1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( pMem!=0 ); 204 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 206 || desiredEnc==SQLITE_UTF16BE ); 207 if( !(pMem->flags&MEM_Str) ){ 208 pMem->enc = desiredEnc; 209 return SQLITE_OK; 210 } 211 if( pMem->enc==desiredEnc ){ 212 return SQLITE_OK; 213 } 214 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 215 #ifdef SQLITE_OMIT_UTF16 216 return SQLITE_ERROR; 217 #else 218 219 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 220 ** then the encoding of the value may not have changed. 221 */ 222 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 223 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 224 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 225 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 226 return rc; 227 #endif 228 } 229 230 /* 231 ** Make sure pMem->z points to a writable allocation of at least n bytes. 232 ** 233 ** If the bPreserve argument is true, then copy of the content of 234 ** pMem->z into the new allocation. pMem must be either a string or 235 ** blob if bPreserve is true. If bPreserve is false, any prior content 236 ** in pMem->z is discarded. 237 */ 238 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 239 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 240 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 241 testcase( pMem->db==0 ); 242 243 /* If the bPreserve flag is set to true, then the memory cell must already 244 ** contain a valid string or blob value. */ 245 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 246 testcase( bPreserve && pMem->z==0 ); 247 248 assert( pMem->szMalloc==0 249 || (pMem->flags==MEM_Undefined 250 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 251 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 252 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 253 if( pMem->db ){ 254 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 255 }else{ 256 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 257 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 258 pMem->z = pMem->zMalloc; 259 } 260 bPreserve = 0; 261 }else{ 262 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 263 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 264 } 265 if( pMem->zMalloc==0 ){ 266 sqlite3VdbeMemSetNull(pMem); 267 pMem->z = 0; 268 pMem->szMalloc = 0; 269 return SQLITE_NOMEM_BKPT; 270 }else{ 271 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 272 } 273 274 if( bPreserve && pMem->z ){ 275 assert( pMem->z!=pMem->zMalloc ); 276 memcpy(pMem->zMalloc, pMem->z, pMem->n); 277 } 278 if( (pMem->flags&MEM_Dyn)!=0 ){ 279 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 280 pMem->xDel((void *)(pMem->z)); 281 } 282 283 pMem->z = pMem->zMalloc; 284 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 285 return SQLITE_OK; 286 } 287 288 /* 289 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 290 ** If pMem->zMalloc already meets or exceeds the requested size, this 291 ** routine is a no-op. 292 ** 293 ** Any prior string or blob content in the pMem object may be discarded. 294 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 295 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 296 ** and MEM_Null values are preserved. 297 ** 298 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 299 ** if unable to complete the resizing. 300 */ 301 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 302 assert( CORRUPT_DB || szNew>0 ); 303 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 304 if( pMem->szMalloc<szNew ){ 305 return sqlite3VdbeMemGrow(pMem, szNew, 0); 306 } 307 assert( (pMem->flags & MEM_Dyn)==0 ); 308 pMem->z = pMem->zMalloc; 309 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 310 return SQLITE_OK; 311 } 312 313 /* 314 ** It is already known that pMem contains an unterminated string. 315 ** Add the zero terminator. 316 ** 317 ** Three bytes of zero are added. In this way, there is guaranteed 318 ** to be a double-zero byte at an even byte boundary in order to 319 ** terminate a UTF16 string, even if the initial size of the buffer 320 ** is an odd number of bytes. 321 */ 322 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 323 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 324 return SQLITE_NOMEM_BKPT; 325 } 326 pMem->z[pMem->n] = 0; 327 pMem->z[pMem->n+1] = 0; 328 pMem->z[pMem->n+2] = 0; 329 pMem->flags |= MEM_Term; 330 return SQLITE_OK; 331 } 332 333 /* 334 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 335 ** MEM.zMalloc, where it can be safely written. 336 ** 337 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 338 */ 339 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 340 assert( pMem!=0 ); 341 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 342 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 343 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 344 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 345 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 346 int rc = vdbeMemAddTerminator(pMem); 347 if( rc ) return rc; 348 } 349 } 350 pMem->flags &= ~MEM_Ephem; 351 #ifdef SQLITE_DEBUG 352 pMem->pScopyFrom = 0; 353 #endif 354 355 return SQLITE_OK; 356 } 357 358 /* 359 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 360 ** blob stored in dynamically allocated space. 361 */ 362 #ifndef SQLITE_OMIT_INCRBLOB 363 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 364 int nByte; 365 assert( pMem!=0 ); 366 assert( pMem->flags & MEM_Zero ); 367 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 368 testcase( sqlite3_value_nochange(pMem) ); 369 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 370 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 371 372 /* Set nByte to the number of bytes required to store the expanded blob. */ 373 nByte = pMem->n + pMem->u.nZero; 374 if( nByte<=0 ){ 375 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 376 nByte = 1; 377 } 378 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 379 return SQLITE_NOMEM_BKPT; 380 } 381 assert( pMem->z!=0 ); 382 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); 383 384 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 385 pMem->n += pMem->u.nZero; 386 pMem->flags &= ~(MEM_Zero|MEM_Term); 387 return SQLITE_OK; 388 } 389 #endif 390 391 /* 392 ** Make sure the given Mem is \u0000 terminated. 393 */ 394 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 395 assert( pMem!=0 ); 396 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 397 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 398 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 399 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 400 return SQLITE_OK; /* Nothing to do */ 401 }else{ 402 return vdbeMemAddTerminator(pMem); 403 } 404 } 405 406 /* 407 ** Add MEM_Str to the set of representations for the given Mem. This 408 ** routine is only called if pMem is a number of some kind, not a NULL 409 ** or a BLOB. 410 ** 411 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 412 ** if bForce is true but are retained if bForce is false. 413 ** 414 ** A MEM_Null value will never be passed to this function. This function is 415 ** used for converting values to text for returning to the user (i.e. via 416 ** sqlite3_value_text()), or for ensuring that values to be used as btree 417 ** keys are strings. In the former case a NULL pointer is returned the 418 ** user and the latter is an internal programming error. 419 */ 420 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 421 const int nByte = 32; 422 423 assert( pMem!=0 ); 424 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 425 assert( !(pMem->flags&MEM_Zero) ); 426 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 427 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 428 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 429 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 430 431 432 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 433 pMem->enc = 0; 434 return SQLITE_NOMEM_BKPT; 435 } 436 437 vdbeMemRenderNum(nByte, pMem->z, pMem); 438 assert( pMem->z!=0 ); 439 pMem->n = sqlite3Strlen30NN(pMem->z); 440 pMem->enc = SQLITE_UTF8; 441 pMem->flags |= MEM_Str|MEM_Term; 442 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 443 sqlite3VdbeChangeEncoding(pMem, enc); 444 return SQLITE_OK; 445 } 446 447 /* 448 ** Memory cell pMem contains the context of an aggregate function. 449 ** This routine calls the finalize method for that function. The 450 ** result of the aggregate is stored back into pMem. 451 ** 452 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 453 ** otherwise. 454 */ 455 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 456 sqlite3_context ctx; 457 Mem t; 458 assert( pFunc!=0 ); 459 assert( pMem!=0 ); 460 assert( pMem->db!=0 ); 461 assert( pFunc->xFinalize!=0 ); 462 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 463 assert( sqlite3_mutex_held(pMem->db->mutex) ); 464 memset(&ctx, 0, sizeof(ctx)); 465 memset(&t, 0, sizeof(t)); 466 t.flags = MEM_Null; 467 t.db = pMem->db; 468 ctx.pOut = &t; 469 ctx.pMem = pMem; 470 ctx.pFunc = pFunc; 471 ctx.enc = ENC(t.db); 472 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 473 assert( (pMem->flags & MEM_Dyn)==0 ); 474 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 475 memcpy(pMem, &t, sizeof(t)); 476 return ctx.isError; 477 } 478 479 /* 480 ** Memory cell pAccum contains the context of an aggregate function. 481 ** This routine calls the xValue method for that function and stores 482 ** the results in memory cell pMem. 483 ** 484 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 485 ** otherwise. 486 */ 487 #ifndef SQLITE_OMIT_WINDOWFUNC 488 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 489 sqlite3_context ctx; 490 assert( pFunc!=0 ); 491 assert( pFunc->xValue!=0 ); 492 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 493 assert( pAccum->db!=0 ); 494 assert( sqlite3_mutex_held(pAccum->db->mutex) ); 495 memset(&ctx, 0, sizeof(ctx)); 496 sqlite3VdbeMemSetNull(pOut); 497 ctx.pOut = pOut; 498 ctx.pMem = pAccum; 499 ctx.pFunc = pFunc; 500 ctx.enc = ENC(pAccum->db); 501 pFunc->xValue(&ctx); 502 return ctx.isError; 503 } 504 #endif /* SQLITE_OMIT_WINDOWFUNC */ 505 506 /* 507 ** If the memory cell contains a value that must be freed by 508 ** invoking the external callback in Mem.xDel, then this routine 509 ** will free that value. It also sets Mem.flags to MEM_Null. 510 ** 511 ** This is a helper routine for sqlite3VdbeMemSetNull() and 512 ** for sqlite3VdbeMemRelease(). Use those other routines as the 513 ** entry point for releasing Mem resources. 514 */ 515 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 516 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 517 assert( VdbeMemDynamic(p) ); 518 if( p->flags&MEM_Agg ){ 519 sqlite3VdbeMemFinalize(p, p->u.pDef); 520 assert( (p->flags & MEM_Agg)==0 ); 521 testcase( p->flags & MEM_Dyn ); 522 } 523 if( p->flags&MEM_Dyn ){ 524 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 525 p->xDel((void *)p->z); 526 } 527 p->flags = MEM_Null; 528 } 529 530 /* 531 ** Release memory held by the Mem p, both external memory cleared 532 ** by p->xDel and memory in p->zMalloc. 533 ** 534 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 535 ** the unusual case where there really is memory in p that needs 536 ** to be freed. 537 */ 538 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 539 if( VdbeMemDynamic(p) ){ 540 vdbeMemClearExternAndSetNull(p); 541 } 542 if( p->szMalloc ){ 543 sqlite3DbFreeNN(p->db, p->zMalloc); 544 p->szMalloc = 0; 545 } 546 p->z = 0; 547 } 548 549 /* 550 ** Release any memory resources held by the Mem. Both the memory that is 551 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 552 ** 553 ** Use this routine prior to clean up prior to abandoning a Mem, or to 554 ** reset a Mem back to its minimum memory utilization. 555 ** 556 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 557 ** prior to inserting new content into the Mem. 558 */ 559 void sqlite3VdbeMemRelease(Mem *p){ 560 assert( sqlite3VdbeCheckMemInvariants(p) ); 561 if( VdbeMemDynamic(p) || p->szMalloc ){ 562 vdbeMemClear(p); 563 } 564 } 565 566 /* Like sqlite3VdbeMemRelease() but faster for cases where we 567 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. 568 */ 569 void sqlite3VdbeMemReleaseMalloc(Mem *p){ 570 assert( !VdbeMemDynamic(p) ); 571 if( p->szMalloc ) vdbeMemClear(p); 572 } 573 574 /* 575 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 576 ** If the double is out of range of a 64-bit signed integer then 577 ** return the closest available 64-bit signed integer. 578 */ 579 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 580 #ifdef SQLITE_OMIT_FLOATING_POINT 581 /* When floating-point is omitted, double and int64 are the same thing */ 582 return r; 583 #else 584 /* 585 ** Many compilers we encounter do not define constants for the 586 ** minimum and maximum 64-bit integers, or they define them 587 ** inconsistently. And many do not understand the "LL" notation. 588 ** So we define our own static constants here using nothing 589 ** larger than a 32-bit integer constant. 590 */ 591 static const i64 maxInt = LARGEST_INT64; 592 static const i64 minInt = SMALLEST_INT64; 593 594 if( r<=(double)minInt ){ 595 return minInt; 596 }else if( r>=(double)maxInt ){ 597 return maxInt; 598 }else{ 599 return (i64)r; 600 } 601 #endif 602 } 603 604 /* 605 ** Return some kind of integer value which is the best we can do 606 ** at representing the value that *pMem describes as an integer. 607 ** If pMem is an integer, then the value is exact. If pMem is 608 ** a floating-point then the value returned is the integer part. 609 ** If pMem is a string or blob, then we make an attempt to convert 610 ** it into an integer and return that. If pMem represents an 611 ** an SQL-NULL value, return 0. 612 ** 613 ** If pMem represents a string value, its encoding might be changed. 614 */ 615 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ 616 i64 value = 0; 617 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 618 return value; 619 } 620 i64 sqlite3VdbeIntValue(const Mem *pMem){ 621 int flags; 622 assert( pMem!=0 ); 623 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 624 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 625 flags = pMem->flags; 626 if( flags & (MEM_Int|MEM_IntReal) ){ 627 testcase( flags & MEM_IntReal ); 628 return pMem->u.i; 629 }else if( flags & MEM_Real ){ 630 return doubleToInt64(pMem->u.r); 631 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 632 return memIntValue(pMem); 633 }else{ 634 return 0; 635 } 636 } 637 638 /* 639 ** Return the best representation of pMem that we can get into a 640 ** double. If pMem is already a double or an integer, return its 641 ** value. If it is a string or blob, try to convert it to a double. 642 ** If it is a NULL, return 0.0. 643 */ 644 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 645 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 646 double val = (double)0; 647 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 648 return val; 649 } 650 double sqlite3VdbeRealValue(Mem *pMem){ 651 assert( pMem!=0 ); 652 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 653 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 654 if( pMem->flags & MEM_Real ){ 655 return pMem->u.r; 656 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 657 testcase( pMem->flags & MEM_IntReal ); 658 return (double)pMem->u.i; 659 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 660 return memRealValue(pMem); 661 }else{ 662 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 663 return (double)0; 664 } 665 } 666 667 /* 668 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 669 ** Return the value ifNull if pMem is NULL. 670 */ 671 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 672 testcase( pMem->flags & MEM_IntReal ); 673 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 674 if( pMem->flags & MEM_Null ) return ifNull; 675 return sqlite3VdbeRealValue(pMem)!=0.0; 676 } 677 678 /* 679 ** The MEM structure is already a MEM_Real. Try to also make it a 680 ** MEM_Int if we can. 681 */ 682 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 683 i64 ix; 684 assert( pMem!=0 ); 685 assert( pMem->flags & MEM_Real ); 686 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 687 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 688 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 689 690 ix = doubleToInt64(pMem->u.r); 691 692 /* Only mark the value as an integer if 693 ** 694 ** (1) the round-trip conversion real->int->real is a no-op, and 695 ** (2) The integer is neither the largest nor the smallest 696 ** possible integer (ticket #3922) 697 ** 698 ** The second and third terms in the following conditional enforces 699 ** the second condition under the assumption that addition overflow causes 700 ** values to wrap around. 701 */ 702 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 703 pMem->u.i = ix; 704 MemSetTypeFlag(pMem, MEM_Int); 705 } 706 } 707 708 /* 709 ** Convert pMem to type integer. Invalidate any prior representations. 710 */ 711 int sqlite3VdbeMemIntegerify(Mem *pMem){ 712 assert( pMem!=0 ); 713 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 714 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 715 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 716 717 pMem->u.i = sqlite3VdbeIntValue(pMem); 718 MemSetTypeFlag(pMem, MEM_Int); 719 return SQLITE_OK; 720 } 721 722 /* 723 ** Convert pMem so that it is of type MEM_Real. 724 ** Invalidate any prior representations. 725 */ 726 int sqlite3VdbeMemRealify(Mem *pMem){ 727 assert( pMem!=0 ); 728 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 729 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 730 731 pMem->u.r = sqlite3VdbeRealValue(pMem); 732 MemSetTypeFlag(pMem, MEM_Real); 733 return SQLITE_OK; 734 } 735 736 /* Compare a floating point value to an integer. Return true if the two 737 ** values are the same within the precision of the floating point value. 738 ** 739 ** This function assumes that i was obtained by assignment from r1. 740 ** 741 ** For some versions of GCC on 32-bit machines, if you do the more obvious 742 ** comparison of "r1==(double)i" you sometimes get an answer of false even 743 ** though the r1 and (double)i values are bit-for-bit the same. 744 */ 745 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 746 double r2 = (double)i; 747 return r1==0.0 748 || (memcmp(&r1, &r2, sizeof(r1))==0 749 && i >= -2251799813685248LL && i < 2251799813685248LL); 750 } 751 752 /* Convert a floating point value to its closest integer. Do so in 753 ** a way that avoids 'outside the range of representable values' warnings 754 ** from UBSAN. 755 */ 756 i64 sqlite3RealToI64(double r){ 757 if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64; 758 if( r>=(double)LARGEST_INT64) return LARGEST_INT64; 759 return (i64)r; 760 } 761 762 /* 763 ** Convert pMem so that it has type MEM_Real or MEM_Int. 764 ** Invalidate any prior representations. 765 ** 766 ** Every effort is made to force the conversion, even if the input 767 ** is a string that does not look completely like a number. Convert 768 ** as much of the string as we can and ignore the rest. 769 */ 770 int sqlite3VdbeMemNumerify(Mem *pMem){ 771 assert( pMem!=0 ); 772 testcase( pMem->flags & MEM_Int ); 773 testcase( pMem->flags & MEM_Real ); 774 testcase( pMem->flags & MEM_IntReal ); 775 testcase( pMem->flags & MEM_Null ); 776 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 777 int rc; 778 sqlite3_int64 ix; 779 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 780 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 781 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 782 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 783 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) 784 ){ 785 pMem->u.i = ix; 786 MemSetTypeFlag(pMem, MEM_Int); 787 }else{ 788 MemSetTypeFlag(pMem, MEM_Real); 789 } 790 } 791 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 792 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 793 return SQLITE_OK; 794 } 795 796 /* 797 ** Cast the datatype of the value in pMem according to the affinity 798 ** "aff". Casting is different from applying affinity in that a cast 799 ** is forced. In other words, the value is converted into the desired 800 ** affinity even if that results in loss of data. This routine is 801 ** used (for example) to implement the SQL "cast()" operator. 802 */ 803 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 804 if( pMem->flags & MEM_Null ) return SQLITE_OK; 805 switch( aff ){ 806 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 807 if( (pMem->flags & MEM_Blob)==0 ){ 808 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 809 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 810 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 811 }else{ 812 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 813 } 814 break; 815 } 816 case SQLITE_AFF_NUMERIC: { 817 sqlite3VdbeMemNumerify(pMem); 818 break; 819 } 820 case SQLITE_AFF_INTEGER: { 821 sqlite3VdbeMemIntegerify(pMem); 822 break; 823 } 824 case SQLITE_AFF_REAL: { 825 sqlite3VdbeMemRealify(pMem); 826 break; 827 } 828 default: { 829 assert( aff==SQLITE_AFF_TEXT ); 830 assert( MEM_Str==(MEM_Blob>>3) ); 831 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 832 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 833 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 834 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 835 return sqlite3VdbeChangeEncoding(pMem, encoding); 836 } 837 } 838 return SQLITE_OK; 839 } 840 841 /* 842 ** Initialize bulk memory to be a consistent Mem object. 843 ** 844 ** The minimum amount of initialization feasible is performed. 845 */ 846 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 847 assert( (flags & ~MEM_TypeMask)==0 ); 848 pMem->flags = flags; 849 pMem->db = db; 850 pMem->szMalloc = 0; 851 } 852 853 854 /* 855 ** Delete any previous value and set the value stored in *pMem to NULL. 856 ** 857 ** This routine calls the Mem.xDel destructor to dispose of values that 858 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 859 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 860 ** routine to invoke the destructor and deallocates Mem.zMalloc. 861 ** 862 ** Use this routine to reset the Mem prior to insert a new value. 863 ** 864 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 865 */ 866 void sqlite3VdbeMemSetNull(Mem *pMem){ 867 if( VdbeMemDynamic(pMem) ){ 868 vdbeMemClearExternAndSetNull(pMem); 869 }else{ 870 pMem->flags = MEM_Null; 871 } 872 } 873 void sqlite3ValueSetNull(sqlite3_value *p){ 874 sqlite3VdbeMemSetNull((Mem*)p); 875 } 876 877 /* 878 ** Delete any previous value and set the value to be a BLOB of length 879 ** n containing all zeros. 880 */ 881 #ifndef SQLITE_OMIT_INCRBLOB 882 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 883 sqlite3VdbeMemRelease(pMem); 884 pMem->flags = MEM_Blob|MEM_Zero; 885 pMem->n = 0; 886 if( n<0 ) n = 0; 887 pMem->u.nZero = n; 888 pMem->enc = SQLITE_UTF8; 889 pMem->z = 0; 890 } 891 #else 892 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 893 int nByte = n>0?n:1; 894 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 895 return SQLITE_NOMEM_BKPT; 896 } 897 assert( pMem->z!=0 ); 898 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); 899 memset(pMem->z, 0, nByte); 900 pMem->n = n>0?n:0; 901 pMem->flags = MEM_Blob; 902 pMem->enc = SQLITE_UTF8; 903 return SQLITE_OK; 904 } 905 #endif 906 907 /* 908 ** The pMem is known to contain content that needs to be destroyed prior 909 ** to a value change. So invoke the destructor, then set the value to 910 ** a 64-bit integer. 911 */ 912 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 913 sqlite3VdbeMemSetNull(pMem); 914 pMem->u.i = val; 915 pMem->flags = MEM_Int; 916 } 917 918 /* 919 ** Delete any previous value and set the value stored in *pMem to val, 920 ** manifest type INTEGER. 921 */ 922 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 923 if( VdbeMemDynamic(pMem) ){ 924 vdbeReleaseAndSetInt64(pMem, val); 925 }else{ 926 pMem->u.i = val; 927 pMem->flags = MEM_Int; 928 } 929 } 930 931 /* A no-op destructor */ 932 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 933 934 /* 935 ** Set the value stored in *pMem should already be a NULL. 936 ** Also store a pointer to go with it. 937 */ 938 void sqlite3VdbeMemSetPointer( 939 Mem *pMem, 940 void *pPtr, 941 const char *zPType, 942 void (*xDestructor)(void*) 943 ){ 944 assert( pMem->flags==MEM_Null ); 945 vdbeMemClear(pMem); 946 pMem->u.zPType = zPType ? zPType : ""; 947 pMem->z = pPtr; 948 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 949 pMem->eSubtype = 'p'; 950 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 951 } 952 953 #ifndef SQLITE_OMIT_FLOATING_POINT 954 /* 955 ** Delete any previous value and set the value stored in *pMem to val, 956 ** manifest type REAL. 957 */ 958 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 959 sqlite3VdbeMemSetNull(pMem); 960 if( !sqlite3IsNaN(val) ){ 961 pMem->u.r = val; 962 pMem->flags = MEM_Real; 963 } 964 } 965 #endif 966 967 #ifdef SQLITE_DEBUG 968 /* 969 ** Return true if the Mem holds a RowSet object. This routine is intended 970 ** for use inside of assert() statements. 971 */ 972 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 973 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 974 && pMem->xDel==sqlite3RowSetDelete; 975 } 976 #endif 977 978 /* 979 ** Delete any previous value and set the value of pMem to be an 980 ** empty boolean index. 981 ** 982 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 983 ** error occurs. 984 */ 985 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 986 sqlite3 *db = pMem->db; 987 RowSet *p; 988 assert( db!=0 ); 989 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 990 sqlite3VdbeMemRelease(pMem); 991 p = sqlite3RowSetInit(db); 992 if( p==0 ) return SQLITE_NOMEM; 993 pMem->z = (char*)p; 994 pMem->flags = MEM_Blob|MEM_Dyn; 995 pMem->xDel = sqlite3RowSetDelete; 996 return SQLITE_OK; 997 } 998 999 /* 1000 ** Return true if the Mem object contains a TEXT or BLOB that is 1001 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 1002 */ 1003 int sqlite3VdbeMemTooBig(Mem *p){ 1004 assert( p->db!=0 ); 1005 if( p->flags & (MEM_Str|MEM_Blob) ){ 1006 int n = p->n; 1007 if( p->flags & MEM_Zero ){ 1008 n += p->u.nZero; 1009 } 1010 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 1011 } 1012 return 0; 1013 } 1014 1015 #ifdef SQLITE_DEBUG 1016 /* 1017 ** This routine prepares a memory cell for modification by breaking 1018 ** its link to a shallow copy and by marking any current shallow 1019 ** copies of this cell as invalid. 1020 ** 1021 ** This is used for testing and debugging only - to help ensure that shallow 1022 ** copies (created by OP_SCopy) are not misused. 1023 */ 1024 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 1025 int i; 1026 Mem *pX; 1027 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 1028 if( pX->pScopyFrom==pMem ){ 1029 u16 mFlags; 1030 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 1031 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 1032 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 1033 } 1034 /* If pX is marked as a shallow copy of pMem, then try to verify that 1035 ** no significant changes have been made to pX since the OP_SCopy. 1036 ** A significant change would indicated a missed call to this 1037 ** function for pX. Minor changes, such as adding or removing a 1038 ** dual type, are allowed, as long as the underlying value is the 1039 ** same. */ 1040 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 1041 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 1042 1043 /* pMem is the register that is changing. But also mark pX as 1044 ** undefined so that we can quickly detect the shallow-copy error */ 1045 pX->flags = MEM_Undefined; 1046 pX->pScopyFrom = 0; 1047 } 1048 } 1049 pMem->pScopyFrom = 0; 1050 } 1051 #endif /* SQLITE_DEBUG */ 1052 1053 /* 1054 ** Make an shallow copy of pFrom into pTo. Prior contents of 1055 ** pTo are freed. The pFrom->z field is not duplicated. If 1056 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1057 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1058 */ 1059 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1060 vdbeMemClearExternAndSetNull(pTo); 1061 assert( !VdbeMemDynamic(pTo) ); 1062 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1063 } 1064 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1065 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1066 assert( pTo->db==pFrom->db ); 1067 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1068 memcpy(pTo, pFrom, MEMCELLSIZE); 1069 if( (pFrom->flags&MEM_Static)==0 ){ 1070 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1071 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1072 pTo->flags |= srcType; 1073 } 1074 } 1075 1076 /* 1077 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1078 ** freed before the copy is made. 1079 */ 1080 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1081 int rc = SQLITE_OK; 1082 1083 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1084 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1085 memcpy(pTo, pFrom, MEMCELLSIZE); 1086 pTo->flags &= ~MEM_Dyn; 1087 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1088 if( 0==(pFrom->flags&MEM_Static) ){ 1089 pTo->flags |= MEM_Ephem; 1090 rc = sqlite3VdbeMemMakeWriteable(pTo); 1091 } 1092 } 1093 1094 return rc; 1095 } 1096 1097 /* 1098 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1099 ** freed. If pFrom contains ephemeral data, a copy is made. 1100 ** 1101 ** pFrom contains an SQL NULL when this routine returns. 1102 */ 1103 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1104 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1105 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1106 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1107 1108 sqlite3VdbeMemRelease(pTo); 1109 memcpy(pTo, pFrom, sizeof(Mem)); 1110 pFrom->flags = MEM_Null; 1111 pFrom->szMalloc = 0; 1112 } 1113 1114 /* 1115 ** Change the value of a Mem to be a string or a BLOB. 1116 ** 1117 ** The memory management strategy depends on the value of the xDel 1118 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1119 ** string is copied into a (possibly existing) buffer managed by the 1120 ** Mem structure. Otherwise, any existing buffer is freed and the 1121 ** pointer copied. 1122 ** 1123 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1124 ** size limit) then no memory allocation occurs. If the string can be 1125 ** stored without allocating memory, then it is. If a memory allocation 1126 ** is required to store the string, then value of pMem is unchanged. In 1127 ** either case, SQLITE_TOOBIG is returned. 1128 ** 1129 ** The "enc" parameter is the text encoding for the string, or zero 1130 ** to store a blob. 1131 ** 1132 ** If n is negative, then the string consists of all bytes up to but 1133 ** excluding the first zero character. The n parameter must be 1134 ** non-negative for blobs. 1135 */ 1136 int sqlite3VdbeMemSetStr( 1137 Mem *pMem, /* Memory cell to set to string value */ 1138 const char *z, /* String pointer */ 1139 i64 n, /* Bytes in string, or negative */ 1140 u8 enc, /* Encoding of z. 0 for BLOBs */ 1141 void (*xDel)(void*) /* Destructor function */ 1142 ){ 1143 i64 nByte = n; /* New value for pMem->n */ 1144 int iLimit; /* Maximum allowed string or blob size */ 1145 u16 flags; /* New value for pMem->flags */ 1146 1147 assert( pMem!=0 ); 1148 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1149 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1150 assert( enc!=0 || n>=0 ); 1151 1152 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1153 if( !z ){ 1154 sqlite3VdbeMemSetNull(pMem); 1155 return SQLITE_OK; 1156 } 1157 1158 if( pMem->db ){ 1159 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1160 }else{ 1161 iLimit = SQLITE_MAX_LENGTH; 1162 } 1163 if( nByte<0 ){ 1164 assert( enc!=0 ); 1165 if( enc==SQLITE_UTF8 ){ 1166 nByte = strlen(z); 1167 }else{ 1168 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1169 } 1170 flags= MEM_Str|MEM_Term; 1171 }else if( enc==0 ){ 1172 flags = MEM_Blob; 1173 enc = SQLITE_UTF8; 1174 }else{ 1175 flags = MEM_Str; 1176 } 1177 if( nByte>iLimit ){ 1178 if( xDel && xDel!=SQLITE_TRANSIENT ){ 1179 if( xDel==SQLITE_DYNAMIC ){ 1180 sqlite3DbFree(pMem->db, (void*)z); 1181 }else{ 1182 xDel((void*)z); 1183 } 1184 } 1185 sqlite3VdbeMemSetNull(pMem); 1186 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1187 } 1188 1189 /* The following block sets the new values of Mem.z and Mem.xDel. It 1190 ** also sets a flag in local variable "flags" to indicate the memory 1191 ** management (one of MEM_Dyn or MEM_Static). 1192 */ 1193 if( xDel==SQLITE_TRANSIENT ){ 1194 i64 nAlloc = nByte; 1195 if( flags&MEM_Term ){ 1196 nAlloc += (enc==SQLITE_UTF8?1:2); 1197 } 1198 testcase( nAlloc==0 ); 1199 testcase( nAlloc==31 ); 1200 testcase( nAlloc==32 ); 1201 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1202 return SQLITE_NOMEM_BKPT; 1203 } 1204 memcpy(pMem->z, z, nAlloc); 1205 }else{ 1206 sqlite3VdbeMemRelease(pMem); 1207 pMem->z = (char *)z; 1208 if( xDel==SQLITE_DYNAMIC ){ 1209 pMem->zMalloc = pMem->z; 1210 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1211 }else{ 1212 pMem->xDel = xDel; 1213 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1214 } 1215 } 1216 1217 pMem->n = (int)(nByte & 0x7fffffff); 1218 pMem->flags = flags; 1219 pMem->enc = enc; 1220 1221 #ifndef SQLITE_OMIT_UTF16 1222 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1223 return SQLITE_NOMEM_BKPT; 1224 } 1225 #endif 1226 1227 1228 return SQLITE_OK; 1229 } 1230 1231 /* 1232 ** Move data out of a btree key or data field and into a Mem structure. 1233 ** The data is payload from the entry that pCur is currently pointing 1234 ** to. offset and amt determine what portion of the data or key to retrieve. 1235 ** The result is written into the pMem element. 1236 ** 1237 ** The pMem object must have been initialized. This routine will use 1238 ** pMem->zMalloc to hold the content from the btree, if possible. New 1239 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1240 ** is responsible for making sure that the pMem object is eventually 1241 ** destroyed. 1242 ** 1243 ** If this routine fails for any reason (malloc returns NULL or unable 1244 ** to read from the disk) then the pMem is left in an inconsistent state. 1245 */ 1246 int sqlite3VdbeMemFromBtree( 1247 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1248 u32 offset, /* Offset from the start of data to return bytes from. */ 1249 u32 amt, /* Number of bytes to return. */ 1250 Mem *pMem /* OUT: Return data in this Mem structure. */ 1251 ){ 1252 int rc; 1253 pMem->flags = MEM_Null; 1254 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1255 return SQLITE_CORRUPT_BKPT; 1256 } 1257 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1258 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1259 if( rc==SQLITE_OK ){ 1260 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1261 pMem->flags = MEM_Blob; 1262 pMem->n = (int)amt; 1263 }else{ 1264 sqlite3VdbeMemRelease(pMem); 1265 } 1266 } 1267 return rc; 1268 } 1269 int sqlite3VdbeMemFromBtreeZeroOffset( 1270 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1271 u32 amt, /* Number of bytes to return. */ 1272 Mem *pMem /* OUT: Return data in this Mem structure. */ 1273 ){ 1274 u32 available = 0; /* Number of bytes available on the local btree page */ 1275 int rc = SQLITE_OK; /* Return code */ 1276 1277 assert( sqlite3BtreeCursorIsValid(pCur) ); 1278 assert( !VdbeMemDynamic(pMem) ); 1279 1280 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1281 ** that both the BtShared and database handle mutexes are held. */ 1282 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1283 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1284 assert( pMem->z!=0 ); 1285 1286 if( amt<=available ){ 1287 pMem->flags = MEM_Blob|MEM_Ephem; 1288 pMem->n = (int)amt; 1289 }else{ 1290 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1291 } 1292 1293 return rc; 1294 } 1295 1296 /* 1297 ** The pVal argument is known to be a value other than NULL. 1298 ** Convert it into a string with encoding enc and return a pointer 1299 ** to a zero-terminated version of that string. 1300 */ 1301 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1302 assert( pVal!=0 ); 1303 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1304 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1305 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1306 assert( (pVal->flags & (MEM_Null))==0 ); 1307 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1308 if( ExpandBlob(pVal) ) return 0; 1309 pVal->flags |= MEM_Str; 1310 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1311 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1312 } 1313 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1314 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1315 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1316 return 0; 1317 } 1318 } 1319 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1320 }else{ 1321 sqlite3VdbeMemStringify(pVal, enc, 0); 1322 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1323 } 1324 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1325 || pVal->db->mallocFailed ); 1326 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1327 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1328 return pVal->z; 1329 }else{ 1330 return 0; 1331 } 1332 } 1333 1334 /* This function is only available internally, it is not part of the 1335 ** external API. It works in a similar way to sqlite3_value_text(), 1336 ** except the data returned is in the encoding specified by the second 1337 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1338 ** SQLITE_UTF8. 1339 ** 1340 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1341 ** If that is the case, then the result must be aligned on an even byte 1342 ** boundary. 1343 */ 1344 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1345 if( !pVal ) return 0; 1346 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1347 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1348 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1349 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1350 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1351 return pVal->z; 1352 } 1353 if( pVal->flags&MEM_Null ){ 1354 return 0; 1355 } 1356 return valueToText(pVal, enc); 1357 } 1358 1359 /* 1360 ** Create a new sqlite3_value object. 1361 */ 1362 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1363 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1364 if( p ){ 1365 p->flags = MEM_Null; 1366 p->db = db; 1367 } 1368 return p; 1369 } 1370 1371 /* 1372 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1373 ** valueNew(). See comments above valueNew() for details. 1374 */ 1375 struct ValueNewStat4Ctx { 1376 Parse *pParse; 1377 Index *pIdx; 1378 UnpackedRecord **ppRec; 1379 int iVal; 1380 }; 1381 1382 /* 1383 ** Allocate and return a pointer to a new sqlite3_value object. If 1384 ** the second argument to this function is NULL, the object is allocated 1385 ** by calling sqlite3ValueNew(). 1386 ** 1387 ** Otherwise, if the second argument is non-zero, then this function is 1388 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1389 ** already been allocated, allocate the UnpackedRecord structure that 1390 ** that function will return to its caller here. Then return a pointer to 1391 ** an sqlite3_value within the UnpackedRecord.a[] array. 1392 */ 1393 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1394 #ifdef SQLITE_ENABLE_STAT4 1395 if( p ){ 1396 UnpackedRecord *pRec = p->ppRec[0]; 1397 1398 if( pRec==0 ){ 1399 Index *pIdx = p->pIdx; /* Index being probed */ 1400 int nByte; /* Bytes of space to allocate */ 1401 int i; /* Counter variable */ 1402 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1403 1404 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1405 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1406 if( pRec ){ 1407 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1408 if( pRec->pKeyInfo ){ 1409 assert( pRec->pKeyInfo->nAllField==nCol ); 1410 assert( pRec->pKeyInfo->enc==ENC(db) ); 1411 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1412 for(i=0; i<nCol; i++){ 1413 pRec->aMem[i].flags = MEM_Null; 1414 pRec->aMem[i].db = db; 1415 } 1416 }else{ 1417 sqlite3DbFreeNN(db, pRec); 1418 pRec = 0; 1419 } 1420 } 1421 if( pRec==0 ) return 0; 1422 p->ppRec[0] = pRec; 1423 } 1424 1425 pRec->nField = p->iVal+1; 1426 return &pRec->aMem[p->iVal]; 1427 } 1428 #else 1429 UNUSED_PARAMETER(p); 1430 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1431 return sqlite3ValueNew(db); 1432 } 1433 1434 /* 1435 ** The expression object indicated by the second argument is guaranteed 1436 ** to be a scalar SQL function. If 1437 ** 1438 ** * all function arguments are SQL literals, 1439 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1440 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1441 ** 1442 ** then this routine attempts to invoke the SQL function. Assuming no 1443 ** error occurs, output parameter (*ppVal) is set to point to a value 1444 ** object containing the result before returning SQLITE_OK. 1445 ** 1446 ** Affinity aff is applied to the result of the function before returning. 1447 ** If the result is a text value, the sqlite3_value object uses encoding 1448 ** enc. 1449 ** 1450 ** If the conditions above are not met, this function returns SQLITE_OK 1451 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1452 ** NULL and an SQLite error code returned. 1453 */ 1454 #ifdef SQLITE_ENABLE_STAT4 1455 static int valueFromFunction( 1456 sqlite3 *db, /* The database connection */ 1457 const Expr *p, /* The expression to evaluate */ 1458 u8 enc, /* Encoding to use */ 1459 u8 aff, /* Affinity to use */ 1460 sqlite3_value **ppVal, /* Write the new value here */ 1461 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1462 ){ 1463 sqlite3_context ctx; /* Context object for function invocation */ 1464 sqlite3_value **apVal = 0; /* Function arguments */ 1465 int nVal = 0; /* Size of apVal[] array */ 1466 FuncDef *pFunc = 0; /* Function definition */ 1467 sqlite3_value *pVal = 0; /* New value */ 1468 int rc = SQLITE_OK; /* Return code */ 1469 ExprList *pList = 0; /* Function arguments */ 1470 int i; /* Iterator variable */ 1471 1472 assert( pCtx!=0 ); 1473 assert( (p->flags & EP_TokenOnly)==0 ); 1474 assert( ExprUseXList(p) ); 1475 pList = p->x.pList; 1476 if( pList ) nVal = pList->nExpr; 1477 assert( !ExprHasProperty(p, EP_IntValue) ); 1478 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1479 assert( pFunc ); 1480 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1481 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1482 ){ 1483 return SQLITE_OK; 1484 } 1485 1486 if( pList ){ 1487 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1488 if( apVal==0 ){ 1489 rc = SQLITE_NOMEM_BKPT; 1490 goto value_from_function_out; 1491 } 1492 for(i=0; i<nVal; i++){ 1493 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1494 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1495 } 1496 } 1497 1498 pVal = valueNew(db, pCtx); 1499 if( pVal==0 ){ 1500 rc = SQLITE_NOMEM_BKPT; 1501 goto value_from_function_out; 1502 } 1503 1504 testcase( pCtx->pParse->rc==SQLITE_ERROR ); 1505 testcase( pCtx->pParse->rc==SQLITE_OK ); 1506 memset(&ctx, 0, sizeof(ctx)); 1507 ctx.pOut = pVal; 1508 ctx.pFunc = pFunc; 1509 ctx.enc = ENC(db); 1510 pFunc->xSFunc(&ctx, nVal, apVal); 1511 if( ctx.isError ){ 1512 rc = ctx.isError; 1513 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1514 }else{ 1515 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1516 assert( rc==SQLITE_OK ); 1517 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1518 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1519 rc = SQLITE_TOOBIG; 1520 pCtx->pParse->nErr++; 1521 } 1522 } 1523 pCtx->pParse->rc = rc; 1524 1525 value_from_function_out: 1526 if( rc!=SQLITE_OK ){ 1527 pVal = 0; 1528 } 1529 if( apVal ){ 1530 for(i=0; i<nVal; i++){ 1531 sqlite3ValueFree(apVal[i]); 1532 } 1533 sqlite3DbFreeNN(db, apVal); 1534 } 1535 1536 *ppVal = pVal; 1537 return rc; 1538 } 1539 #else 1540 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1541 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1542 1543 /* 1544 ** Extract a value from the supplied expression in the manner described 1545 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1546 ** using valueNew(). 1547 ** 1548 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1549 ** has been allocated, it is freed before returning. Or, if pCtx is not 1550 ** NULL, it is assumed that the caller will free any allocated object 1551 ** in all cases. 1552 */ 1553 static int valueFromExpr( 1554 sqlite3 *db, /* The database connection */ 1555 const Expr *pExpr, /* The expression to evaluate */ 1556 u8 enc, /* Encoding to use */ 1557 u8 affinity, /* Affinity to use */ 1558 sqlite3_value **ppVal, /* Write the new value here */ 1559 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1560 ){ 1561 int op; 1562 char *zVal = 0; 1563 sqlite3_value *pVal = 0; 1564 int negInt = 1; 1565 const char *zNeg = ""; 1566 int rc = SQLITE_OK; 1567 1568 assert( pExpr!=0 ); 1569 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1570 if( op==TK_REGISTER ) op = pExpr->op2; 1571 1572 /* Compressed expressions only appear when parsing the DEFAULT clause 1573 ** on a table column definition, and hence only when pCtx==0. This 1574 ** check ensures that an EP_TokenOnly expression is never passed down 1575 ** into valueFromFunction(). */ 1576 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1577 1578 if( op==TK_CAST ){ 1579 u8 aff; 1580 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1581 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1582 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1583 testcase( rc!=SQLITE_OK ); 1584 if( *ppVal ){ 1585 sqlite3VdbeMemCast(*ppVal, aff, enc); 1586 sqlite3ValueApplyAffinity(*ppVal, affinity, enc); 1587 } 1588 return rc; 1589 } 1590 1591 /* Handle negative integers in a single step. This is needed in the 1592 ** case when the value is -9223372036854775808. 1593 */ 1594 if( op==TK_UMINUS 1595 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1596 pExpr = pExpr->pLeft; 1597 op = pExpr->op; 1598 negInt = -1; 1599 zNeg = "-"; 1600 } 1601 1602 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1603 pVal = valueNew(db, pCtx); 1604 if( pVal==0 ) goto no_mem; 1605 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1606 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1607 }else{ 1608 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1609 if( zVal==0 ) goto no_mem; 1610 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1611 } 1612 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1613 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1614 }else{ 1615 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1616 } 1617 assert( (pVal->flags & MEM_IntReal)==0 ); 1618 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1619 testcase( pVal->flags & MEM_Int ); 1620 testcase( pVal->flags & MEM_Real ); 1621 pVal->flags &= ~MEM_Str; 1622 } 1623 if( enc!=SQLITE_UTF8 ){ 1624 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1625 } 1626 }else if( op==TK_UMINUS ) { 1627 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1628 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1629 && pVal!=0 1630 ){ 1631 sqlite3VdbeMemNumerify(pVal); 1632 if( pVal->flags & MEM_Real ){ 1633 pVal->u.r = -pVal->u.r; 1634 }else if( pVal->u.i==SMALLEST_INT64 ){ 1635 #ifndef SQLITE_OMIT_FLOATING_POINT 1636 pVal->u.r = -(double)SMALLEST_INT64; 1637 #else 1638 pVal->u.r = LARGEST_INT64; 1639 #endif 1640 MemSetTypeFlag(pVal, MEM_Real); 1641 }else{ 1642 pVal->u.i = -pVal->u.i; 1643 } 1644 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1645 } 1646 }else if( op==TK_NULL ){ 1647 pVal = valueNew(db, pCtx); 1648 if( pVal==0 ) goto no_mem; 1649 sqlite3VdbeMemSetNull(pVal); 1650 } 1651 #ifndef SQLITE_OMIT_BLOB_LITERAL 1652 else if( op==TK_BLOB ){ 1653 int nVal; 1654 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1655 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1656 assert( pExpr->u.zToken[1]=='\'' ); 1657 pVal = valueNew(db, pCtx); 1658 if( !pVal ) goto no_mem; 1659 zVal = &pExpr->u.zToken[2]; 1660 nVal = sqlite3Strlen30(zVal)-1; 1661 assert( zVal[nVal]=='\'' ); 1662 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1663 0, SQLITE_DYNAMIC); 1664 } 1665 #endif 1666 #ifdef SQLITE_ENABLE_STAT4 1667 else if( op==TK_FUNCTION && pCtx!=0 ){ 1668 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1669 } 1670 #endif 1671 else if( op==TK_TRUEFALSE ){ 1672 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1673 pVal = valueNew(db, pCtx); 1674 if( pVal ){ 1675 pVal->flags = MEM_Int; 1676 pVal->u.i = pExpr->u.zToken[4]==0; 1677 } 1678 } 1679 1680 *ppVal = pVal; 1681 return rc; 1682 1683 no_mem: 1684 #ifdef SQLITE_ENABLE_STAT4 1685 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) 1686 #endif 1687 sqlite3OomFault(db); 1688 sqlite3DbFree(db, zVal); 1689 assert( *ppVal==0 ); 1690 #ifdef SQLITE_ENABLE_STAT4 1691 if( pCtx==0 ) sqlite3ValueFree(pVal); 1692 #else 1693 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1694 #endif 1695 return SQLITE_NOMEM_BKPT; 1696 } 1697 1698 /* 1699 ** Create a new sqlite3_value object, containing the value of pExpr. 1700 ** 1701 ** This only works for very simple expressions that consist of one constant 1702 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1703 ** be converted directly into a value, then the value is allocated and 1704 ** a pointer written to *ppVal. The caller is responsible for deallocating 1705 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1706 ** cannot be converted to a value, then *ppVal is set to NULL. 1707 */ 1708 int sqlite3ValueFromExpr( 1709 sqlite3 *db, /* The database connection */ 1710 const Expr *pExpr, /* The expression to evaluate */ 1711 u8 enc, /* Encoding to use */ 1712 u8 affinity, /* Affinity to use */ 1713 sqlite3_value **ppVal /* Write the new value here */ 1714 ){ 1715 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1716 } 1717 1718 #ifdef SQLITE_ENABLE_STAT4 1719 /* 1720 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1721 ** 1722 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1723 ** pAlloc if one does not exist and the new value is added to the 1724 ** UnpackedRecord object. 1725 ** 1726 ** A value is extracted in the following cases: 1727 ** 1728 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1729 ** 1730 ** * The expression is a bound variable, and this is a reprepare, or 1731 ** 1732 ** * The expression is a literal value. 1733 ** 1734 ** On success, *ppVal is made to point to the extracted value. The caller 1735 ** is responsible for ensuring that the value is eventually freed. 1736 */ 1737 static int stat4ValueFromExpr( 1738 Parse *pParse, /* Parse context */ 1739 Expr *pExpr, /* The expression to extract a value from */ 1740 u8 affinity, /* Affinity to use */ 1741 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1742 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1743 ){ 1744 int rc = SQLITE_OK; 1745 sqlite3_value *pVal = 0; 1746 sqlite3 *db = pParse->db; 1747 1748 /* Skip over any TK_COLLATE nodes */ 1749 pExpr = sqlite3ExprSkipCollate(pExpr); 1750 1751 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1752 if( !pExpr ){ 1753 pVal = valueNew(db, pAlloc); 1754 if( pVal ){ 1755 sqlite3VdbeMemSetNull((Mem*)pVal); 1756 } 1757 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1758 Vdbe *v; 1759 int iBindVar = pExpr->iColumn; 1760 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1761 if( (v = pParse->pReprepare)!=0 ){ 1762 pVal = valueNew(db, pAlloc); 1763 if( pVal ){ 1764 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1765 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1766 pVal->db = pParse->db; 1767 } 1768 } 1769 }else{ 1770 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1771 } 1772 1773 assert( pVal==0 || pVal->db==db ); 1774 *ppVal = pVal; 1775 return rc; 1776 } 1777 1778 /* 1779 ** This function is used to allocate and populate UnpackedRecord 1780 ** structures intended to be compared against sample index keys stored 1781 ** in the sqlite_stat4 table. 1782 ** 1783 ** A single call to this function populates zero or more fields of the 1784 ** record starting with field iVal (fields are numbered from left to 1785 ** right starting with 0). A single field is populated if: 1786 ** 1787 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1788 ** 1789 ** * The expression is a bound variable, and this is a reprepare, or 1790 ** 1791 ** * The sqlite3ValueFromExpr() function is able to extract a value 1792 ** from the expression (i.e. the expression is a literal value). 1793 ** 1794 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1795 ** vector components that match either of the two latter criteria listed 1796 ** above. 1797 ** 1798 ** Before any value is appended to the record, the affinity of the 1799 ** corresponding column within index pIdx is applied to it. Before 1800 ** this function returns, output parameter *pnExtract is set to the 1801 ** number of values appended to the record. 1802 ** 1803 ** When this function is called, *ppRec must either point to an object 1804 ** allocated by an earlier call to this function, or must be NULL. If it 1805 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1806 ** is allocated (and *ppRec set to point to it) before returning. 1807 ** 1808 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1809 ** error if a value cannot be extracted from pExpr. If an error does 1810 ** occur, an SQLite error code is returned. 1811 */ 1812 int sqlite3Stat4ProbeSetValue( 1813 Parse *pParse, /* Parse context */ 1814 Index *pIdx, /* Index being probed */ 1815 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1816 Expr *pExpr, /* The expression to extract a value from */ 1817 int nElem, /* Maximum number of values to append */ 1818 int iVal, /* Array element to populate */ 1819 int *pnExtract /* OUT: Values appended to the record */ 1820 ){ 1821 int rc = SQLITE_OK; 1822 int nExtract = 0; 1823 1824 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1825 int i; 1826 struct ValueNewStat4Ctx alloc; 1827 1828 alloc.pParse = pParse; 1829 alloc.pIdx = pIdx; 1830 alloc.ppRec = ppRec; 1831 1832 for(i=0; i<nElem; i++){ 1833 sqlite3_value *pVal = 0; 1834 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1835 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1836 alloc.iVal = iVal+i; 1837 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1838 if( !pVal ) break; 1839 nExtract++; 1840 } 1841 } 1842 1843 *pnExtract = nExtract; 1844 return rc; 1845 } 1846 1847 /* 1848 ** Attempt to extract a value from expression pExpr using the methods 1849 ** as described for sqlite3Stat4ProbeSetValue() above. 1850 ** 1851 ** If successful, set *ppVal to point to a new value object and return 1852 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1853 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1854 ** does occur, return an SQLite error code. The final value of *ppVal 1855 ** is undefined in this case. 1856 */ 1857 int sqlite3Stat4ValueFromExpr( 1858 Parse *pParse, /* Parse context */ 1859 Expr *pExpr, /* The expression to extract a value from */ 1860 u8 affinity, /* Affinity to use */ 1861 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1862 ){ 1863 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1864 } 1865 1866 /* 1867 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1868 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1869 ** sqlite3_value object is allocated. 1870 ** 1871 ** If *ppVal is initially NULL then the caller is responsible for 1872 ** ensuring that the value written into *ppVal is eventually freed. 1873 */ 1874 int sqlite3Stat4Column( 1875 sqlite3 *db, /* Database handle */ 1876 const void *pRec, /* Pointer to buffer containing record */ 1877 int nRec, /* Size of buffer pRec in bytes */ 1878 int iCol, /* Column to extract */ 1879 sqlite3_value **ppVal /* OUT: Extracted value */ 1880 ){ 1881 u32 t = 0; /* a column type code */ 1882 int nHdr; /* Size of the header in the record */ 1883 int iHdr; /* Next unread header byte */ 1884 int iField; /* Next unread data byte */ 1885 int szField = 0; /* Size of the current data field */ 1886 int i; /* Column index */ 1887 u8 *a = (u8*)pRec; /* Typecast byte array */ 1888 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1889 1890 assert( iCol>0 ); 1891 iHdr = getVarint32(a, nHdr); 1892 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1893 iField = nHdr; 1894 for(i=0; i<=iCol; i++){ 1895 iHdr += getVarint32(&a[iHdr], t); 1896 testcase( iHdr==nHdr ); 1897 testcase( iHdr==nHdr+1 ); 1898 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1899 szField = sqlite3VdbeSerialTypeLen(t); 1900 iField += szField; 1901 } 1902 testcase( iField==nRec ); 1903 testcase( iField==nRec+1 ); 1904 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1905 if( pMem==0 ){ 1906 pMem = *ppVal = sqlite3ValueNew(db); 1907 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1908 } 1909 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1910 pMem->enc = ENC(db); 1911 return SQLITE_OK; 1912 } 1913 1914 /* 1915 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1916 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1917 ** the object. 1918 */ 1919 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1920 if( pRec ){ 1921 int i; 1922 int nCol = pRec->pKeyInfo->nAllField; 1923 Mem *aMem = pRec->aMem; 1924 sqlite3 *db = aMem[0].db; 1925 for(i=0; i<nCol; i++){ 1926 sqlite3VdbeMemRelease(&aMem[i]); 1927 } 1928 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1929 sqlite3DbFreeNN(db, pRec); 1930 } 1931 } 1932 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1933 1934 /* 1935 ** Change the string value of an sqlite3_value object 1936 */ 1937 void sqlite3ValueSetStr( 1938 sqlite3_value *v, /* Value to be set */ 1939 int n, /* Length of string z */ 1940 const void *z, /* Text of the new string */ 1941 u8 enc, /* Encoding to use */ 1942 void (*xDel)(void*) /* Destructor for the string */ 1943 ){ 1944 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1945 } 1946 1947 /* 1948 ** Free an sqlite3_value object 1949 */ 1950 void sqlite3ValueFree(sqlite3_value *v){ 1951 if( !v ) return; 1952 sqlite3VdbeMemRelease((Mem *)v); 1953 sqlite3DbFreeNN(((Mem*)v)->db, v); 1954 } 1955 1956 /* 1957 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1958 ** sqlite3_value object assuming that it uses the encoding "enc". 1959 ** The valueBytes() routine is a helper function. 1960 */ 1961 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1962 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1963 } 1964 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1965 Mem *p = (Mem*)pVal; 1966 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1967 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1968 return p->n; 1969 } 1970 if( (p->flags & MEM_Blob)!=0 ){ 1971 if( p->flags & MEM_Zero ){ 1972 return p->n + p->u.nZero; 1973 }else{ 1974 return p->n; 1975 } 1976 } 1977 if( p->flags & MEM_Null ) return 0; 1978 return valueBytes(pVal, enc); 1979 } 1980