NOMEM. 783 */ 784 static int vdbeSorterCompare( 785 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 786 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 787 const void *pKey1, int nKey1, /* Left side of comparison */ 788 const void *pKey2, int nKey2 /* Right side of comparison */ 789 ){ 790 UnpackedRecord *r2 = pTask->pUnpacked; 791 if( !*pbKey2Cached ){ 792 sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); 793 *pbKey2Cached = 1; 794 } 795 return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); 796 } 797 798 /* 799 ** A specially optimized version of vdbeSorterCompare() that assumes that 800 ** the first field of each key is a TEXT value and that the collation 801 ** sequence to compare them with is BINARY. 802 */ 803 static int vdbeSorterCompareText( 804 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 805 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 806 const void *pKey1, int nKey1, /* Left side of comparison */ 807 const void *pKey2, int nKey2 /* Right side of comparison */ 808 ){ 809 const u8 * const p1 = (const u8 * const)pKey1; 810 const u8 * const p2 = (const u8 * const)pKey2; 811 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 812 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 813 814 int n1; 815 int n2; 816 int res; 817 818 getVarint32(&p1[1], n1); n1 = (n1 - 13) / 2; 819 getVarint32(&p2[1], n2); n2 = (n2 - 13) / 2; 820 res = memcmp(v1, v2, MIN(n1, n2)); 821 if( res==0 ){ 822 res = n1 - n2; 823 } 824 825 if( res==0 ){ 826 if( pTask->pSorter->pKeyInfo->nField>1 ){ 827 res = vdbeSorterCompareTail( 828 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 829 ); 830 } 831 }else{ 832 if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ 833 res = res * -1; 834 } 835 } 836 837 return res; 838 } 839 840 /* 841 ** A specially optimized version of vdbeSorterCompare() that assumes that 842 ** the first field of each key is an INTEGER value. 843 */ 844 static int vdbeSorterCompareInt( 845 SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ 846 int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ 847 const void *pKey1, int nKey1, /* Left side of comparison */ 848 const void *pKey2, int nKey2 /* Right side of comparison */ 849 ){ 850 const u8 * const p1 = (const u8 * const)pKey1; 851 const u8 * const p2 = (const u8 * const)pKey2; 852 const int s1 = p1[1]; /* Left hand serial type */ 853 const int s2 = p2[1]; /* Right hand serial type */ 854 const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ 855 const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ 856 int res; /* Return value */ 857 858 assert( (s1>0 && s1<7) || s1==8 || s1==9 ); 859 assert( (s2>0 && s2<7) || s2==8 || s2==9 ); 860 861 if( s1>7 && s2>7 ){ 862 res = s1 - s2; 863 }else{ 864 if( s1==s2 ){ 865 if( (*v1 ^ *v2) & 0x80 ){ 866 /* The two values have different signs */ 867 res = (*v1 & 0x80) ? -1 : +1; 868 }else{ 869 /* The two values have the same sign. Compare using memcmp(). */ 870 static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8 }; 871 int i; 872 res = 0; 873 for(i=0; i<aLen[s1]; i++){ 874 if( (res = v1[i] - v2[i]) ) break; 875 } 876 } 877 }else{ 878 if( s2>7 ){ 879 res = +1; 880 }else if( s1>7 ){ 881 res = -1; 882 }else{ 883 res = s1 - s2; 884 } 885 assert( res!=0 ); 886 887 if( res>0 ){ 888 if( *v1 & 0x80 ) res = -1; 889 }else{ 890 if( *v2 & 0x80 ) res = +1; 891 } 892 } 893 } 894 895 if( res==0 ){ 896 if( pTask->pSorter->pKeyInfo->nField>1 ){ 897 res = vdbeSorterCompareTail( 898 pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 899 ); 900 } 901 }else if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ 902 res = res * -1; 903 } 904 905 return res; 906 } 907 908 /* 909 ** Initialize the temporary index cursor just opened as a sorter cursor. 910 ** 911 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField) 912 ** to determine the number of fields that should be compared from the 913 ** records being sorted. However, if the value passed as argument nField 914 ** is non-zero and the sorter is able to guarantee a stable sort, nField 915 ** is used instead. This is used when sorting records for a CREATE INDEX 916 ** statement. In this case, keys are always delivered to the sorter in 917 ** order of the primary key, which happens to be make up the final part 918 ** of the records being sorted. So if the sort is stable, there is never 919 ** any reason to compare PK fields and they can be ignored for a small 920 ** performance boost. 921 ** 922 ** The sorter can guarantee a stable sort when running in single-threaded 923 ** mode, but not in multi-threaded mode. 924 ** 925 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 926 */ 927 int sqlite3VdbeSorterInit( 928 sqlite3 *db, /* Database connection (for malloc()) */ 929 int nField, /* Number of key fields in each record */ 930 VdbeCursor *pCsr /* Cursor that holds the new sorter */ 931 ){ 932 int pgsz; /* Page size of main database */ 933 int i; /* Used to iterate through aTask[] */ 934 int mxCache; /* Cache size */ 935 VdbeSorter *pSorter; /* The new sorter */ 936 KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ 937 int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ 938 int sz; /* Size of pSorter in bytes */ 939 int rc = SQLITE_OK; 940 #if SQLITE_MAX_WORKER_THREADS==0 941 # define nWorker 0 942 #else 943 int nWorker; 944 #endif 945 946 /* Initialize the upper limit on the number of worker threads */ 947 #if SQLITE_MAX_WORKER_THREADS>0 948 if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ 949 nWorker = 0; 950 }else{ 951 nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; 952 } 953 #endif 954 955 /* Do not allow the total number of threads (main thread + all workers) 956 ** to exceed the maximum merge count */ 957 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT 958 if( nWorker>=SORTER_MAX_MERGE_COUNT ){ 959 nWorker = SORTER_MAX_MERGE_COUNT-1; 960 } 961 #endif 962 963 assert( pCsr->pKeyInfo && pCsr->pBt==0 ); 964 assert( pCsr->eCurType==CURTYPE_SORTER ); 965 szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*); 966 sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); 967 968 pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); 969 pCsr->uc.pSorter = pSorter; 970 if( pSorter==0 ){ 971 rc = SQLITE_NOMEM_BKPT; 972 }else{ 973 pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); 974 memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); 975 pKeyInfo->db = 0; 976 if( nField && nWorker==0 ){ 977 pKeyInfo->nXField += (pKeyInfo->nField - nField); 978 pKeyInfo->nField = nField; 979 } 980 pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt); 981 pSorter->nTask = nWorker + 1; 982 pSorter->iPrev = (u8)(nWorker - 1); 983 pSorter->bUseThreads = (pSorter->nTask>1); 984 pSorter->db = db; 985 for(i=0; i<pSorter->nTask; i++){ 986 SortSubtask *pTask = &pSorter->aTask[i]; 987 pTask->pSorter = pSorter; 988 } 989 990 if( !sqlite3TempInMemory(db) ){ 991 u32 szPma = sqlite3GlobalConfig.szPma; 992 pSorter->mnPmaSize = szPma * pgsz; 993 mxCache = db->aDb[0].pSchema->cache_size; 994 if( mxCache<(int)szPma ) mxCache = (int)szPma; 995 pSorter->mxPmaSize = MIN((i64)mxCache*pgsz, SQLITE_MAX_PMASZ); 996 997 /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of 998 ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary 999 ** large heap allocations. 1000 */ 1001 if( sqlite3GlobalConfig.pScratch==0 ){ 1002 assert( pSorter->iMemory==0 ); 1003 pSorter->nMemory = pgsz; 1004 pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); 1005 if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; 1006 } 1007 } 1008 1009 if( (pKeyInfo->nField+pKeyInfo->nXField)<13 1010 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) 1011 ){ 1012 pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; 1013 } 1014 } 1015 1016 return rc; 1017 } 1018 #undef nWorker /* Defined at the top of this function */ 1019 1020 /* 1021 ** Free the list of sorted records starting at pRecord. 1022 */ 1023 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ 1024 SorterRecord *p; 1025 SorterRecord *pNext; 1026 for(p=pRecord; p; p=pNext){ 1027 pNext = p->u.pNext; 1028 sqlite3DbFree(db, p); 1029 } 1030 } 1031 1032 /* 1033 ** Free all resources owned by the object indicated by argument pTask. All 1034 ** fields of *pTask are zeroed before returning. 1035 */ 1036 static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ 1037 sqlite3DbFree(db, pTask->pUnpacked); 1038 #if SQLITE_MAX_WORKER_THREADS>0 1039 /* pTask->list.aMemory can only be non-zero if it was handed memory 1040 ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ 1041 if( pTask->list.aMemory ){ 1042 sqlite3_free(pTask->list.aMemory); 1043 }else 1044 #endif 1045 { 1046 assert( pTask->list.aMemory==0 ); 1047 vdbeSorterRecordFree(0, pTask->list.pList); 1048 } 1049 if( pTask->file.pFd ){ 1050 sqlite3OsCloseFree(pTask->file.pFd); 1051 } 1052 if( pTask->file2.pFd ){ 1053 sqlite3OsCloseFree(pTask->file2.pFd); 1054 } 1055 memset(pTask, 0, sizeof(SortSubtask)); 1056 } 1057 1058 #ifdef SQLITE_DEBUG_SORTER_THREADS 1059 static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ 1060 i64 t; 1061 int iTask = (pTask - pTask->pSorter->aTask); 1062 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1063 fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); 1064 } 1065 static void vdbeSorterRewindDebug(const char *zEvent){ 1066 i64 t; 1067 sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t); 1068 fprintf(stderr, "%lld:X %s\n", t, zEvent); 1069 } 1070 static void vdbeSorterPopulateDebug( 1071 SortSubtask *pTask, 1072 const char *zEvent 1073 ){ 1074 i64 t; 1075 int iTask = (pTask - pTask->pSorter->aTask); 1076 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1077 fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); 1078 } 1079 static void vdbeSorterBlockDebug( 1080 SortSubtask *pTask, 1081 int bBlocked, 1082 const char *zEvent 1083 ){ 1084 if( bBlocked ){ 1085 i64 t; 1086 sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); 1087 fprintf(stderr, "%lld:main %s\n", t, zEvent); 1088 } 1089 } 1090 #else 1091 # define vdbeSorterWorkDebug(x,y) 1092 # define vdbeSorterRewindDebug(y) 1093 # define vdbeSorterPopulateDebug(x,y) 1094 # define vdbeSorterBlockDebug(x,y,z) 1095 #endif 1096 1097 #if SQLITE_MAX_WORKER_THREADS>0 1098 /* 1099 ** Join thread pTask->thread. 1100 */ 1101 static int vdbeSorterJoinThread(SortSubtask *pTask){ 1102 int rc = SQLITE_OK; 1103 if( pTask->pThread ){ 1104 #ifdef SQLITE_DEBUG_SORTER_THREADS 1105 int bDone = pTask->bDone; 1106 #endif 1107 void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); 1108 vdbeSorterBlockDebug(pTask, !bDone, "enter"); 1109 (void)sqlite3ThreadJoin(pTask->pThread, &pRet); 1110 vdbeSorterBlockDebug(pTask, !bDone, "exit"); 1111 rc = SQLITE_PTR_TO_INT(pRet); 1112 assert( pTask->bDone==1 ); 1113 pTask->bDone = 0; 1114 pTask->pThread = 0; 1115 } 1116 return rc; 1117 } 1118 1119 /* 1120 ** Launch a background thread to run xTask(pIn). 1121 */ 1122 static int vdbeSorterCreateThread( 1123 SortSubtask *pTask, /* Thread will use this task object */ 1124 void *(*xTask)(void*), /* Routine to run in a separate thread */ 1125 void *pIn /* Argument passed into xTask() */ 1126 ){ 1127 assert( pTask->pThread==0 && pTask->bDone==0 ); 1128 return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); 1129 } 1130 1131 /* 1132 ** Join all outstanding threads launched by SorterWrite() to create 1133 ** level-0 PMAs. 1134 */ 1135 static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ 1136 int rc = rcin; 1137 int i; 1138 1139 /* This function is always called by the main user thread. 1140 ** 1141 ** If this function is being called after SorterRewind() has been called, 1142 ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread 1143 ** is currently attempt to join one of the other threads. To avoid a race 1144 ** condition where this thread also attempts to join the same object, join 1145 ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ 1146 for(i=pSorter->nTask-1; i>=0; i--){ 1147 SortSubtask *pTask = &pSorter->aTask[i]; 1148 int rc2 = vdbeSorterJoinThread(pTask); 1149 if( rc==SQLITE_OK ) rc = rc2; 1150 } 1151 return rc; 1152 } 1153 #else 1154 # define vdbeSorterJoinAll(x,rcin) (rcin) 1155 # define vdbeSorterJoinThread(pTask) SQLITE_OK 1156 #endif 1157 1158 /* 1159 ** Allocate a new MergeEngine object capable of handling up to 1160 ** nReader PmaReader inputs. 1161 ** 1162 ** nReader is automatically rounded up to the next power of two. 1163 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. 1164 */ 1165 static MergeEngine *vdbeMergeEngineNew(int nReader){ 1166 int N = 2; /* Smallest power of two >= nReader */ 1167 int nByte; /* Total bytes of space to allocate */ 1168 MergeEngine *pNew; /* Pointer to allocated object to return */ 1169 1170 assert( nReader<=SORTER_MAX_MERGE_COUNT ); 1171 1172 while( N<nReader ) N += N; 1173 nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader)); 1174 1175 pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte); 1176 if( pNew ){ 1177 pNew->nTree = N; 1178 pNew->pTask = 0; 1179 pNew->aReadr = (PmaReader*)&pNew[1]; 1180 pNew->aTree = (int*)&pNew->aReadr[N]; 1181 } 1182 return pNew; 1183 } 1184 1185 /* 1186 ** Free the MergeEngine object passed as the only argument. 1187 */ 1188 static void vdbeMergeEngineFree(MergeEngine *pMerger){ 1189 int i; 1190 if( pMerger ){ 1191 for(i=0; i<pMerger->nTree; i++){ 1192 vdbePmaReaderClear(&pMerger->aReadr[i]); 1193 } 1194 } 1195 sqlite3_free(pMerger); 1196 } 1197 1198 /* 1199 ** Free all resources associated with the IncrMerger object indicated by 1200 ** the first argument. 1201 */ 1202 static void vdbeIncrFree(IncrMerger *pIncr){ 1203 if( pIncr ){ 1204 #if SQLITE_MAX_WORKER_THREADS>0 1205 if( pIncr->bUseThread ){ 1206 vdbeSorterJoinThread(pIncr->pTask); 1207 if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); 1208 if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); 1209 } 1210 #endif 1211 vdbeMergeEngineFree(pIncr->pMerger); 1212 sqlite3_free(pIncr); 1213 } 1214 } 1215 1216 /* 1217 ** Reset a sorting cursor back to its original empty state. 1218 */ 1219 void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ 1220 int i; 1221 (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); 1222 assert( pSorter->bUseThreads || pSorter->pReader==0 ); 1223 #if SQLITE_MAX_WORKER_THREADS>0 1224 if( pSorter->pReader ){ 1225 vdbePmaReaderClear(pSorter->pReader); 1226 sqlite3DbFree(db, pSorter->pReader); 1227 pSorter->pReader = 0; 1228 } 1229 #endif 1230 vdbeMergeEngineFree(pSorter->pMerger); 1231 pSorter->pMerger = 0; 1232 for(i=0; i<pSorter->nTask; i++){ 1233 SortSubtask *pTask = &pSorter->aTask[i]; 1234 vdbeSortSubtaskCleanup(db, pTask); 1235 pTask->pSorter = pSorter; 1236 } 1237 if( pSorter->list.aMemory==0 ){ 1238 vdbeSorterRecordFree(0, pSorter->list.pList); 1239 } 1240 pSorter->list.pList = 0; 1241 pSorter->list.szPMA = 0; 1242 pSorter->bUsePMA = 0; 1243 pSorter->iMemory = 0; 1244 pSorter->mxKeysize = 0; 1245 sqlite3DbFree(db, pSorter->pUnpacked); 1246 pSorter->pUnpacked = 0; 1247 } 1248 1249 /* 1250 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. 1251 */ 1252 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ 1253 VdbeSorter *pSorter; 1254 assert( pCsr->eCurType==CURTYPE_SORTER ); 1255 pSorter = pCsr->uc.pSorter; 1256 if( pSorter ){ 1257 sqlite3VdbeSorterReset(db, pSorter); 1258 sqlite3_free(pSorter->list.aMemory); 1259 sqlite3DbFree(db, pSorter); 1260 pCsr->uc.pSorter = 0; 1261 } 1262 } 1263 1264 #if SQLITE_MAX_MMAP_SIZE>0 1265 /* 1266 ** The first argument is a file-handle open on a temporary file. The file 1267 ** is guaranteed to be nByte bytes or smaller in size. This function 1268 ** attempts to extend the file to nByte bytes in size and to ensure that 1269 ** the VFS has memory mapped it. 1270 ** 1271 ** Whether or not the file does end up memory mapped of course depends on 1272 ** the specific VFS implementation. 1273 */ 1274 static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ 1275 if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ 1276 void *p = 0; 1277 int chunksize = 4*1024; 1278 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); 1279 sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); 1280 sqlite3OsFetch(pFd, 0, (int)nByte, &p); 1281 sqlite3OsUnfetch(pFd, 0, p); 1282 } 1283 } 1284 #else 1285 # define vdbeSorterExtendFile(x,y,z) 1286 #endif 1287 1288 /* 1289 ** Allocate space for a file-handle and open a temporary file. If successful, 1290 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. 1291 ** Otherwise, set *ppFd to 0 and return an SQLite error code. 1292 */ 1293 static int vdbeSorterOpenTempFile( 1294 sqlite3 *db, /* Database handle doing sort */ 1295 i64 nExtend, /* Attempt to extend file to this size */ 1296 sqlite3_file **ppFd 1297 ){ 1298 int rc; 1299 if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; 1300 rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, 1301 SQLITE_OPEN_TEMP_JOURNAL | 1302 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 1303 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc 1304 ); 1305 if( rc==SQLITE_OK ){ 1306 i64 max = SQLITE_MAX_MMAP_SIZE; 1307 sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); 1308 if( nExtend>0 ){ 1309 vdbeSorterExtendFile(db, *ppFd, nExtend); 1310 } 1311 } 1312 return rc; 1313 } 1314 1315 /* 1316 ** If it has not already been allocated, allocate the UnpackedRecord 1317 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or 1318 ** if no allocation was required), or SQLITE_NOMEM otherwise. 1319 */ 1320 static int vdbeSortAllocUnpacked(SortSubtask *pTask){ 1321 if( pTask->pUnpacked==0 ){ 1322 char *pFree; 1323 pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord( 1324 pTask->pSorter->pKeyInfo, 0, 0, &pFree 1325 ); 1326 assert( pTask->pUnpacked==(UnpackedRecord*)pFree ); 1327 if( pFree==0 ) return SQLITE_NOMEM_BKPT; 1328 pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nField; 1329 pTask->pUnpacked->errCode = 0; 1330 } 1331 return SQLITE_OK; 1332 } 1333 1334 1335 /* 1336 ** Merge the two sorted lists p1 and p2 into a single list. 1337 ** Set *ppOut to the head of the new list. 1338 */ 1339 static void vdbeSorterMerge( 1340 SortSubtask *pTask, /* Calling thread context */ 1341 SorterRecord *p1, /* First list to merge */ 1342 SorterRecord *p2, /* Second list to merge */ 1343 SorterRecord **ppOut /* OUT: Head of merged list */ 1344 ){ 1345 SorterRecord *pFinal = 0; 1346 SorterRecord **pp = &pFinal; 1347 int bCached = 0; 1348 1349 while( p1 && p2 ){ 1350 int res; 1351 res = pTask->xCompare( 1352 pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal 1353 ); 1354 1355 if( res<=0 ){ 1356 *pp = p1; 1357 pp = &p1->u.pNext; 1358 p1 = p1->u.pNext; 1359 }else{ 1360 *pp = p2; 1361 pp = &p2->u.pNext; 1362 p2 = p2->u.pNext; 1363 bCached = 0; 1364 } 1365 } 1366 *pp = p1 ? p1 : p2; 1367 *ppOut = pFinal; 1368 } 1369 1370 /* 1371 ** Return the SorterCompare function to compare values collected by the 1372 ** sorter object passed as the only argument. 1373 */ 1374 static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ 1375 if( p->typeMask==SORTER_TYPE_INTEGER ){ 1376 return vdbeSorterCompareInt; 1377 }else if( p->typeMask==SORTER_TYPE_TEXT ){ 1378 return vdbeSorterCompareText; 1379 } 1380 return vdbeSorterCompare; 1381 } 1382 1383 /* 1384 ** Sort the linked list of records headed at pTask->pList. Return 1385 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if 1386 ** an error occurs. 1387 */ 1388 static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ 1389 int i; 1390 SorterRecord **aSlot; 1391 SorterRecord *p; 1392 int rc; 1393 1394 rc = vdbeSortAllocUnpacked(pTask); 1395 if( rc!=SQLITE_OK ) return rc; 1396 1397 p = pList->pList; 1398 pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); 1399 1400 aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); 1401 if( !aSlot ){ 1402 return SQLITE_NOMEM_BKPT; 1403 } 1404 1405 while( p ){ 1406 SorterRecord *pNext; 1407 if( pList->aMemory ){ 1408 if( (u8*)p==pList->aMemory ){ 1409 pNext = 0; 1410 }else{ 1411 assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) ); 1412 pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; 1413 } 1414 }else{ 1415 pNext = p->u.pNext; 1416 } 1417 1418 p->u.pNext = 0; 1419 for(i=0; aSlot[i]; i++){ 1420 vdbeSorterMerge(pTask, p, aSlot[i], &p); 1421 aSlot[i] = 0; 1422 } 1423 aSlot[i] = p; 1424 p = pNext; 1425 } 1426 1427 p = 0; 1428 for(i=0; i<64; i++){ 1429 vdbeSorterMerge(pTask, p, aSlot[i], &p); 1430 } 1431 pList->pList = p; 1432 1433 sqlite3_free(aSlot); 1434 assert( pTask->pUnpacked->errCode==SQLITE_OK 1435 || pTask->pUnpacked->errCode==SQLITE_NOMEM 1436 ); 1437 return pTask->pUnpacked->errCode; 1438 } 1439 1440 /* 1441 ** Initialize a PMA-writer object. 1442 */ 1443 static void vdbePmaWriterInit( 1444 sqlite3_file *pFd, /* File handle to write to */ 1445 PmaWriter *p, /* Object to populate */ 1446 int nBuf, /* Buffer size */ 1447 i64 iStart /* Offset of pFd to begin writing at */ 1448 ){ 1449 memset(p, 0, sizeof(PmaWriter)); 1450 p->aBuffer = (u8*)sqlite3Malloc(nBuf); 1451 if( !p->aBuffer ){ 1452 p->eFWErr = SQLITE_NOMEM_BKPT; 1453 }else{ 1454 p->iBufEnd = p->iBufStart = (iStart % nBuf); 1455 p->iWriteOff = iStart - p->iBufStart; 1456 p->nBuffer = nBuf; 1457 p->pFd = pFd; 1458 } 1459 } 1460 1461 /* 1462 ** Write nData bytes of data to the PMA. Return SQLITE_OK 1463 ** if successful, or an SQLite error code if an error occurs. 1464 */ 1465 static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ 1466 int nRem = nData; 1467 while( nRem>0 && p->eFWErr==0 ){ 1468 int nCopy = nRem; 1469 if( nCopy>(p->nBuffer - p->iBufEnd) ){ 1470 nCopy = p->nBuffer - p->iBufEnd; 1471 } 1472 1473 memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); 1474 p->iBufEnd += nCopy; 1475 if( p->iBufEnd==p->nBuffer ){ 1476 p->eFWErr = sqlite3OsWrite(p->pFd, 1477 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1478 p->iWriteOff + p->iBufStart 1479 ); 1480 p->iBufStart = p->iBufEnd = 0; 1481 p->iWriteOff += p->nBuffer; 1482 } 1483 assert( p->iBufEnd<p->nBuffer ); 1484 1485 nRem -= nCopy; 1486 } 1487 } 1488 1489 /* 1490 ** Flush any buffered data to disk and clean up the PMA-writer object. 1491 ** The results of using the PMA-writer after this call are undefined. 1492 ** Return SQLITE_OK if flushing the buffered data succeeds or is not 1493 ** required. Otherwise, return an SQLite error code. 1494 ** 1495 ** Before returning, set *piEof to the offset immediately following the 1496 ** last byte written to the file. 1497 */ 1498 static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ 1499 int rc; 1500 if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ 1501 p->eFWErr = sqlite3OsWrite(p->pFd, 1502 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 1503 p->iWriteOff + p->iBufStart 1504 ); 1505 } 1506 *piEof = (p->iWriteOff + p->iBufEnd); 1507 sqlite3_free(p->aBuffer); 1508 rc = p->eFWErr; 1509 memset(p, 0, sizeof(PmaWriter)); 1510 return rc; 1511 } 1512 1513 /* 1514 ** Write value iVal encoded as a varint to the PMA. Return 1515 ** SQLITE_OK if successful, or an SQLite error code if an error occurs. 1516 */ 1517 static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ 1518 int nByte; 1519 u8 aByte[10]; 1520 nByte = sqlite3PutVarint(aByte, iVal); 1521 vdbePmaWriteBlob(p, aByte, nByte); 1522 } 1523 1524 /* 1525 ** Write the current contents of in-memory linked-list pList to a level-0 1526 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if 1527 ** successful, or an SQLite error code otherwise. 1528 ** 1529 ** The format of a PMA is: 1530 ** 1531 ** * A varint. This varint contains the total number of bytes of content 1532 ** in the PMA (not including the varint itself). 1533 ** 1534 ** * One or more records packed end-to-end in order of ascending keys. 1535 ** Each record consists of a varint followed by a blob of data (the 1536 ** key). The varint is the number of bytes in the blob of data. 1537 */ 1538 static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ 1539 sqlite3 *db = pTask->pSorter->db; 1540 int rc = SQLITE_OK; /* Return code */ 1541 PmaWriter writer; /* Object used to write to the file */ 1542 1543 #ifdef SQLITE_DEBUG 1544 /* Set iSz to the expected size of file pTask->file after writing the PMA. 1545 ** This is used by an assert() statement at the end of this function. */ 1546 i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; 1547 #endif 1548 1549 vdbeSorterWorkDebug(pTask, "enter"); 1550 memset(&writer, 0, sizeof(PmaWriter)); 1551 assert( pList->szPMA>0 ); 1552 1553 /* If the first temporary PMA file has not been opened, open it now. */ 1554 if( pTask->file.pFd==0 ){ 1555 rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); 1556 assert( rc!=SQLITE_OK || pTask->file.pFd ); 1557 assert( pTask->file.iEof==0 ); 1558 assert( pTask->nPMA==0 ); 1559 } 1560 1561 /* Try to get the file to memory map */ 1562 if( rc==SQLITE_OK ){ 1563 vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); 1564 } 1565 1566 /* Sort the list */ 1567 if( rc==SQLITE_OK ){ 1568 rc = vdbeSorterSort(pTask, pList); 1569 } 1570 1571 if( rc==SQLITE_OK ){ 1572 SorterRecord *p; 1573 SorterRecord *pNext = 0; 1574 1575 vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, 1576 pTask->file.iEof); 1577 pTask->nPMA++; 1578 vdbePmaWriteVarint(&writer, pList->szPMA); 1579 for(p=pList->pList; p; p=pNext){ 1580 pNext = p->u.pNext; 1581 vdbePmaWriteVarint(&writer, p->nVal); 1582 vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); 1583 if( pList->aMemory==0 ) sqlite3_free(p); 1584 } 1585 pList->pList = p; 1586 rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); 1587 } 1588 1589 vdbeSorterWorkDebug(pTask, "exit"); 1590 assert( rc!=SQLITE_OK || pList->pList==0 ); 1591 assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); 1592 return rc; 1593 } 1594 1595 /* 1596 ** Advance the MergeEngine to its next entry. 1597 ** Set *pbEof to true there is no next entry because 1598 ** the MergeEngine has reached the end of all its inputs. 1599 ** 1600 ** Return SQLITE_OK if successful or an error code if an error occurs. 1601 */ 1602 static int vdbeMergeEngineStep( 1603 MergeEngine *pMerger, /* The merge engine to advance to the next row */ 1604 int *pbEof /* Set TRUE at EOF. Set false for more content */ 1605 ){ 1606 int rc; 1607 int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ 1608 SortSubtask *pTask = pMerger->pTask; 1609 1610 /* Advance the current PmaReader */ 1611 rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); 1612 1613 /* Update contents of aTree[] */ 1614 if( rc==SQLITE_OK ){ 1615 int i; /* Index of aTree[] to recalculate */ 1616 PmaReader *pReadr1; /* First PmaReader to compare */ 1617 PmaReader *pReadr2; /* Second PmaReader to compare */ 1618 int bCached = 0; 1619 1620 /* Find the first two PmaReaders to compare. The one that was just 1621 ** advanced (iPrev) and the one next to it in the array. */ 1622 pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; 1623 pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; 1624 1625 for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ 1626 /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ 1627 int iRes; 1628 if( pReadr1->pFd==0 ){ 1629 iRes = +1; 1630 }else if( pReadr2->pFd==0 ){ 1631 iRes = -1; 1632 }else{ 1633 iRes = pTask->xCompare(pTask, &bCached, 1634 pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey 1635 ); 1636 } 1637 1638 /* If pReadr1 contained the smaller value, set aTree[i] to its index. 1639 ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this 1640 ** case there is no cache of pReadr2 in pTask->pUnpacked, so set 1641 ** pKey2 to point to the record belonging to pReadr2. 1642 ** 1643 ** Alternatively, if pReadr2 contains the smaller of the two values, 1644 ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() 1645 ** was actually called above, then pTask->pUnpacked now contains 1646 ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent 1647 ** vdbeSorterCompare() from decoding pReadr2 again. 1648 ** 1649 ** If the two values were equal, then the value from the oldest 1650 ** PMA should be considered smaller. The VdbeSorter.aReadr[] array 1651 ** is sorted from oldest to newest, so pReadr1 contains older values 1652 ** than pReadr2 iff (pReadr1<pReadr2). */ 1653 if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ 1654 pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); 1655 pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1656 bCached = 0; 1657 }else{ 1658 if( pReadr1->pFd ) bCached = 0; 1659 pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); 1660 pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; 1661 } 1662 } 1663 *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); 1664 } 1665 1666 return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); 1667 } 1668 1669 #if SQLITE_MAX_WORKER_THREADS>0 1670 /* 1671 ** The main routine for background threads that write level-0 PMAs. 1672 */ 1673 static void *vdbeSorterFlushThread(void *pCtx){ 1674 SortSubtask *pTask = (SortSubtask*)pCtx; 1675 int rc; /* Return code */ 1676 assert( pTask->bDone==0 ); 1677 rc = vdbeSorterListToPMA(pTask, &pTask->list); 1678 pTask->bDone = 1; 1679 return SQLITE_INT_TO_PTR(rc); 1680 } 1681 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 1682 1683 /* 1684 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly 1685 ** using a background thread. 1686 */ 1687 static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ 1688 #if SQLITE_MAX_WORKER_THREADS==0 1689 pSorter->bUsePMA = 1; 1690 return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); 1691 #else 1692 int rc = SQLITE_OK; 1693 int i; 1694 SortSubtask *pTask = 0; /* Thread context used to create new PMA */ 1695 int nWorker = (pSorter->nTask-1); 1696 1697 /* Set the flag to indicate that at least one PMA has been written. 1698 ** Or will be, anyhow. */ 1699 pSorter->bUsePMA = 1; 1700 1701 /* Select a sub-task to sort and flush the current list of in-memory 1702 ** records to disk. If the sorter is running in multi-threaded mode, 1703 ** round-robin between the first (pSorter->nTask-1) tasks. Except, if 1704 ** the background thread from a sub-tasks previous turn is still running, 1705 ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, 1706 ** fall back to using the final sub-task. The first (pSorter->nTask-1) 1707 ** sub-tasks are prefered as they use background threads - the final 1708 ** sub-task uses the main thread. */ 1709 for(i=0; i<nWorker; i++){ 1710 int iTest = (pSorter->iPrev + i + 1) % nWorker; 1711 pTask = &pSorter->aTask[iTest]; 1712 if( pTask->bDone ){ 1713 rc = vdbeSorterJoinThread(pTask); 1714 } 1715 if( rc!=SQLITE_OK || pTask->pThread==0 ) break; 1716 } 1717 1718 if( rc==SQLITE_OK ){ 1719 if( i==nWorker ){ 1720 /* Use the foreground thread for this operation */ 1721 rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); 1722 }else{ 1723 /* Launch a background thread for this operation */ 1724 u8 *aMem = pTask->list.aMemory; 1725 void *pCtx = (void*)pTask; 1726 1727 assert( pTask->pThread==0 && pTask->bDone==0 ); 1728 assert( pTask->list.pList==0 ); 1729 assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); 1730 1731 pSorter->iPrev = (u8)(pTask - pSorter->aTask); 1732 pTask->list = pSorter->list; 1733 pSorter->list.pList = 0; 1734 pSorter->list.szPMA = 0; 1735 if( aMem ){ 1736 pSorter->list.aMemory = aMem; 1737 pSorter->nMemory = sqlite3MallocSize(aMem); 1738 }else if( pSorter->list.aMemory ){ 1739 pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); 1740 if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; 1741 } 1742 1743 rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); 1744 } 1745 } 1746 1747 return rc; 1748 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */ 1749 } 1750 1751 /* 1752 ** Add a record to the sorter. 1753 */ 1754 int sqlite3VdbeSorterWrite( 1755 const VdbeCursor *pCsr, /* Sorter cursor */ 1756 Mem *pVal /* Memory cell containing record */ 1757 ){ 1758 VdbeSorter *pSorter; 1759 int rc = SQLITE_OK; /* Return Code */ 1760 SorterRecord *pNew; /* New list element */ 1761 int bFlush; /* True to flush contents of memory to PMA */ 1762 int nReq; /* Bytes of memory required */ 1763 int nPMA; /* Bytes of PMA space required */ 1764 int t; /* serial type of first record field */ 1765 1766 assert( pCsr->eCurType==CURTYPE_SORTER ); 1767 pSorter = pCsr->uc.pSorter; 1768 getVarint32((const u8*)&pVal->z[1], t); 1769 if( t>0 && t<10 && t!=7 ){ 1770 pSorter->typeMask &= SORTER_TYPE_INTEGER; 1771 }else if( t>10 && (t & 0x01) ){ 1772 pSorter->typeMask &= SORTER_TYPE_TEXT; 1773 }else{ 1774 pSorter->typeMask = 0; 1775 } 1776 1777 assert( pSorter ); 1778 1779 /* Figure out whether or not the current contents of memory should be 1780 ** flushed to a PMA before continuing. If so, do so. 1781 ** 1782 ** If using the single large allocation mode (pSorter->aMemory!=0), then 1783 ** flush the contents of memory to a new PMA if (a) at least one value is 1784 ** already in memory and (b) the new value will not fit in memory. 1785 ** 1786 ** Or, if using separate allocations for each record, flush the contents 1787 ** of memory to a PMA if either of the following are true: 1788 ** 1789 ** * The total memory allocated for the in-memory list is greater 1790 ** than (page-size * cache-size), or 1791 ** 1792 ** * The total memory allocated for the in-memory list is greater 1793 ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. 1794 */ 1795 nReq = pVal->n + sizeof(SorterRecord); 1796 nPMA = pVal->n + sqlite3VarintLen(pVal->n); 1797 if( pSorter->mxPmaSize ){ 1798 if( pSorter->list.aMemory ){ 1799 bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; 1800 }else{ 1801 bFlush = ( 1802 (pSorter->list.szPMA > pSorter->mxPmaSize) 1803 || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) 1804 ); 1805 } 1806 if( bFlush ){ 1807 rc = vdbeSorterFlushPMA(pSorter); 1808 pSorter->list.szPMA = 0; 1809 pSorter->iMemory = 0; 1810 assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); 1811 } 1812 } 1813 1814 pSorter->list.szPMA += nPMA; 1815 if( nPMA>pSorter->mxKeysize ){ 1816 pSorter->mxKeysize = nPMA; 1817 } 1818 1819 if( pSorter->list.aMemory ){ 1820 int nMin = pSorter->iMemory + nReq; 1821 1822 if( nMin>pSorter->nMemory ){ 1823 u8 *aNew; 1824 int iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; 1825 int nNew = pSorter->nMemory * 2; 1826 while( nNew < nMin ) nNew = nNew*2; 1827 if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; 1828 if( nNew < nMin ) nNew = nMin; 1829 1830 aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); 1831 if( !aNew ) return SQLITE_NOMEM_BKPT; 1832 pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; 1833 pSorter->list.aMemory = aNew; 1834 pSorter->nMemory = nNew; 1835 } 1836 1837 pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; 1838 pSorter->iMemory += ROUND8(nReq); 1839 if( pSorter->list.pList ){ 1840 pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); 1841 } 1842 }else{ 1843 pNew = (SorterRecord *)sqlite3Malloc(nReq); 1844 if( pNew==0 ){ 1845 return SQLITE_NOMEM_BKPT; 1846 } 1847 pNew->u.pNext = pSorter->list.pList; 1848 } 1849 1850 memcpy(SRVAL(pNew), pVal->z, pVal->n); 1851 pNew->nVal = pVal->n; 1852 pSorter->list.pList = pNew; 1853 1854 return rc; 1855 } 1856 1857 /* 1858 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format 1859 ** of the data stored in aFile[1] is the same as that used by regular PMAs, 1860 ** except that the number-of-bytes varint is omitted from the start. 1861 */ 1862 static int vdbeIncrPopulate(IncrMerger *pIncr){ 1863 int rc = SQLITE_OK; 1864 int rc2; 1865 i64 iStart = pIncr->iStartOff; 1866 SorterFile *pOut = &pIncr->aFile[1]; 1867 SortSubtask *pTask = pIncr->pTask; 1868 MergeEngine *pMerger = pIncr->pMerger; 1869 PmaWriter writer; 1870 assert( pIncr->bEof==0 ); 1871 1872 vdbeSorterPopulateDebug(pTask, "enter"); 1873 1874 vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); 1875 while( rc==SQLITE_OK ){ 1876 int dummy; 1877 PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; 1878 int nKey = pReader->nKey; 1879 i64 iEof = writer.iWriteOff + writer.iBufEnd; 1880 1881 /* Check if the output file is full or if the input has been exhausted. 1882 ** In either case exit the loop. */ 1883 if( pReader->pFd==0 ) break; 1884 if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; 1885 1886 /* Write the next key to the output. */ 1887 vdbePmaWriteVarint(&writer, nKey); 1888 vdbePmaWriteBlob(&writer, pReader->aKey, nKey); 1889 assert( pIncr->pMerger->pTask==pTask ); 1890 rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); 1891 } 1892 1893 rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); 1894 if( rc==SQLITE_OK ) rc = rc2; 1895 vdbeSorterPopulateDebug(pTask, "exit"); 1896 return rc; 1897 } 1898 1899 #if SQLITE_MAX_WORKER_THREADS>0 1900 /* 1901 ** The main routine for background threads that populate aFile[1] of 1902 ** multi-threaded IncrMerger objects. 1903 */ 1904 static void *vdbeIncrPopulateThread(void *pCtx){ 1905 IncrMerger *pIncr = (IncrMerger*)pCtx; 1906 void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); 1907 pIncr->pTask->bDone = 1; 1908 return pRet; 1909 } 1910 1911 /* 1912 ** Launch a background thread to populate aFile[1] of pIncr. 1913 */ 1914 static int vdbeIncrBgPopulate(IncrMerger *pIncr){ 1915 void *p = (void*)pIncr; 1916 assert( pIncr->bUseThread ); 1917 return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); 1918 } 1919 #endif 1920 1921 /* 1922 ** This function is called when the PmaReader corresponding to pIncr has 1923 ** finished reading the contents of aFile[0]. Its purpose is to "refill" 1924 ** aFile[0] such that the PmaReader should start rereading it from the 1925 ** beginning. 1926 ** 1927 ** For single-threaded objects, this is accomplished by literally reading 1928 ** keys from pIncr->pMerger and repopulating aFile[0]. 1929 ** 1930 ** For multi-threaded objects, all that is required is to wait until the 1931 ** background thread is finished (if it is not already) and then swap 1932 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not 1933 ** been exhausted, this function also launches a new background thread 1934 ** to populate the new aFile[1]. 1935 ** 1936 ** SQLITE_OK is returned on success, or an SQLite error code otherwise. 1937 */ 1938 static int vdbeIncrSwap(IncrMerger *pIncr){ 1939 int rc = SQLITE_OK; 1940 1941 #if SQLITE_MAX_WORKER_THREADS>0 1942 if( pIncr->bUseThread ){ 1943 rc = vdbeSorterJoinThread(pIncr->pTask); 1944 1945 if( rc==SQLITE_OK ){ 1946 SorterFile f0 = pIncr->aFile[0]; 1947 pIncr->aFile[0] = pIncr->aFile[1]; 1948 pIncr->aFile[1] = f0; 1949 } 1950 1951 if( rc==SQLITE_OK ){ 1952 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1953 pIncr->bEof = 1; 1954 }else{ 1955 rc = vdbeIncrBgPopulate(pIncr); 1956 } 1957 } 1958 }else 1959 #endif 1960 { 1961 rc = vdbeIncrPopulate(pIncr); 1962 pIncr->aFile[0] = pIncr->aFile[1]; 1963 if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ 1964 pIncr->bEof = 1; 1965 } 1966 } 1967 1968 return rc; 1969 } 1970 1971 /* 1972 ** Allocate and return a new IncrMerger object to read data from pMerger. 1973 ** 1974 ** If an OOM condition is encountered, return NULL. In this case free the 1975 ** pMerger argument before returning. 1976 */ 1977 static int vdbeIncrMergerNew( 1978 SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ 1979 MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ 1980 IncrMerger **ppOut /* Write the new IncrMerger here */ 1981 ){ 1982 int rc = SQLITE_OK; 1983 IncrMerger *pIncr = *ppOut = (IncrMerger*) 1984 (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); 1985 if( pIncr ){ 1986 pIncr->pMerger = pMerger; 1987 pIncr->pTask = pTask; 1988 pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); 1989 pTask->file2.iEof += pIncr->mxSz; 1990 }else{ 1991 vdbeMergeEngineFree(pMerger); 1992 rc = SQLITE_NOMEM_BKPT; 1993 } 1994 return rc; 1995 } 1996 1997 #if SQLITE_MAX_WORKER_THREADS>0 1998 /* 1999 ** Set the "use-threads" flag on object pIncr. 2000 */ 2001 static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ 2002 pIncr->bUseThread = 1; 2003 pIncr->pTask->file2.iEof -= pIncr->mxSz; 2004 } 2005 #endif /* SQLITE_MAX_WORKER_THREADS>0 */ 2006 2007 2008 2009 /* 2010 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the 2011 ** two PmaReaders that feed that entry. Neither of the PmaReaders 2012 ** are advanced. This routine merely does the comparison. 2013 */ 2014 static void vdbeMergeEngineCompare( 2015 MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ 2016 int iOut /* Store the result in pMerger->aTree[iOut] */ 2017 ){ 2018 int i1; 2019 int i2; 2020 int iRes; 2021 PmaReader *p1; 2022 PmaReader *p2; 2023 2024 assert( iOut<pMerger->nTree && iOut>0 ); 2025 2026 if( iOut>=(pMerger->nTree/2) ){ 2027 i1 = (iOut - pMerger->nTree/2) * 2; 2028 i2 = i1 + 1; 2029 }else{ 2030 i1 = pMerger->aTree[iOut*2]; 2031 i2 = pMerger->aTree[iOut*2+1]; 2032 } 2033 2034 p1 = &pMerger->aReadr[i1]; 2035 p2 = &pMerger->aReadr[i2]; 2036 2037 if( p1->pFd==0 ){ 2038 iRes = i2; 2039 }else if( p2->pFd==0 ){ 2040 iRes = i1; 2041 }else{ 2042 SortSubtask *pTask = pMerger->pTask; 2043 int bCached = 0; 2044 int res; 2045 assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ 2046 res = pTask->xCompare( 2047 pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey 2048 ); 2049 if( res<=0 ){ 2050 iRes = i1; 2051 }else{ 2052 iRes = i2; 2053 } 2054 } 2055 2056 pMerger->aTree[iOut] = iRes; 2057 } 2058 2059 /* 2060 ** Allowed values for the eMode parameter to vdbeMergeEngineInit() 2061 ** and vdbePmaReaderIncrMergeInit(). 2062 ** 2063 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when 2064 ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used 2065 ** when there exists one or more separate worker threads. 2066 */ 2067 #define INCRINIT_NORMAL 0 2068 #define INCRINIT_TASK 1 2069 #define INCRINIT_ROOT 2 2070 2071 /* 2072 ** Forward reference required as the vdbeIncrMergeInit() and 2073 ** vdbePmaReaderIncrInit() routines are called mutually recursively when 2074 ** building a merge tree. 2075 */ 2076 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); 2077 2078 /* 2079 ** Initialize the MergeEngine object passed as the second argument. Once this 2080 ** function returns, the first key of merged data may be read from the 2081 ** MergeEngine object in the usual fashion. 2082 ** 2083 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge 2084 ** objects attached to the PmaReader objects that the merger reads from have 2085 ** already been populated, but that they have not yet populated aFile[0] and 2086 ** set the PmaReader objects up to read from it. In this case all that is 2087 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at 2088 ** its first key. 2089 ** 2090 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use 2091 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data 2092 ** to pMerger. 2093 ** 2094 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2095 */ 2096 static int vdbeMergeEngineInit( 2097 SortSubtask *pTask, /* Thread that will run pMerger */ 2098 MergeEngine *pMerger, /* MergeEngine to initialize */ 2099 int eMode /* One of the INCRINIT_XXX constants */ 2100 ){ 2101 int rc = SQLITE_OK; /* Return code */ 2102 int i; /* For looping over PmaReader objects */ 2103 int nTree = pMerger->nTree; 2104 2105 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2106 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2107 2108 /* Verify that the MergeEngine is assigned to a single thread */ 2109 assert( pMerger->pTask==0 ); 2110 pMerger->pTask = pTask; 2111 2112 for(i=0; i<nTree; i++){ 2113 if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){ 2114 /* PmaReaders should be normally initialized in order, as if they are 2115 ** reading from the same temp file this makes for more linear file IO. 2116 ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is 2117 ** in use it will block the vdbePmaReaderNext() call while it uses 2118 ** the main thread to fill its buffer. So calling PmaReaderNext() 2119 ** on this PmaReader before any of the multi-threaded PmaReaders takes 2120 ** better advantage of multi-processor hardware. */ 2121 rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); 2122 }else{ 2123 rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); 2124 } 2125 if( rc!=SQLITE_OK ) return rc; 2126 } 2127 2128 for(i=pMerger->nTree-1; i>0; i--){ 2129 vdbeMergeEngineCompare(pMerger, i); 2130 } 2131 return pTask->pUnpacked->errCode; 2132 } 2133 2134 /* 2135 ** The PmaReader passed as the first argument is guaranteed to be an 2136 ** incremental-reader (pReadr->pIncr!=0). This function serves to open 2137 ** and/or initialize the temp file related fields of the IncrMerge 2138 ** object at (pReadr->pIncr). 2139 ** 2140 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders 2141 ** in the sub-tree headed by pReadr are also initialized. Data is then 2142 ** loaded into the buffers belonging to pReadr and it is set to point to 2143 ** the first key in its range. 2144 ** 2145 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed 2146 ** to be a multi-threaded PmaReader and this function is being called in a 2147 ** background thread. In this case all PmaReaders in the sub-tree are 2148 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to 2149 ** pReadr is populated. However, pReadr itself is not set up to point 2150 ** to its first key. A call to vdbePmaReaderNext() is still required to do 2151 ** that. 2152 ** 2153 ** The reason this function does not call vdbePmaReaderNext() immediately 2154 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has 2155 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since 2156 ** this entire function is being run by thread (pTask->thread), that will 2157 ** lead to the current background thread attempting to join itself. 2158 ** 2159 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed 2160 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all 2161 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK). 2162 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and 2163 ** the current PmaReader set to point to the first key in its range. 2164 ** 2165 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2166 */ 2167 static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ 2168 int rc = SQLITE_OK; 2169 IncrMerger *pIncr = pReadr->pIncr; 2170 SortSubtask *pTask = pIncr->pTask; 2171 sqlite3 *db = pTask->pSorter->db; 2172 2173 /* eMode is always INCRINIT_NORMAL in single-threaded mode */ 2174 assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); 2175 2176 rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); 2177 2178 /* Set up the required files for pIncr. A multi-theaded IncrMerge object 2179 ** requires two temp files to itself, whereas a single-threaded object 2180 ** only requires a region of pTask->file2. */ 2181 if( rc==SQLITE_OK ){ 2182 int mxSz = pIncr->mxSz; 2183 #if SQLITE_MAX_WORKER_THREADS>0 2184 if( pIncr->bUseThread ){ 2185 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); 2186 if( rc==SQLITE_OK ){ 2187 rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); 2188 } 2189 }else 2190 #endif 2191 /*if( !pIncr->bUseThread )*/{ 2192 if( pTask->file2.pFd==0 ){ 2193 assert( pTask->file2.iEof>0 ); 2194 rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); 2195 pTask->file2.iEof = 0; 2196 } 2197 if( rc==SQLITE_OK ){ 2198 pIncr->aFile[1].pFd = pTask->file2.pFd; 2199 pIncr->iStartOff = pTask->file2.iEof; 2200 pTask->file2.iEof += mxSz; 2201 } 2202 } 2203 } 2204 2205 #if SQLITE_MAX_WORKER_THREADS>0 2206 if( rc==SQLITE_OK && pIncr->bUseThread ){ 2207 /* Use the current thread to populate aFile[1], even though this 2208 ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, 2209 ** then this function is already running in background thread 2210 ** pIncr->pTask->thread. 2211 ** 2212 ** If this is the INCRINIT_ROOT object, then it is running in the 2213 ** main VDBE thread. But that is Ok, as that thread cannot return 2214 ** control to the VDBE or proceed with anything useful until the 2215 ** first results are ready from this merger object anyway. 2216 */ 2217 assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); 2218 rc = vdbeIncrPopulate(pIncr); 2219 } 2220 #endif 2221 2222 if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ 2223 rc = vdbePmaReaderNext(pReadr); 2224 } 2225 2226 return rc; 2227 } 2228 2229 #if SQLITE_MAX_WORKER_THREADS>0 2230 /* 2231 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in 2232 ** background threads. 2233 */ 2234 static void *vdbePmaReaderBgIncrInit(void *pCtx){ 2235 PmaReader *pReader = (PmaReader*)pCtx; 2236 void *pRet = SQLITE_INT_TO_PTR( 2237 vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) 2238 ); 2239 pReader->pIncr->pTask->bDone = 1; 2240 return pRet; 2241 } 2242 #endif 2243 2244 /* 2245 ** If the PmaReader passed as the first argument is not an incremental-reader 2246 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes 2247 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to 2248 ** this routine to initialize the incremental merge. 2249 ** 2250 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), 2251 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). 2252 ** Or, if the IncrMerger is single threaded, the same function is called 2253 ** using the current thread. 2254 */ 2255 static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ 2256 IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ 2257 int rc = SQLITE_OK; /* Return code */ 2258 if( pIncr ){ 2259 #if SQLITE_MAX_WORKER_THREADS>0 2260 assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); 2261 if( pIncr->bUseThread ){ 2262 void *pCtx = (void*)pReadr; 2263 rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); 2264 }else 2265 #endif 2266 { 2267 rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); 2268 } 2269 } 2270 return rc; 2271 } 2272 2273 /* 2274 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0 2275 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to 2276 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut 2277 ** to NULL and return an SQLite error code. 2278 ** 2279 ** When this function is called, *piOffset is set to the offset of the 2280 ** first PMA to read from pTask->file. Assuming no error occurs, it is 2281 ** set to the offset immediately following the last byte of the last 2282 ** PMA before returning. If an error does occur, then the final value of 2283 ** *piOffset is undefined. 2284 */ 2285 static int vdbeMergeEngineLevel0( 2286 SortSubtask *pTask, /* Sorter task to read from */ 2287 int nPMA, /* Number of PMAs to read */ 2288 i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ 2289 MergeEngine **ppOut /* OUT: New merge-engine */ 2290 ){ 2291 MergeEngine *pNew; /* Merge engine to return */ 2292 i64 iOff = *piOffset; 2293 int i; 2294 int rc = SQLITE_OK; 2295 2296 *ppOut = pNew = vdbeMergeEngineNew(nPMA); 2297 if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; 2298 2299 for(i=0; i<nPMA && rc==SQLITE_OK; i++){ 2300 i64 nDummy = 0; 2301 PmaReader *pReadr = &pNew->aReadr[i]; 2302 rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); 2303 iOff = pReadr->iEof; 2304 } 2305 2306 if( rc!=SQLITE_OK ){ 2307 vdbeMergeEngineFree(pNew); 2308 *ppOut = 0; 2309 } 2310 *piOffset = iOff; 2311 return rc; 2312 } 2313 2314 /* 2315 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of 2316 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. 2317 ** 2318 ** i.e. 2319 ** 2320 ** nPMA<=16 -> TreeDepth() == 0 2321 ** nPMA<=256 -> TreeDepth() == 1 2322 ** nPMA<=65536 -> TreeDepth() == 2 2323 */ 2324 static int vdbeSorterTreeDepth(int nPMA){ 2325 int nDepth = 0; 2326 i64 nDiv = SORTER_MAX_MERGE_COUNT; 2327 while( nDiv < (i64)nPMA ){ 2328 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2329 nDepth++; 2330 } 2331 return nDepth; 2332 } 2333 2334 /* 2335 ** pRoot is the root of an incremental merge-tree with depth nDepth (according 2336 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the 2337 ** tree, counting from zero. This function adds pLeaf to the tree. 2338 ** 2339 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error 2340 ** code is returned and pLeaf is freed. 2341 */ 2342 static int vdbeSorterAddToTree( 2343 SortSubtask *pTask, /* Task context */ 2344 int nDepth, /* Depth of tree according to TreeDepth() */ 2345 int iSeq, /* Sequence number of leaf within tree */ 2346 MergeEngine *pRoot, /* Root of tree */ 2347 MergeEngine *pLeaf /* Leaf to add to tree */ 2348 ){ 2349 int rc = SQLITE_OK; 2350 int nDiv = 1; 2351 int i; 2352 MergeEngine *p = pRoot; 2353 IncrMerger *pIncr; 2354 2355 rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); 2356 2357 for(i=1; i<nDepth; i++){ 2358 nDiv = nDiv * SORTER_MAX_MERGE_COUNT; 2359 } 2360 2361 for(i=1; i<nDepth && rc==SQLITE_OK; i++){ 2362 int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT; 2363 PmaReader *pReadr = &p->aReadr[iIter]; 2364 2365 if( pReadr->pIncr==0 ){ 2366 MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2367 if( pNew==0 ){ 2368 rc = SQLITE_NOMEM_BKPT; 2369 }else{ 2370 rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); 2371 } 2372 } 2373 if( rc==SQLITE_OK ){ 2374 p = pReadr->pIncr->pMerger; 2375 nDiv = nDiv / SORTER_MAX_MERGE_COUNT; 2376 } 2377 } 2378 2379 if( rc==SQLITE_OK ){ 2380 p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; 2381 }else{ 2382 vdbeIncrFree(pIncr); 2383 } 2384 return rc; 2385 } 2386 2387 /* 2388 ** This function is called as part of a SorterRewind() operation on a sorter 2389 ** that has already written two or more level-0 PMAs to one or more temp 2390 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that 2391 ** can be used to incrementally merge all PMAs on disk. 2392 ** 2393 ** If successful, SQLITE_OK is returned and *ppOut set to point to the 2394 ** MergeEngine object at the root of the tree before returning. Or, if an 2395 ** error occurs, an SQLite error code is returned and the final value 2396 ** of *ppOut is undefined. 2397 */ 2398 static int vdbeSorterMergeTreeBuild( 2399 VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ 2400 MergeEngine **ppOut /* Write the MergeEngine here */ 2401 ){ 2402 MergeEngine *pMain = 0; 2403 int rc = SQLITE_OK; 2404 int iTask; 2405 2406 #if SQLITE_MAX_WORKER_THREADS>0 2407 /* If the sorter uses more than one task, then create the top-level 2408 ** MergeEngine here. This MergeEngine will read data from exactly 2409 ** one PmaReader per sub-task. */ 2410 assert( pSorter->bUseThreads || pSorter->nTask==1 ); 2411 if( pSorter->nTask>1 ){ 2412 pMain = vdbeMergeEngineNew(pSorter->nTask); 2413 if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; 2414 } 2415 #endif 2416 2417 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2418 SortSubtask *pTask = &pSorter->aTask[iTask]; 2419 assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); 2420 if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ 2421 MergeEngine *pRoot = 0; /* Root node of tree for this task */ 2422 int nDepth = vdbeSorterTreeDepth(pTask->nPMA); 2423 i64 iReadOff = 0; 2424 2425 if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ 2426 rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); 2427 }else{ 2428 int i; 2429 int iSeq = 0; 2430 pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); 2431 if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; 2432 for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ 2433 MergeEngine *pMerger = 0; /* New level-0 PMA merger */ 2434 int nReader; /* Number of level-0 PMAs to merge */ 2435 2436 nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); 2437 rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); 2438 if( rc==SQLITE_OK ){ 2439 rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); 2440 } 2441 } 2442 } 2443 2444 if( rc==SQLITE_OK ){ 2445 #if SQLITE_MAX_WORKER_THREADS>0 2446 if( pMain!=0 ){ 2447 rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); 2448 }else 2449 #endif 2450 { 2451 assert( pMain==0 ); 2452 pMain = pRoot; 2453 } 2454 }else{ 2455 vdbeMergeEngineFree(pRoot); 2456 } 2457 } 2458 } 2459 2460 if( rc!=SQLITE_OK ){ 2461 vdbeMergeEngineFree(pMain); 2462 pMain = 0; 2463 } 2464 *ppOut = pMain; 2465 return rc; 2466 } 2467 2468 /* 2469 ** This function is called as part of an sqlite3VdbeSorterRewind() operation 2470 ** on a sorter that has written two or more PMAs to temporary files. It sets 2471 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader 2472 ** (for multi-threaded sorters) so that it can be used to iterate through 2473 ** all records stored in the sorter. 2474 ** 2475 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 2476 */ 2477 static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ 2478 int rc; /* Return code */ 2479 SortSubtask *pTask0 = &pSorter->aTask[0]; 2480 MergeEngine *pMain = 0; 2481 #if SQLITE_MAX_WORKER_THREADS 2482 sqlite3 *db = pTask0->pSorter->db; 2483 int i; 2484 SorterCompare xCompare = vdbeSorterGetCompare(pSorter); 2485 for(i=0; i<pSorter->nTask; i++){ 2486 pSorter->aTask[i].xCompare = xCompare; 2487 } 2488 #endif 2489 2490 rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); 2491 if( rc==SQLITE_OK ){ 2492 #if SQLITE_MAX_WORKER_THREADS 2493 assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); 2494 if( pSorter->bUseThreads ){ 2495 int iTask; 2496 PmaReader *pReadr = 0; 2497 SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; 2498 rc = vdbeSortAllocUnpacked(pLast); 2499 if( rc==SQLITE_OK ){ 2500 pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); 2501 pSorter->pReader = pReadr; 2502 if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; 2503 } 2504 if( rc==SQLITE_OK ){ 2505 rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); 2506 if( rc==SQLITE_OK ){ 2507 vdbeIncrMergerSetThreads(pReadr->pIncr); 2508 for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ 2509 IncrMerger *pIncr; 2510 if( (pIncr = pMain->aReadr[iTask].pIncr) ){ 2511 vdbeIncrMergerSetThreads(pIncr); 2512 assert( pIncr->pTask!=pLast ); 2513 } 2514 } 2515 for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){ 2516 /* Check that: 2517 ** 2518 ** a) The incremental merge object is configured to use the 2519 ** right task, and 2520 ** b) If it is using task (nTask-1), it is configured to run 2521 ** in single-threaded mode. This is important, as the 2522 ** root merge (INCRINIT_ROOT) will be using the same task 2523 ** object. 2524 */ 2525 PmaReader *p = &pMain->aReadr[iTask]; 2526 assert( p->pIncr==0 || ( 2527 (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ 2528 && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ 2529 )); 2530 rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); 2531 } 2532 } 2533 pMain = 0; 2534 } 2535 if( rc==SQLITE_OK ){ 2536 rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); 2537 } 2538 }else 2539 #endif 2540 { 2541 rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); 2542 pSorter->pMerger = pMain; 2543 pMain = 0; 2544 } 2545 } 2546 2547 if( rc!=SQLITE_OK ){ 2548 vdbeMergeEngineFree(pMain); 2549 } 2550 return rc; 2551 } 2552 2553 2554 /* 2555 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, 2556 ** this function is called to prepare for iterating through the records 2557 ** in sorted order. 2558 */ 2559 int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ 2560 VdbeSorter *pSorter; 2561 int rc = SQLITE_OK; /* Return code */ 2562 2563 assert( pCsr->eCurType==CURTYPE_SORTER ); 2564 pSorter = pCsr->uc.pSorter; 2565 assert( pSorter ); 2566 2567 /* If no data has been written to disk, then do not do so now. Instead, 2568 ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly 2569 ** from the in-memory list. */ 2570 if( pSorter->bUsePMA==0 ){ 2571 if( pSorter->list.pList ){ 2572 *pbEof = 0; 2573 rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); 2574 }else{ 2575 *pbEof = 1; 2576 } 2577 return rc; 2578 } 2579 2580 /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() 2581 ** function flushes the contents of memory to disk, it immediately always 2582 ** creates a new list consisting of a single key immediately afterwards. 2583 ** So the list is never empty at this point. */ 2584 assert( pSorter->list.pList ); 2585 rc = vdbeSorterFlushPMA(pSorter); 2586 2587 /* Join all threads */ 2588 rc = vdbeSorterJoinAll(pSorter, rc); 2589 2590 vdbeSorterRewindDebug("rewind"); 2591 2592 /* Assuming no errors have occurred, set up a merger structure to 2593 ** incrementally read and merge all remaining PMAs. */ 2594 assert( pSorter->pReader==0 ); 2595 if( rc==SQLITE_OK ){ 2596 rc = vdbeSorterSetupMerge(pSorter); 2597 *pbEof = 0; 2598 } 2599 2600 vdbeSorterRewindDebug("rewinddone"); 2601 return rc; 2602 } 2603 2604 /* 2605 ** Advance to the next element in the sorter. 2606 */ 2607 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ 2608 VdbeSorter *pSorter; 2609 int rc; /* Return code */ 2610 2611 assert( pCsr->eCurType==CURTYPE_SORTER ); 2612 pSorter = pCsr->uc.pSorter; 2613 assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); 2614 if( pSorter->bUsePMA ){ 2615 assert( pSorter->pReader==0 || pSorter->pMerger==0 ); 2616 assert( pSorter->bUseThreads==0 || pSorter->pReader ); 2617 assert( pSorter->bUseThreads==1 || pSorter->pMerger ); 2618 #if SQLITE_MAX_WORKER_THREADS>0 2619 if( pSorter->bUseThreads ){ 2620 rc = vdbePmaReaderNext(pSorter->pReader); 2621 *pbEof = (pSorter->pReader->pFd==0); 2622 }else 2623 #endif 2624 /*if( !pSorter->bUseThreads )*/ { 2625 assert( pSorter->pMerger!=0 ); 2626 assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); 2627 rc = vdbeMergeEngineStep(pSorter->pMerger, pbEof); 2628 } 2629 }else{ 2630 SorterRecord *pFree = pSorter->list.pList; 2631 pSorter->list.pList = pFree->u.pNext; 2632 pFree->u.pNext = 0; 2633 if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); 2634 *pbEof = !pSorter->list.pList; 2635 rc = SQLITE_OK; 2636 } 2637 return rc; 2638 } 2639 2640 /* 2641 ** Return a pointer to a buffer owned by the sorter that contains the 2642 ** current key. 2643 */ 2644 static void *vdbeSorterRowkey( 2645 const VdbeSorter *pSorter, /* Sorter object */ 2646 int *pnKey /* OUT: Size of current key in bytes */ 2647 ){ 2648 void *pKey; 2649 if( pSorter->bUsePMA ){ 2650 PmaReader *pReader; 2651 #if SQLITE_MAX_WORKER_THREADS>0 2652 if( pSorter->bUseThreads ){ 2653 pReader = pSorter->pReader; 2654 }else 2655 #endif 2656 /*if( !pSorter->bUseThreads )*/{ 2657 pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; 2658 } 2659 *pnKey = pReader->nKey; 2660 pKey = pReader->aKey; 2661 }else{ 2662 *pnKey = pSorter->list.pList->nVal; 2663 pKey = SRVAL(pSorter->list.pList); 2664 } 2665 return pKey; 2666 } 2667 2668 /* 2669 ** Copy the current sorter key into the memory cell pOut. 2670 */ 2671 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ 2672 VdbeSorter *pSorter; 2673 void *pKey; int nKey; /* Sorter key to copy into pOut */ 2674 2675 assert( pCsr->eCurType==CURTYPE_SORTER ); 2676 pSorter = pCsr->uc.pSorter; 2677 pKey = vdbeSorterRowkey(pSorter, &nKey); 2678 if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ 2679 return SQLITE_NOMEM_BKPT; 2680 } 2681 pOut->n = nKey; 2682 MemSetTypeFlag(pOut, MEM_Blob); 2683 memcpy(pOut->z, pKey, nKey); 2684 2685 return SQLITE_OK; 2686 } 2687 2688 /* 2689 ** Compare the key in memory cell pVal with the key that the sorter cursor 2690 ** passed as the first argument currently points to. For the purposes of 2691 ** the comparison, ignore the rowid field at the end of each record. 2692 ** 2693 ** If the sorter cursor key contains any NULL values, consider it to be 2694 ** less than pVal. Even if pVal also contains NULL values. 2695 ** 2696 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). 2697 ** Otherwise, set *pRes to a negative, zero or positive value if the 2698 ** key in pVal is smaller than, equal to or larger than the current sorter 2699 ** key. 2700 ** 2701 ** This routine forms the core of the OP_SorterCompare opcode, which in 2702 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX. 2703 */ 2704 int sqlite3VdbeSorterCompare( 2705 const VdbeCursor *pCsr, /* Sorter cursor */ 2706 Mem *pVal, /* Value to compare to current sorter key */ 2707 int nKeyCol, /* Compare this many columns */ 2708 int *pRes /* OUT: Result of comparison */ 2709 ){ 2710 VdbeSorter *pSorter; 2711 UnpackedRecord *r2; 2712 KeyInfo *pKeyInfo; 2713 int i; 2714 void *pKey; int nKey; /* Sorter key to compare pVal with */ 2715 2716 assert( pCsr->eCurType==CURTYPE_SORTER ); 2717 pSorter = pCsr->uc.pSorter; 2718 r2 = pSorter->pUnpacked; 2719 pKeyInfo = pCsr->pKeyInfo; 2720 if( r2==0 ){ 2721 char *p; 2722 r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo,0,0,&p); 2723 assert( pSorter->pUnpacked==(UnpackedRecord*)p ); 2724 if( r2==0 ) return SQLITE_NOMEM_BKPT; 2725 r2->nField = nKeyCol; 2726 } 2727 assert( r2->nField==nKeyCol ); 2728 2729 pKey = vdbeSorterRowkey(pSorter, &nKey); 2730 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); 2731 for(i=0; i<nKeyCol; i++){ 2732 if( r2->aMem[i].flags & MEM_Null ){ 2733 *pRes = -1; 2734 return SQLITE_OK; 2735 } 2736 } 2737 2738 *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); 2739 return SQLITE_OK; 2740 } 2741